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Phase-Only Nulling With Coarsely
Quantized Phase Shifters

I. INTRODUCTION

Interest in the subject of phase-only control of array antenna patterns has been

stimulated by the growing importance of phased array antennas, since the required

phase controls are already available as part of a beam steering system. An exten-

sive bibliography is given in Reference 1. While from the theoretical point of view

it has been established that phase-only control can be used to impose nulls at

desired locations in array antenna patterns, die practicality of nulling with phase

control alone has not yet been determined. Indeed there is good reason to question

the practicality if costly high precision phase shifters are required to achieve deep

pattern nulls.

The purpose of this report is to suggest a possible way of overcoming the

limitations on depth of null that wvould otherwise result from using coarsely quantized

phase shifters to produce pattern nulls. The basic idea is to use the number of

phase shifters available for control in the columns of a planar array to compensate

for the small number of bits of the individual phase shifters by averaging over the

columns. In the following section of the report we describe two algorithms, one

for obtaining the phase shifts to impose a single null in the 9 = 00 cut of a planar

(Received for Publication 18 july 1986)
1. Shore, R. A. (1985) A Review o Phase-Only Sidelobe Nulling Investigations at

RADC, 11ADC-TR-85- 145, AD A166602.



array pattern, and the second to impose multiple nulls in the = 00 pattern cut.

Results obtained with these algorithms are presented in Section 3 of this report.

It Is shown that using these methods enables deep nulls to be formed with phase

shifters of even 2 bits that would otherwise require phase shifters of considerably

higher precision.

2. ANALYSIS

We consider a rectangular planar array of elements with 2N columns and
2M rows. The interelement spacing of elements in the rows is denoted by d and

x
that of the column elements is denoted by d . The field pattern of the array is given

by the expression
2N 2M

p(u. V)= E E w expi (dX  u+ d v)]
n= 1 m=1 nm m

whe re

dn 2 (n-1), n=l,2, ... , 2N

2M-idy M= - (m- 1), m= 1,2. .... 2M

u= kd sin () cos (9),
x

v= kd sin () sin (O),
Y

k = wavenumber'= 27/A,

and where w is the complex weight of the nmth element. The pattern angles,n i
0 and 9. are referred to a coordinate system with the z-axis normal to the plane

of the array, and with the x- and y-axes parallel to the rows and columns re-

spectively.
Let thp unperturbed weights be denoted by wonm an b mexp (j onm ) where it

is assumed that the amplitude taper can be factored into the product of a row taper

and a column taper. The normalization

2N 2M

n, n E b m =
n=1 M= 1

2



is imposed on these tapers. The phase-only perturbed weights are then denoted

by wnm % Wonm exp(j Anm). Throughout this report we will work exclusively

with real patterns, as a condition for which we assume that the amplitude tapers

are even-symmetrlcal

a2N-n+l a n = lo2 ..... N

b2AT-m1= b m , = 1.2,...M

and the initial phases, 9 onm' and the phase perturbations, AO nm' are odd-

symmetrical

9 o2N-n+l, 2M-m+l = -onm

A 2 N-n+I, 2M-m+l = - nm" (1)

We first consider the problem of imposing a single null in the pattern at the

location u = u I , v = 0, with phase-only perturbations of the array weights; that is

of obtaining a pattern with

EE a n bm exptj((9onm + Aqnm + dx U) 0. (2)
n m n

We write Eq. (2) in the form

i X a bm exp[j(o + d× u1 )]
n m , n

+ E Z a b exp(jo ) [exp(j d) - ]
n -4 n m onm nm ex Nd~u=n m n

which, in view of our restriction to real patterns and the fact that the first term is

the unperturbed pattern Po(ul, 0), becomes

z E an bm 1sin(d u + )sin 9
rn m n

- cos (d x u1 + 9onm ) (cos Agnm - 1)) = po(U 1 0)

3



Equation (3) can be satisfied if we can find phase perturbations such that

Sb an(dx u 1 + sonm)  Agnm
ni n

cs(dn -+= CsAQp(10 (4)- no u1 +onm ) (cs nm ')] 2N a n

If the phase shifters are quantized with NBIT bits, then

APn m = into B

where Lnm is an integer and B = (2 )/ 2 NBIT Equation (4) then takes the form

E b [sin(d uI + ) sin (i B)
m

- cos (d U1 + Con)(cos in B- 1)] =0 VoU-0).x 1 9onm nm 2N a-
n n

Assuming even symmetry of the phases within the columns

9 on, 2M-m+ I 9 onm

9 n, 21,-m+1 = 9 nm

we obtain
M

bm [sin (d u1 + )onm) sin (i B)_n 1 n nm

Po (u' 0)
- cos (d u1 + Q onn ) (cos i B - 1 (5)Xn nnm (5

To determine the InmI m we can use the following algorithm. First, since our
interest is primarily in phase shifters with a small number of bits, say NBIT - 5,
and since it is desirable to keep the phase perturbations small to reduce the effect
on the unperturbed pattern, we restrict the phase perturbations to be at most one
bit; that is. int = * I or 0. We then try to satisfy Eq. (5) by starting in the center
of the column with the element with the largest amplitude factor, bM., and working
out to the edge of the column to the element with the smallest amplitude factor, bl ,

4



assuming a monotonically decreasing amplitude taper. Let tnm denote the term of

the left-hand side of Eq, (5) corresponding to the index m, and let

Snm = t m' = M, M-I ...s I

Sn, A+ I !=0.

Then we set inm, = 1 1 according as the choice of sign makes tnm , agree in sign

with that of the right-hand side of Eq. (5), and if by so doing

I p (u , 0)A
ISnmtI = ISnm l + I + tnm -= 4Na n m = MI\-I, .... 1

Otherwise, we set ino = 0. In other words, we attempt to satisfy Eq. (5) by

summing terms of the same sign as the right-hand side, starting with the largest

magnitude terms and working down to the smallest magnitude terms. The amplitude

taper is essential for the algorithm to work well since the small amplitude terms at

the edge of the column are used to "fine tune" the fit of the left-hand side of Eq. (5)

to the right-hand side. The more pronounced the taper the closer the fit that can

be made.

The efficacy of this scheme can be significantly improved upon by a simple

correction technique. Let E denote the error incurred in attempting to satisfy

Eq. (5)

M p(u 0) po(u , 0)

n E tnm - 4Na = Snl 4Na
m=l n n

Then the resulting error, E. in satisfying Eq. (3), the condition for the pattern null

at (u , 0) is

N

E = E
n=l

Suppose, however, that after trying to satisfy Eq. (5) for n = I we then subtract the

resulting error, E , from the right-hand side of Eq. (5) for n = 2 so that the right-

hand side for n = 2 becomes

po (u 1s0)
4N a22 1-



Similarly, let 1 2 be the error now incurred in satisfying
M m PO (Ul00)

X b t 0 u*)-
MCI m2m _47-a)

We then subtract this error from the right-hand side of Eq. (5) for n = 3, and so

on. The resulting total error in attempting to satisfy Eq. (3) is then

-C E" +E 2 " E2 
+  E" "N-l + EN= EN

so that we are left with only the error incurred in satisfying
AI PO(U 1' 0)

Enl bm LNm 4Na N-1

As will be seen in Section 3, this error correction technique results in a substantial

improvement in the depth of null obtained.
The method we have discussed for producing a single pattern null with

coarsely quantized phase shifters, unfortunately does not appear to be generaliz-
able to produce multiple pattern nulls. For obtaining multiple nulls we therefore
resort to a different method, namely that of finding a planar array equivalent to a
linear array in the sense that for the cut v = 0, the planar array has the same
pattern as a linear array with the number of elements and interelement spacing
equal to the number of columns and intercolumn spacing respectively of the planar
array. Let the pattern of the linear array be denoted Piin(U) with

2N N

Ptin(u) =E an ex p [j (A n + dn)] = 2 l an cos(A9 n+ d u)n= I n= In

where

dn = (2N-1)/2 - (n-i), n= 1,2..... 2N

u = (210)/ d sin(O),

and the jA9Pn are the phase perturbations required to impose nulls in the un-
perturbed pattern

2N N
PO(u) E an exp(j d u) = 2 E an cos d u

n= I3 n= 1



at the locations u i u U2 .. u K ' Method for finding the IAn I have been des-

cribed in several references and need not be discu3sed here. Let the planar

array pattern to be made equivalent to the linear array be denoted Ppl(u. 0) with

2N 2M

p l(u, ) E an  E b exp[j(19p + d nu)
n= I r,= m nm n

2N 2M

E an E b cos (A9 + dn u)n= I M= I n

N 2M

=2 E a n  E bm Cos(_%9nr + d u)
n= 1 m= I n

where the jig nmI are the phase perturbations of the elements of the planar array

to be determined. Equating p P(u. 0) with Pl in(u) then yields

2M

b cos(Io + d u) = cos(1o + d u)

or

2M

bm Cos = cosA9 n (6a)ml = i Apnm ")

2M£

bm sinAp nrn sin An . (6b)
m=l m n

In complex form, Eqs. (6a) and (6b) can be written as
2M

E bm exp(j An) = exp(j n) n (7)

As above we assume that the phase perturbations of the planar array elements are

given by

.A nnm = int B, i nt= 0, ± 1, B = (2 T)I 2NI/2

2. Shore, R. A. (1983) Phase-Only Nulling as a Nonlinear Programming Problem,
RADC-TR-83-37, AD AI3055;e.

1. Shore, 1. A. (1983) The Use of a Beam Space Hepresentation and Nonlinear
Programming in Phase- O n li NuIlnA, IVIDC -TIt- 83-124, AD A131365.



One conclusion that can be drawn immediately from Eq. (7) is that Fb n must
be greater than one for Eq. (7) to be satisfied. For, employing a vector interpreta-

tion of Eq. (7) in the complex plane, exp(j 49n) is a vector of unit magnitude directed
at an angle 4gn with the positive x-axis. while the bm exp(j inmB'i are vectors of
magnitude b directed either along the positive x-axis or at an angle of * B with the
positive x-axis. If "bm = I the resultant vector can have unit magnitude only if

all the iinm I are equal for a given value of n. Otherwise the resultant vector will

have a magnitude less than one. Thus in general Ebm must be greater than one.
Furthermore. since the resultant vector must lie in the angular sector between

-B and +B. it follows that Eq. (7) can be satisfied only for

Jag n = B.

This, however, is not a significant restriction for us, since our entire analysis is

motivated by the problem of realizing small phase perturbations with phase shifters

whose minimum quantization step is considerably larger than the desired phase

perturbations. In Appendix A we derive the following expression for -bm as a

condition for Eq. (7) to be satisfied:

2M
bm = tan - sin Ign I + cos A (8)

M_1_ n n

Since the right-hand side of Eq. (8) varies from column to column, it follows that
Eq. (7) or Eqs. (6a) and (6b) cannot be satisfied exactly if phase-only control of

the array elements is employed. However it will be seen that Eqs. (6a) and (6bi
can be satisfied closely enough to yield deep pattern nulls if an average value of

b > I is employed.
m
As a consequenc4 of Fbm > 1. the mainbeam loss of the planar array pattern

that results from imposing nul!s at a set of locations u = ul, u2 ..... uK is greater

than the loss incurred in the equivalent linear array pattern. For in the case of

the linear array pattern the mainbeam loss incurred in imposing nulls is

2N 2N

Faa (I -cos )= 1- an Cos Aln
n=ln

while for the planar array the mainbeam loss is



2N 2M 2N 2M

M ax~ m bm Cos &Pnmn* l m 1 m 1

2M 2N 2N

Sb - a cosAon >I- Ea cosan O n
M=I n= , n= n

The algorithm used for determining the phase shifts to satisfy Eqs. (6a) and

(6b) is as follows. First the values of the I bm originally normalized to sum to

unity, are multiplied by a factor obtained by averaging the right-hand side of Eq. (8)

over n and then adding a small constant to this average value. A two-step proce-

dure then follows. We first try to satisfy Eq. (6b) which we write in the form

sin A9n
bi 2sinB(9)

obtained from Eq. (6b) by letting Lm B, i = 0, ±1 and using the relation= r Bi =0 +iadusn h rlto

sin(int B) = int sin B.

Even symmetry of the phases with respect to the index m is assumed so that

in, 2M-rn+l = inrn * (10)

The algorithm used for determining the Ii nmI to satisfy Eq. (9) is basically the

same as that described above in treating the single null problem. We let

Sn

S = F b mi m' = M, NT-1 ...1 1
M = hi

Sn, M + 1 0

Then we set i = nm 1 according as the choice of the sign agrees with that of

A0 n and if by so doing

= Is b sin I Ag n M
n, ml+I! mISr,I In,mrn,+ + inm inrnr <- .--- , m' = M, M-l, ..... , 1

Otherwise we set i nm' =.

9



Having satisfied Eq. (9) as closely as possible, we then turn to Eq. (6a) which

we write as

M cos A0

E bm cos(int B) = 2

r= 1

The left-hand side of Eq. (1l) has some value, in general not equal to the right-

hand side, as a result of the settings of the Iitnm made in satisfying Eq. (9). The

trick now is to adjust the -inmlto satisfy Eq. (11) without disturbing the fit made

to Eq. (9). The algorithm used to satisfy Eq. (11) without disturbing Eq. (9) changes

only the values of the J into left equal to zero in satisfying Eq. (9), and when a

value of i is changed from 0 to ± 1 the symmetric phase shifter in the columnnm

(index n, 2M-m+ 1) is changed to -int instead of being set equal to int as when

satisfying Lq. (9) Isee Eq. 10)]. Thus "bm int is left unchanged. Let

7

Tn, = b cos(int B)
m=l m

after satisfying Eq. (9), and let

ml

Trim' = Tn, A]+l + E b [cos(int B) - 11, ml ? i, M-,....1
mM

Then, if inm was left equal to zero after satisfying Eq. (9). we now set i = ± 1

according as the choice of sign agrees with that of Ain and if by so doing

Trm = T ,+ + bm, [cos (i B) - 1] n (12)

n n, m' 1 rinm'= 2

Otherwise we leave i nM' unchanged at zero. In other words, we try to satisfy

Eq. (11) from above in contrast to the procedure used to satisfy Eq. (9) which works

from below. The fact that the resettings of the {inmi to satisfy Eq. (11) result in

decreasing the starting value of Tnm, Tn, M+I' makes it important that the Ibmi

have been initially adjusted so that Tn, M+I is larger than cos (A n)/2 for all n.

This is done, as mentioned on page 9, by first obtaining an average multiplicative

constant for the column taper by averaging the right-hand side of Eq. (8) and then

adding a small term to this multiplier. As with the single null algorithm, the

success of the multiple null algorithm requires a significant amplitude taper of the

columns of the array since the small terms corresponding to the edge elements are

used to fine tune the fit of the sums of the left-hand sides of Eqs. (6a) and (6b) to

the respective right-hand sides.

10



3. RESULTS

In this section we present the results of calculations performed with the
algorithms described in Section 2. We begin with the single-null algorithm dis-
cussed on page 4 using the error correcting scheme. In Table I we summarize

the results obtained for a 100 X 100 element array by fixing the number of bits in

the phase shifters and averaging the unperturbed and perturbed power at the position

of the desired null, the average taken as the null position was varied from 30 to 150
at intervals of 0. 21. The interelement spacing within the rows and columns of the
array was set equal to A/2. Row and column amplitude tapers were for a Taylor
distribution with 40 dB maximum sidelobes and = 4. The phases of the unper-

turbed element weights were random with a uniform distribution in the interval

[-B/2, +B/2], B = (21,)/ 2 NB I T . The average perturbed power at the null location
should be compared with the last column of the table which gives the statistical
average of the power at a null location of the pattern if phase errors are uniformly
distributed in the interval [-B/2, +B/2]. This value is computed from the formula 4

_______2] 112rT~TF~sin An m 'm
(E , w Im2E E IWn1

with IF (u, v'j 2 the statistical ensemble average power at a location in the pattern
for which the error-free pattern has a null. Thus, for example, with 2-bit phase
shifters the planar array is able to form nulls with an average depth of -58 dB as

compared with the -40 dB nulls that could be expected if nothing were done to com-
pensate for the smalb number of bits. Since the statistical average null depth de-
creases by approximately 6 dB for each extra phase shifter bit, the -79 dB null level
obtained with 4-bit phase shifters is equivalent to that obtainable with 9-bit phase

shifters if no compensating method is used.

The tapering off of the average perturbed null depth power going from 5 to 6 bits
is explainable with reference to Eq. (5). As the number of bits increases, B
becomes small and eventually the terms on the left-hand side become too small to
match the right-hand side unless phase shifts larger than 1 bit are allowed. For
7-bit phase shifters, for example, the average perturbed power at the null location
increases to -7 1. 5 dB while for 8 bits it is only -53. 6 dB.

4. Shore, 1. A. (1982) Statistical Analysis of the Effect of Phase Quantization on
Array Antenna Sidelobes, i{ADC-Tl-82-190, AD A123704.

11



Table 1. Summary of Results Obtained With the Single-null Algorithm for a
100 X 100 Element Array; 40 dB, f = 4 Taylor Amplitude Tapers. Null
location varied from 3* to 150 at intervals of 0. 2

. Highest Pattern Statistical
Average Average Value at Average

Unperturbed Pe rtu rbed Desired Null Null
Power Power Reduction Location Depth

NEIT (dB) (dB) (dB) (dB) (dB)

2 -41.9 -58.0 16. 1 -50.4 -40. 0

3 -43.5 -69.3 25.8 -59.5 -45. 1

4 -44. 1 -78.8 33.7 -70. 1 -50.8

5 -44. 1 -88.0 43.9 -77.2 -56. 8

6 -44. 1 -91.8 47.7 -82.2 -62.8

The importance of the error correcting scheme discussed on page 5 becomes
apparent if one compares the results shomn in Table 1 with those obtained if the
error connecting scheme is not used. For NBIT = 4 and 5, for example, without
the error correcting scheme the average power at the null location is -62. 6 and
-68.9 dB respectively, contrasted with the respective values of -78.8 and -88.0 dB
obtained using the error correction scheme.

Table 2 summarizes results obtained for a 100 X 50 element array with the
same element spacing, amplitude tapers, and averaging interval as for Table 1.
An approximately 3-dB decrease in performance results from this halving of the
column size. This reduction in performance as the column size is decreased is to
be expected since the algorithm has fewer terms available as it tries to match the
left-hand side sum of,Eq. (5) with the right-hand side. -

Table 3 summarizes results obtained for a 100 X 100 element array with the
same parameters as for Table 1 except that a 30 dB, n = 4 Taylor distribution for
the row and column amplitude tapers is assumed. The reduction in performance
compared to Table 1 is attributable to the fact that the less pronounced amplitude
taper of the Ibm I in Eq. (5) for the 30 dB Taylor compared to the 40 dB Taylor
distribution implies a corresponding reduction in the "fine tuning" capacity of the
algorithm in attempting to match the left-hand side sum and the right-hand side as
the edge elements of the column are approached.

12



Table 2. Summary of Results Obtained With the Single-null Algorithm for a
100 X 50 Element Array: 40 dB, I = 4 Taylor Amplitude Tapers. Null
location varied from 30 to 150 at intervals of 0. 20

Highest Pattern Statistical
Average Average Value at Average

Unperturbed Perturbed Desired Null Null
Power Power Reduction Location Depth

NBIT (dB) (dB). (dB) (dB) (dB)

2 -42. 1 -55.4 13. 3 -46.7 -36.7

3 -43.4 -64.8 21.4 -54.3 -41.7

4 -43.6 -76.9 33.3 -67.8 -47.4

5 -44.0 -84.9 40.9 -76.3 -53.4

6 -44. 1 -89.7 45.6 -80.6 -59.4

Table 3. Summary of Results Obtained With the Single-null Algorithm for a
100 X 100 Element Array; 30 dB. T = 4 Taylor Amplitude Tapers. Null
location varied from 30 to 150 at intervals of 0. 2

Highest Pattern Statistical
Ave rage Ave rage Value at Average

Unperturbed Perturbed Desired Null Null
Power Power Reduction Location Depth

NBIT (dB) (dB) (dB) (dB) (dB)

2 -38.0 -56.0 18.0 -50.5 -40.9

3 -37.8 -66. 1 28.3 -57.6 -45. 9

4 -37.8 -74.8 37.0 -65.5 -51.6

5 -37.8 -79.6 41.8 -67.3 -57.6

6 -37.8 -80.4 42.6 -65.0 -63.6
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As an example of the patterns obtained when the weights are perturbed using

the single-null algorithm, Figure 1 shows the 9 = 0 ° (v = 0) perturbed pattern with

a null imposed at 0 = 4. 10 in the pattern of a 100 X 100 element array with half

wavelength spacing, 4-bit phase shifters, and a 40 dB, *= 4 Taylor amplitude

distribution of the rows and columns. The unperturbed pattern is also shown for

reference. The increase in sidelobe level at locations other than the null location

is as high as 15 dB. Figure 2 shows the 9 = 90° (u = 0) pattern for the same case.

It is apparent that the perturbed pattern follc-.,7 the unperturbed pattern far more

closely for this cut than it does for the p = 0' cut. The difference between the two

cuts can be explained by referring to the expressions for the two pattern cuts (see
Appendix B). For the P = 00 cut,

-10

-20-

M -30

- 40-

CL

600-

-90 -60 -30 0 30 60 90

THETA (DEGREES)

Figure 1. Unperturbed v = 0 Pattern (-) of 100 X 100 Element Array With
40 dB, = 4 Taylor Amplitude Trapers, and Perturbed Pattern (- ) \Vith
Null Imposed at 0 = 4. 11 Using the Single-null Algorithm. NBIT = 4
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-20-

CD30-

-400 -
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CD -50'

060-

-70-.

Algorithm. NBIT = 4

p(u, 0)=n an  2 ;E bm exp[j (9 + AO )] exp (Jd u)
n~l I Ml Monrn, nm n

while for the 9 = 90 ° cut

pM d
p(o M V) b 2 a co + exp Qd V)

m=l n I n lrM

For the v = 0 pattern, the perturbed weights can be regarded as the weights, an'
of an ideal 40 dB, i 4 Taylor linear array multiplied by the factor
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This factor rtsults in a chango of both amplittide and phase of the ideal Taylor
weights. In contrast* for the u - 0 pattern, the perturbed weights are those of thw
samie ideal Taylor diatribution multiplied by the f(ator

IN

2coi(o * 0 I(
n onmi nim

This factor is real and thus modifies only the arnplitude of the ideal Taylor weir'nti.
Moreover. for N33IT - 4. the arg ment of the cof'ine is for the most part less than
22.50 so that the cosine and hence the multtplicative factor itself are not very much
less than unity. Thus p(O. v) does not differ significantly from the ideal Taylor
pFttern.

We now turn to the multiple null algorithm dcscribedon pages 9-10. Table 4
summarize3 results obtained using this algorithm for the example of 5 nulls im-
posed in the o = 00 (v = 0) cut of the pattern of a 100 X 100 element array with half
w3velength interelement spacing at the locatlon 0 = 41, 7°, 10° , 13%. and 1G° . At
these locations the unperturbed power is -40 d3, -51 d, -44 dB, -48 dB, and
-50 dB respectively. The row and column trplftude tapers are those of a 40 d,13
3 = 4 Tylor digtribution. The phase perturbations of the eqnivzlent linear array
(100 elements, half wavelength spacing, a .10 d3, 7 , 1 Taylor amrplitude t.;.per)
are those that impuse nulls at the same five patterr locations while minir,;zin;, the
som of the iquared weight perturbations. Thcy were calculated u ina the non-
linear proRramming method described in Reference 2. The co!unns of the tabl:)
give respectely the number of bits in the planar array phna- shifters, the depth
of null achieved at the five null locations, the average po'cr reduction, the ,ver.rce
multi licative conatnrt for the column taper (obtained by averaging the expression

mn Eq. (81 over the columns of the array), the small term to be added to this mrulti-
plitetive eonstantt so that Eq. (121 can be satisficd (see page 10. the loss in main-
ham gdn 'P .!!ing from the phase perturbations (see page 9). and the gtatistical
t.etnpM i ,r- - null dopth If nothing is done to compensate for the phase shi~ft-

VtKahullte l Vn0 or the 0 altaditive ter) w'a found
~ ri~i it ~b~ ~tet aergepower reotm
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It to apparent that remarkably deep nulls can be formed with phase shifters

of even 2 bits by treating the columns of the array as single weights for a linear

array and compensating for the small number of bits with the number of phase

shifters available for control in the columns. As the number of bits increases,

the nulling algorithm eventually breaks down, as does the single-null algorithm,

because the terms of the left-hand side of Eq. (6b) become too small to match the

right-hand side If phase shifts are limited to only one bit. As discussed in the

previous section. in using the multiple null algorithm it is necessary to first mul-

tiply the amplitudes of the array element weights by a factor consisting of the

average of Eq. (8) over the columns of the array to which is added a small term so

that Eq. (12) can be satisfied by the algorithm. The average of Eq. (8) (column 10

of Table 4) decreases as the number of bits increases because tan(B) then becomes

small and the average approaches the average of the cosines of the phase perturba-

tions of the equivalent linear array. The small additive term (column 11 of Table 4)

also decreases as the num'Jer of bits increases because, referring to Eq. (12). the

factor cos(inmB - 1) on the left-hand side of Eq. (12) can then decrease only very

slightly if rnm, is changed from zero to + 1. Hence the algorithm will be able to

obtain a good match to Eq. (6a) even if the left-hand side of Eq. (12) is initially

only slightly greater than the right-hand side. The mainbeam gain loss is very

nearly equal to the total factor used to multiply the array weights (the sum of the

average multiplicative factor and the small additive term).

To examine the effect of smaller column size on the performance of the nulling

algorithm, calculations were performed with the same parameters as described

above in generating Table 4 except that the column size was reduced from 100 ele-

ments to 50 and 20 elements. The results for these computations are summarized

in Tables 5 and 6 respectively. It is apparent that the smaller column size reduces

the ability of the algorithm to produce deep nulls at the desired locations. Never-

theless, there is still a substantial improvement even in the 20 element column

case compared to the null depths that would be expected if nothing were done to

compensate for the small number of bits of the phase shifters.
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As an~ example of the patterns obtained when nulls are formed with the multiple
null algorithm, Figure 3 shows the 9 = 0* (v = 0) perturbed pattern with nulls
iMPosed at 40* 7', 100, 130. and 180 in the pattern of a 100 X 100 element array
with half wavelength spacing, 4-bit phase shifter.,, and a 40 dB, i=4 Taylor
amplitude distribution of the rowvs and columns. The perturbed pattern follows the
unperturbed pattern extremely closely except in the vicinity of the aull locations
and the locations symmetric to the nulls with respect to the mnainbeamn. This is
very close to the typical error free pattern of a linrear array with nulls
imposed using minimum %veight perturbation, phase-only nulling, which, of
course, is what the multiple null algorithm was designed to accomplish.

-20-

-40-

C:1 -50,

-60-

THETA (DEGREES)

Figure 3. Unperturbed v 0 Pattern (--) of 100 ',, 100 Element A t'ray W'ith
40 dB, -n 4 Taylor Amplitude Tapers, and Petrturbed Pattern (-) Wvith
Nulls Imposed at 0 411, 70, 10", 13-, nnd IG" Using tile Multiple Null
Algorithm, NIIIT 4
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Fir ue 4 shows the 9 m 90* (u & 0) pattern for the same case (for the expressions
for the principal cut patterns, see Appendix B). As might be expected, the
perturbed u = 0 pattern shows significant differences from the unperturbed pattern

throughout the range of 0. simply because the algorithm we have used is concerned

solely with matching the v = 0 pattern cut with a given pattern of a linear array, and
does not contain any safeguards for the integrity of the u = 0 pattern.

-20

M -30,

S-40-.
LU

0_ -50',

-60.
I '

I I
-70 J

I I I
-80 . 60

-00 -0 -0

THETA (DEGREES)

Figure 4. Unperturbed u 0 Pattern (m .-- ) of 100 X 100 Element Array With
40 dB, n- 4 Taylor Amplitude Tapers, and Perturbed Pattern (- )
Corresponding to Nulls Imposed in the v = 0 Pattern at 0 40. 70. 100, 130 ,

and 161 With the Multiple Null Algorithm. NBIT = 4
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4. DIRECTIONS FOR FURTHER RFEARCH

The principal purpose of this report has been to demonstrate the feasibility of
obtaining deep nulls in planar array antenna patterns using coarsely quantized
phase shifters. For the sake of simplicity we limited our discussion to nulls
imposed in the v = 0 cut of real planar array antenna patterns, and developed null
synthesis algorithms to obtain phase shifts for these situations. In future work we
intend to consider the use of coarsely quantized phase shifters to impose nulls in
arbitrary directions in both real and complex antenna patterns. Also to be con-
sidered is the possibility of using phase-only nulling with coarsely quantized phase
shifters in planar arrays to accomplish what can only be done with combined ampli-
tude and phase control in linear arrays. An example is the imposing of nulls at
pattern locations symmetric with respect to the mainbeam in real linear array
patterns, when the phase perturbations are not allowed to be large. Finally, since
this report has considered null synthesis only, it is of much importance to investi-
gate adaptive nulling procedures using coarsely quantized phase shifters in planar
arrays.
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Appendix A

Derivation of Eq. (8)

The starting point for the derivation is Eqs. (6a) and (6b) with APn m  inmB
NBITB= (2)/2 T inm = 0,1:

2M

b cos (itrnB) =cos AOn (Ala)

2M

E bm sin (i nmB) sin An n (Alb)
mn=I

Expanding Eq. (Ala),

2 2 4b ( 1  2 B 2  4 B 4

-m nm Tr + 'nm - n -.  + ... Co OS n

and since i nto2 p = nm I ,

or

23



b M bm Iinm 1 (1-cos B) +cos A n. (Alc)
in m

Since sin(l nmB) = t sin(B), Eq. (A1b) can be written] nm

E b sin 40 nam
m mnm sin B

and furthermore, since the multiple null algorithm sets the sign of the inm I to
agree with that of Agno

sin i A~nI
E b I inI =  sin n (Ald)
ni n nin sin B

Substituting Eq. (Aid) in Eq. (AIc) we obtain

b b = .- cos B sin JA, n f + Cos A?n

m 5mB

= tanR sin LAOn + cos A '
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Appendix B

Expresions for the Principal Plans Patterns

In this appendix we derive expressions for the u = 0 and v = 0 patterns obtained

using the single-null and multiple-null algorithms. In general, letting nn denote

the perturbed phases, the perturbed pattern is given by

2N 2M

p(uo v) = E E a n b m exp(jonm) exp[j (d x u + d v)]
n= = = I n Ym

so that

2N 1M
p(u, 0) = an b exp (jnm )  exp (j dx  u) (Bla)

n= 1 mr=1 n

and

2M [2N1
P(O'v)= E bm E an exp(iOnm)j exp(j dy v). (Bib)

M=1 n

For the single-null algorithm

On, 2M - m+ 1 = nm (B2)

so that

25



2Nr 1
p(u, 0) = : a~ n [ bm exp(Jn) exp(j dx U) .(B3)

Equation (Bilb) then coupled with the general symmetry relation Eq. (1) and Eq. (B2)
gives

2M (2 N
p(O V) = 1: b~ (2 cs m exp(jdy, v). (B4)

m=l nl~ anco _0 /

For the multiple-null algorithm, some of the phases satisfy Eq. (B2). while others
instead satisfy

O,2M - m+ 1 O nrn

Hence the simpler forms, E-qs. (B3) and (B4) obtained for the single-null case, do
not apply and the general forms. Eqs. (Bla) and (i)must be used to calculate the
patterns.
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