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Abstract

Ve presentssa tutorial describing aspects of the coding of simulations of

models of visual cortical development. The model considered has an anatomy of an

excitatory projection from thalamus to cortex combined with intracortical

inhibition. Cortical cells develop specificity to stimulus patterns in this

model only when appropriate experience enables synaptic modification to organize

the network.

The simulation consists of a time loop. For each iteration of this loop. a

stimulus is generated, the cortical response to this stimulus is computed, and

synaptic weights are modified. The developing network is tested intermittently

and the behavior of the system analyzed.

Some of the details of the coding given include a method of describing

.'1 rearing conditions, a convenient abstract form for the input stimuli, an

iterative calculation of the intracortical feedback, a simple way to store

synaptic strengths, and routines for pertorming the analysis.
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In parts I and II of this series (refs. 3.8), we discussed the applicability

of modeling to problems in visual cortical physiology. and described some of the

models which have been proposed, concentrating on the development of specificity

in neurons receiving excitatory inputs from the lateral geniculate nucleus (LGH)

and inhibitory inputs from other cortical units. We now present a tutorial in

coding simulations of such a model. The goal of these simulations is to provide

the details of the response properties of the elements of the model under various

conditions$ including a number of simulated normal and abnormal rearing

conditions and over a range of parameter values.

Experiment, model, and simulation

5' The simulations we consider mimic, in form, classic deprivation

experiments. Kittens are typically reared under special conditions, and a

* population of single units is then tested physiologically to determine their

* visual response properties. The goal of such experiments is to assess the

etfects of different rearing conditions on the response properties of the

'5 corcical units.

The second paper of the series (ref. 8) reviews the results of numerous

experiments on the neuronal development of kitten visual cortex. We have

concentrated on the development of orientation selectivity. As the second paper

V illustrates. there are numerous models in the literature which posit mechanisms

of orientation selectivity and attempt to show how visual experience might

atfect components of these mechanisms. The various mechanisms proposed use

- different schemes of excitation and inhibition to wire up a network of cortical



cells. These excitatory and inhibitory connections are assumed to be modified

by visual experience in order to produce the alterations of response properties

seen experimentally. Although there is practically no direct evidence in

mammalian studies for the hypothesis that it is such changes in wiring which

bring about the changes accessible to microelectrodes, there is general

acceptance of the central hypothesis that synapses are modified. Host models

have applied versions of Hebb's postulate (5), which produce connections whose

efficacy is related to the correlation between pre- and post-synaptic

activities.

To iLlustrate some techniques in coding simulations we consider a model

based on an anatomy of excitatory afferent fibers from thalamus to cortex

combined with inhibitory intracortical fibers. The afferent fibers are divided

into two groups: fibers relaying signals from the left eye and fibers relaying

signals from the right eye. Visual stimuli are input as activities on the

atferent fibers to cortex. These stimuli drive the cortical cells, determining,

along with the cortical activities, the modification of the synaptic

connectivities.

The model we are considering can be summarized by the following equations.

R- f(SA - QR) (1)

dS/dt - g$(A.ft.S;parmeters) (2)

dQ/dt - g (R,R.Q;parameters) (3)

A (a vector of dimension equal to the number of atferent fibers, H) represents

the activity in the fibers atferent to cortex. R (a vector of dimension equal to

tne number of cortical cells, N) is the response of the cortical cells. S (an N

x M matrix) and Q (an N x N matrix) hold the synaptic weights, excitatory from

LUN and inhibitory from cortex, respectively, onto the cortical cells. We let

,l'l +. e, + ,**, A- . . .. / . . . . . . . ,". . .



all synaptic strengths be positive, and subtract the intracortical inputs in

order to render them inhibitory. f is a function describing the relationship

between the inputs to cortical cells and the resultant response: this function

is generally chosen to be sigmoidal, incorporating a firing threshold and a

saturation at high discharge rates. The synaptic modification rules are given by

95 and gQ. which depend on the pre- and post-synaptic activities (respectively A

and R for the atferent and R and R for the intracortical synapses), possibly on

the current values of the weights, and additionally on a number of parameters

which determine, among other things, how rapidly synaptic modification

progresses. Although various models choose different forms for the function f in

(1), and take a number of positions on what the inputs A consist of, the chief

distinction between these models is the choice of synaptic modification rules g

(see Table I in ref. 8). One can choose to modify only the excitatory synapses.

or only the inhibitory synapses, or both - in either the same way or in different

ways. Fortunately, this significant variation in models of the form ()-(3) can

easily be handled by the simulation coding we will describe.

Computing the afferent activity, A

Our first job in translating the model into code is to compute the atterent

input A. Now the visual inputs to cortex are determined by the rearing

conditions. Thus, different rearing conditions lead to different cortical

. activity patterns, atfecting synaptic modification, resulting in the

development of different connectivities and hence to different cortical response

properties. Our code therrore starts by allowing the desired rearing conditions

to be specified. Since this is a major independent variable in running simulated
pg

* *experiments, we code the rearing conditions in an accessible ("English language")
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form. For instance, in order to pertorm an experiment on the results of

monocular deprivation. one simply instructs the program to close one eye.

The next step in the code is to take the given rearing conditions and to

translate this simple English language description into appropriate simulated

visual stimuli (the variable A). Such stimuli can be thought of a activities

* on a set of atferent axons, and are coded as a vector, with the components of the

vector corresponding to the activities on individual axons. Thus, monocular

* deprivation by closing the left eye will lead to a vector with some pattern of

activities in the components corresponding to the right eye, but with only noise

in the portion of the vector corresponding to the left eye. At each moment of

simulated time, a new stimulus is generated using the general description of the

rearing conditions, implying that the simulated visual stimuli continually change

as in reaL life.

Betore continuing to describe the sequence of routines in the program, we

* pause to discuss the crucial nature of the input coding. Despite our appeal

above to "real li.fe", the key to successful coding of a simulated visual

* environment is an appreciation of the necessity of abstactiojn. The challenge in

implementing a simulation of a neural model is to create a formal structure which

captures the essence of the real structures being modeled. The visual world is

astoundingly complex: digitized video images of it are merely a shadow of the

* reality. One might be tempted to provide "real" input to a simulated cortex by

hooking up a camera to a computer, but this would neither mimic any neural events

nor allow understanding and control of the input end of the model. We will not

* try to create a particularly rich imitation of the visual world, but instead will

try to faitbzully reproduce the few aspects of the retinal images with which we

choose to be concerned, such as orientation.

* Most of the models described in ref. 8 arose from the excitement generated



by a number of experiments in which visual experience was restricted to a very

limited range of oriented contours (see citations in ref. 8). Kittens were

raised, for example, viewing only horizontal or only vertical lines. Modelers

tnus abstracted out oriented lines as an important feature of the visual

environment, whose presentation could be controlled. We suppose then that the

environment in our model consists of brief presentation* of variously oriented

*bars. Such a bar in visual space can reasonably be expected to stimulate a set

of retinal ganglion cells which form a bar on the retinal surface. Assuming a

simple retinotopic projection to cortex on the scale of this bar (not

necessarily a valid presumption. since it essentially amounts to considering

* everything between retina and cortex as strictly relay mechanisms), we can

imagine that a sheet of receptors encodes the visual stimuli by determining which

receptors are covered by a bar (Figure 1). Different orientations all stimulate

a central cell, corresponaing to the axis of rotation of the family of bars, but

differ in the periphery of the sheet.

The activities of the M receptor elements in the sheet can be thought of as

forming the components of a vector of dimension M. The environment of various

* oriented bars can be implemented as a set of such vectors. A vertically oriented

* bar stimulates certain receptors and is coded into a corresponding vector, while

a horizontal bar corresponds to a different vector. As the orientation of the

visual stimulus rotates from horizontal to vertical and back to horizontal, the

* vectors corresponding to these orientations rotate through the abstract space in

which they live. Thinking of these vectors as directed arrows, the arrowhead

would trace out a circle as the orientation varies through 180 degrees. (We say

that the set of vectors corresponding to oriented stimuli has a crua

L~rM~.t1Lr. the vectors in it are permutations of each other and all lie on a

circle in their possibly high-dimensional space, since the order in which the



receptors are listed in the vector is arbitrary, and the stimuli are all

identical except in terms of which of the receptors are stimulated.) Thus,

although it is certainly feasible and sometimes helpful for graphical purposes to

represent the environment in terms of a two-dimensional sheet of a large number

of cells, as long as we are considering only orientation we do not need the

additional possibilities arforded by two dimensions (such as being able to encode

position, length, width, or movement). The orientation domain is one-dimensional

and periodic and can be represented by any circular set of vectors. Trivial

examples of some circular sets of vectors in three dimensions are ((1,0,0),

(0,.,0),(0,0,)k or {Wll,0),(0,ll),(l,0,l)). We will want to derive more

usexul sets in higher dimensions, without necessarily resorting to the scheme

mentioned above where bars were projected onto a sheet of cells.

It turns out that the important parameter in defining the simulated

environment determines how close together the input patterns lie on the circle.

(Translating back to the real world, what matters is, how similar do various

oriented bars look at the level of the input to cortex?) Our approach to

constructing input patterns on the computer might be clarified by way of an

analogy to color mixing. If we want to construct the color yellow, we can do so

by mixing red and green light. What we actually mean is that we can create the

Rercentual color yellow by mixing the snectral colors red and green. A spectral

color is simply monochromatic light, and is best described by the wavelength.

DBoever, we make an assignment from wavelength to color name, for convenience.

Now, 4ifferent perceptual colors can have very similar or very different spectral

compositions: yellow and orange have similar compositions in the form of a banana

and an orange illuminated by white light, while they have quite different

compositions in the form of a white piece of paper illuminated with monochromatic

light at 580 am (yellow) and 600 am (orange) wavelengths. We want to control

.°.,



the simizaricy of our input patterns in just this manner. We start with some

abstract tokens (unitvetor which are assigned orientation names analogous to

the way that wavelengths are assigned color names. We then mix these tokens in

various amounts to create more of one orientation than of others in our final

input pattern, which thereby "looks like" the orientation of the dominant

token. If we were to use only a single token at a time, diffrent input patterns

would consist of commletelX different tokens. By mixing together tokens which

represent similar orientations, we produce "oriented" patterns which overl&R in

their distribution of tokens, despite having different numbers of each type of

token. We retain color names, or orientation names, for the tokens as well as

for the mixtures because the correspondence is convenient, once we understand the

possible confusion.

We have replaced the two-dimensional sheet of receptors by a circle of input

elements. These elements will be our tokens, analogous to spectral colors. Each

*ement on the circle carries an activity, and the afferent input to cortex

consists of the vector formed by the activities in these components. We geLerate

a stimulus vector by first designating one of the input elements on the circle

as representing the desired orientation. For definiteness, say the input

elements are indexed by I through 10, with I representing vertical and 6

representing horizontal. Say we want to create a vector coding a vertical bar.

We designate element number I as our "center" component. The stimulus vector is

given a large amplitude in this component, indicating that the vector

corresponds to this orientation. Neighboring components on the circle (that is,

elements indexed by 2, 3, 9. and 10) are given smaller amplitudes, indicating

that those orientations are similar but not identical. As we move around the

circle of input elements, we assign amplitudes which refLect how similar the

orientation represented by each element is to the desired center orientation.

.%A



Components which represent similar orientations are active, while elements

representing orientations orthogonal to the center orientation (elements 4. 5, 6.

7. and 8) are relatively inactive.

Computationally, we use a function which is maximal at the center element

and decreases away from this center (Figure 2). This function sets the

activities in each of the input elements. The width of this function controls

the overlap between patterns in a straightforward way. Returning to the color

analogy, this function is analogous to the spectrum of the illumination, with the

width corresponding to the bandwidth. If the function is parametrized as very

narrow, then different patterns would overlap very little. (Interpreting back to

physiology, the patterns of firing in the optic radiations atferent to a cortical

cell would be quite different for a vertical bar and a bar inclined 10 degrees

toward horizontal.) If the function decreases slowly, all patterns would be quite

simiLar. Two or three lines of code ('FUNCTION contour' in the code given below)

suffice to calculate the input vector with such a system, and it carries with it

the graphical form of a tuning curve which can be compared with the output tuning

curve, since each input element corresponds to the pattern centered on it. We

have moved somewhat far from the reality of oriented contours, however, and we

must keep in mind that our construct is an abstract model, and not a realistic

model, of the inputs to visual cortex. That is, re g9MRgng= 2i gur simulius

(but we wiLl stil reter to them as "afferent fibers" because of the anatomical

analogy).

Computing the corticaL response, R

Once the activity on the afferent fibers is determined, we can compute the

C,., , .,.. . , .. .. -, ,. .. ., ,. - , ,, . . .. .. . . . . .. . ..



activity in each cortical cell by integrating the akferent inputs to each cell

with the intracortical inpucs (equation 1). To code this aspect of the model we

write the synaptic weights to a cortical cell as the components of a synaptic

weight vector. To determine the postaynaptic potentials (S& - QR) of the

cortical cells we take the product of the synaptic weights (S and -Q) with a

vector which is formed from the components of the input vector to the afferent

fibers and the other cortical cell activities coming in along the intracortical

fibers (A and R). f(SA - QR) determines the actual cell activity R, where the

function f comes from some model for the firing behavior of kitten cortical

neurons (usually f incorporates a firing threshold and firing saturation, with a

somewhat linear range in between). Because the intracortical inputs depend on

tne activity in other cortical cells which are being computed simultaneously

(that is, our computation of R requires that we know R already), we have a

problem. Our system is a recurrent, feedbcak type system, and because of size,

nonlinearities, and a desire to mimic reality, we do not compute the activity

explicitly, but instead pertorm an iterative calculation which approximates the

steady state activity. Through such computations (described below) we derive an

activity for each cortical cell. Writing all the cortical cell activities as a

vector, we have the output of the simulation in raw form.

Computing the synaptic modifications, dS/dt and dQ/dt

444 We can then use the cortical activity to drive synaptic modifications, which

are the result of the particular visual stimulus which was experienced at the

most recent moment of time. Coding the synaptic moditications amounts to writing

the model's modification rule in functional form, which usually takes no more

than a few lines of code.

o- 'V



Simulating visual experience

The code for generating a stimulus- computing the cortical response, and

modifying the synapses falls vithin a simulated time loop which is the main

driver of the simulation. On each pass of the time loop a potentially different

stimulus from the environment which is consistent with the specified rearing

conditions, is presented through the set of simulated afferent fibers. (We use a

random variable to pick the order in which the stimuli are presented to the

system.) Passing through the simulated time loop thus models the experimentally

desirable aspect of a kitten's rearing environment, which consists of a

controlled set of visual stimuli that the kitten is exposed to in real time in

some order, possibly random. In fact, experimental control over a kitten's

visual experience is distressingly poor. A simulation can take into account some

of the less controlled aspects of this experience, by, for instance, modeling

moments of sleep or inattention and the like by noisy, rather than patterned,

visual inputs. Rather than presenting a rigid set of oriented patterns, with the

inputs to the two eyes identical. we prefer to present some statistical

distribution of a large set of stimuli which includes occasional unpatterned

inpucs and differing patterns in the two eyes. As simulated time proceeds, the

various stimuli rewire the network, with a speed which depends on the speed of

synaptic modifications and on the the rate at which stimuli which strongly atfect

synapses appear in the environment.

Analyzing the cortical response properties

The above process of generating a stimulus, computing the cortical response,

ana modifying synapses, is occasionally interrupted in order to test the network

:" ": ~.. .. ............ "".-... . .. ..- •...



The following example of a program designed to simulate a visual cortical

development model will illustrate the details involved in coding such a

simulation. We have written versions of this program in BASIL. FORTRAN. and

PASCAL for various machines, including L42. AMDAHL, IBM, VAX, and APOLLO. and

have found that modifications are easily made. and usually have proven usetul in

enriching the code. We present a PASCAL version (see ref. 4 for a good

description of this language), some of which we give in pseudocode to sketch the

structure, leaving out some details and all of the machine-dependent features.

The omissions include the graphics routines, which we feel are crucial in

understanding the performance of the simulations, but which must be created

according to one's own resources and purposes. Complete source codes in PASCAL

(for AVOLLO) are available from the authors, although these programs are specific

examples of the general codings described in this article.

We simulate processes occurring through time, so the program consists of a

time loop. Each moment of time corresponds to a stimulus presentation. One

could conceivably relate this simulated time unit to some real time unit, by

reasoning that real visual stimuli capable of driving synaptic modifications

occur with a certain duration and rate (ref. 1). The rate of change of synaptic

strength with individual stimulus presentations would be the appropriate quantity

to measure in the real world, and could then be set in the simulation as a

parameter in the synaptic modification routines (in the example of a synaptic

modification rule given below this is the time constant 'h'). The ateadXJ.Late

xsgam to each stimulus presentation is used to pertorm synaptic

modification. More complex simulations might retlect a less discrete view of

time, allowing for a smoothly varying stimulus and a dvnamic response, simply by

' '' " '% m
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with a standard set of stimuli. These test sessions alloy the evolution of the

netvork to be evaluated, so that the responses of cortical cells can be compared

at different points in their experience. Each test session consists of three

main parts: generating a stimulus, computing responses, and analyzing the

responses. The analysis takes the raw data and compiles it into more interesting

measures of pertormance, such as indices of selectivity and ocular dominance and

population statistics. Note that no synaptic modification is pertormed during

test sessions. How often one tests the system depends on the detail desired and

on the speed at which the network is changing.

Summary of overview

To summarize, the structure of the simulation comprises a loop indexed by

simulated time, during each iteration of which several procedures are calLed.

First, a stimulus is chosen according to the desired rearing conditiovs. Next,

~ this stimulus is translated into an input vector. The cortical response is then

computed. Finally, synaptic strengths are modified. A branch to a tect session

is made at desired intervals (Figure 3).
.4

*. Betore proceeding to a more detailed examination of explicit coding

techniques, we would like to emphasize that coding the visual environment of the

kitten is the most demanding task in constructing the simulation. A model's

anatomy for the kitten cortex and rule for synaptic modification imply the logic

of the code that one must write. Capturing the essential characteristics of the

kitten's actual environment in code, however, is not straightforward. The mount

of discussion in the overview, as well as the large number of lines in the code,

devoted to this one task attests to the importance of this task in simulating the

present model for the neuronal development of kitten cortex.

4%
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insercing an inner time loop.

Note that for purposes of clarity, we pass parameters between routines

explicitly even when it is neither necessary nor desirable. (Explicitly passed

parameters are listed in the parentheses to the right of the called routine, both

in the calling statement and in the definition for the routine. If the called

routine changes the value of a parameter, then that parameter is defined as a

variable in the parentheses associated with the routine definition.) In general

the code given below is not optimized for run-time, but instead we have attempted

to make it understandable to the reader.

MAIN PROGRAM LOOP

Figure 4 gives the driver for the program, which generates an input,

calculates the output, modifies synapses, and analyzes the responses. Prior to

entering this principal portion of the program, the code must initialize

variables and interact with the user, but we omit those important but tedious

preliminaries for the sake of brevity.

STIMULUS GENERATION

The indeendent variable in many simulation experiments is the

environment. In order to easily handle the various rearing conditions in the

most convenient way, we have coded the stimuli in plain English. The routine in

* Figure 5 determines the current stimulus as a function of time and a random

variable. For this example, we simulate an experiment where the early rearing

(prior to time 1000) is in the dark, followed by rearing in the light assuming

that: 20Z of experience is without visual input (stimuli consisting of noise),



201 consists of patterns through only one eye (either the right or the left).

1OZ has uncorrelated patterns in the two eyes (as might be found in a strabismic

animal). and the remaining 50Z presents simiLar (although not always identical)

patterns to the two eyes. Other rearing conditions that might be used are

°normalrearing'. 'reverse suture'. 'adapting, and 'sinusoid', which we'wi~l

describe shortly. Ditferent simulation experiments are run by inserting the

desired rearing conaitions into the above procedure. This process can be made

"user-friendly" by coding the procedure as a menu-driven interactive choice

paradigm.

The integer 'random.seed' is uniformly distributed over a large interval, so

that we can obtain random variables uniformly distributed over arbitrary

intervals as above by applying the 'HOD' function, which returns the integer

remainder upon division by the modulus (10 in the example here).

The individual stimulus-setting routines that can occur in the 'PROCEDOR

Choose-stmulus' follow (Figures 7-9). They fill in the components of the

variable 'stimulus', which has the type definition given in Figure 6. This

particular PASCAL-dependent construction provides a convenient way to translate

the "English-language" rearing conditions into code, but could be replaced with a

series of conditional statements or arbitrary assignments in other programming

languages. The type:

rearing - (correlatedmdrs.dr.disparity.strabismus.adaptationperiodic)

consists of these tags which refer to the various rearing conditions:

°correlated' is used to provide identically corresponding patterns in the two

eyes. 'md' means monocular deprivation and presents a pattern in the open eye but

only noise in the closed eye. 'rs' stands for reverse suture which comprises

successive monocular deprivations. 'dr' abbreviates dark rearing which simply

presents noisy inputs to both eyes. 'disparity' gives partly correlated patterns

~ ~ d . r f:?rYI::-. Wv e'~- e'~ eM



to the two eyes, 'strabismus' gives uncorrelated patterns to the two eyes.

'adaptation' sets a particular stimulus for repeated presentation to either eye

alone or both eyes together, and 'periodic' allows for presentation of periodic

patterns ("gratings"), rather than "bars". The other type definitions are:

angle - I.. numangles, where numangles is the number of patterns in the simulated

visual environment, and eyes - (leftrightboth).

The routines in Figures 7-9 produce the desired simulated experience in an

understandable. "English-language" form, by taking advantage of the

record-variable 'stimulus'. We must nov translate this information into a

compucational, numerical form, namely an array of values for the activities in

the arferent fibers. Active fibers will be assigned numbers near I, and inactive

fibers numbers near 0. Thus, it the visual exposure consists of monocular

deprivation, with the left eye closed and the right eye viewing a pattern, then

fibers from the left eye will carry small random values while the right eye

arferents will be given values determined by the pattern. The procedure in

Figure IU and the functions it calls (Figures II and 12) pertorm this

translation.

USPOISE CALCULATION

At tnis point we have set up the input and we are ready to turn our

attention at last to the model we want to simulate. The input has been coded

into toe vector 'afferent-activity' (A in equation 1) and will now be fed to tie

corcical cells, which will respona according to the state of their synapses.

This response will then be used to alter the synaptic state.

We must solve equation 1. R-f(SA-QR). The variables S, A, and Q are fixed

here, with our only problem being that we must deal vith the intracortical
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feedback which makes R a function of itself. While negative feedback provides

stability to the visual system here, from a strictly computational point of view

this feedback can cause instabilities when perforuig the iterative calculations

needed to solve the equation. For instance. it one starts with R being very

mall, there will be very little intracortical inhibition (QR will be small).

But then one could reason that the lack of inhibition would lead to

overexcitation, which in turn would lead to strong inhibition which would result

in little response, and so on through a possibly growing oscillation. This

simple-minded iterative scheme, which can be written in scalar form as

y a - hy.,,

is unstable for h>l. The constant h corresponds to the eigenvalues of the matrix

Q in equation 1. and the difficulty of ensuring that the eigenvalues of Q remain

less than I prevents the application of this simple explicit one-step scheme

(where new response values are computed based solely on the values from the last

iteration).

Multi-step schemes, such as

yn" a - h(y _+y.)2

can help but still fail to prevent oscillations for large h. What is needed

instead is an implicit scheme (where the current iteration appears on both sides

of the equation), for example of the form

y,- a - h(y.,+ y,,)/2.

This method is stable for all values of h. Solving such implicit schemes exactly

can be done for relatively small linear systems, but is out of the question for

our large, often nonlinear equations. Instead, a surprisingly simple method can

often give satisfactory results: update individual cells from iteration n-I to

iteration n, while other cells remain in iteration n-1. That is, the updating is

asynchronous, not all cells are upoated at once. One advantage of this method is

'rl
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that only one vector of activities need be stored, rather than two (the n-l'th

and n'th) as in the scheme above. At any point in the computation, some of the

components of this vector will belong to the current iteration (the U'th) while

otners will belong to the last iteration (the n-lth). The advantage in

conserving memory is usually not great in these days of large virtual memory. We

should note here that these iterative methods also tend to be slow: it feedback

can be avoided in a model, the simulations will run much faster. Given the

necessity of simulating a recurrent network, however, this method seems to be as

stable, convenient, and fast as possible.

The usefulness of this method comes from the fact that fluctuations produced

-" by the iteration process are averaged out by adding the two consecutive

*responses. Clearly, for this process to work some averaging across different

cells is needed. For instance, starting from very law activities again, one

might expect the first few cells which are updated to respond strongly because of

the lack of inhibition. These cells would then provide strong inhibition to

later cells, which would never respond. The result would be an unintended

separation of the cortex into those cells which were updated early, and are

active, and those cells updated later, which are inactive. One way to avoid this

problem is to update cells in random order, so that although during the first

iteration the early cells might have an advantage (or disadvantage, depending on

the initial state), there is no longer any meaning to early and late atter the

first round of updates. A cell which saw little inhibition when it was first

updated could be updated again soon thereatter, when the early cells are

providing strong inhibition. A large enough sample of cells is needed to allow

this random ordering to etfectLvely compute averages over each type of cortical

response property.

The procedure in Figure 13 provides a coding of this random, asynchronous,
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iterative method. Since the iterative process changes only the intracortical

input. we only need to compute the afferent input to each cell once. The

conoition "atferentinpuchasntalready.been-.computed(cell)' is simply given by

the boolean array 'used': afferent-input-hant-alreadybeen..computed(ceIt) :

NUT used(celll. Each time we choose a cell we set 'used' to TRUE for that cell,

and we choose to iterate until all the cells have been chosen at least once.

This means that at least one cell will only pass through this iterative procedure

once, but unless a cell is chosen only in the early stages (which has a low

probability) there is no harm done. It is important to keep in mind that only

the feedback (QR in equation 1) is being forced to converge here, and that this

is a global property: we are not really forcing each cortical cell to converge

separately and independently of other cells (if one cell is less active and

another more active than the ideal levels, the method will still work). Only

..- the totaL cortical activity, which behaves like the average activity, must
4-

stabiLize. This globality lets us take advantage of the averaging over many

corcical cells. Simulations which generate specificity also provide a strong

organizing influence which tends to overcome the relatively small biasing irrors

from the iterative computations, as cells learn to respond to the input pattern

without regard to where they lie in the updating sequence.

The routine in Figure 13 calls separate procedures for atferent and

intracortical inputs, but they are essentially identical calls to an inner

product function (Figure 14). The other functions called in PROCEDURE

Compute-response' are given in Figure 15. The sigmoidal function used here (a

tanh function) for the function f in equation 1 has some nice properties, but

one must be caretul not to generate undertlows and overtLows in the "'XP'

function.

We used the variable 'synapses' in order to weight the afterent and



intracorcical inputs to our cells. Its type defini:ion is

synapses_type - RECORD

afferentintracortical : ARRAYtcellindexI OF mazvector.

Thus, we get two matrices, "synapses.atferent' and synapses.intracortical'. We

define these matrices, however, as arrays of arrays ('maxvector ° is defined above

as an array of the largest dimensionality required), in order to easily pass a

single row rather than all the rows of such a matrix. The entire matrix is never

used all at once, but only row by row. Even in programming languages which do

not provide such an array of arrays construction, one should consider stripping

off a row of a matrix, putting the row into a buffer, and working with the

buffer, rather than manipulating the entire matrix. On the other hand, it an

array processor is available, the software should take advantage of the enormous

etficiency of the matrix algebra handling.

STIEAPT IC MODIFICATION

The procedures in Figure 16 sketch a coding for the heart of the model, the

synaptic modification algorithms (equations 2 and 3). Here. we call a comon

routine for modifying both afferent and intracortical connections, but completely

different modification schemes would be used in some models, while many models

modify only one of these pathways (see ref. 8). As mentioned above, the time

constants in the modification rules (the parameter 'h', for example) determine

the duration of a single iteration of the time loop in terms of the duration of

a stimulus presentation in real time. To make a connection between simulated

time and real time one would have to speculate far beyond current knowledge. We



emphasize that the output of the simulation vill be very sensitive to the

parameters in these key modification routines. The values for these parameters

should usually be set interactively, rather than during compilation. However, a

compl te investigation of the behavior of these models requires sensitivity

analysis (ref. 2). and systematic variation of parameters should be written into

a program at some point for this purpose (see Discussion).
'

AXALYSIS

This completes the simulation of the model. In order to observe and study

the simulation at intervals within the time loop. we occasionally interrupt the

N. loop in order to test the network. A test usually consists of three steps: 1)

compute the cortical cell activities using a standard set of test stimuli; 2)

*" analyze the activities to make explicit the relevant measures of interest, such

*" as selectivity and ocular dominance; and 3) write the data to output devices and

fiLes. This can be a tremendously complex task, and we will only indicate some

of the basics. Much of the work in coding program outputs involves

device-dependent routines, especially for graphics. The procedure in Figure 17

sketches in one block of pseudocode the sorts of actions needed. Note that the

main steps replicate the simulation's driver (Figure 4), with the differences

being that stimuli are chosen differently and the synaptic modifications are

bypassed. The following example (Figures 18-22) makes the sketch explicit.

To begin the analysis we need to create a standard set of test stimuli and

compute the cell responses for these stimuli (Step 1). In the example of Figure

18 the testing stimuli are a subset of the patterns used to train the network.

The variable "stimcount' controls the manner in which the patterns are presented

to the network. For "stimcount ° equal to 0 the system tests the cortical cells
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" by presenting the patterns to both eyes simultaneously. For stimcount' equal to

I the system presents the patterns to the left eye and nothing to the right eye.

vhiie for 'stimcount' equal to 2 the system presents the patterns to the right

eye and nothing to the left eye. When 'stimcount" equals 3. the system leaves

step I and passes the raw data stored in variable 'analysisdata" to the routine

°Do statistics', which comprises step 2. In practice, one may want to avoid the

storage of all the raw data, by updating the statistics as each test stimulus is

presented.

In this particular routine the measures of interest are selectivity, ocular

-dominance, and facilitation, which are defined within the routine (Figure 19c).

The statistical moments that the routine calculates are the mean and variance for

each measure and the correlations between selectivity and ocular dominance, as

well as facilitation and binocularity. For each value of 'eyetest°, or more

generally of 'stimcount', the routine must determine several quantities: the

pattern which maximally drives each cortical cell and the value of the maximal

response, the average response of each cortical cell over all stimuli in the

test set, and the response of each cortical cell when the pattern that drives the

cell best binocularly is presented to one eye at a time. Using these quantities,

the routine is able to calculate the measures of interest and the statistical

moments. This completes step 2.

To finish the analysis the data must be sent to the output devices and

fiies. This section of the routine can be complicated, particularly if a

graphics device is used to display the output data. In this example the routine

simply writes the results to the terminal in tabular form (Figure 19d).

The test session and analysis shown here is entirely deterministic.

Stochastic testing is also of great interest. Noise can be injected into the

system in a number of places (the input, the synapses, the response) and the
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variability of the response can be studied. Unfortunately, such testing requires

even more run-time and analysis-

Discuss ion

Once the simulation is coded, debugged, and compiled, test runs should be

perrormed to assess the most basic behaviors. For instance, does the system

remain stable atter sufficient experience in a stable environment? Do the

responses change as expected under monocular rearing? In order to obtain

satisfactory results from these basic simulations, adjustments will need to be

* made to parameters. The numbers of atferents and cortical cells, the initial

* synaptic weights, the amplitudes of the inputs, the form and values of the

function f in equation 1, the parameters in the modification rules (equations 2

and 3), and the sequence of stimuli must be played with until a consistent set of

* parameters becomes evident. There is no good substitute for experience with

observing the direct etfects of altering these various inputs.

However, once a rough feeling is obtained for when the simulation runs

reasonably, a great deal of frustration can be avoided by varying the large

parameter set in a systematic manner. Since a typical program potentiallly

contains 20 or 30 parameters, preliminary considerations obtained from early runs

or analysis of the model should be used to exclude certain of these parameters

from further analysis by virtue of their lack of significance for the eventual

results. Those parameters which may affect theo output should then be varied

around their nominal settings, a estimated by the preliminary runs.

The analysis of the system output as a function of the parameters is termed

"sensitivity analysis". By examining the results of a large number of runs at

different parameter values, one can establish the sensitivity of the output
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variables to each parameter, and at the same time optimal values for the

parameters can be located. Cukier et al (ref. 2) developed a method of

sensitivity analysis which applies to our simulations. A large nt mber of runs

are required, but fever than with a brute force method of changing one parameter

at a time while others are fixed. Their method varies each parameter

sinusoidally at different, independent frequencies, then Fourier analyzes the

system output back into each of the independent frequencies. The power at a

given frequency and its harmonics indicates the sensitivity of the output to the

associated parameter. Unfortunately, the range over which a parameter is varied

influences the measure of sensitivity obtained, since varying a parameter over a

small range will result in less variation of the output than with a larger

range. Inspection of the data obtained from the many runs allows one's

judgments of the nominal ranges to be improved, along with improving the nominal

values upon which these ranges should be centered.

As an example of the usefulness of sensitivity analysis, consider the

dependence of orientation selectivity on some of the parameters of our

simulation. In this model, we begin with an initial state of low selectivity,

and with appropriate experience selectivity increases to some asymptotic level.

Our measure of selectivity takes values between 0 and 1, with 0 corresponding to

a flat tuning curve, whiLe I corresponds to a tuning curve which is infinitely

narrow (i.e. a delta function). We discussed above how we code visual stimuli

which represent an abstraction of oriented bars, and pointed out that the

imporc~ant parameter in these stimuli is the overlap between different stimulus

vectors. The parameter 'width..ofinput° in Figure 12 determines this overlap.

If the overlap is large, the difterent stimuli will look alike to the cortical

cells, which should theretore show less selectivity than if the overlap is

smaller and the stmul are more easily distinguished. By pertorming a
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sensitivity analysis, one can investigate the extent to which selectivity depends

on this inpuc tuning, compared to the dependence on other parameters such as the

synaptic modification time constants. Furthermore, one series of runs informs

the investigator not only about the asymptotic level of selectivity, but about

the progression of the sensitivity with experience. garly in a run, selectivity

might be found to depend on the excitatory modifications, while later the

inhibitory modifications become more important. and eventually the asymptotic

level of selectivity may be sensitive to the width of the input tuning as well as

* the modification speeds. Of great importance in this analysis is the discovery

of parameters to which the output is insensitive. If, for example, the system is

insensitive to the parameters involved in the inhibitory processes, these

* processes contribute little to the operation of the model.

Once the very hard job of finding appropriate parameters is completed, the

* simulation can be run under various rearing conditions to show that experimental

results can be replicated (at least in a very limited, abstract context!) and

novel rearing conditions can be used to "predict" the results of

yet-to-be-pertormed experiments.

The main value of running simulations, we feel, is not to pretend that on*

is imitating the nervous system in any detail, but instead to gain an

*understanding of some of the concepts which may someday help to model the

physiology in detail. For instance, the use of various forms of Hebbian synapses

enables very powerrul computations to be pertormed by parallel networks, with

* little need for prior organization. Simulations aid in appreciating both the

* power and the limitations of the concept of self-organization by synaptic

m odification. For example, one learns quickly to pay attention to input coding,

which is practically ignored in most models prior to their realization in

simulations. Whereas a model of central processes might assume that the
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peripheral nervous system copies external stimuli faithtullys a simulation might

assume that the central nervous system receives inputs which are all but

completely processed.

Simulations of neural systems serve to develop applications in artificial

intelligence. One such application might be in the programming of parallel

computers. A neural network with modifiable synapses provides one of several

potential architectures for parallel hardware, and knowledge of the behavior of

these systems will allow future machines to be used to not only simulate neural

models at high speeds, but also in applications where continuous adaptive

behavior or associative recall of large databases is required. The code

described in this article was constructed to simulate a self-organizing system,

where no external information about the system output is available. However,

this program can be adapted to run a supervised learning system, where the

desired output is fed to the synaptic modification algorithm as a goal (see ref.

7). The error between the actual output (R) and the desired output can then be

used to modify synaptic weights. Such an error-correcting method allows the

system to be taught to respond to given inputs with outputs which are determined

in advance. The system can be taught to discriminate between slightly different

inputs, or to categorize all inputs which are similar to some prototype as a

- given class. Although the above discussion concerns sensory processing

primarily, one could substitute a motor system's anatomy in order to develop

etfector instruments.

SUMNlAI!

In our previous article ( ) we discussed models of the development of visual

corccal specificity. The behavior of such a model can be simulated on a serial
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computer by stepping through a sequence of stimulus presentations which mimic

visual experience. The simulated experience controls the development of cortical

responses through an algorithm which changes the simulated synaptic weights.

Such simulations provide a means to study models, and should be regarded more on

an abstract level than as simulations of real neural processes.
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Figure Captions

Figure 1:

One way to generate input stimuli is to project bars onto a sheet of

*receptor elements. The activity of each receptor is proportional to the degree

to which that receptor is covered by the bar.

* Figure 2:

Examples of abtrc stimuli. The curves are gaussians on a circle (see

'FUNCTION contour' in Figure 12). Two stimuli are shown, centered on 0 (solid)

and 45 (dashed). On the left, the curves are displayed in polar form, with

amplitude given by the radial distance from the circle. On the right, the circle

is unwrapped to a cartesian plot of amplitude versus orientation (or input

fiber). The overlap between two stimuli depends on the distance between their

* centers and on the width of the curves.

* Figure 3:

A fLoW chart for a simulation. The program consists of a loop which

* simulates the passage of time. Following initialization of variables, for each

iteration of the time loop an appropriate input is chosen. This input induces a

response, which often must be computed iteratively. Display of this input/output

relationship may be useful, and we indicate this by the "graphics" box. At

certain points in the time loop the simulation is interrupted for analysis of the

system. The analysis routine can use the same stimulus-generation and

response-computation procedures, by setting a standard sequence of test stimuli.

During analysis the system is left unaltered, but during the main simulation

sequence, synaptic strengths are modified based on the stimulus ad response.

"C.,
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Data ts written to output devices when desired, generally before each time step.

Figure 4:

The driver for the simulation. When the driver calls the routine

'Choose_stimulus', the variables 'time', random.seed'. and 'stimulus' pass

- explicitly. Notice that 'PROCEDURE Choose-stimulus' changes the value of

.stimulus'.

U..

Figure 5:

Routine for determining rearing conditions. The 'CASE (random-seed MOD 10)

OF' statement calls the routine that is numbered by 'randoouseed MOD 10'. For

example, it randouseed equals 128. then (randomsseed MOD 10) equals 8 and the

CASX OF statement calls 'PROCEDURE Disparate'. The variables 'time' and

randomseed' must be specified before entering 'PROCEDURE Choose-stimulus'.

'PROCEDURE Choose-stimulus', however, assigns a value to the variable 'stimulus'

and passes this new value back to the main driver of the program.

Figure 6:

Record variable for storing visual stimulus conditions. The variable

°stimulus' contains a 'tag' component. which takes on values of the type

'rearing', and for each value of the 'tag' component several other variables.

For example, 'tag - d'. 'open - right', and 'pattern - 5' specifies the 'tag'

component of 'stimulus'. i.e. we are looking at the 'ad' component of

'stimulus', and the values of the variables for 'tag - ud'. i.e. 'stimulus.open -

right' and 'stimulus.pattern - 5.

Figure 7:
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Routines for defining rearing conditions.

Figure 8:

Routines for defining rearing conditions. The routine 'Procedure Disparate'

uses a crude method to generate disparities between the left and right eye

stimuli. The function 'random' returns a number between 0 and 1. which is then

used to generate "dispshift' which lies between -2 and +2, which finally leads to

tne difference between "leftangle" and "rightangle" (the disparity) lying between

-4 and +4. However, the distribution of "dispshift° is not uniform, so that

., disparities tend to be between -2 and +2.

Figure 9:

Routines for defining rearing conditions.

Figure 10:

Translation of rearing conditions into stimulus vector. The main driver of

the program passes 'stimulus' and 'afferentactivity' explicitly to 'FROCEDURE

"*. Code-atferentinput'. The value of 'stimulus' determines the pattern types that

are assigned to the vector 'afferent-activity'. In this routine we have two

loops. The first (second) pass through the outer loop assigns activities to the

S. components of 'afferentactivity" corresponding to the left (right) eye. The

inner loop calculates the activity assigned to each component by calling

"FUNCTIUN atferentcomponent" which uses the tag value of 'stimulus' to set the

activity. Notice that 'FUNCTION afferentcomponent" returns a numerical quantity

to *PROCEDURE Codeafferent-input 0 In general. PASCAL procedures change

variable values, whereas PASCAL functions pertorm some calculation and return the

result of the calculation as the value of the function.



Figure 11:

Function which runs through conditions for each type of stimulus.

Figure 12:

Functions to set activity in afferent fibers.

Figure 13:

Iterative computation of cortical activity. Variable 'used' is a vector of

dimension N, the number of simulated cortical cells. Each component of 'used'

carries a value of TRUE or FALSE, where TRUE (FALSE) indicates that the procedure

has (has not) calculated the afferent input to the corresponding cell. The

statement 'used :- all-false' sets all of the components to FALSE. When the

REPEAT loop has updated each cell at least once, all the components of 'used' are

TRUE and the implicit updating ends.

Figure 14:

Inner product routines.

Figure 15:

Functions used in response calculations.

Figure 16:

Synaptic modification routines. Notice that modifying the synapses takes

very little code. Each pass through the loop of 'PROCEDURE Modify-synapses'

modifies the synapses of one cell by calling 'PROCEDURE Modify' which changes the

synaptic weights of the cell one by one.

.... 46N



Figure 17:

* Analysis driver.

Figure 18:

Analysis routine.

Figure 19:

Subroutine for analysis, a) initializations; b) preliminary calculations; c)

statistics; d) vriting output.
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FOR time :0 TO end-of-time DO
BEGIN

Choose-stimulus (time,randoiuseed~stimulus);
* Codeafferent..activity (stimulua,afferent-.activity);

Compute-..response (afferent...acivitysynapses.response);
Modify-.synapses (afferent-activity ,response synapses);
IF time IN analysistimes THEN Analysis (synapses);
Log..resul ts.tooutputdevices

END;



N ~PROCEDURE Choose..stimulus (time: times; rando...seed: INTEGER;
VAR atimulus:atimulus.type);

BEGIN
IF time < 1000 THEN Dark (random...eed,stimulus)

ELSE
N. CASE (randoiuseed MOD 10) OF

0,1 : Dark (random..seed~stimulus);
2 : Closeleft (random,_.seed,stimulus);
3 : Closeright (random..seed,stimulus);
4 : Strabismic (randoa.seed.stimultia);
5.,.,9: Disparate (random.seed.stimilue)

.EN

ENEDD

ENDe



stimulus_.type - RECORD
CASE tag : rearing OF

correlated : (orientation : angle);
md : (open : eyes; pattern : angle);
ra : (firstopen : eyes; reversal : times;

bar : angle);
dr : 0;
disparity : (rightangleleftangle : angle);
strabismus : (rtangle.ltangle : angle);
adaptation : (adaptedeye : eyes;

adapting-pattern : angle);
periodic : (frequency : real; phase angle)

END;
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PROCEDURE Normalrearing (randomuseed : INTEGER;
VAR stimulus : stimulus-type);

BEGIN
WITH stimulus DO
BEGIN

tag :- correlated;
orientation :- I + (random_seed MOD numangles)

END
END; (Norualrearing)

PROCEDURE Closeleft (random-seed : INTEGER;
VAR stimulus : stimulus-type);

BEGIN
WITH stimulus DO

BEGIN
tag:-
open : right;
pattern :w I + (random_seed MOD numangles)

END
END; (Closeleft)

PROCEDURE Closeright (random_seed : INTEGER;
VAR stimulus : stimulustype);

% BEGIN
Closeleft (random-seed.stimulus);
stimulus.open :w left

END; (Closeright)

PROCEDURE Reversesuture (randomseed : INTEGER;
VAR stimulus : stimulus-type);

BEGIN
WITH stimulus DO
BEGIN

tag := rs;
firstopen :w right;
reversal :- 2000; (or vhatever time is desired}
bar : I + (random-seed MOD numangles)

END
END; (Reverse-suture)

* ~ '* ~ %~!



PROCEDURE Dark (randoo~seed t INTEGER;
VAR stimnulus :Stimulus..YPe);

stinulua.tag :0 dr
END; (Darkrearing)

PROCEDURE Disparate (randowuseed : INTEGER;
VAR stimulus :stimulus.type);

CONS?
dispvid - 3.2;
disptrans - 1.6;

VAR
dispshift : INTEGER;

BEKGIN
WITH stimulus DO

* BEGIN
tag :- disparity;
rightangle :- I + (randoi~seed MOD numangles);

IF rightangle > numangles DIV 2
( Only half the patterns (the "vertical" ones))

THN{ induce disparities.)

BEGIN
dispshift :*ROUND(dispvid * random(random..5Ced) - disptrans);

leftangle I + (rightangle + numangles - I + diapshift)

V MOD numangles;
dispshift :ROUND(dspvid * rondom(randouL.seed) - diaptrans);
rightangle 1 + (rightangle + numangles - I + dieshift)

MOD numangles
END

ELSE
lef tangle :rightangle

END
END; (Disparate)

% -tIP



PROCEDURE Strabismic (randoum.seed • INTEGER;
VAR stimulus : stimulustype);

BEGIN
WITH stimulus DO

BEGIN
tag t- strabismus;
rtangle : I + (randomseed HOD numangles);
itangle : I + TRUNC(numangles * randou(rando.seed))

END
END; (Strabismic)

PROCEDURE Adapting (randomseed : INTEGER;
VAR stimulus : stimulustype);

BEGIN
WITH stimulus DO

BEGIN
tag :- adaptation;
adapted-eye :- right;
adapting-pattern :- 17

END (This is an example. Any stimulus can be fixed here.)
END; (Adapting)

PROCEDURE Sinusoid (random.seed : INTEGER;
VAR stimulus stimulus type);

BEGIN
WITH stimulus DO

BEGIN
tag :- periodic;
phase :- I + (randoomseed MOD numangles);
frequency : tvo-piover..n * (randomseed MOD 10)

END
END; (Sinusoid) tvo_piover..n (2 * PI) / numangles )

U



PROCEDURE Codeafferent-input (stimulus : stimulus-type;
VAR afferentsctivity : marvector);

VAR ( Numafferents equals the total number }
fiber. ( of afferent fibers to each cell.
fibernumber : maxindex; ( maxindex - l..numafferents
leftorright : eyes; { or I..nuicells

{ depending on vhich is larger.
BEGIN ( marvector - ARRAY[mauindexl OF REAL I
fibernumber :- 0;
FOR left_or_right :- left TO right DO

FOR fiber :- I TO (numafferents I 2) DO
(We take }

( numangles - numafferents / 2. I
{ That is, each pattern (or angle) corresponds }
( to an afferent fiber from each eye. )

BEGIN
fibernumber :- fiber_number +1;
afferent-activity[fibernumber] :

a f ferent_ac tivity-component( left_porright fiber. s timulus)
END

END; (Codeafferentinput)

-" ...'.IN- -.%



FUNCTION afferent.coinponent (leE t..or..right : eyes;
fiber : axindex; stimualus : stimulus-type) :REAL;

VAR
x: REAL;
timerev~lropen : BOOLEAN;

BEGIN
WITH stimulus DO

CASE tag OF

correlated
x :contour(fiberorientation);

ud:
IF left..or..y.ight - open
THEN x :contour(fiber~pattern)
ELSE x :noise(noise.amplitude);

rs
BEG IN

timerev :time < reversal;
Iropen :leE t..or.right - firstapen;

IF (NOT timerev OR Iropen) AND (timerev OR NOT iropen)
(timerev IF? lro2en)

THEN x :contour(fiber.bar)
ELSE x :noise(noise..amplitude)

END;

dr
x :noise(noise..auplitude);

disparity
IF left..or...right - left

THEN x :contour(fiber.lef tangle)
ELSE x :contour(fiber~rightangle);

strabismus
IF leE t..or..right - left

THEN a contour(fiber.ltalgle)
ELSE z :contour(fibersrtangle);

adapting
IF (adapted-..eye - both) OR (leE t..or..right -adapted-..eye)

THEN x contour(fiberadapting.pattern)
ELSE x :noise(noise..amplitude);

periodic:
x :(1+COS(frequency*(fiberphase)))/2

END;
afferentcoponent :- x

END; {afferent..component)



FUNCTION contour (fiber : maxindex; center-angle : angle) : REAL;

CONST ( Plotting fiber activity versus fiber )
vidth-of-input - 1.0; { number gives a Gaussian curve with the )

( peak value occurring at 'center-angle'.)
( (see Figure 2) )

BEGIN
contour :- EZP(-idthofinput *

distancesquared(fibercenterangle))
END; (contour)

FUNCTION distance-squared (fiber : maxindex; centerangle : angle) : BEAL;

( This function calculates the distance between )
( points lying on a unit circle. }

BEGIN
distance-squared :- 1.0 - COS(two_piover_n * (fiber-centerangle))

END ; (d istancesquared)
E twopiovern - 2 * PI n uumangles )

FUNCTION noise (amplitude : REAL) : REAL;

BEGIN
noise :- amplitude * random (randomseed)

END; (noise)

FUNCTION random (VAR random-seed : INTEGER) : REAL;

(random is uniformly distributed between 0 and 1)

CONST
alpha - 779; ( See refs.4,5 on the generation )
lambda - 361; ( of random variates. )
pea - 16384;

BEGIN
random :- rando=.seed/pea;
randomseed : (alpha * randomseed + lambda) HOD pea

END; (random)

9 a , . , . .- a '""e:e" ."'' ,. " . ''e; ';.. " , - . ; -Z- - ;- -; ; ; .; - r..; .".,'". ,'".



AVA

usd:ARYSclidx FBOLA;clide .nmel

PROCEDHRE Computesponer(affereutaciiy;sretr ynpe yassye

VARosecel repne:-avco)

used : ARAY [cellnxi OF BOOlEA; inrcerilinx - luclls

UNTed use -ialsetru

THE; (Com pte-esponfse)et..ip



PROCEDURE Compueafferent..input;

BEG IN
afferent..input(cellJ

inner...product(afferent_..activitysyflapes4.affereflt[cel1J .numafferents)
END;

PROCEDURE Compute..intracorticalinput;

BEGIN
intracortical..inptcell]

EN;inner-.product(response~synapaes. intracorticailcelli .numcells)

FUNCTION inner..product (x.y : maivector; lastindex maxindex) :REAL;

VAR
ip :REAL;
index :maxindex;

BEGIN
ip :0.0;
FOR index :- 1 TO lastindex DO
ip :- ip + z~index) y~indexl;

inner-.product :ip
END;



FUNCTION randout..integer.O.etween (a,b :INTEGER) :INTEGER;

VAR
interval :INTEGER;

BEGIN
interval :- b-aol;
randouinteger..betveen:

a + ROUND(interval *random(randomseed)) MOD interval
END;

FUNCTION sigmoid (x : REAL) REAL;

CONST
threshold - 3.0;
steepness - 2.2;
to-sall - -20.0;
toobig - 10.0;

BEGIN
IF steepness*(threshold - x) < too-s.mall
THEN uigmoid :- 1.0
ELSE IF cteepneos*(threshold - x) > too_big

THEN uigmoid :0.0
ELSE sigmzoid : 1.0/(1.0 + EXP(steepness *(threshold -x)))

END;



PROCEDURE Modifysynapses (afferent..activity ,response :maxvector;
VAR synapses : synapses-type);

BEGIN
- FOR cell :- 1 TO numcells DO

BEGIN
Modify (numafferents,fferent..activity.responselcelll ,afferent..parameters.

synapoes.afferent(celll);

Modify (numcells.responsebresponselcell intracortical..parameters,
synapses. intracorticailcelil)

END
END; (Mod ify...synapoes}

PROCEDURE Modify (lastindez maxindex; presynaptic : maxvector;

pos esynap tic,*"parameters" : RE1AT;
VAR junctions : mazvector);

BEGIN
FOR index :- I TO lastindex DO

junctions~index] :- "the appropriate function of" (6)

(presynaptic ,postsynaptic ,parameters)

(e.g. junctions~indexi (1.0 - h) * junctions(indexl
+ h *presynapticltindexl postaynaptic)

END; (Modify)



-~ PROCEDURE Analysis (synapses synapses..type);

-I BEGIN
initialize output variables
REPEAT (stepl1
choose stimulus

.rC make input vector
compute response
log response into output variables

UNTIL all desired patterns have been tested;
compute averages and other output functions {Step 2}
write results and draw graphics {Step 3

END;

4
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TYPE
,, ceil_analysis : ARRAY(eyescellindex,angl

e OF REAL;

VAR
stimcount : INTEGER;

yes : BOOLEAN;
eyetest : eyes;
orientest : angle;
analysis_data : cellanalysis;

BEGIN
askforanalysis(time.yes); { 'PROCEDURE Analysis' is used only when }

{ the variable 'time' equals a time )
IF yes THEN ( specified in 'PROCEDURE askforanalysis*. }

BEGIN { which we omit here. )
stimcount : 0;

REPEAT
BEGIN

FOR orientest : I TO numangles DO

BEGIN
WITH stimulus DO

BEGIN
IF stimcount " 0
THEN tag :- correlated
ELSE

IF stimcount < 3
THEN tag :- md;

CASE tag OF
correlated :

BEGIN
orientation :- orientest;
eyetest :- both

END;
md:

BEGIN
pattern :- orientest;
IF stimcount - 1
THEN
open :- left

ELSE
open : right;

eyetest : open;

noiseamplitude :- 0.0

END
END (CASE tag)

END; (WITH stimulus)

Codeafferentactivity (stimulus.afferentactivity);

Computeresponse (afferentactivitysynapsesresponse);
FOR cell :- I TO nuacells DO

analysis data[eyetest.cell.orientestI :i responselcell;

END; (FOR orientest)
stimcount : timcount + 1

END (REPEAT)

UNTIL (stimcount - 3);

Do_statistice(analysiodata);
END (yes)

a' END; (Analysis)

S2..



PROCEDURE Do-.statistics(analysisO.ats cell-.Analysis);

N lp CONST
fldwd -7;

prec -2;

TYPE
analyint -ARRAY[eyes,cellindexi OF INTEGER;
analydata -ARBAY~eyea,cellindex) OF REAL;
overcells -ARRAY~eyeu] OF REAL;

VAR
eyetest :eyes;
orientest : angle;
beststimulus : analyint;
max~mean,sel,respatbinoc~max : analydata;
ocdom, facilitation~responsiveness :maxvectar;
mean...sel,weighted..meanael .variance..ael overcells;
meanocdo,eightedean.ocdom.varianceod,

mean...facil .veighte..uean.f acil ,variance..fac.
mean.re spans iveneas,

correlation.selo.d ,correlatianfac..inocularity :REAL;

BEGIN

(initializations:}

FOR eyetest %- left TO both DO
BEGIN

FOR cell :- I TO numcells DO
BEGIN

.4 maxteyetest~cellJ 0.0;
tsean(eyetest,celli: 0.0;
responsivenessicell] :- 0.0

END; (FOR cell)
mean..selieyetestl :- 0.0;
veighted..ueanselteyetest) :- 0.0;
variance..selteyetest) :- 0.0;

4 END; (FOR eyetest)
mean..ocdom :- 0.0;
weighted.mean..ocdou 0.0;
varianceod z- 0.0;
meanfacil :- 0.0;
weightedaea...facil :0.0;

N variancejfac :- 0.0;
mean...responsiveness :m 0.0;
correlation.sel.od :- 0.0;
correlation-fac..binocularity :0.0;

(End of initializations)



BEGI

FOR ell tes :- I TO ouncels DO

BEG IN
IF max~both~cellJ < analyuisdatalboth,cell,orientestI
THEN
BEG IN

4 mai~both,celli :- analysis_..atabthcell~orientestj;
best...stimulus(bath~cell) :- orienteat

* END; (IF max)
END; (orientest)

FOR eyetest :- left TO right DO
BEGIN

FOR orientest :- I TO numcolls DO
-. BEGIN

IF maxleyetest~cellI < analysis...dtaeyetet~cellorientestI THEN
BEG IN

uzax~eyetest,celli :- analysis...dataeyetestcell,orientest);
best..stimulusleyetest,celli :- orientest

* END; (IF max)
IF orientest - best..stiaulusbothcellI
THEN resp..at...inocjmaxjeyetest,cellI :-

analysis...dataeyetest~cell,orientestl;
meanteyetest~cell) : eanleyetest,cellJ

+ analyuis...dataeyetest~cell,orientesti
END (FOR orientest)

END (FOR eyetest)

* END; (FOR cell)



Cr V ZO-IF IM.L

BEG IN
FOR eyetest :- left TO both DO

BEG IN
*ean~eyetent~ceill meanteyetest,celli/numangles;

(Definition: )
seiteyetest,ceilI 1.0 - meant eyeteat.cell11/max~eyetest~col 1
uaean..sel(eyetestl :mean...el(eyetestI + seleyetest.cell);
IF responuiveneasscelli < max[eyetest.cellI
THEN responsivenesatcellJ :- uaxLeyetest.celli

* END; (FOR eyetest)

FOR eyetest :- lef t TO both DO
veighted...ean...elleyetesti :- veighted..uean...se(eyetesti +

selteyetest~celiI * responsivenescell;
(Definition: )
ocdom[cellI : max[right,cellJ/(max~left~celll + maviright.cell]);
mean..ocdom :- meanaocdom + ocdom[ceill;
weighted...ean..ocdom :- weightedmeanocdom +

ocdom[celli * responsivenest~cell;
varianceod :varianceod + SQR(ocdom[celll);
(Definition:}
facilitation(cellI :- resp..at..binma[both, ceill 1

( respat.izk..max Jleft. cel I I+rep-.atb.Oin-juax Iright, cel11);
mean~facil :- meanjfacil + facilitationlcelli;
weighted.jean..facil :- veighted.mean..facil +

facilitationicell] * responsivenessicell;:4 variance-fac :- variance..fac, + SQR(facilitation[ceili);
V u~ean...responsiveness :- mean..responsiveness + responsivenes ceiii

END; (FOR cell)

FOR eyetest :- left TO both DO
BEGIN

uaean~sel[eyetestl :- mean-selteyetesti/nwncells;
weightedmean.sel~eyetesti :-

* wveighted...ean..aeleyeestlmeanresponsiveness
END; (FOR eyetest)

mean-.ocdom :- mean..ocdo/numcells;
weigh tedmpeankocdom :- weigh ted..mean.ocd omlmean~re spons ivene as;
meanjfacil :- meanjfacillnwucells;
veightedmpeanfacil :m eightedpean~facil/meanresponsiveness;
meanresponsiveneas mean..responiveness/numceill;

FOR eyetest :- left TO both DO

variance.selleyeteti :

* variance ad ;m(variance...d - numcella * SQR(mean..ocdou))/(numcells-1);
* variance-fac :(variancefac - numcells * SQR(meau..facil))I(numcella-l);

FOR cell :- I TO nuacells DO
BEG IN

correlationsel-od :- correlation-sel od +
(sell right~cellJI-mean.aelt right]) * (ocdom[ celIJ-mean..ocdom);

correlationfac-binocularity : - correlatioa..facbinocularity
+ (mean~facil-facilitationtcelll) * abo(ocdom(cellI - 0.5)

* END; (cell)

correlatioo.aelod :- correlationksel od/SQRT(variance eel * variance od);
correlation.fac..binocularity :- correlationkfacbinocularity /I

SQRT(variance-fac * varianceod);

% %% %



write In;
vriteln( 'selectivity': 23 'od-:9,'fac':8,'resp':7.

'pref pattern' :23);
write('cell left right binoc 1-:29);
vriteln(' left right biaoco:49);

FOR cell :- I TO numcells DO
BEGIN
write(cell:5,sel[left,cellJ :fldvd:prec);
write(seltright.cellJ:fldwd:prec.seliboth,cellI:fldwd:prec);
write(ocdom(celll:fldvd:precfacilitationdcelll:fldvd:prec);
write(responsiveness[cellJ :fldwd:prec);
write(best..stimulustleft~cellJ .best...stimulusright.celll);
writeln(best-.stimulus(both,cellI);
END; (cell)

writein;
write('avrgu ':5,meanselleft:fldwd:prec.mean.,sel[rightl:fldwd:prec);
write(mean-sellbothl:fldwd:prec,mean..cdom:fldvd:prec);
write(meanjfacii:fldwd:prec ,mean...responsivenes : fldwd :prec);
write in;
write(' ':5,weightednean.seltleftl :fldwd:prec);
write(weighted...eanasellrightl :fldwd :prec,

weighted..mean...elibothl :fldwd :prec);
write(weighted..ean..ocdom: fldvd :prec ,weighted,..eanjfacil: fldwd :prec);
write(' weighted by responsiveness');
writela;
write(' standard deviation of ocular dominance is '

SQRT(variance-.od) :10:4);
wri tein;
writeln;
write( 'correlations: between selectivity in right eye and ':52);
vriteln('shift toward right eye :',correlation...el.pd:fldwd:prec);
write(' ':15.'between facilitation and binocularity :)
writeln(correlation.fac....inocularity: fldwd :prec);
writeln;
writeln

END; (Do-.statistics)
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