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Abstract 

In this paper we consider nonhomogeneous autoregressive processes 

which are special cases of the vector-valued autoregressive processes 

considered by Anderson (1978) for the analysis of panel survey data. 

We point out that, for a nonhomogeneous autoregressive process of order 

higher than one, the least-squares estimates cannot be obtained unless 

repeated measurements are made on the time series.  We present here two 

Bayesian approaches based on Kaiman filter models which alleviate the 

above difficulty and result in an alternative strategy for the analyses of 

nonhomogeneous autoregressive processes.  In our first approach the 

notion of exchangeability plays a key role, whereas for our second 

approach, which results in an adaptive Kaiman filter model, an approxima- 

tion due to Lindley facilitates the necessary computations for inference. 

Key words:  Nonhomogeneous autoregressive processes, random coefficient 
autoregressive processes, exchangeability, adaptive Kaiman 
filtering, panel survey data, cross-section studies, 
Lindley's approximation 



1.  Introduction and Overview 

To keep the introduction simple, we shall focus attention on a 

first-order autoregressive process of the form 

jr=6v _,+u. a=l,...,N; t=l,... . (1.1) •'at   at'a.t-l   at'   *  '     ' 

The autoregressive coefficients 8  are assumed unknown and the 

innovations u  are assumed to be independent and normally distributed 

with a known mean and variance.  When 0  = 9 for all a, (1.1) will be 

referred to as a norihomogeneous  (or inhomogeneous) autoregressive- •process. 

When 9^ = 9 for all t, (1.1) will be referred to as a random coefficient at   a . JJ 

autovegressive process.     The above nomenclature is in keeping with the 

terminology of Anderson (1978) and Liu and Tiao (1980),respectively, who 

have written on the above processes. 

Nonhomogeneous and random coefficient autoregressive processes have 

a wide applicability in the analysis of economic, sociological, biological 

and industrial data.  Such processes can be easily motivated in the context 

of "panel surveys," that is, surveys in which several respondents are 

interviewed at more than one point in time.  Analyses of such data are 

sometimes called "cross-section studies" by econometricians,  [See Hsiao (1986).] 

Anderson (1978) cites several examples of panel surveys in the economic, 

medical and sociological contexts and develops inference procedures for a set 

of several sequences of observations from the same nonhomogeneous vector- 

valued process.  The approach taken by Anderson (1978) is least-squares 

with an accompanying asympcotic theory. Liu and Tiao (1980) address the 

panel survey problem via random coefficient autoregressive processes 



which are stationary, that is, with |6 |<1, and propose a Bayesian approach 

* for inference about the 0 's .  The Bayesian set-up of Liu and Tiao (1980) 

ft, 
assumes that the 0  s are independent drawings from a rescaled beta 

distribution. 

In this paper, we present two Bayesian approaches for inference in 

a nonhomogeneous autoregressive process of order p > 1.  The process 

considered by us is a special case of the vector-valued nonhomogeneous 

autoregressive processes considered by Anderson (1978).  A motivation for 

the p-th order nonhomogeneous autoregressive process has also been given 

by Horigome, Singpurwalla and Soyer (1985) who consider the problem of 

monitoring for "reliability growth." The data from reliability growth 

problems can be regarded as being the result of a panel survey. 

In Section 2 we introduce the vector-valued nonhomogeneous auto- 

regressive process of Anderson (1978) and review the least squares 

estimators of the parameters of this process. We point out that for 

such processes with p > 1, it is not possible to obtain the least 

squares estimators unless N is also greater than one.  We contrast this 

with the Bayes estimators which do not suffer from such restrictions. 

The set up of Section 3 can be cast as an ordinary Kaiman filter 

model, whereas that of Section 4 can be cast as an adaptive  Kaiman filter 

model.  The term adaptive filtering  is used in the engineering literature 

whenever some or all of the parameters of the observation or the state 

equation of the Kaiman filter are estimated from the data [Broemeling (1985), 

p. 274].  A review of the different approaches to adaptive filtering is 
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given by Mehra (1972).  With adaptive Kaiman filtering, the automatic 

and closed form nature of the ordinary Kaiman filter [cf. Meinhold and 

Singpurwalla (1983)] is lost.  Shumway (1983) has considered maximum 

likelihood estimation in adaptive Kaiman filtering using the expeatation- 

maximization  algorithm of Dempster et.al. (1977).  A Bayesian approach 

to adaptive Kaiman filtering has been considered by Magill (1965) but 

Magill's treatment assumes that the unknown parameters of the linear 

system can only take a finite number of distinct values.  The approach 

suggested by us here does not have such a restriction and uses an 

approximation due to Lindley (1980) which enables us to obtain computable 

results.  Our use of Lindley's approximation for the analysis of adaptive 

Kaiman filter models is new and it represents a contribution, albeit a 

minor one, to the state of the art of filtering. 

In Section 3 we present our first approach.  The notion of 

exchangeability  plays a key role in our development here - it enables 

us to assign a structure of dependence for the coefficients of a 

nonhomogeneous autoregressive process of order p > 2 and N > 1.  Such 

a structure of dependence alleviates the requirement that N be greater 

than one. 

In Section 4 we present our second approach.  Here we confine 

our attention to the case p = N = 1, but assume that the coefficients 

of the nonhomogeneous autoregressive process are themselves described 

by a homogeneous autoregressive process of order one, with an unknown 

coefficient.  Thus the structure of dependence of Section 4 is stronger 

than that of Section 3, but with p = 1, the model of Section 4 is simpler 

than that of Section 3. 
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2.  Least Squares Estimation in Nonhomogeneous Autoregressive 
Processes 

Suppose that y is an m-component column vector and 0 an m x m 

time-variant matrix of coefficients. Let {u } be a sequence of mutually 

independent m-component vectors, ut having a normal distribution with 

mean 0 and covariance matrix Ü ; the index t=l,2,..., denotes time.  A 

first-order vector-valued nonhomogeneous autoregressive process is of the 

form 

it= !t it-i + V t=1'---' ^ 
inhere yQ is assumed known. 

If there are N distinct units (or individuals) in a survey, and 

m-measurements are taken for each unit, then we will observe N different 

time series.  Thus for example, y  is an m-component vector of measure- 

ments on the a-th individual at time t. 

Given y  , a=l,...,N, and t=l,...,T, the least-squares estimator 

of Qfc, obtained by Anderson (1978) is: 

0t = Ct(l) C'^CO) (2.2) 

where 

1 N 

c (j) = £ £ y ,. y"     .. (2.3) ~t    N  1 iat ~a,t-j a=l 

and y" denotes the transpose of a column vector y. 

Note that the estimators 0 are based on the pooling of informa- 

tion from all of the N time series. 

If we extend (2.1) to the case of a p-th order nonhomogeneous 

autoregressive process, then 

It.  " °lt lt-1  + ?2t?t-2 +'' -+ !ptZt-p + Ht» <2-4) 

with yQ, y~l>•••jy_(n-l) assumed known. 
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The least-squares estimators of the unknown elements of the p unknown 

m x m matrices are also obtained by Anderson (1978); these are 

-1-1 (elt,...,ept) = (ct(i),...,ct(P)) 

where C (j) is given by (2.3) and 

C (1,1)...c (l,p) 

ct(P,i)... Ct(p,p) 

(2.5) 

1  N 

t(i'j) = N  \ ?a,t-l ?a,t--J a=l 

For the case m=N=l, that is, when we have only one measurement per 

item at time t, say y , and only one item to observe, then (0.. ,...,0 ) 
t • ~lt    ~pt 

simplifies as 9 where 9 is a column vector with elements (9. ,...,9 ) 
~t      ~t It     pt 

and the equation for the least squares estimator of 9 is 

§--( (P)  (P)'J ='    (P)' 
St xt-1 It-V      yt  it-1 (2.6) 

where 

iPi - ^-v •w- 
Note that (y^_^ y^_()is the outer product  matrix, and is of rank 1. 

Thus when m=N=l and p > 1, the least-squares estimators (which under this 

set-up are also the maximum likelihood estimators) of the coefficients 

of the p-th order nonhomogeneous autoregressive processes are not uniquely 

defined. 
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For p = 1 the least squares estimators do of course exist and 

these take the following simple and intuitive form 

>t = V*t-r (2'7) 

In Section 3 we shall obtain Bayes estimators of (9n ....,9 ) 
it     pt 

for the case m=N=l, and show that these can always be obtained and are 

unique.  It is important to note that in obtaining Bayes estimators we 

are incorporating some additional structure to the model, the nature of 

which will be clarified in the sequel.  The additional structure compen- 

sates for the lack of information due to the limitation imposed by N 

being equal to one. 

3.  Bayesian Estimation in Nonhomogeneous Autoregressive Processes 
Assuming Exchangeability of Coefficients. 

In this section we first consider the p-th order nonhomogeneous 

autoregressive process (2.4) with m=N=l and discuss inference for 8 . 

Later on we extend our results to processes with N > 1.  In some applica- 

tions it may be reasonable to assume a time pattern for the 8 's; see 

for example, Section 4.  However, in most instances this may not be true 

and what may be reasonable is some form of dependence among the vectors 

6, ,9«,..., .  A simple way of describing such dependence is to assume 

that the sequence of column vectors 8 is exchangeable;  that is, 

9,,9~,.... are invariant under permutations.  Exchangeability describes 

a mild form of dependence and this is most easily obtained by assuming 

that the 8 's are generated by some multivariate distribution G, indexed 

by a vector of hyper-parameters \,  on which a prior distribution TT 

is assigned. 
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It may be of interest to note that if G is not specified but 

estimated from the data, then the above set up would be referred to as 

empirical Bay es,  whereas if G were specified but the uncertainty about 

X  not described by IT  but instead X  estimated from the data, then the 

above set up would be referred to as parametric empirical Bayes 

[cf. Morris (1983)].  With both G and IT completely specified, as we 

propose to do here, the above set up would be referred to as Bayes 

empirical Bayes  [Deely and Lindley (1981)]. 

In this paper, we shall assume that the 8 's are generated by 

a multivariate normal distribution with an unknown mean vector 

X=(A...... ,X ) and a known p x p covariance matrix V.  Our uncertainty ~* x      p ~ 

about A. will also be described by a multivariate normal distribution 

with a mean vector m and covariance matrix s .  Both m and s have ^o ~o       ~o    ~o 

to be specified initially ; however upon the receipt of data they will 

be updated according to Bayes law.  Thus to summarize, a proper Bayesian 

description of the nonhomogeneous autoregressive process considered by 

us, goes as follows: 

r     = 9' y(P>   + U  , 
t   ~t it-1       t 

with 

2 2 
u ^ W(0,a )       , where a    is specified; 

(3.1) 
9 ^ W(A,V)        , where V is specified, and 

X    a. N(m ,s )      , where m and s are also specified. ~o ~o ~o    ~0 

- 7 - 



The above set-up can also be expressed as a dynamic  linear model 

in the sense of Harrison and Stevens (1976) and therefore the Kaiman 

Filter solution can be used for inference about 9  given y-,.. . ,y . 

To see this, we first rewrite (3.1) as 

y„ = 9' y^l  +  u , with u ^ N(0,a ), and 
t  ~t it-1   t       t       u 

9 = X  + w , with w ^ N(0,V), 
(3.2) 

where the u 's are independent of the w 's, X  is independent of w and 

X ^ M (m , s ). 
~    ~o ~o 

To cast (3.1) into the format of a Kaiman Filter model, we let 

F    = =  (y(p)' 0')    9    =  ( ~fc I t      vit-l  '-  J' Ht      \ X   I' 

' = (?   Is)" Ms) • 

\s   I0/ • 
w   = ~t 

where I is the p x p identity matrix and W is the covariance matrix of 

w , and we rewrite (3.2) as 

yt = !t It + ut C   C Z Z (3.3) 

It = St It-1 + ?f 

Using the well known solution to the standard Kaiman Filter model 

[see for example Meinhold and Singpurwalla (1983)], we have the result 
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that given y(t)  =   (y1,...,yt)   and yQ,...,y  , _±) 

(9t|y(t))  * W(et,St), where 

(s        + V)y(p) 

t= »t-i+ 21 (P)- . —(pi— (yt - üjt-i ?t-i}      (3-4) 

and 

<5t-i + Y>Zt-i ^t(-Pir (!t-i + V 
2t  -   (a,   ,   + V) T        ,V  "TTS —>  with <3'5) 

s        y(p) 

,  ~t-l ~t-l , ^ (p)N , ,_ ,N 

üJt= üft-i + 2 :  (p)- ;—— (p) (^t - »t-i it-V'and     (3-6) 

(p) y(pr 
5t-i Zt-i ?t-T  !t-i 

St= üt-i" ~—-~ ~ • (3'7) 

Furthermore, the posterior distribution of A given y(t) is 

(X|y(t)) ^ N<mt, at) 

where the updating formulas for m and s are given above.  The covariance 

of 0 and X given y(t) is given by 

cov(9t> X|y(t)) • s ,   ,_^ -'•'•••'•* ^ i  .        (3.8) 

The predictive density of y   ,-,   given y(t)   is of  the  form 

<yt+1|y(t)K W[mt^
p),  y^Pr(st+ V)  y<p)  + a*]. 
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Under the assumption of a quadratic loss, 9 and m are the Bayes estimators 

of 8 and \.     When p=l, the Bayes estimator of 9 simplifies to 

=  TTt m    x +  (l-TTt)  y^y^»  where (3.9) 

a2 

*;+ (av+ s
t-i>^-i 

t 

ut"   2 , ; 2U, n~ 'and 

2 
a is the variance of w in (3.2). 

Thus for a first order nonhomogeneous autoregressive process the 

Bayes estimator at time t is a weighted average of the prior mean of 

8  (namely m -.) and the least squares estimate yJji._-\-    Tne weight 

2  2 2 
IT is a function of the' variance components O  , a    and s^ .. .  If a 
t u  v     t-1     u 

2 
gets small or (a + s .) gets large, then IT gets small and in (3.9) 

more weight is given to the least squares estimator.  We also note that 

the Bayes estimator at time t is based on all the available data at time 

t, whereas the least squares estimator is based on y and y 1 only. 

As a final comment, we note that the Bayes estimator 8 can be obtained 

for any order p of the process, irrespective of the value of N. 

For the p-th order nonhomogeneous process with m=l and N > 1, 

we assume, following Anderson (1978), that coefficients 9 are identical 

for all cross-sectional units and write the model as 

where Yt_*
P = (y^ yt_2-... y  ) is a Nxp matrix and yfc = (ylt y^. . .y^) '. 
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The N-dimensional vector u = (u u ... u )"" is assumed to be 

normally distributed with mean vector 0 and a specified variance- 

covariance matrix, say U. 

By judging {9,.} as an exchangeable sequence, by replacing y by 

the N-dimensional vector y , y P- by the (NXp) matrix Y  p and u 

by u in (3.2), we can cast the above model into the framework of the 

Kaiman filter.  We then appeal to the Kaiman filter solution, and obtain 

the posterior distribution of 9 given y(t) = (y.., y„,...,y ) as a normal 

with mean 

U - -t-x+ <?t-i+ v Äp) 'it '<*« - Äp) vi>      <3 •*> 

and variance 

where 

it ' (h-i + V - (5t-i + V ?SP)'?t1?t-iP>(?t-i + V-   (3-12) 

!t • lSP) t-t-i + V lSP>'+ H • 

, v(Nxp)'  -1   . v(Nxp) . , 
?t = ?t-i + 5t-i It-i     ?t    (?t - It-i   ?t-i}' and 

s     =  s -  s y(Nxp) V1 Y(NXP)   s 
It    ~t-i     ~t-i ~t-i     it   ~t-i     üt-i 

We note that m and s are the posterior mean and covariance matrix of A. 

2 
For p=l and U = a    I„ , 9„ simplifies to u ~N  ~t 

n  = TT  m  . + (1 - TT ) ~L L  L 

t     C  t"1 C  ?t-l ?t-l 
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where 

au
2 

\ = ~T~——-—; —r ' and 
a
u + lt-1 lt-1  (st-l + V 

?t-i it , is the least-squares estimate of 

Thus the Kaiman filter solution results in a shrinkage estimator 

which is a linear combination of the prior mean and the least squares 

estimator. 

4.  Bayesian Estimation in Nonhomogeneous Autoregressive Processes 
Assuming Autoregression of Coefficients. 

Consider the first order nonhomogeneous autoregression process (2.1) 

with m=N=l and assume a time pattern to the 6's, where now 8 = 8..^ = 8 . 
~t ~t  It   t 

Specifically, let 9^ = a8^ , + w . where a is unknown and the innovation 
t    t-1   t 

2 
w^ is normal with mean 0 and known variance O  .  Thus the model considered 
t w 

here is of the form 

y
t 

= Vt-i + ut 

and (4.1) 

9t = a6t-l + wt} 

2 2       2     2 
where u <\J  W(0,a ) , w^ a. W(0,a ) with a and a    known and y is known, t      ut       w      u     w o 

The sequences {u } and {w } are assumed independent.  Uncertainty about 

8Q is described by a normal density with mean 6„ and variance Zn which 

are both specified. 
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The above set up is that of a Kaiman filter model except for the 

fact that a is unknown.  Suppose that our uncertainty about a is 

described by p(a) a prior distribution for a given some background 

information.  Then given some data y(t), where we recall that 

y(t) = (y, y ), our goal is to make inferences about 9 and the 

future observations yt+1» ^+2'"*' '  Extending consideration to a, 

the posterior distribution of 0 is 

P(6t|y(t)) = j/p(6t|y(t),ct) p(a|y(t))da, (4.2) 

where p(9 |y(t),a) is obtained by the usual Kaiman filter solution 

with a assumed known and p(a[y(t)), the posterior distribution of a 

given y(t), is obtained via Bayes law as 

p(a|y(t)) « L(a; y(t))p(a), (4.3) 

with L(a; y(t)) as the likelihood function of a.  For the ordinary 

Kaiman filter with a known, the predictive distribution of y given 

y(i-l) is 

p(y |y(i-l),a) = f    p(y.|9.,y(i-l),a)p(9.|y(i-l),a)d9, ,      (4.4) X JQ X   X X X 
i 

where (9.ly(i-l),a) ^ W(a9. n,R.) where R. = a E. 1 + a ;  the l1 1-1  1 1        1-1     w 

quantities 9. 1 and E. 1 are obtained recursively via the relationship 

(9i_1|y(i-l),a) ^N(Q±_V   Z±_±).     Specifically, 

2 
a9. „ a + R. , y. ..y. „ £        i-2 u  l-l ^i-l"'i-2 .. „.. 

  (4.5) 
i-1        2  „   ±     2 y. _ R, n   + a 

i-2 l-l   u 
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and 

2 
Kr_ic 

I 
Ri-Iau (4.6) 

y. - R. , + a 
1-2 i-l   u 

It now follows from the above that 

(y.|y(i-l),a) a, N(a6±_;L y^, y
2^ + a*) (4.7) 

and so the likelihood of a may be written 

L(.a;  y(t)) = n P(y. |y(i-l),a) 
i-l  1 

where the terms in the product are determined by (4.7) 

We may now write (4.2) as 

yp(et|'y(t),o) i-(a;y(t))p(a)da 

A(a; y(t)) p(a)da 
P(6tly(t)) =        r    • <4-8) 

Any reasonable prior distribution of a that we may consider leads 

us to integrals in (4.8) which cannot be expressed in closed form.  The 

same is also true when we consider the predictive distribution of yt+-, 

given y(t); that is, the ratio of the integrals 

/p(y. ,, |y(t),a) L(a;y(t)) p(a)da 
P(yt+1|y(t))= -

J   r
t+L  .     (4.9) 

/L(a; y(t)) p(a)da 

One way to deal with the evaluation of the integrals (4.8) and (4.9) 

is via numerical methods.  Another way is via an approximation due to 

Lindley (1980) which performs well when t •+• °°.  For convenience, we give 

below an overview of Lindley's approximation. 
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Lindley (1980) develops asymptotic expansions for the ratio of 

integrals that occur frequently in Bayesian analyses.  He considers ratios 

of the form 

y*w(a) eL(a)da//*p(a)eL(c°da (4.10) 

where a is an (unknown) parameter and L(a) is the logarithm of its 

likelihood, with dependence on y(t), the data, being suppressed; that is 

t 
L(a) = log L(a;y(t)) = Z   lag {p(T |y(i-l),a)}. 

i=l 

def - 
The quantity w(a)   p(a) u(a) and u(a) is some function of a that is 

of interest. For example, if u(a) = a, then (4.10) is the mean of the 

posterior distribution of a. 

Lindley's approximation is concerned with the asymptotic behavior 

of (4.10) as t -*• °°.  This is facilitated by the fact that asymptotically, 

L(ot) concentrates around a, its maximum, assuming that the maximum is 

unique.  The idea is to obtain a Taylor's series expansion of all the 

functions of a in (4.10).  Let H(a) = log p(a); then (4.10) can also 

be written as 

/.s  L(aO+H(a)J . /*L(a)+H(a)J ., n,. u(a)e       da/ /e       da. (4.11) 

If we let u(a) = p(6jy(t),a) [or p(y +1 |y(t) ,a) ], then an 

approximation to (4.11) is 

u + 2u H     u L 
u(a) -  2 9T 

1  L +-V- , (4.12) 
/L2       2L^ 
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where 

u. = 
l 

d u(g) 

da 
i=l,2 

a=a 

_ dH(a) 
Hl ""da- a=a 

and L. = _ d
XL(g) 

da 
i=2,3. 

a=a 

A convenient prior for a is the uniform on [a,b].  In this case 

H(a) is a constant. When u(a) = E(0 |y(t),a), (4.12) gives us 

approximately E(9 |y(t)), the optimal adaptive Kaiman filter estimate. 

When u(a) = p(yt+1|y(t) ,a), (4.12) gives us approximately p(y +-,|y(t)). 

The quantities E(Q |y(t),a) and p(y +1|y(t) ,a) are given by (4.5) and 

(4.7) respectively. To obtain E(y -|y(t)), the predictive mean,  we 

set u(a) = E(yt+1|y(t),a). 
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