
Calhoun: The NPS Institutional Archive

DSpace Repository

Reports and Technical Reports All Technical Reports Collection

1986-11-15

Information resource management in the

DCSPLANS branch of the U.S. Army Military

Personel Center

Dolk, Daniel R.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/29927

Downloaded from NPS Archive: Calhoun

LIBRARY

RESEARCH REPORTS DIVISION

NAVAL POSTGRADUATE SCHOOL

MONTEREY, CALIFORNIA 93940

NPS-54-86-016

LIBRARY

RESEARCH REPORTS DIVISION

NAVAL POSTGRADUATE SCHOOL

MONTEREY, CALIFORNIA 93940

NAVAL POSTGRADUATE SCHOOL
/I Monterey, California

INFORMATION RESOURCE MANAGEMENT IN THE
DCSPLANS BRANCH OF THE U.S. ARMY

MILITARY PERSONNEL CENTER

by

Daniel R. Dolk

November 1986

Approved for public release; distribution unlimited

Prepared for: U.S. Army Military Personnel Center
Alexandria, VA 22332

FEDDOCS
D 208.14/2:NPS-54-86-016

NAVAL POSTGRADUATE SCHOOL
Monterey, California

RADM. R. C. Austin
Superintendent

David A. Schrady
Provost

The research summarized herein was sponsored by the U. S. Army

Military Personnel Center.

Reproduction of all or part of this report is authorized.

This report was prepared by:

uRi

r

y o asS'mCahon of thiS 'AGt

REPORT DOCUMENTATION PAGE

REPORT SECURITY CLASSIFICATION

Jnclassif ied

lb RESTRICTIVE MARKINGS

SECURITY CLASSIFICATION AUTHORITY

DECLASSIFICATION / DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution
is unlimited.

PERFORMING ORGANIZATION REPORT NUMBER(S)

NPS54-86-016

5 MONITORING ORGANIZATION REPORT NUMBER(S)

NAME OF PERFORMING ORGANIZATION

aval Postgraduate School

6b OFFICE SYMBOL
(If applicable)

Code 54

7a NAME OF MONITORING ORGANIZATION

ADDRESS (Cry. State, and ZIP Code)

onterey, CA 93943

7b ADDRESS (City. State, and ZIP Code)

NAME OF FUNDING/SPONSORING
ORGANIZATION TT ..., .,

U. S. Military
ersonnel Center

8b OFFICE SYMBOL
(if applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

MIPR #1 32-12-85

ADDRESS (City, State, and ZIP Code)

00 Stovall St.

ttn: DAPC-PLF
lexandria, VA 22332

10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

TITLE (include Security Classification)

iformation Resource Management in the DCSPLANS Branch of the U. S. Army Military
srsonnel Center (Unclassified)
PERSONAL AUTHOR(S)

iniel R. Dolk
TYPE OF REPORT 13b TIME COVERED

FROM lQ/34_ TO Q9/85
14 DATE OF REPORT (Year. Month, Day)

1986 November 15

IS PAGE COUNT

SUPPLEMENTARY NOTATION

COSATl CODES

FiELD GROUP SUBGROUP

18 SUBJECT TERMS (Continue on reverse if neceisary and identify by block number)

Information resource management, data administrator,
information resource dictionary system, relational
database, structured modeling

ABSTRACT (Continue on reverse if necessary and identify by block number)

CSPLANS currently suffers from data integrity problems which compromise the validity of the

Empower models which they maintain. These problems arise from having to use data main-

ained by various external agencies as well as a lack of corporate history due to frequent

ilitary personnel turnover. This report examines the alternate of information resource

anagement (IRM) as a solution to these problems. IRM is considered from the organizational

nd technological perspectives. Organizationally, the role of DCSPLANS within U. S. Army

ilPerCen is identified and implementation of a civilian billet for data administration

ecomnended as a first step towards controlling data resources. Technologically, a rela-

ional dictionary system is designed to support this data administrator. The dictionary

s compatible with emerging Federal standards. Examples of how the dictionary can be used

ithin DCSPLANS are presented. Finally, structured modeling is introduced as an integra-

ive modeling discipline which coordinates data and modeling resources via the IRM function.

DISTRIBUTION/AVAILABILITY OF ABSTRACT

P UNCLASSIFIED/UNLIMITED SAME AS RPT D DTlC USERS

21 ABSTRACT SECURITY CLASSIFICATION

Unclassified
NAME OF RESPONSIBLE INDIVIDUAL

Daniel R. Dolk
22b TELEPHONE (include Area Code)

408-646-2260
22c OFFICE SrMBOL

FORM 1473. 84 mar 83 APR edition may be used until exnausted

All other editions are obsolete

1

SECURITY CLASSIFICATION OF THIS PAGE

INFORMATION RESOURCE MANAGEMENT IN THE DCSPLANS BRANCH

OF THE U. S. ARMY MILITARY PERSONNEL CENTER

by

Daniel R. Dolk

November 1986

TABLE OF CONTENTS

Page No

1

.

INTRODUCTION 1

2. ORGANIZATIONAL ASPECTS 2

2.1 Existing Problems in DCSPLANS 2

2.1.1 Data Integrity of the Overall Information
Model 3

2.1.2 Lack of Continuous "Corporate History" 3

2.2 A Two-Phased Strategy for Improvement 4

2.2.1 Gaining Control over Data Resources 4

2.2.1.1 Organizational control of data 5

2.2.1.2 Capturing data about information resources 5

2.2.2 Developing an Institutional Information
Architecture 6

2 .

3

Summary 7

3. TECHNOLOGICAL ASPECTS 7

3.1 Dictionary Concepts 8

3.2 FIPS IRDS 9

3.3 Relational Model of FIPS IRDS (RIRDS) 9

3.3.1 Self-Descriptive IRDS 10
3.3.2 Compatibility with the FIPS IRDS 13

3.4 Uses of IRDS in DCSPLANS 14
3.4.1 Data Integrity 14

3.4.1.1 Consistency checking 14
3.4.1.2 File update monitoring 15
3.4.1.3 Edit and validation rules (EVR) 17

3.4.2 Model Management 19
3.4.2.1 Structured modeling 19

3.4.2.2 A model management system based on
structured modeling 20

3.4.2.3 Model management in DCSPLANS 24
3.5 RIRDS Implementation Considerations 24

3.5.1 Selective Retrofitting 25
3.5.2 Implementing the RIP ? Using the ORACLE

System 25

3.5.3 Network Implementation of IRDS 26

4. CONCLUSIONS 28

4.1 Permanent Civilian DBA Billet 28

4.2 Adoption of FIPS IRDS 28

4.3 Adoption of Structured Modeling 28

5. REFERENCES 29

TABLE OF CONTENTS (continued)

Page No

APPENDIX A: FIPS IRDS ENTITY, ATTRIBUTE, AND
RELATIONSHIP TYPES 31

APPENDIX B: BRIEF SUMMARY OF THE SQL DATABASE LANGUAGE 35

APPENDIX C: IRDS MACROS 37

APPENDIX D: FUNDAMENTALS OF STRUCTURED MODELING 40

VI

LIST OF FIGURES

2-1 The Overall Information Model

Page No

3-1 Relational IRS (RIRDS) 11

3-2 Simplified Relational IRDS Model 12

3-3 Active IRDS to Monitor File Update Activity 16

3-4 EVR Data Filter System 18

3-5 IRDS Representation of Structured Modeling 21

3-6 IRDS Representation of Transportation Model 23

3-7 Relational Form of Elemental Detail for
Transportation Model 24

3-8 A Network Design for the IRDS 27

D-l Generic Structure of Transportation Model 42

D-2 Modular Structure and Outline for Transportation
Model 43

Vll

LIST OF TABLES

Page No

A-l The Core System-Standard Schema Entity Types 31

A-2 Core System-Standard Schema Attribute Types 32

A-3 Core System-Standard Schema Relationship Types 33

A-4 IRDS Relationships 34

Vlll

1 . INTRODUCTION

The Deputy Chief of Staff for Plans, U.S. Army Military Personnel
Center (DCSPLANS MILPERCEN) , has expressed a need for increased
control and administration of its information resources. This
problem is particularly manifested by DCSPLANS' distrust of the
data which drives the many manpower models for which they are
responsible. A great deal of time and effort have gone into the
development of these sophisticated models which have a
significant impact on U.S. Army manpower forecasts and policies.
Although the intricacies and behavior of the models themselves
are well understood, the validity of the results are very
sensitive to the integrity of the underlying data. Data that are
not current, for example, can lead to manpower projections which
are misleading and eventually result in suboptimal decisions
adversely affecting the U.S. Army.

The purpose of this project has been to develop an approach to
information resource management (IRM) in DCSPLANS which will
result in more control over these resources and subsequently
facilitate more effective use of manpower models. Two dimensions
are considered with respect to implementing IRM: organizational
and technological. The organizational aspect is involved with
identifying a permanent position within DCSPLANS dedicated to IRM
functions. This concept is discussed in Section 2. The
technological aspect involves the design and development of an
information resource dictionary system (IRDS) as a software tool
which supports IRM. The details of this system are described in
Section 3. A summary of our recommendations is provided in
Section 4

.

The work reported herein involved four thesis projects by Masters
students at the Naval Postgraduate School: Major Richard E.

Broome [Broome 1985], Major Robert M. DiBona [DiBona 1985], Major
Robert A. Kirsch II [Kirsch 1985], and Major Alan F. Noel, Jr.
[Noel 1985]. Major Broome conducted a broad information
requirements analysis of MILPERCEN, in general, and of DCSPLANS
in particular. His conclusion that a permanent IRM billet be
assigned to DCSPLANS as a preliminary step in implementing IRM is
discussed in the next section. Major Noel and Major Kirsch
both worked on development of a dictionary system to support this
IRM function. Major Noel built a prototype demonstrating the
feasibility of this system and Major Kirsch expanded this
prototype to be compatible with the emerging Federal standards
for dictionary systems. Major DiBona analyzed data validation
requirements for DCSPLANS and showed how these could be
incorporated into an active dictionary system. The results of

these three efforts are synthesized in Section 3.

ORGANIZATIONAL ASPECTS

The heart of the information resource problems facing DCSPLANS
lies in certain organizational inefficiencies which exist in
MILPERCEN. The sources of these inefficiencies have been
detailed very effectively in Major Broome's thesis [Broome 1985]
and are summarized below. After a synopsis of the problems,
short-term and long-term approaches to solving these problems are
discussed.

2.1 Existing Problems in DCSPLANS

Figure 2-1 shows the overall information model for DCSPLANS. Two
major areas of information resource problems have been identified
in the DCSPLANS environment: data integrity and information
resource control. Each of these will be examined in more detail.

SACS/PERSACS

CAUDB
I

I

PMAD/UAD
I

I

Authorization
Information Model
"Manning Goals"

EMF/OMF
I

I

Inventory
Information Model

'Projected Inventories"

+• > "Reconciliation" <•

V
"Inventory Needs"

> Force Alignment <

|
Model |

I I

PROMOTION REENLISTMENT RECRUITING RECLASSIFICATION

Figure 2-1: The Overall Information Model

2.1.1 Data Integrity of the Overall Information Model

One of the major symptoms of trouble in the DCSPLANS environment
is the almost universal acknowledgement by personnel that they
"don't trust the data" which they must use to drive their
manpower models. Part of the problem is related to the
synchronization of updates to the various input files. Since
this data is derived from diverse sources, many of which are
beyond DCSPLANS' control, there is a significant effort required
to validate the currency of the data.

For example, consider the authorization information model shown
in Figure 2-1. The Correctable Authorizations DataBase (CAUDB

)

provides a single source of approved authorizations for managing
the force. It is a MILPERCEN product which is a "scrubbed"
version of the Personnel Structure and Composition System
(PERSACS) which serves as the primary source for authorization
data at the Department of the Army level. Interviews with
DCSPLANS branch chiefs reveal a common distrust of the PERSACS
data and a subsequent reliance on the MILPERCEN-generated
PMAD/UAD extracts from the CAUDB instead. The source of this
distrust is the belief that the systems which feed the creation
of SACS/PERSACS are flawed, untimely, and inaccurate.

The solution adopted by MILPERCEN in the form of the CAUDB is a
common one in cases where data integrity is questionable, that
is, create redundant data which is under local control. Although
this may more effectively serve the needs of the local user
community, it causes broader organizational inefficiencies in
that redundant effort is required to maintain the duplicated data
and data inconsistencies between the two databases inevitably
arise. This may, in turn, lead to intra-organizational rivalry
concerning ownership and maintenance of the data in question.

The proliferation of redundant data is an all too common
characteristic of file-oriented information processing
environments. Eventually, the costs of supporting this
phenomenon become too high and organizations must invest in some
form of data management which facilitates the sharing and
maintenance of data resources in an integrated environment.

2.1.2 Lack of Continuous "Corporate History"

Another serious information resource problem in DCSPLANS is the

lack of a continuous "corprate history". Because of the frequent
personnel turnover endemic to the military, valuable knowledge
about files, programs, and models is constantly having to be

relearned and, in some cases, recreated. This occurs because
knowledge is fragmented and dispersed across several individuals
rather than being centralized and accessible to those personnel
with a need to know. When an individual leaves the branch, he

takes all that personal information with him and his successor
must devote considerable time and effort to rediscovering that

knowledge base.

This is frequently a problem with programming personnel in a

file-oriented environment. Good programmers are difficult to

find so that when one appears on the scene, the tendency is to

have him write as much code as possible in the time available.
Although this may result in more operational programs in the
short-term, lack of documentation and the proliferation of files
occasioned by these new programs become major problems in the
long-term. Further, when the programmer transfers, his
replacement is faced with the staggering problem of trying to
determine what programs exist, what they do, and what files they
use without the benefit of the author to provide guidance. The
replacement's startup costs then begin to outweigh the benefits
gained from the previous programmer's efficiency.

Again, organizations reach the point where control over
information resources becomes as important as the resources
themselves. When the lack of a "corporate history" begins to
seriously impair the processing efficiency of an organization,
then control measures are cost- justified

.

2 . 2 A Two-Phased Strategy for Improvement

DCSPLANS MILPERCEN has reached the stage of information
processing maturity where control of information resources is
critical. This requires the development of an information
resource management approach which can begin to address the
problems noted above. In particular, we recommend the following
short-term and long-term steps:

1. In the short-term, implement a database administration
function within the Special Plans branch whose primary
objective is the control and administration of DCSPLANS' data
resources

.

2. In the long-term, develop an institutional information
architecture which is based on the information requirements
of the Force Development/Manpower Management process.
Current methodologies such as enterprise modeling and
information engineering [Martin and Finkelstein 1983] should
be used in the development process.

2.2.1 Gaining Control over Data Resources

The short-term phase of this IRM approach involves two related
steps: organizational control of data and capturing data about
information resources. The second step, in fact, describes one
of the critical functions that must be performed once the first
step has been undertaken.

2.2.1.1 Organizational control of data

The first recommendation is that Special Plans be formally tasked
as the information resource manager of DCSPLANS . This requires
the authorization of a data administration cell to establish
organizational control over the data and its use.

Implementation of this cell should take place in two steps.
Initially, a current military officer from Special Plans should
assume this role. This formalizes the role with someone who has
the requisite corporate history and who will be recognized as
being responsible for, and capable of, handling the necessary
data administration.

Secondly, a permanent civilian billet should be established to
assist this military officer. This individual will ultimately
assume responsibility for DCSPLANS data administration once (s) he
becomes familiar with the environment. The responsibilities for
this data administrator would include the following:

1. data definition and documentation;

2. database design and implementation;

3. development of, and compliance with, data standards;

4. establishment and enforcement of access, security, and
integrity;

5. database software procurement and interface with vendors;

6. liaison, consulting, and training with the user community,
i.e. the five branches of DCSPLANS.

A fuller description of the roles and functions of a data
administrator can be found in [Leong-Hong and Plagman 1983].

The significant advantages of this approach are at least twofold.
First, it establishes a corporate history which is not subject to
the vagaries of military personnel turnover. Second, it provides
a centralized clearinghouse of information about DCSPLANS
resources which, over time, should build confidence about data
integrity and reduce the learning curve for people just coming on
board

.

2.2.1.2 Capturing data about information resources

One of the prime functions of the data administrator is

the collection and storage of data about information resources in

a dictionary system. This dictionary system serves as a

centralized knowledge base of relevant DCSPLANS' files, programs,
models, and users. Establishment of a dictionary system
facilitates answering questions like:

1. Which files and corresponding data elements are input to the

P3M model?

2. Who updates the CAUDB and how frequently?

3. What are the allowable ranges of values for certain data
elements?

4. What aliases are there for MOS?

5. What program(s) must be run to generate the PMAD and UAD?

This is only a small subset of the possible queries one can
direct to a dictionary system. Many other examples are provided
in [Kirsch 1985, Noel 1985, Dolk and Kirsch 1986].

The dictionary system is an indispensable tool in the efficient
discharging of a data administrator's job. Section 3 takes an in
depth look at the structure of a dictionary system and suggests
an appropriate model for the DCSPLANS environment.

2.2.2 Developing an Institutional Information Architecture

The short-term strategy described above is, in a sense, a "bottom
up" approach to solving DCSPLANS' IRM problems using well-known
data management tools and techniques. If properly implemented,
it should improve the data integrity situation at the local level
of DCSPLANS. The question remains, however, of how well this
local solution will integrate with the overall MILPERCEN and U.S.
Army information resource environment. Another way of posing
the problem is, "at what level of the organization should IRM be
implemented?

"

The ideal answer to this question would be to do a "top down"
approach at as high a level of the organization as possible.
There are various methodologies which espouse this approach such
as enterprise modeling and information engineering [Martin and
Finkelstein 1983]. Information engineering, for example,
attempts to capture the information needs of an organization by
starting with a definition of the goals of the organization and
working down through successive functional layers of detail.
Once these needs have been identified, a computerized version of
the enterprise is developed based on data management principles
and 4th generation languages.

The magnitude of applying information engineering to an
organization as large as the U.S. Army, or even MILPERCEN, is
overwhelming. Yet, if there is to be a coordinated information
environment which satisfies the information needs of an
organization, this effort must eventually be made. We recommend,
as a long-term project, that information engineering, or some
equivalent methodology, be used to identify DCSPLANS' overall
information needs. This project should be directed by the data
administrator and can make use of the software tools described in
Section 3. In this way, the short-term, "bottom up" solution can

merge gracefully with the long-term, "top down" approach.

Until some global attempt is made to identify DCSPLANS

'

information needs, the problem of data integrity will likely
persist. Application of IRM principles is a first step towards
gaining control over data resources. Implementation of IRM at
the DCSPLANS level should serve as a testbed illuminating the
benefits and problems associated with this approach. It should
further highlight areas where inconsistencies in information
requirements exist between DCSPLANS and external agencies. A
successful implementation can serve as the impetus for spreading
the IRM philosophy to a wider community within MILPERCEN.

2 . 3 Summary

The main problems in the DCSPLANS information environment are
support of data integrity and lack of a "corporate history"
because of military personnel turnover. A short-term solution
recommends that a data administrator function be established
initially filled by an "on board" officer and then eventually
transferred to a civilian individual. The data administrator
would be responsible for developing a dictionary system which
monitors data integrity (described in the next section). A long-
range responsibility of the data administrator would be to
conduct a "top down" analysis of DCSPLANS' information needs
using some methodology equivalent to information engineering.

TECHNOLOGICAL ASPECTS

The establishment of an explicit DCSPLANS data administration
function is the first step in gaining control over data
resources. The next step is to provide this administrator with
the appropriate software tools for implementing this function.
We suggest that a dictionary system is the critical software tool
required and the control element currently missing from the
DCSPLANS environment.

This section describes in detail the structure of a dictionary
system which is compatible with emerging Federal standards for
dictionaries and shows how it can be used to support DCSPLANS
data administration. The material in this section has been
summarized from several sources. Sections 3.1, 3.2, and 3.3 are
taken from [Dolk and Kirsch 1986] . Prototypes for the dictionary
system shown in Section 3.3 have been implemented using Ashton-
Tate's dBASEIII micro-DBMS product and are described in [Noel
1985, Kirsch 1985]. The implementation of edit validation rules
in a dictionary environment is covered in [DiBona 1985] and
implementation of model management via the dictionary is

described in [Dolk 1986] .

3.1 Dictionary Concepts

Many different terms are used as synonyms for dictionaries but
the one most commonly applied is information resource dictionary
system (IRDS). An IRDS is essentially a knowledge base about an
organization's information resources. It includes capabilities
for describing and storing data about information resources as
well as retrieving and manipulating this data. Since the data in
an IRDS describes other data, it is often referred to as metadata
and the administration of the dictionary is correspondingly
termed metadata management.

Dictionary systems typically have two distinct components: the
dictionary and the directory. The dictionary aspect describes
what information ' resources exist, what they mean, what their
structures are, and how they interrelate. The directory, on the
other hand, describes where these resources are located and how
they are accessed.

Dictionaries are' classified as either passive or active. A
passive system does not interact dynamically with any other
operational system, i.e. no system depends on the dictionary for
its metadata. An active dictionary, on the other hand, generates
metadata for one or more processes and is the sole source of that
metadata. A database management system (DBMS), for example, may
use an active dictionary for all information concerning the
description of data items in operational databases. Passive
dictionaries are used essentially for documentation and must be
updated independently from the operational environment they
describe. Active systems are more powerful in implementing
control mechanisms but require more overhead in interfacing with
other systems. A common implementation strategy is to build a
passive system first and then extend it to an active one for
selected applications. Techniques for doing this in the DCSPLANS
environment will be discussed later in this section.

IRDS are also characterized as either DBMS-dependent or free-
standing (DBMS-independent) . A DBMS-dependent IRDS needs an
underlying DBMS to perform metadata retrieval and manipulation.
A freestanding IRDS supplies all those functions internally. A
DBMS-dependent IRDS can be be built from scratch more readily but
is constrained to operate in an environment containing the
underlying DBMS. A free-standing IRDS is more versatile in this
regard yet more costly to build.

In summary, the active/passive designation refers to whether
or not other operational systems need the IRDS for their metadata
whereas the DBMS-dependent/independent classification refers to
whether or not the IRDS needs a DBMS to perform its manipulation
functions. We recommend that DCSPLANS first build a passive,
DBMS-dependent IRDS and then convert it to an active, dependent
system. Details for accomplishing this are presented in the
remainder of this section.

3.2 FIPS IRDS

It has been estimated that the Federal government can realize
$120 million in benefits by the early 1990's from the use of a
standard IRDS. As a result, the National Bureau of Standards has
developed specifications for an IRDS which will form the basis
for a Federal Information Processing Standard (FIPS) IRDS. These
specifications include many of the functions available in
existing commercial dictionary systems while also providing
flexibility for tailoring the IRDS to specific information
administration requirements.

The central feature of the FIPS IRDS is the core system-standard
schema (core) which describes the logical structure of the IRDS
itself. The core consists of entity, attribute, and relationship
types as shown in Appendix A. Entity types correspond to the
various objects which exist in an IRM environment such as files,
programs, and users. Attribute types are simply descriptors of
entity types. The core supports three distinct name attributes
for each entity: ACCESS-NAME, DESCRIPTIVE-NAME, and ALTERNATE-
NAME. ACCESS-NAME is a short, easy to use, and unique name with
which the user will most frequently interact whereas DESCRIPTIVE-
NAME provides a more meaningful, but also unique, name.
ALTERNATE-NAME allows multiple aliases to be associated with any
one entity. Relationship types capture the important associations
between entities that exist in an information resource
environment. An important feature of the FIPS IRDS core is that
all relationships between entity types are binary in nature.
Further, there are constraints as to which entity types are
allowed to participate in which relationships (see Table A-4 in
Appendix A). For example PROCESSES(system, file) is legal but not
PROCESSES

(

file, system) since a file cannot process a system.

The intent of the FIPS IRDS specifications is that the core serve
as a common baseline from which to implement IRM. It's not
expected that the core will be sufficiently robust to support all
IRM environments, however. As a result, the core is

characterized as being extensible in that additional entity,
attribute, and relationship types can be added to support unique
requirements. Thus, each installation has the flexibility to
tailor the IRDS to their specific information resource
environment

.

3.3 Relational Model of FIPS IRDS (RIRDS)

The FIPS specifications mandate that an IRDS implementation will
be considered in compliance if it supports fully the core and
additionally supports either a panel-driven (menu-driven) or

command language interface. A DBMS-dependent IRDS is a logical
way to incorporate a command language interface since DBMS '

s

automatically provide data sublanguages with which to describe,
manipulate, and control data. In particular, a relational DBMS
(RDBMS) based on the SQL data sublanguage provides an ideal
environment for implementing the FIPS IRDS. This section

describes such an implementation performed with the relational
ORACLE DBMS developed by the ORACLE Corporation. No claims are

made for the relative superiority of ORACLE vis-a-vis other
systems. In fact, the implementation described herein should be
easily transportable to other DBMS environments. Familiarity
with SQL is assumed in the following discussion. See Appendix B

for a concise summary of SQL.

A simple relational model of the core types is shown in Figure
3-1. Notice that the entity types have many attibutes in common
but that some attributes (e.g.: lines-code) are only associated
with a subset of the entity types as shown in Table A-2. This
relational version of the core can be simplified into 2

relations, ENTITY and RELSHIP (Figure 3-2a) by using the
relational view mechanism as embodied in the SQL language. For
example, we can impose the view PROGRAM (as shown in Figure 3-1)
on ENTITY with the following SQL command:

CREATE VIEW PROGRAM AS
(SELECT ANAME , DNAME , ADDED_BY , DATE_ADDED , MOD_BY , LAST_MOD

,

NMODS , DUR_VALUE , DUR_TYPE , LINES_CODE , COMMENTS , SECURITY
FROM ENTITY
WHERE ETYPE= ' PROGRAM

')

;

Similarly, we can impose the view PROCESSES (as shown in Figure
3-1) on RELSHIP:

CREATE VIEW PROCESSES AS
(SELECT E1NAME, E1TYPE, E2NAME, E2TYPE
FROM RELSHIP
WHERE RTYPE= ' PROCESSES) ;

Notice that the attribute etype in ENTITY must be one of the
entity types shown in Figure 3-1 and rtype in RELSHIP must be one
of the relationship types. By creating a view for each entity
type and relationship type in the FIPS IRDS, we create the
logical equivalent of Figure 3-1 using only two underlying
relations

.

3.3.1 Self-Descriptive IRDS

Since an IRDS describes information resources, it should be able
to describe itself. This implies that the information resource
administrator should be able to determine from the IRDS which
entity, attribute, and relationship types the IRDS supports as
well as the relationship constraints in effect (see Table A-4)

.

Self-descriptive capabilities facilitate a strong integrity
checking mechanism as we show later. The relational model
described so far has very limited self-descriptive features.
Although we could determine which entity and relationship types
exist by the following two commands:

SELECT UNIQUE ETYPE FROM ENTITY;

SELECT UNIQUE RTYPE FROM RELSHIP;

10

Entities and Attributes

SYSTEM (aname , dname , added-by , date-added , mod -by, last -mod

,

nmods , dur-value , dur-type , comments , descr , security)

PROGRAM (aname , dname , added-by , date-added ,mod-by, last-mod,
nmods , dur-value , dur-type , lang , 1 ines-code , comments

,

descr , security)

MODULE (aname , dname , added-by , date-added , mod-by , last-mod

,

nmods , dur-value , dur-type , 1 ines-code , comments , descr

,

security)

FILE(aname , dname , added-by, date-added , mod-by , last -mod, nmods

,

nrecs , comments , descr , security)

RECORD (aname , dname , added-by , date-added , mod-by , last-mod , nmods

,

rec-cat , comments , descr , security)

ELEMENT (aname , dname , added-by , date-added , mod-by , last-mod

,

nmods , data-class , low-range , high-range , comments

,

descr, security)

DOCUMENT (aname , dname , added-by , date-added , mod-by , last-mod

,

nmods , doc -cat , comments , descr , security)

USER(aname , dname , added-by, date-added, mod-by, last-mod,
nmods , comments , descr , location , security)

Relationships

All relationships have the same attributes and keys:

REL (el name , el type , e2name , e 2 type

)

where elname , e2name are the entity instances

el type , e2type are the entity-types of which elname,
e2name are instances, respectively

REL is any of the relationships CONTAINS, PROCESSES,
RUNS, RESP_FOR, CALLS, GOES_TO , DERIVED_FROM

,

ALIAS and KWIC.

Integrity Constraints

(Please see Table A-4 .

)

Figure 3-1: Relational IRDS (RIRDS)

11

ENTITY (ename , etype , dname , added-by , date-added , mod-by

,

last-mod , nmods , dur-value , dur-type , comments , descr

,

security, lang, lines -code , nrecs , rec-cat , data- class

,

doc-cat

)

RELSHIP (r type , el name , el type , e2name , e2 type , access-method

,

frequency , rel_pos

)

a) Simplified relational representation of the IRDS core
entity-relationship model

Meta-Entities, -Attributes, -Relationships

ENT_TYPE (aname , dname , added-by , date-added , mod-by , last-mod

,

nmods , comments , descr , security)

ATT_TYPE (aname , dname , added-by , date-added , mod-by , last-mod

,

nmods , comments , descr , security)

REL_TYPE (aname , dname , added-by , date-added , mod-by , last-mod

,

nmods , comments , descr , security)

b) RIRDS schema description

Figure 3-2: Simplified Relational IRDS Model

this is far from ideal. For one thing, it's possible that the
IRDS may support an entity type (e.g.: MODULE) for which no
instances have been entered yet. In this case, the first query
would not show tha MODULE was an entity type. A similar
situation holds for relationship types in the second query.
Further, the relational model in its current form has no way of
describing the relationship constraints.

In order to make the IRDS self-descriptive, three new relations
must be added corresponding to each of the types: ENT_TYPE

,

ATT_TYPE, and REL_TYPE (Figure 3-2b) . These meta-relations
describe relations or views existing at the ENTITY/RELSHIP level.
For example, the domain of ENTITY. etype is defined by the set of
values of ENT_TYPE . aname ; similarly for RELSHIP . rtype and
REL_TYPE . aname . Now the entity and relationship types can be
listed independent of whether actual instances of these types are
in the database:

12

SELECT ANAME FROM ENT_TYPE

;

SELECT ANAME FROM REL_TYPE

;

Further, the relationship constraints can now be represented
explicitly in the IRDS as instances in the appropriate
relationship view. For example to represent the constraint
PROCESSES(system, f ile) requires an entry in RELSHIP as follows:

RELSHIP('processes
' , 'system', ' ent_type

"
, 'file', 'ent_type')

Once the constraints have been entered, the administrator can
retrieve information about the IRDS itself. For example, to
determine which relationships the entity type PROGRAM can legally
participate in, the administrator would issue the following SQL
command

:

SELECT RTYPE, E1NAME, E2NAME FROM RELSHIP
WHERE E1NAME=' program' OR E2NAME=

'
program

'

3.3.2 Compatibility with the FIPS IRDS

The RIRDS deviates from the FIPS IRDS core in two respects:
physical representation and multiple attributes. The entity
types BIT-STRING, CHARACTER-STRING, FIXED-POINT, and FLOAT have
been omitted as well as the relationship type REPRESENTED-AS

.

These types are concerned with the physical representation of
data (ELEMENT entities) whereas the rest of the core is concerned
with logical relationships. Further the FIPS IRDS approach in
this case precludes many realistic situations wherein an element
entity (e.g., SOCIAL_SECURITY_NUMBER) may appear as a FIXED-POINT
in one file and CHARACTER-STRING in another file. We recommend
inbstead embedding this information as an attribute type (e.g.,
FORMAT) in the FILE-CONTAINS-ELEMENT relationship type.

Multiple attribute types have been omitted from the RIRDS since
these violate first normal form. Multiple attributes are those
which may have more than one occurrence for each entity. For
example, the attribute type LOCATION may have several values for
a file which is distributed at various nodes in a network.
Multiple attributes require new relations to be defined in
addition to the two shown in Figure 3-2a and thus complicate the
model. In the cases where these attributes are vital (e.g.:
ALTERNATE-NAME and CLASSIFICATION) , new relationship types have
been defined (ALIAS and KWIC, respectively) to accommodate the
situation. ALIAS provides a valuable synonym capability which
ail.ws multiple names to be assigned to the same entity. It's
defined by the following SQL command:

CREATE VIEW ALIAS AS
(SELECT E1NAME, E1TYPE, E2NAME FROM RELSHIP
WHERE RTYPE = 'alias')

The key-word-in-context (KWIC) allows entities to be classified
according to user-chosen categories and facilitates queries of

13

the kind, "list all entities associated with REENLISTMENT" . It's

defined analogously to ALIAS:

CREATE VIEW KWIC AS
(SELECT E1NAME, E1TYPE, E2NAME FROM RELSHIP
WHERE RTYPE = 'kwic')

Other multiple attributes which the data administrator considers
vital can be included using the same kind of strategy.

3.4 Uses of IRDS in DCSPLANS

This section discusses how an IRDS can be used within the
DCSPLANS environment to determine and maintain data integrity,
support model management, and monitor access to information
resources

.

3.4.1 Data Integrity

Section 2 identified data integrity as one of the critical
problems in DCSPLANS' information processing. The IRDS affords
several mechanisms for bringing this problem under control:
built-in consistency checking, file update monitoring, and
support for edit and validation rules. Each of these is
discussed in detail below.

3.4.1.1 Consistency checking

The self-descriptive capability of the dictionary allows the IRDS
to check whether its contents are consistent with its own logical
description. For example, someone may inadvertently have entered
the information PROCESSES (' pos_edit

'
, 'file', '????', 'program')

which violates the acceptable constraints for PROCESSES as shown
in Table A-4 since a file cannot process a program. The
following SQL command identifies all violations of PROCESSES
constraints ("!" is equivalent to "NOT"):

SELECT * FROM PROCESSES
WHERE E1TYPE != ' ent_type ' AND E2TYPE != ' ent_type ' AND

(E1TYPE, E2TYPE) NOT IN
(SELECT E1NAME, E2NAME FROM PROCESSES
WHERE E1TYPE =

' ent_type ' AND E2TYPE = 'ent_type")

The way this query works is that the subquery (2nd SELECT clause)
retrieves the set of all pairs of entity-types which may legally
participate in PROCESSES. The first SELECT clause then
identifies and displays any pairs of entities in the meta-data
appearing in PROCESSES whose entity types do not fall in that
set. All invalid occurrences can subsequently be deleted from
the database by simply changing "SELECT *" to "DELETE" in the
above query.

Notice that the above query can be used for any relationship type
by simply changing "PROCESSES" to the appropriate relationship

14

type name. A global consistency check can be performed by
replacing "PROCESSES" with "RELSHIP" . This would check all
constraints in Table A-4 for possible violations, thus one
SQL command is all that's required to determine the integrity of
the data in the IRDS itself.

The power of SQL in integrity checking is somewhat offset by the
complexity of the required commands. This can be neatly
circumvented, however, by taking advantage of macro facilities
which most relational DBMS provide. In the ORACLE system, for
example, the global consistency query might be saved as the macro
GLOBAL_CHECK which could then be invoked directly without having
to know the complexities of SQL. One of the duties of the data
administrator is to define an appropriate set of such macros for
the user commmunity (see Appendix C for a representative sample).

3.4.1.2 File update monitoring

One of the ongoing problems at DCSPLANS has been monitoring the
update activity of files which serve as the source of input data
to various manpower models. The IRDS provides built-in features
for tracking file update activity via the LAST-MODIFICATION-DATE
and LAST-MODIFIED-BY attribute types (last-mod and mod-by
respectively in the RIRDS (Figure 3-2)). For example, the
following SQL command will display modification information for
all files processed by the P3M model:

SELECT ENAME, MOD-BY, LAST-MOD FROM FILE, PROCESSES
WHERE E1NAME = * p3m AND E1TYPE = 'program' AND

E2TYPE = 'file' AND E2NAME = ENAME

The above query requires that current information be maintained
in the IRDS about file update activity. This may be done in two
ways: using the IRDS in passive mode or using the IRDS in active
mode. A passive IRDS requires that someone enter all
modification information explicitly into the dictionary. This
assumes that all such information is available in the first
place. Even if this were true, the data entry task would be
formidable

.

A preferable approach is to make the IRDS serve as a control tool
in the active mode. This would require all file update
transactions to be routed through the IRDS so that the
appropriate information could be logged. The easiest way to

achieve this would be to write a file access program (FAP) which
accesses the IRDS and which all users must invoke as part of the
process of modifying a file (Figure 3-3). FAP would prompt the
user for the runstream(s) (JCL file(s)) to be executed, schedule
the job(s) to be run, and finally update the appropriate IRDS
modification information. This could be accomplished by adding
RUNSTREAM as an entity type to the IRDS, and then, for each
runstream entity in the IRDS, entering the appropriate entities
in the PROCESSES (runstream , file) and PROCESSES (runstream

,

element) relationships. In this way, file update information
could be logged automatically in the IRDS while simultaneously

15

IRDS < > METADATA

\|/
I

/ \

All F
User

A

(1) Retrieve
RUNSTREAM

< >

ile
s

3) Log FILE update
information

l__l

FILE
ACCESS
PROGRAM

2) Submit
RUNSTREAM

V

+ Execute
i

RUNSTREAM
|

I I

Figure 3-3: Active IRDS to Monitor File Update Activity

implementing an important control valve previously
the DCSPLANS environment.

lacking in

There is one limitation
is only the most recent
recorded in the IRDS.
or history of file (or e
have to be modified in
In particular, the att
part of the key in FILE
as a timestamp to differ
file or element.

in the scenario sketched above and that
file (or element) update transaction is
If it were desirable to maintain a log

lement) updates, the IRDS structure would
order to accommodate the time dimension.
ribute type last-mod would have to become
(or ELEMENT) where last-mod would serve

entiate multiple entries for a particular

Although adding timestamps is not a difficult change to make
conceptually, one must be alert to the potential for rapid growth
in the size of the IRDS, particularly in a high update
environment. Careful attention must be paid in this situation to
eliminating or archiving historical information not of immediate
relevance. The following SQL command, for example, would
eliminate all historical information about the P3M file previous
to 01 July 86 :

16

DELETE FROM FILE
WHERE LAST-MOD < '86-JULY-01' AND ENAME = ' p3m

'

The extensibility of the IRDS plus its ability to handle
rudimentary time semantics provides a file access control
mechanism which can contribute to DCSPLANS ' quest for improved
data integrity. Note, however, that this must be implemented in
conjunction with a policy, stated and enforced, which mandates
that all file update activity must take place via FAP . (Details
of the FAP implementation depend upon the DBMS employed for the
RIRDS and are beyond the scope of this report. See Section 3.5,
however, for related information.)

3.4.1.3 Edit and validation rules (EVR)

DiBona's thesis [DiBona 1985] discusses the use of an active IRDS
to implement edit and validation rules (EVR). EVR ' s are
constraints which define valid data values. The constraints
shown in Table A-4 are examples of EVR ' s for the IRDS.

EVR ' s generally fall into one of three constraint categories:
field, intra-record, or inter-record. Field constraints usually
specify a range of values within which the field value must fall
(e.g., the grade value must fall within El to E9) . Intra-record
and inter-record constraints specify field values which depend on
the values of one or more fields in the same, or different
records respectively (e.g., if the POS code in a record is 63H,
then the grade value in that record must be E4 or E5)

.

Ideally, we would like to be able to store the required EVR ' s in
the IRDS and then trigger them on the actual data in a fashion
similar to that shown in Section 3.4.1.1. Although lower and
upper ranges of field constraints can be represented using the
ALLOWABLE-RANGE attribute (see Table A-2), the intra- and inter-
record constraints cannot be implemented straightforwardly
because there is no explicit way of representing the "if.. then.."
form of the rules in the IRDS.

As a result, the enforcement of EVR ' s is better left to a

separate program which works from the dictionary metadata.
Figure 3-4 shows how such a data filter system might be
configured. The question marks shown on the link between the
dictionary and the EVR ' s reflects the fact that the
representation of the intra- and inter-record rules in the
dictionary is still an unresolved issue. Currently, those rules
must be embedded within the EVR program itself.

One possible way around this dilemma of representing integrity
constraints might be to create a new entity-type CONSTRAINT
which contains the SQL representation of the constraint if it

were violated. As an example, consider the intra-record
constraint used above. The SQL command for identifying
violations of the constraint would be (assume we're using file
POS_FILE with the key MID for military-id)

:

17

1 1

1

SOURCE |

i

METADATA
|

DATA FILE
|

1

1
|
meta-

|
raw da

i

ta |
data

i

1

V
1

V

1

??
I

DATA |

-

-> nTTTTnWlPV

1

•>
i pn t t / iUlUl lUlNHKi

|

? HiU X 1 /

EXTRACTION
|

|
SYSTEM

|
(VALIDATION

|

PROGRAM -|
|

RULES

|

i

A
|
command

1

s
I

1

V
•

1

1

EDIT/
|

1

1

1

EXTRACTION |- -> VALIDATION |<-
FILE |

PROGRAM(S)

|

i

extracted
1

1

data
1

V

I I

I

VALIDATED
|

| EXTRACTION
|

|
FILE |

I I

|
valid

|
data

V

I I

| APPLICATION!
j
PROGRAM(S)

|

Figure 3-4: EVR Data Filter System

SELECT MID, POS, GRADE FROM POS_FILE
WHERE POS = *63H' AND GRADE != ' E4 AND GRADE != ' E5

A relationship-type ATTRIBUTE-HAS-CONSTRAINT would also have to
be created to associate attributes with their corresponding
constraint (s) . The EVR program could then retrieve these
commands from the IRDS and apply them to the actual POS_FILE
itself. In this case only violations of the integrity constraint
would be displayed. This would require, however, that the
POSFILE be stored in a relational database with the same SQL

18

capability. Further, stating a constraint in the negative is
confusing to someone who is not familiar with Boolean logic and
its manipulation.

The problem of representing EVR s in the IRDS requires further
investigation. The ideal solution would be to extend SQL to a
recursive, rule-based language like Prolog but currently no such
languages exist which interface with industrial strength
relational database systems.

3.4.2 Model Management

DCSPLANS builds and maintains many sophisticated manpower
forecasting models in support of its primary function. As a
result, DCSPLANS must be concerned with model management, i.e.
the management of models as an organizational resource. This
entails an integrated, coherent approach to building,
maniplating, and analyzing models as well as communicating the
results of models to relevant decision-makers. The underlying
concept is that models are a sharable resource in the same way
that data are.

Until recently model management has been more of a "buzzword"
than a reality but that is rapidly beginning to change. With the
introduction of structured modeling [Geoffrion 1985, 1986], model
management has a theoretical framework comparable in power to the
relational model which has fueled the data management movement
since the early 70' s.

This section summarizes the main benefits of the structured
modeling approach and sketches how structured modeling can be
implemented via the IRDS. A more detailed description of these
topics is provided in [Dolk 1986].

3.4.2.1 Structured modeling

Structured modeling facilitates and integrates many aspects of
the modeling process.

"Structured modeling endeavors to provide a formal
mathematical framework, language, and computer-based
environment for conceiving, representing, and manipulating a

wide variety of models." [Geoffrion 1986]

The basic motivation for structured modeling arose from the long
standing problems which operations research and management
science practitioners have faced in "selling" their models to

management. The OR/MS community suffers from an identity crisis
in this regard whereas management, on the other hand, tends to

regard modeling people as technophiles with little understanding
of the "real world" decision-making environment. As a result,
there is an acute need for increased communication between the
modeling community and management.

19

Much of this communication gap is due to the cumbersome modeling

systems which have traditionally been used in building and

analyzing models. A modeling system which addresses the current

crisis must have the following characteristics:

1. A conceptual framework defining a single model
representation;

2. Independence of the model representation from model solution
operators and from the underlying data associated with the
model

;

3. The ability to represent a wide range of OR/MS mathematical
models

;

4. Support for the overall modeling life cycle;

5. Full use of data management facilities such as RDBMS and
RIRDS.

Structured modeling provides a framework which satisfies all of
the above criteria. Additionally, it offers the following
benefits

:

1. Top-down model design: mathematical models can be built top-
down in the same way that computer software is built using
structured programming techniques.

2. Integrated modeling: models can also be built bottom-up or
middle-out by linking two or more models into a composite
(and more complex) model; this is very difficult to
accomplish with current technology because modeling systems
don't interface with other modeling systems in any
significant fashion.

3. Communication and documentation: models can be represented
graphically or as schemas with different views; mathematical
and natural language representations of these schemas can be
generated depending upon the audience.

Structured modeling is a comprehensive and integrated approach to
modeling which is ideal for model management purposes and
consistent with information resource management practices.
Appendix D provides a brief summary of the fundamental concepts
used in structured modeling. The next section sketches how the
IRDS can accommodate structured model representations.

3.4.2.2 A model management system based on structured modeling

In the same way that a DBMS provides a tool for implementing data
management, a model management system (MMS) is required to
support model management. An MMS must provide model description,
manipulation, and control functions and must support the sharing
of models and their underlying data. A preliminary version of an
MMS based on structured modeling can be implemented by a simple

20

Entity-Types

ENT_TYPE('pe' , ' pr imi t ive_ent i ty
'

,

ENT_TYPE(*ce' , ' compound_ent i ty
» , .

ENT_TYPE('att ' , 'attribute 1

)

ENT_TYPE (' va *
, ' variable attribute

'

ENT_TYPE(' test
' , ' tes t_ent i ty , ...

ENT_TYPE(' fen* , ' funct ion_ent i ty
*

,

ENT_TYPE('model , 'model' ,)

Entities

PEfaname, dname , , doc_cat , index,
index_stmt, gen_range, gen_rule)

CE(aname, dname, , doc_cat , index,
index_stmt, gen_range, gen_rule)

ATT(aname, dname, , doc_cat , index,
index_stmt, gen_range, gen_rule)

VA(aname, dname, , doc_cat , index,
index_stmt, gen_range , gen_rule)

TEST (aname , dname, , doc_cat , index,
index_stmt, gen_range, gen_rule)

FCN(aname , dname, , doc_cat , index,
index_stmt, gen_range , gen_rule)

MODEL (aname , dname, , doc_cat , index,
index_stmt, gen_range , gen_rule)

Integrity Constraints

CALLS(ce,pe) CALLS(va,pe) CALLS (test , test
CALLS(att ,pe) CALLS(va,ce) CALLS (test , fen)
CALLS(att ,ce) CALLS (test , va

)

CALLS (fen , fen)
CALLS (test, att) CALLS (fen , va) CALLS (fen , test

)

CALLS(fen, att

)

CONTAINS (module, module) CONTAINS (module , test)
CONTAINS (module, pe) CONTAINS (module , fen)
CONTAINS(module,ce) CONTAINS (model , module

Figure 3-5: IRDS Representation of Structured Modeling

21

extension of the IRDS described above. Familiarity with
structured modeling terminology as described in Appendix D is

assumed

.

In order to accommodate the representation of structured models,
the IRDS core must be extended to include new entity types
corresponding to the genus types (primitive entity

(
pe) , compound

entity (ce) , attribute (att), variable attribute (va), test
(test), and function (fen)) in structured modeling (Figure 3-5).
The entity type genus is also a useful, although not strictly
necessary, addition. The entity type model should also be added
to reflect models as an important resource. These entity types
will then be implemented as entities by establishing the
appropriate views on the ENTITY relation. Constraints governing
generic structure (i.e., acceptable calling sequences) and
modular structure must also be defined in the IRDS.

With this extended IRDS core, it is now possible to represent
structured models in relational form. The IRDS representation of
the transportation model used as an example in Appendix D is
shown in Figure 3-6.

This representation facilitates several different kinds of
queries. Appendix C enumerates some model validity commands
which could be established by the data/model administrator.
Calling sequences for a particular genus (e.g.: FLOW) can be
determined via the following SQL command:

SELECT E2NAME, E2TYPE FROM CALLS
WHERE E1NAME = 'flow'

A natural language summary of the transportation model for
managers and a mathematical summary for modelers can be generated
by the following commands respectively:

SELECT ENAME, ETYPE , INDEX, COMMENTS
FROM GENUS

SELECT ENAME, ETYPE,
FROM GENUS

INDEX, INDEX STMT

Numerous other retrievals can be made to support either modeling
or administration functions.

One of the powerful features of structured modeling is that the
model schema automatically defines a relational form for the
underlying data (or elemental detail) associated with the model.
The generic structure defines functional dependencies between
model components and these dependencies can be transformed
automatically into a set of relations (see [Geoffrion 1985] for
one approach to this transformation) defining the elemental
detail of the model. Figure 3-7 shows the elemental detail
relations for the transportation model.

22

Entities

MODEL ('TRANSP'

,

MODULE ('&PROD'

,

MODULE ('&SALES'
MODULE('&DIST* ,

PE('PLANT*
PE('OUST'

,

CE('LINK*

,

ATT_TYPE(
ATT_TYPE(
ATT_TYPE(
ATT_TYPE ('

TEST('T:SUP'
TEST('T:DEM' , ' SUMi (FLOWi j) = DEMj *

FCN('TOTAL_COST' , ' SUMi j (COSTi j * FLOW

1 Transportation_Model
1 Source_Data

'
, . . .

.

)

1 Customer_Data
' ,

1 Transportation_Data

,

' Mfg_Plant
' , . . .

.

)

, ' Customer ' ,)

, ' Link_Plant_&_Customer
'

, ..
1 SUP', 'Plant_Supply_Capacity
'DEM', 'Customer_Demand' , ...
'FLOW, 'Transportation_Flow'
' COST

' , ' Transportation_Cost

'

'SUMj (FLOWi j) <= SUPi',

ij

Generic Structure

CALLS
CALLS
CALLS
CALLS
CALLS
CALLS
CALLS
CALLS
CALLS
CALLS
CALLS
CALLS

'SUP'

,

'T:SUP'
'DEM'

,

*T:DEM'
'LINK'

,

'LINK'

,

•COST' ,

'FLOW'

,

'T:SUP»
•T:DEM'
'TOTAL COST'

'ATT' , 'PLANT'
, 'TEST* , 'SUP
'ATT' , 'CUST'

,

, 'TEST* , 'DEM
'CE' , 'PLANT'
CE' , 'CUST'

,

'ATT' , 'LINK'
'VA' , 'LINK'

,

, 'TEST' , 'FLOW' , 'VA*
, 'TEST' , 'FLOW' , 'VA'

'FCN' , 'FLOW'

,

'PE')

, 'ATT*

)

*PE')

, 'ATT'

)

PE')

'PE')

'CE')

'CE*)

•TOTAL COST FCN' COST
'VA*

)

'ATT*

)

Modular Structure

CONTAINS
CONTAINS
CONTAINS
CONTAINS
CONTAINS
CONTAINS
CONTAINS
CONTAINS
CONTAINS
CONTAINS
CONTAINS
CONTAINS
CONTAINS

' TRANSP
•TRANSP
'TRANSP
'TRANSP
» TRANSP
'TRANSP
•&PROD 1

•&PROD*
'&SALES
'&SALES
'&DIST*
'&DIST*
'&DIST'

'MODEL'
'MODEL'
'MODEL'
'MODEL'
'MODEL'
'MODEL'
MODULE'
MODULE

'

'MODULE
'MODULE
MODULE'
MODULE'
MODULE'

ES
'&PROD
•&SAL
•&DIST
'TOTAL
'T:SUP
'T:DEM
'PLANT
'SUP'

,

, 'CUST
, 'DEM'
'LINK'
'COST'
FLOW'

, 'MODULE'

)

'
, 'MODULE')

, 'MODULE'

)

COST' , 'FCN'
, 'TEST'

)

, 'TEST'

)

, 'PE»

)

ATT')

, 'PE'

)

'ATT'

)

'CE')

•ATT'

)

'VA')

Figure 3-6: IRDS Representation of Transportation Model

23

PLANT (plant id , supply, test:sup, interpretation)

CUST(cust id, demand, testrdem, interpretation)

LINK(plan t i d, cust id, cost, flow, interpretation)

Figure 3-7: Relational Form of Elemental Detail for
Transportation Model

In order to fully support the elemental detail aspect of
structured modeling, an external program must be written to
perform the transformation from generic structure to the
appropriate relations. There is no SQL command or combination of
commands which can perform this operation.

Perhaps the most appealing aspect of structured modeling is this
coordination of models and data. Defining the model
automatically defines the data requirements as a by-product. The
data can then be queried in conjunction with the model schema and
vice versa. This provides a high degree of flexibility not found
in most modeling systems.

3.4.2.3 Model management in DCSPLANS

Because of DCSPLANS' model-oriented mission, serious
consideration should be given to adopting some form of model
management. Structured modeling seems to provide the necessary
ingredients for a powerful and integrated model management
system. It is a new concept, however, which requires further
experimentation and refinement. No functional model management
system based on structured modeling yet exists although a
prototype is currently under development using the ORACLE RDBMS
[Dolk 1986]

.

A sensible migration strategy would be to first implement the
RIRDS to gain more control over data integrity. Once the IRDS
becomes institutionalized, then it can be expanded in scope to
accommodate the model management activities of DCSPLANS. The
next section discusses in more detail some of the issues related
to implementation.

3.5 RIRDS Implementation Considerations

Implementing a dictionary system like the RIRDS can be a complex
and, at times, frustrating experience. This section provides
some guidelines concerning the implementation of the RIRDS in
DCSPLANS.

24

3.5.1 Selective Retrofitting

Implementing an IRM environment requires careful planning. There
are basically two general approaches which can be invoked: top-
down and bottom-up. Top-down usually involves a high level
organizational requirements analysis using techniques like
information engineering or enterprise modeling. This implies a
complete overhaul of the existing data processing environment and
is probably not appropriate for the DCSPLANS situation since such
an effort would involve external agencies and require high level
MILPERCEN coordination.

.

Bottom-up is more evolutionary and phases IRM into the
organizational framework via a process called selective
retrofitting. Attempting to catalog the overall information
resource environment in the IRDS is equivalent in scope and
effort to performing a complete requirements analysis. Many
dictionary implementations have floundered or failed precisely
for this reason. Selective retrofitting involves identifying the
critical data and applications which need to be cataloged and
initially restricting the contents of the IRDS to these. Once
the dictionary has been built, new applications and new data
resources are incorporated into the IRDS as they emerge. As a
result the IRDS evolves over a period- of time to capture more and
more of the information resource environment. This gradual
process requires significantly less startup cost and effort and
provides more flexibility in tailoring the IRDS to dynamic
situations

.

Selective retrofitting is definitely recommended as the
preferable approach for DCSPLANS. DCSPLANS should prioritize
which data, programs, models, etc. are to be cataloged in the
IRDS. Programs or models which are apt to change in the near
future should be assigned low priority. As new applications
arise, they can be assimilated according to established IRM
policy

.

3.5.2 Implementing the RIRDS Using the ORACLE System

The RIRDS was designed based on the availability of an SQL-
compatible RDBMS . A partial description of an actual
implementation using the ORACLE RDBMS is presented in [Dolk and
Kirsch 1986]. The following steps should be followed in building
the IRDS independent of whether a relation system is used (see

next section for a network model of the IRDS). The corresponding
ORACLE commands are provided in parentheses.

1. Define the entity, attribute, and relationship types to be

included in the IRDS. These should include the core types as

well as extensible types necessary for the particular
environment, e.g.: RUNSTREAM in DCSPLANS.

2. Define the appropriate integrity constraints, i.e. which
entity types may participate in which relationship types (see

Figure A-4)

.

25

3. Build the 5 relations shown in Figure 3-2 (using the CREATE
TABLE command)

.

4. Establish the entity types as the appropriate views on ENTITY
and the relationship types as the appropriate views on
RELSHIP (using the CREATE VIEW command)

.

5. Enter the entity, attribute, and relationship types which
will appear in the IRDS as tuples in the ENT_TYPE , ATT_TYPE

,

and REL_TYPE relations respectively (using the INSERT INTO
table VALUES command). For example,

INSERT INTO ENT_TYPE VALUES
(

' system
'

, information_system
'

,
)

6. Show which attribute types are associated with which entity
and relationship types via entries in the CONTAINS
relationship (using the INSERT INTO CONTAINS VALUES command).
For example,

INSERT INTO CONTAINS VALUES
('program', ' ent_type

'
, 'lines-code', 'att_type')

7. Represent the constraints from step 2. as tuples in the
appropriate relationships (using the INSERT INTO table VALUES
command). For example,

INSERT INTO PROCESSES VALUES
('system', ' ent_type

'
, 'file', ' ent_type

'

)

8. Steps 1-7 comprises the IRDS schema information which makes
the IRDS self-descriptive. Once this information is entered,
then the regular metadata can be added to the dictionary, for
example

,

INSERT INTO FILE VALUES
('pos_edit' , ' pos_edit_f ile

'
, ...)

New entity, attribute, and relationship types can be added to the
core as the need arises. This situation is shown in Table 10 of
[Dolk and Kirsch 1986].

3.5.3 Network Implementation of IRDS

It is strongly recommended that a relational DBMS be used as the
basis of implementing the IRDS because of the logical flexibility
of the relational environment. This may not always be feasible,
however, so we indicate here a network model of the IRDS which
may be more suitable for hierarchical or CODASYL DBMS ' s such as
S2000. Since no implementation has been attempted, we only
sketch a possible configuration (Figure 3-8) with the
understanding that other designs may be more appropriate.

26

1

|
ATT_TYPE

1

J

1 1

|
ENT TYPE

|

1 1

1

1
REL^

1

TYPE
|

"
1

ATI
|

1 1 1

ET1
|

|ET2 |ET3
I I i

|RT1

+

1 1 1

V V V

1 1

N 1 DCTCUTD \

s

->| Kt,L)onlir |^ — - +

.__ _

1 i

1 1

El
| |

E2

f ~l
|

ENTITY
|

Sets Set Description

ATI ATTTYPE -CONTAINED-IN
ET1 ENTTYPE -CONTAINS-ATTYPE
ET2 ENTTYPE -REL-ENTTYPE
ET3 ENTTYPE -RELEDBY-ENTTYPE
RT1 RELTYPE -CONTAINS-ATTTYPE
El ENTITY- REL-ENTITY
E2 ENTITY- RELEDBY-ENTITY

Figure 3-8 : k Network Design for the IRDS

27

4. CONCLUSIONS

IRM is becoming more and more a necessary ingredient in
organizations as management becomes aware of the benefits of
planning, controlling, and using information resources
intelligently. Our objective has been to show how IRM can be
gradually assimilated into DCSPLANS with minimal disruption of
ongoing activities. Specifically, we recommend the following
three courses of action:

1. Institution of a data administration billet;

2. Adoption and implementation of an active FIPS IRDS;

3. Consideration of structured modeling as a discipline for
coordinating and facilitating modeling activities.

4.1. Permanent Civilian DBA Billet

IRM cannot be treated as an afterthought which is assigned to
personnel as something to do after their primary duties are
discharged. It is a full-time job which requires dedicated
personnel and financial resources if it is to work successfully.
DCSPLANS is at the stage of growth where a data administration
billet is required to handle the problems of data integrity and
lack of "corporate history". We recommend that such a billet be
instituted for DCSPLANS use according to the guidelines set forth
in Section 2

.

4.2. Adoption of FIPS IRDS

An IRDS is an indispensable tool for effective IRM. We have
presented a design for such a system which is compatible with
emerging Federal standards and which can be used to ameliorate
many of the data integrity problems which DCSPLANS currently
suffers. We recommend that some version of the IRDS, preferably
relational, be implemented to support the data administrator.
Further the IRDS should be activated so that it can serve as a
control mechanism for monitoring access to existing information
resources

.

4.3. Adoption of Structured Modeling

Because of the intensive modeling-oriented nature of DCSPLAN
activities, consideration should be given to adopting structured
modeling as a way of unifying, describing, manipulating, and
documenting models. As we have shown, structured modeling is
consistent with IRM practices and would further serve to
coordinate DCSPLANS information environment.

28

REFERENCES

[Broome 1985]

Broome, R.E. An analysis of information resource management
within the Deputy Chief of Staff for Plans, U.S. Army Military
Personnel Center. Naval Postgraduate School Master's Thesis,
March 1985.

[Date 1982]

Date, C.J. An Introduction to Database Systems, 3rd edition,
Addison-Wesley , 1982.

[DiBona 1985]

DiBona, R. Use and design of an active data dictionary for local
validation of input data. Naval Postgraduate School Master's
Thesis, March 1985.

[Dolk 1986]

Dolk, D.R. Model management and structured modeling: The role
of an information resource dictionary system, August 1986,
Submitted for publication.

[Dolk and Kirsch 1986]

Dolk, D.R. and Kirsch, R.A. A relational information resource
dictionary system. Forthcoming in Communications of the ACM.

[Geoffrion 1985]

Geoffrion, A.M. Structured Modeling. Draft Research Monograph,
UCLA Graduate School of Management, January 1985.

[Geoffrion 1986]

Geoffrion, A.M. An introduction to structured modeling. Working
Paper No. 338, Graduate School of Management, UCLA, June 1986.

[Kirsch, R. 1985]

Kirsch, R.A. A relational data dictionary compatible with the
National Bureau of Standards information resource dictionary
system. Naval Postgraduate School Master's Thesis, December
1985 .

[Kroenke 1983]

Kroenke, D. Database Processing, 2nd edition, Science Research
Associates, 1983.

29

[Leong-Hong and Plagman 1983]

15. Leong-Hong, B.W. and Plagman, B.K. Data Dictionary/Directory
Systems: Administration, Implementation and Usage. Wiley-
Interscience , 1982.

[Martin and Finkelstein 1983]

Martin, J. and Finkelstein, C. Information Engineering, Savant
Institute, 1983.

[Noel 1985]

Noel, A.F. Prototyping with data dictionaries for requirements
analysis. Naval Postgraduate School Master's Thesis, March 1985.

30

APPENDIX A: FIPS IRDS ENTITY, ATTRIBUTE, AND RELATIONSHIP TYPES

DATA Entity Types

1. DOCUMENT: describes instances of human readable data such
as tax forms or annual reports.

2. FILE: describes collections of records which represent
an organization's data such as inventory files.

3. RECORD: describes instances of logically associated data
such as a payroll record.

4. ELEMENT: describes an instance of data such as a social-
security-number .

5. BIT-STRING: describes a string of binary digits.

6. CHARACTER-STRING: describes a string of characters.

7. FIXED-POINT: describes exact representations of numeric
values

.

8. FLOAT: describes exact representations of approximate
numeric values.

PROCESS Entity Types

9. SYSTEM: describes a collection of processes and data
such as an accounts-payable-system.

10. PROGRAM: describes a particular process such as print-
accounts-payable-checks .

11. MODULE: describes a group of programs that are logically
associated such as a sort-module.

EXTERNAL Entity Types

12. USER: describes an individual or organization that is
using the IRDS such as the accounting-department

Table A-l : The Core System-Standard Schema Entity Types

31

Attribute Type USR SYS PGM
Enti
MDL

ty Type
FIL DOC REC ELE

ADDED-BY S S S S S S S S

(ALLOWABLE-RANGE) P

ALLOWABLE-VALUE P

CLASSIFICATION P P P P P P P P

CODE-LIST-LOCATION P

COMMENTS S S S S s S S S

DATA-CLASS S

DATE-ADDED S S S s s S S S

DESCRIPTION S S S s s s S S

DOCUMENT-CATEGORY s

DURATION-VALUE
DURATION-TYPE

S

S

S

S

s

s

(IDENTIFICATION-NAME)
ALTERNATE-NAME P

LAST-MODIFICATION-DATE
S

LAST-MODIFIED-BY S

LOCATION P

NUMBER-OF-LINES-OF-CODE

NUMBER-OF-MODIFICATIONS
S

NUMBER-OF-RECORDS

RECORD-CATEGORY

SECURITY S

SYSTEM

Table A-2 : Core System-Standard Schema Attribute Types
(S=Single attribute; P=multiple attribute)

S S S S S S S

S S S S S S S

p p p p p

s s

s s s s s s s

s

s

s s s s s s s

32

1. CONTAINS: describes a situation where an entity type con-
other entity types (ex: Accounts-Payable-File CONTAINS
Accounts-Payable-Record)

.

2. PROCESSES: describes a situation where an entity type acts
upon another entity type (ex: Payroll-Program PROCESSES
Payroll-Record)

.

3. RESPONSIBLE-FOR: describes an association between organi-
zational entity type and other entity types indication
organizational responsibility (ex: Accounting-Department
RESPONSIBLE-POR General-Ledger-File)

.

4. RUNS: describes an association between user and process
entity types (ex: user RUNS program).

5. GOES-TO : describes a situation where one process transfers
control to another process (ex: Accounts-Payable-Aging-
Program GOES-TO Aging-Report-Program)

.

6. DERIVED-FROM : describes a situation where an entity is
derived from another entity (ex : Annual-Report DERIVED-
FROM Program-File)

.

7. CALLS: describes a situation where on entity calls an-
other entity (ex: Data-Entry-Program CALLS Aging-Program).

8. REPRESENTED-AS : describes associations between ELEMENTS
and certain data entities that document the ELEMENTS'
format (ex: Employee-Name REPRESENTED-AS Character-String)

Table A-3: Core System-Standard Schema Relationship Types

33

(Note: The FIPS IRDS expresses relationships as ENTITYTYPE-
RELSHIP-ENTITYTYPE, e.g. SYSTEM-CONTAINS-SYSTEM

.

We choose to represent relationships as
RELSHIP(entitytype, entitytype) as below.

)

CONTAINS

(

CONTAINS

(

CONTAINS

(

CONTAINS

(

CONTAINS

(

CONTAINS!
CONTAINS

(

CONTAINS(
CONTAINS

(

CONTAINS!
CONTAINS!
CONTAINS!
CONTAINS!
CONTAINS!
CONTAINS!
CONTAINS!

RESP FOR(
RESP FOR(
RESP FOR(
RESP FOR(
RESP FOR(
RESP FOR(
RESP FOR(

system, system)
system

,
program)

system, module)
program, program)
program , module)
module , module)
file, file)
f ile , document

)

f ile , record)
f ile , element

)

document , document
document , record)
document , element

)

record, record)
record, element

)

element , element

)

user , f ile

)

user , document

)

user , record)
user , element

)

user , system)
user

,
program)

user , module)

RUNS (user , system)
RUNS (user

,
program

)

RUNS (user , module

)

PROCESSES system, file)
PROCESSES [system , document

)

PROCESSES [system , record)
PROCESSES [system, element

)

PROCESSES program , f ile

)

PROCESSES
[
program , document

)

PROCESSES program, record)
PROCESSES ' program , element

)

PROCESSES module , f ile)
PROCESSES [module , document

)

PROCESSES module , record)
PROCESSES module , element

)

PROCESSES user , f ile)
PROCESSES user , document

)

PROCESSES 1 user , record)
PROCESSES user , element

)

DERIVED FROM(document , f ile)
DERIVED_FROM (document

,

document

)

DERIVED FROM (document , record)
DERIVED_FROM(element , file)
DERIVED_FROM(element , document
DERIVED_FROM(element , record)
DERIVED_FROM(element , element

)

DERIVED FROM! file, document

)

DERIVED_FROM(f ile, file)
DERIVED FROM (record, document

)

DERIVED_FROM(record, file)
DERIVED_FROM(record, record)

CALLS
(
program

,
program)

CALLS
(
program , module

)

CALLS (module , module)

GOES_TO(system, system)
GOES_TO

(
program

,
program)

GOES TO (module, module)

Table A-4 : IRDS Relationships

34

APPENDIX B: BRIEF SUMMARY OF THE SQL DATABASE LANGUAGE

SQL is a query language for creating, modifying, and retrieving
data residing in a relational database. The following is a very
brief introduction to SQL. We cover only sufficient details to
support the discussion in the report. A fuller treatment of SQL
can be found in most database texts (e.g.: [Date 1982] or
[Kroenke 1983]) .

The following three relations describing a parts-supplier example
are used for illustrative purposes:

SUPPLIER(sid, sname, status, city)

PARTS (pid, pname, color, weight)

SUP_PART(sid, pid, qty)

Relations are indicated in upper-case and attributes in lower-
case. Key attributes are shown in bold-face. Each relation can
be thought of as a file with each row of the relation
corresponding to a record and each attribute corresponding to a
field in the record.

Simple queries are expressed using the SELECT-FROM-WHERE syntax:

SELECT attribute(s)
FROM relation(s)
WHERE boolean_conditions

For example, the SQL equivalent of "list all supplier names from
Dallas" is:

SELECT SNAME
FROM SUPPLIER
WHERE CITY = "Dallas'

Several attributes can be specified in the SELECT clause:

SELECT SNAME, SID
FROM SUPPLIER
WHERE CITY = 'Dallas'

and Boolean conditions can be linked via AND or OR operators:

SELECT SNAME, SID
FROM SUPPLIER
WHERE CITY = 'Dallas' OR CITY = 'Atlanta'

More than one relation can be involved in a query as well. The
following query lists all part names supplied by supplier
Zukowski

:

35

SELECT PNAME
FROM SUPPLIER, PARTS, SUP_PART
WHERE SNAME =

' Zukowski ' AND SUPPLIER. SID = SUP_PART.SID AND
SUPPLIER. PID = PARTS. PID

When there is uncertainty concerning which relation an attribute
in the query belongs to, it's necessary to append the relation
prefix to that attribute using the "." separator.

Subqueries can be used to formulate arbitrarily complex queries.
The following lists supplier names for suppliers who supply part
P2:

SELECT SNAME
FROM SUPPLIER
WHERE SID IN

(SELECT SID
FROM SUP_PART
WHERE PID = '

P2
'

)

The subquery {in parentheses) is executed first to identify the
set of supplier id's who supply part P2 . This requires accessing
the SUP_PART relation. Once that set has been identified then
the main part of the query is executed to find the corresponding
supplier name for each supplier id in the set.

Views can be created which are equivalent to logical files. For
example, we may want to create a view of red parts only:

CREATE VIEW REDPARTS AS
(SELECT PID, PNAME, WEIGHT
FROM PARTS
WHERE COLOR = 'red'

)

This view can be manipulated exactly like any other relation.
The only difference is that physically this view will not be
stored as a separate relation.

36

APPENDIX C: IRDS MACROS

Most RDBMS allow the user to define macros as a convenient way of
invoking specific SQL queries. This frees the user from having
to know the underlying syntax of the corresponding command and
provides a concise means of executing complex commands. By
defining an appropriate set of these macros, the database and
model administrator can provide the user with a flexible toolkit
for data and model management. This appendix lists a few such
macros as they would appear in the ORACLE RDBMS environment.
Please note in this context that the "&" has a special meaning in
ORACLE unrelated to its use in structured modeling.
Specifically, the "&" refers to an argument whose value must be
prompted from the user when the macro is invoked.

IMPACT_OF_CHANGE

If we change a specified information resource (&ent_name,
&ent_type), what other information resources will this have an
impact upon?

SELECT ANAME,DNAME FROM ENTITY
WHERE ANAME IN

(SELECT E1NAME FROM RELSHIP
WHERE E2NAME= ' &ent_name ' AND E2TYPE= ' &ent_type

'
) OR

ANAME IN
(SELECT E2NAME FROM RELSHIP
WHERE ElNAME='&ent name' AND E1TYPE= ' &ent_type

')

;

REL_INTEGRITY

Display which entity-types can participate in which relationship-
types. This is essentially a dump of Table A-4

.

SELECT RNAME,E1NAME,E2NAME FROM RELSHIP
WHERE E1TYPE=' ENT_TYPE ' AND E2TYPE= ' ENT_TYPE '

;

Equivalent relationship-specific macros can be fashioned by

substituting the relationship-type for RELSHIP as follows (e.g.:

CONTAINS_INTEGRITY)

:

SELECT E1NAME, E2NAME FROM CONTAINS
WHERE E1TYPE='ENT TYPE' AND E2TYPE= ' ENT_TYPE '

;

CHECK_INVALID

Identify any invalid relationship instances (i.e., instances

which violate relationship-type integrity constraints) in the

IRDS:

37

SELECT RNAME,E1NAME,E1TYPE,E2NAME,E2TYPE FROM RELSHIP
WHERE E1TYPE != ' ENT_TYPE ' AND E2TYPE != ' ENT_TYPE ' AND

(E1TYPE,E2TYPE) NOT IN
(SELECT E1NAME,E2NAME FROM RELSHIP
WHERE E1TYPE =

' ENT_TYPE ' AND E2TYPE= ' ENT_TYPE
'

)

Again, this could be made relationship-specific by substituting
for RELSHIP. All invalid instances could be deleted by replacing
the SELECT . . . FROM RELSHIP clause above with DELETE FROM
RELSHIP.

CALL_SEQ

Determine proper calling sequences for structured modeling genus
types

.

SELECT E2NAME FROM CALLS
WHERE E1NAME = ' &genus_type ' AND E2TYPE =

' ENT_TYPE

'

GENUS_STRUCTURE

Determine whether the generic structure of a model violates any
of the rules of structured modeling ("!" stands for a logical
"NOT")

:

SELECT E1NAME, E1TYPE, E2NAME, E2TYPE FROM CALLS
WHERE E1TYPE != ' ENT_TYPE ' AND E2TYPE != ' ENT_TYPE ' AND

MODEL = '&model_name' AND
(E1TYPE, E2TYPE) NOT IN
(SELECT E1NAME, E2NAME FROM CALLS
WHERE E1TYPE =

' ENT TYPE' AND E2TYPE = ENT TYPE'

MODULE_CHECK

Check that no genus belongs to more than one module as follows:

SELECT E1NAME, E2NAME FROM CONTAINS
WHERE El TYPE = 'MODULE' AND COUNT(*) > 1 AND

MODEL = ' &model_name ' AND
E2TYPE IN ('PE', ' CE

'
, 'ATT', * VA '

, "TEST', ' FCN
'

)

ADJACENCY

Determine the adjacency for a specific genus (i.e., its calling
sequence) within a model:

SELECT E2NAME, E2TYPE
FROM CALLS WHERE E1NAME = ' &genus ' AND MODEL = ' &model_name

'

38

NATURAL_LANG

Display a natural language summary of a specific model for
management purposes

:

SELECT ENAME, ETYPE, INDEX, COMMENTS
FROM GENUS
WHERE MODEL = ' &model name'

MATH_SUMMARY

Display a mathematical summary of a model for modelers

SELECT ENAME, ETYPE, INDEX, INDEX_STMT
FROM GENUS
WHERE MODEL = ' &model name'

39

APPENDIX D: FUNDAMENTALS OF STRUCTURED MODELING

Structured modeling is a unified modeling framework based on
acyclic, attributed graphs. There are three basic structures
which comprise this framework: elemental, generic, and modular.

Models are defined in terms of elements which may be partitioned
into genera (pi. of "genus") and further aggregated into modules.
There are five element types: primitive entity, compund entity,
attribute (plus a variation called a variable attribute),
function, and test. Primitive entities are existential in nature
and have no value mathematically. Compound entities reference
other entities already defined and require no value. Attributes
associate a certain property and value with an entity or
combination of entities. Variable attributes are like attributes
except that values may not be specified. Variable attributes
most resemble decision variables in a linear programming model.
Function elements associate a rule and value with an entity or
combination of entities. Function elements resemble mathematical
equations. Test elements are like function elements with a
boolean (True, False) value. Test elements constraints in
mathematical programmming models.

Each element has a calling sequence which identifies other
elements directly referenced. The calling sequence captures the
cross-references among model elements and can be derived directly
from the graphical representation. The elemental structure of a
model is a nonempty, closed, finite, acyclic collection of
elements. Acyclicity implies that there is no sequence of
calling sequences which turns out to be "circular".

The generic structure of a model is a partitioning of the
elemental structure such that there is one partition (genus) for
each element type. Genus is similar to the notion of set or
class. Partitioning must satisfy generic similarity in that
every element in a genus must have the same number of calling
sequence segments and all elements in a given calling sequence
segment must belong to the same genus. Partitioning enforces
strong typing in that a single element may belong to one, and
only one, genus.

Modular structure is a tree defined on the generic structure all
of whose leaves are genera and all of whose non-terminal nodes
are modules. Modular structure allows genera to be grouped in
ways that might be conceptually meaningful to users. It
facilitates a view mechanism which allows users to view the model
at different levels of abstraction. Not all modular structures
are permitted, however. Only those which satisfy monotone
ordering, i.e. those which admit an indented list representation
with no forward references (genera which call genera further down
the list), are allowed.

40

A structured model consists of an elemental stucture, a generic
structure which satisfies generic similarity, and a modular
structure with monotone ordering.

The easiest way to absorb the terminology is by examining a
simple example. The transportation model is a familiar model
discussed in all introductory texts on management science. The
scenario entails plants which produce a single product for
shipment to customers. Every plant has a maximum supply capacity
and every customer has an exact demand requirement. For every
link which exists between a plant and a customer, there is an
associated unit transportation cost. The model allows us to
evaluate various transportation flows over the links which
satisfy production capacities and demand requirements in terms of
the resultant total transportation cost.

Primitive entities include every instance of a plant (assume
plants in Dallas and Chicago) and every instance of a customer
(assume customers in Seattle, Boston, and Atlanta). Compound
entities include every link between a plant and a customer
(assume links Dallas-Seattle, Dallas-Atlanta, Dallas-Boston,
Chicago-Seattle, and Chicago-Boston) . Attributes include the
supply capacity for each plant, the demand requirement for each
customer, and the transportation cost for each link. The flow
for each link is a variable attribute. Test elements consist of
the supply constraint for each plant and the demand constraint
for each customer. A single function element describes the total
transportation cost.

Calling sequences for the transportation model capture the
functional dependencies among the model elements. In general,
attributes of an entity will have that entity in its calling
sequence. Thus each supply capacity has a plant in its calling
sequence, each demand requirement a customer, and each
transportation flow and cost a link. Compound entities have the
entities which they depend upon in their calling sequence thus
each link has both a customer and a plant in its calling
sequence. The supply and demand constraints depend upon supply
and demand respectively as well as the variable attribute
transportation flow. Finally, the total cost function element
depends upon the cost and flow.

The elemental structure of this model captures all the
associations among the elements just described and can be
represented as an acyclic graph. In general, this graph will be
too detailed to be of much use. We can partition the elemental
structure into a generic structure by defining the following
genera: primitive entity (PLANT and CUSTOMER), compound entity
(LINK), attribute (SUPPLY, DEMAND, COST), variable attribute
(FLOW), test (T:SUP and T:DEM), and function (TOTAL_COST) .

The
similarity requirement insures that calling sequences for the
genera are exactly as those for the elements. The graphical
representation of the generic structure is more concise and
meaningful (Figure D-l).

41

PLANT CUST

Figure D-l Generic Structure of Transportation Model
(from [Geoffrion 1985])

A modular structure can be imposed upon the generic structure to
represent higher levels of abstraction by grouping related
genera. For example, we may want to aggregate segments of the
overall model into sales, production, and distribution
components. This can be done by defining modules &SALES, &PROD

,

and &DIST (the "&" by convention refers to a module) which are
rooted trees whose leaves are genera (Figure D-2). The modular
structure can, in a sense, be viewed as orthogonal to the generic
structure while preserving the acyclic nature of the latter.
Modular structure facilitates different views of the model
corresponding to the level of detail which a user desires. The
monotone ordering of the modular structure insures that these
different views all preserve the acyclicity of their
corresponding generic structures.

The modular structure can be represented as a modular outline
where a preorder traversal of the hierarchy is performed and
levels of indentation correspond to levels of the hierarchy
indentation (Figure D-2). The monotone requirement for modular
structures insures that there are no forward references in this
outline, i.e. no genus in the outline has any genera in its
calling sequence which appear later in the outline. This outline
is fleshed out into a model schema by adding relevant information
such as genus type, calling sequence, mathematical
representation, and natural language interpretation.

42

&TRANS<

&PROD

&SALES

'&DIST

TOTAL_COST

'T:SUP

'T:DEM

Modular Outline

&TRANS

&PROD
PLANT
SUP

&SALES
CUST
DEM

&DIST
LINK
FLOW
COST

TOTAL_COST
T:SUP
T:DEM

Figure D-2: Modular Structure and Outline for
Transportation Model (from [Geoff rion 1985])

43

DISTRIBUTION LIST

Number of Copies

Professor Daniel R. Dolk
Code 54DK
Naval Postgraduate School
Monterey, CA 93943

Headquarters
U.S. Army Military Personnel Center
200 Stovall St.
ATTN: DAPC-PLF (Major Robert Trackwell)
Alexandria, VA 22332

Administrative Sciences Department
Code 54
Naval Postgraduate School
Monterey, CA 93943

Computer Center Library
Code 0141

Naval Postgraduate School
Monterey, CA 93943

Defense Technical Information Center
Cameron Station
Alexandria, VA 23314

Knox Library
Code 0142
Naval Postgraduate School
Monterey, CA 93943

Office of Research Administration
Code 012
Naval Postgraduate School
Monterey, CA 93943

\r

r6 q

DUDLEY KNOX LIBRARY - RESEARCH REPORTS

5 6853 01057700

