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Phase-Only Nulling With Coarsely
L Quantized Phase Shifters

1. INTRODUCTION

Interest in the subject of phase-only control of array antenna patterns has been
stimulated by the growing importance of phased array antennas, since the required
phase controls are already available as part of a beam steering system. An exten-
sive bibliography is given in Reference 1. While from the theoretical point of view
it has been established that phase-only control can be used to impose nulls at
desired locations in array antenna patterns, the practicality of nulling with phase
control alone has not, yet been determined. Indeed there is good reason to question
the practicality if costly high precision phase shifters are required to achieve deep
pattern nulls.

The purpose of this report is to suggest a possible way of overcoming the
limitations on depth of null that would otherwise result from using coarsely quantized
phase shifters to produce pattern nulls. The basic idea is to use the number of
phase shifters available for control in the columns of a planar array to compensate
for the small number of bits of the individual phase shifters by averaging over the
columns. In the following section of the report we describe two algorithms, one
for obtaining the phase shifts to impose a single null in the ¢ = 0° cut of a planar

{(Received for Publication 18 yuly 1986}

1. Shore, R.A. (1985 A Review ot Phase-Only Sidelobe Nulling Investigations at
RADC, RADC-TR-85-145, AD A166602.




array pattern, and the second to impose multiple nulls in the ¢ = 0° pattern cut,
Results obtained with these algorithms are presented in Section 3 of this report.

It is shown that using these methods enables deep nulls to be formed with phase
shifters of oven 2 bits that would otherwise require phase shifters of considerably
higher precision.

2. ANALYSIS

We consider a rectangular planar array of elements with 2N columns and
2M rows. The interelement spacing of elements in the rows is denoted by dx and
that of the column elements is denoted by dy. The field pattern of the array is given
by the expression

2N  2M
. plu, v) = 2;1 mX=:1 w?m exp(j (dxn u+ dym v)]
where
dxn = ﬂ\lz:__l__ {(n-1, n=1,2,..., 2N
dym=2ﬁi—1 -(m-1, m=1,2,..., 2M

u= kdx sin (8 cos (9),
v= kdy sin (8) sin (p),
k = wavenumber'= 21/A,

and where wom is the complex weight of the nmth element. The pattern angles,
§ and ¢, are referred to a coordinate system with the z-axis normal to the plane
of the array, and with the x- and y-axes parallel to the rows and columns re-
spectively.

Let the unperturbed weights be denoted by Yonm = anbm exp (joonm) where it
is assumed that the amplitude taper can be factored into the product of a row taper

and a column taper. The normalization

2N 2M
r?; T b mz=:1 om !



is imposed on these tapers. The phase-only perturbed weights are then denoted

' j s report we will work exclusively
by %o = Yonm exp{j Aonm). Throughout this rep ' ‘
with real patterns, as a condition for which we assume that the amplitude tapers
are even-syrmametrical

azN‘n*l = anl n:' 102lc-loN

b b .m=1,2,.,.M

2M-m+1 = °m
and the initial phases, Ponm’ and the phase perturbations, "\‘Qnm‘ are odd-
symmetrical

Po2N-n+1, 2M-m+1 - "onm

~8Q (1)

AC’2N-n+1, 2M-m+1
We first consider the problem of imposing a single null in the pattern at the
location u = u,, v = 0, with phase-only perturbations of the array weights; that is

1
of obtaining a pattern with

Zn: § a, bm exp[j(gaonm + A«pnm + dxn ul)] =0, (2)

We write Fq. (2) in the form

Z Z a_ bm exp[j(tponm+ dMn ul)]

n m 14

253 » - .
+ - Ar-n‘ a, bm exP(Joonm) (exp (] Aonm) - 1] exp(j dxn ul) =0

which, in view of our restriction to real patterns and the fact that the first term is
the unperturbed pattern po(ul, 0), becomes

o .
; ; a, bm(sm((xn U+ 90nm’ Sin 89 m

~ cos (dxn u, + Qonm) (cos AQnm -1)= po(ul. 0, (3)



Equation (3) can be satisfied if we can find phase perturbations such that

§ b 1810 @ 1w % 8000 sin B,

Pty 0 (4)
- cOos (dxn ul + Qonm) {cos Aonm -] = —ZN—E;— .
If the phase shifters are quantized ‘with NBIT bits, then
AQnm * nm B
. : NBIT . )
where 1,m 1S an integer and B = (2m/2 . Equation (4) then takes the form
2 b (sintd_ u +o_ )sinii__ B)
mom Xn 1 oqu nm
P, (ul,O)
- cos (dxn Uy * Ponm’ (C0S i, B - 1)]= —Z—N—a—r—l—— .
Assuming even symmetry of the phases within the columns
®on, 2M-m+1 ~ Ponm
®n, 2M-m+1 " ®nm *
we obtain
M )
> b_(sin(d. u,+¢__)sin(i_ B)
m= m X, 1 onm nm
' Py (ul, 0)
- cos (dxn u, + Qonm) (cos bm B-1)= -—;NT . (5)

To determine the {in’m} we can use the following algorithm. First, since our
interest is primarily in phase shifters with a small number of bits, say NBIT £ 5,
and since it is desirable to keep the phase perturbations small to reduce the effect
on the unperturbed pattern, we restrict the phase perturbations to be at most one
bit; that is, inm =21or 0. We then try to satisfy Eq, (5) by starting in the center
of the column with the element with the largest amplitude factor, bM' and working

out to the edge of the column to the element with the smallest amplitude factor, bl'



assuming a monotonically decreasing amplitude taper. Let tim denote the term of
the left-hand side of Eq. (8) corresponding to the index m, and let

ml
= ! -
Snm. mZ:M tomt ™' ® M, M-1, ..., 1
Spa+1 = 0

Then we set inm' = £ 1 according as the choice of sign makes t.m 2Eree in sign
with that of the right-hand side of Eq. (5), and if by so doing

|po(u1.0)| '
< - -
nom' + 1 tyme TERE—— M =ML, 0

n

Is I =1[s

nm'

Otherwise, we set inm‘ = 0. In other words, we attempt to satisfy Eq. (5) by
summing terms of the same gign as the right-hand side, starting with the largest
magnitude terms and working down to the smallest magnitude terms. The amplitude
taper is essential for the algorithm to work well since the small amplitude terms at
the edge of the column are used to "fine tune’ the fit of the left~hand side of Eq. (5)
to the right-hand side. The more pronounced the taper the closer the fit that can
be made.

The efficacy of this scheme can be significantly improved upon by a simple
correction technique. Let € denote the error incurred in attempting to satisfy
Eq. (5)

M
¢ = Z .- P,(u;.0) _s Polu;. 0
n- & nm ZNan " “nl —'-I’N—a_;

Then the resulting error, €, in satisfying Eq. (3), the condition for the pattern null

at(ul. 0 is
N

=Y«
n=1

Suppose, however, that after trying to satisfy Eq. (5) for n = 1 we then subtract the
resulting error, ¢ 1 from the right-hand side of £q. (5) for n = 2 so that the right-
hand side for n = 2 becomes

po(ul,O)

- €. .
;az 1

wy



Similarly, let ¢, be the error now incurred in satisfying
M

p.(u,, Q)
by, s N .«
mal m 2m 32 l.

We then subtract this error from the right-hand side of Eq. (5) for n= 3, and so
on. The resulting total error in attempting to satisfy Eq. (3) is then

€=€) -6 ¥ €y Eok . mEy | FENTEy

so that we are left with only the error incurred in satis{ying
M

p (u,,0)
2 Bt aWE— " €y
me1 ™m Nm Na, N-1
As will be seen in Section 3, this error correction technique results in a substantial
improvement in the depth of null obtained.

The method we have discussed for producing a single pattern null with
coarsely quantized phase shifters, unfortunately does not appear to be generaliz-
able to produce multiple pattern nulls, For obtaining multiple nulls we therefore
resort to a different method, namely that of finding a planar array equivalent to a
linear array in the sense that for the cut v = 0, the planar array has the same
pattern as a linear array with the number of elements and interelement spacing
equal to the number of columns and intercolumn spacing respectively of the planar
array. Let the pattern of the linear array be denoted plm(u) with

2N N

pun(u) = E a, exp (] (Aon + dnu)] =2 Z a, cos(.‘&g;»n + dn u)

n=1 n=1
’

where
dn = (2N-1)/2 - {(n-1), n=1,2,..., 2N,
u = (2m/xdsin(8),

and the ’A(pn} are the phase perturbations required to impose nulls in the un-
perturbed pattern

N N
po(w = nZ;l a_exp(jd_u =2 ngjx 8, c08 d



at the locations u = e Ugs «ves Ugce Method for finding the {A;&n | have been des-
cribed in several references 1-3 and need not be discussed here. Let the planar
array pattern to be made equivalent to the linear array be denoted ppl(“‘ 0) with

2N 2!\‘1
ppl(“' 0 = ngl a mzt:‘l bm exp[j(.spnm + dn w)
| 2N 2M
= ngl a, mgl b‘?‘ cos(Acnm + dn u)
N 2M
= 2nz=:l a, mgl bm cos(AQnm + dn u)

where the {AQnm} are the phase perturbations of the elements of the planar array
to be determined. Equating ppl(u. 0) with p“n(u) then yields

2M ~

Z:y bm cos(Aonm + dn u) = cos (.50n + dn u)

or
2M
Z=:1 b, cos Aonm = C0S A9 ., (6a)
2M
21 bm sin Aonm = sin AQ_ . (6b)

In complex form, Eqs. (6a) and (6b) can be written as
2M ‘

’
mz=:1 bm exp(j Apnm) = exp(j AQn) . (7)

As above we assume that the phase perturbations of the planar array elements are
given by
NBIT

Am T igm Br iy =0 21, B=(2m/2

2. Shore, R. A, (1983) Phase-Only Nulling as a Nonlinear Programming Problem,
RADC-TR-83-37, AD ATI0552.

3. Shore, R.A. (1983) The Use of a Beam Space Representation and Nonlinear
Programmhmin Phase-Only Nulling, RADC-TR-83-T24,7ATy ATIT365,




One conciusion that can be drawn immediately from Eq. (7) is that zbm must
be greater than one for Eq. (7) to be satisfied. For, employing a vector interpreta-
tion of Eq. (7) in the complex plane, exp(jAcsn) is a vector of unit magnitude directed
at an angle Aon with the positive x-axis, while the {bm exp(j int)| are vectors of
magnitude bm directed either along the positive x-axis or at an angle of * B with the
positive x-axis. If me = 1 the resultant vector can have unit magnitude only if
all the ‘inm! are equal for a given value of n, Otherwise the resultant vector will
have a magnitude less than one. Thus in general me must be greater than one.

Furthermore, since the resultant vector must lie in the angular sector between
-B and + B, it follows that Eq. (7) can be satisfied only for

lap | =B.

This, however, is not a significant restriction for us, since our entire analysis is
motivated by the problem of realizing small phase perturbations with phase shifters
whose minimum quantization step is considerably larger than the desired phase
perturbations. In Appendix A we derive the following expression for me as a
condition for Eq. (7) to be satisfied:

2M

= B ,
mzzl bm = tan 3 sin IAQnI + COs AQn . (8)

Since the right-hand side of Eq. (8) varies from column to column, it follows that
Eq. (7) or Egs. (6a) and {6b) cannot be satisfied exactly if phase-only control of
the array elements is employed. However it will be seen that Eqs. (6a) and (6b)
can be satisfied closely enough to yield deep pattern nulls if an average value of
z bm > 1 is employed.

As a consequencék of me > 1, the mainbeam loss of the planar array pattern
that results from imposing nulls at a set of lccations u = Ugs Ugy «oey Upe is greater
than the loss incurred in the equivalent linear array pattern. For in the case of

the linear array pattern the mainbeam loss incurred in imposing nulls is

2N 2N
nzz:l an(l - coS§ Aqn) =1 - n§=:1 a cos/ Aon

while for the planar array the mainbeam loss is




2N 2N

E E b Z i cos A’*’nm

n=1 mal
2M 2N 2N
= Z b —ZacosAo >1—za cos A0
m=1 n=1 0 nz !

The algorithm used for determining the phase shifts to satisfy Egs. (6a) and
(6D) is as follows. First the values of the {bm} ., originally normalized to sum to
unity, are multiplied by a factor obtained by averaging the right-hand side of Eq. (8)
over n and then adding a small constant to this average value. A two-step proce-
dure then follows. We first try to satisfy Eq. (6b) which we write in the form

Z sin A¢ ‘ (@)
=1 bm nm 2 sin E
obtained from Eq. (6b) by letting Apm = im B, lm = 0, £ 1 and using the relation

sin(i B =1 sin B .
( nm nm

Even symmetry of the phases with respect to the index m is assumed so that

L, 2M-m+1 ~ fnm - (10)
The algorithm used for determining the {inm} to satisfy Eq. (9) is basically the
same as that described above in treating the single null problem. We let

b_ i, m'=DM,M-1, ..., 1
m-M monm

n, M+1"

Then we set inm’ = ¢ 1 according as the choice of the sign agrees with that of
Aon and if by so doing

sin |AQ |

= 5 + i .
l |bn.m'+1 bm'xn T——B—- m' Malw 1..... 1.

IS

Otherwise we set bt = 0.



Having satisfied Eq. (9) as closely as possible, we then turn to Eq. (6a) which
we write as

- cos AQ“ (11)
mz=:l bm cos(xnm B) = —_

The left-hand side of Eq. (11) has some value, in general not equal to the right-

hand side, as a result of the settings of the {inm} made in satisfying Eq. (9). The
trick now is to adjust the {inm}to satisfy Eq. (11) without disturbing the fit made

to Eq. (9). The algorithm used to satisfy Eq. (11) without disturbing Eq. (9) changes
only the values of the {inm} left equal to zero in satisfying Eq. (9), and when a
valug of inm is changed from 0 to £ 1 the symmetric phase shifter in the column
{index n, 2M-m+1) is changed to “im instead of being set equal to inm as when
satisfying q. (9){see Eq. 10}]. Thus me inm is left unchanged. Let

MM
Tn. Nl mz=1 bm cos “nm B)

after satisfying Eq. (9), and let

e = Tonrer * mz b_{cosli B)-1), m' =M, M-1, ..., L.

Then, if ihm' Was left equal to zero after satisfying Eq. (9), we now set inm =z1
according as the choice of sign agrees with that of AQn and if by so doing

= i - Z
Tnm' Tn,m’+1_+ bm'- [cos “nm' B) - 1} 2 (12)

Otherwise we leave inm’ unchanged at zero. In other words, we try to satisfy

Ea. (11) from above in contrast to the procedure used to satisfy Eq. (9) which works
from below. The fact that the resettings of the {inm} to satisfy Eq. (11) result in
decreasing the starting value of Tnm‘ Tn. M1’ makes it important that the {bm}

have been initially adjusted so that T ig larger than cos (Aon)/Z for all n.

‘I'his is done, asmentionedonpage 9, l';)._\/Ni]'-i"r}st obtaining an average multiplicative
constant for the column taper by averaging the right-hand side of kq. (8) and then
adding a small term to this multiplier, As with the single null algorithm, the
success of the multiple null algorithm requires a significant amplitude taper of the
columns of the array since the small terms corresponding to the edge elements are
used to fine tune the fit of the sums of the left~hand sides of Egs. (6a) and (6b) to

the respective right-hand sides.

10



3. RESULTS

In this section we present the results of calculations performed with the
algorithms described in Section 2. We begin with the single-null algorithm dis-
cussed on page 4 using the error correcting scheme. In Table 1 we summarize
the results obtained for a 100 X 100 element array by fixing the number of bits in
the phase shifters and averaging the unperturbed and perturbed power at the position
of the desired null, the average taken as the null position was varied from 3° to 15°
at intervals of 0.2°. The interelement spacing within the rows and columns of the
array was set equal to A/2. Row and column amplitude tapers were for a Taylor
distribution with 40 dB maximum sidelobes and n = 4. The phases of the unper-
turbed element weights were random with a uniform distribution in the interval
[-B/2,+B/2], B= (2n)/2NB1T. The average perturbed power at the null location
should be compared with the last column of the table which gives the statistical
average of the power at a null location of the pattern if phase errors are uniformly
distributed in the interval [.-B/2. +B/2]. - This value is computed from the Iormula4

lPuol® {] _(sinA)zJ ;% Vo
(Zzl“’nmlf A (Zn:; l“’nmlf

1 m \

with | F (u, v © the statistical ensemble average power at a location in the pattern
for which the error-free pattern has a null. Thus, for example, with 2-bit phase
shifters the planar array is able to form nulls with an average depth of ~58 dB as
compared with the -40 dB nulls that could be expected if nothing were done to com-
pensate for the small number of bits. Since the statistical average null depth de-
creases by approximately 6 dB for each extra phase shifter bit, the -79 dB null level
obtained with 4-bit phase shifters is equivalent to that obtainable with 9-bit phase
shifters if no compensating method is used.

The tapering off of the average perturbed null depth power going from 5 to 6 bits
is explainable with reference to Eq. (5). As the number of bits increases, B
becomes small and eventually the terms on the left-hand side become too small to
match the right-haﬁd side unless phase shifts larger than 1 bit are allowed. For
7-bit phase shifters, for example, the average perturbed power at the null location
increases to -71.5 dB while for 8 bits it is only -53.6 dB.

4. Shore, R.A. (1982) Statistical Analysis of the Effect of Phase Quantization on
Arrav Antenna Sidelobes, RADC-TR-82-1900, &D A123704.

1



Table

1. Summary of Results Obtained With the Single-null Algorithm for a

100 X 100 Element Array: 40 dB, W = 4 Taylor Amplitude Tapers.

location varied from 3° to 15° at intervals of 0. 2°

Null

B o Highest Pattern | Statistical
Average Average V.alue at Average
Unperturbed Perturbed Desired Null Null
Power Power Reduction Location Depth
NBIT (dB) (dB) (dB) (dB) (dB)
2 -41.9 -58.0 16. 1 ~-50.4 -40.0
3 -43.5 -69.3 . 25. 8 -59. 5 -45.1
4 -44. 1 -78.8 33.1 -70.1 -50. 8
5 -44.1 -88.0 43.9 -77.2 -56. 8
6 -44,1 -91.8 47.7 -82.2 -62.8

The importance of the error correcting scheme discussed on page 5 becomes
apparent if one compares the results shown in Table 1 with those obtained if the

error connecting scheme is not used. For NBIT = 4 and 5, for example, without

the error correcting scheme the average power at the null location is -62. 6 and

-68.9 dB respectively, contrasted with the respective values of -78. 8 and -88. 0 dB

obtained using the error correction scheme.

Table 2 summarizes results obtained for a 100 X 50 element array with the

same element spacing, amplitude tapers, and averaging interval as for Table 1.

An approximately 3-dB decrease in performance results from this halving of the

column size.

This reduction in performance as the column size is decreased is to

be expected since the algorithm has fewer terms available as it tries to match the
left-hand side sum of ,Eq. (5) with the right-hand side.
Table 3 summarizes results obtained for a 100 X 100 element array with the

same parameters as for Table 1 except thata 30 dB, n= 4 Taylor distribution for

the row and column amplitude tapers is assumed. The reduction in performance

compared to Table 1 is attributable to the fact that the less pronounced amplitude
taper of the {bm } in Eq. (5) for the 30 dB Taylor compared to the 40 dB Taylor

distribution implies a corresponding reduction in the "fine tuning" capacity of the

algorithm in attempting to match the left-hand side sum and the right-hand side as

the edge elements of the column are approached.

12




Table 2.
100 X 50 Element Array; 40 dB, T = 4 Taylor Amplitude Tapers.

location varied from 3° to 15° at intervals of 0. 2°

Summary of Results Obtained \Vith the Single-null Algorithm for a

Null

Highest Pattern | Statistical
Average Average Value at Average
Unperturbed Perturbed Desired Null Null
Power Power Reduction Location Depth
NBIT (dB) (dB), (dB) (dB) (dB)
2 -42,1 -55.4 13.3 -46.7 -36.7
3 -43.4 -64, 8 21. 4 -54.3 -41.7
4 -43.6 -76.9 33.3 -67.8 -47.4
5 -44.0 -84.9 40.9 -76.3 -53.4
6 -44. 1 -89.7 45.6 -80.6 -59.4
Table 3. Summary of Results Obtained With the Single-null Algorithm for a

100 X 100 Element Array; 30 dB, W= 4 Taylor Amplitude Tavers,
location varied from 3° to 15° at intervals of 0. 2°

Null

Highest Pattern Statistical
Average Average Value at Average
Unperturbed Perturbed Desired Null Null
Power Power Reduction Location Depth
NBIT (dB) (dB) (dB) (dB) (dB)
2 -38.0 -56.0 18.0 -50.5 -40.9
3 -37.8 -66.1 28.3 -57.6 -45.9
4 -37.8 -74.8 37.0 -65.5 -51.6
5 -37.8 -79.6 41.8 -67.3 -57.6
6 -37.8 -80.4 42,6 -55.0 -63.6
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As an example of the patterns obtained when the weights are perturbed using
the single-null algorithm, Figure 1 shows the ¢ = 0° (v = 0) perturbed pattern with
a nuil imposed at § = 4, 1° in the pattern of a 100 X 100 element array with half
wavelength spacing, 4-bit phase shifters, and a 40 dB, n = 4 Taylor amplitude
distribution of the rows and columns. The unperturbed pattern is also shown for
reference. The increase in sidelobe level at locations other than the null location
is as high as 15 dB. Figure 2 shows the ¢ = 90° (u = 0) pattern for the same case.
It is apparent that the perturbed pattern follcvs the unperturbed pattern far more
closely for this cut than it does for the ¢ = 0° cut. The difference between the two
cuts can be explained by referring to the expressions for the two pattern cuts (see

Appendix B). For the ¢ = 0° cut,
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Figure 1. Unperturbed v = 0 Pattern (-=-~-- ) of 100 X 100 Element Array \With
40 dB, n = 4 Taylor Amplitude Tapers, and Perturbed Pattern ( ) With
Null Imposed at 8 = 4. 1° Using the Single-null Algorithm. NBIT = 4
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Figure 2. Unperturbed u= 0 Pattern (~---- ) of 100 X 100'Element Array With
40 dB, n = 4 Taylor Amplitude Tapers and Perturbed Pattern ( } Corres~
ponding to Null Imposed in the v = 0 Pattern at § = 4. 1° With the Single-null
Algorithm. NBIT = 4

2N

M
p(u,m:Zan ZZb
m=1

n=1

Ao )]

€xp [j(Qonm *8%m

exp (j dx u)
n

m

while for the g = 90° cut

°M N
plo, v) = m2=1 b |2 nz_:_l a_ cos(p_ _+ A(pnm)J exp i, ).

For the v = 0 pattern, the perturbed weights can be regarded as the weights, a

n
of an ideal 40 dB, W = 4 Taylor linear array multiplied by the factor
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This factor results in a change of both amplitude and phase of the ideal Taylor
weights, In contrast, for the u = 0 pattern, the perturbed weights are those of the
same ideal Tavlor diztribution multinlied by the factor

N

2 ri;t By Q“(oonm ~ Aanm) .

This factor is real and thus modifies only the amplitude of the idenal Taylor weigits,
Moreover, for NBIT = 4, the argument of tho cosine is {or the most part less than
22.5° so that the cosine and hence the multiplicative factor itseif are not very much
less than unity, Thus pl(C, v} does not differ significantly from the ideal Taylor
pattern.

We now turn to the multiple null algorithm described on pages 9-10. Table
summarizes results obtained using this algorithm for the example of 5 nuils im-
posed in the 0 = 0° {v = 0) cut of the pattern of a 100 X 100 element array with haif
wavelength interelement spacing at the locations § = ¢°, 7°, 10°, 13°, and 16°, A
thege locations the unperturbed power is -40 dR, -51 AR, -44 dB, -48 dB, and
-50 dB respectively. The row and column amplitude tapers are these of o 40 4B,
n =4 Taylor distribution, The phase perturbations of the egquivalent linear arvay
{100 elements, half wavelength spacing, a 19 4B, W= 4 Taylor amplitude tapor)
are those that impuse nulls at the same five patterr locations while minimizing the

L
S

sum of the squared welght perturbations. They were caleulated using the non-
linear programming method described in Reference 2. The columns of the tablin
give respectively the number of dita {n the planar array phase shifters, the depth
of null achieved at the {ive null locntions, the average power reduction, the averare
multiplicative conatant for the column taper (obtained by averaging the expression
in Eq. (8 over the columna of the array), the small term to be added to this multi-
plicative conatant 8o that Kq, (12 enn be gatisfied (see page 101, the lows in main-
beam gain conulting from the phase perturbations (see page 9), and the siatistical
endemblis average null depth {f nothing {3 done to compensate for the phase shiftee
quantization,  The tabulated value of the amall additive torm waa found empirically

th ragull in the grestest average power reduction,

s
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It is apparent that remarkably deep nulls can be formed with phase shifters
of even 2 bits by treating the columns of the array as single weights for a linear
array and compensating for the small number of bits with the number of phase
shifters available for control in the columns. As the number of bits increases,
the nulling algorithm cventually breaks down, as does the single-null algorithm,
because the terms of the left-hand side of Eq. (8b) become too srnall to match the
right-hand side if phase shifts are limited to only one bit. As discussed in the
previous section, in using the multiple null algorithm it is necessary to first mul-
tiply the amplitudes of the array element weights by a factor consisting of the
average of Eq. (8) over the columns of the array to which is added a small term so
that Eq. (12) can be satisfied by the algorithm. The average of Eq. (8) (column 10
of Table 4) decreases as the number of bits increases because tan (B) then becomes
small and the average approaches the average of the cosines of the phase perturba-
tions of the equivalent linear array. The small additive term (column 11 of Table 4)
also decreases as the numYer of bits increases because, referring to Eq. (12), the

factor cos(in B - 1) on the left-hand side of Eq. (12) can then decrease only very

'
slightly if inrl:' is changed from zero to x 1. Hence the algorithm will be able to
obtain a good match to Eq. (6a) even if the left-hand side of Eq. (12) is initially
only slightly greater than the right-hand side. The mainbeam gain loss is very
nearly equal to the total factor used to multiply the array weights (the sum of the
average multiplicative factor and the small additive term).

To examine the effect of smaller column size on the performance of the nulling
algorithm, calculations were performed with the same parameters as described
above in generating Table 4 except that the column size was reduced from 100 ele-
ments to 50 and 20 elements. The results for these computations are summarized
in Tables 5 and 6 respectively. It is apparent that the smaller column size reduces
the ability of the algd,rithm to produce deep nulls at the desired locations. Never-
theless, there is still a substantial improvement even in the 20 element column
case compared to the null depths that would be expected if nothing were done to

compensate for the small number of bits of the phase shifters.
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As an example of the patterns obtained when nulls are formed with the multiple

null algorithm, Figure 3 shows the ¢ = 0° (v = 0) perturbed pattern with nulls
{mposed at 4*, 7°, 10°, 13°, and 16° in the pattern of a 100 X 100 element array
with half wavelength spacing, 4-bit phase shifter., and a 40 dB, n = 4 Taylor
amplitude distribution of the rows and columns. The perturbed pattern follows the
unperturbed pattern extremely closely except in the vicinity of the nuil locations
and the locations symmetric to the nulls with respec‘t to the mainbeam. This is
very close to the typical error free pattern of a linear array with nulls
imposed using minimum weight perturbation, phase-only nulling, which, of
course, is what the multiple null algorithm was designed to accomplish,
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Figure 3. Unperturbed v = 0 Pattern (=-=-- ) of 100 X 100 Element Array \Vith
40 dB, T = 4 Taylor Amplitude Tapers, und Perturbed Pattern | ) With
Nulls Imposged at 8 = 4°, 7°, 10°, 13°, and 1§° Using the Multiple Nult
Algorithm, NPIT = 4 ‘
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Figure 4 shows the ¢ = 80° (u = 0) pattern for the same case (for the expressions
for the principal cut patterns, see Appendix B). As might be expected, the
perturbed u = 0 pattern shows significant differences from the unperturbed pattern
throughout the range of 6, simply because the algcrithm we have used is concerned
solely with matching the v = 0 pattern cut with a given pattern of a linear array, and
does not contain any safeguards for the integrity of the u = 0 pattern.
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Figure 4. Unperturbed u = 0 Pattern (----- ) of 100 X 100 Element Array \With
40 dB, n = 4 Taylor Amplitude Tapers, and Perturbed Pattern ( )
Corresponding to Nulls Imposed in the v = 0 Pattern at 8 = 4°, 7°, 10°, 13°,

and 16° With the Multiple Null Algorithm. NBIT = 4
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4. DIRECTIONS FOR FURTHER RFESEARCH

The principal purpose of this report has heen to demonstrate the {easibility of
obtaining deep nulls in planar array antenna patterns using coarsely quantized
phase shifters. For the sake of simplicity we limited our discussion to nulls
imposed in the v = 0 cut of real planar array antenna patterns, and developed null
synthesis algorithms to obtain phase shifts for these situations. In future work we
intend to consider the use of coérsely quantized phase shifters to impose nulls in
arbitrary directions in both real and complex antenna patterns. Also to be con-
sidered is the possibility of using phase-only nulling with coarsecly quantized phasc
shifters in planar arrays to accomplish what can only be done with combined ampli-
tude and phase control in linear arrays. An example is the imposing of nulls at
pattern locations symmetric with respect to the mainbeam in real linear array
patterns, when the phase perturbations are not allowed to be large. Finally, since
this report has considered null synthesis only, it is of much importance to investi-
gate adaptive nulling procedures using coarsely quantized phase shifters in planar
arrays.




Appendix A

Derivation of Eq. (8)

The starting point for the derivation is Eqs. (6a) and (6b) with 80 = int,

_ NBIT , _ _
B=(2m/2 bl = 0, £1;
2M

mE=1 b cos (i B)= cos A9, . (Ala)

2M
mz=1 b sm(int) sin &¢_ . - (A1b)
Expanding Eq. (Ala),
2
.2 B .
; bm(l It ..s) = COS a¢,
2p

and since 1nm = linm| ’

4
B B
;bm- ;bm“nml ('2"' -T!--r-...) = cos Ap

or
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- Al
gn: b = § b, Iinm| (1-cos B) + cos ¢ . (Alc)

Since sln(inm B) = 1nm 8in(B), Eq. {Alb) can be written

8sin A¢
2 by i
m nm 8in

m

and furthermore, since the multiple null algorithm sets the sign of the {inm} to
agree with that of A¢n.

sin |ad_|
b i |= n_ (A1d)
m m nm sin

Substituting Eq. (A1d) in Eq. (Alc) we obtain

_ l-cos B _.
§ bm = W sin lA¢n' + Cos A‘.]Jn

i}

B _.
tan? sin |A¢n‘ + cos Agbn .
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Appendix B
Expressions for the Principal Piane Patterns
In this appendix we derive expressions for the u= 0 and v = 0 patterns obtained

using the single-null and multiple-null algorithms. In general, letting ¢nm denote
the perturbed phases, the perturbed pattern is given by

2N M
plu, v) = nz=:1 gl a b_ exp(qunm) explj (dxn u + dym v)]
so that
2N 2M
plu, 0) = nz=:1 a, mgl bm exp(j(pnm) exp (j dxn u) (Bla)
and
2M 2N
(0, v) = b a_ exp(j ) exp (j d v) . (B1b)
° mzzl m nz=:1 n &P %nm " Y m
For the single-null algorithm
(pn. M - m+1" ‘pnm (B2)

so that
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2N M
p(u, 0) = 21 a, |2 m2=:1 b_explio )| explid, w. (B3)

n= n

Equation (R1b) then coupled with the general symmetry relation Eq. (1) and Eq. (B2)

gives

2M N
p(0, v) = E b 2 2 a_cos ¢ exp(jd_  v). (B4)
m=1 n=1 ¢ "m/ Ym

For the multiple-null algorithm, some of the phases satisfy Eq. (B2), while others
instead satisfy ‘
P, 2M - m+1° " ®nm

Hence the simpler forms, Eqs. (B3) and (B4) obtained for the single-null case, do
not apply and the general forms, Egs. (Bla) and (B1b) must be used to calculate the
patterns.
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