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INTRODUCTION

The primary factors affecting infrared electrooptical surveillance, guidance, and
weapons systems in the marine environment are atmospheric water vapor and aerosols.
which absorb and scatter the radiation. In the absence of real-time measurements, we must
presently rely on the atmospheric propagation code LOW R iXN 6 (Kneizys et al., 1983) to
predict infrared transmission losses and sky backgrounds, using as inputs measured
meteorological parameters. The effects of water vapor absorptions are readily handled by
LOWTRAN 6. However, the existing models of aerosol size distributions are based on
surface meteorological parameters,and the models' variations with altitude (humidity or
visibility variations) are as yet unproven. Further, the effects of clouds on the LOWTRAN
predictions have not been examined. In this report, a set of infrared (8-12 1m) sky
radiances and meteorological parameters are used to investigate the utility of the
LOWTRAN 6 radiance algorithm to predict infrared sky radiances close to the horizon
when clouds are present.

MEASUREMENTS

For these investigations, a set of infrared (8-12 pm) sky radiances were obtained
during the diurnal period from 1945 PST, 15 April 1986 to 1645 PST, 16 April 1986.
Radiance measurements close to the horizon were obtained with a calibrated thermal
imaging system (AGA THERMOVISION, Model 780) with a lens of 3.50 FOV and IFOV
of 0.9 mrad. The response of each wavelength band is determined by placing a black-
body of known temperature ( ± 0. 1°C for temperatures < 500 C) close to the aperture of the
lens. The digitized video signal transfer function of the system then allows the blackbody
temperature to be reproduced to within ± 0.20C. The video output of the scanner is
digitized and processed on a microcomputer to allow the temperature of selected pixels of
the scene to be displayed. For these measurements the scanner was directed due west over
the ocean from an altitude of 33 m such that approximately 20 of the FOV was above the
horizon. During the recording period four radiosondes were launched from a ship (USS
Point Loma (AGDS-2)) 5 km off the coast of Pt. Loma, San Diego, CA. The radiosonde
system employed was the VAISALA model RS80. The measured temperature and relative
humidity variations with altitude for the four periods (1945 PST, 15 April. 0845. 1245, 1645
PST, 16 April) are shown graphically in Fig. I and tabulated with the pressure variations in copy
Table I. During the first launch the sky was overcast by a stratus layer approximately
300 m thick with its base near 900 m altitude. During the subsequent launches, the clouds .
persisted,but the coverage was either broken (second launch) or scattered (third and fourth
launches). Visibility measurements were not available, however, offshore islands about
35 km distant were clearly seen. Surface wind speeds and directions were recorded con-
tinuously on shore at the sensor site and periodically aboard the ship. The wind was
predominantly northwesterly (3 100± 10*) throughout the measurements, with speeds
varying as shown in Fig. 2. Measurements of atmospheric radon were also made aboard
the USS Point Loma to aid in determining the air mass characteristics. The radon counts ...........

measured as a function of time are shown in Fig. 3 and indicate the air mass was primarily
of maritime origin (<4 pCi/m 3) throughout the measurement period. The increased radon
counts near 0400 PST on 15 April coincide with the in-port time of the ship.
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Figure 1. Radiosonde measurements of temperature and relative humidity variations with altitude.
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Wind Speeds (4/16/86):

Time (PST) 24-hr. avg. Current

0 NOSC field site (Bldg T323) 0845 4.5 rn/s 2.7 rn/s

0 LSS POINT LOMA (AGDS-2) 1245 5.8 rn/s 9.2 rn/s

1645 6.0 rn/s '10.7 rn/s
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Figure 2. Surface wind speed variations with time of day.
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Figure 3. Measurements of radon counts at sea with time of day.
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COMPARISON OF MEASUREMENTS AND CALCULATIONS

In Fig. 4 the sky radiances measured with zenith angle are compared to those
calculated with the LOWTRAN 6 code by means of the radiosonde data of the first launch,
when the sky was overcast. The AGA system's viewing angle was not plumbed to the
zenith, with the result that the zenith angle of the optical horizon could not be accurately
measured, For the purpose of these comparisons the maximum radiance at the sea-sky
interface in the thermogram was taken to coincide with the optical horizon as calculated by
the LOWTRAN code for the existing meteorological conditions. The details of the
measurements and radiance values utilized here have been presented elsewhere by Schade
and Law (1986). The clear-air calculations (without aerosols) were made using a nine-layer
atmospheric model below the 901 -m cloud base provided by the radiosonde data, and
assuming the cloud base to be a blackbody radiator at the measured ambient temperature
of 6.81C. Whether or not the cloud was indeed "black" can not be determined. However,
for stratus clouds of this thickness (337 m), liquid water paths exceeding the required
30 gn im 3 (Stephens, 1978) for the cloud emissivity to approach unity are not uncommon
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Figure 4. Comparison of measured and calculated infrared (8-12/pm) sky radiances versus zenith angle
and for overcast sky conditions (15 April 1986, 1945 PST).
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(Hughes and Thompson, 1984). The clear-air radiance calculations are slightly greater than

the measured values, indicating a small presence of aerosols, i.e., a scattering loss of
radiation. The measured and calculated values can be brought into good agreement by
including either the LOWTRAN Maritime Model (visibility = 160 kin) or the Urban Model
(visibility = 100 kin). This demonstrates that aerosol size distributions inferred via this
method are not necessarily unique. Uniqueness, however, is not a requirement in specifying
atmospheric optical depths. Without including the boundary temperature, calculated
radiances (with or without aerosols) at 880 zenith angle are approximately 10% lower than
shown in the figure. In contrast, the calculated radiances at the horizon (zenith angle
= 98.16" in this case) are insensitive to the cloud boundary due to the low atmospheric
transmittance over the path lengths contributing to the sky radiance. This is demonstrated
in Fig. 5, in which the horizon radiance is calculated with and without the cloud-base
temperature and by varying the cloud-base altitude, its temperature, and the number of
radiosonde levels. Utilizing only the first two levels of the radiosonde data (assuming the
cloud base at 143 m), the radiances calculated with and without the boundary temperature
differ by less than 1%.

4 314
CI 713.9 17] 6.81E 01111.41 [9.5]

E1

E (4)
%III Tcb I'c]

o 3.13- RADIOSONDE LEVELSZ< 2f' Tcb 0* 0K ZENITH ANGLE = 90.16*
a
c (2LOWTRAN 6 MARITIME

AEROSOL (VIS = 160 kin)

3.12 I 1 1 1
0 0.2 0.4 0.6 0.8
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Figure 5. Infrared (8-12 ,um) horizon radiances calculated with and without the cloud-
base temperature and by varying cloud-base altitude, its temperature, and the number of
radiosonde levels (15 April 1986).
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An important feature of the radiance calculated with aerosols in Fig. 4 is the dip
occurring at 900. This dip is found to occur when even the slightest contributions of
aerosols are included in the LOWTRAN calculations. This is further evident in Fig. 6,
where the sky radiances (data of third radiosonde launch) measured with zenith angle are
compared with the LOWTRAN calculations. As for the previous case, the measurements
are lower than the clear-air calculations. By including aerosols (Maritime Model with a
visibility of 70 kin), the calculated radiance can be made to agree with the measurements at
the optical horizon (zenith angle = 90.170). As the zenith angle is decreased, the calculated
radiances depart from the measurements and approach the clear-air calculations. This
discrepancy may result from an inappropriate vertical lapse rate in the aerosol model or
contamination of the measured radiances by the scattered stratus clouds present at the
time. (These scattered cloud conditions do not allow a cloud-base temperature to be
defined as in the previous case.) In Fig. 6, the dip in radiance occurring at 900 zenith angle
is seen to be sensitive to the number of radiosonde levels below I km included in the
LOWTRAN calculations. This -dip in calculated radiance is most likely an artifact (yet to
be determined) of the LOWTRAN ray trace technique. In contrast, the radiance at the
horizon can be calculated to within 98.69 of the measured value using only one
atmospheric layer (two radiosonde levels). This is demonstrated in Fig. 7, where the
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Figure 6. Comparison of measured and calculated infrared (8-12 Mm) sky radiances versus zenith angle
for scattered cloud conditions (16 April 1986, 1245 PST).
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horizon radiance is calculated by varying the maximum altitude and number of levels in the
radiosonde inputs. These data raise serious questions about the LOWTRAN radiance
algorithm. It has been proposed by others (Ben-Shalom, et al., 1980) that the LOWTRAN
algorithm was deficient in that multiple-scattering effects over the long propagation paths
were not properly addressed. However, utilizing similar data (as in the present report), it
has been shown (Hughes, et al., 1986) that the multiple-scattering modifications to
LOWTRAN proposed by Ben-Shalom do not explain the radiance dip at 900 and grossly
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Figure 7. Infrared (8-12 /m) horizon radiances calculated by varying the maximum altitude and
number of radiosonde levels (16 April 1986).

overestimate the horizon sky radiances when aerosols are present. With these uncertainties.
we are left with considering only the radiance comparisons at the optical horizon. Table 2
lists the measured horizon radiances and those calculated by means of three current
LOWTRAN 6 aerosol models (Maritime, Urban,and Navy Maritime). The clear-air
calculations were made using plus and minus uncertainties (0.5°C in temperature and 5% in
relative humidity) in the radiosonde measurements. With the exception of the minus
uncertainty for the first radiosonde launch (4/; 15/86), the clear-air radiances due to the
uncertainty were greater than the measurements indicating a small presence of aerosols. By
adjusting the surface visibility, the radiances calculated via each model can be made to
agree closely with the measured value. For the Navy Maritime Model, the calculations were
made with an air mass factor of unity for maritime air and the 24-hour average and current
surface wind speeds shown in Fig. 2. The very high surface visibility requirements needed
to bring the calculated and measured radiances into agreement stem from the instantaneous
wind speed component of the model, which causes the aerosol scattering coefficients to be
grossly overestimated.



"..a

I- 414 I 4 n-.o o e

4 CI 0D0 0

C CI Ce, qv

A I- _ o C! .

44 0wc CM
in w ) in in in

0) CO 0V-

(e, we 000 CD,(

41C

.Z 0

00 + a
A OD
IL, 0

.- 44e

Coll 

,=N

aO 0 >

m ~ cc, Ix z

ae l 0e cj ccc

,,r ,a -

3 wcv% , ' T. ,' -. .." , # .;?+ . , : . - , , , 5. ."+';' ,? 3> ,." + ++., ,:" ."ZW,,"



DISCUSSION

This investigation has demonstrated that infrared (8-12 tm) horizon sky radiances
can be adequately modeled by the LOWTRAN 6 computer code, using the meteorological
parameters in the first 100 to 200 m of the atmosphere. Also,clouds do not contribute to
the horizon radiance but must be properly included in LOWTRAN calculations at other
altitudes. These results also indicate that an appropriate aerosol model for transmittance
calculations can be inferred from vertical measurements of meteorological parameters and
horizon radiances. However, a deficiency in the LOWTRAN radiance (and transmittance)
algorithm at a zenith angle of 900 ± 0.10 was pointed out. This discrepancy (which is not
related to the neglect of multiple-scattering effects, at least for this wavelength band), must
be accounted for if meaningful interpretations of aerosol effects on sky radiance
measurements can be made.

An alternative approach to infer an appropriate aerosol size distribution from
radiance measurements is to utilize the sun as a source at other wavelengths (near- and
mid-lR), which are affected by atmospheric aerosols at zenith angles less than 800, where
the LOWTRAN "layering" anomaly is not important. This is demonstrated in Fig. 8,
in which the solar radiance (calculated by LOWTRAN 6) received near the ground (H l
= 33 m) is plotted versus the air mass factor, sec 0 , where 0 is the solar zenith angle. The
1962 standard atmosphere was used in the clear-air calculations and with the Maritime
Aerosol Model for differing visibilities. The calculations apply to the near-IR (1.33-
1.67 pm) and mid-I R (3-5 pm) bands. For visibilities less than 23 km and zenith angles
between 600 and 800, the differences between the clear-air calculations and those with
aerosols are well within the measuring capabilities of currently available radiometer
systems. This technique, however, would be limited to the daytime and cloud-free lines-of-
sight. Yet to be determined is how effective the size distributions determined by the shorter
wavelength bands would be in predicting transmittances at far-IR bands.
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10
LOWTRAN 6 Calculation (Std. Atmos.;

Maritime Aerosol; H1  33 meters)
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Figure 8. Calculated solar radiances received near the ground versus
i the air mass factor for near- and mid-I R wavelengths for differing

visibilities.
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