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I. INTRODUCTION

In the pattern measur¢w:en-ts of low-gain, wide-beamwidth antennas an

illumlinating source antenna '1Vi low sidelobes is required to minimize the

tfkects of gretnd multipath o'srnals. In the VHF frequency region, the antenna

ah ysical sa-ve reqwLvt,.d to ,-ovide a directional pattern becomes relatively

AcZ ' 4 a 1;-.-le d!ipl e Cagi dipole array, or dipole-reflector antenna Is

often employed aj "-tce antenna. Although these antennas are simple tr

construct, there are certain .,z - ravenna narrow se;di ., vde

beamuidth and high sidelobes/backlobes W1., -, nlti nth-rejec; ion

characteristics. The present study is concerned with the fe: -. a

low-sidelobe source antenna for a VHF test range. The design parameters are

listed below:

4 48-80 MHz and 110 - 150 M z

" VSWR < 2:1

* Low pattern level at 63.4* relative to beam peak

* Axial ratio < 1 dB

* Dual circular polarization

* Minimal size

A four-element, uniformly fed array of turnstile dipoles arranged in a 2

x 2 configuration was selected for the design study. In the diagonal plane,

the 2 x 2 array provide an equivalent 1:2:1 (binomial) amplitude distribution

which has the inherent characteristics of low sidelobes (Ref. 1). To meet the

broad bandwidth perforrance, open-sleeve dipoles (Ref. 2) were chosen as array

elements.

The experimental studies were made by means of scale mvdel antennas in

the 240 tc 400 Hz band; thus, all the results presented herein are given in

,evms of the scale frequencies. To optimize the oultipath-rejection per-

formance, measurements were made as function of element spacing, ground plane

size and dipole-to--reflector spacing.
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II. DESCRIPTION OF ANTENNA

The array utilizes two sets (designated as A and B) of mutually per-

pendicular dipoles. Each set consists of four similarly oriented, linearly

polarized dipoles fed with a 4-way power divider (Microlab/FXR Model D4-

OTN). To acquire dual circular polarization, the input ports of the two 4-way

power dividers are connected to a 4-port quadrature hybrid (Merrimac Model QHM

2.312 G).

To achieve a broadband VSWR performance over the required operating

frequency range (1.66:1 ratio), crossed open-sleeve dipoles were employed as

array elements (Ref. 3). The basic element consists of a conventional dipole

with two closely spaced parasitic sleeves as shown in Fig. 1. The dipole arm

is const:.ucted from a flat 2-in. wide brass sheet and has a total length of

21.25 in. The dipoles are fed from a balun constructed from 0.250-in.

diameter semir2'id coaxial cable. The two sleeves, 10.9 in. diameter, are

spaced 1.2-in. fran the dipole arms. The measured VSWR of the orthogonal

dipoies (A and B) is < 1.85 from 240 to 400 MHz as shown in Fig. 2(a).

The VSWR characteristics measured at the inputs to the 4-way power

dividers for both the A and B set of dipoles are shown in Fig. 2(b). The VSWR

response is in general similar to the individual dipole VSWR of Fig. 2(a).

However, some difference is noted and is caused by interaction between the

dipoles, interconnecting cables, and the power divider. The measured VSWR at

the inputs (ports 1 and 4) to the quadrature hybrid 1s < 1.22:1, and is also

shown in Fig. 2(b). These two input ports are isolated and provide the con-

nections for left-hand and right-hand circular polarization operation of the

array.

The amplitude and phase characteristics of the quadrature hybrid are

shown in Fig. 3. The amplitude unbalance is < I dB and the quadrature re]a-

tion is within 20.
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Fig. 1. Details of crossed, open-sleeve dipole.
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III. MEASURED RESULTS

A detailed experimental study was made of the radiation pattern charac-

teristics of the 4-element array as a function of the design parameters, which

include reflector size, element spacing, dipole-to-reflector spacing and

dipole orientation. The objective of the present study was to optimize the

multipath rejection performance by minimizing the pattern gain level at an

angle of approximately 63.4* from the array axis. The 63.4* angle corresponds

to the ground (multipath) specular reflection point for an antenna range where

the separation between the source and test antenna is the same ui the height

above the ground.

Radiation patterns of the array were measured at five test frequencies in

a slant range as illustrated in Fig. 4. A 240-400 MHz corner reflector

(Ref. 4) was used as illuminating antenna for these measurements. Axial ratio

was recorded by rotating the linearly polarized corner reflector about the

boresight axis. The multipath specular reflection angle is - 55.8" for the

slant range. Since the corner reflector patterns are relatively directional

(Ref. 4), multipath errors are expected to be insignificant for the array

measurements. The crossed polarization level is < -28 dB.

26.56 ft

= 10.40

17.64 ft

Fig. 4. Antenna-range geometry for pattern measurements.

11



Vith a dipole-to-reflectr spacing of 9.5 in. and an element spacing of

25 In., patterns we recorded for a 4-, 5-D and 6-ft square reflector. The

measured patterns for the 4-ft and 6-ft square reflectors are shown in Figures

5 sad 6, respectively. A sunnary of results, which include the pattern level

at 63.40, the half-power -beawidth (HPBW) and the front-to-back ratio (F/B),

Is show in Fig. 7. The 63.4' pattern level relative to the beam peak, which

Is of primary interest for our present application, represents the highest

linearly polarized signal (worst-case mudtipath) as indicated by the E com-

ponent. The measured results clearly illustrate that the large 6-ft reflector

yields better sultipath rejection performance. However, from a mechanical

standpoint a smaller physical size is preferable.

Also for the same 9.5 in. dipole-to-reflector spacing and a 6-ft

reflector, patterns were measured with the dipole-to-dipole or element spacing

varied from 25 in. to 35 in. The results are summarized in Fig. 8, which

indicate that the optimum element spacing lies between 25 and 30 inches.

The measured on-axis axial ratio (AR) is < 1 dB from 240 to 400 HHz for

all the cases investigated. Typical AR plots are shown in Fig. 9. The AR

values are essentially the same as the hybrid imbalance as shown in Fig. 3.

The measured AR variations as the array is rotated are believed to be caused

by range and instrumentation errors.

It is noted from Figures 7 and 8 that the HPBW curves become flattened at

the high end of the operating band. The beamwidth widening is caused by the

fact that the dipole-to-reflector spacing is > X/4 when the operating fre-

quency exceeds 310 Miz; i.e., the element pattern flattens or begins to bi-

furcate as the frequency is increased. To minimize the element-pattern beam-

width, the dipole-to-reflector spacing was reduced to 7.5 in., which is

equivalent to X/4 at 400 MHz. Also, an element spacing of 27.5 in. was chosen

based on the results of Fig. 8. Patterns were then recorded for 4-, 5- and

5.5-ft square reflectors, and the results are summarized in Fig. 10. Again,

the larger 5.5-ft reflector yields better performance than the smaller

reflectors. The 5.5-ft reflector size was considered to be a good choice on

the basis of both mechanical and RF considerations; i.e., low 63.40 pattern

level and low sidelobe/backlobe levels are realized with a relatively small

reflector. The measured patterns are shown in Fig. 11.
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The effects of dipole orientationwere also investigated. Measurements

were made with the dipole axes oriented either parallel to the reflector edges

or at a 45* angle. However, little or no difference in the pattern ch.Arac-

teristics was observed.

In an attempt to further improve the pattern and videlobe/backlobe char-

acteristics, the use of cavities or walls surrounding the dipo.tes was con-

% sidered. Two types of cavities were investigated: (1) a circular wall around

each of the four indivioual dipoles and (2) a "11 around the periphery of the

square reflector. Measurements Indicated that there are no significant RF

improvements over a plane reflector.

2
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IV. CONCLUSIONS

A 4-element diagonal array has been developed for use as source antenna"

in a VHF ouiidirectional-antenna test range, where multipath-induced errors

are a ujor problem. The array is capable of operation over a 1.66:1 band-

width with dual circular polarication. Although the present array design is

optimized to provide a lw 63.4* pattern level and low sidelobe/backlobes in

the 240 to 400 MHz band, the design can be scaled to other VHF/UHF frequencies

and used for other range geometries.
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