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The ARO fellowship provided support for one student Susan Yeh during her
| first three years of graduate studies at Princeton University. Ms. Yeh's research
advisor is Professor Andrea LaPaugh, and the project director is Professor Kenneth

N Steiglitz.

Summary of Problems Studied and Results

1y Before working on her dissertation, Ms. Yeh was involved in two research

. efforts: VLSI testing, and the Weinberger array generator (WAG).

In the area of VLSI testing, Ms. Yeh has applied LaPaugh and Lipton’s "Total
stuck-at-fault testing using Bipartite Transformation” ( Proceedings of the 1983
International Test Conference, IEEE, pp. 428-434, Oct. 1983) strategy on trees of
NOR gates. The goal of this work was to investigate the feasibility of the sug-
gested approach for testing VLSI circuits. The circuits containing trees of NOR
o gates were sent to MOSIS for fabrication. The fabricated chips were then tested,
i and their functionality has been confirmed.

A Weinberger array generator is a tool for implementing random logic
N (Arnold Weinberger, "Large scale integration of MOS complex logic: a layout
method,” IEEE Journal of Solid-State Circuits, Vol. SC-2, No.4, pp.182-190, Dec.

1967). Boolean equations are input, and a description (in PIF or CIF) of a circuit

- o
-

ey

realizing the equations is output. Ms. Yeh and another student have implemented

-
-

a Weinberger array generator (WAG). The goals of this work were a) to have a tool

that can build random logic circuits with complex gates, b) to experiment and

-‘-l’

-

integrate with the ALLENDE layout system (ALLENDE is a procedural language

for the hierarchical specification of VLSI layouts developed at Princeton Univer-

sity, Jose Mata, Proc. 22nd Design Automation Conf., pp.183-189, June 1985), and

¢) to study some research issues pertaining to building such a tool. A working ver-

- - -
‘- -

sion of WAG is up and running. A performance comparison was made between a
K’ 1-bit full adder generated as a PLA and a 1-bit full adder generated by WAG. As

\ expected, the WAG circuit has a smaller area, a smaller power consumption, but a

" longer delay than the PLA circuit. The results of this work was documented in a

technical report.
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Ms. Yeh is doing her dissertation on graph coloring algorithms, in particular,
she is studying the relationships between odd cycles in graphs and graph coloring.
Graph coloring is an important problem; it arises in layout and testing of circuits
in VLSI, scheduling of tasks, to name a few. Ms. Yeh has focused her attention on
two particular types of graphs: graphs with only small odd cycles, and graphs with
only large odd cycles. She developed algorithms that color both types of graphs
with small number of colors. Currently, she is investigating other types of graphs
in relationship to graph coloring. She is on schedule for completion of her Ph. D.

dissertation in the summer of 1987.

Technical Report

William W. Lin, Susan S. Yeh, and Andrea S. LaPaugh, "A Weinberger Array
Generator,” TR CS-023, Department of Computer Science, Princeton University,
Princeton, NJ, Jan. 1986.

Advanced Degree

Ms. Yeh was awarded Master of Arts in Electrical Engineering and Computer
Science in October 1985.
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A Weinberger Array Generator*

William W. Lin
Susan S. Yeh
Andrea S. LaPaugh

Department of Computer Science
Princeton University
Princeton, NJ 08544

TR CS-023
January 1986

Abstract

N The Weinberger Array Generator (WAG) is a tool for implementing random
logic. Boolean equations are input, and a layout description of gates and wires (the
circuit) realizing the equations is output. In the above aspects, WAG is similar to a
PLA generator. The main difference is that the Weinberger array structure allows
many levels of logic, with complex gates such as NAND-of-ORs; whereas a PLA
structure allows only two levels of logic, with no gates more complex than NORs.

We shall describe our implementation of WAG, presenting issues concerning the
optimization of logic, placement of gates, track assignment, and layout. Along with
this, we shall discuss the trade-off between space requirements and timing delays
that must be considered in choosing between a PLA and a Weinberger Array
structure. Finally, we shall discuss possible improvements and uses for WAG.
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A Weinberger Array Generator*

William W._ Lin
Susan S. Yeh
Andrea S. LaPaugh

Department of Computer Science
Princeton University
Princeton, NJ 08544

TR CS-023
January 1986

I. Introduction

The Weinberger Array (WA) was first proposed by Arnold Weinberger in [1]. As
an alternative to PLAs, WAs allow the use of complex gates and multi-level logic;
thus, the layout should be more compact if a WA structure is used. Of course,
because of the use of complex gates and multi-level logic, the signal propagation
delay tends to be longer for a circuit implemented as a WA than for an equivalent
circuit asa PLA.

In a general WA, the logic gates are placed side by side in a straight horizontal
line. The input signals may come in from any of the four sides. Wires may cross
gates to get from one place to another. Intermediate signals from the gates may
propagate either to the left or right, and output signals may leave from any side [see
Fig. 1].

Our prime motivation for building WAG was to have a tool that can build
random logic circuits with complex gates. LaPaugh and Lipton introduced a
production testing strategy based on bipartite circuits [2]. In order to test the
strategy, we wanted to modify some random circuits using LaPaugh and Lipton's
idea. A PLA generator was available, but it would generate circuits with only NOR
gates. So, having no appropriate tools, we decided to build WAG.

* This work supported in part by NSF grant MCS-8004490, DARPA grant N00014-82-K-0547, and an IBM Faculty
Development Award. S. Yeh was supported by ARO fellowship grant DAAG29-83-G-0110.
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[.A. Previous Work

Some projects have already employed the structure of Weinberger arrays for
automatically laying out logic circuits. The MacPitts project at MIT Lincoln
Laboratory [3] used WA to construct the combinatorial logic portion of the control
unit, all in NOR gates in nMOS technology. The Lit.coln Boolean Synthesizer [4],
developed at MIT Lincoln Laboratory, takes in boolean expressions and generates
WA consisting of NOR gates in CMOS technology. The Non-Von project at Columbia
University [5) used a WA layout for the OR-plane of the PLA. AT&T Bell Labs [6]
also developed a WAG that generates nMOS Weinberger arrays in NANI) gates.

[.B. Design Decisions

In the early stage of design of WAG, we were faced with the following decision:
Within the framework of Weinberger arrays, what is our overall layout strategy (i.e.
what type of gates should we use)? On the one hand, we would like to have flexibility
which calls for variety of complex gates. On the other hand, we would like to keep
down uwne complexity of the layout algorithm as well as the layout itself.
Performance was also an important factor that we kept in mind. After evaluating
the trade-off issues, we decided to use four types of gates - NOR, NAND, NOR-of-
ANDs, and NAND-of-ORs, in the Weinberger arrays. We feel that the four types of
gates offer us enough freedom in laying out different types of gates, and yet they are
simple enough to enable the layout to follow a uniform structure.

The next design decision that we faced was the structure of the gates. We first
simplified the structure of the Weinberger arrays by applying some restrictions. In
WAG, inputs must come in from the left or the bottom, and outputs must leave from
the right or the bottom. Also, in order to make the task of layout easier, we don’t
allow intermediate signals to propagate to the left. The considerations we had in
designing the structure of the gates were: speed, arca, power, regularity, and ease of
implementation. After experimenting with various structures, we decided on the

ones shown in Fig. 2.

II. Design of WAG

WAG consists of two major modules. The first module takes in a boolean
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description and performs logic and gate manipulations on the description. Three
tasks comprise the first module. First, the input is translated into a logic parse tree.
Second, the actual gates are created. Third, the number of gates used is minimized.
The second module of WAG takes the gates created by the first module and
produces an actual circuit description. This second module also consists of three
separate subtasks. First, the gates are placed linearly, in some specific order.
Second, the wire segments are assigned to specific horizontal tracks in the channel.

Finally, the actual gate structures (in nMOS technology) are created.
II.LA. Logic and Gate Manipulation

II.A.1. The Parser

The purpose of the parser is to translate the input into a logic parse tree. The
input consists of a set of boolean logic equations, comprised of intermediate macro
and output definitions. We allow the use of the following operators: NOT, OR, AND,
NOR, and NAND. With these five operators, there is considerable flexibility for the
user, who can specify any logic functions he needs; yet the user is not restricted to,
say, a  sum-of-products formulationn. If there is an ambiguity (i.e. missing
parentheses) in the input, the Parser assumes a STRICT left-to-right ordering of the
operations, where all the operators have the SAME priority except for NOT, which
takes precedence over the rest. Below is an example. ['$ = ‘NAND; ¥ = ‘AND/
“# = ‘NOR, "+’ ="0OR, 7’ = 'NOT]

“x$y+ k*es(f#qg)”
Interpreted as

(xS Cy) + k) *(Te)) $(f#g))”

See Fig. Clin Appendix C for an example of a parse tree.

[I.A.2. The Creation of Gates

The purpose of this phase is to translate the logic parse tree into a tree which only

contains operators that can be realized in the target technology. Since our target
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technology 1s nMOS, our operators must be of the inverting-logic type, 1.e. NOTs,
NORs, NANDs, NOR-of-ANDs, and NAND-of-ORs. These operators may thus be
thought ot as pates. [see Fig. C2in Appendix C]

Aside from the obvious translation of noninverting-logic operators to inverting-
logic operators by adding an extra NOT operator (eg. OR becomes NOT of a NOR),
there are some special considerations. First, perhaps depending on the target
technology, NAND<s with a large number of inputs may be undesirable because they
would exhibit long switching delays. Specifically, for our purposes, we do not want
any NANDs with more than three inputs. If one exists, it is transformed into an
cquivalent NOT of a NOR of NANDs [see Fig. 3]. A second consideration is the
possibility that the user wants to keep a specified input phrase together, unchange. ,
if possible. This feature, while not currently implemented, can be accommodated by
~etting a flag that indicates that an operator is to be kept intact, as an independent

pate. [see Fig. CHin Appendix CJ
I1.A3 Logie Minimization

The purpose of this phase is to minimize the number of gates used to implement
the input boolean equations. This should minimize the area needed for laying out the
circuit, even though the complexity of the gates will most likely increase. In general,
complex gates require more area than simpler gates; but since there are fewer gates,
the total area required for gate separation is less. Further, combining gates into
maore complex gates decreases the amount of space needed for routing between gates.

Having transformed to inverting-logic gates in the preceding phase, one obvious
step is to remove double NOTs. That is, if a NOT operator has an operand which is
also a NOT, both operators may be deleted. Two other possibilities for minimization
readily come to mind. First, one might try to locate equivalent subexpressions. The
difficulty with this is that the subexpressions may be represented in different ways;

and to tell whether two different-looking expressions are equivalent may be time-

consuming, especially if we must check many pairs. And even the problem of

‘T' determining the equivalence of a single pair of boolean expressions seems to be
- tough;in fact , it is Co-NP Complete (reduction from Non-tautology [7]). The second
b\ strategy is to collapse gates into more complex structures. For example, a NOR of 2
. ANDs could be re-made into a single NOR-of-ANDs. This would certainly reduce the
:_r number of gates, but it's not clear whether a greedy algorithm for collapsing would
::.I-_,' ensure a minimal number of gates. [see Figs. C3 and C4 in Appendix C]

Vo




II.A.4. Alternatives for the Creation of Gates

The program structure we used was acdopted mainly for the sake of ease of
implementation, so we may well ask if any improvements can be made. We may not
want to specify gates too soon, since minimization issues may be important to
determining what gates to build. One possibility is first to translate the parse trec
into a simplified form, like sum-of-products, for which detecting common
subexpressions is all that is required to find equivalent subexpressions, and
minimization techniques have already been developed [8] and used in an actual
implementation of a Weinberger array generator [9]. After the minimization, we
could transform to inverting-logic. Of course, this method may still not give an
optimum result, since the step of changing to inverting-logic may significantly
increase the number of gates. Research is necessary to determine how the
minimization of logic should proceed.

II.B. Layout
II.B.1. Linear Placement of Gates

Having defined the gates needed to implement the boolean logic equations, we
now order them in a linear array so as to minimize the number of tracks needed for
laying out the circuit. For this phase, we may think of each gate as a node in a
graph, with a directed edge between two nodes if the corresponding gates have a wire
connecting them. The goal is to place the nodes horizontally, in a straight line, so as
to minimize the maximum cut, where a cut is the number of edges that bisect a
single vertical line placed on the graph {see Fig. 4]. The general form of this problem
is called the MINIMUM CUT Linear Arrangement Problem, and it i1s known to be
NP-complete {7]. It is also known that an optimal solution can be found in
polynomial time if the class of graphs is restricted to trees [10}].

Our actual task does not fall easily into either the general case or the "tree” case.
It might seem that our graph must be a directed acyclic graph, since no feedback
paths are allowed, but that is not exactly the case. In c:rtain cases, we might have to
consider a hyper or multiple graph. To see why this is so, look at Fig. [5]. A given
signal may be input to more than one node (eg. ‘A’), but because we are using a linear
placement of the nodes, such a signal will seem to enter at one node and then proceed

'
[(Gn)]




on from that node. Parts (b) and (¢) of the figure show two different linear

placements of the nodes. In part(b), ‘A’ and ‘'I)’ enter at node 1; in part (c) they enter
at node 2. One cannot know beforehand which of nodes 1 and 2 should be placed
farther to the left, so one cannot know in which direction to place a directed arc
between the two nodes. There may be more than two nodes that share a commdn
signal, and generally there will be no a priorit way to tell what the relative ordering
of thesc nodes should be; so we may visualize an undirected hyper-edge connecting
these nodes. The graph may be multiple if at least two signals must pass through
the same two vertices (see parts (b) and (c), where there are two arcs connecting
nodes 1 and 2]. Both edges must be present because the two signals will require two
separate tracks in the actual layout.

Finding an optimal placement does not seem to be a simple task. Simulated
Annealing may be the inost promising try, as indicated by the results obtained by
Rowen and Hennessy {11]. We are searching for a specific algorithm to solve our

problem.
[1.B.2. Track Assignment

After all the gates have been linearly placed. we want to assign wire segments
into horizontal tracks to minimize the number of tracks actually used (hence
reducing the height of the circuit). The track assignment problem breaks down into
two cases. Une case ts NOR and NANID gates; the other NOR-of - ANDs and NAND-
of ORs gates

bor the case of NOR and NANI) gates, a greedy algorithm will achieve the
opumal track assignment {12]. The basic 1dea behind the greedy algorithm 1s to
pack as many non-overlapping wires into a single track as possible (this 1s actually
aninterval graph coloring problem (13]1). The method for doing so s for each track
fassuming the tracks are vertically divided into columns) choose a wire that fills in
the leftmost empty column. if one exists.

For the case of NOR of ANDs and NAND-of ORs, the situation becomes difficult.
Due to the structure of the gates, we have to impose adjacency constraints on the
wires. For instance. consider a NOR-OF-ANDs gate: NORof [a& b ). {c& d& el
The wires a and b are constrained to be ad)acent, so are wires ¢ and d and e (the order
does not matter though) In some cases routing i1s necessary in order to satisfy the

agjacency constraints (see Fig 6). In other cases, routing 1s preferable in order to

reduce the number of tracks used (1 e not to stretch the gate). If we don't allow
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routing. then we think the problem of finding a minimum track assignment, if one
exists, is NP- complete.

For the above harder case, the track assignment problem becomes: assign wires
to tracks so as to minimize the number of tracks used and the amount of routing that
is necessary. In our present version of WAG, track assignment for NAND-of-ORs
and NOR-of-ANDs gates has not been implemented. This is an interesting problem
for future work.

[[.B.3. Creation of Gate Structures - Layout

Having defined the order of gates and the order of wires connecting the gates, the
last phase is to lay out the Weinberger array in PIF (PIF is an intermediate form
that describes the layout {14] ). Working under the PIF framework, we treat each
gate as a cell and the wires connecting two gates as another cell. Layout proceeds
from left to right, cell by cell. [see Fig. C6 in Appendix C for an example of a final
layout]

The information we need in order to lay out each gate is : type of gate, input wire
names, left tracks and right tracks with wire names and type of wire for each track.
In layout, it is essential to keep track of wire positions. The way we do so is by
taking advantage of the regularity of the gate structure and doing case analyses. In
the current version of WAG, the input and output wire positions are determined by
the program. As a future improvement, we would allow the user to specify the sides
and order in which the inputs and output(s) appear.

Having completed the final phase we want to know if improvements can be made
in layout. We are concerned with the quality of the Weinberger array circuit, and
three important quantities we use to measure the quality of a circuit are speed, area,
and power. How do we optimize speed, area, and power (we may consider time-area
product, time-area-power product, or sume weighted combination thereof)? Since we
are working in nMOS technology, one possibility is to scale the pullup sizes and
pulldown wire widths according to optimization parameters. We are currently
considering an integration of WAG with a tool that perforins speed-area-power
optimizations.

A disadvantage of the Weinberger array structure is that circuit tends to be very
long. When this happens, we can “fold” the circuit to a more desirable shape [see Fig.

7]. Additional routing of wires may be necessary, though.
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[I1. Performance Comparison

In this section, we are going to make performance comparisons between a 1-bit
full adder implement.d as a programmable logic array (PLA) and a 1-bit full adder
generated by WAG. The three performance measures we used are: speed or time
delay T, peak or average power dissipation P,qx0r Pgye and area A.

Figure 8 illustrates the 1-bit adder implemented as a PLA. The equations used
are Co, = AB + BC + AC,and S = ABC + ABC + ABC + ABC. Iwano and
Steiglitz {15] have done some experiments in local optimization of VLSI leaf cells, for
example, a 1-bit full adder. The way they perform local optimization is to consider
all single or double changes of the circuit parameter vector 11 along the critical path
of the leaf cell. We will use their performance results of a 1-bit full adder generated
by PLA generators in our comparisons.

Figure 9.a and Figure 9.b are plots of the 1-bit full adder generated by WAG with
pullup ratios 2 and 1 respectively. We have placed input buffers in the Weinberger
arrays since the PLA circuit also has them. In this circuit the inputs enter through
the bottom, and the outputs leave from the right. We used different but equivalent
equations for Cg and S, as indicated in the figures.

The tools used for estimating the performance of the circuits are ALLENDE[16],
MEXTRA[17), CRYSTAL[17], and POWEST(17]. Table 1 shows a comparison of the
performance of the PLA circuits and the WA circuits.

type A P,.. P T APT PT parameter

MAX

PLA 21560 6472 10183 128 2802 1303 1) m = (4,4,4,4,4,4,3,4,4,888,4,4,4,82)
21840 5678 9241 153 3087 1413 2) n= (4,2,3,3,3,3,3,4.3.8.838,4.4.4,82)
21762 5503 8616 149 2794 1284 3) nm=(3,3,3,4,44.4,3,3.88,38.4,4,4.4,3)

PLA 22176 7314 11749 128 3339 1504 4) n-1(4,444444,1488.383888.88)
Berkeley

WA 17051 1556 2349 293 1174 688 5) Pullupsize - 2
21535 3112 4698 228 2307 1071 6) Pullupsize - 1

Table 1 Performance Comparison of the 1-bit Full Adder




-.

‘E? The first four rows are all local optimal points using time T as criterion. The
- unitsof A, Pgyg, Pmax, T, APT,and PT are A2, (10-6« W), (106 + W), ns, (A2« W «
?:" ns), and (10-4 + W « ns) respectively. Each of the PLA circuits has 17 parameters
::: represented by a vector 1 = (dand,» dand,, - - - » dand;» dory dorg, diny ys - - - » ding.gr dout,s
‘5, dout, ), where node i has diffusion width d;A. More specifically the parameters are
pulldown diffusion widths: 7 nodes in the AND plane, 2 nodes in the OR plane, 6
N 3 nodes in the input stage, and 2 nodes in the output stage. In all circuits, the pullup
‘:‘ o to pulldown ratio of the gates is 4.

,:,g The results of the performarice comparisons are as expected: the Weinberger
* arrays circuit is more compact, consumes less power, but is slower than the
o equivalent PLA circuit. Hence we have to consider the trade-off between space
| ' requirements and timing delays in choosing one implementation over the other.

* IV. Conclusion and Future Improvements

_ We have shown the Weinberger Array Generator to be a viable alternative to
: PLA generators. Although not recommended if speed is the primary concern, the
' Weinberger array performs well under the criteria of space and power usage. We
- have described our implementation of WAG, and we note that many improvements
:,. may be made. We have already mentioned four possible optimizations: minimizing
Y the amount of logic used by collapsing gates and recognizing equivalent
! subexpressions, minimizing the number of tracks needed and the lengths of the
wy wires on these tracks, stacking up long chains to obtain a proper aspect ratio, and
"‘ optimizing the circuit with respect to area, speed, and power usage by improving the
:' \ layout structure and sizing the gate components. We might also add input buffers to
e protect against degraded signals. To make the tool more "friendly,” we could allow
o2 the user to specify where signals are to be input or output. Finally, we might add
_ . flexibility by allowing clock lines and internal feedback paths.
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7 Introduction
The Weinberger Array Generator (WAQ) is a tonl for implementing random logic.
",’.' Boolean equations are input, and a layout description of gates and wires (the circuit)
realizing the equations is output. In the above aspects, WAG is similar to a PLA
L}
ut. generator. The main difference is that the Weinberger array structure allows many
N levels of logic, with complex gates such as a NAND-of-ORs; whereas a PLA structure
o
¢ > allows only two levels of logic, with no gates more complex than NORs.
:
> For a description of the general structure of Weinberger arrays and their
, implementations, consult IEEE Journal of Solid-State Circuits, Vol. SC-2, No. 4,
N
s pp-182-190, December 1967, A. Weinberger, “Large scale integration of MOS
\ complex logic: a layout method” or Computational A:pects of VLSI, Jeffrey D.
' Ullman, Computer Science Press, pp. 338-352. The actual implemented structure of
S Weinberger arrays will be apparent from the output.
"
»,
>
Usage:
’ wag [ -options [ -options ] ... ] infile
[ Ad
.
v The input file tnfile consists of any number of boolean equations, separated by semi-
5 colons. The format for an equation is that of a normal arithmetic equation; that is,
o, ) . . . A N .
'3 the left hand side censists of a single variable, followed by an “=’, then the right
'_’_j hand side 15 a boolean equation consisting of variables and operators. Variables are
. alphanumeric strings not beginning with a numeral. The legal operators are NO'T
C ), AND ), OR O+, NAND ('$), and NOR (#). Parentheses are used for
"~
N phrasing. The notation used s infix.
L For example, a NAND of "a’, 'b’, and ‘¢, with the result to be placed in 'x” would be
written as
“ “x a$bh$e”
13




The semi-colon following the equation must be present if any other equation follows.

iy Here is a legal input:
} “what = (x$a) + ("y * you),
7 ask = w* x # what;
e > ans = (((ask * you) + what)$ "ask $(x #y #z#w))”
;." Notice the ‘>’ preceding the final equation. The placement of this symbol in front of
,& an equation notifies WAG that the variable that immediately follo .5 is an output
"“ signal. If this symbol is not present, then the signal is assumed to be an
intermediate macro definition.
,’.
.r'f: If the phrasing of a boolean input string is ambiguous, the program will assume that
'.' the phrasing is strictly left-to-right, with the NOT operator having the highest
o priority and the rest having the SAME priority. For instance,
"at+tc*red [
'::‘{_:: would be interpreted as if written
- “(Ga + ) *e) $ (D).
i
s WA produces CIF and PIF files specifying the mask layout gecmetry for a circuit
{\ realizing the input equation as the output. CIF, the Caltech Intermediate Form that
] f- describes the layout is defined in Mead and Conway, Introduction to VLSI Systems,
Addison-Wesley, pp. 115-127. PIF is another intermediate form for describing the
- layout. One can obtain a CIF file from the PIF file by running ALLENDE. For
"’3 descriptions of ALLENDE and PIF, consult ALLENDE Layout System User's
"-' Manual, Jose Mata, VLSI Memo #9, Princeton Univ., June 1984, or “"ALLENDE: A
i Procedural Language for the Hierarchical Specification of VLSI Layouts,” Jose
:'_ Mata, Proc 22nd Design Automation Conf., pp. 183-189, June 1985.
2
' The options for the Weinberger Array Generator are :
.: t < ftilename > <space >
'-:f Write the Weinberger arrays in the file specified. In the present version, both
Eﬁj ‘pif” and ‘af’ files are generated. if the option -Cis specified, then only the ‘pif’
4 file1s generated Note that ” pif” or “.at” will automatically be concatenated ?
~ to the filename 1f the filename 1s not already in that format. 1
] 14
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.
e -F {default} Use the default filename of “wag.cif”
"y -S Silent execution.
N )
o -S {default} Write out main steps of execution.
L)
::., -c {default} Produce ‘cif’ file.

N -C Do not produce ‘cif’ file. !
.':, -v {default} Compute width of Vdd and Gnd lines, widening them if necessary

::' (minimum width for these lines is assumed to be 4*lambda).

oy

' -V n Do not compute width of Vdd and Gnd lines. Use Vdd and Gnd lines of
v width n*lambda, but no less than 4*lambda.

o

-5.: -mn Use metal lines of width n*lambda, but no less than 3*lambda.

- (defaultn is 3).
- -dn Use diffusion lines of width n*lambda, but no less than 2*lambda.

2 (default nis 2).

$.
o -pn Use pc:. lines of width n*lambda, but no less than 2*lambda.
: (defac.. is2).

L

..'
v Future Improvements

0
(a) Input buffering:

K, As implemented, WAG assumes the input signals to be non-degraded. However,

, this may not be the case all the time. So, we would place input buffersin the

¥ . layout to allow for degraded input signals.

R

" (b) Specification of input/output entry:

3 Asimplemented, WAG arbitrarily places inputs and output(s) (the inputs and

_: output(s) are labeled in the CIF-plot). We would allow the user to specify the sides
::: and order in which the inputs and output(s) appear.
;: |
e (¢) Specification of gates: ‘

N The user will be able to specify the exact gates (lhmited to NOR, NAND, NOT,

~ NOR-of-AND, NAND-of-NOR) to be laid out by turning on an option. Right

o’ now, optimizations are performed on the equations and the output gates are

W

o
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limited to NOT, NOR, and NAND.

(d) Better performance -- TIME:
The user will be able to turn on an option that will call a routine which tries to

minimize the total delay of the circuit (by scaling the pull-up sizes and pull-down

wire widths).
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APPENDIX C: An Example from
Parse to Layout
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Fig. C3. A possible simplification
(see fig. B2)
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Inputsignals only go to one gate
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INPUT: (A +C) (D +E) + [(A+C)B]
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» Fig  C5 Alternative if a phrase s
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Fig. C6. Possible Weinberger array layout
for logic of Fig. C3.
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