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SECTION 1

INTRODUCTION

Satellite communications systems thit utilize transionospheric

propagation links may be subject to severe performance degradation when

the ionosphere is highly disturbed by high altitude nuclear explosions

(Arendt and Soicher 1964; King and Fleming 1980) or by chemical releases

(Davis et al. 1974; Wolcott et al. 1978). During these events, the

increased electron concentrations and the irregular structure of the

ionizatior can lead to intense Rayleigh signal scintillation at the RF

carrier frequencies used for communication links.

Under severe scintillation conditions, the signal incident at

the receiver can vary randomly in amplitude, phase, time-of-arrival, and

angle-of-arrival. If all frequency components of the signal vary essen-

tially identically with time, the propagation channel is referred to as

nonselective or flat fading. 'A'en the scintillaticns exhibit statistical

decorrelation at different freauencies within the signal bandwidth, the

"channel is referred to as frequency selective. Frequency selective

scintillations are therefore encountered when the communication link band-

width exceeds the frequency selective or coherence bandwidth of the chan-

nel. When the scintillations exhibit statistical decorrelation across the
,.•

face of an aperture antenna, the channel may also be referred to as spa-

tially selective. Spatially selective scintillations are therefore en-

countered when the antenna aperture size exceeds the decorrelation dis-

tince of the incident signal.

.MJ1K
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Under conditions where the signal is spatially selective, the

antenna beamwidth is smaller than the angle-of-arrival fluctuations and

the effect of the antenna is to attenuate the incident signal that is

arriving at off-boresight angles. In the spatial domain, the incident

electric field is somewhat decorrelated across the face of the antenna.

The induced voltages in the antenna then do not add coherently as they

would for an incident plane wave with a loss in the gain of the antenna as

a result. Because of this angular filtering or spatial selectivity, the

second order statistics of the signal at the output of the antenna will be

different than those of the incident signal.

The effects of antennas on signals that have propagated through

randomly ionized media have been reported by Wittwer (1982, 1986) and

Knepp (1983a, 1985). The purpose of this report is to review the basic

theory, starting with Maxwell's equations, of radio frequency (RF) signal

propagation through random media. Then several new applications of an-

tenna filtering effects are presented. These include the filtering of

anisotropic signals with anisotropic antennas; generation of realizations

of the impulse response function at the output of multiple antennas; and

transponder communication links with two independent propagation paths and

four antennas.

1.1 THEORY.

The starting point for antenna aperture effects calculations is

the generalized power spectal density (GPSD). The first part of this

report is a review of the derivation of the GPSD. The intent of this

review is to give the reader an understanding of the underlying physics

that are contained in the GPSD and an understanding of the assumptions

used to calculate the GPSD. The first part of this review follows

Tatarskii (1971, ý64-65) and the second part follows Knepp (1983a).

2
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The derivation of the GPSD starts with Maxwell's equations from

which the parabolic wave equation is derived. The parabolic wave equation

can be solved to give the received electric field for a specific electron

density distribution in the ionosphere. However, the electron density

distribution is a random process so the received electric field is also a

random process. The parabolic wave equation is therefore used to derive

an equation for the two-position, two-frequency, two-time mutual coherence

function of the electric field, r(A',Au,At). The solution of the differen-

tial equation for r, which is a solution of Maxwell's equations, then pro-

vides a description of the second order statistics of the received elec-

tric field. The Fourier transform of r is the GPSD of the received

signal.

1.2 APPLICATIONS.

The second part of this report presents several new resijlts.

The GPSD for anisotropic scattering is used to compute the mean power,

decorrelation distance, and frequency selective bandwith of the signal out

of an anisotropic antenna. These results allow an arbitrary rotation

about the line-of-sight between the antenna axis and the natural axis of

the scattering. Analytic results are presented for antennas with Gaussian

beam profiles and numerical results are given for uniformly weighted

circular apertures.

These results are then generalized to transponder communication

link geometries where there are two independent propagation paths through

disturbed regions of the ionosphere and four antennas. It is assumed for

simplicity in these calculations that all of the antennas have circularly

symmetric antenna beam profiles.

3



In the last applicat~on .iction analytical/numerical techniques
are described to generate realizations of the impulse response function of
the signal after propagation through randomly ionized media and reception

by multiple antennas. These statistical realizations of the signal out of

multiple antennas have Rayleigh amplitude statistics and spatial and fre-

quency correlation properties given by the mutual coherence function.

These realizations of the impulse response function are then used to con-

struct the received signal which may be used to exercise simulations of

transionospheric communications links.

4



SECTION 2

THEORY

The starting point for antenna aperture effects calculations is
the generalized power spectral density (GPSD). This section presents a

review of the derivation of the GPSD and discusses the physics that are

contained in this important function.

In deriving the GPSD, two key approximations are made about the

spatial and temporal electron density fluctuations that cause the scatter-
inq in the ionosphere. The first of these is the delta layer approxima-

tion which says that the scattering oc:7urs in an infinitesimally thin
layer normal to the line-of-sight. This approximation has been relaxed in
the calculations of Wittwer (1982) and Knepp (1983b) and has been found to
result in small errors in the GPSD prc.vided that the propaqation param-

eters (frequency selective bandwidth, decorrelation time and decorrelation

distance) that characterize the channel are properly specified. The delta
layer approximation is not, in general, adequate to calculate the propaga-

tion parameters (Wittwer 1982).

The second approximation is for the temporal variation model of

the electron density fluctuations. The usual approximation is Taylor's
frozen-in hypothesis which treats the ionization fluctuations or stria-

tions as rigid "frozen-in" structures that drift across the line-of-sight.

Under this approximation there is strong coupling between the spatial and
temporal variations of the random electric field that is incident at the
plane of the receiver. A second approximation proposed by Wittwer (1985),

called the turbulent approximation, is developed in this section which

decouples the spatial and temporal variations of the random electric

5



fields. This approximation may be more accurate at times before the stri-

ations have formed in the ionosphere or when multiple layers of striations

with different drift velocities are in the line-of-sight. The GPSD under

both of these approximations is derived in this section.

An analytic solution is obtained in this section for the two-

position, two-frequency, two-time mutual coherence function r(*,A&W,At) of

the complex electric field incident on the plane of the receiving antenna.

This solution is valid for arbitrary line-of-sight geometries relative to

the ionization structures in the ionosphere that cause the scatterinc of

the RF wave. The mutual coherence function then provides the basis for

the antenna aperture effect calculations and for the statistical signal

generation techniques discussed in Sections 3 and 5 of this report. The

Fourier transform of r is the GPSD of the received signal.

2.1 PARABOLIC WAVE EQUATION.

Consider a monochromatic spherical wave with an electric field

#f(r,w,t) which is a function of position r, carrier radian frequency w,

and time t. The wave originates from a transmitter located at

r = (0,0,-zt) and propagates in free space in the positive z direction

until it is incident on an irregularly ionized layer which extends from

0 < z < L and is infinite in the x-y plane. After emerging from the layer

at z = L, the wave propagates in free space to a receiver located at
4

r = (0,,z r). This geometry is shown in Figure 2-1.

The propagation of the wave is governed by Maxwell's equations:

ýx4'+ (1/c) aJr/at 0 0
(2-1)

~XJ. aS/at ( 0 a-/ Wt 0 0

where c s the speed of light in vacuum,W 'is the magnetic field, and e is

the dielectriL iuyiý,tad t.
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Transmitter

Zt

L

* Receiver

Figure 2-1. Propaqation geometry.

The dielectric constant of the propagation medium undergoes

random fluctuations with a characteristic frequency which is assumed to be

small when compared to the carrier frequency of the wave. With this

assumption, the electric and magnetic fields may be written as the product

of slowly varying complex envelopes, denoted • and H, times exp(iwt):W(,,t) = W (;'w,t)e i t; 

-(2-2)
-,+ 

iWt

Jt'(r,w,t) = H+(r,w,t)e

Inserting these into Maxwell's equations gives

ixt + ikH = 0 (2-3a)

-H i.k. = 0. ..... .

A.

7
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where k w/c is the wave number of the carrier. After applyinq the curl

operator to Equation 2-3a and substitutinq Equation 2-3b for the ýxH

term, the equation for t becomes

"- ek2t = o (2-4)

The vector identity Mxt = (.)- V 2t reduces the curl curl term in

Equation 2-4 with the result

V2t - ek 2 t : 0 (2-5)

The ý.t term is reduced by expanding the divergence equation for •:

= • = 0 (2-6)

or

. : _.•(Inc) (2-7)

The wave equation for the comolex envelope of the electric field then

becomes

v2t + ek2t + ý[t.a(lne)] : 0 (2-8)

The dielectric constant E in a plasma at radio frequencies is

given approximately by

C W (2-9)

where the plasma frequency is

: 4n re c2 ne (r,t) . (2-10)

S... . . . . . . . . .. . . . . . .' • =. • - _ • . .. . . . , _ * - - ,. .S= -



The quantity re is the classical electron radius (r =2.8179xlO0is m) and
ne(•,t) is the free electron density as a function of position and time.

Equation 2-9 is valid when the carrier frequency is large compared to the

plasma frequency. The free electron density is a random variable that

will be represented as a mean value plus a random variation:

n e(,t) = <ne> + An e(r,t) . (2-11)

The electron density fluctuation Ane (,t) is assumed to be a zero mean

random process with a standiard deviation that is small compared to the

mean electron density. The term ek2 in the wave equation may now be

rewritten as

ck 2 = 2(1-c) (2-12)

hwhere
I.--

(/)2[14vr c2<n (2-13)

and

el= [Ane(r,t)/<ne)][-/(w2•2)] . (2-14)

The quantity Vp is the plasma frequency evaluated at the mean electron

density. The magnitude of the gradient term ý(Inc) in the wave equation

may be estimated as follows:

. (4wl e2)nI>cL2 / )[(Ane/<n e>)I

(W- p o

9
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where Lo is the scale size of the electron density fluctuations. As

long as L» >> X, where X is the RF wavelength, the term ý[t.b(lnc)1 is

small compared to ek 2t and may be ignored. The steps that follow are

therefore only valid when the scale size of the electron density fluctua-

tions is large compared to the carrier wavelength. With this restriction,

the wave equation becomes

v2t + -2(1-C)t . 0 (2-15)

Now consider the complex components of the electric field and

let

E(&,w,t) = U(rt,tt) exp (-i f T (z')dz') . (2-16)

This scalar equation for t may be used because it is usual for trans-

ionospheric RF links to be circularly polarized. It is therefore not

necessary to carry out separate calculations for each polarization state.

The exponential term in Equation 2-16 represents the dispersive effects of

the smooth plasma and will be considered in Section 2.9. The voltaae U

contains the diffractive effects that are of interest under strong scat-

tering conditions. Substituting Equation 2-16 for E(•,w,t) in the wave

equation gives the following differential equation for U:

2 2U/aZ2-2U + a2 U/az 2 - 2ikaU/az - k ejU 0 (2-17)

where

v/2 a2 /aX 2 + a2/a'y2  (2-18)

The complex amplitude U varies as the electron density fluctuations. The

second derivative a2 U/az 2 is then the order of U/L0. On the other hand,

the tern kaU/az varies as U/XL o As long as X << Lot the second derivative

is small compared to the first derivative and may be iqnored. This is

equivalent to neglecting reflected rays and is called the "parabolic"

approximation. The parabolic wave equation is then

I0



2V1U - 2ikaU/az - k cU = 0 (2-19)

It will be seen that this parabolic or small angle scattering approxima-

tion is very robust in that it degrades gracefully as the scattering

angles get large. The source term c1U in the parabolic wave equation is a

function of the electron density fluctuations and of frequency. Different

frequencies within a signal bandwidth may therefore propagate along dif-

ferent paths through the same ionization structure. '-en this happens,

the propagation channel is said to be frequency selective.

2.2 TRANSPORT EQUATION.

A partial differential equation for the two-position, two-fre-

quency, two-time mutual coherence function r is derived from the parabolic

wave eauation in this section and is solved in Section 2.5. This trans-

port equation is derived usinq the Novikov theorem which requires that the

electron density fluctuations bp normally distributed. However, Lee and

Jokipii (1975a) give an alternative derivation that relaxes this assump-

tion.

2.2.1 First Form of the Transport Equation.

The two-position, two frequency, two-time mutual coherence

function is defined in a plane normal to the line-of-sight as

r = <U(Pl,Z,wl,tl)U*(P 2 ,Z,w 2 ,t 2 )> (2-20)

where p is a two-dimensional position vector in the normal plane.

In order to obtain an equation for r', the parabolic wave equa-
tion for U(Pj,z,u •1,t l) is multiplied by U*(p2,z,w2,t2). This results in P

the following equation:

11 6. I
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(1/k1 )VU_L12(•lZ,Wl,tl)U*(+2,z,W 2 ,t 2 ) -

21 [aU(0+1z,wl,tl)/aZ]U*(02,Z,w2,t2) -

klc l ( 1 ,z,wl,tl)U(Pl,z,wl,tl)U*(P 4
2,z,W2 ,t 2 ) r 0 (2-21)

where k is given by Equation 2-13 evaluated at wj, ¢(*jiz,wj,tj) is givenj 4k

by Equation 2-14, and '_L 2 is qiven by Equation 2-18 evaluated at p A

similar equation can be written down by interchanging the subscripts 1 and

2 and by taking the complex conjugate with the result:

2 + {

(1/k 2 )VL2 U (P2,z,W2 ,t2)U(P1,Z,9W 1 ,t 1 ) +

2i [aU*(+ 2 ,Z,w 2 ,t 2 )/aZ]U( l,Z,wl,t1) -

k 2 El(o 2 ,z,O 2 ,t2)U*(P 2 ,Z,m 2 ,t2)U(P1,Z,Wl,t1) = 0 (2-22)

Upon subtracting Equation 2-22 from Equation 2-21 and taking the

expectation value, the equation for r is

(1/k1 )V 1 2 r - (1/k 2 )v] 2r - 2iar/az-

k l<e(l( 1 ,Z,wl,tl)U(Pl,Z,Wl,tl)U*(+2,Zw 2 ,t 2 )> +

k2<€l(+2,Z,w2,t2)U(' ,9Z,Wlttl)U*(p2,Z,w2,t2)> = 0 (2-23)

The expectation of the two source terms in this equation must be

carefully evaluated. They involve the product of UU* and el where el is

proportional to the fluctuations in the electron density. However, the

electric field complex envelope U is a function of the electron density

fluctuations that are encountered along the propaaation path. Therefore U

and el are correlated.

12
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2.2.2 Novikov Theorem.

The Novikov theorem is used to evaluate the source terms in

Equation 2-23. This theorem is proved in Tatarskii (1971, §65) and

Ishimaru (1978, pp. 457-458). The theorem states that h

<f(A)4l[f> f <f(ý)f(')><6O[f)/6f(P')> d In (2-24)

where f(A) is a zero-mean, normally distributed random function of the n

dimensional vector A and 4$/6f is a functional derivative. In applying

this theorem, f = e, and * UU*. The theorem is proved by expandinq ¢(f)

in a Taylor series.

2.2.3 Source Terms.

Before proceeding with evaluatino the source terms, it will be

convenient to write el as the product of a frequency term and a term that

varies only with space and time:

C((Pz,•,t) = 9(•,z,t)8(w) (2-25)

where

9(*,z,t) = Ane (,z,t)/<n e> (2-26)

is a random function of the electron density fluctuations and

-2 2 -2O(W) = W /(W -W ) (2-27)

is a deterministic function of frequency and the mean free electron

density.

A straightforward application of the Novikov theorem qives for

the first source term in Equation 2-23

13
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S1 = ki$(Wl)<Y(+I,z,ti)U(•lZIl,tl)U*(z2,Z,w 2 ,t 2 )>

= k1B(wj) f dz' ff d2 ' f dt' <&(+l,z,tj)ý(+',z',t')> x

<6U( i.z.Wi ti)/6V( z,z 't )]U*(1 2,Z9W 2 st2) +

I]> . (2-28)

At this point, the electron density fluctuations are assumed to

be stationary and delta-correlated along the z axis. This Markov assump-

tion has the mathematical form

<&(P,z,t)&( ',z ',t.)> = 6 F(Z-z')A( P--',t-t') . (2-29)

The notation 6F(x) is used throughout this report for the Dirac delta

function to distinguish 6 F(x) from the functional differential 64/6f and

from the parameter 6 defined in Section 2.6. The Markov assumption is

discussed in some detail by Tatarskii (1971, §64) and is based on the fact

that fluctuations in the dielectric constant in the direction of propaga-

tion have little effect on the transverse fluctuation charazteristics of

the electric field. It is the fluctuations of the dielectric constant

transverse to the direction of propagation that dominate the scattering

and the transverse fluctuations of the electric field.

Under the assumption of small angle scatterinq for which the

parabolic wave equation is valid, the component of the electric field

traveling in the backward direction will be negligible compared to the

component of the electric field traveling in the forward direction. The

electric field U(P,z,w,t) may then be assumed to depend on 4(P',z',t')

only for z' < z (i.e. the electric field does not depend on electron den-

sity irregularities that have not yet been encountered along the forward

14



propagation path). Also, U(p+,z,w,t) depends on E(pI,z',t') only for

t' < t (i.e. the electric field does not depend on irregularities that

have not yet occurred). Thus 6U(+,z,w,t)/6&(p',z',t') = 0 for z' > z and

for t' > t.

The source function S, may now be rewritten as

z ct
S1 =k 161  f dZ' 6 F(Z.z ) 1ff d2'+p f dt' A(Pj-P'1,tj-t')x

<[6U(P•tZ,=Istl)/6ý(P+',z',t')]U (P21z*,)29t2) +

" ~~~U(pl,z,•l~tl)[6U*(+2,z,w2,t2)/64(+",z',t')]> (-0

where B8 is given by Equation 2-27 evaluated at w.. Recalling that

a
-f 6 F(x-a)dx = 1/2 (2-31)

further reduces the source term S1 to

CO t
S, = (k 1 B1/2) fI d 2 o P dt' A(+1 -+',t,-t') x

-00

(<[6U(pl,z,•w ,t1)/65(p ,z,ti)1U*(+2 ,z,w 2 ,tz) +

U(;I,Z,UIl,tl)[6U*G; 2 ,z,w 2 ,t 2 )/6 (;',z,t') ]> (2-32)

The 61J/6C terms in this expression will be evaluated next.

The parabolic wave equation is used to evaluate the functional -P

derivatives 6U/6E. Integrating this equation from -- to z results in

15



z+
- Vj U(•,V,w,t)dý - 2ik[U( ,z,W,t) U0 P

"-2S(w) f &(P,z,t)U(p,z,w,t)d; = 0 (2-33)
- m

where Uo (P,w) is the transmitted signal. After applying the operator

6/6&(P',z',t'), where -< z' < z and -- < t' < t, and noting that

6&(P,z,t)/6&(+',zl,t') = 6F(z-Z')6F( -')6F(t-t') , (2-34)

Equation 2-33 becomes

2i-k 6U(ý,z,'i,t)/cS(•',z',t') + k 1(,)6 F(-)6 F(t P+

f- (UPp, ) 'z',t')]dc = 0 . (2-35)

The lower limit of the integral in this equation is z' because
'•.6U(+P,z,w,t)/6ý('P',z',t') is zero for z < V.Bcue h'orc emS

contains factors of the form 6U(p,z,w,t)/6ý(P',z,tI ) z' is set equal to

z in Equation 2-35 with the result

S6U(Pz,-,t)/6,( ',z,t') (iT8(w)/2)F -ttz) (2-36)

After substituting this into Equation 2-32, the source term

becomes

=S ff d2 ' f dt' A(+01-0+',tl-t')

[(ikI812/4)6 F(P,,P)SF(t-t,) - (ikza12B /4)5F(P2 4.•)6F(t2.t')I

. (ik 181
2 /4)A(0,O) r- (ik2S162/4)A( 1 -o2 ,tl-t 2 ) r (2-37)

%'V
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A similar expression may be written down for the second source term in

Equation 2-23:

S2 = k 2 B(w2 )<E(P 2 ,z,t 2 )U(pl ,z,iltl)U*(• 2 ,z,w2,t 2 )>

= (ik 18 18 2/4)A(P 1-P 2 ,t 1 -t 2 ) r - (ik 2 $2
2 /4)A(d,o) r (2-38)

2.2.4 Second Form of Transport Equation.

The transport equation for the mutual coherence function is now

given by combining Equations 2-37 and 2-28 with 2-23 with the result

ar/rz + (i/2)[(/k)V - (1/k 2)V] r -

(I/8)[2kjk 2 8jB2 A(* 1-+ 2 , t 1 -t 2 ) - (k, 2 $ 1
2 +k2

2B 2
2 )A0 ] r (2-39)

where Ao A(5,0).

The differential equation for r will be solved by first letting

r = o r, where r is the free space solution. The well known solution of
0 0

the wave equation for the electric field in free space (Equation 2-15 with

el = 0) may be written down directly. The Fresnel approximation that

z >> II is then used to expand the electric field and the free space

solution r is computed. The quantity r0 contains the i/z 2 term that

partly determines the mean power at the receiver. The next step is to

derive a differential equation for r, from Eauation 2-39 and the free

space solution. It is the mutual coherence function r, that determines

the second order statistics of the received signal.

2.2.4.1 Free Space Solution ro. In free space and for spherical

geometry, the complex envelope of the electric field is

17



It is easy to verify that this is a solution of the wave equation with el

set to zero. Under the assumption of small angle scattering, z 2 >> X2 + 2

in the region of interest and rmay be expanded as

r~ a (x2+y2+z2)'1 2 -Z + (X2+y2)/2z (2-41)

With this Fresnel approximation,

0/)exp (-lkz-ik(x 2+y2)/2z] (2-42)

After recalling that U = exp(ikz)t, the free space mutual coherence

function is

r <U(+l,Z,Wl)U*(P2 tZ,(I2)>

= z-2 exp [ikl(xl 2 +Y1
2 )/2z + ik2(X2 

2 +Y2
2 )/?Z] (2-43)

2.2.4.2 Differential Equation for rl. After substituting r' r r0r, into

Equation 2-39 and using Equation 2-43, the equation For r, becomes

arl/3z =(iI2kl)7 2r, - (i/2k2 )7 2, +

(xlz~rl/x,+ (yj/z)arj/ay1 + (X2 /Z)ar 1 /aX2 + (y 2 /z)a1 1/aY2

- r, = 0 (2-44)

where the source term is

P.
M S = [2kjk 2S1B2A(P1-P2,t1-t2) - (k1281 +k2 a 2  

2 
2)A 1/8 (2-45)

In order for r, to represent a statistically stationary random

process in space, frequency, and time, r, must be a function only of the

* ~~~differences P, - P2, W1 - W2 and tl - t2. ti hrfr sflt

transform Equation 2-44 to sum and difference spatial and frequency

coordinates



X - (x1+x2 )/2

Y = (y1+y2)/2

= X1 - X2

= Y1 - Y2

V2 Xa 2 /ax 2 + a 2 /ay 2  (2-46)
S

7 = X32/32 + a2 /an 2

ýs4 d = a2 /aXa; + a2/ayan

ks = (kl+k2 )/2

kd = kj - k2

After some manipulations, the equation for ri reduces to

ar,/az - (i/2)(k 2-k2/4)- [kdV2 + (kd/4)Vs " kss'd] r, +

z'1[X a/aX + y a/ay + ; a3a/ + n a/an] r, Sr1 = 0 . (2-47)

The boundary condition on r, is that rl(z=-zt) 1 independent

of the other spatial coordinates. Also, the source term S under most con-

ditions is a function only of -the difference coordinates. It will there-

fore be assumed that r, is independent of X and Y. However, the source

term will be a function of X and Y if the spatial extent of the scattering

region is small as, for example, in a barium cloud. The assumption that

r1 is independent of X and Y then requires that the disturbed region In

the ionosphere be large compared to the region from which scattered siqnal

energy is received.
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The transport equation may be further reduced by noting that the

lz term, when z is large, will be small compared to the other terms and

this term may be neglected. The differential equation for r, then becomes

ar~laz - (i /2(. k24-I2r r (2-48)

2.3 DELTA LAYER APPROXIMATION.

As an RF wave propagates through a thick, irregularly structured

ionization layer, the wave first suffers random phase perturbations due to

random variations in the Index of refraction. As the wave propagates

farther, diffractive effects introduce fluctuations in amplitude as well

as phase. If the standard deviation ao of the phase fluctuations that

are suffered by the wave is large, then the amplitude fluctuations are

characterized by a Rayleigh probability distribution when the wave emerges

from the layer. The delta layer approximation assumes that the phase and

amplitude fluctuations are imparted on the wave in an infinitesimally thin

layer. This assumption is consistent with the Markov assumption made in

deriving the differential equation for the mutual coherence function.

An analytic solution for the two-position, two-frequency mutual

coherence function has been obtained by Wittwer (1979) and Knepp (1983b)

for a thick ionization layer. The analytic form of this solution is suf-

ficiently complex, however, that the necessary Fourier transforms required

to compute the GPSD cannot be performed in closed form. The complex ana-

lytic form is simplified by the use of the delta layer approximation to

obtain tractable eXpressions for the mutual coherence function and the

GPSD. Wittwer and Knepp have evaluated the accuracy of the delta layer

approximation in detail as it affects the delay distribution of the re-

ceived signal and have found that the maximum error is small for trans-

ionospheric satellite communication link geometries as long as the param-

eters of the GPSD are properly selected. Wittwer (1979) has derived

expressions for the signal parameters of the GPSD that include the effects

of a thick scattering layer.

20
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Now a relationship between the electron density fluctuations and

the phase variations imposed on the wave may be calculated. The differen-

tial phase change of the wave along the propagation path . is

dW/dt = reXAn e(Pzt) . (2-49)

Under the assumption of small angle scattering used to derive the differ-

ential equation for r, d/dt - d/dz and the total phase change of the wave

is

r e reX f Ane (,z,t)d'z e X<ne> f t(Y,z,t)dz , (2-50)

integrated through the ionization layer. The autocorrelation function of

the phase * is

<0(+,t)ý(+',t')> = (r eX<n e>)2 f dz f dz' <t(+,z,t)ý(P',z-,t')>

- (reX<ne>)2 f dz A(P-P',t-t')

= (re X<ne>) 2 L6 A(P-P',t-t') (2-51)

where L6 is the delta layer thickness. The Markov approximation

(Equation 2-29) has been used in evaluating the autocorrelation of E. (
However, it is shown in Appendix A that Equation 2-51 is valid as long as

the scattering layer thickness is large compared to the parallel decor-

relation distance of the electron density fluctuations. Finally, the

phase variance imparted on the wave is

a 2 =(r X<n>)2 L6 A (2-52)

The quantity Ao depends on the power spectrum of the electron density

fluctuations in the ionosphere. The value of Ao for a three-dimensional

k-4 in situ power spectrum and for the delta layer approximation is given

in Appendix B.
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II
In general, only part of the total phase variance results in the

Rayleigh amplitude fluctuations that are of described by the GPSD.

Wittwer (1979, 1980) calls this part the Rayleigh phase variance. The

rest of the total phase variance is associated with the mean dispersive

effects described by the exponential term of Equation 2-16. Physically,

it is the smaller sized electron density fluctuations that result in dif-

fractive effects and the larger sized fluctuations that result in disper-

sive effects. Both Wittwer and Knepp (1982) describe how the Rayleigh

phase variance may be separated from the total phase variance. In the

developments that follow, the phase variance in Equation 2-52 will be

assumed to be the Rayleigh phase variance associated with amplitude

fluctuations.

2.4 FROZEN-IN APPROXIMATION.

Under the frozen-in approximation, the temporal variation of the

electron density fluctuations is qiven by N

n (o,z,t) = n (*- t,z,O) . (2-53)
, 0e 

e

"This equation is valid if the electron density fluctuations with a scale

size Lo do not appreciably change their shape within the time required

for the structures to drift a distance Lo. This is called Taylor's

frozen-in approximation. With this approximation, the function A becomes

A(0,t) = A( -vto) (2-54)

This approximation is accurate for ionospheric conditions where

the ionization has broken up into a single layer of striations aligned
with the earth's magnetic field lines. The frozen-in approximation may

not be valid before striations have formed or when there are multiple

scattering layers in the line-of-sight. Alternative forms for the

coherence functionand the generalized power spectral density for this

latter situation are considered in Section 2.9.
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2.5 SOLUTION OF THE TRANSPORT EQUATION.

Before proceeding with the solution of the transport equation,

it is convenient to expand the source term S by making two non-restrictive

assumptions. First, it will be assumed that the RF frequencies of

interest are large compared to the plasma frequency. Second, it will be

assumed that kd is much smaller than ks. The solution obtained will

then be valid for a small range of frequencies around ks and for fre-

quencies large compared to typical peak ionospheric plasma frequencies of

a few hundred MHz. With these assumptions, the source term becomes

Sz(k 4/4k2)[A' d A k k 4/k4)A0  (2-55)
p d Vd 03 d pk s 0

where P is a two dimensional posit-ion vector in the ý-n plane, td is the

time difference, and k = / /c.

The last term in Eouation 2-55 is a function of freauency and z

but is independent of ; and n. This suggests that another useful factor-

ization is r, = r 2 r 3 where r 3 is independent of C and n. After substi-

tuting r 2 r 3 for r, in Equation 2-48 and separating variables, the result

is

p 2) A+t)
(1/r 2 )a r2/aZ -(ikd/2ksr2)7 r2 - (kV/4k 2)[A('dtd - A

(j/r 3 )ar 3 /az + (kdkp/8k4) Ao = 0 . (2-56)

The last two terms of this equation are spatial functions only of z and

therefore must be separately equal to zero for arbitrary values of ; and

n.

The source term in the r3 equation is only non-zero within the

delta 'layer. Thus from the transmitter to the delta layer, r 3 is unity.

With this boundary condition, the solution of the r 3 equation is
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r3 exp [-(k kd/8ks)Ao(z-zt)] z > z (2-57)

This term gives the effect of the different transit times of the different

frequencies due to the frequency dependence of the index of refraction.

Now the equation for r 2 may be solved using the delta layer

approximation. The equation for r 2 is

(1/r 2 )ar 2 /az - (ikd/2k~r 2 )V2r 2 - (k4/4k2)[A('d td) - Ao] 0 . (2-58)d s dp s d'd 0

Within the delta layer, the kd term is small compared to the source term

and may be ignored. This is equivalent to saying that diffractive effects

are not important within the delta layer (Lee and Jokipii 1975b).

Integrating Equation 2-58 through the delta layer gives the value of r 2 at

the point where the wave emerges from the delta layer:

r2 exp i(k4L6 /4ks)[A( d,td) - A0 ]} (2-59)

The solution from this point proceeds as follows. Between the

delta layer and the receiver, the sional propaqates in free space so the

equation for r, is

arl/az - (ikd/2k2)V2ri : 0 (2-60)

The V 2r term in this equation gives the effects of diffraction on the

signal as it propagates from the delta layer to the receiver. The

boundary condition is r, = r 2 r 3 at the point where the wave emerges from

the delta layer. This equation is easily solved by taking the Fourier

transform from spatial coordinates ; and n to anqular coordinates. First

it is convenient to transform variables to

u :/Z

v n/z
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The angular variables Ku and Kv are then independent of z. After the
change in variables, the equation for r 1 becomes

ari1aZ - (ikdI2ks2 z2 )(A 2Iu 2 + a2 /av 2 ) ri - 0 . (2-61)

The Fourier transform pairs; from spatial coordinates + in the

plane normal to the line-of-sight to angular coordinates k1. from carrier

frequency differences wd to delay T, and from time differences td to

Doppler frequencies wD are defined in this report to be"+ 2+
S--ff exp )- -;r;d2 (2-62a)

r(•) = (27)-l f exp (iwd T)r( d)dwd (2-62b)

r(wD) = f exp (-iwDtd)r(td)dtd (2-62c)

and

r(;) = (2w)-2 If exp (i%-)r(t )d2  (2-63a)

r(d) f exp (-iwd•)r(wd)d¶ (2-63b)

r(td) = (21)-l f exp (OwDtd)r(td)dwD (2-63r)

Upon transforming from u and v to Ku and K , the equation for

is

+rl/az + (ikd /2k 2 z2 )(K2+K2 )r, 0 (2-64)
S u v
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This equation is integrated from z = zt + L6 to z = Zt + Zr which gives

r1(K u Kv'Zt+Zr' d'td) = r 1 (K uKv 'zt+L6 'Wdtd)

exp [-(ikd/2k')(K2+K).Y] (2-65)

where

zt+Zr z r- L
y : f Z_ dz = - (2-66)

zt+L6 (zt+Zr)(zt+L6)

The expression for Y may be simplified by setting L6 to zero which is

consistent with the delta layer approximation.

2.6 OUADRATIC PHASE STRUCTURE APPROXIMATION.

At this point, a formal solution of the Fourier transform of the

two-Dosition, two-frequency, two-time mutual coherence function at the

receiver has been computed in terms of the structure function A(Pd,td) -

Ao. As a practical matter, the quadratic phase structure approximation

is reauired to make the exponent in Equation 2-59 quadratic in the spatial

variables. This gives the resulting coherence function a tractable mathe-

matical form. However, for the small angle, strong scattering conditions

considered in this report, the correlation distance of the signal will be

much smaller than the correlation distance of the electron density fluc-

tuations. The coherence function will then be determined primarily by the

values of A(Pd,td) - Ao at small values d and td. A Taylor series

expansion of A(Pd,td) - A0 , keeping only the quadratic terms, will then

provide a reasonably accurate mutual coherence function.

Under the frozen-in approximation, the temporal variation of

A(0d,td) is given by A(p fvtd,O). It is therefore necessary to consider

only the spatial form A(Pd). The Taylor series expansion will make the

following calculations independent of the functional form of A(+d) as lona
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as the second derivative of A exists for "d equal to zero. A detailed

discussion of A(pd) will therefore be deferred to Appendix B. However,

some generic properties of A(Pd) need to be considered here in order to

specify the functional form of the quadratic terms in the Taylor series

expansion.

The propagation coordinate systems are shown in Figure 2-2. The

z axis is along the line-of-sight and the t axis is aligned with the geo-

magnetic field lines 6 at the elevation of the delta layer. The r and s

axes are in a plane normal to the magnetic field. The penetration angle ip

is the angle between the z axis and the 9 axis. In the plane of the

receiver, the x axis direction is given by the cross product of the

vector and the z unit vector.

Consider now the functional form the power spectrum o of the

electron density fluctuations in the r-s-t coordinate system. The power

SB

x =£[ x isinkp

Figure 2-2. Propagation coordinate systems.
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spectrum is usually assumed to be a function of the quantity L2 K 2 + L 2 K2 +

L2 K2 where Lr L and L are the scale sizes of the fluctuations in the
t t s '

three directions. The power spectrum must be rotated into the x-y-z
coordinate system in order to calculate A(Pd). Before performing this

rotation, the usual assumption that the electron density fluctuations are

elongated in the t direction and are symmetric about the t direction will

be made. The scale sizes are then

L r = Ls = Lo0

Lt = qL0  
(2-67)

where q ( )> 1) is the axial ratio. After the rotation, the power

spectrum will be a function of the quantity (Wittwer 1979)Lx2 K2 + Ly2L2 +

Lz z 2LyzKyKz where

Lx =0L

Ly L (Cos 2 P+q2 sin 21)"'/ 2  L 0o/6

y 0 0(2-68)

Lz L (sin2+q 2 cos 2P) 1/2

L = Lo(q�-1)sintcos*
yz 0

The parameter 6 (I/o < 6 < 1) appears throughout subsequent sections of

this report and is defined to be the ratio of the x and y scale sizes:

L /L = (COS2t+q 2sin 2 *)-1/ 2  (2-69)
xy,

Now, the function A( d) is the two dimension Fourier transform

of the power spectrum t

A(+d) (2w) exp (i P.d) (K',Vz=O)d 2 . . (2-70)
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Setting Kz = 0 in the power spectrum in this equation results in having

t be a function of L2K2 + L2K2 and in having A(+d) calculated in the& Xx y yd
z = 0 plane of the delta layer. After the Fourier transform is performed,

A will be a function of the quantity x2 /L2 + y2 /L2 (see Appendix B) or

equivalently of (x 2 +622y 2 )/L 2 .
0*

The auadratlc phase structure approximation now takes the form

A(pd) = Ao[I-A 2 (x 2+62 y2 )/L21 (2-71)

The coefficient A2 is calculated in Appendix B for a K-4 electron density

fluctuation spectrum. The coefficient Ao is given in terms of the phase

variance a2 by Equation 2-52.

2.7 MUTUAL COHERENCE FUNCTION.

The mutual coherence function r., at the plane of the receiver is

computed as outlined in Section 2.5. At this point, the frozen-in approx-

imation will be used to include explicit temporal variations. In order to

do this, the drift velocity must be specified. To be conservative, the

drift velocity will be assumed to be along the direction with the smallest

scale size for the electron density fluctuations (i.e. the x direction).

The boundary condition for r, at the delta layer is aqain r, =

r2 13 evaluated at z = L6 . Using Equation 2-52 to relate A to the phase

variance and then setting the delta layer thickness L6 to zero qives the

following for r 2 and r 3 at the point where the wave emerges from the delta

layer. From Equation 2-59 using the quadratic phase structure

approxim.ation, the diffraction term boundary condition is

1r 2 exp + 62 n ]/L } (2-72)- exp A2[ (•-,,td) 2
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and from Equation 2-57, the rtfraction term boundary condition is

r3 = exp [-o0d22 (2W2)] (2-73)

where o:= cks is the carrier radian frequency. Upon changing variables

in the r 2 equation to the dimensionless spatial coordinates u and v and

performing the Fourier transform to Ku and Kv coordinates, the boundary

condition for iF is

r(K,K K ,ztI d,td) :[=L2/(02A2z26)]x

exp -0 Wd/ (2W2)]1 exp [iKu(Vxtd/Zt) x

exp [-L2(K2+K2/6 2 )/(4a2A2 z2)]0. (2-74)

The solution at the plane of the receiver is given by Equation 2-65 and

this boundary condition.

Aft.-r performing the inverse Fourier transform on the solution

r 1 (K u,K ,•' z r, d ,t d) and converting to unnormalized distance units x and

y, the mutual coherence function may be written as

r1(x,y,wd,td) = [(1+iAwd/W cohh)(l+iA6 2Wd/Wcoh)]-i/ 2 x

exp [-a~wd/(2W2)] x

exp [-(X-V e td)202/l ~d/coh)

exp [-6 2 y 2 L;2 /(l+iA6 2Wd/Wcoh)1 (2-75)

where

A = [2/(1+64)11/2 (2-76)

and

v e = v x (zt+Z r)/Zt (2-77)

is the effective drift velocity of the ionosphere as seen at the receiver.
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The decorrelation distance to of the received electric field

is defined as

to = (zt+Z r )L o/(ztVA2 oa) (2-78)

and the coherence bandwidth wcoh is defined as

Wc h A'o2Lo2(Zt+Zr)/(2cu A2ZtZr (2-79)

It will be shown below that to agrees with the usual definition of de-

correlation distance and it will be seen in the next section that the
coherence bandwidth is proportion to 2,fo where f is the frequency
selective bandwidth of the signal. It is clear from the form of r, in

Equation 2-75 that the coherence bandwidth could have been defined as
W cohA. The factor A has been included here in order to simplify the

relationship between w coh and fo"

Equations 2-78 and 2-79 are only valid under the delta layer

approximation and do not reflect now these parameters are actually calcu-

lated. Wittwer (1979, 1980) has derived expressions for the decorrelation

distance and the coherence bandwidth that are valid for more general scat-

tering layer geometries. It is the expressions of Wittwer that are used

in signal specifications to calculate these signal parameters. This is

also true for the decorrelation time which is formally defined under the

delta layer and frozen-in approximations in the next section.

For satellite communications links, the distance from the iono-

sphere to the satellite is typically much laraer than the distance from

the ionosphere to the around. If the transmitter is on the satellite then

zt > Zr, and if the transmitter is on the ground then zt K z r. Because

the expression for the decorrelation distance is not reciprocal in z andIt
Zr, the value of Z0 depends on the direction of propagation. However, the

expression for the coherence bandwidth is reciprocal in zt and zr so cohw

and the frequency selective bandwidth are independent of the propagation
direction.,



The decorrelation distance of the signal as it emerges from the

delta layer is approximately equal to L0/a . Under strong scattering con-

ditions where of > 1, this distance will be much smaller than the elec-

tron density fluctuation scale size and the quadratic phase structure

approximation conditions are met. Conversely, under weak scattering con-

ditions where of - 1 the quadratic phase approximation will give inaccu-

rate results for the mutual coherence function.

Consider now the mutual coherence function for two-positions,

one-frequency and one-time:

r1(xy,0,0) = exp [-(x/ 0 )2 _ (6y/l 0 ) 2 1 (2-80)

The distance to is then seen to be the l/e point of r 1 (x,0,O,0) and is

therefore the x direction decorrelation distance. The distance to/a is

the i/e point of r 1 (O,y,0,0) and is therefore the y direction decorrela-

tion distance. Because 6 is less than or equal to unity, the y direction

decorrelation distance is always greater than or equal to to.

2.8 GENERALIZED POWER SPECTRAL DENSITY.

The generalized power spectral density S(KIT,WD) of the signal

incident on the plane of the receiver is the Fourier transform of the

mutual coherence function:

S(= (2n)"l ff d2P f dwd I dtdr1(•,md,td)

exp [-i(K P-wd<+Dtd) (2-81)

where delay T is the Fourier transform of frequency difference WD and

Doppler frequency w is the Fourier transform of time difference td. The
quantity S (•,TwD)d 2 ~dtdwD is equal to the mean signal power arriving
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within the angular interval to + d2ýL with delays relative to a
nominal propagation time in the interval T to T + dT; and with Doppler
frequencies in the interval w. to W + dwD" The delay spectrum of the
GPSD is a consequence of the fact that different frequencies propagate
differently through the ionosphere with some frequencies arriving early
and some frequencies arriving late. The importance of this effect depends
on the ratio of the signal bandwidth to the frequency selective bandwidth.

The indicated integrals in Equation 2-81 can all be done in
closed form. If the Kx integral is done first, the distance offset
results in a term with the form exp(iKx v etd) times a function of Kx. The
Fourier transform from td to wD results in the delta function 2f6F(wD-
K xv e). The GPSD is then the product of a Doppler term and an angular-
delay term of the form

S(KX,Kyy SD(wD)S(KX,Kyyr) (2-82)

The angular-delay part of the GPSD is
S(KK, a ,. 1/2 a~o 6 Z~)L20/

S(K K T) 1 /2 )  aw exp [-(K 2+62 K2) /4]xy coho02 x y 0

exp [-(2/2)(w T-^(K'+K2)L/4121 (2-83)

where the delay parameter a is defined to be

L = o/aO/Ocoh . (2-84)

When it is recalled that a, is the Rayleigh phase variance, the param-
eter a is equal to 1/C1 where the notation C1 is used by Wittwer (1980,

1982, 1986). The components of 11 are related to the scattering angles
e and e about the x and y axis respectively by the relations

x y

Kx = 2n sin( x)/X

K Y= 2n sin(e y)/X . (2-85)
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For the frozen-in approximation and assuming that the effective

velocity is along the x direction, the Doppler spectrum is

SD(wD) = 2 rT o6 F(WDTO-Kx'r o) (2-86)

The quantity TO is the decorrelation time of the signal at the

receiver. It is formally defined here to be the time required for the

random diffraction pattern to drift one decorrelation distance:

Ha = VeTo (2-87)

However, as is the case for the decorrelation distance and the coherence

bandwidth, the decorrelation time is calculated using the more general

formalism of Wittwer.

The significance of the parameters a, t o and wcoh that appear in

the angular-delay part of th GPSD will be discussed in the next

subsections.

2.8.1 Delay Spread and a.

9 The delay spread S(T) of the signal energy arriving at a fixed

angle, given by the second exponential term in Equation 2-83, has the

Gaussian form

S(T) = (oh//2w) exp [-02w2oh(T-t ) 2/2] (2-88)

where tp is the additional propagation time for signals arriving at the

angles Kx and K . To see this, the expression for tp is expanded usinq
the definitions for L 0 and w coh giving

tp= ( y2+e2)(Z t+Zr)(Zr/zt)/2c " (2-80)

The geometry of the scattering in one plane is shown in Fioure 2-3. It is

clear that for small angle scattering, the anale Ot is related to the

receiver scattering angle by
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oTransmitter

Zt O

Figure 2-3. Scattering geometry

e+ (Z r/zt )er (2-90)

The difference d between the line-of-sight distance and the scattered path

length, for small angle scattering, is given by

d = (z 2+z2 2 ) e21/2 + (zt2+zt2 e2) 1 /2 - (Zr+Zt) " (Zr/Zt)(Z +z )e2/2 (2-91)

r r rtttrt rt r tr

for scattering only in one plane. When scattering about both the x and y

axes is taken into account, the total path difference is given by Equation

2-90 with e2 replaced by 62 + e2. The additional time required for ther x y
signal to propagate along the scattered path is just d/c which is equal to

tp.

For a given value of the coherence bandwidth, larger values of a

mean that the signal energy arrives with a narrower distribution in delay

about the time tp. The delay parameter a is then a measure of the rela-

tive importance of diffraction or scattering and refraction with larqe

.values of a indicating strong scattering effects and small values indi-

cating weak scattering or refractive effects (Knepp 1982). The stronq

scattering limit then requires that the values of a be large.
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2.8.2 Frequency Selective Bandwidth and wcoh'

The frequency selective bandwidth fo is an important measure

of the effects of scintillation on the propagation of wide bandwidth

signals. This quantity is defined as

f0 = 1/(2no T) (2-92)

where ar, the time delay jitter of the received signal, is

a2 = <T 2 > - <->2 . (2-93)
T

These delay moments can be calculated directly from the angular-delay part

of the GPSD using the definition

po<,n> = (2w)-2 ff d 2K1L f dT Tn S(, T) (2-94)

It is easy to show that the mean received power Po is equal to unity.

The first and second moments are also obtainable in closed form giving the

relationship between wcoh and the frequency selective bandwidth:

Scoh 21f 0(I+/a 2 )1/ 2  (2-95)

This expression is valid only under the quadratic phase structure approxi-

mation because Equation 2-94 has been evaluated using the GPSD calculated

with this approximation. Yeh and Liu (1977) have calculated an expression

for the time delay jitter keeping both the second order and the fourth

order terms in the expansion of A(*). This results in having more terms

in the expression for the time delay jitter. However, these additional

terms will be significant only when the quadratic approximation for A(s)

is invalid and therefore only when the expression for the GPSD is also

invalid.
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2
The 1 + II. term in the expression for the coherence bandwidth

represents the relative contributions to the time delay jitter from

diffraction (1) and refraction (1/a 2 ). In the limit that a is large, the

time delay jitter is determined by diffractive effects alone which should

be the case under strong scattering conditions.

2.8.3 Angle-of-Arrival Fluctuations and L'o.

A key parameter in determining the severity of antenna filtering

effects is the standard deviation 0e of the angle-of-arrival fluctua-

tions of the electric field incident on the antenna. It is clear that for

anisotropic scattering, the values of ae for scattering about the x and

y axes will differ. The variance of the angle-of-arrival fluctuations

about the 9 direction is defined as

aec (2n)-2 ff d'2K f dT (XK /2w) 2S(K.,) (2-96)

under the small angle scattering approximation that is required for the

GPSD to be valid. The standard deviations of the angle-of-arrival

fluctuations about the x and y axes are

aox = ,/(i2- iot ) (2-97)

and

a y = X/(/2 ffo/6) . (2-98)

For the small angle scattering to be valid, aex (which is the

larger of the two) must be small relative to 1 radian. Thus the

decorrelation distance to must be approximately equal to or greater than

thro'Fwavelenqth X. The small angle approximation has been used

hroughout the derivation of the GPSD, starting with the parabolic wave
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equation. The resulting expression for the GPSD, however, does not

exhibit singular behavior when the angle-of-arrival fluctuations become

large and thus the small angle approximation is quite robust.

2.8.4 An Isotropic Example.

When the penetration angle is zero, 6 equals unit and the

scattering is isotropic about the line-of-sight. The one-dimensional

generalized power spectral density is then given by the integral

S(KT) = (2n)"' 7 S(K,K T) dK
N~ y y

= (al/2w cohZol2 o/2 4 1/ 2 ) exp [((1/2 2 )-WcohT] X

F{ [l i+2 (K 2Zo2/4-wco T) ]/(2 1/2a) ]}2-9
0 a)]} (2-99)

where the function F is defined as

F(z) = exp (-z 2) .fexp (_t4 -2 t2z) dt .(2-100)-

The F function has been approximated by Wittwer (1980) usinq a polynomial

expansion that is accurate to within one percent. This function may also
be written in terms of K1/4 and 1i1/ Bessel functions (Knepp 1982).

A three dimensional plot of the isotropic one-dimension GPSD

with a equal to 4 is shown in Figure 2-4. This plot shows the mean

received power as a function of angle K and delay T. The vertical axis is

linear with arbitrary units.

It can be seen that the power arriving at large angles is also

the power arriving at long delays. The power arriving at long delays thus

has higher spatial frequency components than power arriving at short
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Figure 2-4. Generalized power spectral density.

delays. Under the frozen-in approximation where the ionosphere is modeled

%. as a rigid structure drifting across the line-of-sight, these higher spa-

tial frequency components correspond to higher Doppler frequency compo-

nents. The signal energy arriving at long delays then varies more rapidly
in time than the signal energy arriving at short delays under the frozen-

in approximation.

2.9 TURBULENT APPROXIMATION.

Under conditions before striations have formed in the ionosphere

or when there are multiple scattering layers with different velocities in

r the line-of-sight, the frozen-in approximation may provide a poor model of P

. the temporal variations of the received signal. An alternaLive to the

frozen-in approximation is the turbulent approximation where the temporal
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variations and the spatial variations of the received signal are independ-

ent. The mathematical form of this approximation is that the two-posi-

tion, two-frequency, two-time mutual coherence function is separable into

a product of a spatial-frequency term and a time term:

rl(;,wd,td) = r(+,wd)r(td) . (2-101)

The coherence function r(p,wd) is given by Equation 2-75 with the time

difference td set to zero. After performing the necessary Fourier

transforms, the GPSD for this model has the form

S(K=,TSWD = SD(WD)S(KIT) (2-102)

where for this model the DopDler spectrum SD(WD) is a function only of the

Doppler frequency. Thus SD(WD) does not couple angles and Doppler fre-

quencies or, equivalently, positions and times as is the case with the

frozen-in approximation. The angle-delay term in Equation 2-102 is then

qiven by Equation 2-83.

Under the frozen-in approximation, the temporal variations of

the signal at long delay are more rapid than the temporal variations of

the signal arriving at short delays. Under the turbulent approximation,

the Doppler spectrum is independent of delay so the temporal variations at

all delays have the same rate.

In order to specify the Doppler spectrum under the turbulent

approximation, the two position, two time mutual coherence function of the

electron density fluctuations is needed. Detailed descriptions of the

spatial variations of the electron density fluctuations are currently

available (Wittwer 1986). However, detailed information on the temporal

variations of the electron density fluctuations in the ionosphere is not

currently available. An f_4 Doppler spectrum will therefore be assumed

for implementation convenience in Section 5 where channel simulation

techniques are discussed.
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2.10 IMPULSE RESPONSE FUNCTION AND ANTENNA EFFECTS.

The channel impulse response function of the signal incident on

the plane of the receiver and the impulse response function of the signal

at the output of an aperture antenna will be discussed in this subsection.

2.10.1 Channel Impulse Response Function.

Consider a solution U(P,zrr ,t) to the parabolic wave equation

in the plane of the receiver. This represents the random effects due to

the fluctuating ionosphere on the incident electric field at position p

and time t from a transmitted monochromatic wave with angular frequency

W. The channel impulse response function of the signal in the receiver

plane is (Knepp and Wittwer 1984)

h(p+,T,t) = (21T)-l f U(,ZrW+10 ,t) exp [iT(W)+iWT] dw (2-103)

where w is the carrier anoular frequency and e(w) is the dispersive con-

tribution to the impulse response function due to the mean ionization.

The term exp [i8(w)] is the transfer function of a smooth ionized plasma

and is equal to the exponential term in Equation 2-16. Thus T(w) is

Zr zr
_FW rl--2(z)W]

o(w) : - f k(z')dz' = - (w/c) L 1-W ,(z')Iw 2 ]1/ 2 dz' . (2-104)
-Zt -Zt

Because the smooth plasma or dispersion effects represented by exp[iT(w)]

and the fluctuating plasma effects represented by U(PZr ,w,t) appear as

the product, it is convenient to separate these effects. The dispersive

effects will be considered in Section 2.10.2.
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If the transmitted signal is a modulated waveform m(t) then the

signal complex voltage incident on the plane of the receiver is the convo-

lution of the transmitted modulation and the channel impulse response

function:

e(p,t) = f m(t-r-t p)h(P,T,t) dT (2-105)

where tp is the nominal propagation time. If the delay spread of the

impulse response function is larger than the symbol period of m(t), then

the convolution will encompass multiple symbols with intersymbol inter-

ference as a result. It is also clear from this equation that signal

energy arriving at longer delays corresponds to symbols transmitted at

earlier times.

2.10.2 Dispersive Effects.

When the dispersive term T(w) is expanded in a Taylor series

about the carrier radian frequency, the result is

O(W) = 8(wo) - (w-W )6'(w ) + (W-W )26e"(o )/2 + ... (2-106)

where the first three coefficients in the expansion are

Zr 2C: f[ -2 Z, /(•2]1/2

(wo) 0 -(Wo/C) f [1-W )/0 dz' (2-107a)

z
r --2

8'(o)w 0 (1/c) I [l-wp(Z)/w2 ] 1 / 2 dz' (2-107b)
-zt

zr
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These equaticns may be expanded using the assumption that the carrier fre-

quency is much larger than the plasma frequency. The first three coeffi-

cients then reduce to

8(to ) - -2wR/x + Xre N (2-108a)

0'(w ) - R/c + x2 re N T/(2c) (2-108b)

e"(to ) - -x 3re N T/(2n 2c2 ) (2-108c)

where the free space range R and total electron content (TEC) NT are

R = zt + zr (2-109)

and

NT = 1r <ne(Z,)> dz' (2-110)
-zt

The first terms in Equations 2-108a and 2-108b are simply the free space

phase shift and propagation time which are proportional to the line-of-

sight distance R. The terms proportional to NT in Equations 2-108

represent the phase shift, group delay and dispersion due to the mean

ionization.

The Doppler shifc fD of the incident signal due to range and

TEC dynamics is

fD = (21)-1 de(wo)/dt " - 2iR/X + XreN . (2-111)

Note that increasing TEC (positive NT) increases both the propagation

time and '.he Doppler shift whereas increasing R (positive Rj increases the

propagation time but decreases the Doppler shift.
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2.10.3 Antenna Aperture Effects.

The voltage at th,. r of an aperture antenna is the spatial

convolution of the incident voltaqe and the aperture weiqhting function.
41 +

The received voltage for an antenna located at P ana pointing in the Ko

direction is then given by (Knepp 1983a)

UA(wo, ,t) = ff U(P',zrUt)A r(O-P') exp (iKo.*') d2 ' (2-112)

where the subscript A denotes the voltage at the output of the antenna.

rhe z dependence of UA has been suppressed because it is understood that

this voltdge is at the receiver plane. It is assumed that the aperture

weighting function of the receiver Ar () is independent of frequency.

This is generally true for a range of frequencies about the carrier fre-

auency that is larger than the signal bandwidth.

In order to relate the GPSD of UA to the GPSD of the incident

signal, the two-position, two-frequency, two-time mutual coherence func-

tion of UA is reauired. The mutual coherence function of the signal out

of the antenna is

rA(Pd,wd,td) = (UA( lwltl)UA*( 2,w2,t2)> =

"2" f 2+u*( +" )>
ff d2 ;' If d2 P <U(Pz rw1tl)U*( ,Zr 9 w2,t2

Ar(;l-;')Ar*( 2 P") exp [ilIo.(ý'-;")] . (2-113)

For statistically stationary processes, the expectation of UAUA* must be

a function only of the differences od -- 01 P2, Wd = - W2 , and td

t -t 2  and the expectation of UU* in the intearand must be a function only
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of the differer.s p1 - pis, Wd9 and t d. The aperture weighting function

may be written in terms of the angular beam profile using the Fourier

transform relationship

Ar(•) -(2r)-2 A r(K+) exp (i.;) d2K+ (2-114)

Upon substituting this equation for both aperture weighting functions in

the expression for the mutual coherence function, chanqing variables from~ 4,

P' to p = P' - ", and changing the order of integration, Equation 2-113

becomes

rA(0d,wd,td) = (2r)- I d2 • r(,Zr,Wd,td) exp (iK0 .p) x

ff d2K A r(K) exp [ig.(PI-P)] If d2 ' Ar (') exp [-i1"+21 X

ffJ d2'p+' exp [iP*".(K'- K)] (2-115)

The last integral in this expression is equal to (2w)K 6 F(-K'K) and the K'

integral may be performed directly. Another change in the order of

integration results in

rA(Pd,wd,td) " (2r)"2 fI d2+ Gr (K) exp (iK.Pd) x

-- w

, 2+dZ r(+,Zr Wdtd exp [-;(-o](2-116) •

The quantity

Gr(+) K)A ( K) (2-117)

is the power beam profile of the receiving antenna.
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The mutual coherence function r(p,zr, Wd,trd) of the signal inci-

dent on the plane of the antenna that appears in the second integral of

Equation 2-116 is the product of the free space term ro (Equation 2-43)

and the stochastic term I'l. The free space term may be pulled out of the

second integral if it is assumed not to vary over the face of the antenna.

This is equivalent to assuming that any deviations from a plane wave in

the incident signal are due to scattering effects in the ionosphere and

are not due to geometrical effects. After the free space term is pulled

out of the integral, rA may be assumed to represent only the stochastic

fluctuations of the received signal.

Now the GPSD of the signal out of the antenna may be computed by

taking the appropriate Fourier transforms (see Equation 2-81) from Pd' Wd,

and td to K L, 1, and w D respectively. After performing the w d to T trans-

form, the angular-delay part of the GPSD at the antenna output will be

SA(K-,T) = (21)-2 ff d2K Gr ( X)

*a
* dI d2 rl(+,Zr•) exp [-i(K-K ).P] If d 2  exp [i(ý-•L).*d1 . (2-118)

The last integral in this equation is juzt (2fr) 2 6F(U-ITI) and the middle

intedral gives the angular-delay GPSD of the incident voltage S(U-I T).
0'

The GPSD of the signal out of the antenna is then

SA .L ) K T) (.) S( ( .- Y.o, ) (2-119)

The effect of an antenna, as should be expected, is to modify with the

beam profile the mean incident power as a function of angle. This result

will be used throughout the rest of this report.
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SECTION 3

ANTENNA FILTERING EFFECTS

An antenna beam profile acts as an angular filter of the re-

ceived signal energy. Because of this, the mean power, decorrelation dis-
tances, and frequency selective bandwidth of the signal at the output of

an antenna are different than those of the incident signal. The reduction

in mean power is a direct consequence of the attenuation, due to the beam
profile, of energy arriving at large angles-of-arrival relative to the

peak of the beam. The energy arriving at large angles is also the energy

arriving at long delays. The frequency selective bandwidth is an inverse

measure of the delay spread of the signal energy. Hence the frequency

selective bandwidth of the signal out of an antenna is larger than the

frequency selective bandwidth of the signal incident on the antenna. The

decorrelation distance is an inverse measure of the angle-of-arrival fluc-

tuations of the signal energy. The effect of an antenna is to reduce the

angular spread of the signal and thus to increase the decorrelation dis-

tances of the signal out of the antenna relative to the decorrelation

distances of the incident signal.

The effects of aperture antennas with arbitrary beamwidths will

be considered In this section. The antenna beam profiles for uniformly

weighted circular or rectangular apertures and for Gaussian apertures are

described in Section 3.1. The filtering equations for mean power, spatial

and temporal decorrelation properties, and frequency selective bandwidth

of the signal out of a Gaussian antenna with arbitrary beamwidths are

derived in Section 3.2. Then a comparison of the antenna filtering

effects of a Gaussian antenna and a uniformly weighted circular antenna is

made in Sectiur, 3.3 to aýsess the accuracy of the Gaussian approximation.
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3.1 ANTENNA DESCRIPTIONS.

The coordinate systems for the propagation and the antenna are

shown in Figure 3-1. The z axis is along the line-of-sight between the

transmitter and the receiver and the direction with the minimum decorrela-

tion distance is along the x axis. The antenna u-v coordinate system, in
this case for a rectangular antenna, is in the x-y plane. The rotation

angle x is the angle between the x axis and the u axis.

In general, the face of the antenna will not lie in the x-y

plane. However, for satellite communication links it is usual for the

satellite position to be known accurately through ephermeris data and for

an antenna to be dedicated to a single link. Thus the rotation angles of
the antenna out of the x-y plane will be small in most cases and the

cosine squared effects of these angles may be ignored. If these rotation

ir B

, t x i/siny'

Figure 3-1. Propagation and antenna coordinate systems.
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angles are not small, then in the developments that follow the antenna

size is the projection In the x-y plane and the antenna beamwidths must

include the effects of beam broadening as the beam is pointed away from

boresight.

3.1.1 Gaussian Beam Profiles.

The antenna beam profile is assumed to be separable in the u-v

coordinate system. The Gaussian antenna beam profile is then

G(Ku,Kv) - exp (-a u2'•K2K2 K2) (3-1)

The peak gain G(0,O) has been set to unity because this value is usually

included in the calculation of the mean received power. For either the u

or the v direction, the antenna beam profile can also be written as

G(e) = exp [-(ln2)(2e/ 0o) 2] (3-2)

where e0o is the 3 dB beamwidth (i.e. full width at half maximum).

Equating these two profiles gives

2 = (ln2)x 2 /(w 2a 2  (3-3)

where 8 o{ is the 3 dB beamwidth in the =u or the =v direction.

The beam profile is required in the x-y coordinate system of the

propagation. Using the transformation

Ku = K xcosx + Kysinx (-

Kv - K xsinx + Ky cosX

gives
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G(KX,Ky) = exp [-(a2 cos 2 x+a 2 sin 2 x)K 2 ] x
y U V x

exp ['2(ci2 "c,2 )sinxcosxK K x

exp [-(a2sin 2x+a'cos 2X)K2 ] (3-5)- u -v y

The coefficients au and av will be related to the sizes of uniformly

weighted apertures in the next subsections. If au and av are equal, then

the Gaussian beam profile is independent of the rotation angle and is

referred to as isotropic in subsequent sections.

3.1.2 Uniformly Weighted Circular Apertures.

For a uniformly weighted circular aperture, the aperture

weighting function without pointing errors is

A I 1/a if J (j 0/2,
A x(P )(3-6)

0 otherwise

where 0 is the diameter of the circular aperture and where x = r for a

receiving antenna and x = t for a transmitting antenna. The value of a is

chosen so that the peak antenna gain G(O) is unity. The voltage antenna

gain pattern Ax (K) is related to the aperture distribution function by the

Fourier transform

Ax(•) = If exp (-i . )Ax(P)d (3-7)

The coordinate system for this transformation is shown in Figure 3-2. The

antenna is pointed along the line-of-sight in the z direction and P is

chosen to be along the x axis. The beam profile for a circular antenna
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0

* Figure 3-2. Circular antenna coordinate system.

will then be a function only of the elevation angle e. In this 'coordinate

system, the dot product ý- is

=- kr sine sin$ (3-8)

where k =2ir/x and r = . The Fourier transform then becomes

A () a-' f dr r r~ dý exp(-ikr sine sin.) .(3-9)

Performing the indicated integrals results in the well known form for the

power beam profile

4.N
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where J1 is the Bessel function and where G(O) = 1 when the value of a is

chosen to be the area of the aperture wD2 /4. The factor of 4 in the

expression for Gx(e) is required because the limit of J 1
2 (t)/t 2 as t

approaches zero is 1/2. The 3 dB full width at half maximum beamwidth

[i.e. G(eo/2) = 1/2] is given by solving the equation

4J12(g)/t2 . 1/2 (3-11)

with the result t = 1.616340. Assuming that the beamwidth is small so

sin(o 0 /2) - eo/2, the beamwidth in terms of the diameter D is

e0 = 1.02899 (X/D) radians . (3-12)

If this beam profile is approximated by a Gaussian profile with the same 3

dB beamwidth, then the a coefficients that appear in Equation 3-1 are
a2 = 2 = (In2)D 2 /(1.02899l) 2  (3-13)

u v

3.1.3 Uniformly Weighted Rectangular Apertures.

For uniformly weighted rectangular apertures, the aperture

weighting function without pointing errors is

A (u,v) = 1/a if lul < Du/ 2 and lvi < Dv/2
A=(" ) (3-14)

0 otherwise

where 0u and Dv are the lengths of the aperture in the u and v directions

respectively. In this case, the Fourier transform indicated in Equation

3-7 can be done directly with the result

G (0,v) G (8 )G () (3-15)

x u v X u xv

where Gx(6) for 4 = u or t = v has the familiar sin 2 (x)/x 2 form

sin 2 [(D•/X)sineO]
G (0-) : (3-16)

nx • [(D,/x)sinet] 2
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The normalization a of the weighting function is just the area Du0v of the

rectangular antenna. The 3 dB beamwidth is given by solving the equation

sin 2(&)/&2 - 112 (3-17)

with the result 4 = 1.391557. The { direction beamwidth in terms of the

antenna size D& is then

o = 0.885893 (x/D) radians (3-18)

assuming that sin(e o/2) - eo /2. If this beam profile is approximated

by a Gaussian profile with the same 3 dB beamwidth, the a coefficients

that appear in Equation 3-1 are

2 = (ln2)D2 /(0.885893w) 2  (3-19)

3.2 FILTERING EQUATIONS.

The filtering equations relate the statistics of the signal at

the outputs of one or more antennas to the statistics of the signal inci-

dent on the antennas. The statistics that are considered in this section

are the mean power, frequency selective bandwidth, decorrelation dis-

tances, and decorrelation times of the signal out of an antenna and the

cross correlation of the signals out of two separate antennas. A Gaussian

beam profile is used because this approximation leads to closed form

expressions for the filtering equations. The accuracy of this approxima-

tion is investigated in Section 3.3.

The power impulse response function GA(T) of the signal out of

an antenna is also calculated in this section in the limit that the param-

eter a is equal to infinity. The quantity GA(T)dT is equal to the mean

received power in the delay interval T to T + dT. This function will be

used in Section 5 which describes channel simulation techniques.
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The severity 6f the filterinq effects is determined by the rela-

tive size of the standard deviation of the anqle-of-arrival fluctuations

a and the antenna beamwidths. When a0 is small compared to the antenna
beamwidths, the signal arrives essentially at the peak of the beam pro-

file, if the pointing error is small, and the filtering effects are small.
However, if 0e is large compared to the beamwidths, much of the signal

energy arrives at angles outside of the main lobe of the antenna beam pro-
file and the filtering effects are large. Equivalently, large values of

the ratio a0/80 correspond to situations where the decorrelation distance

of the incident signal is small compared to the antenna size and the inci-
dent electric field as seen by the aperture is no longer a plane wave. In
this situation, the induced voltages across the face of the aperture do
not add coherently when summed together by the antenna with a loss in
signal power as a result.

3.2.1 OrthogonalIzed GPSD.

The delay moments of the signal out of an antenna pointing at

the transmitter are given by

n 2PA<T > = (2v)-" ff dK. G (K.) f dT T" f dw S(K.T , (3-20)

where PA is the mean power of the signal out of the antenna and is equal
to the n : 0 delay moment. The Doppler integral is just

S , = " S(K.L,,wD)dwD (3-21)

where S(Ki,T) is the angular-delay part of the GPSD of the incident signal

given by Equation 2-83.
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When Equations 2-83, 2-119, and 3-5 are combined, the resulting

GPSD of the signal out of the antenna in the x-y coordinate system is

Ax y coh0 o xy0

exp {_& 2 K2 ,21/4] exp [-61K2 12I/46 2] exp [_& 2 K K L'/46] (3-22)Xxx0 yyo0 xy xyo0

where the A coefficients are

42 = 1+ 4a2 Cos 2X/L2 + 4a2 sin 2X/Z2
x u 0 V 0

A2 = 1 + 462cL2Sin 2X/L2 + 4 62c&2cos2 X/Z2
y u 0 v 0

A2  = 86(a 2 _M2)sinXcosX/t2  (3-23)
xy u v 0

The cross term K KY in the last exponent of Equation 3-22 signi-
ficantly complicates the evaluation of the angular integrals. However,

this term may be eliminated by performing the integration in a rotated p-q
coordinate system where the GP'ZD is orthoqonal (i.e. contains only K 2 andx
K2 terms). The rotation is defined by
y

Kx K pcose + K qsine (-4

K -K sine + K cose
y p q

where dK dK = dK dK and K 2+ K 2 = K 2 + K 2. The angle 8, chosen so thatpq x y p q x y
the coefficient of K pK. is zero, is

6 = (i/2)tan-1[26A2 /(62A 2 _ A2)] (3-25)xy x y

In the rotated coordinate system, the GPSD at the antenna output takes the

form s.
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SA(KpKqWT) (YT/2)1/20c 0h exp {-(a 2 /2)[wcoh'r-A(Kp+Kq)L2/4) 2 }

exp [_A 2 K2'o 2 /4] exp [-A&K 2L2o/46 2  (3-26)

"ppo qqo

The A coefficients are now

2A2 = A2 + A2 /6 2 + [(A2xA 2/62 )2 + 4A4 /62]1/2

p x y x y xy

2A 2 = 62A 2 + A2 _ [(62A2_A2)2 + 462&4 ]1/2 (3-27)
q x y x y xy

After the rotation, the delay moments are given by

P A(<T n> = (2n)-2 " dKp f dKf q f dT Tn SA(KpKqT) . (3-28)

3.2.2 Scattering Loss.

The mean power of the signal out of the antenna is calculated

from Equation 3-28 with n = 0 and is

PA = 1/ApAq A I/LS (3-29)

where LS is the scattering loss. After some manipulations, the square

of the scattering loss becomes

LS2 = (1+4 62a2/t2)(1+4 a2/ 2 )sin 2 x + (1+4 2 /Z2 (1+46 2cv2/z 2 )coS 2 x .(3-30)

S ' v o' u o'v

The terms in parenthesis occur frequently in the filtering equations.

Thus for notational convenience, define
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G 1 I + 4a !/ = I + (81n2)(a /e )2

ux u o ex Ou

G 1 + 46 2 C/2/Z2 2 1 + (81n2)(a/0o)2-
uy j 0 yo

4 1 + 4a2/Z2 = 1 + (81n2)(a/eo )2
vx 0 ov

G v 1 + 462 2/j2 a 1 + (81n2)(a /0 )2 (3-31)
vy V 0 eyOV

where Equations 2-97 and 2-98 have been used to write 1 and Z o/6 in terms

of the variance of the angle-of-arrival fluctuations aex and aey and where

Equation 3-3 has been used to write au and av in terms of the 3 dB beam-

widths e and eov. With these definitions, the scattering loss takes the

simpler form

LS = [Guy G vxsin2x+G uxGvycos 2x / 2  (3-32)

The scattering loss is a function of the ratios of the widths of

the angie-of-arrival fluctuations a0 and the antenna beamwidths 0o with

the 3cattering loss approaching unity for a 0 (( It can be seer, that

the dependence un the rotation angle disappears if the scattering is

isotropic (i.e. 6 = 1 dnd a6x = ay) or if the antenna is isotropic (i.e.

O :w0 ).
OU OV

Now consider the case of an isotropic antenna where G = G

and G = G . When the scattering is also isotropic (penetration angle
uy vy

0O), G = G and the scattering loss is LS = G . However when the• ux uy d
penetration angle is 90', the y direction decorrelation distance will be q

(q-15) times larger than the x direction decorrelation distance. Then

under most circumstances, Gu 1 and the scattering loss is L -M/G
y ux

The scattering loss is therefore a sensitive function of the penetration

angle.
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3.2.3 Frequency Selective Bandwidth.

The frequency selective bandwidth has been defined in terms of

the time delay jitter of the signal in Section 2.8.2. The required delay

moments are
S<T> =(A/2)[&-2 + 2 A (3-33)

Wcoh p q

and
2 2> = [a-2 2(A2/ 4 ) + (A262/ A2) + (3A 2 64 /4A 4 )] (3-34)

coh p p[q q

The time delay jitter is then given by

(12 = W_2 [•_-2+( A2/12) (A_4+64A.4) (3-35)
T coh p q (

The a-2 term in the expression for a2 repres, ts the effects ofT

refraction on the time delay Jitter. In the limit that diffraction

effects dominate the signal fluctuations, the time delay spread of the

signal is determined by the spread of propagation times as a function of

the angle-of-arrival of the signal with the largest delays corresponding

to the largest arngles-of-arrival. The effect of an antenna then is to

preferentially attenuate the signal energy at large angles and thereby to

reduce the delay spread of the signal arid to increase the frequency selec-

tive bandwidth. In thi limit of a large angle-of-arrival variance, or

equivalently of a small decorrelation distance, only energy arriving near

zero angle is received at the output of the antenna and the time delay

Jitter of the output signal approaches zero. The value of a must be set

large enough that the time delay j er of the signal out of the antenna

is not limited by a under the moL .everely disturbed propagation condi-

tions. The expressions below for thf, frequency selective bandwidth of the

signal out of the antenna are therefore calculated with a set to infinity.

58



The ratio of the frequency selective bandwidth of the signal out

of the antenna to that of the incident signal is just

fA/f r ar(without antenna)/c (with antenna) . (3-36)

The numerator of this expression may be obtained from Equation 3-35 with

a and a set to unity. The resulting equation for the ratio is

f = [(z+64)I(1IA4+64/&4)fl/ 2  (3-37)

After some manipulations, this expression may be rewritten as

(1+64)1/2 L 
2

fA/f = S (3-38)
O (a4G2 +G2 )Cos 2X + (G2 +6 G2 )sin 2x]/ 2

Sux vy uy vx

3.2.4 Two-Position Mutual Coherence Function.

It will be convenient in further developments to have the two-

position mutual coherence function of the signal out of the antenna calcu-

lated in the x-y coordinate system. The coherence function is defined as

rA(xy) = (2w)" 2  f dKx f dKy f dT exp(iKXx+iKyy)SA(Kx,KYT) (3-39)
-OD -40 y _

where Equation 3-22 is used for the GPSO. In this case, the integral may

be done in closed form with the result

rA(x'Y) A P exp [-[(Guysin 2x+Gvycos 2 x)/L2]x 2/ZZj

2 *2 2 2 2/2

exp 1-[(G cos x+G~sin X)L J6 y/

exp 1-[2Gux-Gvx )sinxcosx/L S6 0xy/•} (3-40)
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3.2.5 Decorrelation Distances and Time.

The x direction decorrelation distance of the signal out of the

antenna is given by the l/e point of rA(xO)/PA and the y direction de-

correlation distance is given by the 1/e point of rA(Oy)/PA. These

quantities are

IAxlo C Ls[Gusin 2x+Gvcos 2 x]']/ 2  (3-41)

and

LAy/to ="Ls[G sin 2x+G cos2xL'/2  (3-42)

Recall that under the frozen-in approximation the drift direc-
tion is chosen to be along the x axis and the decorrelation time of the
signal is related to the decorrelation distance by the effective velocity

(Equation 2-87). The decorrelation time TA of the signal out of the

antenna will then be given in terms of the decorrelation time To of the

incident signal by

TA/To 2 /o (Frozen-in Approximation) (3-43)
A Ax 0

The filtering of the decorrelation time is a reflection of the fact that

signal energy arriving at large angles varies more rapidly than energy

drriving at small angles. However, under the turbulent approximation, the

decorrelatlon time of the signal is independent of its angle-of-arrivalj (see Equation 2-100). For this approximation, there is no filtering of

the decorrelation time by the antenna and

TA/To = 1 . (Turbulent Approximation) (3-44)

A %
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3.2.6 Power Impulse Response Function.

The power impulse response function gives the mean power

received in the delay interval T to T + dT from a transmitted impulse. At

the output of an antenna, this function is
0L

GA(T) = (2w)-2 ff dL Gr(K .I)S(..LT) (3-45)

This integral cannot be done in closed form for general anisotropic

scattering and antennas and for arbitrary values of the parameter a.

However, using the fact that

Limit a exp(-s 2 x2) = 6 6F(X) , (3-46)

allows an analytic result to be obtained. In this limit, the GPSD of the

electric field incident on the plane of the receiver becomes

-26.1 exp[-(K2+6_ 2K2 )2o/4JS(KxIKy,•) = (i,//2_) woh 0 -y"

6 [ T-AK2,+K2),2/4]/J2 I (3-47)

Sx y0

This geometric optics limit then results in a delta function relationship

between angle and delay and requires that T be greater than or equal to

zero in order for the GPSD to be non-zero.

The power impulse response function for general anisotropic

scattering and antennas now becomes

G A (w•coh/ 6A) exp(-g,1coh T) 1 0 (g29wCOhT), T > 0 (4

0 T 0O
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where 10 is the modified Bessell function of order 0 and where

g1 : [(6 2Gux+G vy)Cos 2 X + (6 2G vx+Guy )sin 2x]/(262 A)

g2 = [(G uy-6 2G vx) 2 Stn 2x + (G vy-6 2G ux) 2 cos 2 X]1 / 21(262 A) (3-49)

It is easy, if not somewhat tedious to show that

7 GA(T)dT Z P A 3-50)
0

which is equal to the mean received power at the output of the antenna.

In the limit that both the scattering and the antenna are iso-

tropic, the expression for the power imDulse response function reduces to

Scoh exp('GwcohT) T t_> 0
GA(r) = (3-51)

0 , 0

where, in terms of the standard deviation of the angle-of-arrival

fluctuations ae and the 3 dB beamwidth 80,

G = 1.0 + (81n2)(ao/e 0 )2 . (3-52)

Under these conditions, the quantity G is equal to the scattering loss.

The cumulative delay distribution C(T) of signal energy may be

defined as

C(T) = f [GA(t)/PA]dt . (3-53)
0

This function gives the fraction of received signal energy arriving with a

delay less than or equal to T. For isotropic scattering and for an iso-

tropic antenna, the cumulative delay distribution is

C(t) = 1.0 - exp(-Gwco.hT) (3-54)
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Without an antenna, the value of C(T) is equal to 0.8 for wcoh T = 1.61.

With an antenna, as the value of G or thE scattering loss increases, the

80 percent point on the distribution occurs for smaller values of Wcoh T

3.3 COMPARISON OF UNIFORMLY WEIGHTED CIRCULAR AND
GAUSSIAN ANTENNA FILTERING EFFECTS.

The filtering equations presented in the previous sections are

for antennas with a Gaussian beam profiles which do not have sidelobes.

It is of interest to evaluate the filtering equations for implementable

antenna beam profiles in order to assess the effects of sidelobes on the

statistics of the signal out of an antenna and to assess the accuracy of

the Gaussian beam profile filtering equations.

To facilitate this calculation, uniformly weighted circular

antennas and isotropic scattering will be assumed. With these assump-

tions, the moments of delay defined in Equation 3-28, the equation for the

spatial coherence function (Equation 3-39) and the cumulative distribution

of the received signal energy (Equation 3-53) can all be written in terms

of a set of single integrals which can be evaluated numerically. From _

these integrals, the scattering loss and the ratios fA/fo and ZLA/Lo0

can be calculated. These quantities are a function only of the ratio

D/tQ where D is the diameter of the circular antenna.

Under isotropic scattering conditions and for the isotropic

antennas considered here, the filtering equations for Gaussian antennas

reduce to

Ls= G

zAI/to = • (3-55)

f/fo =GAo
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where the function G is defined in Equation 3-52 in terms of the standard

deviation of the angle-of-arrival fluctuations and the 3 dB antenna beam-

width. For uniformly weighted circular or square apertures,

S1.0 + 0.265(D/to) 2  (Circular Antenna)
G =2(3-56)

1.0 + 0.358(D/o)0 . (Square Antenna)

Figures 3-3, 3-4, and 35 show the scattering loss, decorrelation

distance, and frequency selective bandwidth respectively at the outputs of

Gaussian (solid lines) and uniformly weighted (dots) circular antennas.

Figure 3-6 shows the value of wcoh T for which the cumulative delay distri-

bution is equal to 0.8.

As can be seen from the figures, there is good agreement in the

scattering losses and the decorrelation distances between the Gaussian

approximation and the uniformly weighted aperture antennas over the range

of D/Lo from 0.1 to 100 shown in the figures. The scatterina loss is

primarily determined by the fraction of signal energy that is scattered

out of the main beam of the antenna (Dana 1981) and is insensitive to the

sidelobe structure for antennas with sidelobes that are less than or equal

to those of uniformly weighted apertures. Under conditions where D > top

an antenna must only be displaced approximately a distance 0 for the

signal out of the antenna to decorrelate. Thus under these conditions,

the decorrelation distance depends primarily on the aperture size and is

insensitive to the sidelobe structure.

The frequency selective bandwidth of the signals out of uniform-

ly weighted circular antennas agree with the Gaussian approximation values

only for D/Lo less than 3. For values of this ratio greoter than 3,

there is less filtering of the frequency selective bandwidth with the

uniformly weighted aperture with sidelobes than there is with the Gaussian

antenna without sidelobes. This can be understood by considering Equation

3-28 for thez uelay mulhliefLs uf the received siqnal. The GPSD, S,(K ,K ,,),
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Figure 3-3. Scattering loss for Gaussian and uniformly weighted
circular antennas.
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Figure 3-4. Decorrelation distance for Gaussian and uniformly weighted

circular antennas.
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in this equation couples delay and angle by requiring that the signal

arriving at long delays also arrive at large angles. The moments of delay

<Tn> then become more sensitive to the details of SA at large anqles, and

therefore to the sidelobe structure of the antenna, as n increases. As

D/Io increases, more of the signal energy is scattered out of the main

beam and into the sidelobes of the antenna. Although this energy contri-

butes little to the total received power, it does increase the values of

the delay moments of the output signal relative to those of the signal out

of an antenna without sidelobes and thereby decreases the frequency selec-

tive bandwidth.

The frequency selective bandwidth is intended to reflect how the

bulk of the signal energy arrives in delay. To see how the uniformly

weinhted circular antenna affects the delay distribution of the received

signal energy, the 80 percent point of the cumulative delay distribution

(i.e. the value of wcoh T for which C(wcohT) = 0.8) is plotted in Fiaure 3-

6 for both Gaussian and uniformly weighted antennas. Over the entire

range of D/to values from 0.1 to 100, there is close aQreement between

the Gaussian antenna values and the uniformly weighted antenna values

indicating that at least 80 percent of the signal energy is received with

a similar distribution in delay. Even for the largest value of D/Io,

more than 80 percent of the received signal energy is received in the main

lobe. Thus the agreement in the 80 percent values is a reflection of the

fact that a Gaussian function provides a good approximation to 4d1 (w)I

within its main lobe. The large difference in the filtered values of the

frequency selective bandwidth ratio seen in Figure 3-5 is then attributed

to large differences in the delay distribution of no more than 20 percent

of the received signal energy. The Gaussian values of fA/f will there-

fore provide an accurate description of the delay distribution of the bulk

of the received signal energy and should be used for all antennas provided

a reasonable fit can be made to the main lobe usina the Gaussian approxi-

mation.
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-Figure 3-5. Frequency selective bandwidth for Gaussian and uniformly
weighted circular antennas.
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Figure 3-6. Cumulative delay distribution 80 percent value for Gaussian
and uniformly weighted circular antennas.
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SECTION 4

TRANSPONDER COMMUNICATION LINKS

The filtering equations for a transponder communication link

with four antennas and two uncorrelated propagation paths will be pre-

sented in this section. The mean power, decorrelation distances, decor-

relation time, and frequency selective bandwidth of the received signal

will be calculated. In order to simplify the calculations, it will be

assumed that all antennas are isotropic and are pointed without error,

that the transponder is ideal (i.e. the transmitted signal is identical to

the received signal), and that both propagation paths suffer strong scat-

tering effects. With this latter assumption, the mutual coherence func-

tion derived in Section 2 applies separately to each path.

The bistatic transponder propagation geometry is .shown in

Figure 4-1. Although they are not indicated in the figure, it is assumed

that both the uplink from the sender to the transponder and the downlink

from the transponder to the receiver have transmitting and receiving

antennas.

The mutual coherence function of the signal out of the receivers

antenna will be used to calculate the filtering equations. With the

assumption that the scattering effects on the two propagation paths are

uncorrelated, the mutual coherence function can be written down directly

as the product of the coherence functions of the two paths. However, some

insight can be gained by constructing the received voltage and then by

calculating its mutual coherence function so this procedure will be used.

The frozen-in approximation will be used to model the temporal fluctua-

tions and to calculate the decorrelation time of the received signal.
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Transponder

z3

Sender 
Receiver

Figure 4-1. Bistatic transponder link geometry.

4.1 MUTUAL COHERENCE FUNCTION.

Consider a monochromatic wave U u(&, ,t) with RF angular fre-

quency w that has propagated along the uplink path from the sender and

that is incident on the plane of the transponder at time t and at position

Z. Th3 effects of the sender's transmitting antenna are implicitly con-

tained in Uu. The voltage at the output of the transponder receiving

antenna, without pointing errors, can be written as

eu(•,+,t) = ff Ar(Z-')Uu(',w,t)d2"' (4-1)

where Aru is the aperture weighting function of the receiving antennna

on the uplink. If a monochromatic wave is transmitted by the transponder,

then the incident voltage on the plane of the receiver at position • after

propagating along the downlink path from the transponder to the receiver

69



will be Ud( )w,t). Aqain, the effects of the transponders transmitting

antenna are implicitly included in Ud. If, however, the voltage eu(,,W,t)

is transmitted, then the incident voltage at the receiver will be

Ud(, w,t)eu (,W,t-t p) where tp is the nominal propagation time from the

transponder to the receiver. The voltage at the output of the receiving

antenna is

ed(ow,t) = I! Ard( N-&)Ud(',,t)e(,,t-t) d2t' (4-2)

where A rd is the aperture weighting function of the receiving antenna on

the downlink.

The two-position, two-frequency, two-time mutual coherence func-

tion of the received signal is then given by calculating the expectation

rb(P,•d,td) = led(;, wl,tl)ed 42,93,t2)> (4-3)

which, for statistically stationary processes, must be a function only of

the difference p - C2, wd = ul - w2, and td = ti - t 2 , The subscript

b denotes the coherence function of the bistatic signal that has propa-

gated from the sender up to the transponder and then down to the receiver.

The transponder acts as a point source for the receiver just as

the sender is a point source of the signal incident at the transponder.

Then because the coherence function for either one-way path is independent

of the point of origin, the coherence function of the bistatic siqnal

depends only on the distances zi (i=1,4) and on " and is independent of

the positions of the sender or the transponder as long as the zi dis-

tances are held constant.

At this point, it is convenient to include the frozen-in approx-

imation explicitly in the formulation by writing the voltages U u and Ud as
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=) U (&-v' tW, O) (4-4a)

and

+ 44

U d(;,wlt) = tld(; d9JO (4-4b)•

where v and v d are Lhe effective drift velocities of the random diffrac-

tion patterns as seen respectively at the transponder on the uplink and at

the receiver on the downlink.

by combining Equotions 4-1 through 4-4, the coherence function

can be written as

2

rb( ,wd2 td)= fd Au(•-)r Ad* 4 xu _1) fI d Iý _- 2)

<UuL i'u(t ;-tplIWI, ]UuLY -'u(t2-tD),w29'! 1;> x

f; d2 I A-d' 1-_ ") d 2 Awrd( 2- 2) x

<Ud(C:-, dt 19 ,O)U*(ýý-vdt2,Iw2,0)> (-)•I;

The two terms in the brackets < > are recognized as the 'unc-

tions of U and .

Consider for the moment the received si nal wi" e,.cional

antennas at the sender, transponder, and r. ceiver. The rece-vee signal

will then be just the product UuUd and bec .se the propagation effects on

thie two paths are assumed to beý uncorrel'.ted, rb = r d As was done inb u d" '•

Section 2, the functions r and rd can be written as the product of a free

space term ro and a scint:,liation term Pl. If the bi, -ee sDace

tern is set equal to r the bistatic scin" Ijc *dt, wiI I beterm s 3F•t eual o 'odo' "--

Pr I, what follows, only the contriu, : tne rece'ved

Wi u. dI

ii_ i'.
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voltage due to scintillation will be considered and an expression for r bl

Wi1l be derived in terms of the uplink and downlink GPSDs and the four

artennas.

Equation 4-5 can be split into an uplink factor rAu times a

downlink factor rAd where the downlink factor is

* 2
rAd(*,wd,td) = f7 d 2• Ard(• +,-,) f d2 , *Ad(Z2Z

rd " {:1 *', '"Tdtd,w"d ,0 ] (4-6)

The subscripts Ad and Au are used to denote the coherence functions at the

outputs of the receiving antennas on the uplink and downlink. It is

understood that rAd and rPAu represent the coherence funictions of the scin-

tillation part of the siqnal. This eauation can be further reduced by
writing the aperture weiohtinq function in terms of its Fourier transform

(see Equation 2-114). After chanaing the order of integration, rAd

becomes

rAd( ,wd,td) (2n)-• ff d K1 Ar fi d d(.K2 ) A

ff d2E; exp[iR#I .- 1-i f;f d2 exp[-i*2-( 2-*2-)] X

4dl(C4-*. dtd,wd, )-

and after o change of variables from to = 41- 2 vdtd'

Si,.

."11
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rAd(+,wd,td) = (2T)-f ff d2 K Ard( i) exp[iK1 .(' 1 _ dtd)]

2- 2

f7dK A~rd(+2) 2'exp (-iK+ ;+2) f f d ;2' exp[i+t.(2-Ki)

f7 d2+ exp (-iKl'Z) Cdl(c,(hd,O) (4-8)

The last integral, which will be denoted SAd(K1,Wd), is the Fourier trans-

form of the angular-delay part of the GPSD for the downlink signal. The

subscript A is attached because SAd includes the effects of the trans-

ponder's transmitting antenna. The integral over +' results in the delta2function ( K ) KF(K2-K1). With these substituLions, the coherence function

for the downlink is

rAd(P,id,td) = (2d)-2 d Grd( d)SAd(Kd,Wd) exp [i d.(P-%ldtd)] (4-9)

where Gro is the beam profile of the receiving antenna on the downlink.

In a similar fashion, the coherence function rAu can be

derived. However, it can also be written down directly from Equation 4-9

'With the following two observatior-. First, the bistatic mutual coherence

function is the expectation of received voltage for two positions of the

receiver but for only one position of the transponder. Thus the uplink

contribution to r'bl contains only carrier frequency and time differences.

Second, the expectation of U U* that appears in Equation 4-5 depends only
u U

on the argument differences and is therefore independent of the nominal

propagation time t . The uplink coherence function is then oiven by
P
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rA(Id'td) (2n)-'2 (_ dKý Gr(K,)SA(KWd) exp (-iK. vutd) (4-10)

where Gru is the gain fun'tion of the receivinq antenna on the uplink and

i,.. SAu is the Fourier transform of the angular-delay GPSD for the uplink in-

cluding the effects of the sender's transmitting antenna.

The effect of a trdnsmitting antenna is to filter, as a function

of anqle, the angular-delay GPSD of the siqnal at the receiver. Thus the

angular-delay GPSD of the incident signal on the plane of the receiver

including the effects of the transmitting antenna pointed at the receiver

is

St(K,T) : Gt(K)S(K,T) (4-11)

where S(K,T) is the GPSD for an omnidirectional transmitter, Gt is the

beam profile of the transmitting antenna and K Zr /Z is a scale factor

that transforms angles at the transmitter to angles at the receiver (see

Figure 2-3 and Equation 2-90).

The mutual coherence function of the signal out of the receiver

k' for a transponder communications link is now given by

fIbl(P'd'td) d rAu( d'td, rAd(P'wd'td) =

(2")- Kf d)G K exp (-iK .ud
( - u Gtu u GruK u u u'd u d'

2 ff d2+
(2,-2 ,f dd Ctd(Kd d)Grd(Kd)Sd( d exp d Kdd- tdl]

where Gtu is the neam profile of the transmitting antenna on the uplink

and Gtd is the beam profile of the transmitting antenna on the downlink.

The K scale factors are
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zu = Z2/Z 1  (4-13a)

and
K<d = Z4/z 3 •(4-13b)

For satellite transponders, the distance from the satellite to the iono-

sphere will usually be much greater than the distance from the ionosphere
to the ground. Therefore, Ku ) 1 and K d ( 1 under most circumstances.

4.2 SCATTERING LOSS.

The scattering loss suffered on the transponder communications

link depends on the GPSDs of the two propagation paths and on the beam

profiles of the four antennas. Under the assumption that the two

propagation paths are uncorrelated, the total scattering loss will be the

product of an uplink contribution and a downlink contribution.

The mean received power for the bistatic path is

Pb= r bl(6,OO) = u~d

= (2n)-2 ff d2(1 Gtu(Kui)Gru(ý0)Su(ýi,O) x

¢0

(2y)" 2 ff d2 
2 Gtd(<dK2)Grd(K2)Sd(K2,O) (41i)

where P is equal to the first integral and where Pd is equal to the

second integral. The function S (K+,0) is

S ~,) 7S(K+,T)dT

(11Z2 /6) exp [-(K 2Z2 /4) - (K2 t2 /462)] (4-15)0& x o• y o&

r~ e: I



where S5(K,-) is the angular-delay part of the GPSD for the uplink (E:u)

or the downlink (t=d). In the developments that follow, each path will

have its own decorrelation distance at the receiver Zoo' frequency

selective bandwidth fo' and penetration angle and scale size ratio 6t.

Also, there will be no assumed relationship between the orientations of

the x axes on the two paths.

The antenna beam profiles for this calculation are assumed to be

isotropic and Gaussian and to be pointed without error. The combined

transmitting and receiving beam profiles may then be written as

t(K K)G (K) = exp <2K )Kx] exp [-(a 2 + (x (4-16)

where a and arE are given in terms of the transmitting and receiving

antenna beamwidths respectively by Equation 3-3. The combined beam

profile is again Gaussian with a beamwidth that is smaller than either, of

the two antennas.

The scattering loss the & path is

LSE = p 1 = [GX GyY]1/2 (4-17)

where

Gx = I + 4a2 K2/Z2  + 4 2 (4-18a)-

and

G = 1 + 46a22 KkIo2 + 46 2 a 2 -/12 (4-18b)

If the antennas are uniformly weighted circular apertures, then the G

functions become

X& = 1 + 0.265 [<K(D t& o/, 2 (D) /Z0 0  (4-19a)

and

Gy = 1 + 0.265 62 (D o + /r (4-19b)

U 76

,-14,".'",•,''',. • • • .d..•.L?•••7 _&L.._•ZLz_ , ' - . '",.,.• •ll.,-••• •"'% ""• ;•• -"•• " ' "" •z'• "" • %-" 'xL.a-"• "*""" ._r _' ¢ -" •"" """""".•••L '



where D and D are the transmitting and receiving antenna diameters

respectively. The total loss of the bistatic transponder link is

LS = LSuLSd [GxuG yu Gxd Gyd]1/2 (4-20)

The decorrelation distance ZOE in these expressions is that of

the signal incident on the plane of the receiving antenna when an omni-

directional signal is transmitted. Recall from Section 2 that the decor-

relation distance is not a reciprocal quantity. if an omnidirectional

signal were transmitted at the receiver's location, the decorrelation

distance of the signal at the plane of the transmitter would be X O/. E

On the uplink to a geosynchronous satellite transponder, K >>' 1 and the

uplink scattering loss is determined primarily by the loss due to the

transmitting antenna. However on the downlink, K d << 1 and the downlink

scatterinq loss is determined primarily by the loss due to the receiving

antenna. In either case, it is the antenna closest to the ionosphere that

determines the scattering loss of the link.

4.3 FREQUENCY SELECTIVE BANDWIDTH

The time delay Jitter of the bistatic signal at the output of

the receiver can be calculated from the power impulse response function

Pb(¶) = (2w)-' r rbl(,sd,0) exp(iwdT)dwd (4-21)

where Pb(i)dT is the fraction of signal energy arriving in the delay

interval T to T + dT. The nth delay moment of the signal energy is

p <Tn> f n Pb(T)dt (4-22)
bb

where Pb is the n = 0 mcment and is equal to the mean received power. The

evaluation of the delay moments is simplified by considering the form of

P(T). The power impulse response function can be written as
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W .' u - i..

Pb(T) = (2n)-' f rAu(Wd.O)rAd( d,O) exp(iwdT)dwd (4-23)

This integral can also be written in the delay domain as a convolution:

Pb(T) = Pu(t)Pd(r-T')d¶' (4-24)

where P u(r) and Pd(T) are the power impulse response functions of the up-

link and downlink paths respectively. These functions are

P u() = (21)-l rAu(Wd'0) exp(iudr)dw.d (4-25)

and

Pd(T) = (2r)" f rAd exp(iwdT)dwd (4-26)

Now the delay moments of the received signal can be evaluated in

terms of the delay moments of each of the paths:

P(<T n > f T n P (T)dT (4-27)

for • = u or & = d. The mean received power is

Pb Pb(i)dT = f dr f dT'Pu(t')Pd(T-T') (4-28)
•OO _WI _ao

which after some manipulations reduces to the previous result, given in

Section 4.2, that Pb = P uPd Using this formalism, it is easy to show

that the first two delay moments of the bistatic signal are

<Tb > = <Tu > + <T d> (4-29)

and
<an> d<T2> + 2(Tu><Td> + <T2> (4-30)

b u u d d(4)
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The time delay jitter of the bistatic signal is then

a2 = a.2 + 0a2
Tb Tu Td

and the i equency selective bandwidth of the bistatic signal out of the

receiver's antenna is

fAb ' 11(2ab " (4-32)

The problem has now been reduced to that of finding the fre-

quency selective bandwidths of the signals at the outputs of the receiving

antennas for the one-way paths. This result was presented in Section

3.2.3 for one-way paths with a receiving antenna only. However, it is a

simple matter to generalize those results to include the effects of a

Gaussian transmitting antenna. The frequency selective bandwidth of the

signal out of the receiving antenna for either one-way path is

(1+64)1/2 L2

fA/foE = T (4-33)A~ ok r 2+r2 11/2.

where E = u or & = d. This expression is valid only for isotropic

antennas. The quantity fo0 is the frequency selective bandwidth of the

signal incident on the plane of the receiving antenna for a transmitted

impulse and for an omnidirectional transmitter antenna. The time delay

jitter for either path is given by

a t = 1/(21rfAA) (4-34)

Finally, the frequency selective bandwidth of the bistatic

signal at the output of the receiving antenna is

f + f 1/2
Ab Au Ad]/ (435)

N'N
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If both the uplink and the downlink have the same filtered frequency

selective bandwidths, then fAb is equal to fAt/1 2 . If, however, one of

the links has a much smaller frequency selective bandwidth than the other,

then fAb is equal to the smaller value of fAt'

4.4 DECORRELATION DISTANCES AND TIME.

The decorrelation distances of the signal at the receiver

depend only on the downlink path and are given by the 1/e points of

rd, /. The downlink two-position mutual coherence function is

calculated using Equation 4-9 and is equal to

r Ad(POO) = Pd exp[t(x/x"od )/Gxd] exp[-(6 dy/'od) 2 /Gyd] " (4-36)

The antenna filtered decorrelation distances at the receiver are the,:

given by

,'G--• 4-37)
and Ax/od G xd)

LAy/Iod VG yd /6 d (4-38)

The decorrelation time does depend on both the uplink and the

downlink. It is convenient to calculate the two-time mutual coherence

function rA&( ,O,td) of each path separately and then to construct this

function for the bistatic path. As has been done previously, it will be

assumed that the effective drift velocities are aligned with the x axes.

For the downlink, the function rAd is calculated from Equation 4-9 and

is equal to

rAd(Odtd) d exdod

= Pd exp [(td/TAd)2] (4-39)
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where

TAd = od /G-x /Vd (4-40)

is the antenna filtered decorrelation time due to the downlink only and

where vd is the effective downlink drift velocity along the downlink x

axis. A similar set of expressions hold for the uplink two-time coherence

function and decorrelation time:

rAu (,0,td) = P exp[-(Vutd) 2 /(GxuL2u)]

w u expt'(td/TAu) 2 ] (4-41)

where

T Au =ý Iou VGxu /Vu (4-42)

is the antenna filtered decorrelation time due to the uplink only and

where vu is the effective uplink drift velocity along the uplink x

axis. The bistatic path has a two-time mutual coherence function given by

r Ab(6,0,t d) = rAu(6,0,td)rAd(6,0,td)

= PuPd exp [-(T-2 + * )•A"] . (4-43)

The bistatic path decorrelation time TAb under the frozen-in

approximation is then given by

T b (T-Au + TA)- /2. (Frozen-in Approximation) (4-44)TAb Au A

The decorrelation time for the turbulent approximation can be obtained

from This expression by noting that under this approximation, the

decorrelat'on time is not filtered by the antennas. Therefore, the

bistatic decorrelation time becomes

Tob = (T-2 + Tod2 )-./ 2  
. (Turbulent Approximation) (4-45)

ob ou od

31
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where Tou and Tod are the uplink and downlink decorrelation times vithout

antenna effects. This expression is valid only if the Doppler frequency

spectrum is Gaussian. If this is not the case, then a slightly different

relationship holds between the bistatic path decorrelation time and the

decorrelation times of the two individual paths (Dana 1982).

If both the uplink and the downlink have the same decorrelation

time at the outputs of the receiving antennas, then under the frozen-in

(turbulent) approximation, TAb('ob) is equal to tA&/, 2 (T 112). If

however, one of the links has a much smaller decorrelation time than the

other, then TAb(- ob) is equal to the smaller value of TAt(00.
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I
SECTION 5

CHANNEL SIMULATION

The purpose of this section is to describe a statistical channel

simulation technique that allows realizations of the impulse response

functions to be generated at the outputs of mUltiple antennas with spatial

and temporal correlation properties given by the GPSD derived in Section 2

and with Rayleigh amplitude statistics. The realizations generated with

this technique represent only the diffractive part of the received voltage

and they are valid only under strong scattering conditions where the GPSD

is valid and where Rayleigh statistics apply. Under these conditions

however, they represent a solution of Maxwell's equations for propagation

of RF waves through randomly structured ionization.

The basic formalism to generate statistical realizations of the

channel impulse response function without antenna effects explicitly in-

cluded was developed by Wittwer (1980) for isotropic irregularities and

was extended by Knepp (1982) to the case of elongated irregularities.
(The elongated case corresponds to a 90° penetration angle and to an
infinite axial ratio.) The channel simulation technique has been general-

ized in this report to include the effects of anisotropic scattering and

the effects of multiple receiving antennas and has resulted in a new DNA

software channel simulator for 3ntenna applications (Dana and Wittwer,

1985).
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It will be assumed in this section for the sake of limiting the

discussion that the multiple antennas are identical in beam profile, ori-

entation, and pointing angle. It is also assumed that the antenna centers

are colinear. These restrictions may be easily lifted by using the more

general formalism reported by Wittwer (1986).

The frozen-in approximation will be used in most of the develop-

ments in this section to describe the temporal fluctuations of the inci-

dent signal. The generalization of the channel simulation technique to

the turbulent approximation is discussed in Section 5.2 along with a

second technique proposed by Wittwer (1986) that is valid in the a eaual

infinity limit. A comparison of realizations generated under the frozen-

in and turbulent approximations is made in Section 5.4.

The scattering of the signal is described in the x-y coordinate

system shown in Figure 5-1, which is normal to the line-of-sight. The x

axis corresponds to the direction with the minimum decorrelation distance

Rotation AngleX

Center

Figure 5-1. Scattering and antenna coordinate systems.

84

4_



-- .2 .2

1W - ll' 22

1.

IIIHI lII lI

rPCROCOPY RESOLUTION TEST CHA.I



which, to be conservative, is chosen to be the direction of the effective

velocity between the antennas and the random diffraction pattern. The

antennas are described in the u-v coordinate system, which lies in the

x-y plane, where the antenna centers lie along the u axis. The angle

x (0 < x < w/2) is the rotation angle between the scattering coordinate

system and the antenna coordinate system. In the figure, one of the

antennas is depicted at the origin of the x-y coordinate system. The

mth antenna is specified by Pm where Pm is a position vector In the x-y

plane that points to the mth antenna center.

5.1 GENERATION OF REALIZATIONS (FROZEN-IN APPROXIMATION).

The technique for generating the realizations of the impulse

response function at the outputs of multiple antennas is outlined below.

For a given signal delay, random samples of the impulse response function

at the outputs of the antennas are generated on the two dimensional x-y
grid shown schematically in Figure 5-2. The y coordinates of the grid

correspond to the y coordinates of the multiple antenna centers ym" The x
coordinates of the grid correspond to the x positions of the antenna
centers xm as a function of time due to the effective velocity of the

antenna relative to the random diffraction pattern.

5.1.1 Discrete Evaluation of the GPSD.

The first step in generating the impulse response function at

the output of an antenna is the evaluation of the GPSD on a discrete

K - K - T grid, The angular-delay grid centers are defined by

K = kAKx

K = AI(
y y

T = T + jAT (5-i)
3j s

85

le A * * k - -..



Antenna Center

Urn. 1

YMn- I hXý

ErreCuive Velocity

Figure 5-2. x-y grid of impulse response function.

where k, 1, and j are integers. The starting delay TS and the angular

and delay grid sizes will be defined in Section 5.1.3. The mean signal

energy at each grid point is

=klj' (27t)-2 f dK, x dKA f d' SA(Kx.1K T) (5-2)

where S A(K x K,,,Tr) Is given by Equation 3-22 in the x-y coordinate system.

The mean signal power in the jth delay bin is

k I

dnd the total mean power in the grid is

Pigue - . (5-4)

These two quantities are useful in verifying the statistics of random

realizations ws discussed in Section 5.3.
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The integral over delay in Equation 5-2 can be done in closed

form with the result that the mean signal energy in the k-l-j grid cell is

(k+1/2)AKx

S[L 2/(8wS) f dKx exp (-K2x /4)
(k-1/2)AK x

(1 +1/2),AK

j dKy exp (-Ky2 o/462 ) G(Kx,K) E (KxK) (5-5)
y y 0 jx'y(l-1/2)AK

where

Ej (KxK erf a[w coh +A/2) - A(K 2 +Ky2 )/04]172 -

erf a[acoh(•T-AT/2) - A(K2 +K2 )j20/4]/l/2 (5-6)

and where erf is the error function. Because the antenna beam profile

appears explicitly in the integrand of Equation 5-5, Eklj is valid only

for an antenna with beam profile G(K x,K y). However, at this point the

location of the antenna is arbitrary as long as the beam profile remains

fixed. If the different antennas have different beam profiles (or the

same profile with different pointing a77gles), then a separate Ek,l,j must

be calculated for each different G(K ,K ).

The value of a in Equation 5-6 is chosen to be large enough so

th.it under the most disturbed propagation conditions the antenna filtering

of the frequency selective bandwidth is not limited by the value of a.

The procedure for choosing a is as follows. The ratio fA/fo under con-

ditions where the decorrelation distance approaches zero is obtained by

combining Equations 2-3• and 3-36 with the result

Limit f /fo a2 + 1 . (5-7)

0
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Using the minimum decorrelation distance, the maximum value of fA/fo isI obtained from Equation 3-38 for a set equal to infinity. The value of im
S~is then chosen so that the difference between a2 + 1 and the maximum value

of fA/fo is small. As discussed by Knepp (1982), it is possible to set a
4 to infinity. However, the resulting discontinuities in the GPSD present

numerical difficulties in the signal generation process that are avoided

with a finite value of o. An alternative channel simulation technique

which depends on a being infinite is discussed in Section 5.2.2. This

latter technique was developed to generate signal realizations under theS~~~~ frozen-napoiainrelztosarel
turbulent approximation but it could be applied to the generation of
frozen-in approximation realizations as well.

5.1.2 Random Realizations.

% The impulse response functions will be generated one delay at a
time starting with the smallest delay (j=O) and working to the largest
value of delay (j=j max). For each delay, the steps that are performed

are outlined in this subsection.

The Fourier transform hA of the impulse response function at

the output of an antenna is

hA(kAK xlAKyT) (4 2 /AKK K y)&k VE k,l,j(5-8)

The normalization factor (4n2/AK xAK yAT) has been chosen so that after hA
is Fourier transformed from the angular Kx - Ky domain to the spatial

domain, hAAT will represent the voltage received during the delay interval

- AT/2 to T. + A&/2. The quantity ýk,l,j is a complex, zero mean,
Gaussian random variable with the properties

> = 6k6 6S<k,l,ji ,a,Y? ka l,a jY

I.,

<•k,l,j F, >= 0 (5-g)
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where 6 is the Kronecker delta symbol. The random numbers t may bem,n
qenerated using the equation

S= V-ln ul exp(21tiu 2 ) (5-10)

where ul and u2 are independent random numbers uniformly distributed on

the interval (0,1).

There is no explicit y coordinate since realizations will be ,

generated only at y coordinates corresponding to antenna centers. This is

accomplished by first generating N samples of h in the K domain and
ofy A y

then by Fourier transforming hA to the y domain using discrete Fourier
transforms (DFTs). One DFT is performed at each Kx coordinate grid point

for each unique antenna center y coordinate. In continuous notation, this

transform is

hA,m K ,T) (1/27r) h hA(Kx,KyT) exp (iKyYmdKy(-11

where ym is the y coordinate of the mth antenna center. The DFT equiva-

lent of this equation is

N /2-1
y

hA,m(kAKx,Tj) = (AKy/ 2 7r) Z exp (ilAKyym) h-A(kAKx,lAKy,xj) . (5-12)
1=-N y/2

Now the Kx to x Fourier transform is performed for each I9

antentia. In this case, a fast Fourier transform (FFT) may be used. In

continuous notation

h(1(XT)) (" ex(iK O x) hA(Kx, )dK (5-13);-.

PP
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The discrete equivalent of this equation is

N (/2-1

hA,m (kx,j) (AK /2n) Z exp (ik'AKx kAx) h A,m(k'AKxST) (5-14)k'=-Nx/2

where NX is the number of x coordinate grid points.

The quantity hAm (kAx,t.) is the impulse response function at

the output of the mth antenna when that antenna is located at x position

kAx. Under the frozen-in approximation, a time step At may be associated

with Ax using the effective velocity:

At AX(T 0/Zo0 ) (5-15)

where o is the decorrelation time of the incident siqnal. The quantity

hA m(kAxT*) then also represents the impulse response function at the

output of the mth antenna at time kAt.

5.1.3 Grid Sizes.

The grid sizes of the channel simulator are chosen on the basis

of the statistics of the signal out of the antennas which are given by the

filtering equations in vction 3.2. The angular grid sizes are chosen so

the antenna filtered GPSD will be small or zero at the edges of the angu-

lar grid and so there will be a sufficient number of samples per decor-

relation distance to resolve the fades of the Rayleigh amplitude distribu-

tion. The delay grid size AT is chosen on the basis of the sampling

period of the receiver and the number of delay samples ND of the

realizations is chosen so the total delay spread of the realization ND AT

will encompass at least 95 percent of the delayed signal energy.

90



5.1.3.1 The Ax -AK Grid. The x grid spacing is

Ax = EAx/NO (5-16)

where LAx is the filtered x direction decorrelation distance (Equation 3-

41). The quantity No is the number of samples per decorrelation dis-

tance or time where No should have a value of 10 or larger in order for

the realization to accurately represent the duration and separation of the

fades of the Rayleigh amplitude distribution (Dana 1982).

The number of x grid points Nx is subject to two constraints:

First, Nx should be a power of 2 so a fast Fourier transform can be used

to transform from the Kx domain to the x domain. Second, Nx should be

greater than or equal to 100 No. Equivalently, there should be at least

100 x direction decorrelation distances in the realization in orde- for

the realization to represent a reasonable sample of the random process.

Under the frozen-in approximation, 100 decorrelation distances corresponds

to an elapsed time of 100 decorrelation times.

Here reasonable is defined in terms of the application. Typi-

cally, the realizations are used to exercise simulations of transiono-

spheric communications links and each realization with N X/N 100 can be

used to calculate receiver performance averaged over 100 decorrelation

times. The resulting receiver performance measures will have some statis-

tical variation due to the finite time duration of the simulation. This

variation can be reduced by either using 1o: er realizations or by using

several realizations with the same signal , ,meters but with different
random numbers and by averaging the results from the multiple realiza-

:4• tions. This latter approach allows an estimate of the statistical varia-

"* tion in the receiver performance to be made.
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Returning to the grid spacing, the x direction distance spanned

by the realization is Lx = N x and AIx is

AKx = 2/Lx = 21t/N •X (5-17)

The functional dependence of the GPSD on Kx is given a~jroxlmately by

S2 exp[-(KxIAx/2) 2 1 (5-18)

In discrete notation, Kx = kAK x where ikl has a maximum value of Nx/2.

Using the maximum value for K of N xK x/2, the value of c at the edge

of the K grid is exp[-(No/22 which is essentially zero for N equal

to 10.

5.1.3.2 The AKy Grid. The number of Ky grid points is determined by

requiring that the GPSD is small at both ends of the K grid. The func-
Y

tional dependence of the GPSD on K is given approximately by

c = expl-(KYtAy/2)'1 (5-19)

A convenient minimum value of e is exp(-n 2 ) = 5.2 x 10-5. Using this

value results in the following condition on NY:

Ny > 4n/(&ytAy) • (5-20)

It is desirable to minimize the number of Ky samples generated to mini-

mize computer memory and execution time requirements for signal genera-

tion. A reasonable minimum value for NY is 32.

The AKy grid spacing is then

&K = 2n/L (5-21)

y y

where the length of the realization in the y direction is chosen as

L : maximum F161 ; 4 maximum . (5-22)
y A,y - (
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The first condition, Ly = 16 1A,y, results from letting Ny = 32 in

Equation 5-20. The second condition, Ly = 4 maximum (Iym'), is chosen

to minimize aliasing of the impulse response functions of the antenna with
the largest value of Y. and the antenna with the smallest value of Ym" If

the value of Ly is determined by this latter condition, then the value of

Ny will need to be larger than 32 in order to satisfy the condition on Ny

given by Equation 5-20.

5.1.3.3 The Delay Grid Ax. The delay grid size is usually chosen so

there are an integer number of delay samples in a sample period of the

communications link receiver. There should be at least two delay samples

per symbol in order to represent the frequency spectrum of the symbols.

The number of delay samples is chosen so the delay spread of the realiza-

tion NDAT will encompass at least 95 percent of the delayed signal

energy. However, the delay spread of the signal depends on the anisotropy

of the signal, on the value of a, and on the antenna filterinq. For a
given frequency selective bandwidth of the incident signal, the delay

spread of the siqnal out of an antenna increases as the antenna filtering

is reduced (or as 4o is increased), as the value of a is decreased, and

as the penetration angle is reduced (as the incident signal becomes more
isotropic). Without antenna filtering, 95 percent of the signal energy

under isotropic scattering conditions arrives with delays in the range

-0.25 < wcohr < 3.45 when a is set at its minimum value of 4 (Wittwer

1980). To be conservative, this same criterion is applied under all

conditions The minimum delay spread of the impulse response function

realizations must therefore satisfy the condition

-0.25 < 21fAT < 3.45 (5-23)

The minimum number of delay samples required is then
!

ND > 1 + 3 . 7 /( 2 nfAt) (5-24)
D A



where the first delay bin (j=0) has a center delay of

T = -0. 2 5/( 2 wfA) (5-25)

5.2 GENERATION OF REALIZATIONS (TURBULENT APPROXIMATION).

The GPSD developed in Section 2 has the form given by Equation

2-102 which is reproduced here:

S(K T,W,) : SD(wD)S( KT) . (2-102)

Under the turbulent approximation, the Doppler frequency spectrum SD(WD)

is independent of the angular-delay part of the GPSD S(K1 ,T). The Doppler

frequency spectrum and therefore the decorrelation time of the signal is

then the same for any angle and any delay.

Two techniques for generating realizations of the impulse

response function under the turbulent approximation will be discussed in

this section. The first technique is a generalization of the technique

used for frozen-in approximation realizations and is valid for appropri-

ately chosen large but finite values of the parameter a. The second tech-

nique, proposed by Wittwer (1985), is valid only for infinite values of

a. However, for reasons described in Section 2.8.1, this limitation does

not reduce the usefulness of Wittwer's technique. Indeed, it has the

advantage of requiring less computer storage and cpu time to generate

realizations than are required with the first technique. Both techniques

are somewhat different than that described in Section 5.1.

5.2.1 Finite a Technique.

The starting point of this generation technique is Equation 5-8

which is rewritten as
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hA(kAKx LAK yTj btn) (4, 2/AKxAK y k,j(tn )/Eklj (5-26)

where tn are discrete times for which the impulse response functions

will be calculated. The temporal variation of the impulse response

function is given by the temporal variation of the random numbers

&k,l,j(t n). These random numbers must still satisfy the conditions given

by Equation 5-9. The grid sizes AK and AT are calculated using the cri-

teria given in Sections 5.1.3.2 and 5.1.3.3 respectively. The grid size

AK for this model is chosen using the same arguments that were used to

select AK y That is, the number Nx of Kx grid points is first chosen to

be 32 and then Equations 5-21 and 5-22 (with y replaced by x) are used to

calculate AK.
X,.

The impulse response functions at the outputs of multiple

antennas are calculated in a manner similar to that outlined in Section

5.1.2. At a given time, the impulse response function for the mth

antenna, with center coordinates x_, and y', is calculated, from hA using a

two dimensional Fourier transform. In continuous notation,

hA(tT) = (21)-2 f dKx f dKy exp (iK x m+iK/m) hA(t,Kx,K ,T) . (5-27)

The discrete equivalent of this equation is

hAm(*tjtn) = (AK AK y/4n2)

N /2-1 N /2-1

x Y
exp (ikAK Xm+ilAKyYm) hA(kAKx,l AK,-,tn) .(5-2S)

k=-N /2 1=-N /2
x y

This operation is repeated for each set of unique antenna center

coordinates and then for each delay.
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At the next time step t =t + _t (where At= -/No), the
tn+1 n 0 0

random numbers •klj are recalculated according to the Doppler frequency

spectrum. A convenient form for the Doppler spectrum is an f_ 4 Dower

spectrum because it can be readily synthesized using two-pole low-pass

filters. The noise sample &k,l,j(t ) can then be obtained directly
kl n+1

from k,l,j(tn) and a complex white Gaussian noise sample. Once the noise

samples , have been updated, the impulse response functions at time tn+1

are calculated using the above equations.

5.2.2 Infinite a Technique.

This technique will utilize the delta function relationship

between angle and delay given by Equation 3-47 for the infinite a limit.

For the jth delay bin, the GPSD will be non-zero only for the angles

that satisfy the condition

co h(j•j-,•/2) < %(K2 +K)z ' 2 /4 < jh("+A/2) + (5-29)

c oh' - x y co 3

In this limit, wcch is related to the frequency selective bandwidth as

'1coh = 2nfo0  (5-30)

The impulse response function may now be generated in the angular domain

without regard to delay. Once this has been done, Equation 5-29 may be

used to assign an annulus in the K - K plane to each delay bin.
x y

The startinr point for this technique is then the energy in a

K K grid cell:

x y

(k+1/2)AK (l1+ 1/-2).\K

Ek,1 (2-)- 2  " dK dK G(K ,K y)S(Kx K y) (5-31)
(kil1/2ý,ý ( 1 112ý.ý<y..

Xy
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I+

where the angular power ;pectral density isi -f

S(K x,K y) f S(K x,K ,)dr

S(T¶I'/6) exp [-(KxL'/4) - (K'2 L'/462 )] (5-32)

The random angular spectrum of the signal at discrete time tn is

rewritten from Equation 5-26 as

hA(k&KxiAKy,tn) = (4T 2/AKxAKy)4k,l(tn)VEk,l (5-33)

For the jth delay bin, the Fourier transform of the impulse response

function aý time tn is

hA(kAKx,lAK ,t )/AT , if Equation 5-29

hA(kAK xlaKyTj tn (5-34)
0n, otherwise .

The impulse response functions at the outputs of multiple antennas are

then generated from h A(kAK x,lKTj,t n) using Equation 5-28.

The savings in computer resources between this technique and

that described in Section 5.2.1 is 'he result of the fact that only the

random anqular spectrum instead of the random angular-delay spectrum is

required at each discrete time for the latter technique. Thus Ek 1 is

stored rather than Ek,l,j and at each discrete time the random numbers

,(tn) are updated and stored rather than • k(t).
kn k,l,j n

For this technique, the mean signal power in the grid is

P G •E k (5-35)

k~,l

k I
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and the mean power in the Jth delay bin is

Itji+A-rI2

Pj f GA ( 0 )dr' (5-36)
&z-A/2

where GAO) is the power impulse response function given in Equation

3-48. For general anisotropic scattering and antennas, this integral must

be performed numerically.

5.3 REALIZATION PARAMETERS.

A check can be made of the generated realizations of the impulse

response function by computing the mean signal power in the grid, scatter-

ing loss, frequency selective bandwidth, x direction decorrelation dis-

tance, and the cross correlation between antennas and then by comparinq

these quantities with their ensemble values whicn are qiven in Section

3.2. The realization signal power in each delay bin may also be compared

with the ensemble values to ensure that the realization has the proper

delay distribution of signal energy. For reasons discussed below, this is

often a better check than comparing the realization and ensemble frequency

selective bandwidths.

Because each realization contains a finite number of decorrela-

tion distances or times, the agreement between the realization parameters

and the ensemble values will not be exact. In addition, the realization

parameters will also vary from antenna to antenna. However, as the reali-

zations are made longer in distance (i.e. Nx is increased while N is kept

fixed) the agreement will improve.

An exception to this is the frequency selective bandwidth which

requires both a long realization in distance or time and a fine gridding

i,, delay to make an accurate measurcr-ncnt. in particular, if the delay

98

-.. .



grid size &T is chosen so there are only a few delay bins encompassing the

delay spread of the siqnal, then the measurement of the time delay jitter

will be limited by the delay grid size. The resulting frequency selective

bandwidth, which is computed from the time delay Jitter, will be inaccu-

rate. An accurate measurement of the frequency selective bandwidth re-

quires on the order of 20 to 30 delay bins in the delay region which

encompasses 95 percent of the signal power (see Equation 5-21). Because

the delay sample size Ai is often chosen on the basis of a channel symbol

period rather than to achieve an accurate measurement of the frequency

selective bandwidth, a comparison of the signal power in each delay bin

with the ensemble values may be a better check that the realization has

the proper delay distribution.

The accuracy with which the GPSD is evaluated can be checked by

computing the mean power PG in the Kx - Ky - T grid (Equation 5-3 or

5-35). The-mean power out of an antenna should be equal to I/Ls where Ls

is the ensemble scattering loss of the antenna. The difference in the

values of PG and I/LS is equal to the amount of delayed signal power that

is not included in the delay grid if the integrals involved in the evalua-

tion of the mean signal power in each grid cell are done with sufficient

accuracy. If the minimum delay criterion given by Equation 5-21 is met,

then these two values should agree to within a few percent.

The following subsections describe the algorithms used to

measure the realization parameters.

5.3.1 Scattering Loss.

The mean power of the realizations will be, in general, less

than unity because of the signal attenuation caused by the antenna beam
profile. The difference between the mean power of the realization and

unity is equal to the scattering loss. The steps for computing the

scattering loss of a realization are as follows:
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1. Compute the impulse response function integrated over all

signal delays. In continuous notation, this is

hm(Xý r h (x,.)d . (5-37)

This integral is evaluated in the channel simulator as

h A,m(kAx) = A- hA, m(khx,jAT) (5-38)

where the sum is over all delay bins. The quantity

hA,m(kAx) represents the voltage that would be received
by the antenna under flat fading conditions (e.g. when

the transmitted modulation is turned off).

2. The power Pm of the impulse response function is averaged

over the realization:

N
X

P,,- (/Nx) 1 IhA,mr(kAx)! . (5-39)
k=1

3. The scattering loss in dB is computed for the m1th antenna:

LS,m - -10 logIo(Pm) . (5-40)

5.3.2 Frequency Selective Bandwidth and Delay Distribution.

The frequency selective bandwidth is computed by calculating the

time delay jitter of the signal. Sufficient delay resolution is required

to do this computation accurately. The realization delay distribution is

given by the mean power of the jth delay bin. These values may be

compared with the approximate ensemble values given by Equation 5-3 or

5-36. The algorithms for computing the frequency selective bandwidth and

the delay distribution are as follows:
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1. Calculate the first two moments of delay:

P (<Tn> = (1/Nx) : I ( )IATrnI•A m(kAx,JAT) 2 (5-41)

This is evaluated for n=1 and for n=2.

2. The time delay jitter is

U [<12> - 2]1/2 5-42)

3. The frequency selective bandwidth of the realization is

computed from OT as

f A,m = 1/(2naT) (5-43)

4. Calculate the mean power in the jth delay bin:

SPjm , (1/N x ) I VThA,m(kAx,JAT)1 2  (5-44)
k

5.3.3 X Direction Decorrelation Distance or Time.

The x direction decorrelation distance or the decorrelation time

is computed by finding the 1/e point of the autocorrelation function of

the impulse response function. The algorithm used to compute the decor-

relation distance or time is:

1. Calculate the power spectrum of the realization. In

continuous notation this is
L x/2

x

where x is replaced by t to compute the decorrelation time.
The discrete equivalent of this equation is
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Sm(kAKx) I(1/Nx) h hA,m(k'Ax) exp (-ikAKxk'&x)1 2 . (5-46)
-- k '

2. Next :alculate the autocorrelation function as the Fourier

transform of the power spectrum. In continuous notation,

Po0m(X) f Sm(Kx) exp (iKxx)dKx (5-47)

and in discrete notation

Po0Pm(kAx) = (AK xI/2) 1 Sm(k'AKx) exp (ik'Kx kax) (5-48)
k'

where

Po a (AKx/2W) 1 Sm(k'6Kx) (5-49)
k'

3. Finally, find the value of IA,x or TA where

Pm(Z A,x) 0 mm(TA) = 1/e . (5-50)

5.3.4 Cross Correlation Between Antennas.

The x direction spatial correlation properties of the realiza-

tions may be verified by computing the x direction decorrelatlon distance

and comparing with the ensemble value. Another important and measurable

quantity is the cross correlation of the realizations of two antennas.

The algorithm for measuring the antenna cross correlation is

N
x

PA(m,n) I hAm(k~x)h* [(k+ks)AX]/(NxVPnPn ] (5-51)A k-1 A'm ~A,n sx"
k=1

1 02
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where ks, the relative index of the two antenna centers, is given by

ks = (xn-xm)/Ax . (5-52)

Here xn and xm are the relative x coordinates for the antenna centers.

5.* EXAMPLES.

In this section, examples are presented of the channel simula-

tion techniques outlined in Section 5.1. First a comparison is made

between the ensemble signal parameters and the values obtained from random
realizations of the impulse response function at the output of an antenna.

These results show that the random realizations do indeed have signal

parameter values that are close to the ensemble values. Then some exam-

ples of the voltage amplitude at the output of a matched filter to a

transmitted square pulse are shown to illustrate some of the effects and
techniques that have been discussed in this report. It is assumed in this

section that mean ionization or dispersive effects are negligible in com-

parison to stochastic diffraction effects. It is further assumed that the

penetration angle is zero so the scattering is isotropic about the line-

of-sight.

5.4.1 Signal Parameters of Random Realizations.

The signal parameters at the outputs of the square, Gaussian

antennas without pointing errors and without sidelobes are considered
here. The random realizations of the impulse response function were

generated at the outputs of two antennas whose centers are displaced by

the distance D where D is the length of a side of one antenna. The rota-

tion angle was chosen to be 45". The configuration is similar to that
depictcd in Figure 5-1 except that there are only two arrays rather than

the three shown in the figure. The algorithms presented in Section 5.3
were then used to compute the realization signal parameters.
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Under these conditions, Equations 3-55 give the ensemble scat-

tering loss, LA/Zo, and fA /f The cross correlation of the impulse

response functions out of the two antennas is, from Equation 3-40,

PA = exp i-(D/L) 2 (0o/LA) 2 ] (5-53)

Figure 5-3a through 5-3d present, respectively, the ensemble

(solid lines) and realization (dots) values of the scattering loss, fre-

quency selective bandwidth, x-direction decorrelation distance, and the

voltage cross correlation PA of the impulse response functions at the

outputs of the two antennas. Except for the cross correlation, the reali-

zation values plotted are the average of the values for the two antennas.

Because of the finite length of the realizations, the agreement

between the realization values and the ensemble values is not exact.

However, over the range of D/oI shown from 0.1 to q, the agreement of the

scattering loss and the ratio fA/fo with the ensemble values is quite

good. Somewhat more scatter about the ensemble values is seen in the

values of the ratio ZA/Lo and the cross correlation function. The ratio

tA/Zo appears to be biased to the high side which is attributed to the

linear interpolation algorithm used to solve Equation 5-50 for the i/e

point of the realization autocorrelation function.

5.4.2 Received Voltage.

Ihis final section presents examples of the received voltage out

of an integrate and dump filter that is matched to a transmitted square

pulse. These examples are intended to illustrate the effects of frequency

selectivity and antenna filtering on a transionospheric communications

link and to illustrate the differences in the structure of the received

signal depending on whether the frozen-in or turbulent approximation is
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used to generate the impulse response function realizations. The follow-

ing calculation will also illustrate how the received voltage can be con-

structed from the impulse response function realizations in a digital sim-

ulation of the link. Additional examples for specific system applications

may be found in Bogusch, et al. (1981) and in Bogusch, Guigliano, and

Knepp (1983).

The received time-varying, complex voltage from a transmitted

impulse under conditions where the mean ionization effects are negligible

is given by the inverse of Equation 2-103:

U(W+Wot) = f h(T,t) exp (-iwT)dT (5-54)

where h(T,t) is the impulse response function and w is the carrier fre-

auency. The quantity U(w+wo,t) then represents the voltage at a relative

frequency w out of an antenna at time t. For a transmitted square pulse

with a chip duration Tc, the voltage out of the matched filter at time t

can be written as

e(T,t) = (1/27r) f M(w)U(w+w ,t) exp (iwT)dw (5-55)

where T is the relative time delay of the matched filter and where

M(M) = T csin 2 (wT c/2)/(wT c/2)2 (5-56)

is the combined spectrum of the square pulse and the matched filter.

In an actual simulation, these two integrals are performed at

baseband (wo=O) and must be performed discretely. If the impulse response

function is generated with ND delay samples of size AT, then the dis-

crete frequency domain voltage at time t is
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NDI
N 0-1

U(kAw,t) : A •Th(jAT,t) exp [-ikw(T s+jAT)] (5-57)
j =0

where w : 2w/NDIT. Here the delay T defines the start of the delay grid

upon which the impulse response function is generated (Equation 5-i).

However this delay may be ignored at this point because it will be

accounted for when the received voltage is constructed. The range of the

index k in this equation is from 0 to ND-1 so the range of frequencies

represented is from 0 to (ND-I)Aco. The zero frequency of U(k&w,t) must

correspond to the smallest frequency of M(w) within the receiver band-

width. The discrete received voltage is then given by

ND-I sin 2 [(kND/2)AwTTc/21

e(T,t) : (6wTc/ 2 n) -2 U(kaw,t) exp [ikAW(T-T')]
k=O [(k-ND/2)&wTc/2](-k=O D c(5-58)

If &T is chosen to be T c/2, then wT c/2 = 2n/ND and ek',t) represents a

signal that is band-limited to the frequency range -i/Tc to +j/T Note
also that e(c,t) is unambiguous in delay only over the interval from 0 to
(Na-s )aT. The arbitrary starting delay o' is included in Eruation 5-49 to

account for the delay T5 which may have been iqnored in Equation 5-48 and

to ensure that e(T,t) is not aliased in delay.

In the examples that follow, the random realizations of the

impulse response function were generated with a delay sample size of Tc/2

and with 32 delay samples. The chip rate Rc = I/Tc was set at I VHz.

However, the frequency selective effects depend only on the ratio of the

frequency selective bandwidth to the chip rate f /R c Then the voltage

out of a matched filter was calculated from the impulse response functions

using Equations 5-48 and 5-49. The amplitude of this voltaqe is plotted

as a function of the delay of the matched filter and as a function of

time.
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The effect of frequency selectivity on the received voltage

amplitude is shown in the next set of figures. The impulse response

functions used for these signals were generated using the frozen-in

approximation and an omnidirectional antenna. Delay in chips is plotted

on the abscissa of the figures and time or antenna position is directed

into the figure. The total time duration of the plots is 10 To.

The signal in Figure 5-4a where f /Rc = 1.0 clearly shows the

effect of signal fading as the peak amplitude rises and falls with time.

The matched filter output in the figure is somewhat rounded rather than

being a triangle because the signal is band-limited to the frequency range

between the first nulls of the transmitted spectrum. Some minor distor-

tion of the output waveform is seen but for the most part the signal is

contained within the period of one transmitted symbol. For this channel

the fading is nearly flat which means that all frequency components within

,the signal bandwidth propagate essentially the same way through the dis-

turbed ionosphere and there is very little time delay spreading of the

received signal.

Figure 5-4b shows a signal generated with fo/Rc = 0.5. The

impulse response function of this signal was generated using the same set

of random numbers and the same angular-delay grid that was used for the

impulse response function of the signal in the previous figure. The only

difference in the two impulse response functions is the distribution of

signal energy within the delay bins. Thus there is strong correlation in

the signal structures seen in the two figures. For this smaller value of

the frequency selective bandwidth, more of the signal energy is arriving

at longer delays. There is one time about three quarters of the way into

the figure where there are two distinct peaks in the matched filter output

amplitude. It is these sort of structures that can cause delay tracking

algorithms in receivers to lose lock and that cause intersvambol inter-

ference which can degrade demodulation performance.
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Figure 5-4a. Matched filter output ampl itude for f 0/R C 1.0.

o cc

DELA Y (CHIPS)

Fiqure 5-4b. Matched filter output amplitude for f 0/R C 0.5.
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The matched filter output amplitudes for fo /Rc equal to 0.2 and
0.1 are shown in Figures 5-4c and 5-4d respectively. The signals in these

figures are much more distorted than the signals in the previous two

figures with the signal energy being spread out over multiple --hips. This

amount of multipath deliy spread produces severe intersyrbol interference

and reduces the amplitude out of the matched filter at a given delay.

Another effect that is evident in these siqnals is that the

signal received at long delays varies more rapidly in time than the signal

received at shorter delays. This is a result of the frozen-in approxima-
tion. Figure 5-5 shows a signal with f /Rc a 0.1 whose impulse response
function was generated using the turbulent approximation. Again 10

decorrelation times of the signal are plotted. It should be remembered

when comparing the signals in Figure 5-4d and 5-5 that the Doppler

spectrum has a Gaussian form for the frozen-in approximation and an f_4

form for the turbulent approximation. It is this fact that accounts for

the more spikey appearance of the turbulent approximation signal. Also

the impulse response function generation techniques are sufficiently

different so there is no correlation between features seen in the two

fi,•ures. The thing to note about the turbulent approximation signal is

that the features at long and short delays have the same decorrelation

time.

Finally, the effect of an antenna on the received signal ampli-

tude is shown in the last set of figures. The impulse response functions

used for these signals were generated using the frozen-in approximation

and a square Gaussian antenna. As is the case for all signals plotted in

this section, the scattering is isotropic about the line-of-sight. All of

these signals have the ratio f /Rc set at 0.1 while the ratio D/2o is

varied. Again the signal amplitude out of the matched filter is plotted

versus delay with time directed into the figure. The total time duration

of the plots is 10 to.
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4 DELAY (CHIPS)

1Fiqure 5-4c. Matched filter output amplitude for f 0/Rc = 0.2.

DELAY (CHIPS)

Figure 5-4d. Matched fiiter output amplitude Tor f 0/Rc 0.1.
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Figure 5-5. Matched filter output amplitude for a siqnal generated using
the turbulent approximation (f 0I/Rc -0.1).

Figure 5-6a shows the matched filter output amplitude for a
Gaussian square antenna wi;.h O/•. = 0.5. For this antenna and isotropic

scattering, the ensemble scettering loss is 0.4 dB. This signal is not

identical to that shown in Figure 5-4d, although similarities can be seen,

because of the antenna filtering and because the angular-delay grid sizes

depend on the ensemble signal parameters at the antenna output. Figures

5-6b through 5-6d show respectively the matched filter output amplitude

for D/° equal to 1.0 (ensemble scattering loss equal to 1.3 dB), 2.0

(ensemble scattering loss equal to 3.9 dB), and 5.0 (ensemble scattering

loss equal to 10.0 dB).

The effects of an antenna on the signal parameters are readily

apparent from these figures as the ratio D/Xo is reduced. The signal
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Figure 5-6a. Matched filter output amplitude for D/I 0 = 0.5.
10

I-
0.

-2 0 2 4 6 a 10 12 14 16 is 20

DELAY (CHIPS)

Figure 5-6b. Matched filter output amplitude fur 0/io 1.0.
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Figure 5-6c. Matched filter output amplitude for 0/t.= 2.0.

r

DEL.4 Y (CHIPS)

Fiqure 5-6d. Matched filter output amplitude for D/1,= 5.0.
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energy arriving at longer delays is preferentially suppressed by the

antenna. For D/o equal to 5.0, the output-signal looks almost flat with

very little distortion of the matched filter output. However, the output

signal amplitude is 10 dB smaller on the average than it was without

antenna filtering. Also, tt'e decorrelation time or distance of the

signals is seen to increase as the antenna filtering increases.

11
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APPENDIX A

PHASE VARIANCE DUE TO ELECTRON DENSITY FLUCTUATIONS

A relationship between the phase variance imparted on the wave

as it propagates through the ionization layer and the electron density

fluctuations will be derived in this appendix. This relationship is given

by Equation 2-51 which was derived using the Markov approximation.

However, it will be shown here that the relationship requires only that

the layer thickness be large compared to the decorrelation distance of the

electron density fluctuations along the line-of-sight.

It was shown in Section 2 that the total phase change of the
wave as it propagates through the ionization layer is

r = reX<ne> f ý(•,z,t)dz (A-I)

The autocorrelation function of the phase fluctuations is then

SL L<0 (',t)ý(P+ t')> = (reX<ne>) f dz f dz' <t(P+,z,t)M ( ',z 't,t ) (A 2_

0 0 >-

where L is the thickness of the scattering layer. For spatially and

temporally stationary random electron density fluctuations, the expecta-

tion must be a function of the differences Ap, z-z' and At only. Denoting

the autocorrelation of E(;,z,t) by B&(A;,z-z',At) and the autocorrelation

of *(•,t) by B (A•,At), Equation A-2 becomes

> L L
B (APAt) = (reX<ne>) 2 o f dz f dz' B,(AP,z-z',At) . (A-3)

0 0
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This double integral may be reduced to a single integral by changing the

order of integration with the result

L

B(,At) = (rene)2 (1 ->zL/L)B&(&+,z,At)dz (A-4)

If the correlation distance of B&(Ap,z,&t) along the z direction

is small compared to L, then 8E(AZz,at) will become small before izh/L

approaches unity in the integral and the Izl/L term may be ignored. The

limits of the integral may then be set to ± and the integral reduces to

B (A•,At) = (re X<ne>) 2 L f B&(&•,z,At)dz . (A-5)

The remaining integral is denoted by A(A•,At) so the autocorrelation of

the phase fluctuations is

B (A=,At) (reX<n e>) 2 L A(Ap+,At) (A-6)

which is the same as the final expression in Equation 2-51.
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APPENDIX B

SIGNAL PARAMETERS FOR K-4 ELECTRON DENSITY FLUCTUATIONS

In this appendix, the expansion coefficients Ao and A2 are

calculated using the quadratic approximation of the correlation function

A(+d) of the electron density fluctuations and usina the delta layer

approximation. From these coefficients, the phase variance, decorrelation

distance, and the coherence bandwidth of the signal incident on the plane

of the receiver are written in terms of physical parameters. However,

these signal parameters are computed from a disturbed ionosphere model

using the more general formalism of Wittwer (1979, 1980) which accounts

for the finite thickness of the scattering region and other complicating

effects. The purpose of this appendix is only to illustrate the depend-

ence of the signal parameters on geometrical and electron density fluctua-

tion parameters.

A power-law form of the PSD for the three dimensional electron

density fluctuations is assumed:

8- 3/2 L L Lt <An2>r(n)
&•(+1 = -(8-1)

<n e> 2r(n-3/2 )(1+K-L •.•)

where

L 2  0 0
x

+ 2

Lz
o 2 L(B-?)

Ly Lyz0 L
Lyz Lz A
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The scales Lr, Ls, Lt and L y, L z, Lyz are defined in Section 2.6 in
terms of the outer scale Lo, the penetration angle i, and the axial

ratio q. The root mean square value of the electron density fluctuations

is <Ane>. For K.L-K > 1, 0 is proportional to K2 n. Thus a K-4 PSD for

the three dimensional electron density fluctuations corresponds to the

n = 2 case.

The correlation function A(+d) under the delta layer approxi-

mation is given by Equation 2-70 which is reproduced here:

A() (2 ff)2 exp(i.d (2-70)

Using Equations B-i and R-3 and performing the angular integral, Equation

B-3 reduces to

÷ 4V' q6Lo0r(n)<An e> do 'd
A(d= 0 f u du

r(n-3/2)<n e o>2 (I+u2)n

v"rq6Lo(n-I)<Ane> (Pd.LPd) (n-i)/2 Kn.L[( d . /d),/2] (8-3)

2n-3r(n .3/2)<n >2

e

where J is the Bessel function of order 0, K n-i is the modified Bessel

function of order n-i, L is a 2x2 matrix containing the x-y components

of L, and 6 is defined in Equation 2-69.

For all values of n except n =2, A(Pd) can be expanded in a

power series of the form

A(d) Ao{(I-A2[(X/Lx) + (y/L )m/ (B-4)
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where mi min(2,2n-2). For n = 2, A2 does not exist unless an inner scale

li is imposed. This is accomplished by truncating the integral over u

in Equation B-3 at a cutoff u = c-1where e is chosen to be I ./L 0. For
values of n greater than 2, the Jo Bessell function in the integrand of

Equation B-3 can be expanded and the resulting series can be integrated

term-by-term. The first two terms of the expansion give

2"'w q6L 0r(n)<An -2 n -
A0 : r(n-3/2)<n e>2

and

A2 =(1+,2)n-I - [1+(n-1) e21 (B-6)
2w•4(n'2)[(l+ - 2 ) n -1-1.

In the limit that n = 2, the A2 coefficient becomes
(l€2)I €2) _ -2

A2 = (1+e )ln(1+C ) - 2 (B-7)

4- 2

This expression can be further reduced in the limit that 1i << Lo to

A2 - ln(Lo/1)/2 (B-8)

Now the phase variance, the decorrelation distance, and the

coherence bandwidth can be written in terms of geometrical parameters and

electron density fluctuation parameters. Using Equation 2-52, the phase

variance due to the structured ionization is

a 2 = 2q6L L (reA)2 <Ane2> (B-9)

0 0 6 e

where L is the thickness of the delta layer. The decorrelation distance

and the coherence bandwidth are defined in Equations 2-78 and 2-79

respectively. Using these definitions,
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22 2(zt+Z) 2L2  (B-L)

ozt 2 ln(L /I )a2
t 01 0

and

2-Rw A(zt+Zr)LZ (

Xz Ztrln(Lo/1 )o0

These equations are only valid for the delta layer approxima-

tion, for the quadratic phase structure approximation and for a K-4 three

dimensional electron density fluctuation PSD. It can be seen from the

equations that the values of to and w coh are only weakly dependent on the

inner scale Ii.
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