UNCLASSIFIED

	REPORT. DOCUM	ENTATION P	AGE		-		
1a. REPORT SECURITY CLASSIFICATION	1	16. RESTRICTIVE MARKINGS					
UNCLASSIFIED	•	,,					
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/ APPROVED	AVAILABILITY OF	RELEASE:			
2b. DECLASSIFICATION / DOWNGRADING SCHEDU	E	DISTRIBUT	ION UNLIMI	LTED			
4. PERFORMING ORGANIZATION REPORT NUMBER	R(S)	5. MONITORING C	RGANIZATION RE	PORT NUMBER(S)			
NAPC-PE-155							
6a. NAME OF PERFORMING ORGANIZATION	65. OFFICE SYMBOL	7a. NAME OF MO	NITORING ORGAN	IZATION			
Naval Air Propulsion Center	PE23						
6c. ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (City	, State, and ZIP C	ode)			
P.O. Box 7176							
Trenton, NJ 08628-0176							
83. NAME OF FUNDING / SPONSORING	85. OFFICE SYMBOL	9. PROCUREMENT	INSTRUMENT IDE	NTIFICATION NU	MBER		
CRGANIZATION Naval Air Systems Command	(If applicable) AIR-5360D						
8c. ADDRESS (City, State, and ZIP Code)	· · · · · · · · · · · · · · · · · · ·	.10. SOURCE OF F	UNDING NUMBER	S			
Department of the Navy	20	PROGRAM	PROJECT	TASK NO.	WORK UNIT		
Washington, DC 20361-5360	-	25662N	W0598	000	463		
11. TITLE (Include Security Classification) Decoupled Bellmouth - An Level Test Cell	Alternate Meth	nod of Meas	uring Thr	ust in the	e Sea		
12. PERSONAL AUTHOR(S)							
Dejneka, Roman	OVERED	14. DATE OF REPO	RT (Year, Month, I	Day) 15. PAGE	COUNT -		
Final FROM 10	/1/84 to <u>9/30/</u> 8	5 Augus	st 1986	52	······································		
16. SUPPLEMENTARY NOTATION		14 11					
17. COSATI CODES	18. SUBJECT TERMS (C	Continue on revers	e if necessary and	d identify by bloc	k number)		
FIELD GROUP SUB-GROUP	Thrust Measu	irement	Correlat	ion	Correction		
21 05	Decoupled Be	ellmouth	Turboian	Thrust	Correction		
14 UZ	and identify by block r	number)	TUTDOJEC				
19. ABSTRACT (Continue on reverse if necessary This report evaluates an	and identity by block r	nod of meas	suring thr	ust in th	e sea		
level test cell. The met	hod does not a	require à t	test cell	thrust co	rrection		
factor which is generally	used with the	e conventio	onal engin	e install	ation.		
In the decoupled bellmout	h technique, 1	the bellmo	th is iso	lated from th	m the		
thrust measuring system,	and the inlet	momentum :	engine wa	s tested	at an		
pressure measurements in outdoor test site and in	a test cell us	sing both	thrust acc	ounting m	ethods.		
Test results show the dec	oupled bellmon	uth method	worked ve	ery well.	The		
method can be used in any	test cell or	an outdoo	r test sit	e and sho	uld be		
considered as a good alte	rnative to te	st cell co	rrelations	s .			
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT	r	21. ABSTRACT SI		CATION	<u> </u>		
UNCLASSIFIED/UNLIMITED SAME AS	RPT. N DTIC USERS						
Roman Deineka		609-896-5917 PE23					
DD FORM 1473, 84 MAR 83 /	APR edition may be used u	ntil exhausted.	SECURITY	CLASSIFICATION	OF THIS PAGE		
	All other editions are o	obsolete.	LINIC		FD		

٠

1 - -

G.

NAVAL AIR PROPULSION CENTER .

TRENTON, NEW JERSEY 08628-0176

LIBRARY IEE EARCH REPORTS DIVISION NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA 93940

Report NAPC-PE-155.

DECOUPLED BELLMOUTH - AN ALTERNATE METHOD OF MEASURING THRUST IN THE SEA LEVEL TEST CELL.

Roman Dejneka Naval Air Propulsion Center PO Box 7176 Trenton, NJ 08628-0176

August 1986

Final Report for Time Period January-July 1984

Approved for Public Release: Distribution Unlimited

Prepared for Naval Air Systems Command Washington, DC 20361

Prepared by: Reman Depublica ROMAN DEJNEKA

Typed by: FRANCES BROOKS

Reviewed and Approved:

OKS <u>8 Jecember 19</u>86 DATE ALBERT

MANAGER, PE2

TABLE OF CONTENTS

INSIDE FRONT COVER	
REPORT DOCUMENTATION PAGE - DD FORM 1473	i-ii
TABLE OF CONTENTS	iii
LIST OF FIGURES	iv-v
1.0 INTRODUCTION	1
2.0 DESCRIPTION OF TEST EQUIPMENT	
<pre>2.1 Engine 2.2 Installation 2.3 Instrumentation</pre>	2 2-3 3-4
3.0 METHOD OF TEST	
3.1 Thrust Accounting Process 3.2 Engine Calibration Procedures	4-5 6-7
4.0 ANALYSIS OF TEST DATA AND DISCUSSION	
4.1 Comparison of Measured Thrust 4.2 Comparison of Engine Operating Character 4.3 Application of Alternate Thrust Method	7-9 istics 9-10 10-12
5.0 CONCLUSIONS	12-13
6.0 RECOMMENDATIONS	13
LIST OF SYMBOLS AND ABBREVIATIONS	14-15
FIGURES 1-14b	16-38
APPENDIX A	A-1-A-3
APPENDIX B	B-1-B-2
APPENDIX C	. C-1-C-4
DISTRIBUTION LIST	nside Back Cover

LIST OF FIGURES

Figu	are No.	Caption	Page
	1	Conventional engine installation in 2W test cell	16
	2	Engine installed in test cell with bellmouth decoupled from the thrust system	16
:	3	Engine installed in the OTS	17
	4	Instrumentation diagram	18
	5	Influence of longer engine inlet duct on measured thrust (OTS)	19
	6	Comparison of conventional and alternate method of thrust accounting at OTS	20
	7	Comparison of conventional and alternate method of thrust accounting in 2W test cell	21
	8a	Corrected net thrust versus corrected fuel flow at OTS	22
÷	8b	Comparison of measured engine performance at OTS and in 2W with decoupled bellmouth	23
	8c	Test cell thrust correction factor based on fuel flow correlation	24
	9a	Corrected net thrust to fan pressure ratio correlation at OTS	25
	9b	Corrected net thrust to fan pressure ratio correlation in 2W with decoupled bellmouth	26
	9c	Test cell thrust correction factor based on fan pressure ratio correlation	27
	10a	Fan pressure ratio versus corrected fan rotor speed at OTS	28
	10b	Comparison of fan pressure ratio at OTS and 2W	29

LIST OF FIGURES (cont'd)

Figure No.	Caption	Page
lla _.	Corrected fuel flow versus corrected fan speed at OTS	3.0
11b	Comparison of engine fuel flow at OTS and 2W	31
12a	Corrected low turbine inlet temperature versus corrected fuel flow at OTS	32
. 12b	Comparison of low turbine inlet temperature at OTS and 2W	33
13a	Rotor speed-match at OTS	34
13b	Comparison of rotor speed-match at OTS and 2W	35
13c	Comparison of rotor speed-match at OTS and 2W at "constant" inlet temperature	36
14a	Comparison of fan airflow at OTS and in 2W	37
14b	Comparison of fan airflow at OTS and in 2W at "constant" inlet temperature	38

v

1.0 INTRODUCTION

This report covers the results of an experiment designed to provide an alternate method of measuring engine thrust in a sea level test cell. The Naval Air Systems Command (NAVAIR) authorized the Naval Air Propulsion Center (NAPC) to conduct this work by Work Unit Assignment No. 463, Appendix A. The primary objective was to demonstrate an alternate thrust measuring technique which could be used in a sea level test cell without a cell thrust correction factor.

In the alternate method of thrust accounting, the bellmouth is decoupled from the thrust measuring system and the inlet momentum and the pressure area forces are calculated from pressure measurements. This is not a new concept. It has been used in most altitude test facilities for some time. Some of the major reasons why this approach was not applied previously to sea level test cells are: (1) a requirement for more extensive inlet instrumentation and more involved calculation procedures, (2) a change to the inlet duct-to-bellmouth mounting scheme and (3) a common belief that because part of the thrust was based on a calculation the final result had to be less accurate. These issues are discussed in the report.

In a conventional engine installation, in either an outdoor test stand (OTS) or in a sea level test cell, the bellmouth is directly attached to the engine and the assembly is mounted on This concept is based on the premise that the the thrust bed. net force on the bellmouth is zero, i.e., when the bellmouth air approach velocity is low and uniform, the bellmouth suction force is balanced by the inlet momentum force. In an OTS, on a windless day, the measured test stand force is equal to the engine net thrust. However, these ideal conditions do not exist in the test cell; consequently, some correction to the measured thrust is generally required. The thrust correction factors may be derived (1) by correlation with OTS test results using the same engine, (2) by calibration with an exhaust nozzle that has well-defined performance characteristics and (3) by other semi-empirical methods based on test cell flow-field measurements. The test cell thrust correction factors which are in use at various Naval activities are based on correlations with OTS. The correlation process is time-consuming and costly. It requires a dedicated engine and a coordinated effort of several different activities.

A series of back-to-back engine calibrations was performed in the NAPC test cell and at the OTS using both thrust measuring methods. Results show that thrust measurement accuracy of the two methods is about the same.

2.0 DESCRIPTION OF TEST EQUIPMENT

2.1 ENGINE

The TF34-GE-400 turbofan engine is a dual-rotor front-fan configuration with a bypass ratio of 6.23. It has a single-stage fan with a pressure ratio of 1.51 to 1 and a 14-stage axial-flow compressor with variable stators and a nominal pressure ratio of 14.5 to 1. The combustor is an annular type. The gas generator (core engine) high pressure turbine has two axial-flow stages, both air-cooled. The fan low pressure turbine has four axial-flow stages and drives the fan through a concentric shaft passing forward inside the core engine rotor. The engine mounted accessory gearbox, driven through the six o'clock front frame strut off the gas generator rotor, provides a maximum combined hydraulic and electrical power extraction capability of 285 shaft horsepower. The lube system, including engine oil tank, is completely self-contained. The fan nozzle is an engine component. The engine provides bolted flanges for connection of the aircraft primary exhaust nozzle and attachment of aircraft cowling.

The Naval Air Rework Facility (NARF), Alameda, provided the TF34-GE-400B engine, S/N 202039, to NAPC. We calibrated the engine at OTS using conventional installation as part of the NAVAIR Work Unit Assignment No. NAPC 177. Results of this test were reported to NAVAIR in December 1984. Subsequently, the same engine, pylon, cowling, exhaust nozzle, bellmouth and screen were used for this program.

The TF34 engine is a good choice for evaluating the test cell effects on measured engine performance because its airflow is high (340 lb/sec) and the fan nozzle is unchoked at the sea level, static conditions. Generally the test cell thrust correction factor increases with airflow. Another concern is that the engine mass flow and hence thrust may be influenced by the test cell enclosure.

2.2 INSTALLATION

The three different engine installations used in this evaluation are shown in Figures 1, 2 and 3. In each case the engine was mounted on a thrust balance stand to facilitate measurement of the net test stand force. The same inlet bellmouth and screen, pylon, cowling and exhaust nozzle were used in each test setup. The installations differed only in the bellmouth-to-engine connection. In a baseline or conventional installation, the bellmouth was attached to the engine/thrust bed. This configuration mounted in the 2W test cell is shown in Figure 1. The other two installations had a longer inlet duct

with a slip joint (labyrinth seal) at the bellmouth exit which facilitated engine testing with the bellmouth either attached or isolated from the thrust measuring system. Figures 2 and 3 show this configuration installed in the 2W test cell and at the OTS.

It should be noted that for the alternate method, the inlet duct had to be increased by about 66 in. to provide room for pressure profile instrumentation; and the labyrinth seal was needed for uncoupling the bellmouth. At the outset, we had some concern that these changes could cloud the test results. Therefore we incorporated other features into the installation that allowed testing with either the conventional or alternate thrust accounting approach using identical engine inlet flow path. The convertibility features were outside of the engine flow path. These features are described in Figure 3.

The slip joint is needed for the alternate thrust measurement only. However, for this evaluation we kept the slip joint in place for the calibrations that used a conventional thrust accounting method. For one calibration, the slip joint was sealed (wrapped) so that we could assess the impact of air inflow through the joint on engine performance.

Figures 1 and 2 show the TF34 engine installed in the 2W test cell along with test cell dimensions. Air enters through an overhead inlet stack and is directed downward by the turning vanes. The exhaust gases along with the secondary flow are discharged through a telescoping duct to the exhaust stack. The telescoping duct can be positioned fore-and-aft to provide proper scavenging of the exhaust flow. It contains a tubular grid and a water spray system for cooling the afterburner exhaust. For these tests we varied the duct position between the maximum and minimum limits shown in Figures 1 and 2.

2.3 INSTRUMENTATION

Engine instrumentation is shown in Figure 4. Note that the engine sketch in this figure represents a conventional engine installation with the bellmouth directly coupled to the engine. There was no station 1.1 instrumentation with this configuration. It was used in conjunction with the longer inlet duct only. Also, only two pressure rakes are shown at station 2. Midway through the test program we added two more rakes at station 2 when we noted that, in the 2W test cell, the pressure in the upper half of the inlet duct was consistently 0.2 percent lower than the average pressure.

The net force on the test stand was measured by a dual-bridge, 10,000 lb capacity, strain gage load cell. The thrust system calibrations were performed with the engine completely instrumented and installed on the thrust bed. The

system was calibrated at least once with each inlet configuration. Fuel flow was measured with two extended range 5/8-in. turbine-type flowmeters. Pressures were measured by a Scanivalve system. All low pressures were measured by a 5 psi differential pressure module which was referenced to a 15 psi module.

The corrected airflow and the inlet momentum were computed from the pressure and area measurements at station 1.1. Instrumentation at station 1.1 included three wall static taps, and 15 area-weighted total pressure sensors.

An automated data acquisition system was used to record and process the data online. All parameters were displayed in the test cell control room via cathode ray tubes for real-time monitoring and analysis. Engine monitoring instrumentation was displayed on analog-type instruments.

Estimated instrumentation accuracies are included in Appendix B. For the alternate thrust method, the estimated corrected net thrust (FNK) precision and bias errors are + 26 lb and + 38 lb, respectively. Similarly, for the conventional method of measuring thrust at the OTS, these values are about + 20 lb and + 11 lb.

3.0 METHOD OF TEST

3.1 THRUST ACCOUNTING PROCESS

For a conventional installation in an OTS, the engine net thrust (FN) is equal to the test stand measured force (F_m) after correcting for tare forces. When the same installation is enclosed, as is the case with the sea level test cells, other forces have to be accounted for.

 $FN = F_m + F_r + F_d + F_b$

where, F_r = bellmouth force resulting from an unbalance of the bellmouth suction force and the inlet momentum

 F_d = scrubbing force on the engine and test stand

F_b = buoyancy force resulting from the test cell pressure gradients.

Generally, the sum of these test cell-peculiar forces is derived by cross-calibrating the test cell with an OTS using the same engine. The resultant test cell thrust correction factor is used in subsequent tests of the same model engine. In a decoupled bellmouth installation (alternate thrust method) at an OTS or in a test cell, the engine net thrust is related to the measured force as follows:

$$FN = F_m + M_{1.1}V_{1.1} - KA_S (P_{amb} - P_{S1.1}) + F_d$$

where, $M_{1,1}V_{1,1}$ = inlet duct momentum at station 1.1.

- A_S = inlet duct area at the slip joint (outside diameter)
- P_{S1.1} = static pressure at station 1.1
- P_{amb} = atmospheric pressure for OTS or ambient pressure in aft part of the test cell for 2W
- F_d = scrubbing force in an OTS is zero and scrubbing force in 2W was assumed to be negligible.

The inlet duct momentum, downstream of the slip joint, was calculated from total pressure profiles and static pressure at station 1.1 using the following relationship.

$$M_{1.1}V_{1.1} = KA_{1.1}P_{S1.1} \left(\frac{2Y}{Y-1}\right) \left[\frac{\left(P_{t1.1}\right)}{P_{S1.1}}\right] -1$$

where, $A_{1,1}$ = inlet duct area; ft²

PS1.1 = average of three wall static pressures; in. Hg Abs

 $\gamma = 1.4$

Ptl.1 = area-weighted total pressure, including
boundary layer; in. Hg Abs

K = 70.727

As stated previously, the alternate method of thrust accounting has been used in altitude test facilities all along. However, the uncertainty of measured thrust in an altitude cell is somewhat greater than it is for the OTS or the sea level test cell. Note that $P_{S1.1}$ is used to calculate the momentum and the pressure-area forces; and an error in $P_{S1.1}$ will drive both terms in the same direction. In an OTS of in a sea level test cell, the resultant error in the momentum term is offset by the error in pressure-area force. In an altitude test cell, when the simulated flight condition is greater than Mach 0.5, both terms are positive and the resultant errors are additive.

3.2 ENGINE CALIBRATION PROCEDURES

A number of engine calibrations were performed at the OTS and in the 2W test cell with three different engine inlet configurations, as described in the next paragraph. Generally, calibrations were conducted on different days. If two engine calibrations were made on the same day, the engine was shut down and the instrumentation systems were recalibrated prior to the next test. Each calibration consisted of acquiring steady state data at five to 10 power settings in descending and ascending order. Stabilization time was from 7 to 10 min. Tabulated data are included in Appendix C.

A brief description and the purpose of each test configuration are as follows:

a. <u>Bellmouth attached to the engine at OTS</u> - With conventional installation, three engine calibrations were performed as part of the Alameda test cell correlation program. Computer-averaged corrected net thrust (FNK) versus corrected fan speed (NFK) is the baseline to which the results of other test configurations are compared.

b. Bellmouth isolated from the thrust measuring system at OTS - This configuration was designed for the alternate method of thrust accounting. It included a longer engine inlet duct with a labyrinth seal for isolating the bellmouth from the thrust system. The purpose of this test was to evaluate the alternate thrust method in an outdoor test facility.

c. Bellmouth with long inlet attached to the engine at OTS - The internal flow path of this arrangement was identical to configuration b above. However, the bellmouth was supported from the thrust bed to facilitate the conventional method of measuring thrust. The purpose of this test was to assess the influence of the longer inlet duct and labyrinth seal on engine performance. Two engine calibrations were performed with the labyrinth seal open, and one calibration with the seal closed (wrapped) to preclude inflow of air into the inlet duct downstream of the bellmouth.

d. Bellmouth isolated from the thrust measuring system in 2W - This configuration and thrust accounting method was identical to that of item b above. The purpose of this test was to evaluate the alternate thrust method in a sea level test cell. e. <u>Bellmouth attached to the engine in 2W</u> - This configuration was identical to that of item a above. The purpose of this test was to derive the test cell thrust correction factor for a conventional engine installation. Engine calibrations in 2W were performed with the exhaust collector duct positioned in the two extreme positions shown in Figures 1 and 2.

4.0 ANALYSIS OF TEST DATA AND DISCUSSION

4.1 COMPARISON OF MEASURED THRUST

The corrected net thrust versus corrected fan speed for the various inlet configurations is compared to the baseline in Figures 5, 6 and 7. The baseline is derived from a computer fit of three calibrations conducted at OTS with conventional engine installation. In each figure the baseline is depicted by a dashed line. Similarly, the solid line is a curve fit of all data points for a specific inlet configuration.

Figure 5 shows measured engine performance at OTS with the long inlet duct and with the baseline inlet. Based on these results we conclude that the longer inlet duct and the labyrinth seal had a negligible influence on measured thrust. The maximum observed disagreement of 30 lb is within the expected uncertainty band.

The corrected net thrust for the decoupled bellmouth installation at OTS, using the alternate method of thrust accounting, is compared to the baseline in Figure 6. Both methods yield the same results.

The basic difference between the two methods of measuring/deriving thrust is discussed in Section 3.1. Examples of actual values are as follows:

For conventional installation (baseline)

 $FN = F_m = 9100 lb$ for NFK of 6745 RPM;

and for isolated bellmouth (alternate method)

 $FN = F_m + M_{1.1}V_{1.1} - A_S (P_{amb} - P_{S1.1}) = 7107 + 4722 - 2758$ = 9071 lb for NFK of 6745 RPM.

Note that for isolated bellmouth, the measured test stand force is significantly lower than for the conventional method. The inlet duct momentum and the pressure-area forces which are calculated from pressure and area measurements account for the difference in measured force.

The test results from calibrations performed in 2W test cell are compared to the baseline in Figure 7. The decoupled bellmouth data track the baseline quite well. Note that the baseline as well as other calibrations at OTS were performed with an average inlet temperature 34°F lower than in 2W. For this reason the OTS data extend to a higher corrected fan speed. The 30 lb difference between the two thrust measuring methods is within the expected uncertainty limits. At the outset, we assumed that the test cell thrust correction was primarily due to an unbalance of inlet momentum and pressure-area force at the bellmouth and that the test stand/engine scrubbing force (drag) was negligible. The test results confirm these assumptions. Therefore we conclude that the alternate thrust accounting method can be used to measure engine thrust in our sea level test cells without any cell correction factor.

The test data for conventional engine installation in 2W are also shown in Figure 7. The difference between the baseline and the conventional installation is the test cell thrust correction. It varies from 330 lb at 6560 RPM to 240 lb at 5650 RPM.

Correlation of net thrust to other thrust indicating parameters (corrected fuel flow, WFK and fan pressure ratio, P2.4/P2) is shown in Figures 8a through 9c. There is a good agreement between measured thrust at OTS and 2W with decoupled bellmouth, Figures 8b and 9b. Figures 8c and 9c show the test cell thrust correction values based on WFK and P2.4/P2 correlations. Ideally, these values, along with the NFK-based thrust correction, Figure 7, should all be the same. The NFK and the WFK-based values are nearly equal (330 lb vs. 340 lb at high power) but the P2.4/P2-based value is significantly higher The primary reason for these differences is due to (380 lb). the measurement accuracies of the thrust indicating parameters. The total uncertainties (2x precision error + bias error) of the NFK, WFK and P2.4/P2-based thrust correction factors are + 86, + 91 and + 144 lb, respectively.

As noted previously, we positioned the exhaust collector duct between the maximum and the minimum values shown in Figures 1 and 2. We observed no difference in measured engine performance due to duct position.

In 2W, with either installation, the secondary airflow around the engine was not as expected. We did not map the test cell velocity profiles, but with the aid of tufts we observed the following anomalies:

a. Upstream of the bellmouth the flow appeared normal (radial into the bellmouth), except at the bottom, where there was a very strong aft component.

b. About 2 ft downstream of the bellmouth lip and 2 ft from the inlet duct, on the left-hand side, the flow was generally up. On the right-hand side, the flow was generally aft.

c. There was some recirculation 2 ft downstream of the bellmouth, at the top. We believe the recirculated air was relatively free of exhaust gases because the temperature on the bellmouth screen was uniform.

In addition, at intermediate power the total pressure in the upper portion of the inlet duct was consistently 0.2 percent lower than the average pressure. This difference was evident on both installations in 2W, but not at OTS. The 2W thrust correction values derived by correlation with OTS account for these anomalies. They are test cell/engine configuration dependent. It is important to note that the alternate thrust accounting method which was used in conjunction with the isolated bellmouth was insensitive to these less than ideal flow conditions.

The noted flow anomalies at the bellmouth are not limited to our test cell. These are typical problems that make up the overall test cell correction factor. Decoupling of the bellmouth isolates these problems from the thrust measurement. The alternate method will not work on installations where severe inlet distortion or vortex ingestion is present. In addition, some test cells may alter the exhaust nozzle flow due to the secondary flow interaction. We believe the alternate method will work on any engine providing the installation does not interfere with normal engine operation.

4.2 COMPARISON OF ENGINE OPERATING CHARACTERISTICS

In the preceding section we have shown that the alternate method of thrust accounting worked quite well at the OTS and in 2W. For this type experiment, however, it is necessary to ascertain that there was no engine deterioration and that test cell effects had no impact on engine operating characteristics. This is especially critical for the high bypass turbofan engines which operate with low fan nozzle pressure ratio. Engine operating characteristics as measured at OTS and in 2W are compared in Figures 10a through 14b.

It should be noted that testing at OTS was conducted with an average inlet temperature about 34°F lower than in 2W. Since the compressor stators are scheduled as a function of high rotor speed and inlet temperature, some variability in the generalized data may be attributed to the inlet temperature changes. Measurement uncertainty is also a factor.

The fan pressure ratio-to-corrected fan speed (NFK) relationship is shown in Figures 10a and 10b. If there was a significant change in the nozzle suppression between operation at OTS and in 2W we would expect a shift in the fan operatng line. The two curves are nearly identical, Figure 10b.

The fuel flow and the high turbine discharge temperature are good indicators of engine deterioration. The OTS data shown in Figures 8a, 11a and 12a extend to higher range because of lower inlet temperature at OTS, but, other than that, we see no significant differences between the OTS and 2W data, Figures 8b, 11b and 12b.

The rotor speed match is shown in Figures 13a and 13b. A direct comparison of these figures shows that in 2W the NFK is about 0.5 percent lower than at OTS. We attribute this difference primarily to the lower inlet temperature at OTS. Figure 13c shows data for one OTS calibration, Run Nos. 15 to 28 of Appendix C (T = 55° F), and one 2W calibration, Run Nos. 134 to 146 (T = 65° F), during which the inlet temperature had least spread. There is no difference in speed match for these calibrations.

The engine airflow-to-NFK relationship is shown in Figures 14a and 14b. A direct comparison of all 2W and OTS data indicates about 1 percent lower flow in 2W. Again we attribute this difference to the lower inlet temperature at OTS and to the measurement errors. We see no difference in the airflow characteristics between OTS and 2W calibrations which had least spread in the inlet temperature (55°F versus 68°F), Figure 14b.

Based on these results, we conclude that there was no measurable engine deterioration during this test and that the test cell had negligible influence on engine operation.

4.3 APPLICATION OF ALTERNATE THRUST METHOD

The alternate method of thrust accounting may be used in any sea level test cell or an OTS. The primary advantage of this method is that it does not require any cross-correlations with other facilities. In an OTS, this method isolates the wind effects from measured thrust. The disadvantages are a requirement for a more elaborate pressure measuring system and added installation complexity associated with decoupling the bellmouth. This added complexity is the only reason why we do not advocate wholesale conversion of the existing test cells to accommodate the alternate method. However, we do recommend the alternate method be considered when the existing facilities undergo major modifications or in the design of new test cells.

The test hardware, instrumentation and calculation procedures that we used in this demonstration are satisfactory for the test and evaluation type work. For production acceptance test cells, the process can be streamlined significantly. A brief description of salient requirements is as follows.

a. Installation - An engine inlet duct, which is at least 1.5 inlet diameters in length, is supported from the engine/metric portion of the test stand. The bellmouth, which is decoupled from the inlet duct via a slip joint, is supported from a nonmetric part of the test stand. We used a labyrinth type slip joint, although a simpler sleeve arrangement with about 1/8-in. clearance would be adequate. Our bellmouth supporting structure, shown in Figures 2 and 3, was unduly complicated because we used the same hardware for testing both thrust accounting methods.

b. Instrumentation - Pressure measurements which are needed for the alternate method include total and static pressure in the inlet duct and static pressure in the aft section of the test cell. We used 15 pressure probes in the inlet duct to measure the total pressure profile, including boundary layer, and three wall statics. The same arrangement is used in all of our large altitude test cells. Historically, the inlet duct profiles have been flat except in the boundary layer. Generally, accounting for the boundary layer reduces the measured inlet pressure by 0.998 to 0.994 depending on the power setting. Therefore, the total pressure could be measured with about four probes with some adjustment for boundary layer.

c. <u>Measurement Accuracy</u> - In the alternate method, the net thrust is derived from the following relationship.

$$FN = F_{m} + KA_{1.1}P_{S1.1} \left(\frac{2Y}{Y-1}\right) \left[\left(\frac{P_{t1.1}}{P_{S1.1}}\right)^{\frac{Y-1}{Y}} - 1\right] - KA_{S}$$

$$\left(P_{amb} - P_{S1.1}\right) + Fd$$

Influence of measurement errors on FN at the actual operating conditions is as follows:

One percent in F_m (measured force) = 0.78 percent on FN One percent in A_S (area at slip joint) = -0.30 percent on FN

One percent in $A_{1.1}$ (area of inlet duct) = 0.52 percent on FN

One percent in P_{amb} (test cell static pressure) = -2.60 percent on FN

One percent in $P_{Sl.1}$ (inlet duct static pressure) = -1.69 percent on FN

One percent in P_{tl.1} (inlet duct total pressure) = 4.47 percent on FN

One percent in P_{amb} , $P_{Sl.l}$ and $P_{tl.l} = 0.22$ percent on FN Fd (scrubbing force on test stand) - Assumed negligible.

It is apparent that measured pressures, especially P_{t1}, have a strong influence on FN. Note that FN is less sensitive to pressure measurement errors that have the same value and sign (+). Therefore, it is important to arrange the pressure measuring system in a way that provides the least differential error between the measurands. We used two multi-port 5.0 psi differential pressure modules to measure all pressures, with one common reference to a 15 psi absolute pressure module.

For the alternate thrust method, at OTS or in 2W, the estimated precision and systematic or bias errors are + 26 lb and + 38 lb, respectively. For the conventional engine installation at OTS the corresponding values are about 20 and 11 lb. However, if the OTS calibration is to be used for determining the test cell thrust correction factor, other errors have to be taken into account. These include uncertainty related to the thrust indicating parameter, in this case NFK, and other errors introduced during test cell calibration and actual use of the cell correction value. The net result is a significant increase in the bias error. Therefore, we conclude that the overall uncertainty of both thrust accounting methods is about the same.

5.0 CONCLUSIONS

a. The alternate thrust accounting method worked equally well in the OTS and in the 2W test cell without any thrust correction factor.

b. With the alternate method, the values of the thrust measured at OTS and in 2W were within 30 lb of the baseline.

c. The alternate method may be used in any test cell, providing the test cell enclosure does not alter normal engine operating characteristics.

d. The estimated thrust measurement accuracy of the alternate and conventional methods in a sea level test cell is about the same (precision = \pm 26 lb and bias = \pm 38 lb).

e. For a conventional TF34 engine installation in 2W the thrust correction factor ranged from 330 lb to 240 lb depending on the power setting.

6.0 RECOMMENDATIONS

a. NAPC adopt the use of the alternate thrust accounting method in in-house sea level test cells.

b. NAVAIR initiate a pilot program at one of the NARFs to validate the alternate method in a production environment.

LIST OF SYMBOLS AND ABBREVIATIONS

Symbol	Definition	Units
AS	Inlet Duct Area at Slip Joint (Outside Diameter)	sq. ft
A1.1	Inlet Duct Area	sq. ft
BAR	Barometric Pressure	in. Hg Abs
Fb	Buoyancy Force	lb
Fd	Scrubbing Force on Engine and Test Stand	lb .
Fm	Test Stand Net Force	lb '
FN	Engine Net Thrust	lb
F _r	Net Bellmouth Force	lb
К	Corrected to Sea Level Standard Day Conditions	-
К	Conversion Constant - 70.727 lb	/in. Hg/sq ft
М	Mass Flow	lb sec/ft
NF	Fan Rotor Speed	RPM
NG	Gas Generator Rotor Speed	RPM
OTS	Outdoor Test Stand	<u> </u>
P, P _t	Total Pressure	in. Hg Abs
P _S	Static Pressure	in. Hg Abs
SFC	Specific Fuel Consumption	lb/hr/lb
т, тт	Total Temperature	• ° _{F or °R}
V	Velocity	ft/sec
WAl.1	Engine Airflow	lb/sec
WF	Engine Fuel Flow	lb/hr
γ	Ratio of Specific Heats	-

LIST OF SYMBOLS AND ABBREVIATIONS (cont'd)

Sybmol	Definition	Units
δ	Pressure Ratio	-
Θ	Temperature Ratio	-
0	Bellmouth Screen Location	-
1.1	Engine Inlet Duct Location	
2	Engine Inlet Station	-
2:4	Fan Discharge Station	· -
5.4	High Pressure Turbine Discharge Station	- ⊓

Figure 1. Conventional engine installation in 2W test cell

Figure 3. Engine installed in the OTS

Figure 4. Instrumentation diagram

NO. 3410-20 CIETZGEN GRAPH PAPER 20 X 20 PER INCH

EUGENE DIETZGEN CO. MADE IN U. S. A.

1b x 10⁻³ \$ 2.0 /MA Thurst,

2

NO. 3410-20 DIETZGEN GRAPH PAPER 20 X 20 PER INCH EUGENE DIETZGEN CO.

NG. 3410-20 DIETZGEN GRAPH PAPER 20 x 20 PER INCH

EUGENE DIETZBEN CO. MADE IN U. S. A.

Curve-fit of OTS data (bellmouth attached and decoupled)

Figure 8a.

Corrected net thrust versus corrected fuel flow at OTS

22

.

FNK

t

- Test data with decoupled bellmouth in 2W

--- Curve-fit of all OTS data (Figure 8a)

Figure 8b. Comparison of measured engine performance at OTS and in 2W with decoupled bellmouth

23

FNK

--- Curve-fit of all OTS data

- Curve-fit of 2W data for conventional installation

Figure 8c. Test

FNK

24

Test cell thrust correction factor based on fuel flow correlation

NAPC-PE-

-O-Curve-fit of OTS data (bellmouth attached and decoupled)

P2.4/P2

#

Figure 9a. Corrected net thrust to fan pressure ratio correlation at OTS

FNK

.

P2.4/P2

#

Figure 9b. Corrected net thrust to fan pressure ratio correlation in 2W with decoupled bellmouth

FNK

26

NAPC-·PE-15

ΰ

--- Curve-fit of all OTS data and 2W data with decoupled bellmouth

P2.4/P2

Figure 9c. Test cell thrust correction factor based on fan pressure ratio correlation

FNK

#

27

NFK

Figure 10a. Fan pressure ratio versus corrected fan rotor speed at OTS

NFK

Figure 10b. Comparison of fan pressure ratio at OTS and 2W

29

#

Figure lla. Corrected fuel flow versus corrected fan speed at OTS

- 🗗 2W data

--- OTS data, Figure lla

NFK

31.

Figure 11b. Comparison of engine fuel flow at OTS and 2W

NAPC-·PE-.155

WFK

32

Figure 12a. Corrected low turbine inlet temperature versus corrected fuel flow at OTS

Figure 12b. Comparison of low turbine inlet temperature at OTS and 2W

ωω

A CONSTRUCTION

のためたいという

Figure 13a. Rotor speed-match at OTS

NAPC-PE-155

P

ယ ပ

NGK

Figure 13c. Comparison of rotor speed-match at OTS and 2W at "constant" inlet temperature

36

#

ω

WAl.lK

ω 8

NFK

#

Figure 14b.

Comparison of fan airflow at OTS and in 2W at "constant" inlet temperature

				- 1	•			-
n a	n	Δ	m	\sim	7-	v	•	·Δ
	2	0	11	u		ົ		5

AIRTASK/WORK UNIT ASSIGNMENT NAVAIR FORM 3930/1 (REV 2-77)

DEPARTMENT OF THE NAVY NAVAL AIR SYSTEMS COMMAND WASHINGTON, D.C. 20361

See NAVAIR 3900.8 or supersedure for applicable details on completing this form.

UNCLASSIFIED	NAP	C WUA No. 463	PAGE 1 OF
ADDRESSEE		AIRTASK NO.	AMEND. NO.
Commanding Officer		A5365360 052F 4W05980000	
Naval Air Propulsion Cen	ter (RM3	HORK UNIT NO.	AMEND, NO.
P.O. Box 7176		463	В
Trenton, New Jersey 0862	8	EFFORT LEVEL	
NAVAIR PROJECT ENGINEER CODE		NORMAL	
N D Mart NOCOLO AT	D 5260D	CLASSIFICATION OF AT/WU	······································
M. D. Mead, X26040 AI	R-3360D	UNCLASSIFIED	

1. The AHRTASK/WORK UNIT ASSIGNMENT described below is assigned in accordance with the indicated effort level and schedule. Funding authorization for AIRTASKS will be provided in separate correspondence. If this AIRTASKTWORK UNIT ASSIGNMENT cannot be accomplished as assigned, advise the NAVAIR HQ cognizant code. No work beyond the planning phase will be accomplished unless the addressee has funds in hand or written assurance thereof.

Cancellation, References and/or Enclosures. 2.

NAVAIR Work Unit Assignment No. NAPC 463 (a) References: а. of 7 Sep 1982

3. Technical Instructions.

DEVELOPMENT OF ALTERNATE THRUST MEASURING TECHNIQUE Title. a. FOR SEA LEVEL TEST CELLS

To develop an alternate method of engine thrust Purpose. b. ' measurement in the sea level test cell and to improve current methods of deriving test cell thrust correction factors.

Background Information. Current practice for measuring engine thrust in a sea level test cell or an outdoor test stand involves a direct connection of the bellmouth to the engine. For installations in which air approach velocity ahead of the bellmouth is low (less than 5 knots) this is a convenient and accurate method. However, for higher approach velocity installations, some corrections to the measured thrust are generally necessary. The thrust correction factors for a sea level test cell may be derived empirically or by calibrating the thrust system with an engine which has well defined performance characteristics. The overall correction factor is comprised of three different forces. The inlet momentum term is generally the dominant force, and is difficult to quantify. The pressure-area force results from the static pressure gradients within the test cell and is generally a measurable quantity. Scrubbing force produced by the secondary flow is also difficult to quantify, but it is a small correction. The major difference between the altitude and sea level test cell thrust measuring systems is in

SIGNATURE (By Direction (DWWAVAIA) DATE CLASSIFICATION

UNCLASSIFIED

NAPC WUA No. 463

accounting for inlet momentum. Inlet momentum is measured in the altitude test cell, while in the sea level cell the thrust measurement relies on the thesis that the bellmouth suction force is balanced by the inlet momentum and the pressure-area force at the bellmouth exit.

Some disagreement in measured engine performance has been observed between different sea level and altitude test facilities. The problem appears to be more significant with the high bypass turbofan engines. Naval Air Rework Facilities (NARF) also encounter problems with calibration of production acceptance test cells due to lack of correlation engines.

This WUA provides for an experiment designed to compare measured engine performance using two different techniques in accounting for the inlet approach velocity. An engine will be tested in the NAPC outdoor test stand, and in the sea level cell with the bellmouth attached (current practice) and with the bellmouth isolated from the thrust measuring system.

Potential benefits of this program are as follows: (1) improvement of current test techniques at NAPC; (2) better definition of the factors that make up the overall sea level test cell thrust correction factor will improve test cell calibration procedures and may eventually eliminate the need for correlations of NARF test cells.

d. Detailed Requirements/Cost Estimates.

(1) Design and fabricate engine support hardware that will accommodate engine testing with the attached and isolated bellmouth configurations. The intent is to have an identical inlet flow path for both configurations. The same hardware will be used on the outdoor test stand and in the sea level test cell. The instrumentation package will include measurements of the inlet momentum downstream of the labyrinth seal, engine performance parameters, bellmouth loads and the flow field in front of and around the engine.

(2) Conduct the test in the outdoor test stand with two bellmouth configurations and analyze the results.

(3) Repeat paragraph 3d(2) testing in the sea level cell.

- (4) Issue a formal report on the test results.
- (5) Cost Estimate: FY 1984 \$267,000.
- e. Detailed Program Plan. N/A.
- f. Field Activity Contact. Roman Dejneka, PE23:RD.

g. Headquarters Technical Support. M.D. Mead, AIR-5360D.

4. Schedule.

a. <u>Plans for FY 1983</u>. Complete all effort described in paragraphs 3d(1) in preparation for the outdoor test.

b. Plans for FY 1984.

(1) Conduct the test in the NAPC outdoor test stand and analyze test results in the first quarter of FY 1984.

(2) Reinstall the test hardware in an NAPC sea level test cell and complete all planned testing in the first or second quarter of FY 1984.

(3) Issue a formal final report in the fourth quarter of FY 1984.

5. Reports and Documentation.

a. <u>Reports</u>. Informal letter progress reports shall be submitted quarterly to NAVAIR 5360D. A semiannual progress reports shall be submitted as part of the Center report to NAVAIR. An unclassified formal report will be prepared within 90 dyas of program test completion. The distribution statement to be used on the formal report is as follows: "Approved for public release; distribution unlimited." Reports will be UNCLASSIFIED.

b. Requirements for Future Planning Information. N/A

6. <u>Contractual Authority</u>. Contracts to perform all or portions of this WUA require prior approval of NAVAIR (AIR-536).

7. <u>Source and Disposition of Equipment</u>. A TF34-GE-400 engine which will be calibrated under NAPC WUA 277 will be used for this test. After completion of the test, the engine will be shipped to NARF, Alameda.

8. Aircraft Requirements. None

9. Status of Applicable Funds. Funds will be provided by Work Request.

10. <u>Security Classification Requirements</u>. All prescribed work to be performed under this WUA is UNCLASSIFIED.

Copy to: Addressee (4) AIR-5360B3 AIR-620 AIR-610

APPENDIX B

DATA SYSTEM ACCURACY ESTIMATES

NAPC UNCERTAINTY PRINCIPLES

Uncertainty (u) estimates quoted by NAPC are based on the following principles:

a. The methodology is taken from the reference Measurement Uncertainty Handbook, Dr. R. B. Abernethy, et al., Pratt and Whitney Aircraft and J. W. Thompson, Jr., ARO, Inc., revised 1980, AD-755-356, produced by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161. The methodology is applied to specific aerodynamic parameter calculations; specifically airflow, net thrust, and thrust specific fuel consumption. (See Appendix E for various applications.)

b. The estimated precision indexes and biases of the basic measurands are given in the attached table, Data System Accuracy Estimates. The estimates are quoted for the NAPC data acquisition and measurement equipment and calibration procedures.

c. Uncertainty is an interval estimate of a reasonable limit for the largest error expected. It is similar in intent to a statistical confidence interval except that in most cases the bias contribution to the interval is based on engineering judgment. The precision part of the interval is based on statistical sampling and analysis.

d. Uncertainty quoted as a percentage means percent of the value, or point, estimated, not a percent of the full-scale value which the point might reach. In general this means that percent uncertainty estimates vary as the measurand varies.

PARAMETER	FULL SCALE RANGE	RESOLUTION	PRECISION	BIAS	UNCERTA	INTY
Pressure (Scanivalve Sys)	7.5 PSID 30 PSIA 60 PSIA 120 PSIA 300 PSIA 500 PSIA	.001 .005 .010 .020 .040 .080	.002 .017 .030 .025 .180 .300	.004 .005 .013 .021 .086 .105	.008 .039 .073 .071 .446 .705	PSI PSI PSI PSI PSI PSI PSI
Temperature (UTR System)	Type "E" Type "K"	.3 .5	.5 .75	1 2.5	2 4	0 _F 0 _F
Force (Thrust and Preload)	500 LB 1000 LB 5000 LB 10000 LB 20000 LB	.1 .2 1 2 4	.9 2 4.5 9 17	.7 2 4 8 16	2.5 6 13 26 50	LB LB LB LB
Frequency	60000 HZ	1 .	.25	.5	1	HZ
Fuel Flow: * 3/8-2.5 3/8-5 1/2-10 5/8-15 3/4-25 1-50 1 1/4-75 1 1/2-125 2-225	1000 PPH 2000 PPH 4000 PPH 6000 PPH 10000 PPH 20000 PPH 30000 PPH 50000 PPH 90000 PPH	.5 1 2 3 5 10 15 25 45	.8 1.5 2.5 3.5 5 10 15 25 45	.57 1 2 3 5 10 15 25 45	2.17 4 7 10 15 30 45 75 135	РРН РРН РРН РРН РРН РРН РРН РРН

DATA SYSTEM ACCURACY ESTIMATES

* Fuel Flow uncertainty holds for 10 to 100 percent of full scale range. Definitions of the terms used are:

a. <u>Resolution</u>: The smallest change in value that can be detected by the data system.

b. <u>Precision</u>: The variation demonstrated by repeated measurements. (Often referred to as standard deviation.)

c. <u>Bias</u>: Fixed or systematic error. (Value generally based on sound engineering judgment.)

d. <u>Uncertainty</u>: An expression of a reasonable limit for the largest error to be expected. Uncertainty is equal to the Bias plus a multiple of the Precision. (The multiplier decreases to 2.0 as the number of samples increases.)

TF34 CORRELATION TEST

C-1

	NFK	NGK	WFK	FNK	SECK	TT54K	BAR	PZ	Panb	12	WA1.1K	P2.4/P2	COMMENTS
			-	_~~_						49.5	339.2	1.480	OTS, ISOLATED BELLMOUTH
1	6855	17366	3448	9361	0.368337	19/9	29.900	29.866		45.5	327.0	1.446	26 JANUARY 1984
2	6637	17075	3131	8672	C.361047	1633	29.900	29.000		49.0	314.0	1.406	
3	641C	16773	2823	7970	0.354203	1033	29.911	29.679		50.0	363.6	1.376	
4	6200	16523	2591	7396	6 348370	1780	29.913	29.885		49.0	291.6	1.350	,
5	6024	16305	2307	0000	6-346314	1404	29.916	29.891	•	48.0	280.5	1.318	
6	2031	160/5	2179	0203	6 346187	1730	29.916	29.890		48.0	292.5	1.349	
1	6023	16305	2380	7412	C 340703	1786	29.918	29.855		49.0	363.9	1.378	
0	6211	10522	2392	1412	0 264612	1835	29,911	29.880		48.0	216.6	1.409	
	6414	10/43	2071	8727	0.36(536	1886	29.913	29.882		48.0	329.0	1.447	
IC	6039	17031	3190	0737	0.367551	1925	29.918	29.889		48.0	334.0	1.467	
11	6/93	17220	3337	9079	0 371497	1980	29.921	29.864		48.0	340.5	1.487	
12	6414	1/304	1946	6262	6.344667	1608	29.926	29.696		48.0	259.1	1.270	
13	29//	13030	1077	9577	0.365267	1920	29.933	29.883		48.0	332.1	1.462	
19	6722	17100	3217	8056	0.264895	1931	30-012	29.938		55.0	334.3	1.462	OTS, ISOLATED BELLHOUTH
12	6726	17026	3200	8509	6.358679	1885	30.012	29.953		54.5	326.3	1.436	27 JANUARY 1984
10	6966	147055	28092	7914	0.354761	1.835	30-012	29.917		55.5	314.5	1.406	
11	6371	14603	2607	7402	0.351527	1796	30.012	29.958		54.0	304.9	1.379	
10	6219	16375	2002	6703	0.346114	1725	30.012	29.923		55.0	291.1	1.344	
10	3964	16641	2123	6078	0.349293	1689	30.012	29.926		55.0	275.1	1.311	
20	5733	16612	1799	5267	0.341561	1604	30.012	29.926		56.0	258.4	1.265	
22	6271	16646	2123	6174	C-343861	1687	29.995	29.933		55.5	279.4	1.313	
22	5940	16276	2311	. 6663	0.346841	1725	29.995	29.933		55.0	250.4	1.341	
23	4171	16538	2555	7279	C-351010	1786	29.995	29.933		55.0	302.4	1.373	
25	6363	16774	2794	7894	0.353940	1829	29.995	29.950		55.0	314.5	1.403	
26	6562	17019	3057	8443	0-362075	1876	29.995	29.923		55.0	323.9	1.436	
27	1944	17179	3226	8873	C-363575	1917	29.995	29.917		55.0	333-1	1.458	
28	A740	17298	3344	9068	0.368769	1944	29.995	29.908		54.0	336.0	1.467	OTC DIDECT CONNECT
29	5232	15444	1672	4878	0.342763	1557	29.930	29.895		21.8	249.4	1.241	UIS, DIRECT CONNECT
30	5535	15728	1913	5560	C.344065	1624	29.930	29.876		22.0	264.4	1.278	I PEBUART 1909
31	5715	15939	2090	6046	C.345683	1678	29.932	29.890		23.0	276.6	1.305	
32	5925	16184	2298	6509	C.353050	1722	29.935	29.885		21.5	268.5	1.335	
33	6128	16427	2525	7160	0.352654	1781	29.930	29.880		22.0	300.7	1.366	
34	6354	16663	2784	7823	C.355874	1830	29.935	29.880		23.1	213.4	1.401	2 1
35	6522	16907	3005	8354	C.359708	1875	29.937	29.880		22.9	322.9	1.430	•
36	6763	17199	3337	9165	C.364103	1947	29.942	29.890		22.4	336.5	1.468	
37	6934	17421	3594	9467	C.379635	2003	29.942	29.885		22.5	344.4	1.494	
38	7172	17698	3920	10147	0.386321	2075	29.952	29.895		23.3	252 • 7	1.521	
39	6934	17402	3570	9572	C.372963	1983	29.950	29.900		22.6	344.1	1.492	
40	6738	17125	3290	9004	C.365393	1936	29.950	29.900		23.2	334.8	1.463	
41	6537	16887	3023	8447	C.357879	1887	29.960	29.890	•	22.8	323.2	1.431	
42	6329	16640	2765	7728	0.357790	1824	29.957	29.910		22.5	312.7	1.398	
43	6131	16405	2531	7101	C.356429	1775	29.965	29.930		22.2	300.9	1.367	
44	5912	16140	2287	6563	0.348469	1721	29.972	29.930		21.9	287.7	1.333	p .
45	5717	15915	2090	6043	0.345855	1673	29.975	29.926		21.8	275.4	1.304	
46	5511	15680	1897	5491	C.345474	1626	29.977	29.945		21.5	263.7	1.275	OTS DIRECT CONNECT
47	5162	15306	1627	4772	C.34C947	1557	30.164	30.135		40.0	245.9	1.236	DID, DIRECT CONNECT
48	5477	15656	1862	5336	C.348951	1614	30.159	30.135		40.0	262.6	1.2/3	2 FEQUART 1904
49	5201	15351	1635	4719	C.346472	1 5 7 0	30.159	30.135		35.0	246.6	1.236	3
50	5431	15622	1828	5244	0.348589	1613	30.159	30.130		34.4	260.0	1.266	
51	5648	15872	2018	5772	0.349619	1660	30.164	30.135		34.0	272.1	1.296	
52	5852	16121	2227	6274	0.354957	1710	30.169	30.135		33.4	284.8	1.326	

APPENDIX C

1F34 CORRELATION TEST

	NFK	NGK	WFK	FNK	SFCK	STT 54K	BAR	PZ	Pamb	12	WA1.1K	P2.4/P2	COMMENTS
53	6079	16384	2465	6920	0.356214	1761	30.167	30.130		32.8	297.5	1.360	
54	6277	16666	2684	7564	0.354839	1809	30.172	30.140		31.9	308.8	1.389	
55	6476	16851	2946	8186	0.359883	1866	30.172	30.135		31.3	320.7	1.422	
56	6767	17144	3258	8900	0.366067	1929	30.177	30.145		36.3	333.6	1.459	
57	6907	17410	3537	9436	0.374841	1988	30.172	30.135		29.0	342.7	1.488	
58	7053	1/651	3821	9909	0.385609	2053	30.174	30.135		29.0	350.3	1.513	
24	6855	1/3/6	3527	9421	0.3/43/6	1986	30.177	30.135		36.2	342.9	1.488	
60	6/12	1/192	3237	0047	162806.0	1931	30.177	30.130		28.0	333.5	1.458	
61	6 7 7 6	14640	2471	0299	0.366047	1057	30.177	30.145		30.1	321.9	1.426	
43.	6276	16209	2041	(330	0.351110	1003	30.177	30.145		30.1	308.9	1.389	
63.	6066	16330	2770	6412	0.321119	1703	30.174	30.145		29.9	290.9	1.357	
65	5450	15852	2024	5856	0 345070	1461	30.177	30+142		20.5	200.2	1.330	
66	5435	15595	1827	5302	0.345970	1696	30.174	30.150		29.2	212+0	1.247	
67	5264	15419	1685	4895	0 344320	1540	30 177	30.150		27.0	260.0	1.244	
68	5116	15243	1561	4562	0.346559	1540	30.074	30.045		AC 2	20041	1 220	ATS DIRECT & MAAR
60	5365	15525	1768	5168	6.342105	1595	30.049	30.040	•	A1 3	243.0	1 280	Q EERHADY 1984
70	5584	15797	1958	5680	0-344718	1645	30.064	30.040		41.2	260.6	1 200	TEBOART 1704
71	5805	16650	2171	6240	0.347917	1690	30-067	30-040		40.7	282.5	1.320	
72	5558	16292	2360	6725	C-353903	1736	30-062	30.035		41.4	294.2	1.351	
73	6210	16542	2625	7411	0-354203	1764	30-062	30.030		41.6	307.3	1.383	
74	6358	16756	2848	8026	C. 354847	1830	30.064	30.020		42.5	318.2	1.412	
75	6594	17007	3112	8663	0.359229	1888	30.064	30.020		43.8	- 329.9	1.447	
76	6813	17275	3401	9207	0.369393	1952	30.069	30.030		41.9	240.1	1.479	
_ 77	6632	17030	3131	8703	0.359761	1894	30.074	30.030		42.3	230.3	1.448	
Q 78	6400	16747	2844	7982	0.356302	1831	30.067	30.025		42.1	317.6	1.411	
N 79	6219	16541	2621	7444	C.352096	1790	30.072	30.035		41.1	366.8	1.383	
80	5998	16262	2362	6715	C.351750	1736	30.069	30.045		41.9	293.6	1.350	
81	5865	16029	2163	6305	0.343061	1690	30.077	30.040		42.1	282.8	1.319	
82	5597	15762	1963	5666	0.346453	1639	30.079	30.050		41.7	269.3	1.290	
83	5385	15545	1788	5196	0.344111	1597	30.084	30.055		41.8	258.0	1.262	
64	5196	15328	1640	4711	· C.348121	1553	30.084	30.065		42.1	247.5	1.239	
85	6138	16488	2532	7182	C.352548	1769	29.836	29.729	29.744	67.7	299.5	1.367	ISOLATED BELLMOUTH , 2W
86	5934	16234	2301	6609	C.348162	1722	29.829	29.735	29.741	6t.5	288.0	1.336	EJECTOR AFT
. 87	5528	15745	1905	5537	0.344049	1632	29.826	29.747	29.766	67.3	264.4	1.280	21 PAY 1984
88	2202	12418	1685	4905	0.343527	1572	29.831	29.756	29.770	67.9	249.1	1.248	
89	5003	15/6/	1919	5550	C 33446.0	1632	29.834	29.757	29.772	68.2	264.4	1.280	
90	4170	16443	2601	7122	0.34/000	1715	29.028	29.728	29.744	68.6	266.2	1.330	
91	4363	14445	2300	7133	C+371327	1/03	29.020	29.727	29.741	0.30	298.7	1.363	
93	6469	16908	2072	8274	C 35C107	1941	29.020	29.711	29.121	67.7	368.9	1.391	
94	4446	17124	2716	8425	6 364103	1001	29.029	29.711	29,733	69.2	320.6	1.424	
95	6624	17070	3130	8639	0.363236	1497	20 024	20 750	20 001	77.0	330.7	1.972	TEDIATED ACTINOUTH 2W
96	6473	16887	2931	8184	0.358138	1858	27.720	29.750	29.001	73.0	320.1	1.992	ISULATED BELLHOUTH, 2W
97	6269	16631	2678	7553	0.354561	1810	29.921	29.778	29.621	73+7	310+1	1. 384	27 NAV 1084
98	6076	16404	2447	6986	C.350272	1762	29.921	29,702	29.818	74.3	367+0 294 #	1.354	24 PAT 1700
99	5881	16169	2239	6436	0.347887	1715	29.919	29.799	29.842	75.1	283.7	1.323	
100	5486	15710	1862	5415	C.343860	1626	29.916	29.807	29.839	75.4	260.9	1. 271	
101	\$235	15389	1658	4017	0.344198	1572	29.915	29.017	29.841	74.4	246-4	1.241	
102	5486	15719	1863	5410	C.344362	1626	29.911	29.802	29.846	74.4	260-A	1.270	1
103	5852	16150	2207	6351	C. 347504	1708	29.911	29.783	29.830	77.8	282.0	1,319	
104	6055	16388	2419	6909	C.35C123	1753	29.912	29.770	29.818	77.4	293.3	1.351	

					TF34 CORRE	LATIUN H	: 21						^		
	NFK	NGK	WFK	FNK	SECK	ŤT54K	BAR	P2	Pamb	12	WA1.1K	P2.4/P2	COMMENTS .		
						1804	29.905	29.758	29.811	75.0.	305.3	1.382			
105	6256	16632	2000	7513	6 3533241	1847	29.906	29.754	29.756	79.0	315.6	1.410			
106	6430	16836	2878	8308	C. 3597203	1872	29.904	29.727	29.781	75.6	322.2	1.431			
107	6535	16979	3022	0370	6 350120	1857	29.893	29.737	29.786	84.7	217.3	1.418	ISOLATED BELLHUUTH, 2W		
108	6466	16892	2919	7730	0.354697	1822	29.879	29.717	29.767	85.2	309.6	1.395	EJECTUR FNU.		
109	0327	10/20	2143	7300	C. 353426	1792	29.880	29.727	29.760	85.6	302.8	1.378	22 PAT 1984		
110	6213	14367	2017	6817	6.349677	1746	29.874	29.740	29.779	85.5	291.5	1.347			
111	6010	16397	2174	6256	C. 347506	1699	29.875	29.751	29.783	86.4	279.7	1.315			
112	5616	15662	1824	5299	0.344216	1616	29.871	29.758	29.786	85.7	257.3	1.265			
113	5187	15766	1617	4706	0.343604	1562	29.870	29.769	29.803	85.3	243.1	1.236			
115	5434	15663	1816	5274	0.344331	1610	29.871	29.766	29.778	86.0	256-6	1.263	F		
116	5802	16103	2163	6220	C.347749	1696	29.869	29.746	29.781	86.4	278.6	1.312			
117	6023	16376	2393	6829	0.350417	1745	29.869	29.739	29.762	85.8	291.5	1.347			
118	6208	16600	2609	7375	C.353763	1791	29.869	. 29.713	29.760	85.8	202.3	1.376			
110	6354	16781	2795	7834	C.356778	1829	29.860	29.700	29.742	86.2	211.0	1.399			
120	6421	16863	2880	8066	C.357054	1846	29.858	29.685	29,711	86.7	315.0	1.411	TSOLATED RELINDUTH 2W		
121	66.82	17150	3264	8915	C. 366125	1926	29.930	29.750	29.796	67.0	231.3	1.460	ELECTOR END.		
122	6516	16948	3028	8408	6.360133	1874	29.926	29.755	29.819	67.5	322.5	1.434	EJECTUM PHUS DA NAV 1984		
122	6300	16663	2746	7738	C. 354872	1820	29.925	29.772	29.811	67.7	209.1	1.396	24 PAT 1404		
124	6119	16472	2524	7183	C. 351385	1767	29.930	29.787	29.834	67.7	298.4	1.367			
125	5911	16712	2293	6610	0.346899	1719	29.932	29.805	29.824	67.8	287.0	1.333			
126	5530	15747	1917	5561	C-344722	1634	29.927	29.815	29.840	68.1	263.8	1.200			
127	5279	15455	1706	4974	C.342984	1578	29.925	29.829	29.847	68.4	249.7	1.249			
128	5519	15751	1910	5536	C. 345014	1629	29.922	29.811	29.846	66.4	263.5	1.279.			
129	5907	16219	2289	6582	C.347767	1718	29.917	29.784	29.823	68.9	286.7	1.334			
130	6095	16446	2503	7125	0.351298	1763	29.914	29.775	29.829	69.8	298.0	1.309			
131	6366	16692	2750	7761	C.354336	1819	29.917	29.766	29.801	68.5	309.7	1.390			
132	6566	16950	3020	8413	C.356968	1872	29.919	29.749	29.806	66.8	322.2	1.452			
133	6634	17106	3197	8799	0.363337	1909	29.922	29.737	29.795	69.7	329.6	1.422	ATTACHED RELLMOUTH 2W		
134	6700	17167	3279	8567	C.382748	1936	29.635	29.481	29.479	64.1		1.401	(NG MAL-1)		
135	6523	16957	3025	8051	0.375730	1883	29.631	29.474	29.473	64.1		1 305	FJECTOR FWD.		
136	6317	16677	2741	7373	C.371762	1829	29.630	29.504	29.420	64.0		1 34 8	1 JUNE 1984 AM		
137	6138	16498	2541	6926	0.366878	1787	29.627	29.506	29.499	64.3		1 337			
138	5921	16231	2298	6299	C.364820	1736	29.615	29.495	29.428	64.5		1.279			
139	5511	15725	1893	5240	C.361260	1639	29.613	29.523	29.510	05.0		1 251	:		
140	5273	15459	1696	4741	0.357730	1579	29.612	29.520	29.517	63.1		1.278			
141	5563	15728	1884	5224	C.36C643	1632	29.616	29.510	29.510	66.9		1.335			
142	5905	16221	2277	6275	C.362869	1729	29.607	29.489	29.400	66.0		1.369			
143	6123	16480	2526	6907	C.365716	1784	29.605	29.475	29.40/	44 2		1.401			
144	6338	16734	2783	7510	0.370573	1835	29.613	29.479	29.4/6	44 7		1.435			
145	6519	16969	3029	8063	C.375667	1862	29.609	29.900	29.409	44 7		1.467			
146	6675	17178	3266	8534	0.382704	1928	29.607	20 383	29.902	14C.R		1.452	ATTACHED BELLHOUTH, 2W		
147	6645	17083	3197	8400	0.380595	1916	29.73/	29.303	29.307	66.8		1.430	(NG \$A1.1)		
148	6498	16938	3001	7998	0.375219	1072	29.739	20.287	29,345	70-4		1.399	EJECTOR, FWD.		
149	6319	16719	2766	7416	0.3/29//	1829	29.520	29.307	29.303	70.7		1.364	1 JUNE 1984 PM		
150	6101	16453	Z498	6797	0.10/010	1773	27.737	27.300	29,4(7	70.2		1.333			
151	5855	16210	2212	6223	0.305097	1423	27+761	29.432	29.418	71.3		1.278			
152	5517	15731	1041	7201	0 363554	1033	27.524	20.420	29,470	71-0		1.247			
153	5253	15420	10/8	1693 5340	0.17/724	1633	20 622-	27.414	29.417	76.6		1.280	•		
154	552C	15/56	1403	2299	L . JOZ 347	1033	29.517	29, 397	29, 399	71-4		1.328			
122	1005	10101	2231	0130	0 344480	1766	29.514	29.402	29.377	71.3		1.360			
126	6082	10441	6917	0/79	6	T102	678JEU	E							

C-3

TF34 CORRELATION TEST

	NEK	NGK	NFK	FNK	SECK	TT54K	BAR	PZ	Past	12	WA1.1K	P2.4/P2	COMMENTS
	6287	16679	2723	7324	0.371791	1012	29.519	29.387	29.390	71.2		1.393	
158	6467	16937	29.90	7955	C. 375864	1863	29.513	29.375	29.357	71.2		1.428	
150	6641	17113	3183	8413	C. 378343	1904	29.518	29.382	29.386	70.5		1.450	
140	6543	16942	3042	8112	0.375000	1884	29.743	29.594	29.622	80.6		1.441	ATTACHED BELLHOUTH, 2W
141	6362	16781	2832	7659	0.369761	1838	29.741	29.591	29.610	80.8		1.413	EJECTOR AFT
162	4227	16567	2635	7213	C. 365313	1802	29.743	29.587	29.612	81.5		1.307	4 JUNE 1984
163	6014	16324	2387	6565	C. 363595	1746	29.735	29.606	29.634	82.5		1.352	
164	5846	16135	2204	6117	C. 36C307	1707	29.741	29.608	29.629	82.2		1.326	
165	5440	15646	1823	5092	C.358013	1616	29.733	29.620	29.647	81.6	·	1.273	
166	5214	15369	1638	4599	C.356164	1568	29.736	29.643	29.667	81.5		1.245	
167	5432	15645	1014	5068	0.357932	1614	29.733	29.633	29.642	82.0		1.272	
168	6038	16362	2400	6629	C. 362046	1752	29.733	29.598	29.60€	81.7		1.356	
140	6238	16613	2640	7213	C. 366006	1802	29.735	29.599	29.608	81.7		1.388	
170	6351	16750	2790	7529	C. 37C567	1835	29.732	29.574	29.669	82.2		1.408	
171	6562	16921	2986	8033	0.371717	1875	29.738	29.556	29.590	82.2		1.432	
172	5855	16136	2210	6135	C.36C228	1713	29.729	29.608	29.631	82.2		1.328	
171	6565	16989	3055	8129	C.375815	1888	29.936	29.724	29.815	79.1		1.440	ATTACHED BELLHOUTH, 2W
174	6425	16828	2862	7689	0.372220	1843	29.931	29.794	29.023	79.7		1.417	EJECTOR AFT
175	6253	16623	2645	7200	0.367361	1803	29.939	29.790	29.811	78.8		1.388	5 JUNE 1984
176	6046	16387	2410	6600	C.365152	1755	29.935	29.796	29.818	79.6		1.356	
177	5855	16151	2202	6070	C.362768	1714	29.938	29.807	29.826	79.4		1.327	
174	5447	15639	1819	5089	0.357438	1618	29.936	29.827	29.848	86.9		1.273	
179	5228	15383	1639	4622	C.354608	1569	29.939	29.848	29.860	78.6		1.246	
180	5431	15633	1802	5043	C.357327	1614	29.935	29.836	29.857	82.1		1.269	
181	5819	16120	2167	5966	C. 363225	1700	29.937	29.807	29.831	81.7		1.319	
182	6036	16384	2402	6617	C.363004	1752	29.931	29.807	29.823	81.2		1.355	
183	6283	16675	2683	7290	0.368038	1812	29.931	29.807	29.823	78.1		1.391	
184	6383	16797	2812	7577	C. 371123	1837	29.931	29.782	29:754	81.7		1.408	
185	6498	16937	2962	7960	C. 372111	1866	29.929	29.771	29.785	82.3		1.429	

C-4

0

1.

Distribution List

Activity

Copies

Commander, Naval Air Systems Command, Dept. of the 11 Navy, Washington, DC 20361													
Intra-command addressees													
AIR-410 (2) AIR-06 (2) AIR-536 (5) AIR-723 (2)													
Defense Technical Information Center, Building No. 5, Cameron Station, Alexandria, VA 22314	2												
Commanding Officer, Naval Air Rework Facility, Naval Air Station, Alameda, CA 94501													
General Electric Company, 1000 Western Ave., 2 Lynn, MA 01910-0445 Via: Naval Plant Representative Office													
Superintendent, Naval Postgraduate School, Monterey, CA 93943													
Commander, Naval Air Test Center, Patuxent River, MD 20670-5304													

