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The ARO fellowship provided support for one student Susan Yeh during her

first three years of graduate studies at Princeton University. Ms. Yeh's research

advisor is Professor Andrea LaPaugh, and the project director is Professor Kenneth

Steiglitz.

Summary of Problems Studied and Results

Before working on her dissertation, Ms. Yeh was involved in two research

efforts: VLSI testing, and the Weinberger array generator (WAG).

In the area of VLSI testing, Ms. Yeh has applied LaPaugh and Lipton's "Total

stuck-at-fault testing using Bipartite Transformation" ( Proceedings of the 1983

International Test Conference, IEEE, pp. 428-434, Oct. 1983) strategy on trees of

NOR gates. The goal of this work was to investigate the feasibility of the sug-

gested approach for testing VLSI circuits. The circuits containing trees of NOR

gates were sent to MOSIS for fabrication. The fabricated chips were then tested,

and their functionality has been confirmed.

A Weinberger array generator is a tool for implementing random logic

(Arnold Weinberger, "Large scale integration of MOS complex logic: a layout

method," IEEE Journal of Solid-State Circuits, Vol. SC-2, No.4, pp.182-190, Dec.

1967). Boolean equations are input, and a description (in PIF or CIF) of a circuit

realizing the equations is output. Ms. Yeh and another student have implemented

a Weinberger array generator (WAG). The goals of this work were a) to have a tool

that can build random logic circuits with complex gates, b) to experiment and

integrate with the ALLENDE layout system (ALLENDE is a procedural language

for the hierarchical specification of VLSI layouts developed at Princeton Univer-

sity, Jose Mata, Proc. 22nd Design Automation Conf, pp.183-189, June 1985), and

c) to study some research issues pertaining to building such a tool. A working ver-

sion of WAG is up and running. A performance comparison was made between a

1-bit full adder generated as a PLA and a 1-bit full adder generated by WAG. As

expected, the WAG circuit has a smaller area, a smaller power consumption, but a

longer delay than the PLA circuit. The results of this work was documented in a

technical report.
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Ms. Yeh is doing her dissertation on graph coloring algorithms, in particular,

she is studying the relationships between odd cycles in graphs and graph coloring.

Graph coloring is an important problem; it arises in layout and testing of circuits

in VLSI, scheduling of taskb, to name a few. Ms. Yeh has focused her attention on

two particular types of graphs: graphs with only small odd cycles, and graphs with

only large odd cycles. She developed algorithms that color both types of graphs

with small number of colors. Currently, she is investigating other types of graphs

in relationship to graph coloring. She is on schedule for completion of her Ph. D.

dissertation in the summer of 1987.

Technical Report

William W. Lin, Susan S. Yeh, and Andrea S. LaPaugh, "A Weinberger Array

Generator," TR CS-023, Department of Computer Science, Princeton University,

Princeton, NJ, Jan. 1986.

Advanced Degree

Ms. Yeh was awarded Master of Arts in Electrical Engineering and Computer

Science in October 1985.
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Abstract

"'The Weinberger Array Generator (WAG) is a tool for implementing random

logic. Boolean equations are input, and a layout description of gates and wires (the

circuit) realizing the equations is output. In the above aspects, WAG is similar to a

PLA generator. The main difference is that the Weinberger array structure allows

many levels of logic, with complex gates such as NAND-of-ORs; whereas a PLA

structure allows only two levels of logic, with no gates more complex than NORs.

We shall describe our implementation of WAG, presenting issues concerning the

optimization of logic, placement of gates, track assignment, and layout. Along with

this, we shall discuss the trade-off between space requirements and timing delays

that must be considered in choosing between a PLA and a Weinberger Array

structure. xFinally, we shall discuss possible improvements and uses for WAG.

I - • *1

* This work supported in part by NSF grant MCS-8004490, DARPA grant N00014-82-K-0549, and an IBM Faculty
Development Award. S. Yeh was supported by ARO fellowship g int DAAG29-83-G-0110.
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I. Introduction

The Weinberger Array (WA) was first proposed by Arnold Weinberger in [1]. As

an alternative to PLAs, WAs allow the use of complex gates and multi-level logic;

thus, the layout should be more compact if a WA structure is used. Of course,

because of the use of complex gates and multi-level logic, the signal propagation

delay tends to be longer for a circuit implemented as a WA than for an equivalent

circuit as a PLA.

In a general WA, the logic gates are placed side by side in a straight horizontal

line. The input signals may come in from any of the four sides. Wires may cross

gates to get from one place to another. Intermediate signals from the gates may

propagate either to the left or right, and output signals may leave from any side [see

Fig. 1].

Our prime motivation for building WAG was to have a tool that can build

random logic circuits with complex gates. LaPaugh and Lipton introduced a

production testing strategy based on bipartite circuits [2]. In order to test the

strategy, we wanted to modify some random circuits using LaPaugh and Lipton's

idea. A PLA generator was available, but it would generate circuits with only NOR

gates. So, having no appropriate tools, we decided to build WAG.
p.

This work supported in part by NSF grant MCS-8004490. DARPA grant N00014-82-K-0549, and an IBM Faculty

Development Award. S. Yeh was supported by ARO fellowship grant DAAG29-83-G-0! 10.
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I.A. Previous Work

Some projects have already employed the structure of Weinbergvr arrays for

automatically laying out logic circuits. The MacPitts project at MIT Lincoln

Laboratory [31 used WA to construct the combinatorial logic portion of the control

unit, all in NOR gates in nMOS technology. The Lit.coln loolean Synthesizer [41,

developed at MIT Lincoln Laboratory, takes in boolean expressions and generates

WA consisting of NOR gates in CMOS technology. The Non-Von project at Columbia

University [5) used a WA layout for the OR-plane of the PLA. AT&T Bell Labs 16]

also developed a WAG that generates nMOS Weinberger arrays in NANI) gates.

I.B. Design Decisions

In the early stage of design of WAG, we were faced with the following decision:
Within the framework of Weinberger arrays, what is our overall layout strategy (i.e.

what type of gates should we use)? On the one hand, we would like to have flexibility
which calls for variety of complex gates. On the other hand, we would like to keep

down Lne complexity of the layout algorithm as well as the layout itself.

Performance was also an important factor that we kept in mind. After evaluating

the trade-off issues, we decided to use four types of gates - NOR, NAND, NOR-of-

ANDs, and NAND-of-ORs, in the Weinberger arrays. We feel that the four types of
gates offer us enough freedom in laying out different types of gates, and yet they are

simple enough to enable the layout to follow a uniform structure.

The next design decision that we faced was the structure of the gates. We first

simplified the structure of the Weinberger arrays by applying some restrictions. In
WAG, inputs must come in from the left or the bottom, and outputs must leave from

the right or the bottom. Also, in order to make the task of layout easier, we don't

allow intermediate signals to propagate to the left. The considerations we had in

designing the structure of the gates were: speed, aria, power, regularity, and ease of
implementation. After experimenting with various structures, we decided on the

ones shown in Fig. 2.

II. Design of WAG

WAG consists of two major modules. The first module takes in a boolean

-2-



description and performs logic and gate manipulations on the description. Three

tasks comprise the first module. First, the input is translated into a logic parse tree.

Second, the actual gates are created. Third, the number of gates used is minimized.
The second module of WAG takes the gates created by the first module and

produces an actual circuit description. This second module also consists of three

separate subtasks. First, the gates are placed linearly, in some specific order.

Second, the wire segments are assigned to specific horizontal tracks in the channel.

Finally, the actual gate structures (in nMOS technology) are created.

II.A. Logic and Gate Manipulation

II.A.1. The Parser

The purpose of the parser is to translate the input into a logic parse tree. The

input consists of a set of boolean logic equations, comprised of intermediate macro

and output definitions. We allow the use of the following operators: NOT, OR, AN I),

NOR, and NAND. With these five operators, there is considerable flexibility for the

user, who can specify any logic functions he needs; yet the user is not restricted to,

say, a sum-of-products formulationt. If there is an ambiguity (i.e. missing

parentheses) in the input, the Parser assumes a STRICT left-to-right ordering of the

operations, where all the operators have the SAME priority except for NOT, which

takes precedence over the rest. Below is an example. ['$' = 'NAND,' '*' 'AND,'

'#' = 'NOR,' '+' = 'OR,' '' 'NOTI

"x$-y+ k* -e$(f#g)"

Interpreted as

"((((x $ (-y)) + k) * (-e)) $ (f # g))"

See Fig. C1 in Appendix C for an example of a parse tree.

II.A.2. The Creation of Gates

The purpose of this phase is to translate the logic parse tree into a tree which only

contains operators that can be realized in the target technology. Since our target

-3-
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" technology is nMOS, our operators must be of the inverting-logic type, i.e. NOTs,

N0lts. NANl)s, NoIt-of-ANI)s, and NANI)-of-OlRs. These operators may thus be

thmght f :s g ates. Isee Fig. (C2 in Appendix Cl

- Aside from the obvious translation of noninverting-logic operators to inverting-

I Igic Operators by adding an extra NOT operator (eg. OR becomes NOT of a NOR),

there are some special considerations. First, perhaps depending on the target

*. technology, NAMI),, with a large number of inputs may be undesirable because they

would exhibit lonv switching delays. Specifically, for our purposes, we do not want

. m:v NANI)s with more than three inputs. If one exists, it is transformed into an

equivalent NOT of a NOR of NANI)s [see Fig. 31. A second consideration is the

" po>.ssihility that the user wants to keep a specified input phrase together, unchange,

if possible. This feature, while not currently implemented, can be accommodated by

>etting a fla that indicates that an operator is to be kept intact, as an independent

s :ite. see Fig. C5 in Appendix C]

-" l:\.A.3. Logic Minimization

The purpose of this phase is to minimize the number of gates used to implement

the input boolean equations. This should minimize the area needed for laying out the

.. circuit, even though the complexity of the gates will most likely increase. In general,

'i complex gates require more area than simpler gates; but since there are fewer gates,

the total area required for gate separation is less. Further, combining gates into

mo re complex gates decreases the amount of space needed for routing between gates.

Having transformed to inverting-logic gates in the preceding phase, one obvious

step is to remove double NOTs. That is, if a NOT operator has an operand which is

also a NOT, both operators may be deleted. Two other possibilities for minimization
"ir,,wdilv -orne to mind, First, one might try to locate equivalent subexpressions. The

difficulty with this is that the subexpressions may be represented in different ways;

Land to tell whether two different-looking expressions are equivalent may be time-

j co nsuming, especially if we must check many pairs. And even the problem of

determining the equivalence of a single pair of boolean expressions seems to be

tough; in fact, it is Co-NP Complete (reduction from Non-tautology [71). The second

"- strategy is to collapse gates into more complex structures. For example, a NOR of 2

j ANDs could be re-made into a single NOR-of-ANDs. This would certainly reduce the

. number of gates, but it's not clear whether a greedy algorithm for collapsing would

, . . ensure a minimal number of gates. [see Figs. C3 and C4 in Appendix C]
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II.A.4. Alternatives for the Creation of Gates

The program structure we used was adopted mainly for the sake of ease of

implementation, so we may well ask if any improvements can be made. We may not

want to specify gates too soon, since minimization issues may be important to

determining what gates to build. One possibility is first to translate the parse tr,'.

into a simplified form, like sum-of-products, for which detecting common

subexpressions is all that is required to find equivalent subexpressions, and

minimization techniques have already been developed [8J and used in an actual

implementation of a Weinberger array generator [9]. After the minimization, we

could transform to inverting-logic. Of course, this method may still not give an

optimum result, since the step of changing to inverting-logic may significantly

increase the number of gates. Research is necessary to determine how the

minimization of logic should proceed.

II.B. Layout

II.B.1. Linear Placement of Gates

Having defined the gates needed to implement the boolean logic equations, we

now order them in a linear array so as to minimize the number of tracks needed for

laying out the circuit. For this phase, we may think of each gate as a node in a

graph, with a directed edge between two nodes if the corresponding gates have a wire

connecting them. The goal is to place the nodes horizontally, in a straight line, so as

to minimize the maximum cut, where a cut is the number of edges that. bisect a

single vertical line placed on the graph [see Fig. 41. The general form of this problem

is called the MINIMUM CUT Linear Arrangement Problem, and it is known to he

NP-complete [7]. It is also known that an optimal solution can he found in

polynomial time if the class of graphs is restricted to trees [ 10 1.

Our actual task does not fall easily into either the general case or the "tree" case.

It might seem that our graph must be a directed acyclic graph, since no feedback

paths are allowed, but that is not exactly the case. In certain cases, we might have t)

consider a hyper or multiple graph. To see why this is so, look at Fig 151. A given

signal may be input to more than one node (eg. 'A'), but because we are using a linear

placement of the nodes, such a signal will seem to enter at one node and then proceed

Nthen
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on from that node. Parts (b) and (c) of the figure show two different linear

placements of the nodes. In part (b), 'A' and 'D' enter at node 1; in part (c) they enter

at node 2. One cannot know beforehand which of nodes I and 2 should be placed

farther to the left, so one cannot know in which direction to place a directed arc

between the two nodes. There may be more than two nodes that share a comm, n

signal, and generally there will be no a priori way to tell what the relative ordering

of thesc nodes should be; so we may visualize an undirected hyper-edge connecting

these nodes. The graph may be multiple if at least two signals must pass through

the same two vertices [see parts (b) and (c), where there are two arcs connecting

nodes I and 21. Both edges must be present because the two signals will require two

separate tracks in the actual layout.

Finding an optimal placement does not seem to be a simple task. Simulated

Annealing may be the most promising try, as indicated by the results obtained by

Rowen and Hennessy [ I1 . We are searching for a specific algorithm to solve our

problem.

ll.B.2. Track Assignment

After all th, gates have been linearly placed, we want to assign wire segments

into horizontal track- to minimize the number of tracks actually used (hence

reducing the height of the circuit). The track assignment problem breaks down into

two cases. One case is NOR ,and NAND gates; the other NOR-of-ANDs and NAND-

4) 0IS gates

For the case of NOR and NANI) gates, a greedy algorithm will achieve the

optimal track assignment 1121. The basic idea behind the greedy algorithm is to

pack as many non-,verlapping wires into a single track as possible (this is actually

an interval graph coloring problem [131). The method for doing .-A is for each track

(asuming the tracks are vertically divided into columns) chioose a wire that fills in

the leftm,,st ernpt-, column, if one exists.

For the case ,if NOR of ANI)s and NAN1)-of ORs, the situation becomes difficult.

)ue to the structure of the gates, we have to impose adjacency constraints on the

wires. For instance. consider a NOR-OF-ANDs gate: NOR of I a & b 1, 1 c & d & e .

The wires a and h are constrained to be adjacent, so are wires c and d and e (the order

does not matter though). In some cases routing is necessary in order to satisfy the

aajacency constraints (see Fig 6). In other cases, routing is preferable in order tA

reduce the number of tracks used (i e not to stretch the gate). If we don't allow

6
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routing, then we think the problem of finding a minimum track assignment, if one

exists, is NP- complete.

For the above harder case, the track assignment problem becomes: assign wires

to tracks so as to minimize the number of tracks used and the amount of routing that

is necessary. In our present version of WAG, track assignment for NAND-of-ORs

and NOR-of-ANDs gates has not been implemented. This is an interesting problem

for future work.

11.13.3. Creation of Gate Structures - Layout

Having defined the order of gates and the order of wires connecting the gates, the

last phase is to lay out the Weinberger array in PIF (PIF is an intermediate form

that describes the layout [14] ). Working under the PIF framework, we treat each

gate as a cell and the wires connecting two gates as another cell. Layout proceeds

from left to right, cell by cell. [see Fig. C6 in Appendix C for an example of a final

layout]

The information we need in order to lay out each gate is: type of gate, input wire
names, left tracks and right tracks with wire names and type of wire for each track.

In layout, it is essential to keep track of wire positions. The way we do so is by

taking advantage of the regularity of the gate structure and doing case analyses. In

the current version of WAG, the input and output wire positions are determined by

the program. As a future improvement, we would allow the user to specify the sides

and order in which the inputs and output(s) appear.

Having completed the final phase we want to know if improvements can be made

Ain layout. We are concerned with the quality of the Weinberger array circuit, and

three important quantities we use to measure the quality of a circuit are speed, area,
and power. How do we optimize speed, area, and power (we may consider time-area

*. product, time-area-power product, or some weighted combination thereof)? Since we

are working in nMOS technology, one possibility is to scale the pullup sizes and

pulldown wire widths according to optimization parameters. We are currently

considering an integration of WAG with a tool that performs speed-area-power

.4ptirnizitiMI,.

A disadvantage of the Weinberger array structure is that circuit tends to be very

long. When this happens, we can "fold" the circuit to a more desirable shape [see Fig.

71. Additional routing of wires may be necessary, though.

7



Ill. Performance Comparison

In this section, we are going to make performance comparisons between a 1-bit

full adder implemented as a programmable logic array (PLA) and a 1-bit full adder

generated by WAG. Thc three performance measures we used are: speed or time

delay T, peak or average power dissipation Pjnax or Pavg, and area A.

Figure 8 illustrates the 1-bit adder implemented as a PLA. The equations used

are Co= AB + BC + AC, andS = ABC + ABC + ABC + ABC. Iwanoand

Steiglitz [15] have done some experiments in local optimization of VLSI leaf cells, for

example, a 1-bit full adder. The way they perform local optimization is to consider

all single or double changes of the circuit parameter vector H along the critical path

of the leaf cell. We will use their performance results of a 1-bit full adder generated

by PLA generators in our comparisons.

Figure 9.a and Figure 9.b are plots of the 1-bit full adder generated by WAG with

pullup ratios 2 and 1 respectively. We have placed input buffers in the Weinberger

arrays since the PLA circuit also has them. In this circuit the inputs enter through

the bottom, and the outputs leave from the right. We used different but equivalent

equations for Co and S, as indicated in the figures.

The tools used for estimating the performance of the circuits are ALLENDE[161,

MEXTRA[171, CRYSTAL[ 17], and POWEST[171. Table 1 shows a comparison of the

performance of the PLA circuits and the WA circuits.

type A P..,'.f; P MAX T APT PT parameter

PLA 21560 6472 10183 12 8 2802 1303 1) n = (4,4.4,4,4,4,3,4,4,8.8,8,4,4,4,8,2)

21840 5678 9241 15 3 3087 1413 2) n = (4,2,3,3,3,3,3,4,3,8,8,8,4,4,4,8,2)

21762 550:3 8616 14 9 2794 1284 3) l (3,3,3,4,4,4,4,3,3,8,8,84,4,4,4,3)
,1

PLA 22176 7314 11719 12 8 3339 1504 4) n1 (4,4,4,4,4,4,4,1,4,8,.8,8,8 ,8,8,8)

Berkeley

WA 17051 1556 2349 293 1174 688 5) Pullupsize 2 2

21535 3112 4698 228 2307 1071 6) Pullupsize I

Table I Performance Comparison of the 1-bit Full Adder

B '-8-



The first four rows are all local optimal points using time T as criterion. The

units of A, Paug, Pmax, T, APT, and PT are A2, (10-6 • W), (10-6 * W), ns, (X2 * W *

ns), and (10-4 * W * ns) respectively. Each of the PLA circuits has 17 parameters
represented by a vector rI- (dandl, dand 2 ..... dand 7, dorj, dor 2, d .. din3,2, douq,

dout2 ), where node i has diffusion width diA. More specifically the parameters are

pulldown diffusion widths: 7 nodes in the AND plane, 2 nodes in the OR plane, 6

nodes in the input stage, and 2 nodes in the output stage. In all circuits, the pullup

to pulldown ratio of the gates is 4.

The results of the performance comparisons are as expected: the Weinberger

arrays circuit is more compact, consumes less power, but is slower than the

equivalent PLA circuit. Hence we have to consider the trade-off between space

requirements and timing delays in choosing one implementation over the other.

IV. Conclusion and Future Improvements

We have shown the Weinberger Array Generator to be a viable alternative to

PLA generators. Although not recommended if speed is the primary concern, the

Weinberger array performs well under the criteria of space and power usage. We

have described our implementation of WAG, and we note that many improvements

may be made. We have already mentioned four possible optimizations: minimizing

the amount of logic used by collapsing gates and recognizing equivalent

subexpressions, minimizing the number of tracks needed and the lengths of the

wires on these tracks, stacking up long chains to obtain a proper aspect ratio, and

optimizing the circuit with respect to area, speed, and power usage by improving the

layout structure and sizing the gate components. We might also add input buffers to

protect against degraded signals. To make the tool more "friendly," we could allow

the user to specify where signals are to be input or output. Finally, we might add

flexibility by allowing clock lines and internal feedback paths.
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WAG user's manual

Introduction

The Weinberger Array Generator (WAG) is a tool for implementing random logic.

Boolean equations are input, and a layout description of gates and wires (the circuit)
realizing the equations is output. In the above aspects, WAG is similar to a PLA

generator. The main difference is that the Weinberger array structure allows many

levels of logic, with complex gates such as a NAND-of-ORs; whereas a PLA structure

allows only two levels of logic, with no gates more complex than NORs.

For a description of the general structure of Weinberger arrays and their

implementations, consult IEEE Journal of Solid-State Circuits, Vol. SC-2, No. 4,

pp.1 8 2 -19 0, l)ecember 1967, A. Weinberger, "Large scale integration of MOS
icomplex logic: a layout method" or Computational A:.pects of VLSI, Jeffrey D.

Jilman, Computer Science Press, pp. 338-352. The actual implemented structure of

Weinberger arrays will be apparent from the output.

Usitgv:

wag [ -options [ -options ] ... ] infile

The input file in/ile consists of any number of boolean equations, separated by semi-
colons. The format for an equation is thait of a normal arithmetic equation, that is,

the left hand side cinsists of a single variable, followed by an '=', then the right
hand side is a boolean equation consisting of variables and operators. Variables are

allihanumeric strings not beginning with a numeral. The legal operators are N(T

), AN! "*'), 0R Cf'), NANI ('$'), and N(R '#'). Parentheses are used for
, phrasing. The notation used is infix.

For example, a NAN) of'a', 'b', and 'c', with the result to be placed in 'x' would be
written as

x a $ h $ c,':
' I x

b •  •13

,, . . . . .,1: ,:. .., ,; -..-.- . . . - ...:. .- . . .. ,.,... ._. ..... :.a -.?._. .-. .:



The semi-colon following the equation must be present if any other equation follows.

Ilere is a legal input:

"what = (x $a) + (-y*you);

ask = w *vx # what;

> ans = (((ask * you) + what) $ -ask $ (x # y # z # w))"

Notice the'>' preceding the final equation. The placement of this symbol in front of
€€ an equation notifies WAG that the variable that immediately folio .6 is an output

signal. If this symbol is not present, then the signal is assumed to be an
intermediate macro definition.

If the phrasing of a boolean input string is ambiguous, the program will assume that
the phrasing is strictly left-to-right, with the NOT operator having the highest
priority and the rest having the SAME priority. For instance,

"a + c*e$-1'
-- would be interpreted as if written

"(((a + c) * e) $ (f))".

WAG produces CIF and PIF files specifying the mask layout gecmetry for a circuit

realizing the input equation as the output. CIF, the Caltech Intermediate Form that
describes the layout is defined in Mead and Conway, Introduction to VLSI Systems,
Addison-Wesley, pp. 115-127. PIF is another intermediate form for describing the
layout. One can obtain a CIF file from the PIF file by running ALLENDE. For
descriptions of ALLENI)E and PIF, consult ALLENDE Layout System User's
Manal, Jose Mata, VI,SI Memo #9, Princeton Univ., June 1984, or "ALLENI)E: A
Procedural Language for the Hierarchical Specification of VLSI Layouts," Jose

,4.- Mata, Priwc 22nd Design Automation Conf., pp. 183-189, June 1985.

The options for the Weinberger Array Generator are:

f < filename_ <spa,- >

V.. Write the Weinberger arrays in the file specified. In the present version, both

'pif' and 'cif' files are generated- If the option -C is specified, then only the 'pif'

fileisgenerated Note that".pif" or " .cif" will automatically be concatenated

to the filename if the filename is not already in that format

-14-
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-F {default} Use the default filename of "wag cif"

-s Silent execution.

-S {default} Write out main steps of execution.

-c {default} Produce 'cif' file.

-C Do not produce 'cif' file.

-v {default} Compute width of Vdd and Gnd lines, widening them if necessary
(minimum width for these lines is assumed to be 4*lambda).

-V n Do not compute width of Vdd and Gnd lines. Use Vdd and Gnd lines of
width n*lambda, but no less than 4*lambda.

-m n Use metal lines of width n*lambda, but no less than 3*lambda.
(default n is 3).

-d n Use diffusion lines of width n*lambda, but no less than 2*lambda.
(default n is 2).

-p n Use p',,. lines of width n*lambda, but no less than 2*lambda.
(defaL.. is 2).

Future Improvements

(a) Input buffering:

As implemented, WAG assumes the input signals to be non-degraded. However,

this may not be the case all the time. So, we would place input buffers in the

layout to allow for degraded input signals.

(b) Specification of input/output entry:

As implemented, WAG arbitrarily places inputs and output(s) (the inputs and

output(s) are labeled in the CIF-plot). We would allow the user to specify the sides

and order in which the inputs and output(s) appear.

(c) Specification of gates:

The user will be able to specify the exact gates (limited to NOR, NANI), NOT,

NOR-of-AND, NAND-of-NOR) to be laid out by turning on an option. Right

now, optimizations are performed on the equations and the output gates are

-15-



limited to NOT, NOR, and NANI).

(d) Better performance -- TIME:

The user will be able to turn on an option that will call a routine which tries to

minimize the total delay of the circuit (by scaling the pull-up sizes and pull-down

wire widths).

pq
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Vdd
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Out a

-_IGND

* = contact

= metal

-= diffusion

poly

Figure 2.a NAND Gate Structure
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Vdd

a Out

a

b j- Out

GND

b c Out

*=contact
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Figure 2.b NOR Gate Structure
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Figure 2 c NAND-of-ORs Gate Structure
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A and E

NOR of F and 3
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Vdd
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Figure 2-d NOR-of-ANDs Gate Structure
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Fig. 3 Equivalence of a NOT of a NOR of NANDs to a large-input NAND
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F-iq 4 a Sample boolean ilr utI

cut 1 Cut 3 Cut -z2

Fig. 4.b Sample linear placement of above circuit with MAX CUT 3
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A B [) A C D

hqSa An example input to linear placement phase

0 0
(C]

12

AI .. J(A [DI

101 (DI

Pi b, 5 (TIwo different graphical representations for the above input
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and E ______
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NOR of F and B NOR of CadDn

Vdd

-4 iiOut 1
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I

/ GND

nlecessary to route wire 8

* = conitact
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-= diffusion

-- poly

Figure 6 Illustration of Adjacency Constraints and Ro iting
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* Figure I Circuit Folding
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AB Cs co

Figure 8 PtA I Bit Full Adder
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ImI

ID m
/E

Co = AB ±AC +BC

CC S =C 0 A + COB + COC + ABC

Figure 9.a WA - I Bit Full Adder with Pullup Size 2
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AP3PENDIX C: An Example from
* Parse to Layout

a'



fInput. (A +CQ(D +E)+AB

OR NOT

AND; AND........... ...

(oR)OR B NOT

A C D E O R

A C:

Fig. C1. Original parse
B

D E A C

Fig. C2. Transformation to all
inverting logic
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NOT NOT

B B.NOT NNOT
NAND A C NAND

OF ORS -. _.-

A E
C D NOTNO

Fig. C3. A possible simplification
(see fig. B2)

N A C

D E

Fig. C4. Another possible simplification:
Input signals only go to one gate
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INPUT: (A + C) (D + E) + [ (L) BQ

N O T.............
the specified

phrase

NOR

NOT NOT

NAND
NAND

OF ORS

A D E B NOR

A C

Fig. CS Alternative if a phrase is
specified (in brackets)
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Vdd

A
_______OUT

D

E

C-

GND -

* Contact B

x Transistor

Fig. C6. Possible Weinberger array layout
for logic of Fig. C3.
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