AD-A17S 612 MODELING AND SINULATION 111 SIMULATION OF A MODEL F
DEVELOPMENT OF VISU.. CU) BROWN UNIY PROVIDENCE RI
CENTER FOR NEURAL SCIENCE A B SAUL ET AL. 15 DEC 86

UNCLASSIFIED TR-36 NO9O14-81-K-0041 6716

b
2
-
2
:
:
3
»
)
¥

s Rt Pas Buv Lon Bib P00 Bo St W

O R

9 ¢ w2

B ma k¥ 7 o

bt

oo n]

o S B
s EEE)

d m—ﬂm—u&m._.m..

14

—
—
e —
——

Q __ - _ Lo
—— — 2.
F (R os AL, orie e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - /

L% P N BN e)

» TIPS

. ®_ e e

FILE COPY

SELUNIEY CLABNFILATION OF THIS PAGE (When Dete Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE pEFEAD INSTRUCTIONS
T REP?}SE NUMBER 2. GOVY ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitie) 8. YYPE OF REPORT & PERIOD COVERED
Modeling and Simulation III: Simulation of a
L REPORT
Model for Development of Visual Cortical TECHNICA
Specificity, 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) 8. CONTRACTY OR GRANT NUMBER(a)
A\:B. saul and E. E. Clothiaux N00014-81-K0041
F
!IFORMING ORGANIZATION NAME AND ADODRESS 10. PROGRAM ELEMENT, PROJECT TASK
o] CENTER FOR NEURAL SCIENCE AREA & WORK UNIT NUMBER
BROWN UNIVERSITY
-201-484
Tg] PROVIDENCE, RHODE ISLAND 02912 N-201
~ M PERSONNEL ANDTRAINING RSCH. PROGRAM 12 REPORT OATE
- December 15, 1986
< OFFICE OF NAVAL RESEARCH, Code &442PT T T T oA T T
ARLINGTON, VIRGINIA 22217 55 pages
Ql INITORING AGENCY NAME & ADORESS(!! different from Controlling Office) 18. SECURITY CLASS. (of this report)
< 1Sa. DECLASSIFICATION/ DOWNGRADING
. SCHEDULE

STRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited. Publication in part
or in whole is permitted for any purpose of the United States
Government.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, Il dilferent from Report) ECTE

JAN 0 5 1987

18. SUPPLEMENTARY NOTES

E

.

To be published in the Journal of Electrophysiological Techniques. . . — |-~

19. KEY WORDS (Continue on reverse eide il neceseary and identify dby dblock number)

Modeling Numerical Methods
Simulation

Visual System

Plasticity

Synaptic Modification

20. ABSTRACT (Continue on reverse elde If necessary and dentify by block number)
We present a tutorial describing aspects of the coding of simulations of models

of visual cortical development. The model considered has an anatomy of an
excitatory projection from thalamus to cortex combined with intracortical
inhibition. Cortical cells develop specificity to stimulus patterns in this
model only when appropriate experience enables synaptic modification to
organize the network.

The simulation consists of a time loop. For each iteration of this loop, a

L]
D ' on'ss 1473 €oimion oF 1 wOV 68 13 oRsOLETE
$/N 0102- LF-014- 6601

PR I N,
- -‘ Y a AN \'

~ '.-.,\.-\'\\'.‘-\'.'.‘.\\\\'_'.\\'

SECURITY CLASSIPICATION OF THIS PAGE (When Derte Bntered)

e e 8 19 30 132

T T AT e T e Ll e N e R AR S

[e
1\
..

h]
g
22

v

PR A A ad
S %L

4
Y %
IR AS

77

o

23

“w
>,
% %

| i Y i S T}
‘ ﬁf?

B

2

MG, % S
A
."ﬁ:‘_fr‘)

(4 -
DR i
e e e, ! 1)

."Al‘ (A
‘J [

g

S th LN
o ‘r.

LN - A% g gy o T, A MR -ty Ba R Pl AL G A A 4 s . Ll S
’ l~
- N T
. s (o g
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) A
YA
VS
AN
. . . . C
stimulus is generated, the cortical response to this timulus is computed, and :,:
synaptic weights are modified. The developing network is tested inter- N
mittently and the behavior of the system analyzed. -
, , . I . by
¥ Some of the details of the coding given include a method of describing rearing ¢ y
conditions, a convenient abstract form for the input stimuli, an iterative b .
calculation of the intracortical feedback, a simple way to store synaptic \
¥ stremgths. and routines for performing the analysis. .‘\:
.::
Accession For R)
NTIS GRA&I | R
DTIC TAB Fas-
Unannounced 0O Y
Justification __ | —
By. ’ (o
Distribution/ s
Availability Codes L5
Avall and/or &
Dist Special b o
A
s
-1 o
- LY T
g
- ad
s
-~ N
RSN
A
P
o~
o
s
“s
8E
FR
N
NG
N
P
Yoy
-._._
Y
'Cs
N
'.‘2
.\‘_\
;.:,*.
")
S N 0102 LF-014- 6601 ADAY
oA
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) '.‘:‘.
N
£
v’.‘._:
e
A A R Gy N O e A e e)

B AN R ALV O Naa't U R AR F fatpia¥ i« gt plaRe st S ! AR A5 AT Beb ol At ot by Lo i A IS S Ral B ARt R Ot v

A_B. Saul and E.E. Clothiaux ﬁ)’
! Center for Neural Science

Brown University, Providence, RI 02912 by

Modeling and Simulation IIL: %

;‘)*‘ .\
hd

Simulation of a model for development of visual cortical specificity.

7N
A Ny

e

¢

L)

Y.’".

key words:
modeling, simulation, visual system, plasticity, synaptic modification, numerical methods.

- e

'
R

L T S
’!{n‘\ Ly
4.‘$

ey

Partially supported by ONR Contract N00014-81-K-0136.

s
/

We thank J.D. Daniels for significant contributions to this paper.

2

X

YL
W 2.,

“ -
L

| 4 P S N
i ST REREN
XN

Address for correspondence:

Alan Saul st
Department of Psychology .
Dalhousie University

Halifax, Nova Scotia, Canada B3H 4J1 :

N

,ﬂ

¥~
.0

L)

2’74

- L I S TP R < P . - - L P S - T, e e e " D i e e L} P
1 N T O N T e S B 0 g Sy G e e O T i SR S N -.-. S A R VoA S S G
. . . B . L L&

r
. e,

.'
L

£ LA RLRLAGAL At A et ar g wa

Abstract

- VNS

s ’ /nf‘\y"' '
4

e pr?i;ntﬁi tutorial describing aspects of the coding of}ciuulutxoul of
models of visual cortical development. The model considered has an anatomy of an
excitatory projection from thalamus to cortex combined with intracortical
inhibition. Cortical cells develop specificity to stimulus patterns in this
model only when appropriate experience enables synaptic modification to organize
the net;ork.

The simulation consists of a time loop. For each iteration of this loop, a
stimulus is generated, the cortical response to this stimulus is computed, and
synaptic veights are modified. The developing network is tested intermittently
and the behavior of the system analyzed.

Some of the details of the coding given include a method of describing

rearing conditions, a convenient abstract form for the input stimuli, an
iterative calculation of the intracortical feedback, a simple way to store

synaptic strengths, and routines for pertorming the analysis.
‘, syl ’ :
] ‘ ’ Voo e fA N SR ‘ T) ;':
. P y .

TN

YXANE] PN

,.

17

¢ & a9 o &
- -
Bty Sl

RA!l Y

AR

Fr e

b, LA AR R T T AR KT R VRN AT YAV

In parts 1 and Il of this series (refs. 3,8), we discussed the applicabilaty
of modeling to problems in visual cortical physiology, and described some of the
models which have been proposed, concentrating on the development of specificity
in neurons receiving excitatory inputs from the lateral geniculate nucleus (LGN)
anda inhibitory inputs from other cortical units. We now present a tutorial in
coding simulations of such a model. The goal of these simulations is to provide
the details of the response properties of the elements of the model under various
conditioﬁs. including a number of simulated normal and abnormal rearing

conditions and over a range of parameter values.

QVERVIER
Experiment, model, and simulat:ion

The simulations we consider mimic, in form, classic deprivation
experiments. Kittens are typically reared under special conditions, and a
population of single units is then tested physiologically to determine their
visual response propercties. The goal of such experiments is to assess the
etfects of different rearing conaitions on the response properties of the
cortical units.

The second paper of the series (ref. 8) reviews the results of numerous
experiments on the neuronal development of kittea visual cortex. We have
concentrated on the development of oriepntation selectivity. As the second paper
itlustrates, there are numerous models in the literature which posit mechanisms
of orientation selectivity an& attempt to show how visual experience might
atfect components of these mechanisms. The various mechanisms proposed use

different schemes of excitation and inhibition to wire up a network of cortical

4'."--1.‘.'..‘. Pl - . . -
....’\ S AN A .‘:.._-.._.-..'..‘:f.._..\ LOR AR TNt Sy e .

. ‘.‘-'.'.-." <. ST Tt T T
afata Cade o e -‘,\f > '-‘\.“') L AR ."'.\ N R

A relete BNl Sl B AT

g R Y T O TRV vy

cells. These excitatory snd inhibitory connections are assumed to be modified
by visual experience in order to produce the alterations of response properties
seen experimentally. Although there is practically no direct evidence in
mammalian studies for the hypothesis that it is such changes in wiring which
bring about the changes accessible to microelectrodes, there is general
acceptance of the central hypothesis that synapses are modified. Most models
have applied versions of Hebb“s postulate (5), which produce connections whose
efficacy is related to the correlation between pre- and post-synaptic
activities.

To illustrate some techniques in coding simulations we consider a model
based on an anatomy of excitatory afferent fibers from thalamus to cortex
combined with inhibitory intracortical fibers. The afferent fibers are divided
into two groups: fibers relaying signals from the left eye and fibers relaying

. signals from the right eye. Visual stimuli are input as activities on the
atferent fibers to cortex. These stimuli drive the cortical cells, determining,
along with the cortical activities, the modification of the synaptic

. connectivities.

The model ve are considering can be summarized by the following equations.

R = £(SA - QR) (1)

y ds/dt = gs(A.R.S;parlneterl) (2)
"
Ei dQ/dt = gq(R.R.Q;parcneter-) (3)
-
s
Lz A (e vector of dimension equal to the number of atferent fibers, M) represents
S
fk the activity in the fibers atferent to cortex. R (a vector of dimension equal to
)
) :

tne number of cortical cells, N) is the response of the cortical cells. S (an N

x M matrix) and Q (an N x N matrix) hold the synaptic weights, excitatory from

DAD . M

.
L o
YRR LGN and inhibitory from cortex, respectively, onto the cortical cells. We let
|
o |
AR SKE et ;
FCRCAC NN IR I TP Y -~ N R . .
LS S AR R OO AN AT AR A AU . .-
~% % e LAY YA A A R S R e i A e ™ J‘-»'.‘-'.'\x\.-.\ﬂ

all synaptic strengths be positive, and subtract the intracortical inputs in

e order to render them inhibitory. £ is a function describing the relationship

%
'

h between the inputs to cortical cells and the resultant response: this function
! is generally chosen to be sigmoidal, incorporating a firing threshold and a

saturation at high discharge rates. The synaptic modification rules are given by

8 and By® which depend on the pre- and post-synaptic activities (respectively A

and R for the atferent and R and R for the intracortical synapses), possibly on

XY

,:? the current values of the weights, and additionally on a& number of parameters
:é wvhich determine, among other things, how rapidly synaptic modification
> progresses. Although various models choose different forms for the function £ in
E; (1), and take a number of positions on what the inputs A consist of, the chief
.E; distinction between these models is the choice of synaptic modification rules g
(see Table 1 in ref. 8). Ome can choose to modify only the excitatory synapses,
:; or only the inhibitory synapses, or both - in either the same way or in different
Ej ways. Fortunately, this significant variation in models of the form (1)-(3) can
.Y
easily be handled by the simulation coding we will describe.

"

=

Ei Computing the afferent activity, A
i: Our first job in translating the model into code is to compute the afterent
‘

Ez input A, Now the visual inputs to cortex are determined by the rearing

X conditions. Thus, different rearing conditions lead to differeunt cortical
‘; activity patterns, atfecting synaptic modification, resulting in the

'E development of different connectivities and hence to different cortical response
' properties. Our code thertore starts by allowing the desired rearing conaitions
23 to be specified. Since this is a major independent variable in running simulated
& ! experiments, we code the rearing conaitions in an accessible ("English language")
a

o

"V\I\' !,\“. \'\---\- <‘l\'\-\'.-.o\-_-‘o L N A N A L I R S - . et el Wt
. . -, CIP e Y DTN S S T RS R Wa L O AT
Nl) 'aB Eai) o Nal > Ry v v o T, PP AR A AR l'-.n'..{-.-’:‘-‘}J

form. For instance, in order to pertorm an experiment on the results of
monocular deprivation, one simply instructs the program to close onme eye.

The next step in the code is to take the given rearing condition, and to
translate this simple English language description into appropriate simulated
visual stimuli (the variable A). Such stimuli can be thought of as activities
on a set of atferent axons, and are coded as a vector, with the components of the
vector corresponding to the activities on individual axons. Thus, monocular
deprivation by closing the left eye will lead to a vector with some pattern of
activities in the components corresponding to the right eye, but with only noise
in the portion of the vector corresponding to the left eye. At each moment of
simulated time, a new stimulus is generated using the general description of the
rearing conditions, implying that the simulated visual stimuli continually change
as in reai life,

Betore continuing to describe the sequence of routines in the program, we
pause to discuss the crucial nature of the input coding. Despite our appeal
above to "real life", the key to successful coding of a simulated visual
environment is an appreciation of the necessity of abatraction. The challenge in
implementing a simulation of a neural model is to create a formal structure which
captures the essence of the real structures being modeled. The visual world is
astoundingly complex: digitized video images of it are merely & shadow of the
reality. One might be tempted to provide "real” input to a simulated cortex by
hooking up a camera to a computer, but this would neither mimic any neural events

nor allow understanding and control of the input end of the model. We will not

try to create a particularly rich imitation of the visual world, but instead will

try to faithtully reproduce the few aspects of the retinal images with which we

choose to be concerned, such as orientation.

Most of the models described in ref. 8 arose from the excitement generated

LIPS TR T AL IR

'J‘)‘f;a NI A f‘- 3 a‘- PGS *\-l" N

L e g =

a Ab s an

e e e e e e T e T e e T T e e e e e e e e e e e e e e
. AN " .

< B3t Sat LV Roh i R AR’ P ‘9.4 b b g S s 14 2R 32 np Sy A T %

by & number of experiments in which visual experience was restricted to a very
limicted range of oriented contours (see citstions in ref. 8). Kittens were
raised, for example, viewing only horizontal or only vertical lines. Modelers
thus abstracted out oriented lines as an important feature of the visual
environment, whose presentaticn could be controlled. We suppose then that the
environment in our model consists of brief presentations of variously oriented
bars. Such a bar in visual space can reasonably be expected to stimulate a set
of retinal ganglion cells which form a bar on the retinal surface. Assuming a
simple retinotopic projection to cortex on the scale of this bar (not
necessarily a valid presumption, since it essentially amounts to comsidering
everything between retina and cortex as strictly relay mechanisms), we can
imagine that a sheet of receptors encodes the visual stimuli by determining which
receptors are covered by a bar (Figure 1). Different orientations all stimulate
a central cell, corresponaing to the axis of rotation of the family of bars, but
differ in the periphery of the sheet.

The activities of the M receptor elements in the sheet can be thought of as
forming the components of a vector of dimension M. The environment of various
oriented bars can be implemented as & set of such vectors. A vertically oriented
bar stimulates certain receptors and is coded into a corresponding vector, while
a horizontal bar corresponds to a different vector. As the orientation of the
visual stimulus rotates from horizontal to vertical and back to horizontal, the
vectors corresponding to these orientations rotate through the abstract space in
which they live. Thinking of these vectors as directed arrows, the arrowhead
would trace out a circle as the orientation varies through 180 degrees. (We say
that the set of vectors corteuéonuing to oriented stimuli has & gircular
structure: tne vectors in it are permutations of each other and all lie on a

circle in their possibly high-dimensional space, since the order in which the

- " y o ¥ g " . . s
S . NIV R i XF> g Ao heah B i Pl ek St b i e AR ia i iy 4

;{
ey
¥ receptors are listed in the vector is arbitrary, and the stimuli are sll
:ﬁ . identical except in terms of which of the receptors are stimulated.) Thus,
?h although it is certainly feasible and sometimes helpful for graphical purposes to
ﬁ represent the environment in terms of a two-dimensional sheet of a large number
%ﬁ of cells, as long as ve are considering only orientation we do not need the
EE additional possibiiities atforded by two dimensions (such as being able to encode
fﬁ position, length, width, or movement). The orientation domain is one-dimensional
i and periodic and can be represented by any circular set of vectors. Trivial
.% examples of some circular sets of vectors in three dimensions are {(1,0,0),
ﬁﬁ (0,1,0),(0,0,1)}) or {(1,1,0),(0,1,1),(1,0,1)}. We will want to derive more
i§ userul sets in higher dimensions, without necessarily resorting to the scheme
33 mentioned above where bars were projected onto a sheet of cells.
”; It turns out that the important parameter in defining the simulated
- environment determines how close together the input patterns lie on the circle.
tE} (Translating back to the reali world, what matters is, how simitar do various
:ﬁ oriented bars look at the level of the input to cortex?) Our approach to
ﬁ: construc ting input patterns on the computer might be clarified by way of an
:ZE analogy to color mixing. If we want to construct the color yellow, we can do so
,
- by mixing red and green light. What we actually mean is that we can create the
ti perxceptual color yellow by mixing the gpectral colors red and green. A spectral
:3 color is simply monochromatic light, and is best described by the wavelength.
‘? Bowever, we make an assignment from wavelength to color name, for convenience.
f Now, different perceptual colors can have very similar or very different spectral
E compositions: yellow and orange have simitar compositions in the form of a banana
¢ and an orange illuminated by white light, while they have quite different
3 compositions in the form of a white piece of paper illuminated with monochromatic
~ light at 580 om (yellow) and 600 nm (orange) wavelengths. We want to control

‘EeTs

Y

F AP AP g

the simiiarity of our input patterns in just this manner. We start with some
abstract tokens (unit vectors) which are assigned orientation names analogous to

the way that wavelengths are assigned color names. We then mix these tokems in

R AR

various amounts to create more of one orientation than of others in our final
input pattern, which thereby "looks like" the orientation of the dominant

token. If we were to use only a single token at a time, differept input patterns

TN v N

would consist of gompletely different tokens. By mixing together tokens which
represent gimilar orientations, we produce “"oriented” patterns which gverlap in

their distribution of tokens, despite having different numbers of each type of

R 400000,

token. We retain color names, or orientation names, for the tokens as well as

for tne mixtures because the correspondence is convenient, once we understand the

dan

possible confusion.

Ry

We have replaced the two-dimensional sheet of receptors by a circle of input

elements. These elements will be our tokens, analogous to spectral colors. Each

»

.ement on the circle carries an activity, and the afferemt input to cortex

.'i "I .'u _‘t 3

consists of the vector formed by the activities in these components. We gererate

a stimulus vector by first designating one of the input elements on the circle

L ._“.,' afd

as representing the desired orientation. For definiteness, say the input
elements are indexed by 1 through 10, with 1 representing vertical and 6
representing horizontal. Say we want to create a vector coding a vertical bar.

We designate element number 1 as our "center" component. The stimulus vector is

P A

given a large amplitude in this component, indicating that the vector
corresponds to this orientation. Neighboring components on the circle (that is,
elements indexed by 2, 3, 9, and 10) are given smaller amplitudes, indicating
that those orientations are similar but not identical. As we move around the
circle of input elements, we assign amplitudes which reflect how similar the

orientation represented by each element is to the desired center orientation.

T A S e T e e e e N e e o ey e e e e e T e e
R S e S S o S N s N S R RS SRS

Ialat b dal LB &2 0 B R4 0, M "RL G SL wt i

Components which represent similar orientations are sctive, while elements
representing orientations orthogonal to the center orientation (elements 4, 5, 6,
7, and 8) are relatively inactive.

Computationally, we use a function which is maximal at the center element
and decreases away from this center (Figure 2). This function sets the
activities in each of the input elements. The width of this function controls
the overlap between patterns in a straightforward way. Returning to the color
analogy, this function is analogous to the spectrum of the illumination, with the
width corresponaing to the bandwidth. If the function is parametrized as very
narrow, then different patterns would overlap very little. (Interpreting back to
physiology, the patterns of firing in the optic radiations atferent to a cortical
cell would be quite different for a vertical bar and a bar inclined 10 degrees
toward horizontal.) If the function decreases slowly, all patterns would be quite
simitar. Two or three lines of code (“FUNCTION contour® in the code given below)
suffice to calculate the input vector with such a system, and it carries with it
the graphical form of a tuning curve which can be compared with the output tuning
curve, since each input element corresponds to the pattern ceantered on it. We
have moved somewhat far from the reality of oriented contours, however, and we
must keep in mind that our construct is an abstract model, and not a realistic
model, of the inputs to visual cortex. That is, the compopents of our stimulus
Yectox do not correspond dirxectly Lo actual fibers afferent to a cortical cell
(but we will st1il reter to them as "afferent fibers" because of the anatomical

analogy).

Computing the cortical response, R

el NEAEY
‘n....

‘ﬁfaqll'fiﬁﬁ

< a— -

Once the activity on the afferent fibers is determined, we can compute the

1

- ‘ ‘-‘_“ ‘.\-.-.v. St e i et

I L
2. . Lt r et I 2
l-\ -5 A-l ah .\- - x‘ﬁ -&..n\ ..1,.! .\a‘him“!u‘- A '..-)..h t‘,.nl.n EMMME.‘;MA- A mAiia s el S ~'i“. .\i.‘:‘ 'i.‘ .;"t-" :“‘:...:’ . prd _f- ‘: _,\,_._,.\ '\' 'q_

activity in each cortical cell by integrating the atferent inputs to each cell

with the intracortical inpucs (equation 1). To code this aspect of the model we
vrite the synaptic weights to a cortical cell as the components of a synaptic
weight vector. To determine the postsynaptic potentials (SA - QR) of the
cortical cells we take the product of the synaptic weights (S and -Q) with a
vector which is formed from the components of the input vector to the afferent
fibers and the other cortical cell activities coming in along the intracortical
fibers (A.and R)e £(SA - QB) determines the actual cell activity R, where the
function f comes from some model for the firing behavior of kittem cortical
neurons (usually f incorporates a firing threshold and firing saturation, with a
somewhat linear range in between). Because the intracortical inputs depend on
tne activity in other cortical cells which are being computed simultaneously
(that is, our computation of R requires that we know R already), we have a
problem. Our system is a recurrent, feedback type system, and because of size,
nonlinearities, and a desire to mimic reality, we do mot compute the activity
explicitly, but instead pertorm an jteratjve calculation which approximates the
steady state activity. Through such computations (described below) we derive an
activity for each cortical cell. Writing all the cortical cell activities as s

vector, we have the output of the simulation in raw form.
Computing the synaptic modifications, dS/dt and dQ/dt

We can then use the cortical activity to drive synaptic modifications, which
are the result of the particular visual stimulus which vas experienced at the
most recent moment of time. Coding the synaptic moditications amounts to writing

the model”s modification rule in functional form, which usually takes no more

than a few lines of code.

~ N
MM‘.‘.‘.‘:‘.QJ

¢

()
L)
[]

r’v.'l t 7

-«

> 3%

. ,'..- '-.,‘-,' N Y

Fo RS

Simulating visual experience

The code for generating a stimulus, computing the cortical response, and
modifying the synapses falls within a simulated time loop which is the main
driver of the simulation. On each pass of the time loop a potentially different
stinulus from the environment which is consistent with the specified rearing
conditions, is presented through the set of simulated afferent fibers. (We use a
random variable to pick the order in which the stimuli are presented to the
system.) Passing through the simulated time loop thus models the experimentally
desirable aspect of a kitten"s rearing environment, which consists of a
controlled set of visual stimuli that the kitten is exposed to in real time in
some order, possibly random. In fact, experimental control over a kitten’s
visual experience is distressingly poor. A simulation can take into account some
of the less controlled aspects of this experience, by, for instance, modeling
moments of sleep or inattention and the like by noisy, rather than patterned,
visual ioputs. Rather than presenting a rigid set of oriented patterns, with the
inputs to the two eyes identical, ve prefer to present some statistical
distribution of a large set of stimuli which includes occasional unpatterned
inpucs and differing patterns in the two eyes. As simulated time proceeds, the
various stimuli rewire the network, with a speed which depends on the speed of
synaptic modifications and on the the rate at which stimuli which strongly atfect

synapses appear in the environment.
Analyzing the cortical response properties
The above process of generating a stimulus, computing the cortical response,

and modifying synapses, is occasionally interrupted in order to test the network

" i" !. l.‘ . “ . . -.' '.‘ v e " e
- - pd - - '- *at . -~
VAR AR R I R

E

The following example of a program designed to simulate a visual cortical

(e

development model will illustrate the details involved in coding such a
simulation. We have written versions of this program in BASIL, FORTRAN, and
PASCAL for various machines, including LM2, AMDAHL, IBM, VAX, and APOLLO, and
have found that modifications are easily made, and usually have proven usetul in
enriching the code. We present a PASCAL version (see ref. 4 for a good
description of this language), some of which we give in pseudocode to sketch tne
structure, leaving out some details and all of the machine-dependent features.
The omissions include the graphics routines, which we feel are crucial in
understanding the performance of the simulations, but which must be created
according to one”s own resources and purposes. Complete source codes in PASCAL .
(for ArOLLO) are available from the authors, although these programs are specific
examples of the generai codings described in this article.

We simulate processes occurring through time, so the program consists of a
time loop. Each moment of time corresponds to s stimulus presentation. One
could conceivably relate this simulated time unit to some real time unit, by
reasoning that real visual stimuli capable of driving synaptic modifications
occur with a certain duration and rate (ref. 1). The rate of change of synaptic
strength with individual stimulus presentations would be the appropriate quantity
to measure in the real world, and could then be set in the simulation as a
parameter in the synaptic modification routines (in the example of a synaptic
modification rule given below this is the time constant “h”). The ateady-state
reaponge to each stimulus preoeﬁtntxon is used to pertorm synaptic

modification. More complex simulations might retlect a less discrete view of

time, allowing for a smoothly varying stimulus and a dynamic respopse, simply by

L

A IR TG SR TP T S RS B T S R A N U S L S T R N L N ST S St S S A T A A S STt AL L
AN R A S .Tg RO R R TR S N TSR S o0 N Ty

R IRIAIR]

, G Sy At ! NS

with a standard set of stimuli. These test sessions allow the evolution of the

network to be evaluated, so that the responses of cortical cells can be compared
at different points in their experience. Each test session consists of three
main parts: generating a stimulus, computing responses, and analyzing the
responses. The analysis takes the raw data and compiles it into more interesting
measures of pertormance, such as indices of selectivity and ocular dominance and
population statistics. Note that no synaptic modification is pertormed during
test sessions. How often one tests the system depends on the detail desired and

on the speed at which the network is changing.

Summary of overview

To summarize, the structure of the simulation comprises a loop indexed by
simulated time, during each iteration of which several procedures are cilled.
First, a stimulus is chosen according to the desired rearing conditiors. Next,
this stimulus is translated into an input vector. The cortical response is then
computed. Finally, synaptic strengths are modified. A branch to a test session
is made at desired intervals (Figure 3).

Betore proceeding to a more detailed examination of explicit coding
techniques, we would like to emphasize that coding the visual environment of the
kitten is the most demanding task in constructing the simulation. A model’s
anatomy for the kitten cortex and rule for synaptic modification imply the logic
of the code that one must write. Capturing the essential characteristics of the
kitten’s actual environment in code, however, is not straightforward. The amount
of discussion in the overview, as well as the large number of lines in the code,
devoted to this one task attests to the importance of this task in simulating the

present model for the neuronal development of kittem cortex.

Fud L
I}*

X .‘(‘$f.' -'_.f..'-\'

2X2ETSE

ANSS

wCetyt 0, 0,0

3

/N

4; f~l %. N ‘(P

Sl iy & DA far S g & AV " Ta ey Plad AT LIRS

inserting an inner time loop.

Note that for purposes of clarity, we pass parameters between routines
explicitly even when it is neither necessary nor desirable. (Bxplicitly passed
parameters are listed in the parentheses to the right of the called routine, both
in the calling statement and in the definition for the routine. If the called
routine changes the value of a parameter, then that parameter is defined as a
variable in the parentheses associated with the routine definition.) In general

the code given below is not optimized for run—time, but instead we have attempted

to make it understandable to the reader.
MAIN PROGRAM LOOP

Figure 4 gives the dfiver for the program, which generates an input,
calculates the output, modifies synapses, and analyzes the responses. Prior to
entering this principal portion of the program, the code must initialize
variables and interact with the user, but we omit those important but tedious

preliminaries for the sake of brevity.
STIMULUS GENERATION

The independent variable in many simulation experiments is the
environment. In order to easily handle the various rearing conditions in the
wost convenient wvay, we have coded the stimuli in plain English. The routine in
Figure 5 determines the current stimulus as a function of time and a random
variable. For this example, we simulate an experiment where the early rearing
(prior to time 1000) is in the dark, followed by rearing in the light assuming

that: 20% of experience is without visual input (stimuli comsisting of noise),

A

I..!'sﬂ".f,d‘flvﬂd'\-'-"(q'f-' NN I R .

-

R

AP

R (s AFST

® .t P

O

R D D

- - -

K

S0 AP PP

2 A3

“

LGCNENEARN

R

II.‘I.’(

.'

20X consists of patterns through only one eye (either the right or the left),

102 has uncorrelated patterns in the two eyes (as might be found in a strabismic
animal), and the remaining 50X presents simiiar (although not always identical)
patterns to the two eyes. Other rearing conditions that might be used are
“normalrearing”, ‘reverse suture’, “adapting”, and “sinusoid”, which we‘wiil
describe shortly. Ditferent simulation experiments are run by inserting the
desired rearing conaitions into the above procedure. This process can be made
”uler-friendly“ by coding the procedure as a menu-driven interactive choice
paradigm.

The integer “random_seed” is uniformiy distributed over a large ianterval, so
that we can obtain random variables uniformly distributed over arbitrary
intervals as above by applying the "MOD” function, which returns the integer
remainder upon division by the modulus (10 in the example here).

The individual stimulus~setting routines that cam occur in the “PROCEDURE
Choose_stimulus” follow (Figures 7-9). They fiil in the components of the
variable “stimulus”, which has the type definition given in Figure 6. This
particular PASCAL-dependent comnstruction provides a convenient way to translate
tne "English-language" rearing conditions into code, but could be replaced with a
series of conditional statements or arbitrary assignments in other programming
languages. The type:

rearing = (correlated,md,rs,dr,disparity,strabismus,adaptation,periodic)

consists of these tags which refer to the various rearing conditions:
“correlated” is used to provide identically corresponding patterns in the two
eyes, “md’ means monocular deprivation and presents a pattern in the open eye but
only noise in the closed eye, “rs” stands for reverse suture which comprises
successive monocular deprivations, “dr° abbreviates dark rearing which simply

presents noisy inpucs to both eyes, “disparity” gives partly correlated patterns

~ '\‘\

f(%I_ {‘d‘ L .'%rsr -~ l'S \ ‘ %" f_"."ﬁ" -f‘.d'.'f\}‘\f " J‘ .(\J‘ I s -’ q‘ . \q'-.\ s s

: 3 d d A L% M T a Ve O I A T N R T T e N W T o I o Wy " Y {"IvT™ 'T
¥

I‘

h

4

L]

N to the two eyes, “strabismus” gives uncorrelated patteruns to the two eyes,

;_ “adaptation” sets a particular stimulus for repeated presentation to either eye
;' alone or both eyes together, and “periodic” allows for presentation of periodic

¥

; patterns ("gratings"), rather than "bars". The other type definitions are:

J angle = l.. numangles, where numangles is the number of patterns in the simulated
o

e visual environment, and eyes = (left,right,both).

» The routines in Figures 7-9 produce the desired simulated experience in an
o understandable, "English-language" form, by taking advantage of the

& record-varigble “stimulus”. We must now translate this information into a

L

-

compucational, numerical form, namely an array of values for the activities in

': tne arferent fibers. Active fibers will be assigned numbers near 1, and inactive
22 fibers numbers near 0. Thus, it the visual exposure consists of monocular

Ry deprivation, with the left eye closed and the right eye viewing a patternm, then

. fibers from the left eye will carry small random values while the right eye
x arferents will be given values determined by the pattern. The procedure in

= Figure 1U and the functions it calls (Figures 11 and 12) pertorm this

i translation.

v

f
Ol

o

W RESPONSE CALCULATION

_ At this point we have set up the input and we are ready to turn our
& attention at last to the model we want to simulate. The input has been coded

.. into tne vector “afferent_activity” (A in equation 1) and will now be fed to tne
~ '

M corcical cells, which will respona according to the state of their synapses.

N .

N This response will then be used to alter the synaptic state.

y We must solve equation 1, R~f(SA-QR). The variables S, A, and Q are fixed

?

4 .

& here, with our only problem being that we must deal with the intracortical

o

¢

o

~ |
' i
o e L T S o S L o i e L e T :

3 feedback which makes R a function of itself. While negative feedback provides

! stability to the visual system here, from a strictly computational point of view
this feedback can cause instabilities when pertorming the iterative calculations

7) needed to solve the equation. For instance, it one starts with R being very
small, tnere will be very little intracortical inhibition (QR will be small).
But tnen one could reason that the lack of inhibition would lead to

L overexcitation, vwhich in turn would lead to strong inhibition which would result
in little response, and so on through a possibly growing oscillation. Thas

simple-minded iterative scheme, which can be written in scalar form as

! he " 50;4 '

] is unstable for h>l. The constant h corresponds to the eigenvalues of the matrix

¢ Q in equation 1, and the difficulty of emsuring that the eigenvalues of Q remain

' less than 1 prevents the application of this simple explicit one-step scheme
(vhere new response values are computed based solely on the values from the lasc
iteration).

. Multi~step schemes, such as

. Yo" & = by ,+y_)/2,

. can help but still fail to prevent oscillations for large h. What is needed
instead is an implicit scheme (where the current iteration appears on both sides

’ of the equation), for example of the form

, . Yo" &8 = Wiy, + y,)/2.

: This metnod is stable for all values of h. Solving such implicit schemes exactly

) ' can be done for relatively small linear systems, but is out of the question for

; our large, often nonlinear equations. Instead, & surprisingly simple method can

- often give satisfactory reuultl; update individual cells from iteration n-l to

iteration n, while otner cells remsin in iteration n-l. That is, the updating is

N asynchronous, not all cells are upaated at once. One advantage of this method is

o L LA T o

P O R S SR TR 0y e A AT AT e O .\ e N e e et
RS A A W o L A Do AT I 2 O R I R A R e WO N T T L

p > B
o

SRR

- e
[4

-

A%

Y8 v s

L L

4 _.\)‘o;-

LN AN, Y

[e

\.\.\‘\. :‘D

o
L. 7
-’
Ny

P I Y

~a RO *- f : le T a) f S J\I ot (-

3 Int' e i . T - ¥ i " il %) - i] v va 2 AR ATA A A AL g Gl LI &f Wi

Prd

that only one vector of activities need be stored, rather than two (the n-}“th
and n°th) as in the scheme above. At any point in the computation, some of the
components of this vector will belong to the curreat iteration (the u’th) while
otners vill belong to the last iteration (the n-1°th). The advantage in
conserving memory is usually not great in these days of large virtual memory. We
should note here that these iterative methods also tend to be slow: it feeddack
can be avoided in a model, the simulations will run much faster. Given the
necessity of simulating a recurrent network, however, this method seems to be as
stable, convenient, and fast as possible.

The usefulness of this method comes from the fact that fluctuations produced
by the iteration process are averaged out by adding the two consecutive
responses. Clearly, for this process to work some averaging across different
cells is needed. For instance, starting from very low activities again, one
might expect the first few cells which are updated to respond strongly because of
the lack of inhibition. These cells would thenm provide strong inhibition to
later cells, which would never respond. The result would be an unintended
separation of the cortex into those cells which were updated early, and are
active, and those cells updated later, which are inactive. One way to avoid this
problem is to update cells in random order, so that although during the first
iteration the early cells might have an advantage (or disadvantage, depending on
tne initisl staete), there is no longer any meaning to early and late atter the
first round of updates. A cell which saw little inhibition when it was first
updated could be updated again soon thereatter, vhen the early cells are
providing strong inhibition. A large enough sample of cells is needed to allow
tnis random ordering to etfectxv;ly compute averages over each type of cortical
response property.

The procedure in Figure 13 provides a coding of this random, asyanchronous,

‘.\ ~\\\ . RO

v

ANAAAALUMCALAL S LALAL &L RS AG AL L Aud Al S w "(‘"T“‘(“{\"""’""vv"wr‘rwvvv—xrwr—“ ™

DR N A '(AP ..r.r v
AN -
FISA AT AR ﬁ# atoat JQ;TLEI\. VA AN fAflt.cl;;fgnlf‘

»*a? . "

iterative method. Since the iterative process changes only the intracortical
inpuc, we only need to compute the afferent input to each cell once. The
conaition “atferent_inpuc_hasnt_already_been_computed(cell)” is simply given by
the boolean array “used”: afferent_input_hasnt_slready_been_computed(cell) :=
NUT used(cell). Each time we choose a cell we set “used” to TRUE for that cell,
and we choose to iterate until all the cells have been chosen at least once.
This means that at least one cell will only pass through this iterative procedure
once, but unless a cell is chosen only in the early stages (which has a low
probability) there is no harm dome. It is important to keep in mind that only
the feedback (QR in equation 1) is being forced to converge here, and that this
is a global property: we are not really forcing each cortical cell to converge
separately and independently of other cells (if one cell is less active and
another more active than the ideal levels, the method will still work). Ouly
the total cortical activity, which behaves like the average activity, must
stabitize, This globality lets us take advantage of the averaging over many
cortical cells. Simulations which generate specificity also provide a strong
organizing influence which tends to overcome the relatively small biasing érrors
from the iterative computations, as cells learn to respond to the input pattern
without regard to where they lie in the updating sequence.

The routine in Figure 13 calls separate procedures for atferent and
intracortical inputs, but they are essentially identical calls to an inner
product function (Pigure 14). The otner functions called in “PROCEDURE
Compuge_response” are given in Figure 15. The sigmoidal function used here (a
tanh function) for the function f in equation 1 has some nice properties, but
one must be caretul not to generate undertlows and overtliows in the “EXP”’

function.

We used the variable “synapses” in order to weight the afterent and

S LT AT T T

AT AT N AT T T e el
AR G N N S Sy P A S Y
¥ :E-.‘f;f‘.f‘}f._z:..n'- PO WL R

]

intracortical inputs to our cells. Its type definition is

e synapses_type = RECORD

afferent,intracortical : ARRAY(cellindex] OF maxvector.

> Thus, we get two matrices, “synapses.atferent” and “synapses.intracortical”. We
"4

N define these matrices, however, as arrayvs of arrays (‘maxvector” is defined above
as an arfay of the largest dimensionality required), in order to easily pass a
single row rather than all the rows of such a matrix. The entire matrix is never
used all at once, but only row by row. Even in programming languages which do
not provide such an array of arrays construction, one should consider stripping
off a row of a matrix, putting the row into a buffer, and working with the
buffer, rather than manipulating the entire matrix. On the other hand, it an
array processor is available, the software should take advantage of the enormous

etficiency of the matrix algebra handling.
SYRAPTIC MODIFICATION

The procedures in Figure 16 sketch a coding for the heart of the model, the
synaptic modification algorithms (equations 2 and 3). Here, we call a common
routine for modifying both afferent and intracortical connections, but completely
different modification schemes would be used in some models, while many models
modify only one of these pathways (see ref. 8). As mentioned sbove, the time
constants in the modification rules (the parameter “h°, for example) determine
tne duration of a single itetation of the time loop in terms of the duration of
a stimulus presentation in real time, To make a connection between simulated

time and real time one would have to speculate far beyond current knowledge. We

............................

........

emphasize that the output of the simulation will be very sensitive to the
parameters in these key modification routines. The values for these parameters
should usually be set interactively, rather than during compilation. However, a
compl :te investigation of the behavior of these models requires sensitivity
analysis (ref. 2), and systematic variation of parameters should be written into

a program at some point for this purpose (see Discussion).
ANALYSIS

This completes the simulation of the model. In order to observe and stuay
the simulation at intervals within the time loop, we occasionally interrupt the
loop in order to test the network. A test usually consists of three steps: 1)
compute the cortical cell activities using a standard set of test stimuli; 2)
analyze the activities to make explicit the relevant measures of interest, such
as selectivity and ocular dominance; and 3) write the data to output devices and
fites. This can be a tremendously complex task, and we will only indicate some
of the basics. Much of the work in coding program outputs involves
device—dependent routines, especially for graphics. The procedure in Figure 17
sketches in one block of pseudocode the sorts of actions needed. Note that the
main steps replicate the simulation”s driver (Figure 4), with the differences
being that stimuli are chosen differently and the synaptic modifications are
bypassed. The following example (Figures 18-22) makes the sketch explicit.

To begin the analysis we need to create a standard set of test stimuli and
compucte the cell responses for these stimuli (Step 1). In the example of Figure
18 the testing stimuli are a subset of the patterns used to train the network.
The variable “stimcount” controls the manner in which the'pattetnn are presented

to the network. For “stimcount” equal to 0 the system tests the cortical cells

-, . .- - PR e L.
LI R B I] IR I R S SRR PR ‘e

- ‘n ‘-.-\.-.' -

AR . DEICAE - : -
L, RN BT N <. @ e e T L P L ST S S P P e T TP P S
Adadata 202 2 Al adaiadadacdan o e 2N o oS e L - oy A P A T P, T U T W e Wy P R, VY

R e S D it o Dol 0 ol b i i b s A e A a0) |

by presenting the patterns to both eyes simultaneously. For “stimcount” equal to
1 tne system presents the patterns to the left eye and nothing to the right eye,
wvhiie for “stimcount” equal to 2 the system presents the patterns to the right
eye and notning to the left eye. When “stimcount” equals 3, the system leaves

step 1 and passes the rav data stored in variable “analysis_data” to the routine

Do_statistics”, which comprises step 2. In practice, one may want to avoid the

storage of all the raw data, by updating the statistics as each test stimulus is

presented.

In this particular routine the measures of interest are selectivity, ocular

dominance, and facilitation, which are defined within the routine (Figure 19¢).
The statistical moments that the routine calculates are the mean and variance for
each measure and the correlations between selectivity and ocular dominance, as
well as facilitation and binocularity. For each value of “eyetest”, or more
generally of “stimcount”, the routine must determine several quantities: the
pattern which maximally drives each cortical cell and the value of the maximal
reaponse, the average response of each cortical cell over all stimuli in the
test set, and the response of each cortical cell when the pattern that drives the
cell best binocularly is presented to one eye at a time. Using these quantities,
the routine is able to calculate the wmeasures of interest and the statistical
moments. This completes step 2.

To finish the analysis the data must be sent to the output devices and
fiies. This section of the routine can be complicated, particularly if a
graphics device is used to display the output data. In this example the routine
simply writes the results to the terminal in tabular form (Figure 19d).

The test session and analysis shown here is entirely deterministaic.
Stochastic testing is also of great interest. Noise can be injected into the

system in a number of places (the input, the synapses, the response) and the

A AN S - - N S . . . co~ L - N
e - PR s taTe o

NN NN e T L L L L S L e e e N e e e T e e e e e e
A ELEL R R CL OX PV IS AP L AOI. 8 P A VR A I T P AP AP T S P S o T S R N S N S L Lt

variability of the response can be studied. Unfortunately, such testing requires

even more run-time and analysis.
Discussion

Once the simulation is coded, debugged, and compiled, test runs should be
pertormed to assess the most basic behaviors. For instance, does the systenm
remain ataBle atter sufficient experience in a stable enviromment? Do the
responses change as expected under monocular rearing? In order to obtain
satisfactory results from these basic simulations, adjustments will need to be
made to parameters. The numbers of atferents and cortical cells, the initial
synaptic weights, the amplitudes of the inputs, the form and values of the
function f in equation 1, the parameters in the modification rules (equations 2
and 3), and the sequence of stimuli must be played with until a consistent set of
parameters becomes evident. There is no good substitute for experience with
observing the direct etfects of altering these various inoputs.

However, once a rough feeling is obtained for when the simulation runs
reasonably, a great deal of frustration can be avoided by varying the large
parameter set in a systematic manner. Since a typical program potentiallly
contains 20 or 30 parsmeters, preliminary counsiderations obtained from early runs
or analysis of the model should be used to exclude certain of these parameters
from further analysis by virtue of their lack of significance for the eventual
results. Those parameters vhich may affect the output should then be varied
around their nominal settings, as estimated by the preliminary runms.

The analysis of the system ;utput as a function of the parameters is termed
"gensitivity analysis”. By examining the results of a large number of runs at

differeat parameter values, one can establish the sensitivity of the output

Hata

: ph PP it it «

el ot o

-’

)‘(..

A e 0) 34" 0 ol ALALSL S a* A

variables to each parameter, and at the ssme time optimal values for the
parameters can be located. Cukier et al (ref. 2) developed a method of
sensitivity analysis which applies to our simulations. A large number of runs
are required, but fewer than with a brute force method of changing one parameter
at & time vhite others are fixed. Their method varies each parameter
sinusoidally at different, independent frequencies, then Fourier analyzes the
system output back into each of the independent frequencies. The power at a
given freduency and its harmonics indicates the sensitivity of the output to the
associated parameter. Unfortunately, the range over wvhich a parameter is varied
influences the measure of sensitivity obtained, since varying a parameter over a
small range will result in less variation of the output than with a larger
range. Inspection of the data obtained from the many runs allows one’s
judgments of the nominal ranges to be improved, along with improving the nominal
values upon which these ranges should be centered.

As an example of the usefulness of sensitivity analysis, consider the
dependence of orientation selectivity on some of the parameters of our
simulation. In this model, we begin with an initial state of low selectivaty,
and with appropriate experience selectivity increases to some asymptotic level.
Our measure of selectivity takes values between O and 1, with 0 corresponding to
a flat tuning curve, vhile 1 corresponds to a tuning curve which is infinitely
narrov (i.e. a delta function). We discussed above how we code visual stimuli
which represent an abstraction of oriented bars, and pointed out that the
imporcant parameter in these stimuli is the overlap between different stimulus
vectors. The parsmeter “width_of_input” in Figure 12 determines this overlap.
If the overlap is large, the dif‘etent stisuli will look alike to the cortical
cells, wvhich should theretore show less selectivity than if the overlap is

smaller and the stimuli are more easily distinguished. By pertorming a

- .*_ ‘ \\~--" ."‘:‘.:'.“r “. Wt ‘ AR \‘;.(‘\', .

()
l,

‘w e S At
-';P“l' . o .r $-’\n"\q".\'q"\. \. . .\-\.\-'\.

FLTLTIEER e A A A SN R RA W Ao/l

sensitivity analysis, one can investigate the extent to which selectivity depends

on this inpuc tuning, compared to the dependence on other parameters such as the
synaptic modification time constants. Furthermore, one series of runs informs
the investigator not only about the asymptotic level of selectivity, but about
tne progression of the sensitivity with experience. Early in a run, selectivity
might be found to depend on the excitatory modifications, while later the
inhibitory modifications become more important, and eventually the asymptotic
level of selectivity may be sensitive to the width of the input tuning as well as
the modification speeds. Of great importsnce in this analysis is the discovery
of parameters to which the output is insensitive. If, for example, the system is
insensitive to the parsmeters involved in the inhibitory processes, these
processes contribute little to the operation of the model.

Once the very hard job of finding appropriate parameters is completed, the .
simulation can be run under various rearing conditions to show that experimental
results can be replicated (at least in a very limited, abstract comtext!) and
novel rearing conditions can be used to "predict" the results of
yet—-to-be~pertormed experiments.

The main value of running simulations, ve feel, is not to pretend that one
is imitating the nervous system in any detail, but instead to gain an
understanding of some of the concepts which may someday help to model the
physiology in detail. For instance, the use of various forms of Hebbian synapses
enables very powertul computations to be pertormed by parallel networks, with
little need for prior organization. Simulsations aid in appreciating both the
pover and the limitations of the concept of self-organization by syunaptic
modification. For example, one iearn. quickly to pay atteantionm to inmput coding,
which is practically ignored in most models prior to their realization in

simulations. Whereas a model of central processes might assume that the

\J'

.'J‘

ot
.
.

RO

3

4

3

»

'

‘I

3

»

W peripheral nervous system copies external stimuli faithtully, a& simulation might
g' assume that the central nervous system receives inputs which are all but

¢

;ﬁ completely processed.
s

! Simulations of neural systems serve to develop applications in artificial
_: intelligence. Omne such application might be in the programming of parallel
b
;: computers. A neural network with modifiable synapses provides one of several

"

-

N potential architectures for parallel hardware, and knowledge of the behavior of
. these systems will allow future machines to be used to not only simulate neural
j models at high speeds, but also in applications where continuous adaptive

A

- behavior or associative recall of large databases is required. The code

" described in this article was constructed to simulate a self-organizing system,
if where no external information about the system output is available. However,

N this program can be adapted to run a supervised learning system, where the

s desired output is fed to the synaptic modification algorithm as a goal (see ref.
-

‘ 7). The error between the actual output (R) and the desired output can then be
v

used to modify synaptic weights. Such an error—correcting method allows the

? system to be taught to respond to given inputs with outputs which are determined
’

v in advance. The system can be taught to discriminate between slightly different
2]

: inputs, or to categorize all inputs which are similar to some prototype as a

? given class. Although the above discussion concerns sensory processing

i primarity, one could substitute a motor system”s anatomy in order to develop

v etfector instruments.

- -

S

>

~ SUMMARY

" .

‘.

(&3

,: In our previous article (A) wve discussed models of the development of visual
43
;: corctical specificity. The behavior of such a model can be simulated on a serial
*

"

7
S L R N A S At R S e o e S e T L e J

-

C k) i e

[, ®, V"8 4 A

LR YR

aan w g A AT

-

's
.

A

P m u
'!ﬁ~

S 2
*h

v B 5 - o .
Pt 3 » S e 20 15 16 "0l ‘el Yok, el R i kA

computer by stepping through a sequence of stimulus presentations which mimic
visual experience. The simulated experience controls the development of cortical
responses through an algorithm which changes the simulated synaptic weights.

Such simulations provide a means to study models, and should be regarded more on

an abstract level than as simulations of real neural processes.

‘\r'\.r\f,f*f._n ,.I$-r.f J\ls-l"‘-(‘f w” ..' 4- J‘ 4‘ A .r" \.-\4- .- .(~ .,_-r\. \ - \ _-_:_._:__._._- ..\- AT

.....

P

References

l. Blasdel, G,G.; Pettigrew, J.D.: Degree of interocular synchrony required
for maintenance of binocularity in kitten"s visual cortex. J. Neurophysiol,

42:1692-1710; 1979.

2. Cukier, R.1.; Levine, H.B.; Shuler, K.E.: Nonlinear sensitivity analysis of

multiparameter model systems. J, Comp, Physics 26:1-42; 1978.

3. Daniels, J,D.; Saul, A.B.: Modelling and simulation I: Introduction and

guidelines. J, Electrophysiol. Tech, 13:95-109; 1986.

4. Grogonio, P. Programming in PASCAL. Reading, Mass: Addison-Wesley;

1980:117.

5. Hebb, D.O. The Organization of Behavior. New York: Wiley; 1949.

6. Knuth, D.E, The Art of Computer Programming, Vol. 2: Seminumerical

Algorithms. Reading, Mass: Addison-Wesley; 1969.

7. Rumelhart, D.E.; McClelland, J.L. (eds.) Parallel Distributed Processing:
Explorations im the Microstructure of Cognition, Vol. 1: Poundations. Cambridge,

Mass:.Bradford Books/ MIT Press; 1986.

8. Saul, A.B.; Daniels, J.D.: Modeling and simulation II: Speciticity models

for visual cortex development. J, Electrophysiol., Tech,

‘.-ruk .A’;(J'.l N P -(-J‘L\.x .c-h--r..l_.r.; & .~ ._._.f RIAEMAY ,“.JL NS c .-_\.e_- R ST WA e PR,

e T T A N Ty T I T I TR T I R WXy S I Y L L LV TV DV T W I TV TV TN W e T TV T |

N TVIWIVY '1
5
A

Figure Captions

Figure 1: i
One way to generate input stimuli is to project bars onto a sheet of
receptor elements. The activity of each receptor is proportional to the degree

to which that receptor is covered by the bar.

Figure 2:

Examples of pgbstract stimuli. The curves are gaussians on a circle (see
“FUNCTIUN contour” in Figure 12). Two stimuli are shown, centered on 0 (solid)
and 45 (dashed). On the left, the curves are displayed in polar form, with

amplitude given by the radial distance from the circle. On the right, the circle

is unwrapped to a cartesian plot of amplitude versus orientation (or input
fiber). The overlap between two stimuli depends on the distance between their

centers and on the width of the curves.

Figure 3:

A fiow charc for a simulation. The program consists of a loop which
simulates the passage of time. Following initialization of variables, for each
iteration of the time loop an appropriate input is chosen. This input induces a
response, vhich often must be computed iteratively. Display of this input/output
relationship may be useful, and we indicate this by the "graphics" box. At
certain points in the time loop the simulation is interrupted for analysis of the
system. The analysis routine can use the same stimulus-generation and
response-computation procedures, by setting a standard sequence of test stimuli.
During analysis the system is left unaltered, but during the main simulation

sequence, synaptic strengths are modified based on the stimulus and response.

Fs L2 e I R LA A T) - - .
. v 0 . S e O A N R e T T T NP L N Ve e N NN e :
e N S S fL(._- , .f . e, I&_{‘_ {‘_ \,A. . .5_."_. x4-,_./- .- .r f .~,_. N ; WARNCE RS IR |

AR

rgy&l((@‘

MENTRE SE S)

a

IO

REy

~{ .‘.

AR

R iy (NN . -
|ROUSAAC SRADAAS - SR ANAY.

Data is written to output devices when desired, generally before each time step.

Figure 4:

The driver for the simulation. When the driver calls the routine
“Choose_stimulus”, the variables “time”, random_seed”, and “stimulus’ pass
explicitly. Notice that “PROCEDURE Choose_stimulus® changes the value of

“stimulus’.

Figure 5:

Routine for determining rearing conditions. The “CASE (random_seed MOD 10)
OF° statement calls the routine that is numbered by “random_seed MOD 10°. For
example, it random_seed equals 128, then (random_seed MOD 10) equals 8 and the
CASK OF statement calls “PROCEDURE Disparate”. The variables “time” and
“random_seed” must be specified before entering “PROCEDURE Choose_stimulus’.
“"PROCEDURE Choose_stimulus®, however, assigns a value to the variasble “stimulus”

and passes this new value back to the main driver of the program.

Figure 6:

Record variable for storing visual stimulus conditions. The variable
“stimulus” contains a “tag” component, which takes on values of the type
“rearing”, and for each value of the “tag” component several other variables.
For example, “tag = md”, “open = right”, and “pattern = 5° specifies the “tag”
compounent of “stimulus”, i.e. we are looking at the “wd” component of

“stimulus”, and the values of the variables for “tag " »d”, i.e. “stimulus.open =

right” and “stimulus.pattern = 57,

Figure 7:

ARERRIRACIALL S ANl e JREi e) N U G R R TS R

v e
e T T N T AR

Routines for defining rearing conditions.

Figure 8:

Routines for defining rearing conditions. The routine “Procedure Disparate’
uses a crude method to generate disparities between the left and right eye
stimuli. The function “random” returns a number between 0 and 1, which is then
used to generate “dispshift” which lies between -2 and +2, which finally leads to
tne difference between “leftangle” and “rightangle” (the disparity) lying between
=4 and +4. However, the distribution of “dispshift” is not uniform, so that

disparities tend to be between -2 gnd +2.

Figure 9:

Routines for defining rearing comnditions.

Figure 10:

Translation of rearing conditions into stimulus vector. The main driver of
the program passes “stimulus” and “afferent_activity” explicitly to “PROCEDURE
Code_stferent_input”. The value of “stimulus” determines the pattern types that

are assigned to the vector “afferent_activity”. In this routine we have two

loops. The first (second) pass through the outer loop assigns activities to the
componeuts of “afferent_activity” corresponding to the left (right) eye. The
inner loop calculates the activity assigned to each component by calling
“FUNCTIUN atferent_component” which uses the tag value of “stimulus” to set the
activity. Notice thst “FUKRCTION afferent_component® returns a numerical quantity
to “PROCEDURE Code_affetent_input;. In general, PASCAL procedures change
variable values, whereas PASCAL functions pertorm some calculation and return the

result of the calculstion as the value of the function.

e At AT A A AT A AN N

AT JECHUS N RS
U *

L AR AR Ty

- -
* -

E
!
N
3
:
N
;

SO TR Y YT

..J.. L ..'-. '-‘..'IA' '.l' “.-'l D T . " " . .
R N TR TS SN AT -.‘,:."“'-:’ ' e ':"'.

Figure 11:

Function which runs through conditions for each type of stimulus.

Figure 12:

Functions to set activity in afferent fibers.

Figure 13:

Iterative computation of cortical sctivity. Variable “used” is & vector of
dimension N, the number of simulated cortical cells. Each component of “used~
carries & value of TRUE or PALSE, where TRUE (FALSE) indicates that the procedure
has (has not) calculated the afferent input to the corresponding cell. The
statement “used := all_false” sets all of the components to FALSE, When the
REPEAT loop has updated each cell at least once, all the components of “used” are

TRUE and the implicit updating ends.

Figure la&:

Inner product routines.

Figure 15:

Functions used in response calculations.

Pigure 16:

Synaptic modification routines. Notice that modifying the synapses takes
very little code. Each pass through the loop of “PROCEDURE Modify_synapses’
modifies the synapses of one celi by calling “PROCEDURE Modify” which changes the

synaptic weights of the cell one by one.

P e L RN

.

DA g &4 '_,_:‘..\',:w‘

Figure 17:

Analysis driver.

Figure 18:

Analysis routine.

Pigure 19:

Subroutine for analysis. a) initializations; b) preliminary calculations; c)

statistics; d) writing output.

-y - —— e,

s T SRR
RRARARAS JARAN

INPUT TUNING

v -
LR N4 ST AT

D R A e T

a2 al 2 P Ew

s

k1

135

N P N

PO

WA WY

"
RO
=

160

T U PO S L DU)

PR S R M LA
PR T YO T W R P

-

l'J))}JI

WYY YIY]

TIME Generate :
loop stimulus

Initialize

ERALH

g

oo

LAt T N]

[: Calculate Analysis YES Analysi !

lysts
response wanted? y

Tt e e . ———— e e — e -

NO

R AR

Graphics

Modify Write
synapses Results

A

"}f P

e

v}?{i

.
AN

L I S W S

>
AN
. [SR Y

o
]
4

"/ YN - .
o S el e
sﬂ&g&@hﬁﬁgw&mJ SLa e

-....1---..;-....‘..",.. ., o T Wy & W W Wy LR A SR S B Rl iR Tl S A S v el

FOR time := 0 TO end_of_time DO
W, BEGIN
Choose_stimulus (time,random_seed,stimulus);

- Code_afferent_activity (stimulus,afferent_activity);
Compute_response (afferent_activity,synapses,response);
: Modify_synapses (afferent_activity,response,synapses);

IF time IN analysis_times THEN Analysis (synapses);
o Log_results_to_output_devices
:: END;
N
A

’ 12
R R I

LJ
»

s

"A
it

P4

R

Seaa sty S

B0

i

K<
-
o«

g

I
S R S “

-
&

‘-'I ‘-;\-.\:\‘- ‘.'. ~ !

TN AL LR, admadahabhadadae 8 2"8 23 a'S al® 298 '8 a8 2R at0 2 o0 . o Sa¥ §20 8.0 S0 b D wah 0oh Bk B Bl i &Y T .

PR

ry
” oy

e e ol
e s .

Erry,

™

a

-

*F

:- PROCEDURE Choose_stimulus (time:times; random_seed:INTEGER;

\: VAR stimulus:stimulus_type);
. BEGIN

&Y IF time < 1000 THEN Dark (random_seed,stimulus)
' ELSE
:: CASE (random_seed MOD 10) OF
W)
0,1 : Dark (random_seed,stimulus);
2 : Closeleft (random_seed,stimulus);
o 3 : Closeright (random_seed,stimulus);
j 4 : Strabismic (random_seed,stimulus);
. 5,6,7,8,9 : Disparate (random_seed,stimulus)
= ERD
END;

A

'.‘.

X

.

fl
=

'-l',

-,

o

<4

"'

’,

7

fl

,I

-,

L

N

-s'

N

\

(LA

o

o

OF

- ...':;.‘- . ._".,!".'-:_...(\$4‘"{. r\;__'v'.'("f~f\f ’,

L)

stimulus_type = RECORD

NN

- ." .)"

:’_ v\. |~_ ’

CASE tag : rearing OF

correlated : (orientation : angle);
md : (open : eyes; pattern : angle);
rs : (firstopen : eyes; reversal : times;
bar : angle);
r: ();

disparity : (rightangle,leftangle : angle);
strabismus : (rtangle,ltangle : angle);
adaptation : (adapted_eye : eyes;
adapting_pattern : angle);
periodic : (frequency : real; phase : angle)

END;

L}
e "%

SAMNYANY

.

L A

e

~

- J LA A A

LA

XA

o ‘-
:"J' # I\I.f‘-’* ,\ \f“-'.f

A .r‘.v e . .\-r\. AN

YV IWNN

f-' AR A

v e,

CRCENCRN R

% *a 4'.:! .'l .$ -

XA

TP LS

NI/

LS NS N

s

f.
~p

I T ’ .- A ot
IR SRR \"'-."w.;'_-. KRR RN SR R g

PROCEDURE Normalrearing (random_seed : INTEGER;
VAR stimulus : stimulus_type);

BEGIN
WITRH stimulus DO
BEGIN

tag := correlated;
orientation := ! + (random_seed MOD numangles)
END
END; {Normalrearing}

PROCEDURE Closeleft (random_seed : INTEGER;
VAR stimulus : stimulus_type);

BEGIN
WITH stimulus DO
BEGIN
tag := od;
open := right;
pattern := 1 + (random_seed MOD numangles)
END
END; {Closeleft)

PROCEDURE Closeright (random_seed : INTEGER;
VAR stimulus : stimulus_type);

BEGIN
Closeleft (random_seed,stimulus);
stimulus.open := left

END; {Closeright)

PROCEDURE Reverse_suture (random_seed : INTEGER;
VAR stimulus : stimulus_type);

BEGIN
WITH stimulus DO
BEGIN
tag := rs;
firstopen := right;
reversal := 2000; {or whatever time is desired}
bar := 1 + (random_seed MOD numangles)
END
END; {Reverse_suture}

A R T N
17 SR R Tl S SRR O Sl Y

I AES A

- '.\
SO

L

"

.
..I\

B ARSRGAD
A ALY
a

P X W O W W WIS T T T VP Y
Ej
g

)

-

PROCEDUSE Dark (random_seed : INTEGER;
VAR stimulus : stimulus_type);

BEGIN
stimulus.tag := dr
ERD; (Darkrearing}

PROCEDURE Disparate (random_seed : INTEGER;
VAR stimulus : stimulus_type);

CONST
dispwid = 3.2;
disptrans = 1.6;

VAR
dispshift : INTEGER;

BEGIN
WITH stimulus DO
BEGIN
tag := disparity;
rightangle := 1 + (random_seed MOD numangles);

IF rightangle > numangles DIV 2 :
{ Only half the patterns (the "vertical® ones)}
{ induce disparities.)

THEN
BEGIN
dispshift := ROUND(dispwid * random(random_seed) - disptrans);
leftangle := 1 + (rightangle + numangles - 1 + dispshift)
MOD numangles;
dispshift := ROUND(dispwid * random(random_seed) - disptrans);
rightangle := 1 + (rightangle + numangles - 1 + dispshift)
MOD numangles

END
S ELSB
r‘ leftangle := rightangle
p: ERD
Eg END; {(Disparate}
o
F'.
IJ.
b:;:
e

-
-

RS A

P SO0
s & -

e A N AT AT AT TR A W o
PIPOR A TSI PRI IS Ve i a it e VO T W DATIR O YA VA G A

PROCEDURE Strabismic (random_seed : INTEGER;
VAR stimulus : stimulus_type);

BEGIN
WITH stimulus DO
BEGIN

tag := strabismus;
rtangle := 1 + (random_seed MOD numangles);
ltangle := 1 + TRUNC(numangles * random(rnndon_leed))
END
ERD; {Strabismic}

PROCEDURE Adapting (random_seed : INTEGER;
VAR stimulus : stimulus_type);

BEGIN
WITH stimulus DO
BEGIN
tag := adaptation;
adapted_eye := right;
adapting_pattern := 17
END {This is an example. Any stimulus can be fixed here.}
END; {Adapting}

PROCEDURE Sinusoid (random_seed : INTEGER;
VAR stimulus : stimulus_type);

BEGIN
WITH stimulus DO
BEGIN

tag := periodic;
phase := 1 + (random_seed MOD numangles);
frequency := two_pi_over_n * (random_seed MOD 10)
END
END; {Sinusoid} ({ two_pi_over_n = (2 * PI) / numangles }

Cy QT et
YRt WE \’_.{._w’ -', - ,\I\'

[

"N St 'mmmmmv_wrrrwq

- - e
. .

[)
W
(-
%
N
~
]
A%
)
~N
3
~
<
N PROCEDURE Code_afferent_input (stimulus : stimulus_type;
5 VAR afferent_activity : maxvector);
W VAR { Numafferents equals the total number }
N fiber, { of afferent fibers to each cell. }
{: fiber_number : maxindex; { waxindex = l..numafferents }
" left_or_right : eyes; { or l..numcells }
¢ { depending om which is larger. }
: BEGIN { maxvector = ARBAY[maxindex] OF REAL }
.. fiber_number := 0;
o FOR left_or_right := left TO right DO
- FOR fiber := 1 TO (numafferents / 2) DO
. { Ve take }
A { numangles = numafferents / 2. }
{ That is, each pattern (or angle) corresponds }
- { to an afferent fiber from each eye. }
0 BEGIN
$ fiber_number := fiber_number +1;
- afferent_activity[fiber_number] :=
" afferent_activity_component(left_or_right,fiber,stimulus)
END
. END; {Code_afferent_input}
>
“~
Y
£
Y
)
.
P
‘
J
o

A IR N R NN R A A I U N T S s G SRR L8 CE NV CRA X

oy Rl ‘ald " - ’ N P
3 P AL LA N Sa Pt . A DAY AN] WL L W gL W RO PN X Ca avtu®

FUNCTION afferent_component (left_or_right : eyes;

g fiber : maxindex; stimulus : stimulus_type) : REAL;
| VAR
? x: REAL;
- | timerev,lropen : BOOLEAN;
4 BEGIN
WITH stimulus DO

CASE tag OF

grreletniy

correlated :
x := contour(fiber,orientation);

od :
IF left_or_right = open
THEN x := contour(fiber,pattern)
ELSE x := noise(moise_amplitude);

At Ay &y

rs :
BEGIN
timerev := time < reversal;
lropen := left_or_right = firstopen;

s ..‘)

IF (NOT timerev OR lropen) AND (timerev OR NOT lropen)
. {timerev IFF lropen}
K- THEN x := contour(fiber,bar)
k. ELSE x := noise(noise_amplitude)
) END;

dr :
x := noise(noise_amplitude);

disparity :
IF left_or_right = left
THEN x := contour(fiber,leftangle)
ELSE x := contour(fiber,rightangle);

strabismus :
IF left_or_right = left
THEN x := contour(fiber,ltangle)
ELSE x := contour(fiber,rtsngle);

adapting :
IF (adapted_eye = both) OR (left_or_right = adapted_eye)
TBEN x := contour(fiber,adapting_pattern)
ELSE x := noise(noise_amplitude);

periodic:
x := (1+COS(frequency*(fiber-phase)))/2

END;
afferent_component :*= x '
END; (afferent_component)

PR Y |

S T N I VO it S SR A LT IR A SRS e N IO NN NN T ARNT AN NEAK .
. AT AT AN N A p » “‘\Lﬁ&ﬁ‘%A&blﬁAﬁAﬁ\T\Aa&AS&HYﬂ

J

AN

APl R

il ooy

)
. 4

a s

Py s

FUNCTION contour (fiber : maxindex; center_angle : angle) : REAL;

CONST { Plotting fiber activity versus fiber }
width_of_input = 1,0; { number gives a Gaussian curve with the }
' { peak value occurring at “center_angle”.}
{ (see Pigure 2) }
BEGIN

contour := BXP(-width_of_input *
distance_squared(fiber,center_angle))
END; {contour}

FUNCTION distance_squared (fiber : maxindex; center_angle : angle) : REAL;

{ This function calculates the distance between }
{ points lying on a unit circle. }
BEGIN

distance_squared := 1.0 - COS(two_pi_over_n * (fiber-center_angle))
END; {distance_squared}
{ two_pi_over_n = 2 * PI / numangles }
FONCTION noise (amplitude : REAL) : REAL;
BEGIN
noise := amplitude * random (random_seed)
END; {noise}
FONCTION random (VAR random_seed : INTEGER) : REAL;

{random is uniformly distributed between 0 and 1}

CONST
alpha = 779; { See refs, 4,5 on the generation }
lambda = 361; { of random variates. }

pea = 16384;

BEGIN

random := random_seed/pea;

random_seed := (alpha * random_seed ¢+ lambda) MOD pea
END; {random}

&

Ry

(
.

.

LY

O
“

~d

>

.
4
33
\: PROCEDURE Compute_response (afferent_activity : maxvector; synapses : synapses_type;
%! VAR response : maxvector);
o~ VAR .

~ used : ARRAY [cellindex] OF BOOLEAN; { cellindex = l..numcells }
b

= BEGIN

:- used := all_false;
i REPEAT
5 cell := random_integer_between(l,numcells);

. IF afferent_input_hasnt_already_been_computed(cell)
w THEN Compute_afferent_input;

) used(cell] := TROUE;

\ Compute_intracortical_input;

response[cell] :=

> sigmoid(afferent_input{cell] - intracortical_input(celll);
o UNTIL used = all_true
x5 END; {Compute_response}

-
<
o
\: !
¥

A

\l
3
3

.

‘.l

<

.,

’

N

N

N

-

2

4
N
'
]
b
L]

]

RRRRRR

K.

[N

PAPITAIAT,

.. ’- }l "4 "".". .‘

. o,

-
w RN e

')

44;4:!

Y AN .

'.l:'d'\.l'\l"f'

PROCEDURE Compute_afferent_input;

BEGIN
afferent_input(cell] :=

inner_product(afferent_activity,synapses.afferenticell] ,numafferents)
END;

PROCEDURE Compute_intracortical_input;

BEGIN
intracortical_input(cell] :=

inner_product(response,synapses.intracorticallcell},numcells)
END;

FOUNCTION inner_product (x,y : maxvector; lastindex : maxindex) : REAL;

VAR
ip : REAL;
index : maxindex;

BEGIN
ip := 0.0;
FOR index := 1 TO lastindex DO
ip := ip + x[index] * y(index];
inner_product := ip

END;
L PR AL S SR ST AN C S AR A SO S R AN S OO S C A R SR LSRN L O R G AR O E N0 T R S
. yLs . AR Y e, N A SN LAARE AR
LA MMM 2 A s et ¢ AL N A R T I i e e e e D I A v PRI i

7
ave B 8

FUNCTION random_integer_between (a,b : INTEGER) : INTEGER;

VAR
‘interval : INTEGER;

BEGIN
interval := b-a+l;
random_integer_between :=
a + ROUND(interval * randowm(random_seed)) MOD interval
END;

FUNCTION sigmoid (x : REAL) : REAL;

CONST
threshold = 3.0;
steepness = 2.2;
too_small = -20,0;
too_big = 10.0;

BEGIN
IF steepness*(threshold - x) < too_small
THBEN sigmoid := 1.0
ELSE IF steepness*(threshold - x) > too_big
TREN sigmoid := 0.0

ELSE sigmoid := 1.0/(1.0 + EXP(steepness * (threshold ~ x)))

END;

AT AT A T e e RV T R T o . .
$\\- By .\.).).'\..._ z""‘ \3_ }.,._.,\\ __‘ . .'._* P \’ T N

U

;‘\é\}\‘ Y

Ty YTV AN UVUS T N WSO U CURT O aO ICY (UTE TR

t

NN T

ASLERLALLLECE RS O s NN PN C A S A AL LNttt SIS E SEAL R AR Al

f

b

)

o

d

PROCEDURE Modify_synapses (afferent_activity,response : maxvector;

[VAR synapses : synapses_type);

o

- BEGIN

% FOR cell := 1 TO numcells DO

o BEGIN

Modify (numafferents,afferent_activity,response(celll,afferent_parsmeters,

. synapses.afferent(celll);
9 Modify (numcells,response,response(cell],intracortical_parameters, |
- synapses.intracortical{cell])

: END

END; {Modify_synapses}

-f PROCEDURE Modify (lastindex : maxindex; presynaptic : maxvector;

> postsynaptic,"parameters" : REAL;

- VAR junctions : maxvector);

n BEGIN

: FOR index := 1 TO lastindex DO

t junctions(index] := "the appropriate function of" (6)

. (presynaptic,postsynaptic,parameters)
BN
= (e.g. junctions{index) := (1.0 - h) * junctions(index]

X + h * presynaptic[index] * postsynaptic)
S END; (Modify)

N
i

3
b

™
M
3

::

S

:
ol

g ‘
‘l . \

.‘-‘,-,-._.'F.(.'_.._. N e T T e e AT

o IQ... o .-... -‘..I' ~ * .
N N s AT B S R A O

YA -

{al.*

SEHR VLSSV L

Cuw e e

a
.

~'-'|.--.- - - -f-'-d."."..‘)‘....
e TN T A At e T D

PROCEDURE Analysis (synapses : synapses_type);

BEGIN
initialize output variables
REPEAT
choose stimulus
make input vector
compute response
log response into output variables
UNTIL all desired patterns have been tested;
compute averages and other output functions
write regults and drav graphics
END;

[P " VIR V. T N T R P SR S
\..;.- '.'\.‘\J -t * &, RIS P] 0y

{ Step 1)}

{ step 2 }
{ Step 3 }

s . .

- . - ‘o ‘Al o/ v -
ol) > PRV B LAl (R a™, AR AN RO e Bl S PR 0 i D - Sl " N X
.......... S

“r"-‘v %

TYPE
- cell_analysis : ARBAY{eyes,cellindex,angle] OF REAL;
0 VAR
> stimcount : INTEGER;
“ yes : BOOLEAN;

eyetest : eyes;
orientest : angle;

‘
J; analysis_data : cell_analysis;
A
’"e BEGIN
X askforanalysis(time,yes); { “PROCEDURE Analysis’ is used ounly when }
{ the variable “time” equals a time)
- IF yes THEN { specified in “PROCEDUBE askforanalysis”,)}
& BEGIN { which we omit here.
- stimcount := 0;
X REPEAT
BEGIN
. FOR orientest := 1 TO numangles DO
- BEGIN
. WITH stimulus DO
N BEGIN
" IF stimcount = O
THEN tag := correlated
» ELSE
o IF stimcount < 3
. %, THEN tag := nd;
> CASE tag OF
D correlated :
: BEGIN
2 orientation := orientest;
:Q t eyetest := both
B END;
DS md
" BEGIN
pattern := orientest;
. IF stimcount =1
Lo THEN
“. o open := left
o ELSE
4 open := right;
, eyetest := open;
» noiseamplitude := 0.0
> END
" END {CASE tag}
.- - END; (WITH stimulus}
‘o Code_afferent_activity (stimulus,afferent_activity);
Compute_response (afferent_activity,synapses,response);
- FOR cell := 1 TO numcells DO
- analysis_dataleyetest,cell,orientest} := responselcelll;
- END; {FOR orientest}
»y stimcount := stimcount + 1

END {REPEAT}
UNTIL (stimcount = 3);

r
1

Do_statistics(analysis_data);
END (yes}
END; {(Analysis)

[l S AN -~
-

PO T e . P
e e e et M e LN S AT T T T B WA U] P I SR B
e talaal e T T e Lt e

AN N R R

RN

2y

.
()

AN A R IR S A e - o
VISR I AL A S SR LT S R A A A

PROCEDURE Do_statistics(analysis_data : cell_analysis);

CONST
fldwd = 7;
prec = 2;
TYPE

analyint = ARRAY(eyes,cellindex] OF INTEGER;
analydata = ARRAY[eyes,cellindex] OF REAL;
overcells = ARRAY[eyes] OF REAL;

VAR

eyetest : eyes;

‘orientest : angle;

best_stimulus : anmalyint;

max,mean,sel,resp_at_binoc_max : analydata;

ocdom,facilitation,responsiveness : maxvector;

mean_sel ,weighted_mean_sel,variance_sel : overcells;

mean_ocdom,weighted_mean_ocdom,variance_od,
mean_facil,weighted_mean_facil,variance_fac,

mean_responsiveness,
correlation_sel_od,correlation_fac_binocularity

BEGIN
{ initializations:)}

FOR eyetest := left TO both DO
BEGIN
FOR cell := 1 TO numcells DO
BEGIN
max[eyetest,cell] := 0.0;
mean{eyetest,cell] := 0.0;
responsiveness(cell] := 0.0
END; (FOR cell}
mean_sel{eyetest] := 0.0;
weighted_mean_selleyetest] := 0.0;
variance_sel{eyetest] := 0.0;
END; (FOR eyetest}
mean_ocdom :*= 0.0;
weighted_mean_ocdom := 0.0;
variance_od := 0.0;
mean_f£acil := 0.0;
weighted_mean_facil := 0.0;
variance_fac := 0.0;
mean_responsiveness := 0.0;
correlation_sel_od := 0.0;
correlation_fac_binocularity := 0.0;

{ End of initializations }

: REAL;

I R S ol

WA AT TRV LR IS TSR

'3

FOR cell := 1 TO numcells DO
BEGIN

FOR orientest := 1 TO numcells DO
BEGIN
IF max(both,cell] < analysis_data[both,cell,orientest]
THEN
BEGIN
max(both,cell] := analysis_datalboth,cell,orientest];
best_stimulus{both,cell] := orientest
END; {(IF max}
END; {orientest)

-FOR eyetest := left TO right DO
BEGIN
FOR orientest := ! TO numcells DO
BEGIN
IF max{eyetest,cell] < analysis_dataleyetest,cell,orientest] THEN
BEGIN
max(eyetest,cell] := analysis_dataleyetest,cell,orientest];
best_stimulus{[eyetest,cell] := orientest
END; {IF max)
1IF orientest = best_stimulus{both,cell]
THEN resp_at_binoc_max[eyetest,cell] :=
analysis_dataleyetest,cell,orientest];
mean(eyetest,cell] := mean[eyetest,cell]
+ analysis_dataleyetest,cell,orientest]
END {FOR orientest)
END {FOR eyetest}

END; {FOR cell)

T I PRI T T S P T N S ST
(. o OIS L RN S PR TR AVLT SR
N RN NN RN RN TR R DRSS

A

4 o - - N
T e N e NN IR TN Ly C o L

™ oo
=% st

A A SN

AI‘_{L‘.-.',\'

o ——
[. L
- .‘%J'J\J 'J

A .\

> \‘\\":'rﬂ\'

RO A -'_.

\
LN T R
AT RN ALY

BEGIN
FOR eyetest := left TO both DO
BEGIN
mean([eyetest,cell] := mean(eyetest,cell]/numangles;
{ Definition: }
sel{eyetest,cell] :~ 1.0 - meanleyetest,cell]/max[eyetest,cell];
mean_sel[eyetest] := mean_selleyetest] + selleyetest,cell];
IF responsiveness(cell] < max[eyetest,celll
THEN responsiveness{cell] := max[eyetest,cell]
END; (FOR eyetest)

FOR eyetest := left TO both DO
weighted_mean_sel{eyetest] := weighted_mean_sel(eyetest] ¢
selleyetest,cell] * responsiveness(celll;
{ Definition: }
ocdom{cell] := max(right,cell}/(max[left,cell] + max[right,cell]);
mean_ocdom := mean_ocdom + ocdom[celll;
weighted_mean_ocdom := weighted _mean_ocdom +
ocdom{cell] * responsiveness(celll;
variance_od := variance_od + SQR(ocdom{celll);
{ Definition: }
facilitation(cell] := resp_at_bin_max[both,cell] /
(resp_at_bin_max(left,cell]+resp_at_bin_max[right,celll);
mean_facil := mean_facil + facilitationlcell);
weighted _mean_facil := weighted_mean_facil +
facilitation(cell] * responsivenessicelll;
variance_fac := variance_fac + SQR(facilitation[celll);
mean_responsiveness :™ mean_responsiveness + responsiveness(cell]
END; (FOR cell}

FOR eyetest := left TO both DO
BEGIN
mean_sel[eyetest] := mean_sel([eyetest]/aumcells;
weighted_mean_sel[eyetest] :=
weighted_mean_sel[eyetest]/mean_responsiveness
END; {(FOR eyetest}

mean_ocdom :*= mean_ocdom/numcells;

weighted_mean_ocdom := weighted_mean_ocdom/mean_responsiveness;
mean_facil := mean_facil/numcells;

weighted_mean_facil := weighted_mean_facil/mean_responsiveness;
mean_responsiveness := mean_responsiveness/numcells;

FOR eyetest := left TO both DO
variance_sel[eyetest] :=
(variance_sel{eyetest] - numcells * SQR(mean_selleyetest]))/(numcells-1);
variance_od := (variance_od - numcells * SQR(mean_ocdom))/(numcells-1);
variance_fac := (variance_fac - numcells * SQR(mean_facil))/(numcells~1);

. FOR cell := 1 TO numcells DO

3T R

\’

BEGIN
correlation_sel_od := correlation_sel_od ¢+
(sellright,cell)-mean_gellright)) * (ocdomlcell])-mean_ocdom);
correlation_fac_binocularity := correlation_fac_binocularity
+ (mean_facil-facilitation(cell]) * abs(ocdomlcell] - 0.5)
END; (cell)

correlation_sel_od := correlation_sel_od/SQRT(variance_sel * variance_od);
correlation_fac_binocularity := correlation_fac_binocularity /
SQRT(variance_fac * variance_od);

D R A O S
o -l_ _.-'\(,_/_'.'.."J'

AR LN YR SN
PR I AR AU

"

D& Bty

(e MTRBEN TR A PN TN N REF YL T Pt Ralioate §o0 Pt . g p v &, > Sa=ole 0" Ba St

vriteln;

vriteln(“selectivity®:23,°0d”:9, fac”:8, resp”:7,
‘pref pattern”:23);

write(“cell left right binoc “:29);

writeln(” left right binoc”:49);

FOR cell := 1 TO numcells DO

BEGIN
write(cell:5,sellleft,cell):£fldwd:prec);

. write(sel{right,cell]:fldwd:prec,sel{both,cell]:fldwd:prec);
write(ocdomlcell]:fldwd:prec,facilitation(cell]:£fldwd:prec);

write(responsiveness{cell]:fldwd:prec);

T write(best_stimulus[left,cell},best_stimulus{right,celll);
writeln(best_stimulus(both,celll);

END; {cell}

writeln;
write(“avrgs “:5,mean_sel{left]:fldwd:prec,mean_sellright]:fldwd:prec);
write(mean_sel{both]:fldwd:prec,mean_ocdom:fldwd:prec);
write(mean_facil:fldwd:prec,mean_responsiveness:fldwd:prec);
writeln;
% write(” “:5,weighted _mean_sel{left]:fldwd:prec);
write(weighted_mean_sel[right]:fldwd:prec,
weighted _mean_sel[both]:fldwd:prec);
write(weighted_mean_ocdom:fldwd :prec,veighted_mean_facil:fldwd:prec);

write(” weighted by responsiveness’);
& vriteln;
write(® standard deviation of ocular dominance is 7,
SQRT(variance_o0d):10:4);
writeln;
f writeln;

write(“correlations: between select1vity in right eye and “:52);

writeln(“shift toward right eye :%,correlation_sel_od:fldwd: prec)
write(” “:15, between facilitation aand binocularity :%);
writeln(correlation_fac_binocularity:fldwd:prec);

writeln;

writeln

' END; {Do_statistics}

2O 7075 IR EALGEOIRTEN
232575525 e N e ey e ey By TG, N N A A T, A

