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1. INTRODUCTION

The parabolic equation method was first introduced by Leontovich and Fock

(1944) in their studies of tropospheric radio wave propagation over a long

distance. They were concerned with calculating the diffraction of radio waves

by the spherical shape of the earth. The predominate direction of the wave
propagation, which is needed to make the small-angle parabolic approximation,

was the line of sight between the antenna and the horizon. This method was

later applied to many other radio wave diffraction problems such as high

frequency scattering by obstacles of various shapes.

Applications of the parabolic equation method were quickly extended to

wave propagation problems in other fields of physical sciences, such as

nonlinear optics (Svelto, 1974), plasma physics (Karpman, 1975), geophysics

(Claerbout, 1976), and underwater acoustics (Tappert, 1977). Efficient

numerical algorithms have also been developed to solve parabolic equations,

i.e., linear and nonlinear Schradinger equations, for large scale problems.

Adoption of the parabolic equation method in computations of linear

surface water wave propagation started in the late-70's. Based on the

parabolic approximation, Liu and Mei (1976) presented an analytical solution

for the wave field in the neighborhood of a breakwater located on an uniform

sloping beach. Rigorous derivations of the parabolic wave equations

describing the general combined refraction and diffraction were given by .4

Radder (1979) and Lozano and Liu (1980). Lozano and Liu employed the multiple

scales perturbation method and established the relationship between ray theory

and the parabolic method equation. On the other hand, using an operator

splitting technique (Corones, 1975), Radder demonstrated that the parabolic

.5.5 -3- '"
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equations could be derived from the mild-slope equation (Berkhoff, 1972).

The development of parabolic equation methods in water waves has grown

rapidly in last five years. Weak reflection (Liu and Tsay, 1983),

nonlinearity (Kirby and Dalrymple, 1983; Liu and Tsay, 1984), energy

dissipation (Liu, 1986; Kirby and Dalrymple, 1986), and wave-current

interactions (Booli, 1981; Liu, 1983; Dalrymple, Kirby and Hwang, 1984; Kirby,

1984) have all been included in the formulation. The parabolic equation

methods have also been applied to several field problems (Dingemans, 1983; Liu

6. 'v, 1985). Many publications concerned with the parabolic approximation

n elated techniques nave been summarized in a recent annotated bibliography

(Liu, et al., 1986).

In this report, a brief review of the mild-slope equation and parabolic

equations suitable for water waves is provided. Special emphasis is given to

the physical meanings and justification of the parabolic approximation.

-.4
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2. MILD-SLOPE EQUATION

In this section, we present a simple derivation of the mild-slope

equation describing the propagation of small amplitude waves over a slowly

varying topography. The derivation is very similar to that given by Smith and

Sprinks (1975). The reader is also encouraged to consult the work of Berkhoff

(1972) for a different derivation. 6.

2.1 Derivation

I,

We consider wave propagation over a gradually varying topography,

z= -h (x,y). The Cartesian coordinates (x,y,z) are fixed on the undisturbed

water surface and the free surface displacement of small amplitude waves is

described by z = (x,y,t). Assuming that the fluid is inviscid and

incompressible and the flow is irrotational, we introduce a velocity potential

s (x,y,z,t), so that the velocity vector, q, is defined as the gradient of the

potential; i.e., q = ve.

Consider small amplitude monochromatic waves with a radian frequency w.

The free surface boundary conditions can be linearized because of the

smallness of the free surface displacement and the associated wave motions.

Therefore, the time dependency in the surface elevation and the potential can

be separated as follows:

-i wt
¢(x,y,x,t) = 4,(x,y,z)e (2.1)

-i-It

C(x,y,t) = n(x,y)e (2.2)

* ~-5-j
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where only the real parts have physical meaning. The linearized boundary4.,.
value problem for * can be written as

B2  + V2= -h < z < 0 (2.3)
3Z

2

2r

-- € = 0 z = 0 (2.4),
az g

= - vh v, z = -h (2.5)3z

in which v = C - , is the two-dimensional gradient operator . Once theax ay
velocity potential is obtained, the free surface displacement can be found

from the following kinematic free surface boundary condition:

= i_0 (x,y,O) (2.6)

g

For the special case of constant water depth, the right-hand side of

(2.5) vanishes. The boundary value problem becomes a homogeneous one. Since

the water depth is uniform, there is no wave refraction. To satisfy the

boundary conditions (2.4), (2.5) and (2.6) we may rewrite the potential as

*"= - rn f (2.7)
"

where

cosh k(z+h)
f =(2.8)

cosh kh

and k is the wave number which is the solution of the dispersion relation

W2 = gk tanh kh (2.9)

From the Laplace equation (2.3), the free surface displacement must satisfy

-6-A:,--,
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the Helmholtz equation

V2 n + k2 n = 0 (2.10)

which is a two-dimensional reduced wave equation describing wave diffraction
only, since k is a constant.

For slowly varying water depth, (2.7), (2.8) and (2.9) are still valid,
* .

with k and h referring to their local values. The governing equation for n"

should, however, be modified to include both refraction and diffraction. A

simple method of otaining the modified equation is presented herein.

The function f satisfies the following set of equations for slowly

varying h:

a2f - k2 f = 0 , -h < z < 0 (2.11)
aZ

2

__ f 0 =0 (2.12)
az g
a-f =0 , z =-h (2.13)
az

provided that the dispersion relation, (2.9), is also satisfied. Considering

(2.3) as an ordinary differential equation in z, and applying Green's second

identity for 0 and f in the region -h < z < 0, we have

1o f aI aof a
-h z IA )z 4)dz = (at f - af - (a) f -af
-hz az z=o az az z=-h

Upon substituting (2.3) - (2.5) and (2.11) - (2.13) into the above equation,

we obtain

f 0 (k2 f + f v2) dz =(f vh vt) (2.14)
-h z=-h

-7-
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We now substitute (2.7) and (2.8) into (2.14) and note that

':ig (f vn + n vh)
Thah

V2= ig [f V2n + 2n-a Vn . vh + n (vh) 2 + nf v2h]

Equation (2.14) may be rewritten as

+ a f 2 f .

-h {f2 V2Ti + 2 f -- Vni vh + T f- h 2

af 22[2af
+ nj f- v2h + k2f2 n} dz = [f2  v n + n f (vh) 2]

ah ah z=-h

Upon using Leibniz' rule, the first two terms on the left of the above

equation may be combined with the first term on the right, yielding

V • (f0 f2 dz) Vn + k2 (fo f2 dz) T f Tf ii 2

-h -h ah z=-h
i , 0 32f afS - 7 (vh)2 +  V2h] f dz (2.15)

- h ahah

- Because the water depth varies gradually within the distance of a typical

wavelength, i.e. jvhj/kh << 1, the right side of (2.15) is proportional to

O(1vhl/kh)2, and can be neglected. Integrating f2 from z = -h to z 0 0, we

obtain

V (CCg vni) + k2C Ti 0 (2.16)

where

C = C = 1 W (1 + 2kh (2.17)
k g 2 k sinh 2kh

are the phase velocity and the group velocity, respectively. Equation (2.16)

-8-' --8



describes wave fields in which both refraction and diffraction are

considered. Because of the assumption of gradually varying topography adopted

in derivation, (2.16) is now called the mild-slope equation.

In the limiting case of arbitrary constant depth including the deep water

case where kh >> 1, (2.16) reduces to the Helmholtz equation (2.10). On the

other hand, in the shallow water limit, kh << 1, (2.16) becomes

2,r
v - (h v n) + -4) = 0 (2.18)

g

since C C = = /gh and w2 = gk2h. Equation (2.18) is the linear shallow water

wave equation and can be derived directly from the continuity and momentum

equations without using the mild-slope assumption. In other words, (2.18) is

valid even for O( vhI/kh) = 0(1). Therefore, the mild-slope equation, (2.16),

provides an interpolation for the whole range of wavelength.

Using the following transformation:

V.
I

n = u/vCg (2.19)

in (2.16), we obtain

2+ kc = 0 (2.20)

where the effective wave number kc is defined by

V2(/CCg
kc2  = 2  

_2_C g (2.21)
•/

c ,

The second term on the right-hand side of (2.21) is of the order of

0(Ivhl/kh) 2 . Therefore, to be consistent with the order of magnitude of the
I N

accuracy of the mild-slope equation, the effective wave number can be

approximated by the local wave number k. Thus
-9. 5-
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V2 E + k2c = 0 (2.22)

which is the Helmholtz equation with a variable coefficient k being determined

by the dispersion relation.

2.2 Relation Between Solutions of the Mild-Slope Equation and Ray Theory

In this section, we examine the relationship between solutions of the

mild-slope equation and those of ray theory. To facilitate the analysis, we

rewrite the free surface displacement as

iS
n =A (x,y) e (2.23)

where both A and S are real functions. Substituting (2.23) into (2.16),

we obtain

i[VS (CCgVA) + v (CCg AvS)] + v (CCg vA)

- VS (CCg AvS) + k 2 CCg A = 0

Multiplying the above equation by A yields

A [CCg V2A + v(CCg) . A - CCg ('vS 2 - k2) A]

+ i V (CCg A2VS) 0 (2.24)

The real and imaginary parts of (2.24) should be zero. Thus

V2A v(CCg) vA
I 2 - = - + (2.25)F'; A CCg A

and

V (CCg A2 vS) 0 (2.26)

Let us define

-10-
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C 9 vs (2.27)

and substitute this into (2.26) to get

+ 2) k + L.]A
V • (C A2) + C g V = A (2.28)

g g k

Equation (2.25) reduces to the well-known eikonal equation of ray theory, if

the right-hand side terms are ignored. At the same time, (2.28) becomes the
transport equation which requires the conservation of wave action A2/w along a

wave ray. ."

Therefore, by solving the mild-slope equation, the effects of

diffraction, i.e., the gradient and the curvature of the amplitude, are taken

into account. Wave action is no longer conserved along a "ray". Instead,

(2.25) and (2.28) show that there is a gain or loss in wave action along a

"ray" because of diffraction.

2.3 Energy Dissipation

In the previous sections the mild-slope equation, (2.16), and the ray

theory were derived based on the assumption that no energy dissipation occurs
'.

during the wave propagation process. However, in most coastal engineering %"

problems the energy dissipation effects, such as bottom friction and wave ,'

breaking, may become important. The mild-slope equation can be modified in a

simple manner to accommodate these phenomena.

Let us consider Wr (x,y) as an energy dissipation function describing the

rate of change of wave energy. The energy equation, (2.28), may be modified

to be

7,1
.,.
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+k + . k

v (Cg A2 ) + [ TCg • V (I V)] A2 
- A2 = 0 (2.29)

Since energy dissipation also affects the phase of the wave train, the

equivalent eikonal equation, (2.25), should also be modified to be

vS 2 - k2 = v2A v(CCg) * VA WWi (2.30)

+ '2 - ._0___-
S+A CCg A CCg

where Wi is a prescribed energy dissipation function influencing the phase

function S. Combining (2.29) and (2.30) and introducing a complex energy

dissipation function

W = Wr + i Wi (2.31)

we find the corresponding mild-slope equation

V • (CC Vn) +Ik2 CC (1 - iW ) n (2.32)
g g kCg

The energy dissipation function is determined according to different

dissipative processes and could be a function of the free surface

displacement, n, which makes (2.32) nonlinear (Dalrymple, Kirby and Hwang,

1984; Kirby and Dalrymple, 1986).

Using the same transformation as (2.19) for n, we obtain

• V2E + kc2 E 0 (2.20)

with

k (CCg) ikW
kc - (2.33)

Cg

If energy dissipation is ignorei, (2.33) reduces to (2.21).

-12-
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3. PARABOLIC APPROXIMATION AND PARABOLIC WAVE EQUATIONS

The mild-slope equations, (2.16) and (2.22), have been used to study

various kinds of combined refraction and diffraction phenomena as boundary

value problems (e.g., Smith and Sprinks, 1975; Skovgaard and Jonsson, 1980;

Houston, 1981; Tsay and Liu, 1983). It is not, however, always convenient to

treat every problem as a boundary value problem, especially if the boundary

conditions are not well defined along the entire boundary. For instance, if a

shoreline is part of the boundary, the boundary conditions for breaking waves

along the shoreline are not certain. Furthermore, if the mild-slope equation

is solved directly, the size of the finite elements (or grid cells) used in

discretizing the computational domain must be a small fraction of the local

wavelength. A huge number of elements (or nodes) may be necessary when the

computational domain is large. An alternative computing method is needed to

address regional (large scale) problems concerning wave propagation in coastal

waters. The parabolic equation method, discussed in the next section,presents

a possible alternative.

3.1 Forward Scattering

The basic concept of the parabolic equation method is to convert the

mild-slope equation to a set of approximate equations which describe a wave

system propagating in a prescribed direction while still considering the

energy flux in the transverse direction. Thus, both refraction and

diffraction are included in this approximate formulation. There are different

ways to obtain the parabolic equations, such as the matrix splitting method

-13-
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(Corones, 1975; Radder, 1979) and the multi-scale perturbation method (Lozano

and Liu, 1980). In this section, we present a simple approach, primarily due

to Claerbout (1976) and Tappert (1977), to illustrate the method.

We assume that the primary wave propagation direction is in the

x-direction. The modified free surface displacement E, (2.19), can be written

as

= T (x,y) eikox (3.1)

where k, is a reference wave number and T is a slowly varying function of both

x and y provided that the difference between k0 and k is small. Substituting

(3.1) into (2.20), we obtain

2  2 2 (
- + - + 2ik 0  + (kc - ko) 0 (3.2)
ax2  ay2  ax

-" For the case of constant water depth without energy dissipation, k0 = kc= k,

and (3.2) becomes

a IF 2 + a T alpi
- + + 2ik - = 0 (3.3)

ax 2  ay 2  ax

The usual parabolic approximation assumes that the length scale of the

amplitude variation in the x-direction (direction of wave propagation), Lx,

is much longer than the length scale of the amplitude variation in the

y-direction (transverse direction), Ly. Because T is a slowly varying

function in x and y, the length scales Lx and Ly are much longer than the

typical wavelength. In other words,

Ly

-14-



Lx
0 (k L ) = 0 (2 = 0 (C2)

x

0 (kL) = 0 (L = 0 (e- ) (3.4)

y

Because of these relationships among the length scales, 32,F/ax2 is much

smaller than a2'/ay 2 and can be neglected. Therefore, (3.2) can be
4-

approximated as

2 + 2ik 0 _ + (kc _ k0) V = 0 (3.5)
ay2  ax

The order of magnitude of the term dropped from (3.5) is of 0(e2). If the

third term in (3.5) is in the same order of magnitude as the other two terms,

it is required from (3.4) that -.

SC) 2  1 = O(2) (3.6)

If the water depth is a constant and energy dissipation is ignored, (3.3) can

be simplified farther to be

1. + 2ik - 0 (3.7)
2

ay a

the above equation is in the same form as the heat equation if x is

interpreted as time and the heat conductivity is taken to be imaginary.

Equations (3.5) and (3.7) have the form of the linear Schradinger equation.

To examine further the approximations involved in the parabolic wave

equation, we can convert (3.5) or (3.7) back from the T variable to the

*variable and compare them with the Helmholtz equation, (2.22); i.e.,

-15-
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V2 + k2= 0 (2.22)

For simplicity, we focus our discussion on the constant water depth without

energy dissipation case. Substitution of (3.1) into (3.7) yields

a4. + 2ik + 2k2  (3.8)ay 2 ax

which is significantly different from the Helmholtz equation. The possible

solutions for the above equation can be expressed as exp[i(kx x + ky y)],

which represents a plane wave propagating in the k = (kx , ky) direction.

Substituting the exponential function solution into (3.8), we obtain

an algebraic equation for kx and ky:

ky2 + 2 k kx - 2 k2 = 0 (3.9)

Note that kx is not equal to k unless ky is zero. The difference between k

and kx is partly accounted for by the phase modification in Y, (3.1).

Equation (3.9) is plotted in Figure 3.1, which shows a parabolic curve. Since

only positive kx values are allowable, the parabolic equation, (3.7),

describes only forward scattering.

Substituting the exponential solution, exp [i(kx x + ky y)] into the

Helmholtz equation, we obtain the relation between ky, kx and k as

kx2 + ky2 =k2 (3.10)

which represents a circle on the kx , ky plane (Figure 3.1). It is clear from

the figure that (3.9) is an approximation of (3.10) for small angle, e
-1

tan (ky/kx). Furthermore, (3.10) indicates that for a given ky the sign of

kx could be either positive or negative. In other words, from the Helmholtz

-16-
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equation waves may propagate in either the positive or negative x-direction

with the same wave number kx; whereas, the parabolic approximation, (3.7),

examines only forward scattering, with an additional small angle requirement.

The small angle requirement may be relaxed if the forward propagating

wave equation has a semi-circle for its relation between kx and ky. The

equation for a perfect semi-circle is given by

kx =/k ky (3.11)

The corresponding wave equation is

i L + k Q E = 0 (3.12)
-' ax

where Q is a pseudo-differential operator given by

Q= 1 2 )1/ (3.13)

(One can easily obtain (3.11) by subsitituting the exponential solution,

exp [i(kx x + ky y)] into (3.12)). As indicated in (3.4), for the parabolic

approximation where O(kLy) - O(c-1), (3.13) can be written as

Q = (1+ 2)1/2 (3.14)
IC.j

For small Q may be approximated using several different methods. For

instance, using a binomial expansion, for small c, Q may be written as

2 1 a42"
+ -- + - - + ... ) (3.15)

2k2 ay2  8k aY4

The corresponding wave equation becomes

12  1 4

i + k (1 + + + ... ) = 0 (3.16)
ax 2k2 ay2  8k ay 4

-" -18-
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By substituting the exponential solution, exp [i(kx x + ky y)] into (3.16),

the associated equation for kx and ky may be written as

kx = k (1 ky2  kY4  ) (3.17)

2k2  8k

-1

which is the binomial expansion of (3.11) for a small angle tan (ky/kx).

This expansion converges for all 0 < ky < k. Therefore, the parabolic

approximation shown in (3.8) and (3.9) is the lowest order approximation of

(3.16) and (3.17), being truncated at the second term of the series

expansion. The effects of large angle diffraction may be studied if the

higher order terms are kept in the analysis. In table 3.1, a comparison

between the exact solution, (3.11), and the approximated solutions with two

terms and three terms is given.

As an alternative to the binomial expansion, we can choose the rational

expansion of Q, for small c,

" 1 2 1 + E.
1/2 4

Q+ - C2+ '
4

3 21 a4

(1 + M/ + (3.18)(1 + a- )/(l +4k- -3y..

Substituting (3.18) into (3.12) yeilds the following wave equation

i -- + + kC + 2  = 0 (3.19)
ax 4k 2 a xay 2  4k ay2

The correspond-'ng equation for kx and ky can be written as

N

I.

-19-
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3
k 1 -- (k /k) 2

x 4 y1 = _ (3.20)
1

k 1 - - (k /k) 2

4 y

The accuracy of (3.20) compared with the exact solution is also shown in table

3.1. It is clear that the approximation given in (3.20) is the most accurate

one for larger angles.

Substituting (3.1) into (3.16) and (3.19) with k=k0 , the higher-order

parabolic approximations can be written in terms of T as

2ik at'+ a IF a If 0 (3.21)
ax ay2  4k 2 Dy4

2ik a p + a IF i 3 - 0 (3.22)

ax Dy2  2k axay 2

P

respectively. In fact, (3.21) can be obtained from (3.22) by using the first

order approximation, (3.7), of ax in the third term. If the water depth is

a function of spatial coordinates or the energy dissipation is not negligible,

kc is no longer a constant. The higher-order parabolic wave equation can be

written as follows:
Po

2ik 0 a- + a-' + (k2 - k0
2 ) :+ = 0 (3.23)

ax ay 2  2k 0 axay 2

Note that if the last term in the above equation is ignored, the lower-order

parabolic approximation equation, (3.5), is recovered. Using a different

approach as shown in the next section, the parabolic wave equations can be

expressed in slightly different forms:
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aT 3 k0  D2T akc  '

2ikc - + ( - 2- + [2kc (kc - k0 ) + i a ]c
ax 2 2kc  ay ax

i a3
+ =3_ 0 (3.24)

2kc axay2

We remark here that since kc -k = O(-2) from (3.6), (3.24) can be reduced to

(3.23) by replacing kc with k0 without losing accuracy.

The lower-order (small angle) parabolic wave equations, (3.5) and (3.7),

are in the form of heat equation. Therefore, the wave propagation problem can

now be viewed as an initial boundary value problem treating the direction of

wave propagation as the time. The initial conditions in terms of wave

amplitudes and phase functions must be prescribed along a straight line x

constant. The Crank-Nicolson finite difference scheme (e.g., Smith, 1978) can

be used to discretize the parabolic wave equations. This scheme solves for

the unknowns, T, along a line normal to the direction of wave propagation one

step at a time. A detailed documentation on this numerical scheme can be

found in Tsay and Liu (1986). Two lateral boundary conditions are required at

the end points of the line. Two typical types of boundary usually occur in

the combined refraction and diffraction problems: (1) a rigid boundary and

(2) an open boundary. In the case of a rigid boundary, y = Yb(x), the no-flux

boundary condition requires

n vn = 0 on y = Yb(x) (3.25)

+ a

where n is the unit normal along the solid boundary. Using (2.19) and (3.1)

* in (3.25) and employing the n  V [y -y
+

(x ) I vly -y b (x )l ' we obtain

-=a'y dy b a~ T' aCCg \T aCC
__ + ik - -- g - , y = Y (X) (3.26)

ay dx ax 2 ax 2ay b

-22-
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Further simplification may be made depending on the slope of the solid

boundary. In the case of an open boundary, if the boundary is located

sufficiently far away from the region of interest and the topography is

assumed to be uniform in the y-direction near the open boundary, the

approximate boundary condition can be written as

0 , Y Y0  (3.27)

The question concerning accurate and efficient numerical method for dealing

with the open boundary condition remains open. The reader is encourged to

consult the work of Cohn and Jennings (1983), which discussed different

methods for treating the silent open boundary.

Because iq is a complex quantity, it may be written as

IF T e o = tan - e( )

The resulting wave number components in the x- and y-direction can be

expressed as (k0 + Wa/ax, Wa/ay). The directions of wave propagation can be

calculated accordingly.

3.2 Weak Reflection

In the previous section only the forward propagating wave field was

considered. If wave reflection is important, several different approacheshave

been developed to derive a set of parabolic equations for both forward and

backward scattering wave fields. The method presented here is similar to that '

given by Tappert (1977).

We first rewrite the Helmholtz equation in the following form:

-23-
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+ kc2 Q2 t = 0 (3.28)
Ux

2

where
2 2 +1 (3.29)

kc7 5y-2

in which kc is given in (2.33). We remark here that in the case of a constant

water depth and zero energy dissipation, kc = k, and reflection can still be

caused by the appearance of surface piercing structures. Equation (3.29)

reduces to (3.13) in the limiting case.

We assume that the total wave field can be split into a transmitted

(forward scattering) wave field and a reflected (backward scattering) wave

field. Thus

= t+ + ( (3.30)
N!

, -=ik Q( - ) (3.31)
ax c + -

kp

From the equations above, we obtain

2 icQ3) (3.32)
- 2 kcQ ax

E 1 (E+i a j(.3

kcO ax

Differentiating (3.32) and (3.33) with respect to x and using the governing

equation (3.28) for a2E/ax 2 and (3.31) for aE/ax, we obtain

1 akcQ 1 akcQ
- - ikcQ+ + - E+ - (3.34)

ax 2kcQ a x 2kcQ a x
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1 akcQ 1 akcQ+ ik cQg - + - _ - +(3.35)

ax 2kcQ a x 2kcQ a x

Using the rational expansion of the pseudo-differential operator, Q, (3.29)

in (3.34) and (3.35), we can derive the following approximate equations:

1 a3{+ 3i a2 + 1 akc  1 akc
- ikCc+ + - - - &+ = - E_ (3.36)

ax 4kc 2 axay 2  4 kc ay 2  2kc ax 2kc ax

_ 1 a3 {_.. 3i a2{. 1 akc  1 akc+ ikc +- + - - C_ = - - + (3.37)
ax 4kc 2 axay 2  4 kc ay 2  2kc ax 2kc ax

We remark that the left-hand side of the governing equation for the forward

scattering wave field is exactly the same as that of (3.19) for a constant

water depth and no energy dissipation (kc = k). Equations (3.36) and (3.37)

denote a set of coupled equations for forward and backward scattering wave

fields. In terms of the amplitude functions

¥ikOx

_ += _ e (3.38)

equations (3.36) and (3.37) can be rewritten as

al+ akc i a3+
2ikc + [2kc (kc - k0) + i-] +

ax ax + 2kc axay2

3 k0  a2v+ 2kc -2iko x
+ ( ) - i e (3.39)

2 2 kc ay 2  ax

akc i aTy_
2ikc a- _ 2kc (k c  _ko )  _i -1 T_ 2

ax ax 2kc axay 2
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(3 _ ko) a2 _ I e2ikox (3.40)
2 +

2 2kc ay2  ax

In principle, (3.39) and (3.40) can be solved simultaneously for T+ and T_.

Liu and Tsay (1983) developed an iterative numerical scheme for (3.39) and

(3.40) with successive corrections on the reflected and transmitted wave

fields. Their scheme can be briefly described as follows: First the

reflection is entirely ignored; i.e., T-0 = 0, and (3.39) becomes

2 +o akc 0 i ay+'
2ikc + [2kc (kc - kO) + i -] q+ + -. *

ax ax 2kc axay 2

3 ko  a2  (+30

+ 1 - ) = 0 (3.41)."

2 2kc ay2

which is exactly the same as (3.24), and can be solved numerically. Equation

(3.41) can be rewritten as P ['F+ 0] = 0 where P is the operator of (3.41).

Once T 0 is found, we can substitute it into the right-hand side of (3.40)

* to get the modified reflected wave field, F_'. Thus

,5. akc 2ikox 5,

P= i e (3.42)
ax + e

where P represents the operator on the left-hand side of (3.40). We can use

the same numerical scheme as described in the previous section to solve (3.42)

for T -, which is in turn subsitituted into the right-hand side of (3.39) to

find the improved v+1. The procedure should be repeated until the converged

solutions are obtained.
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4. WEAKLY NONLINEAR WAVES
I'K

The parabolic approximation can also be applied to weakly nonlinear

waves. Using multiple scale perturbation schemes, several researchers (Yue

and Mei, 1980; Kirby and Dalrymple, 1983; and Liu and Tsay, 1984) have derived

the cubic Schrodinger equation as the evolution equation describing the wave

envelope of Stokes second-order waves. Here we present a simpler approach to

obtain the same evolution equation.

First, we rewrite the Helmholtz equation, (2.22), in the following form:

2 + 2k = (4.1)

g tanh kh

The wave frequency in nonlinear wave theory depends not only on wave number,

k, but also on the amplitude, a. The nonlinear dispersion relation has the

general form

W2 = 2(k2, a2 ) (4.2)

On the assumption that the wave amplitude is fairly small, we can approximate

(4.2) in a Taylor's series as

2 =W 2(k2) + [3~2 I a2  (4.3)
0 ( a T) o

where w2(k 2 ) represents the linear dispersion relation given in (2.9). For

Stokes waves [a 2/3(a2)]o can be expressed as (Mei, 1983):

3W 9k3 tanh kh
I ]= [8 + cosh 4kh - 2 tanh 2 kh] (4.4)

a(a2) o 8 sinh4 kh

.1
.1"
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We also point out that, from (2.19) and (3.1), the wave amplitude can be

expressed in terms of and T as

a = hIT = VI'/41-I = 1,I~IVC~ (4.5)

Following the analysis presented in section 3.1, we can readily obtain the

parabolic equation for the nonlinear Stokes waves as

11 + 2iko aT + K 1,I2 i o (4.6)
ay2 ax

S..

where 5%,

.i.'

K k s 4  [8 + cosh 4kh - 2 tanh 2 kh] (4.7)K =8C2 sinh kh,.

Equations (4.6) and (4.7) are identical to those derived by Yue and Mei

(1980). The Crank-Nicolson scheme can still be used to solve the nonlinear

cubic Schradinger equation, (4.6). This equation has been used to examine the

wave field in the neighborhood of caustics (e.g., Kirby and Dalrymple, 1983;

Liu and Tsay, 1984).

,p,%
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5. CONCLUDING REMARKS

In this report, a brief review of the mild-slope equation and the para-

bolic wave equations suitable for water waves was given. The physical mean-

ings and the limitations of various parabolic approximations were discussed.

Parabolic wave equations including the effects of energy dissipations and non-

linearity were derived.

Recently, Kirby (1986) presented a wave equation which includes the

effects of the small-amplitude fast undulations in seafloor. An additional

term was added to the mild-slope equation. The parabolic wave equations,

similar to those presented in this report, can be derived.

The concept of the parabolic approximation presented in this report has

also been extended to shallow-water wave problems (Liu, Yoon and Kirby, -"

1985). Instead of the mild-slope equation, the Boussinesq equation was used

as the governing equation. Expressing the solution in a Fourier series, Liu, .
..4

Yoon and Kirby derived a set of coupled parabolic wave equations for Fourier
4

components.

In a companion report (Tsay and Liu, 1986), various numerical schemes for

solving the parabolic equation are presented. The accuracy and the lim-

itations of each scheme are discussed and compared.
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