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. 4 SECTION 1
X INTRODUCTION

Satellite communications systems that utilize transionospheric
3! propagation links may be subject to severe performance degradation when
the ionosphere is highly disturbed by high altitude nuclear explosions
(Arendt and Soicher 1964; King and Fleming 1980) or by chemical releases
(Davis et al. 1974; wWolcott et al. 1978). During these events, the
increased electron concentrations and the irregular structure of the

ionization can lead to intense Rayleigh signal scintillation at the RF
carrier frequencies used for communication links.

Under severe scintillation conditions, the signal incident at
the receiver can vary randomly in amplitude, phase, time-of-arrival, and
angle-of-arrival. If all frequency components of the signal vary essen-
tially identically with time, the propagation channel is referred to as
nonselective or flat fading. w"en the scintillaticns exhibit statistical
. decorrelation at different freaquencies within the signal bandwidth, the

channel is referred to as frequency selective. Frequency selective

scintillations are therefore encountered when the communication link band-
K width exceeds the frequency selective or coherence bandwidth of the chan-

nel. When the scintillations exhibit statistical decorrelation across the

face of an aperture antenna, the channel may also be referred to as spa-

SYLCTL Y, o
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tially selective. Spatially selective scintillations are therefore en-
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countered when the antenna aperture size exceeds the decorrelation dis-
tance of the incident signal,
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Under conditions where the signal is spatially selective, the
antenna beamwidth is smaller than the angle-of-arrival fluctuations and
the effect of the antenna is to attenuate the incident signal that is
arriving at off-boresight anqles. In the spatial domain, the incident
electric field is somewhat decorrelated across the face of the antenna,
The induced voltages in the antenna then do not add coherently as they
would for an incident plane wave with a loss in the gain of the antenna as
a result. Because of this angular filtering or spatial selectivity, the
second order statistics of the signal at the output of the antenna will be
different than those of the incident signal.

The effects of antennas on signals that have propagated through
randomly jonized media have been reported by Wittwer (1982, 1986) and
Knepp (1983a, 1985). The purpose of this report is to review the basic
theory, starting with Maxwell's equations, of radio frequency (RF) signal
propagation through random media. Then several new applications of an-
tenna filtering effects are presented. These include the filtering of
anisotropic signals with anisotropic antennas; qeneration of realizations
of the impulse response function at the output of multiple antennas; and
transponder communication links with two independent propagation paths and
four antennas.

1.1 THEORY.

The starting point for antenna aperture effects calculations is
the generalized power spectal density (GPSD). The first part of this
report is a review of the derivation of the GPSD. The intent of this
review is to give the reader an understanding of the underlying physcics
that are contained in the GPSD and an understanding of the assumptions
used to calculate the GPSD. The first part of this review follows
Tatarskii (1971, §64-65) and the second part follows Knepp (1983a).
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The derivation of the GPSD starts with Maxwell's equations from
which the parabolic wave equation is derived. The parabolic wave equation
can be solved to give the received electric field for a specific electron
density distribution in the ionosphere. However, the electron density
distribution is a random process so the received electric field is also a
random process. The parabolic wave equation is therefore used to derive
an equation for the two-position, two-frequency, two-time mutual coherence
function of the electric field, P(A;,Am,At). The solution of the differen-
tial equation for T, which is a solution of Maxwell's equations, then pro-
vides a description of the second order statistics of the received elec-
tric field. The Fourier transform of T is the GPSD of the received
signal.

1.2 APPLICATIONS,

The second part of this report presents several new results,
The GPSD for anisotropic scattering is used to compute the mean power,
decorrelation distance, and freguency selective bandwith of the signal out
of an anisotropic antenna. These results allow an arbitrary rotation
about the line-of-sight between the antenna axis and the natural axis of
the scattering. Analytic results are presented for antennas with Gaussian
beam profiles and numerical results are given for uniformly weighted
circular apertures.

These results are then generalized to transponder communication
1ink geometries where there are two independent propagation paths through
disturbed regions of the ionosphere and four antennas. It is assumed for
simplicity in these calculations that all of the antennas have circularly
symmetric antenna beam profiles,
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In the last application caction analytical/numerical techniques
are described to generate realizations of the impulse response function of
: the signal after propagation through randomly ionized media and reception
by multiple antennas. These statistical realizations of the signal out of
multiple antennas have Rayleigh amplitude statistics and spatial and fre-
quency correlation properties given by the mutual coherence function.
These realizations of the impulse response function are then used to con-
struct the received signal which may be used to exercise simulations of

- W .

transionospheric communications links.
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SECTION 2
THEORY

The starting point for antenna aperture effects calculations is
the generalized power spectral density (GPSD). This section presents a
review of the derivation of the GPSD and discusses the physics that are
contained in this important function,

In deriving the GPSD, two key approximations are made about the
spatial and temporal electron density fluctuations that cause the scatter-
ing in the jonosphere. The first of these is the delta layer approxima-
tion which says that the scattering oc-urs in an infinitesimally thin
layer normal to the line-of-sight. This approximation has been relaxed in
the calculations of Wittwer (1982) and Knepp (1983b) and has been found to
result in small errors in the GPSD prcvided that the propagation param-
eters (frequency selective bandwidth, decorrelation time and decorrelation
distance) that characterize the channel are properly specified. The delta
layer approximation is not, in general, adequate to calculate the propaga-
tion parameters (Wittwer 1982).

The second approximation is for the temporal variation model of
the electron density fluctuations. The usual approximation is Taylor's
frozen-in hypothesis which treats the ionization fluctuations or stria-
tions as rigid "frozen-in" structures that drift across the line-of-sight.
Under this approximation there is strong coupling between the spatial and
temporal variations of the random electric field that is incident at the
plane of the receiver. A second approximation proposed by Wittwer (1985),
called the turbulent approximation, is developed in this section which
decouples the spatial and temporal variations of the random electric
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fields. This approximation may be more accurate at times before the stri-
ations have formed in the ionosphere or when multiple 1ayérs of striations
with different drift velocities are in the line-of-sight. The GPSD under
both of these approximations is derived in this section.

An analytic solution is obtained in this section for the two-
position, two-frequency, two-timé mutual coherence function r(AF,Am,At) of
the complex electric field incident on the plane of the receiving antenna.
This solution is valid for arbitrary line-of-sight aeometries relative to
the ionization structures in the ionosphere that cause the scatterina of
the RF wave. The mutual coherence function then provides the basis for
the antenna aperture effect calculations and for the statistical signal
generation techniques discussed in Sections 3 and 5 of this report. The
Fourier transform of T is the GPSD of the received signal.

2.1 PARABOLIC WAVE EQUATION.

Consider a monochromatic sphericé] wave with an electric field
é%?,w,t) which is a function of position ;, carrier radian. frequency w,
and time t. The wave originates from a transmitter located at
ro= (0,0,-zt) and propagates in free space in the positive z direction
until it is incident on an irregularly ionized layer which extends from
0 < z<L and is infinite in the x-y plane. After emerging from the layer
at z = L, the wave propagates in free space to a receiver located at
ro= (0,0,Zr). This geometry is shown in Figure 2-1.

The propagation of the wave is governed by Maxwell's equations:

i+ (1/c) a/3t =0 Teed = 0
(2-1)
Txof- (e/c) 38/3t = 0 Ve =0

where ¢ s the speed of light in vacuum,ti?is the magnetic field, and ¢ is

the dielectric cunstant,




- Transmitter

— —

z

@ Receiver

Figure 2-1. Propagation geometry.

The dielectric constant of the propagation medium undergoes
random fluctuations with a characteristic frequency which is assumed to be
small when compared to the carrier frequency of the wave. With this
assumption, the electric and magnetic fields may be written as the product
of slowly varying complex envelopes, denoted £ and ﬁ, times exp(iwt):

FFout) = E(Fu,t)e'"
(2-2)
H(Fu,t) = A(F0,t)e
Incerting these into Maxwell's equations gives
IxE + kA =0 (2-3a)
Gxi - iekf = 0 (2-3b)

S
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where k = w/c is the wave number of the carrier. After applying the curl
operator to Equation ?2-3a and substituting Equation 2-3b for the ¥l
term, the equation for t becomes

UxOxf - ek =0 . (2-4)

The vector identity xVxE = ¥(V.E) - v2F reduces the curl curl term in
Equation 2-4 with the result

V(VeE) - v - ekt =0 . , (2-5)

The 3-5 term is reduced by expanding the divergence equation for £:
Jeef = eVl + Ede = 0 (2-6)
or

$of = - E¥(ne) . : (2-7)

The wave equation for the compliex envelope of the electric field then
becomes

02F + k2 + F[EF(ne)] =0 . ' (2-8)

The dielectric constant € irn a plasma at radio frequencies is
given approximately by

€ =1 - mg/w2 . (2-9)

where the plasma frequency is

m; = 4n r czne(F,t) ) (2-10)

e




The quantity re is the classical electron radius (r‘e=2.8179><10'15 m) and
ne(;,t) is the free electron density as a function of position and time.
Equation 2-9 is valid when the carrier frequency is large compared to the
plasma frequency. The free electron density is a random variable that
will be represented as a mean value plus a random variation:
+ >

ne(r,t) = <>+ Ane(r,t) . (2-11)
The electron density fluctuation Ane(F,t) is assumed to be a zerc mean
random process with a stancard deviation that is small compared to the

mean electron density. Tha term ck? in the wave equation may now be
rewritten as

ek? = & (1-€;) (2-12)

where
K- (m/c)2[1-4nrec2<ne>/w2] (2-13)

and —-
e = [an () /ap)e /)] (2-14) 4

!
$

\3
\
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The quantity wp is the plasma frequency evaluated at the mean electron
density. The magnitude of the gradient term 5(1ne) in the wave equation
may be estimated as follows:

»>

-
-
-

-

§ |3(1ne)| = ,6[1n(1-wg/m2)]|

& .- (4nre<ne>c2/w2)|$(Ane/<ne>)|
\ —2

Z: . ~ - (wb/wz)/Lo
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where Lo is the scale size of the electron density fluctuations. As

long as L » X, where X is the RF wavelength, the term ﬁ[E 3 Ine)] is
small compared to ek?f and may be ignored. The steps that follow are
therefore only valid when the scale size of the electron density fluctua-
tions is large compared to the carrier wavelength. With this restriction,
the wave equation becomes

2+ 1) =0 . (2-15)

Now consider the complex components of the electric field and -
let

E(r,u,t) = U(F,u,t) exp (-i [k ydz') . (2-16)

This scalar equation for £ may be used because it is usual for trans-
ionospheric RF links to be circularly polarized. It is therefore not
necessary to carry out separate calculations for each polarization state.
The exponential term in Equation 2-16 represents the dispersive effects of
the smooth plasma and will be considered in Section 2.9. The voitaae U
contains the diffractive effects that are of interest under strong scat-
tering conditions. Substituting Equation 2-16 for E(F,w,t) in the wave
equation gives the following differential equation for U:

- -2
jiu + 3%0/322 - 2ikaU/3z - K U = 0 (2-17)
where
ji z 32/3x% + 3%/3y? . (2-18)

The complex amplitude U varies as the electron density fluctuations. The
second derivative 32U/3z% is then the order of U/Lg. On the other hand,
the term k3U/3z varies as U/ALO. As long as A K Lo’ the second derivative
is small compared to the first derivative and may be ignored. This is
equivalent to neglecting reflected rays and is called the "parabolic"
approximation, The parabolic wave equation is then
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WU - 2ikeu/2z - Cel=0 . (2-19)

It will be seen that this parabolic or small angle scattering approxima-
tion is very robust in that it degrades gracefully as the scattering
angles get large. The source term ¢;U in the parabolic wave equation is a
function of the electron density fluctuations and of frequency. Different
frequencies within a signal bandwidth may therefore propagate along dif-
ferent paths through the same ionization structure. '’en this happens,
the propagation channel is said to be frequency selective.

2.2 TRANSPORT EQUATION,

A partial differential equation for the two-position, two-fre-
quency, two-time mutual coherence function ' is derived from the parabolic
wave equation in this section and is solved in Section 2.5, This trans-
port equation is derived using the Novikov theorem which requires that the
electron density fluctuations be normally distributed. However, Lee and
Jokipii (1975a) give an alternative derivation that relaxes this assump-

tion.
2.2.1 First Form of the Transport Equation.

The two-position, two frequency, two-time mutual coherence
function is defined in a plane normal to the line-of-sight as

r = <U(;l92)w19t1)U*(32929w2’t2)> (2'20)

where » is a two-dimensional position vector in the normal plane.
In order to obtain an equation for T, the parabolic wave equa-

tion for U(Bl,z,ml,tl) is multiplied by U*(sz,z,wz,tz). This results in

the following egquation:
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(1/k1)YLIZU(El.Z.wl.tl)U*(sz,Z.wz,tz) -

2i[3U(31‘z,w1,t1)/32]U*(32,z,w2,t2) -
klel(zlﬁzsulatl)u(zl9z;wl’tI)U*(32929m2|t2) =0 (2'21)

where kj is given by Equation 2-13 evaluated at “J‘ (Ej,z T tJ) is given
by Equation 2-14, and ¥V, 2 is given by Equation 2-18 evaluated at p . A

similar equation can be wr1tten down by interchanging the subscrlpts 1 and
2 and by taking the complex conjugate with the result:

(l/kZ)YiZZU*(SZ9Z9w2’t2)u(sl’Z’wl9tl) +

2‘[3U*(32,Zaw2,t2)/3Z]U(31,Z,w1,t1) -

kzel(32,Z,wz.tz)U*(gz,Z,wz,tz)U(s1,Z,w1,tl) =0 . [2-22)

Upon subtracting Equation 2-22 from Equation 2-21 and taking the
expectation valiue, the equation for T is

(1/k1)VJ_12r - (1/k2)v122r - 2iar/3z -

k1<€1(31,Z.ml,tl)U(Bl,Z.wl.tl)U*(Sz,Z,wz.t2)> +

k2<€1(32’29w2)t2)u(31,Z9w19tl)u*(3292’m2;t2)> =0 . (2'23)

The expectation of the two source terms in this equation must be

carefully evaluated. They involve the product of UU* and e, where e is
proportional to the fluctuations in the electron density. However, the
electric field complex envelope U is a function of the electron density
fluctuations that are encountered along the propaaation path. Therefore U
and €, are correlated.




2.2.2 Novikov Theorem.

The Novikov theorem is used to evaluate the source terms in
Equation 2-23. This theorem is proved in Tatarskii (1971, §65) and
Ishimaru (1978, pp. 457-458). The theorem states that

SFRYS[F]> = [ <FR)F(R )><oo[f)/6f(R1)> d" R (2-24)

where f(ﬁ) is a zero-mean, normally distributed random function of the n
dimensional vector R and §¢/6f is a functional derivative. In applying
this theorem, f = €, and ¢ = UU*. The theorem is proved by expanding ¢(f)
in a Taylor series.

2.2.3 Source Terms,

Before proceeding with evaluatina the source terms, it will be
convenient to write €; as the product of a frequency term and a term that
varies only with space and time:

e1(,2,u,t) = £(p,2,t)8(w) - (2-25)

where
gE(p,z,t) = Ane(s,z,t)/<ne> (2-26)

is a random function of the electron density fluctuations and

-2 2 =2
B(w) = wp/(w -wp) (2-27)

is a deterministic function of frequency and the mean free electron
density.

A straightforward appiication of the Novikov theorem qives for
the first source term in Equation 2-23
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Sl I(18(“)1)<E(‘51 )Z>t1)u(slv2:m19tl)u*(32 ,Z,Nz,tz))

K18(wy) [ dz' [f d%6' [ dt' <&(P1,z,t1)E(R',2",t")> x

<[8U(Py, 2zt )/8E(B 2"t ") JU*(Pa,2,02,t0) +

U(B1,z,01,t1) [8U%(P2,2,00,t2)86(R 2", t ) ]> . (2-28)

At this point, the electron density fluctuations are assumed to
be stationary and delta-correlated along the z axis. This Markov assump-
tion has the mathematical form

<€(5,2,1)8(8',2",t')> = & (2-2')A(R-B',t-t!) . (2-29)

The notation 8g(x) is used throughout this repcrt for the Dirac delta
function to distinguish 8g(x) from the functional differential 6¢/6f and
from the parameter § defined in Section 2.6. The Markov assumpticn is
discussed in some detail by Tatarskii (1971, §64) and is based on the fact

that fluctuations in the dielectric constant in the direction of propaga- -

tion have little effect on the transverse fluctuation characteristics of
the electric field. It is the fluctuations of the dielectric constant
transverse to the direction of propagation that dominate the scattering
and the transverse fluctuations of the electric field.

Under the assumption of small angle scattering for which the
parabolic wave equation is valid, the component of the electric field
traveling in the backward direction will be negliqible compared toc the
component of the electric field traveling in the forward direction., The
electric field U(B,z,w,t) may then be assumed to depend on E(S‘,z',t')
only for 2' < z (i.e. the electric fieid does not depend on electron den-
sity irreqularities that have not yet been encountered along the forward

14

A ahtatal H.CWlal] BrofSR Ve eSS S ST, | andd s

v
.
% |



propagation path). Also, U(E,z,w,t) depends on E(p',2',t') only for

t' <t {i.e., the electric field does not depend on irregularities that
have not yet occurred). Thus GU(B,z,m,t)/GE(B',z',t') =0 for 2' > z and
for t' > t,

The source function S; may now be rewritten as
2 ® t
-
Si = kiBy [ dz' 8c(z-2') [[ d%' [ dt' A(5)-8,ty-t') x

-0

<[6U(51929mlst1)/6€(5"Z"t')]U*(SZ,ZawZ;tZ) +

U(;lﬁzbwl9tl)[GU*(32929w2!t2)/6€(3I)let')]> (2'30)

where Bj is given by Equation 2-27 evaluated at wj' Recalling that

a
[ §(x-a)dx = 1/2 (2-31)

further reduces the source term §; to
o t
>

Sy = (k1B8y/2) [f d%3* [ dt' A(B,-p',t1~t') x

<[6U(51,Z,w1,t1)/55(3',Z,t')]U*(Ez,l,wz,tz) +

U(P1, 2 w1,t1) [8U%(Pa,z,wp,t2)/68(0",2,t")]> . (2-32)

The 8U/8€ iferms in this expression will be evaluated next.

The parabolic wave equation is used to evaluate the functional
derivatives SU/8E., Integrating this equation from -« to z results in




Z —
f ji V(8,5 u,t)dz - 2ik[U(0,2,0,t) - uo(J,m)] -

- 4 + >
kze(g) [ &(3,2,8)0(P,2,u,t)dg = 0 (2-33)

where UO(S,m) is the transmitted signal, After applying the operator

§/85(5',2',t'), where -® < z' < z and -» < t' < t, and noting that

SE(P,2,t)/66(5",2',t") = 6 (2-2')6-(B-p')6(t-t") ,  (2-34)

F

Equation 2-33 becomes
- ,+ <> —2 > & ->
2ik SU{p,z,w,t)/8E(p',2',t') + k B(m)GF(p-p')GF(t-t‘)U(p,z',m,t) +

L4

2
[ [Ca(w)E(d,z,t) - ViI[GU(S,c,w,t)/ssG',z',t'>]dc =0 . (2-35)
Zl

The lower limit of the integral in this equation is z' because
8U(p,2,w,t)/8E(5,2',t') is zero for z < z'. Because the source term S,
contains factors of the form 6U(3.z,w,t)/65(5',z,t‘), 2' is set equal to
2z in Equation 2-35 with the result

SU(5,2,0,t)/85(5",2,t") = (ikB(w)/2)8(5-5")6c(t-t" )U(B,2,u,t) (2-36)

After substituting this into Equation 2-32, the source term

becomes
@ t .
+> +>
Sy = [[ d%* [ dt' A(py-0',t;-t') I x
[(ik1812/8)8.(51-5")8(t)-t") - (1k28132/8)8(Bp=p")6 (tp-t")]
= (ik18,2/8)A(8,0) T - (ikp8,B5/8)A(Py-B2,t1~ts) T . (2-37)
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A similar expression may be written down for the second source term in
Equation 2-23:

+ +> >
S2 sz(w2)<E(Dz,Z,t2)U(p]_,Z,h\l,tl)U*(Dz,Z,wz,t2)>

(ik18182/4)A(D1-P2,t1-t2) T - (ikz8,2/4)A(8,0) T . (2-38)
2.2.4 Second Form of Transport Equation.

The transport equation for the mutual coherence function is now
given by combining Equations 2-37 and 2-28 with 2-23 with the result

ar/Tz + (i/2)[(1/k1)Vﬁ - (1/kz)vJ22] r-
(1/8)[2k1k2B1B2A(P1-Pp,t -ty) - (k12812+k22822)A0] r (2-39)

where AO = A(G,O).

The differential equation for T will be solved by first letting
r = ror1 where ro is the free space solution. The well known solution of
the wave equation for the electric field in free space (Equation 2-15 with
€; = 0) may he written down directly. The Fresnel approximation that
2> |3| is then used to expand the electric field and the free space
solution ro is computed. The quantity PO contains the 1/z% term that
partly determines the mean power at the receiver. The next step is to
derive a differential equation for T; from Equation 2-39 and the free
space solution, It is the mutual coherence function I'; that determines
the second order statistics of the received signal.

2.2.4,1 Free Space Solution Ty. In free space and for spherical
geometry, the complex envelope of the electric field is

£ - EO exp (-ik|F|)/|F| X (2-40)
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It is easy to verify that this is a solution of the wave eguation with €,
set to zero. Under the assumption of small angle scattering, 22> x% + y2
in the region of interest and '?I may be expanded as

|F| = (x2+y2422) /2 w72 4+ (x24y¥)/22 . (2-41)
With this Fresnel approximation,

= (E /2) exp [-ikz-tk(x®+y?)/2z] . (2-42)

After recalling that U = exp(ikz)f, the free space mutual coherence
function is

> +>
<U(p],Z,W1)U*(92,Z,N2)>

-
1]

22 exp [ik (x12+y12)/2z + ika(xg2+y 2)/22) . (2-43)

2.2.4,2 Differential Equation for T;. After substituting I = r0r1 into
€quation 2-39 and using Equation 2-43, the equation for I'; becomes

ary/3z = (i/zkl)jiirl - (i/2kz)iléfl +

(x1/2)30y/3xy + (y1/2)3T1/3yy + (x2/2)3T1/3x2 + (y2/2)3T1/3y2

-ST =0 (2-44)
where the source term is

S = [2k1ko8182A(R1-P2,t1-t2) - (k1 28y7+kp%8,7)A 1/8 . (2-45)

In order for Ty to represent a statistically stationary random
process in space, frequency, and time, T, must be a function only of the
differences 31 - 32, wy - wy, and t; - tp. It is therefore useful to
transform Equation 2-44 to sum and difference spatial and freguency
coordinates

18




X = (x)+x2)/2

Y = (y1+y2)/2

L = X1 - X2
n=y-Y2
vZ = 2%/0x% + 3%/3y* (2-46)

92 2 32/3z%2 + 3%/an?

d

$S-$d = 3%/3X3g + 32/3Yan
ke = (ky1+kp)/2
ka = ky - ki

After some manipulations, the equation for T, reduces to
2 ,2/,1-1 2 2 .
ary/az - (1/2)(kg-ky/8)=" [ky¥g + (ky/4)7g - kT Ty o+

2-}[X 9/3X + Y 3/3Y + ¢ 3/3z + n 3/3n) Iy - STy =0 . (2-47)

The boundary condition on 'y is that Ty(z=-z¢) = 1 independent
of the other spatial coordinates. Also, the source term S under most con-
ditions is a function only of -the difference coordinates. It will there-
fore be assumed that T'; is independent of X and Y. However, the source
term will be a function of X and Y if the spatial extent of the scattering
reqion is small as, for example, in a barium cloud. The assumption that
r, is independent of X and Y then requires that the disturbed region in
the ionosphere be large compared to the region from which scattered signal
enerqgy is received.
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The transport egquation may be further reduced by noting that the
1/2 term, when z is large, will be small compared to the other terms and
this term may be neglected. The differential equation for I, then becomes

ar,/3z - (ikd/z)(kg-kg/4)-1v§r1 -Sr =0 . (2-48)

2.3 DELTA LAYER APPROXIMATION.

As an RF wave propagates through a thick, irregularly structured
ionization layer, the wave first suffers random phase perturbations due to
random variations in the index of refraction. As the wave propagates
farther, diffractive effects introduce fluctuations in amplitude as well
as phase. [f the standard deviation o4 of the phase fluctuations that
are suffered by the wave is large, then the amplitude fluctuations are
characterized by a Rayleigh probability distribution when the wave emerges
from the layer. The delta layer approximation assumes that the phase and
amplitude fluctuations are imparted on the wave in an infinitesimally thin
layer. This assumption is consistent with the Markov assumption made in
deriving the differential equation for the mutual coherence function.

An analytic solution for the two-position, two-frequency mutual
coherence function has been obtained by Wittwer (1979) and Knepp (1983b)
for a thick ionization layer. The analytic form of this solution is suf-
ficiently complex, however, that the necessary Fourier transforms required

S

to compute the GPSD cannot be performed in closed form. The complex ana-
lytic form is simplified by the use of the delta layer approximation to
obtain tractable expressions for the mutual coherence function and the
GPSD., Wittwer and Knepp have evaluated the accuracy of -the delta layer
approximation in detail as it affects the delay distribution of the re-
ceived signal and have found that the maximum error is small for trans-

ionospheric satellite communication 1ink geometries as long as the param-
eters of the GPSD are properly selected. Wittwer (1979) has derived
expressions for the signal parameters of the GPSD that include the effects
of a thick scattering layer.
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Now a relationship between the electron density fluctuations and
the phase variations imposed on the wave may be calculated. The differen-
tial phase cnange of the wave along the propagation path % is

dé/de = rexAne(p,z,t) . (2-49)

Under the assumption of small angle scattering used to derive the differ-
ential equation for ', d/d2 ~ d/dz and the total phase change of the wave
is
> . >
¢ = r / Ane(p,z,t)dz = reidn> [ &(p,z,t)dz , (2-50)

integrated through the ionization layer. The autocorrelation function of
the phase ¢ is

H(p,t)6(p",t')> = (rex<ne>)2 [ dz [ dz' <E(P,z,t)E(P',2',t')>

rS

2 *a '
(rex<ne>) [ dz A(p-p',t-t"')

(rgicng>)? LgA(P-5",tt") (2-51)

where Lg is the delta layer thickness. The Markov approximétion
(Equation 2-29) has been used in evaluating the autocorrelation of €.
However, it is shown in Appendix A that Equation 2-51 is valid as long as
the scattering layer thickness is large compared to the parallel decor-
relation distance of the electron density fluctuations. Finally, the
phase variance imparted on the wave is

2 _ 2 )
% (reKne)) L6Ao . (2-52)

The quantity A, depends on the power spectrum of the electron density
fluctuations in the ionosphere. The value of A, for a three-dimensional
k=" in situ power spectrum and for the delta layer approximation is given
in Appendix B.
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In general, only part of the total phase variance results in the
Rayleigh amplitude fluctuations that are of described by the GPSD.
Wittwer (1979, 1980) calls this part the Rayleigh phase variance. The
rest of the total phase variance is associated with the mean dispersive
effects described by the exponential term of Equation 2-16. Physically,
it is the smaller sized electron density fluctuations that result in dif-
fractive effects and the larger sized fluctuations that result in disper-
sive effects. Both Wittwer and Knepp (1982) describe how the Rayleigh
phase variance may be separated from the total phase variance. In the
developments that follow, the phase variance in Equation 2-52 will be
assumed to be the Rayleigh phase variance associated with amplitude
fluctuations.

2.4 FROZEN-IN APPROXIMATION.

Under the frozen-in anproximation, the temporal variation of the
eiectron density fluctuations is agiven by

ne(‘),z,t) = ne(B-Vt,Z,O) . (2-53)

This equation is valid if the electron density fluctuations with a scale
size Lo do not appreciably change their shape within the time required
for the structures to drift a distance Lo, This is called Taylor's
frozen-in approximation. With this approximation, the function A becomes

A(P,t) = A(P-vt,0) . (2-54)

This approximation is accurate for ionospheric conditions where
the ionization has broken up into a single layer of striations aligned
with the earth's magnetic field lines. The frozen-in approximation may
not be valid before striations have formed or when there are multiple
scattering layers in the line-of-sight. Alternative forms for the
coherence functionand the generalized power spectral deasity for this
latter situation are considered in Section 2.9,
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2.5 SOLUTION OF THE TRANSPORT EQUATION. tﬂ
&
Before proceeding with the solution of the transport equation, ?Q
it is convenient to expand the source term S by making two non-restrictive 5.
‘e assumptions. First, it will be assumed that the RF frequencies of W
Ot
) interest are large compared to the plasma frequency. Second, it will be -
X assumed that kg is much smaller than kg. The solution obtained will ’%2
. ‘e b
; then be valid for a small range of frequencies around ks and for fre- qg
L
i) quencies large compared to typical peak ionospheric plasma frequencies of . :ﬁ{
k] A
a few hundred MHz. With these assumptions, the source term becomes :
~1
= (K% /7aK2 > - - (k2K4 /Kt _
S (kp/4k5)[A(pd,td) Ao] (kdkp/BkS)Ao (2-55) 3
where ;d is a two dimensional position vector in the Z-n plane, td is the o
: time difference, and k_ = @ _/c. ™
3 PP 5
3 The last term in Equation 2-55 is a function of freauency and 2 ;&_
but is independent of ¢ and n. This suggests that another useful factor- o
4 ization is Ty = T,T3 where T3 is independent of ¢ and n. After substi- gj
& tuting T'pTy for Ty in Equation 2-48 and separating variables, the result ‘é‘
o
is N
at N
n : 2 2 bsa 2 * '
(1/72)3rp/82 - (ik /2k T2) VT2 - (kp/4ks)[A(pd,td) - AO] + =
5 L}
: (1/T3)ar3/3z + (kgk"/ek“) A =0 . (2-56) Yy
- p S (o} N
4 The last two terms of this equation are spatial functions only of z and ﬁ;
! therefore must be separately equal to zero for arbitrary values of ¢ and i{--
2 n. 2
- The source term in the T3 egquation is only non-zero within the ¥
k- delta layer. Thus from the transmitter to the delta layer, I3 is unity, ™
With this boundary condition, the solution of the T3 equation is ﬁT
\':
g
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(2-57)

I b2 oL b
T3 = exp [-(kpkd/BkS)Ao(z-zt)] . 2>z

This term gives the effect of the different transit times of the different
frequencies due to the frequency dependence of the index of refraction.

Now the equation for T, may be solved using the delta layer
approximation. The equation for T, is

(1/T2)30/32 - (ik,/2k2r,)¥3r, - (k;/4k§)[A(3d,td) - Al =0 . (2-58)

Within the delta layer, the kq term is small compared to the source term
and may be ignored. This is equivalent to saying that diffractive effects
are not important within the delta layer (Lee and Jokipii 1975b).
Integrating Equation 2-58 through the delta layer gives the value of T, at
the point where the wave emerqes from the delta layer:

Tp = exp {(koLg/Ok2)[A(Rg,ty) - AT . (2-59)

The solution from this point proceeds as follows. Between the
delta layer and the receiver, the sianal propaaates in free space so the
equation for T is

ary/dz - (ikd/2k§)vgr1 =0 (2-60)

The erl term in this equation gives the effects of diffraction on the
signal as it propagates from the delta layer to the receiver. The
boundary condition is Iy = T,T3 at the point where the wave emerges from
the delta layer. This equation is easily solved by taking the Fourier
transform from spatial coordinates ¢ and n to anqular coordinates, First

it is convenient to transform variables to

u=2=./z

v =n/z



The angular variables Ku and Kv are then independent of 2. After the
change in variables, the equation for r; becomes

ary/3z - (ikd/Zk:zz)(az/auz +3%/av3) 1, =0 .. (2-61)

The Fourier transform pairs; from spatial coordinates o in the
plane normal to the line-of-sight to angular coordinates [3 , from carrier
frequency differences wy to delay t, and from time differences td to
Doppler frequencies mD; are defined in this report to be

r(R,) = SR -3)r(3)d%s . &
(R)) fi exp (-iR+8)1(5)d%3 (2-62a) :

F(t) = (2m)°! [ exp (TwyT)T (uy)dw, (2-62b) g

-0 W

Tlup) = [ exp (-iupty)r(t,)dt, (2-62¢) !

and §
. A :

r(p) = (27)-2 {i exp (iKL-S)r(KL)dZKl (2-63a) g

>

- : 8

T(ug) = [ exp (-fuyt)T(wy)dr (2-63b) §
r(ty) = (20)°1 [ exp (1m0td)f(td)dm0 . (2-63c) é

| | . §

Upon transforming from u and v to Ku and Kv, the equation for ¢, 5
is 3
¢

3y /3z + (ik /2k%22)(K2+k3)ry = 0 . (2-64) 2

d S u v l

o
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This equation is integrated from z = z, + Ly to z = 2, * 2, which gives

exp [-(iky/2k?)(k2+2)v] . (2-65)
where
Ity z - L
Y= [ %z -= r ¢ (2-66)
2¢+Lg (zt+zp)(z¢+ls)

The expression for Y may be simplified by setting Ls to zero which is
consistent with the delta layer approximation,

2.6 OUADRATIC PHASE STRUCTURE APPROXIMATION.

At this point, a formal solution of the Fourier transform of the
two-position, two-frequency, two-time mutual coherence function at the
receiver has been computed in terms of the structure function A(Sd,td)

Ag. As a practical matter, the quadratic phase structure approximation

is required to make the exponent in Equation 2-59 quadratic in the spatial
variables. This gives the resulting coherence function a tractable mathe-
matical form. However, for the small angle, strong scattering conditions
considered in this report, the correlation distance of the signal will be
much smaller than the correlaticn distance of the electron density fluc-
tuations. The coherence function will then be determined primarily by the
values of A(Sd,td) - AO at. small values of Ed and td. A Taylor series
expansion of A(Ed,td) - AO, keeping only the guadratic terms, will then
provide a reasonably accurate mutual coherance function.

Under the frozen-in approximation, the temporal variation of
A(Ed,td) is given by A(S -th,O). It is therefore necessary to consider
only the spatial form A(od). The Taylor series expansion will make the
following calculations independent of the functional form of A(Ed) as iona
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as the second derivative of A exists for 5, equal to zero. A detailed >
discussion of A(Ed) will therefore be deferred to Appendix B. However, ?}
some generic properties of A(Ed) need to be considered here in order to 45
specify the functional form of the quadratic terms in the Taylor series §§
expansion, =
e

M

The propagation coordinate systems are shown in Figure 2-2. The éﬁ

z axis is along the line-of-sight and the t axis is aligned with the geo- %ﬁ
magnetic field lines B at the elevation of the delta layer. The r and s -
axes are in a plane normal to the magnetic field. The penetration angle y é$i
is the angle between the z axis and the B axis. In the plane of the $§
receiver, the x axis direction is given by the cross product of the B f?
vector and the ; unit vector. ’;
Consider now the functional form the power spectrum ¢, of the ?{

electron density fluctuations in the r-s-t coordinate system, The power

2 .
t i
4
B

Figure 2-2. Propagation coordinate systems.
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spectrum is usually assumed to be a function of the quantity LiKﬁ + LéKg +
2,2

Lth where Lr‘ LS
three directions., The power spectrum must be rotated into the x-y-2

, and Lt are the scale sizes of the fluctuations in the

coordinate system in order to calculate A(Bd). Before performing this
rotation, the usual assumption that the electron density fluctuations are
elongated in the t direction and are symmetric about the t direction will
be made. The scale sizes are then

LY'=L5=L0

L (2-67)

]

v = o,

where q (q > 1) is the axial ratio. After the rotation, the power
spectrum will be a function of the quantity (Wittwer 1979) LiKi + L§L§ +
2,2

LZKZ + ZLyZKsz where

Ly ® b
- 2pem2ein2y /2 o
Ly Lo(cos Y+q“siny) LO/G
(2-68)
L. = L (sin®y+q2cosZy)l/?
z 0
. 2 1yeq
Lyz = Lo(q 1)sinvcosy

The parameter § (1/q < § < 1) appears throughout subsequent sections of
this report and is defined to be the ratio of the x and y scale sizes:

§ = LX/Ly = (cos?y+q2sin?y)-1/2 . (2-69)
Now, the function A(Ed) is the two dimension Fourier transform
of the power spectrum 05:
A(B ) = (2m)=2 [ exp (iK,+p )2, (K, K =0) d?% £2.70)
d . d X ‘L d E _L’ 2 -L- V& _

~.
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Setting K; = 0 in the'power spectrum in this equation results in having

. 2,2 2,2
°5 be a function of LxKx + LyKy
2 = 0 plane of the delta layer. After the Fourier transform is performed,
A will be a function of the gquantity xz/Li + yZ/L; (see Appendix B) or

equivalently of (x2+62y2)/L§.

and in having A(sd) calculated in the

The quadratic phase structure approximation now takes the form

A(py) = A [1-Rp(x2+8%y%) /L 2) . (2-71)

The coefficient A, is calculated in Appendix B for a K-* electron density
fluctuation spectrum. The coefficient Ay is given in terms of the phase

2 by Equation 2-52.

variance 0¢

2.7 MUTUAL COHERENCE FUNCTION.

The mutual coherence function T; at the plane of the receiver is
computed as outlined in Section 2,5. At this point, the frozen-in approx-
imation will be used to include explicit temporal variations. In order to
do this, the drift velocity must be specified. To be con§ervative, the
drift velocity will be assumed to be along the direction with the smallest
scale size for the electron density fluctuations (i.e. the x direction).

The bouﬁdary condition for Ty at the delta layer is again Iy =
T,Ty evaluated at z = Lg. Using Equation 2-52 to relate AO to the phase
variance and then setting the delta layer thickness Lgs to zero gives the
following for I'; and T3 at the point where the wave emerges from the delta
layer. From Equation 2-59 using the quadratic phase structure
approximztion, the diffraction term boundary condition is

Py = exp {-05Ax[(z-v,t4)% + 62n%]/L2) (2-72)
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and from Equation 2-57, the refraction term boundary condition is

Ty = exp [-oiwé/(ng)] , (2-73)

where Wy = ckS is the carrier radian frequency. Upon changing variables
in the T, equation to the dimensionless spatial coordinates v and v and
performing the Fourier transform to Kq anc Kv coordinates, the boundary

condition for Ty is
= 2,02, .2
UK oK Zgaugety) = (1L /(0(A2zi68)] x
2 2 2 .
exp [-0¢wd/(2w0)] exp [1Ku(vxtd/zt)] x

exp [-Lg(Kﬁ+K§/62)/(4o§Azz§)] ) (2-74)

The solution at the plane of the receiver is given by Equation 2-65 and
this boundary condition,

Aft:r performing the inverse Fourier transform on the solution

-~

FI(KU,KV,:L4zr,md,td) and convérting to unnormalized distance units x and
¥, the mutual coherence function may be written as

Pl(xv.Y$wd9td) = [(1+iAwd/wcoh)(1+1A62wd/wcoh)]-l/2 x

exp [o202/(20)] =

e 2,.2 : 1
exp [-(x Voty) 254/ (1M /u )]

exp [-Gzyzﬁaz/(1+1A62wd/wcoh)] (2-75)
where
A= [2/(1+6%))1/2 (2-76)
and -
v = v, (2*z ) /2, (2-77)

is the effective drift velocity of the ionosphere as seen at the receiver.
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The decorrelation distance 2, of the received electric field
is defined as

g, = (zt+zr)L0/(ztv/A2 c¢) (2-78)

and the coherence bandwidth wegp is defined as

2
Weop = MogLi(zytz )/ (2c03h0z,2) . (2-79)

coh

It will be shown below that 2, agrees with the usual definition of de-
correlation distance and it will be seen in the next section that the
coherence bandwidth is proportion to 2wfo where fo is the frequency

selective bandwidth of the signal. It is clear from the form of I in

Equation 2-75 that the coherence bandwidth could have been defined as

wCOhA' The factor A has been included here in order to simplify the

relationship between ®.oh and fo'

Equations 2-78 and 2-79 are only valid under the delta layer
approximation and do not refiect now these parameters are actually calcu-
lated. Wittwer (1979, 1980) has derived expressions for the decorrelation
distance and the coherence bandwidth that are valid for more general scat-
tering layer geometries. It is the expressions of Wittwer that are used
in signal specifications to calculate these signal parameters. This fis
also true for the decorrelation time which is formally defined under the
delta layer ond frozen-in approximations in the next section.

For satellite communications links, the distance from the iono-
sphere to the satellite is typically much laraer than the distance from
the ionosphere to the around. If the transmitter is on the satellite then
Zy » Z. and if the transmitter is on the ground then 2, €z, Because
the expression for the decorrelation distance is not reciprocal in z, and
Z., the value of 10 depends on the direction of propagation. However, the
expression for the coherence bandwidth is reciprocal in z, and 2. 50 WL
and the frequency selective bandwidth are independent of the propagation

direction.
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The decorrelation distance of the signal as it emerges from the
delta layer is approximately equal to Lo/°¢' Under strong scattering con-
ditions where g > 1, this distance will be much smaller than the elec-
tron density fluctuation scale size and the quadratic phase structure
approximation conditions are met. Conversely, under weak scattering con-
ditions where ag ~ 1 the quadratic phase approximation will give inaccu-
rate results for the mutual coherence function,

Consider now the mutual coherence function for two-positions,
one-frequency and one-time:

r(x,y,0,0) = exp [-(X/lo)z - (6y/9.°)2] . (2-80)

WA A

Ad
-

RIS SRS SOOI 0 e s 8 GG C O YT

<R R T

The distance ¢4 is then seen to be the l/e point of r,(x,0,0,0) and is
‘herefore the x direct.ion decorrelation distance. The distance 2,/6 is
the 1/e point of r,(0,y,0,0) and is therefore the y direction decorrela-
tion distance. Because § is less than or equal to unity, the y direction
decorrelation distance is always greater than or equal to 4.

2.8 GENERALIZED POWER SPECTRAL DENSITY.

The generalized power spectral density S(Kl,r,wo) of the signal
incident on the plane of the receiver is the Fourier transform or the
mutual coherence function:

SR ,t,up) = (207 ! % Jdug [ dtgMiug.ty) *

exp [-1(Rl'$-wdr+m0td)] (2-81)

where delay t is the Fourier transform of frequency difference 2n and

Donpler frequency wp is the Fourier transform of time difference t,. The

d
quantity S(R d?k drdw. is equal to the mean signal power arriving

L,t,mo) 1 D

32

o s P o R S S R N I ER e, A ey PSP . . .
e A g e T N L e NI 2 L T WA 0 e X




within the angular interval B, to R, + d*} s with delays relative to a
nominal propagaticn time in the interval t to t + dt; and with Doppler
frequencies in the interval wp to wp + de. The delay spectrum of the
GPSD 1s a consequence of the fact that different frequencies propagate
differently through the ionosphere with some frequencies arriving early
and some frequencies arriving late. The importance of this effect depends
on the ratio of the signal bandwidth to the frequency selective bandwidth,

The indicated integrals in Equation 2-81 can all be done in
closed form. If the Ky integral is done first, the distance offset
results in a term with the form exp(invetd) times a function of Kx. The
Fourier transform from ty to wy results in the delta function ZnéF(mD-
vae)' The GPSD is then the product of a Doppler term and an angular-
delay term of the form

S(Kx,Ky,t,wD) = SD(wD)S(Kx,Ky,t) . (2-82)

The angular-delay part of the GPSD is

s ! 1/2 2,-1 (K248-2k2V02/41
S(Kx,Ky,r) (1/2) 7 aw 206" exp [ (K +6 Ky)£0/4] x

exp {-(a%/2){w t-A(Ki+K§l)lg/4]2} (2-83)

coh
where the delay parameter a is defined to be

a = wo/o (2-84)

¢¥coh
When 1t is recalled that gy 1s the Rayleigh phase variance, the param-
eter o 1s equal to 1/C, where the notation C, is used by Wittwer (1980,

1982, 1986). The components of KL are related to the scattering angles
ex and ey about the x and y axis respectively by the relations

=
"

2n s1n(ex)/x

K, = 2n sin(ey)/k ) (2-85)
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the definitions for 20 and w

For the frozen-in approximation and assuming that the effective
velocity is along the x direction, the Doppler spectrum is

SD(mD) = ZnTOGF(wDTO-leo) . (2-86)

The quantity T, is the decorrelation time of the signal at the
receiver. It is formally defined here to be the time required for the
random diffraction pattern to drift one deccrrelation distance:

L =yt . (2-87)

However, as is the case for the decorrelation distance and the coherence
bandwidth, the decorrelation time is calculated using the more general
formalism of Wittwer.

The significance of the parameters a, zo and ®.oh that appear in
the angular-delay part of th GPSD will be discussed in the next
subsections.

2.8.1 Delay Spread and a.

The delay spread S(t) of the signal energy arriving at a fixed
anale, given by the second exponential term in Equation 2-83, has the
Gaussian form

S(1) = (ou, /v2m) exp [-a%ul | (1-t )?/2] (2-88)

where tp ts the additional propagation time for signals arriving at the

angles KX and Ky. To see this, the expression for tp 1s expanded using

coh giving

ty = (0%+00) (202 (2 /2 )/2c . (2-89)

The geometry of the scattering in one plane is shown in Figure 2-3. It is
clear that for small angle scattering, the anale 8¢ is related to the
receiver scattering angle by
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Transmitter

Receiver

Figure 2-3. Scattering geometry

o, = (z./z,)8. . (2-90)

v

The difference d between the line-of-sight distance and the scattered path
length, for small angle scattering, is given by

d = (22+2262)1/% 4 (2242202)1/2 L (2 42)) = (2,./2,)(2,#2,)8%2  (2-91)

for scattering only in one plane. When scattering about both the x and y
axes is taken into account, the total path difference is given by Equation
2-90 with ei replaced by ei + e;. The additional time required for the
signal to propagate along the scattered path is just d/c which is equal to
tp.

For a given value of the couherence bandwidth, larger values of a
mean that the signal energy arrives with a narrower distribution in delay
about the time tp. The delay parameter a is then a measure of the rela-
tive importance of diffractiorn or scattering and refraction with large
values of a indicating strong scattering effects and small values indi-
cating weak scattering or refractive effects (Knepp 1982). The strong
scattering Vimit then requires that the values of 2 be large,
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2.8.2 Frequency Selective Bandwidth and % oh

The frequency selective bandwidth f, is an important measure
of the effects of scintillation on the propagation of wide bandwidth
signals. This quantity is defined as

£, = 1/(2m0,) (2-92)

where o, the time delay jitter of the received signal, is

cﬁ = <td - <2, (2-93)

These delay moments can be calculated directly from the angular-delay part
of the GPSD using the definition

P0<tn> = (2m)-2 ] dzgl [ dr t

n S(KL,T) X (2-94)

It is easy to show that the mean received powar Py is equal to unity.
The first and second moments are also obtainable in closed form givina the

relationship between w and the frequency selective bandwidth:

coh

9 ooh * 2ﬂf0(1+1/a2)1/2 ) (2-95)

This expression is valid only under the quadratic phase structure approxi-
mation because Equation 2-94 has been evaluated using the GPSD calculated
with this approximation. Yeh and Liu (1977) have calculated an expression
for the time delay jitter keeping both the second order and the fourth
order terms in the expansion of A(E). This results in having more terms
in the expression for the time delay jitter. However, these additional
terms will be significant only when the quadratic approximation for A(S)
is invalid and therefore only when the expression for the GPSD is also

invalid.




The 1 + 1/a? term in the expression for the cdherence bandwidth
represents the relative contributions to the time delay jitter from
diffraction (1) and refraction (1/¢?). In the limit that a is large, the
time delay jitter is determined by diffractive effects alone which should
be the case under strong scattering conditions,

2.8.3 Angle-of-Arrival Fluctuations and 2

A key parameter in determining the severity of antenna filtering
effects is the standard deviation og of the angle-of-arrival fluctua-
tions of the electric field incident on the antenna. 1[It is clear that for
anisotropic scattering, the values of og for scattering about the x and
y axes will differ. The variance of the angle-of-arrival fluctuations
about the & direction is defined as

o2 = (21)-2 fi dzzl

o { ¢ (K g/2m)2S(K j, ) (2-96)

under the small angle scattering approximation that is required for the
GPSD to be valid. The standard deviations of the angle-of-arrival
fluctuations about the x and y axes are

0 A(V2 ") (2-97)

x

and

9 A(/2 " /8) . (2-98)

By
For the small angle scattering to be valid, o, (which is the
larger of the two) must be small relative to 1 radian. Thus the
decorrelation distance %5 must be approximately equal to or greater than
the-RE_wavelenath X, The small angle approximation has been used
hroughout the derivation of the GPSD, starting with the paraboiic wave
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equation. The }esu1ting expression for the GPSD, however, does not
exhibit sinqular behavior when the angle-of-arrival fluctuations become
large and thus the small angle approximation is quite robust.

2.8.4 An Isotropic Example,

When the penetration‘angle is zero, § equals unit and the
scattering is isotropic about the line-of-sight. The one-dimensional
generalized power spectral density is then given by the integral

S(K,t) = (2m)-} sk oK
= (al/zwcohzo/gl/“nl/z) exp [(1/2&2)-mcohr] x
F{{1+a®(k222/8-0_  ©)]/(2}/%a) ]} (2-99)
where the function F is defined as
F(z) = exp (-2%) ? exp (-t*-2t2z) dt . (2-100)

The F function has been approximated by Wittwer (1980) using a polynomial
expansion that is accurate to within one percent. This function may also
be written in terms of Ky,, and I,/, Bessel functions (Knepp 1982).

A three dimensional plot- of the isotropic one-dimension GPSD
with a equal to 4 is shown in Figure 2-4. This plot shows the mean
received power as a function of angle K and delay t. The vertical axis is
linear with arbitrary units,

It can be seen that the power arriving at large angles is also

the power arriving at long delays. The power arriving at long delays thus
has higher spatial frequency components than power arriving at short
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Figure 2-4. Generalized power spectral density.

delays. Under the frozen-in approximation where the ionosphere is modeled
as a rigid structure drifting across the line-of-sight, these higher spa-
tial frequency components correspond to higher Doppler frequency compo-
nents., The signal energy arriving at long delays ther varies more rapidly

in time than the signal energy arriving at short delays under the frozen-
in approximation. ..

s
n
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2.9 TURBULENT APPROXIMATION.

Under conditions before striations have formed in the ionosphere
or when there are muitiple scattering layers with different velocities in~
the line-of-sight, the frozen-in approximation may provide a poor model of
the temporal variations of the received signal. An alternacive to the
frozen-in approximation is the turbulent approximation where the temporal
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variations and the spatial variations of the received signal are independ-
ent. The mathematical form of this approximation is that the two-posi-
tion, two-frequency, two-time mutual coherence function is separable into
a product of a spatial-frequency term and a time term:

FY

F1(Byugaty) = T(B,ug)T(ty) . (2-101)

The coherence function P(B,wd) is given by Equation 2-75 with the time
difference tq set to zero. After performing the necessary Fourier
transforms, the GPSD for this model has the form '

S(QL,r,mD) = sD(mD)S(k'l,r) (2-102)

where for this model the Doppler spectrum SD(mD) is a function only of the
Coppler frequency. Thus SD(wD) does not couple angles and Doppler fre-
quencies or, equivalently, positions and times as is the case with the
frozen-in approximation. The angle-delay term in Equation 2-102 is then
agiven by Equation 2-83. )

UInder the frozen-in approximation, the temporal variations of
the signal at long delay are more rapid than the temporal variations of
the signal arriving at short delays. Under the turbulent approximation,
the Doppler spectrum is independent of delay so the temporal variations at
all delays have the same rate.

In order to specify the Doppler spectrum under the turbulent
approximation, the two position, two time mutual coherence function of the
electron density fluctuations is needed. Detailed descriptions of the
spatial variations of the electron density fluctuations are currently
available (Wittwer 1986). However, detailed information on the temporal
variations of the electron density fluctuations in the ionosphere is not
currently available. An f-“ Doppler spectrum will therefore be assumed
for imp]emehtation convenience in Section 5 where channel simulation

techniques are discussed.




2.10 IMPULSE RESPONSE FUNCTION AND ANTENNA EFFECTS.

The channel impulse response function of the signal incident on
the plane of the receiver and the impulse response function of the signal
at the output of an aperture antenra will be discussed in this subsection,

2.10.1 Channel Impulse Response Function,

Consider a solution U(g,zr,m,t) to the parabolic wave equation
in the plane of the receiver. This represents the random effects due to
the fluctuating ionosphere on the incident electric field at position o
and time t from a transmitted monochromatic wave with angular frequency
w, The channel impulse response function of the signal in the receiver
plane is (Knepp and Wittwer 1984)

h(p,t,t) = (1)1 [ U(B,z,,utu ,t) exp [18(u)+int] du (2-103)

-®

where w0y is the carrier anaular frequency and'g(m) is the dispersive con-
tribution to the impulse response function due to the mean ionization.
The term exp [fg(w)] is the transfer function of a smooth ionized plasma
and is equal to the exponential term in Equation 2-16. Thus 8(w) is

ry e r —2 2112
8{w) = - [ k(2')dz' = ~ (w/c) [ [l-w (2")/w?]'/% 42 . (2-104)
-2t -t P

Because the smooth plasma or dispersion effects represented by exp[{g(m)]
and the fluctuating plasma effects represented by U(S,zr,m,t) appear as
the product, it is convenient to separate these effects. The dispersive

effects will be considered in Section 2.10.2.




If the transmitted signal is a modulated waveform m(t) then the
signal complex voltage incident on the plane of the receiver is the convo-
lution of the transmitted modulation and the channel impulse response
function:

e(p,t) = [ m(t-t-tp)h(s,r,t) dr (2-105)
where tp is the nominal propagation time. If the delay spread of the
impulse response function is larger than the symbol period of m(t), then
the convolution will encompass multiple symbols with intersymbol inter-
ference as a result. It is also clear from this equation that signal
energy arriving at longer delays corresponds to symbols transmitted at
earlier times.

2.10.2 Dispersive Eifects.

When the dispersive term B(w) is expanded in a Taylor series
about the carrier radian frequency, the result is

(o) = Blug) - (w0 )8 (0) + (w-u )78 (u))/2 + ... | (2-106)

where the first three coefficients in the expansion are

Zr
B(w ) = -(w /c) | [1-32(2')/w2]1/2 dz' (2-107a)
0 0 -2t p 0
Zr R
8r(ug) = (1/e) [ [1-w (2')/6]]-1/2 dz! (2-107b)
-Zt
2 2 2
8 () = -(1/c) | (Ep/w;)[1-Ep(z')/wg]-1/2 dz' . (2-107¢)

-Zt
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These equaticns may be expanded using the assumption that the carrier fre-
quency is much larger than the plasma frequency. The first three coeffi-
cients then reduce to

E(mo) = 21R/x + ar Ny (2-108a)
) - 2 -

8 (mo) R/c + 2 reNT/(ch) (2-108b)
) - =33 2.2 -

) (mo) A reNT/(Zn c<) (2-108c)

where the free space range R and total electron content (TEC) Ny are

R = zt + 2 (2-109)
and
Z.
Np = i <ne(z')> dz' . (2-110)
-2
t

The first terms in Equations 2-108a and 2-108b are simply the free space
phase shift and propagation time which are proportional to ‘the line-of-
sight distance R. The terms proportional to Ny in Equations 2-108
represent the phase shift, gqroup delay and dispersion due to the mean
ionization,

The Doppler shifc fp of the incident signal due to range and
TEC dynamics is

fy = (21)7} 8w )/dt = - 20R/A + Ar N (2-111)

D T

Note that increasing TEC [positive Np) increases both the propagation

time and ‘he Joppler shift whereas increasing R (positive ﬁ) increases the
propagation time but decreases the Doppler shift.




2.10.3 Autenna Aperture fffects,

coenvolution of the incident voltage and the aperture weighting function.
The received voltage for an antenna located at 30 ana pointing in the Ko
direction is then given by (Knepp 1983a)

+ _ *> > > 2o, 2+, )
UA(po,m,t) = [[ u(e ,zr,m,t)Ar(oo-o ) exp (K +0 ) d%p (2-112)

The voltage at th. .t of an aperture antenna is the spatial !

where the subscript A denotes the voltage at the output of the antenna.
fhe z dependence of Up has been suppressed because it is understood that
chis voltage is at the receiver plane. It is assumed that the aperture
weighting function of the receiver Ar(s) is independent of frequency.
This is generaliy true for a range cof frequencies about the carrier fre-

guency that is larger than the signal bandwidth,

——

In order to relate the GPSD of Up to the GPSD of the incident
signal, the two-position, two-freguency, two-time mutual coherence func-
tion of !y is reauired. The mutual coherence function of the signal out
of the antenna is

+ > >
Ta(Pyrgsty) = <Uplp1,u1,t1)U,%(p2,u2,t2)> =

[ 4% [[ 4% <U(5',zr,wl,tl)U*(S",zr,wz,t2)> x

>

Ar(B1-0")A* (P2-0") exp [iKge(R'-B")] . (2-113) |

For statistically stationary processes, the eapectation of UAUA* must be |
a function only of the differences 3d = 31 - 52, wy = wy - wz, and ty © |
ti-t; and the expectation of uu* in the integrand must be a function only
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of the differen_cs o - 3", ® 4 and td. The aperture weighting function
may be written in terms of the angular beam profile using the Fourier
transform relationship

A.(B) = (2m)-? I A(R)) exp (1R} 5) o) (2-114)

Upon substituting this equation for both aperture weighting functions in
the expression for the mutual coherence function, changing variables from
5 top =P - 3", and changing the order of integration, Equation 2-113
becomes

rA(sd,wd’td) s (2“)-“ IJ, dZB r(;,zr’md,td) exp (1?003) x

[ a% A *(K) exp [iK+(8,-8)] [f a®R" A _(K") exp [-1K'eE,]

L

[[ d%om exp [io"«(K'-K)] . (2-115)

The last integral in this expression is equal to (Zﬂ)zéF(K'-f) and the K'
integral may be performed directly. Another change in the order of
integration results in

d’wd’td) = (2ﬂ)'2 // d2k Gr(ﬁ) exp (ﬂZ.sd) x

Ty (
[f 8% 1(B,z,,u5,t,) exp [-18:(RK )] . (2-116)
The quantity
6.(K) = A *(K)A (K) (2-117)

is the power beam profile of the receiving antenna.
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The mutual coherence function r(s,zr,wd,td) of the signal inci-
dent on the plane of the antenna that appears in the second integral of
Equation 2-116 is the product of the free space term Ty, (Equation 2-43)
and the stochastic term T'y. The free space term may be pulled out of the
second integral if it is assumed not to vary over the face of the antenna.
This is equivalent to assuming that any deviations from a plane wave in
the incident signal are due to scattering effects in the ionosphere and
are not due to geometrical effects. After the free space term is pulled
out of the intearal, Ty may be assumed to represent only the stochastic
fluctuations of the received signal.

Now the GPSD of the signal out of the antenna may be computed by
taking the appropriate Fourier transforms (see Equation 2-81) from Ed; Wy
and td to Kl’ 1, and wpy respectively. After performing the Wy to t trans-
form, the angular-delay part of the GPSD at the antenna output will be

(K) x

S4(K),1) = (20)-2 I 4% 6,

O)-S] f{ d23d exp [1(?-@1)-3d] . (2-118)

+ >

/] d% Pl(s.zr,r) exp [-i(K-K

The last integral in this equation s just (2n)26p(i-ﬁl) and the middle
intedral gives the angular-delay GPSD of the incident voltaae S(E-Qo,r).
The GPSD of the signal out of the antenna is then

Sp(Kpo7) = 6. (R)IS(K Lur) (2-119)

The effect of an antenna, as should be expected, is to modify with the
beam profile the mean incident power as a function of angle. This result
will be used throughout the rest of this report.




SECTION 3
ANTENNA FILTERING EFFECTS

An antenna beam profile acts as an angular filter of the re-
ceived signal energy. Because of this, the mean power, decorrelation dis-
tances, and frequency selective bandwidth of the signal at the output of
an antenna are different than those of the incident signal., The reduction
in mean power is a direct consequence of the attenuation, due to the beam
profile, of energy arriving at large angles-of-arrival relative to the
peak of the beam. The energy arriving at large angles is also the energy
arriving at long delays. The frequency selective bandwidth is an inverse
measure of the delay spread of the signal energy. Hence the frequency
selective bandwidth of the signal out of an antenna is larger than the
frequency selective bandwidth of the signal incident on the antenna. The
decorrelation distance is an inverse measure of the angle-of-arrival fluc-
tuations of the signal energy. The effect of an antenna is to reduce the
angular spread of the signal and thus to increase the decorrelation dis-
tances of the signal out of the antenna relative to the decorrelation
distances of the incident signal.

The effects of aperture antennas with arbitrary beamwidths will
be considered in this section. The antenna beam profiles for uniformiy
weighted circular or rectangular apertures and for Gaussian apertures are
described in Section 3.1. The filtering equations for mean power, spatial
and temporal decorrelation properties, and frequency selective bandwidth
of the signal out of a Gaussian antenna with arbitrary beamwidths are
derived in Section 3.2. Then a ccmparison -of the antenna filtering
effects of a Gaussian antenna and a uniformly weighted circular antenna is

made in Section 3.3 to assess the accuracy of the Gaussian approximaticn.

47




3.1 ANTENNA DESCRIPTIONS.

The coordinate systems for the propagation and the antenna are
shown in Figure 3-1. The z axis is along the line-of-sight between the
transmitter and the receiver and the direction with the minimum decorrela-
tion distance is along the x axis. The antenna u-v coordinate system, in
this case for a rectangular antenna, is in the x-y plane. The rotation
angle x is the angle between the x axis and the u axis,

In general, the face of the antenna will not lie in the x-y
plane. However, for satellite communication links it is usual for the
satellite position to be known accurately through ephermeris data and for
an antenna to be dedicated to a single link. Thus the rotation angles of
the antenna out of the x-y plane will be small in most cases and the
cosine squared effects of these angles may be ignored. If these rotation

2
4

(=g )

x = tx 2/siny
Figure 3-1. Propagation and antenna coordinate systems.
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angles are not small, then in the developments that follow the antenna .
size is the projection in the x-y plane and the antenna heamwidths must
include the effects of beam broadening as the beam is pointed away from }

boresight,
3.1.1 Gaussian Beam Profiles.

The antenna beam profile is assumed to be separable in the u-v
coordinate system. The Gaussiar antenna beam profile is then

= _a2r2_q2¢2 . ;

G(Ku’Kv) exp ( “uKu uva) . (3-1) é

}l

: The peak gain G(0,0) has been set to unity because this value is usually §

included in the calculation of the mean received power. For either the u %

_ or the v direction, the antenna beam profile can also be written as \

s ]

} 6(6) = exp [-(1n2)(28/8 )?] (3-2) ;

H ¢

H [

I where 84 is the 3 dB beamwidth (i.e. full width at half maximum). ¢
Equating these two profiles gives

' 2 _ 20,202 5

E ag = (1n2)A%/(n%8 ) (3-3) ;

i where © . is the 3 dB beamwidth in the £ = u or the £ = v direction. -

. The beam profile is required in the x-y coordinate system of the ;

| propagation. Using the transformation 3

{

i Ku = Kxcosx + Kysinx -

: = - K sinx + (3-4) :

: Kv z - xs nx Kycosx ny

; 4

gives .:

¥ s amwcw-w u
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. I JUUR IR JUSE JR
G(Kx,Ky) = exp | (alcos®x+arsin X)Kx] x

2 2y
exp [-Z(GU-aV)s1nxcosxKxKy] x
exp [-(aisin2x+a5coszx)K§] . (3-5)

The coefficients s, and @, will be related to the sizes of uniformly
weighted apertures in the next subsections. If e, and a, are equal, then
the Gaussian beam profile is independent of the rotation angle and is
referred to as isotropic in subsequent sections.

3.1.2 Uniformly Weighted Circular Apertures.

For a uniformly weighted circular aperture, the aperture
weighting function without pointing errors is

1/a if |S| <v/2,
?) = (3-6)
0 otherwise

Ax(

where D is the diameter of the circular aperture and where x = r for a
receiving antenna and x = t for a transmitting antenna. The value of a is
chosen so that the peak antenna gain G(0) is unity. The voltage antenna
gain nattern Ax(ﬁ) is related to the aperture distribution function by the
Fourier transform

X

AX(E) = [[ exp (-iK+P)A(P)d%0 . (3-7)

The coordinate system for this transformation is shown in Figure 3-2. The
antenna is pointed along the line-of-sight in the z direction and 5 s

chosen to be along the x axis. The beam profile for a circular antenna




» o

P

Figure 3-2. Circular antenna coordinate system,

- will then be a function only of the elevation angle 8. In this coordinate
system, the dot product K.p is

Rep = kr sine sing (3-8)

where k = |Rl = 2n/x and r = l;'. The Fourier transform then becomes

TR A TN .6 A A G L PN S M W T 6 . SRS B E. S

0/2 n
Ax(e) = a-2 [ dr r [ db exp(-ikr sine sing) . (3-9)
0 -n

Performing the indicated integrals results in the well known form for the

BE®

=23

power beam profile

S * 40,2[=(D/\)sine) ’
G_(8) = A_(08)A_"(8) = 221 3-10 ol
(8) = AL (0) = TS (3-10) 2
]
=
&
5

S R




where J; is the Bessel function and where G(0) = 1 when the value of a is
chosen to be the area of the aperture nD2/4. The factor of 4 in the
expression for Gy(8) is required because the limit of J,2(£)/€2 as €
approaches zero is 1/2. The 3 dB full width at half maximum beamwidth
[i.e. 6(8o/2) = 1/2] is given by solving the equation

40,2(€)/8% = 1/2 ~ (3-11)
with the result & = 1.616340, Assuming that the beamwidth is small so
sin(60/2) - 90/2, the beamwidth in terms of the diameter D is

8, = 1.02899 (A/D) radians . (3-12)

If this beam profile is approximated by a Gaussian profile with the same 3
dB beamwidth, then the a coefficients that appear in Equation 3-1 are

aﬁ = ol = (1n2)0?/(1.028997)% . (3-13)
3.1.3 Uniformly Weighted Rectangular Apertures.

For uniformly weighted rectangular apertures, the aperture
weighting function without pointing errors is
; 1/a if ‘ql < D,/2 and |v| <D,/2
Ax(u,v) = (3-14)
IO otherwise

where Du and Dv are the lengths of the aperture in the u and v directions
respectively, In this case, the Fourier transform indicated in Equation
3-7 can be done directly with the result

6,(6,,8) =6 (8.)6, (0 ) (3-15)
where GX(GE) for £ = u cr € = v has the familiar sin?(x)/x? form
sinz[n(og/k)sines]
Gx(e_) = . (3-16)
c [7(D./2)sine, ]2 ,
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The normalization a of the weighting function is just the area DuDv of the
rectangular antenna, The 3 dB beamwidth is given by solving the equation
sinZ(g)/e? = 1/2 (3-17)

with the result £ = 1,391557. The £ direction beamwidth in terms of the
antenna size DE is then

= g i -
eos 0.885893 (A/DE) radians (3~18)

assuming that sin(e°€/2) - 005/2. [f this beam profile is approximated
by a Gaussian profile with the same 3 dB beamwidth, the a coefficients

St

that appear in Equation 3-1 are

-
-

al = (1n2)02/(0.885893n)% . (3-19) §
l.‘

w.’

3.2 FILTERING EQUATIONS. i
2

=

The filtering equations relate the statistics of the signal at
the outputs of one or more antennas to the statistics of the signal inci-
dent on the antennas. The statistics that are considered in this section
are the mean power, frequency selective bandwidth, decorrelation dis-
tances, and decorrelation times oi the signal out of an antenna and the
cross correlation of the signals out of two separate antennas. A Gaussian
beam profile is used because this approximation leads to closed form
expressinns for the filtering equations. The accuracy of this approxima-
tion is investigated in Section 3.3.

The power impulse response function Gp{t) of the signal out of
an antenna i3 also calculated in this section in the limit that the param-
eter a is equal to infinity. The quantity Ga(t)dr is equal to the mean
received power in the delay interval ¢ to v + dt. This function will be
used in Section 5 which describes channel simulation techniques.
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The severity of the filterinag effects is determined by the rela-
tive size of the standard deviation of the anqgle-of-arrival fluctuations
9q and the antenna beamwidths. When g is small compared to the antenna
beamwidths, the signal arrives essentially at the peak of the beam pro-
file, if the pointing error is small, and the filtering effects are small.
However, if og is large compared to the beamwidths, much of the signal
energy arrives at angles outside of the main lobe of the antenna beam pro-
file and the filtering effects are large. Equivalently, large values of
the ratio 00/00 correspond to situations where the decorrelation distance
of the incident signal is small compared to the antenna size and the inci-
dent electric field as seen by the aperture is no longer a plane wave. In
this situation, the induced voltages across the face of the aperture do
not add coherently when summed together by the antenna with a loss in
signal power as a result.

3.2.1 Orthogonalized GPSD.

The delay moments of the signal out of an antenna pointing at
the transmitter are given by

-4 a

PA<Tn> = (21.’)'3 {i dzk.‘l Gr‘(k’_l_) -c{ dr Tn -c{ de S(I‘(:L’T,ND) (3-20)

where Py is the mean power of the signal out of the antenna and is equal
to the n = 0 delay moment, The Doppler integral is just

S(Rlor) = -c{ S(QJ_’T’mD)de (3'21)

where S(El,t) is the angular-delay part of the GPSD of the incident signal
given by Equation 2-83.
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When Equations 2-83, 2-119, and 3-5 are combined, the resulting
GPSD of the signal out of the antenna in the x-y coordinate system is

- 1/2 2,.1 2 2,42y ,2 2
SA(KX,Ky,t) = (v/2)Y/ w2877 exp {-(a /2)[mc0hr-A(Kx+Ky)20/4] } o=
2,2,2 (22,2 2 2 2
exp {-Axleold] exp [-ayxyzolqc ] exp [-AxnyKy£0/46] (3-22)

where the & coefficients are

2 2 2,702 2cin2, /02
A€ = + 4a Le + L
x 1 408 x/ o 4uv51n x/ o
A% = 1 + 46%25in2x/22 + 462a2c0s2y /08
v 1 +4 S in x/ o 4 L CO0S x/ o
2 2 2\ 2
a = §6(a“-a L . -
Xy 86( y v)smxcosx/ 5 (3-23)

The cross term KxKy in the last exponent of Equation 3-22 signi-
ficantly complicates the evaluation of the angular integrals. However,
this term may be eliminated by performing the integration in a rotated p-q
coordinate system where the GPSD is orthogonal (i.e. contains only Ki and
Ki terms). The rotation is defined by

KX - Kpcose + quine

S - .“e + 9

= 2 2 . 2 2
where dequ = dedK and K¢ + Kq Kx + Ky. The angle 8, chosen so that

y P
the coefficient of KpKO is zero, is
. -1 2 2,2 ,2
8 = (1/2)tan [ZGAxy/(G Ax-Ay)] . (3-25)

In the rotated coordinate system, the GPSD at the antenna output takes the
form
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SA(KpsKgsT) = (1/2)1/% awcon23s=" exp {-(a?/2) [weont-A(KF+KE) 23/4]%}

-a2k2g2 -8%k%32 /452 . -
exp | Ko o/4] exp | aq /4 ] (3-26)

The A coefficients are now

242
p

2 27482 2_p2/52)2 b o/g211/2

&+ Ay/é + [(4 Ay/s )2 + 4Axy/6 ]
202 = 8282 + a2 . [(6282.42)2 4+ g52a% |V/2 3-27
2= ofal + ol - [(6%40-07) ') (3-27)
After the rotation, the delay moments are given by

n, . 22 ’ n
P<T’> = (2r) Jde {dxq [ dt SA(Kp,Kq,'c) . (3-28)

- - -

3.2.2 Scattering Loss.

The mean power of the sianal out of the antenna is calculated
from Equation 3-28 with n = 0 anc is

Pa l/ApAq = l/LS (3-29)

where Lg is the scattering loss. After some manipulations, the square
of the scattering loss becomes

2 . 2,2/42 2/02y¢in2 2,2 2,2 /42 2 -
Ls (1+48 au/lo)(l+4avllo,s1n X + (1+4au/20)(1+46 av/lo)cos x . (3-30)

The terms in parenthesis occur frequently in the filtering equations.
Thus for notational convenience, define




6, =1+ 4a2/22 =1+ (81n2) (o, /0, )"
Gy = 1% 4aza§/zz =1+ (81n2)(oey/eou)2
PERE 4a3/£§ =1+ (81n2)(oex/eov)2
Gy 1% 46%a2/32 = 1 + (81n2)(oey/90v)2 (3-31)

where cquations 2-97 and 2-98 have been used to write 20 and 20/5 in terms
of the variance of the angle-of-arrival fluctuations Tox and oey and where
Equation 3-3 has been used to write a, and a, in terms of the 3 dB beam-
widths 8e, and Oyy" With these definitions, the scattering loss takes the
simpler form
- in2 4 2.11/2 _1
Le [Guvaxs1n X Guvaycos x) . (3-32)
The scattering loss is a function of the ratios of the widths of

the angie-of-arrival fluctuations o, and the antenna beamwidths 8, with

0
the scattering loss approaching unity for %y « eo. It can be seen that
the dependence un the rotation angle disappears if the scattering is

isotropic {i.e. 6 = 1 «nd Tgy = O or if the antenna is isotropic (i.e.

X ey)

eou i eov)'

Now consider the case of an isotropic antenna where Gux = va
and Gu = Gvy. when the scattering is also isotropic (penetration angle
= 0°), Gux = Guy and the scattering loss is LS = Gux' However when the
penetration angle is 90°, the y direction decorrelation distance will be g
(g=15) times larger than the x direction decorrelation distance., Then
under most circumstances, Guy = 1 and the scattering loss is L. = /EE;.

The scattering loss is therefore a sensitive function of the penetration

angle,
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3.2.3 Frequency Selective Bandwidth.

The frequency selective bandwidth has been defined in terms of i
the time delay jitter of the signal in Section 2.8.2. The required delay
moments are

- e2,82442 )
W on<T> (A/z)[Ap +68 Aq ] (3-33)

and

2 2, . <2 2 b 2.2 2,2 2.:4 4
wonCT> = [amf(30%/a0 ) + (MS6%/28 800 + (30%6%/480)] . (3-34)

The time delay jitter is then given by

0? = w-gh[a-2+(A2/z)(AB“+c"Aa“)] . (3-35)

T c

The a=% term in the expression for oi repres: ts the effects of

refraction on the time delay jitter. In the limit that diffraction
effects dominate the signal fluctuations, the time delay spread of the
signal is determined by the spread of propagation times as a function of
the angle-of-arrival of the signal with the largest delays corresponding
to the largest angles-of-arrival. The effect of an antenna then is to
preferentially attenuate the signal energy at large angles and thereby to
reduce the delay spread of the signal and to increase the frequency seiec-
tive bandwidth. In tha limit of a large angle-of-arrival variance, or
equivalently of a small decorrelation distance, only energy arriving near
zero angle is received at the output of the antenna and the time delay
Jitter of the output signal approaches zero. The value of a must be set
large enough that the time delay j or of the signal out of the antenna
is not limited by a under the mos. .everely disturbed propagation condi-
tions. The expressions below for the frequency selective bandwidth of the
signal out of the antenna are therefore calculated with a set to infinity.
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The ratio of the frequency selective bandwidth of the signal out
of the antenna to that of the incident signal is just

fa/f, = o (without antenna)/c_(with antenna) .  (3-36)

The numerator of this expression may be obtained from Equation 3-35 with

Ap and Aq set to unity. The resulting equation for the ratio is

f/fy [(1+s“)/(1/A;+a“/A;)]l/2 . (3-37)

After some manipulations, this expression may be rewritten as

(1*6“)1/2 Lg
fA/f0 = . (3-38)
[(5“G§X+Gsy)coszx + (G§y+6“63x)51n2x]1/2

3.2.4 Two-Position Mutual Coherence Function.

It will be convenient in furtner developments to have the two-
position mutual coherence function of the signal out of the antenna calcu-
lated in the x-y coordinate system. The coherence function is defined as

ralx,y) = (2n)-2 "i K -L aK -i dr exp(1Kxx+1Kyy)SA(Kx,Ky,r) (3-39)

where Equation 3-22 is used for the GPSD. In this case, the integral may
be done in closed form with the result

Talx,y) = Pyoexp {~[(Guysin2x+Gvycoszx)/L§]xz/zé} x
exp {-[(6,cos?x+G  sin?x)/L2]6%y%/42}

exp {'[Z(Gux'evx)

sinxcosx/Lg]szxy/lg} ) (3-40)

{l
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3.2.5 Decorrelation Distances and Time.

The x direction decorrelation distance of the signal out of the
antenna is given by the l/e point of I'A(x,O)/PA and the y direction de-
correlation distance is given by the 1l/e point of PA(O,y)/PA. These
quantities are

. 02 2,1-1/2 -
zAx/zo LS[Guys1n x+Gvycos X ) (3-41)
and

Lyt * 6-1 {6, sin?x+6, cos?x]-Y/2 (3-42)

Recall that under the frozen-in approximation the drift direc-
tion is chosen to he along the x axis and the decorrelation time of the
signal is related to the decorrelation distance by the effective velocity
(Equation 2-87). The decorrelation time T of the signal out of the
antenna will then be given in terms of the decorrelation time ty of the
incident signal by

rA/ro s le/zo . (Frozen-in Approximation) (3-43)

The filtering of the decorrelation time is a reflection of the fact that
signal energy arriving at large angles varies more rapidly than energy
arriving at small angles. However, under the turbulent approximation, the
decorrelation time of the signal is independent of its angle-of-arrival
(see Equation z-100). For this approximation, there is no filtering of
the decorrelation time by the antenna and

TA/TO =1 . (Turbulent Approximation) (3-44)
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3.2.6 Power Impulse Response Function.

The power impulse response function gives the mean power
received in the delay interval T to v + dt from a transmitted impulse. At
the output of an antenna, this function is

o

- . -2 2* > 4 T -
GA(r) = (27) {i d Kl GF(KL)S(KL, ) . (3-45)

This integral cannot be done in closed form for general anisotropic
scattering and antennas and for arbitrary values of the parameter a.
However, using the fact that

Limit a« exp(-a®x?) = /n S.(x) (3-46)
a + ©

allows an analytic result to be obtained. In this limit, the GPSD of the
electric field incident on the plane of the receiver becomes

; - 7y 25-1 2052021 42 /4%
S(Kx,Ky,T) = (n/V2) dCOhZOG exp[ \KX+6 Ky)zo/QJ x
2,024 ,2 Y
GF{[wcoht-A(Kx+Ky)lo/4]//2 } . (3-47)

This geometric optics limit then results in a delta function relationship
between angle and delay and requires that t be greater than or equal to
zero in order for the GPSD to be non-zero.

The power impulse response function for general anisotropic
scattering and antennas now becomes

(3-48)

‘ (wcoh/ah) exD('glmcohT) IO(szcohT), T _{. 0
GA(T) = I

”~
o

0 s T
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where I, is the modified Bessell function of order 0 and where

9 [(SZGU;GW)COSZX + (6ZGVX+Guy)sin2x]/(262A)

_§2 2.in2 _82 2,.,.2,11/2 2 -
92 [(Guy 626,,) *sin’x + (G, -6%6, ) 2cos x]1/27(28%0) . (3-49)

It is easy, if not somewhat tedious to show that
= {3
/ Gy(T)dT = P, (3-50)
0
which is equal to the mean received power at the output of the antenna,

In the limit that both the scattering and the antenna are iso-
tropic, the expression for the power impulse response function reduces to

®oh exp(-Gwcohr) , 120
Ga(1) = (3-51)
0 , 1t<0
where, in terms of the standsrd deviation of the angle-of-arrival

fluctuations og and the 3 dB beamwidth 6,

G = 1.0 + (81n2)(0y/0,.)% . (3-52)

Under these conditions, the quantity G is equal to the scattering loss.

The cumulative delay distribution C(t) of signal energy may be
defined as

T
C(r) = [ [64(t)/Pylat . (3-53)
0
This function gives the fraction of received signal energy arriving with

delay less than or equal to t. For isotropic scattering and for an iso-
tropic antenna, the cumulative delay distribution is

C{t) = 1.0 - exp(-Gwroh

T) . (3-54)




Without an antenna, the value of C(t) is equal to 0.8 for Woont = 1.61.
With an antenna, as the value of G or the scattering loss increases, the

80 percent point on the distribution occurs for smaller values of w__ T.

coh

3.3 COMPARISON OF UNIFORMLY WEIGHTED CIRCULAR AND
GAUSSIAN ANTENNA FILTERING EFFECTS.

The filtering equations presented in the previous sections are
for antennas with a Gaussian beam profiles which do not have sidelobes.
It is of interest to evaluate the filtering equations for implementable
antenna beam profiles in order to assess the effects of sidelobes on the
statistics of the signal out of an antenna and to assess the accuracy of
the Gaussian beam profile filtering equations.

To facilitate this calculation, uniformly weighted circular
antennas and isotropic scattering will be assumed. With these assump-
tions, the moments of delay defined in Equation 3-28, the equation for the
spatial coherence function (Equation 3-39) and the cumulative distribution
of the received signal eneray (Equation 3-53) can all be Qritten in terms
of a set of single integrals which can be evaluated numerically. From
these integrals, the scattering loss and the ratios fA/fO and zA/zo
can be calculated. These quantities are a function only of the ratio
D/%o where D is the diameter of the circular antenna.

Under isotropic scattering conditions and for the isotropic
antennas considered here, the filtering equations for Gaussian antennas

reduce to
Ly =G
zA/zo = VG (3-55)
fA/fo = G
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where the function G is defined in Equation 3-52 in terms of the standard
deviation of the angle-of-arrival fluctuations and the 3 dB antenna beam-
width, For uniformly weighted circular or square apertures,

1.0 + 0.265(0/20)2 (Circular Antenna)

G = ) (3-56)
1.0 + 0.358(0/20) . (Square Antenna)

Figures 3-3, 3-4, and 35 show the scattering loss, decorrelation
distance, and frequency selective bandwidth respectively at the outputs of
Gaussian (solid lines) and uniformly weighted (dots) circular antennas.
Figure 3-6 shows the value of W,
bution is equal to 0.8.

oh? for which the cumulative delay distri-

As can be seen from the figures, there is good agreement in the
scattering losses and the decorrelation distances between the Gaussian
approximation and the uniformly weighted aperture antennas over the range
of D/%y from 0.1 to 100 shown in the figures. The scatterina loss is
primarily determined by the fraction cf signal energy that is scattered
out of the main beam of the antenna (Dana 1981) and is insensitive to the
sidelobe structure for antennas with sidelobes that are less than or equal
to those of uniformly weighted apertures. Under conditions where D » zo,
an antenna must only be displaced approximately a distance D for the
signal out of the antenna to decorrelate. Thus under these conditions,
the decorrelation distance depends primarily on the aperture size and is
insensitive to the sidelobe structure.

The frequency selective bandwidth of the signals out of uniform-
ly weighted circular antennas agree with the Gaussian approximation values
only for D/%y less than 3. For values of this ratio greater than 3,
there is less filtering of the frequency selective bandwidth with the
uniformly weighted aperture with sidelobes than there is with the Gaussian
antenna without sidelobes. This can be understood by considering Equation
3-28 for Lhe deiay muments of the received sianal. The GPSD, SA(KX,K,j,,T),
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Figure 3-3. Scattering loss for Gaussian and uniformly weighted
circular antennas.
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in this equation couples delay and angle by requiring that the signal
arriving at long delays also arrive at large angles. The moments of delay
<™ then become more sensitive to the details of SA at large anqgles, and
therefore to the sidelobe structure of the antenna, as n increases. As
D/%y increases, more of the signal energy is scattered out of the main
beam and into the sidelobes of the antenna. Although this energy contri-
butes little to the total received power, it does increase the values of
the delay moments of the output signal relative to those of the signal out
of an antenna without sidelobes and thereby decreases the frequency selec-
tive bandwidth.

The frequency selective bandwidth is intended to reflect how the
bulk of the signal energy arrives in delay. To see how the uniformly
weiahted circular antenna affects the delay distribution of the received
signal energy, the 80 percent point of the cumulative delay distribution
coh cohT) = 0.8) is plotted in Fiaqure 3-
6 for both Gaussian and uniformly weighted antennas. Over the entire

(i.e. the value of w__ T for which C{w
range of D/i, values from 0.1 to 100, there is close aareement hetween

the Gaussian antenna values and the uniformly weighted antenna values
indicating that at least 80 percent of the signal energy is received with
a similar distribution in delay. €Even for the largest value of D/%,,

more than 80 percent of the received signal energy is received in the main
lobe. Thus the agreement in the 80 percent values is a reflection of the
fact that a Gaussian function provides a good approximation to 4J12(E)/52
within its main lobe. The large difference in the filtered values of the
frequency selective bandwidth ratio seen in Figure 3-5 is then attributed
to large differences in the delay distribution of no more than 20 percent
of the received signal energy. The Gaussian values of fA/f0 will there-
fore provide an accurate description of the delay distribution of the bulk
of the received signal energy and should be used for all antennas provided
a reasonable fit can be made to the main lobe usinag the Gaussian approxi-

mation.
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SECTION 4
TRANSPONDER COMMUNICATION LINKS

The filtering equations for a transponder communication link
with four antennas and two uncorrelated propagation paths will be'pre-
sented in this section. The mean power, decorrelation distances, decor-
relation time, and frequency selective bandwidth of the received signal
will be calculated. In order to simplify the calculations, it will be
assumed that all antennas are isotropic and are pointed without error,
that the transponder is ideal (i.e. the transmitted signal is identical to
the received signal), and that both propagation paths suffer strong scat-
tering effects. With this latter assumption, the mutual coherence func-
tion derived in Section 2 applies separately to each path.

The bistatic transponder propagation geometry is .shown in
Figure 4-1. Although they are not indicated in the figure, it is assumed
that both the uplink from the sender to the transponder and the downlink
from the transponder to the receiver have transmitting and receiving
antennas.

The mutual coherence function of the signal out of the receivers
antenna wil' be used to calculate the filtering equations. With the
assumption that the scattering effects on the two propagation paths are
uncorrelated, the mutual coherence function can be written down directly
as the product of the coherence functions of the two paths. However, some
insight can be gained by constructing the received voitage and then by
calculating its mutual coherence function so this procedure will be used.
The frozen-in approximation will be used to model the temporal fluctua-
tions and to calculate the decorrelation time of the received signal.
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Transponder

Receiver

Figure 4-1. Bistatic transponder link geometry.
4.1 MUTUAL COHERENCE FUNCTION.

Consider a monochromatic wave Uu(E,w,t) with RF angular fre-

quency w that has propagated along the uplink path from the sender and
that is incident on the plane of the transponder at time t and at position
£. Tha2 effects of the sender's transmitting antenna are implicitly con-
tained in U,. The voltage at the output of the transponder receiving
antenna, without pointing errors, can be written as

®

e, (Eaut) = [ A (B-E0 (B 0,t)d%E (4-1)
-

where Ap, is the aperture weighting function of the receiving antennna

on the uplink. If a monochromatic wave is transmitted by the transponder,

then the incident voltage on the plane of the receiver at position z after

propagating along the downlink path from the transponder to the receiver
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will be Ud(E,m,t). Again, the effects of the transponders transmitting
antenna are implicitly included in Ud' [f, however, the voltage eu(E,m,t)
is transmitted, then the incident voltage at the receiver will be
Ud(f,m,t)eu(f,w,t-tp) where tp is the nominal propagation time from the
transponder to the receiver. The voltage at the output of the receiving
antenna is

+» - > >, *, 4 22, .
eg(Zou,t) = LA G(2-2)U (5" a,t)e (£0,t-t ) d%C (4-2)
where Ard is the aperture weighting function of the receiving antenna on
the downlink.

The two-positior, two-frequency, two-time mutual coherence func-
tion of the received signal is then given by calculating the expectation

rb(p’md’td) = <ed(21 ;mlytl)ed*(EZym29t2)> (4'3)

which, for statistically stationary processes, must be a function only of
the difference » = El - Ez, wq = wy - wy, and tq = t; - t;, The subscript
b denotes the coherence function of the bistatic signal that has propa-

gated from the sender up to the transponder and then down to the receiver.

The transponder acts as a point source for the receiver just as
the sender is a point source of the signal incident at the transponder,
Then because the coherence function for either one-way path is independent
of the point of origin, the coherence function of the bistatic signal
depends only on the distances z, (i=1,8) and on o and is independent of
the positions of the sender or the transponder as long as the zj dis-
tances are held constant.

At this point, it is convenient to include the frozen-in approx-

imation explicitly in the formulation by writing the voltages Uu and Ud as

70

3



U (E,w,t) = UU(E-JUt,d,O) (4-8a)
and
Uy(Zyw,t) = U4 (E-V t,0,0) (4-3b)

where 3u and ;d are ihe effective drift velocities of the random diffrac-
tion patterns as seen respectively at the transponder on the uplink and at
the receiver on the downlink.

by combining Equotions 4-1 through 4-4, the cohcrence function
can be written as

-

- >
Tb(o,wd,td) = ld 5 A"U E ,1) ,rJ’ d E Av'- (5'62) x

iy & -Vt -tp), w0 UGLE, -7 (1, tp) 1w, 00>

[ﬂ: 2’. ,+ 'b‘\ (r 2’. - > 0'
Il d%) Aegleg-ey) )7 4%, Ard(&,-%,) *
+, 0+ c
Wg(E] gt e 00U (55-vdt,,u,.0)> (4-5)

The two terms in the brackets < > 3are recognized as the func-
tiors of U and i ..

u )]

Consider for the moment the received si.nal wi® ectional

antennas at the sender, transponder, and r- ceiver. The recz.ved signal
will then be just the product UuUd and bec .se tre propagation effects on

the twc paths are assumed to be uncorrei-ted, rb = rufd. As was done 1in

Section 2, the functions Fu and Fd can be written as the product of a Tree

space term Ty and a scirtiliation term ). If the bic*, € ee space
term iy set equal to ?qudo, the bistatic scin' .lati~r . will be

Thy * rul'dl' 1 what follows, only the contrip.” v .. lhe rece ved
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voitage due to scintillation will be considered and an expression for rbl
will be derived in terms of the uplink and downlink GPSDs and the four
antennas.

Equation 4-5 can be split into an uplink factor PAU times a

downlink factor T,, where the downlink factor is

Ad

Tad(B0drta) = [f d%83 Ang(E,-2) [f %2y AFg(E,-8)) x

rg1l(21-21)-Vatg,wg.0] . (4-6)
The subscripts Ad and Au are used to denote the coherence functions at the
outputs of the receiving antennas on the uplink and downlink. It is
understood that FAd and rAu represent the coherence functions of the scin-
tillation part of the signal. This equation can be further reduced by
writing the aperture weiahting function in terms of its Fourier transform
(see Equation 2-114). After chanaing the order of integrition, rAd

becomes
Fag(P,ug,tq) = (21)-* ff 4%, Apg(K1) H 4%y Arg(Kp)

>

[] a2 exp[ ik -(81-8) ] [ a8 exp{-iKpe (E2-23) ] x
1 1)1, 2

~d
~—

and after o change of variabies from Z; tc & = 8y - %y - ;dtd’

4




rAd(;""d’td) = (2m)-" I/ dzil Ar‘d(il) exp[ilzl'(zl-;dtd)] x
® > > > > ® \ .
{i d%, Afg(K,) exp (-iK,*T,) {i dzfz exp[:fz'(ﬁz-ﬁl)] x

/f d%Z exp (-iEl'z) I‘dl(z,wd,O) . (4-8)

The last integral, which will be denoted gAd(El’“d)' is the Fourier trans-
form of the angular-delay part of the GPSD for the downlink signal. The
subscript A is attached because gAd includes the effects of the trans-
ponder's transmitting antenna. The integral over Z' results in the delta
function (Zn)ZGF(EZ-El). With these substituLions,zthe coherence tfunction
for the downlink is

-~

> _ _2 it 22 > +» > . +* >
Pag(Prugsty) = (2m) {i d*Ky G 4(Kq)Spq(Kyswy) exp [n<d (p-«dtd)] (4-9)

where Grd is the beam profile of the receiving antenna on the downlink.

In a similar fashion, the coherence function TIp,; can be

derived. However, it can also be written down directly from Equation 4-9
with the following two observatior~, First, the bistatic mutual coherence
function is the expectation of received voltage for two positions of the
receiver but for only one pesition of the transponder. Thus the uplink
contribution to rbl contains only carrier frequency and time differences.
Second, the expectation of UuU: that appears in Equation 4-5 depends only
an the argument differences and is therefore independent of the nominal

propagation time tp. The uplink coherence function is then civen by




r ) = (2m)-2 ] dZRU 6, (R,)Sy (Ku,wd) exp (-iﬁu-3ut

-0 u

LTI ) (4-10)

where Gru is the gain funztion of the receiving antenna on the uplink and

S
Au
cluding the effects of the sender's transmitting antenna.

is the Fourier transform of the angular-delay GPSD for the upiink in-

The effect of a transmitting antenna is to filter, as a function
of angle, the anqular-delay GPSD of the signal at the receiver. Thus the
anguiar-delay GPSD of the incident signal on the plane of the receiver
including the effects of the transmitting antenna pointed at the receiver
is

(xK)S(K, 1) (4-11)

where S(E,r) is the GPSD for an omnidirectional transmitter, Gt is the
beam profile of the transmitting antenna and x = zr/zt is a scale factor
that transforms angles at the transmitter toc angles at the receiver (see
Figure 2-3 and Equation 2-90).

The mutual coherence function of the signal out of the receiver
for a transponder communications link is now given by

> +
= ) =
Pbl(p’md’td) rAu(wd’td'rAd(p'wd’td)

2 .w 23 > > - >
(2n)=2 jf %K 6, (x K )6 (RS (R 0y

-

>
K

Sd( d’md)

v

(2m)=2 ] 4%y CpqlxgRg)B g(Ky)

where Gy, is the beam profile of the transmitting antenna on the uplink
and Gyq is the beam profiie of the transmitting antenna on the downlink.
The x scale factors are




225

.

z

%

0'

K, = 22/21 (4'133) o3

and S
kg = 2,/2, . (4-13b) 4

For satellite transponders, the distance from the satellite to the iono- &
sphere will usually be much greater than the distance from the ionosphere !
to the ground. Therefore, % » 1 and <4 € 1 under most circumstances. v
4.2 SCATTERING LOSS.
¢

The scattering loss suffered on the transponder communications j

1ink depends on the GPSDs of the two propagation paths and on the beam 0
,.

profiles of the four antennas. Under the assumption that the two g
propagation paths are uncorrelated, the total scattering Toss will be the -
product of an uplink contribution and a downlink contribution. N
3

The mean received power for the bistatic path is N
Py = Tpy(0,0,0) = P P, .

= (21)=% [] d%Ky Gey(xyK1)6ry(K1)Sy(Ry,0) x ;

- "t

(2m)=% [f d%K2 Gtd(xgK2)6rg(K2)Sq(K2,0) (4-14) %

-® :

where P is equal to the first integral and where P, is equal to the i
second integral. The function SE(K,O) is g
-, i ® . ‘:7

S(K,0) = -.{ S (K,t)dt

s (g2 (k2,2 L (v242 7442 ) :

= (mege/6p) exp [-(K 20 /4) - (KU2E,/460) ] (4-15) e

3

b
".
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4

2;; where Ss(f,t) is the angular-delay part of the GPSD for the uplink (&=u)
or the downlink (£=d). In the developments that follow, each path will
have its own decorrelation distance at the receiver lo&’ frequency

selective bandwidth foE’ and penetration angle and scale size ratio $g.
Also, there will be no assumed relationship between the orientations of
the x axes on the two paths. '

The antenna beam profiles for this calculation are assumed to be
isotropic and Gaussian and to be pointed without error. The combined
transmitting and receiving beam profiles may then be written as

Boe(¥gK)G (R) = exp [-(of k% + o2 )Ki] exp {-(o} <} + ol )K]]  (4-16)

where g and ap are given in terms of the transmitting and receiving
antenna beamwidths respectively by Equation 3-3. The combined beam
profile is again Gaussian with a beamwidth that is smaller than either of

the two antennas.

The scattering loss the & path is

=-1= 1/2 -
Lgg = Pg = [6ygBye! (4-17)
where
- 2 2,2 2,2
B =1+ 4ut€.<€/9.og + 4“r5/lo£ (4-18a)
and
G . =1+ 462a2 k%702 + 48%a% /42 (4-18b)

Y€ E"tE & 0k E°rE’ "0

If the antennas are uniformly weighted circular apertures, then the G
functions become

- 2 v2 2
Ge = 1 + 0.265 [xg(otg/zog) + (Drs/loe) ] (4-19a)
and
- 2 2 2 2
Gys =1+ 0,265 6E [‘g(Dts/‘os) + (Drg/iog) ] (4-19b)
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f where DtE and DrE are the transmitting and receiving antenna diameters Egi
' respectively. The total loss of the bistatic transponder link is i;'
¢ e b
® Lg = Loylsg © [Gququxd yd]1 /t . (4-20) Ei
N

) The decorrelation distance £5¢ in these expressions is that of -
the signal incident on the plane of the receiving antenna when an omni- ;é

directional signal is transmitted. Recall from Section 2 that the decor- ,,75

relation distance is not a reciprocal gquantity. If an omnidirectional lf

signal were transmitted at the receiver's location, the decorrelation ;;

; distance of the signal at the plane of the transmitter would be 106/‘5 1
} Cn the uplink to a geosynchronous satellite transponder, Ky » 1 and the ‘ '
f uplink scattering loss is determined primarily by the loss due to the ﬁ:'
i transmitting antenna. However on the downlink, <4 « 1 and the downlink fi}
scattering loss is determined primarily by the loss due to the receiving r:}

' antenna. In either case, it is the antenna closest to the ionosphere that ﬁﬁ.
determines the scattering loss of the link. ng_

-
|
-
-

4.3 FREQUENCY SELECTIVE BANDWIDTH

The time delay jitter of the bistatic signal at the output of
the receiver can be calculated from the power impulse response function

’ - i,:i'
- -1 i - W,

Pplt) = (@m)=! [ 1y (B,04,0) explingt)duy (4-21) s

- : Q:\

f ht
where Pb(i)dr is the fraction of signal energy arriving in the delay éﬁ

interval © to t + dt. The nth delay moment of the signal energy is i%

-

n * n )

P <t > = _n{ 1 Pb(r)dr (4-22) N

i

3y where P.0 is the n = 0 mcment and is equal to the mean received power. The e
evaluation of the delay moments is simplified by considering the form of ;I”

P(t). The power impulse response function can be written as -

. ;_.."
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Ppit) = (2m)7" [ Ty (04,001, (D,04,0) expliugTiday (4-23) ,

~
N

o S 550y O TS A L T

This integral can also be written in the delay domain as a convolution: {
Pp(T) = _1 P (T*)P (t-1")dr! (4-24)

where Pu(r) and Pd(r) are the power impulse response functions of the up- 3
link and downlink paths respectively. These functions are

= 1y . on ;
Py(x) = (2m)=" [Ty (ug,0) exp(iuge)dug (4-25) ;
and .
- -1 e
_, Py(t) = (2n) -‘{ FAd(ﬁ.wd,O) exp(iw t)du, . (4-26)
! Now the delay moments of the received signal can be evaluated in '
' terms of the delay moments of each of the paths: \
3 |
:; n, _ 2 n ‘
- Pe<t,’> = -i T PE(r)dT (4-27)
2 for & or £ = d. The mean received power is :
; o T N _ 1
E Py J P (1)dr -i dt -i dr'P (1')Py(T-1") (4-28)
# which after some manipulations reduces to the previous result, given in )
2 Section 4.2, that P =P P .. Using this formalism, it is easy to show

ud
that the first two delay moments of the bistatic signal are

-

M2 (ool

<tb> = <ru> + <rd> (4-29)
- and f
> 2y 2 oq2 . N 2
E (rb> <ru> + 2\ru>(rd/ + <rd> . (4-30) )
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The time delay jitter of the bistatic signal is then g%
02 =92 + 42 s
b Tu T

d A,

and the ) equency selective bandwidth of the bistatic signal out of the
receiver's antenna is

fAb = 1/(2"°rb) . (4-32) —

33

;317

9

The problem has now been reduced to that of finding the fre- ;ﬁ
quency selective bandwidths of the signals at the outputs of the receiving ) §$§
antennas for the one-way paths. This result was presented in Section -
3.2.3 for one-way paths with a receiving antenna only. However, it is a g?:
simple matter to gereralize those results to include the effects of a p:
Gaussian transmitting antenna. The frequency selective bandwidth of the ég
signal out of the receiving antenna for either one-way path is if
s,

4y1/2 2 .

_ (148g) oL, A3

fA /f . = (4-33) o

£0f (62 + g2 11/2 i

L TETXE y&’ o

where & = u or & = d. This expression is valid only for isotropic 53
antennas, The quantity foe is the frequency selective bandwidth of the ?eg
signal incident on the plane of the receiving antenna for a transmitted 'éﬁ
impulse and for an omnidirectional transmitter antenna. The time delay :
jitter for either path is given by \
t‘:

o = 1/(2nfy.) (4-34) 3

LR

Finally, the frequency selective bandwidth of the bistatic -

signal at the output of the receiving antenna is ' {ﬁ\
£.21-1/2 8

fab * [fAu + ’Ad] . (4-35) L

23

3

3

o
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If both the uplink and the downlink have the same filtered frequency
selective bandwidths, then fAb is equal to fAE/ff. 1f, however, one of
the links has a much smaller frequency sclective bandwidth than the other,

then f is equal to the smaller value of fA

Ab £’

4.4 DECORRELATION DISTANCES AND TIME.

The decorrelation distances of the signal at the receiver
depend only on the downlink path and are given by the 1/e points of
PAd(S,O,O)/Pd. The downlink two-position mutual ccoherence function is
! calculated using Equation 4-9 and is equal to

Lag($:0.0) = Py expl-(x/2,4)%/6, ] expl~(84y/2,4)*/6 4]« (4-36)

The antenna filtered decorrelation distances at the receiver are ther

{
: given by
)
s A 1 = '/'—— rA_
I LAx/lod Gxd \4 37)
‘ and
]
) —
= (4.
sz/zod /eyd/cd ) (4-38)

The decorrelation time does depend on both the uplink and the
downlink. It is convenient to calculate the twou-time mutual coherence
function PAE(ﬁ,O,td) of each path separately and then to construct this
function for the bistatic path. As has been done previously, 1t will be
assumed that the effective drift velocities are aligned with the x axes.
For the downlink, the function rAd is calculated from Equation 4-9 and

is equal to

r d(6,0,td) = P, exp[-(vdtd)z/(Gxdlgd)]

Py exp[ - (td/tAd)z] (4-39)
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where q-.‘:v,
1107

— L0«

“ad = *od "8xd’V (4-40)

;V’r‘:?i'.

is the antenna filtered decorrelation time due to the downlink only and '*f
where vy is the effective downlink drift velocity along the downlink x ".
axis. A similar set of expressions hold for the uplink two-time coherence i
function and decorrelation time: ' =

- - 2 2
r,,(8,0,t,) =7 exol-(v t)?/(6 22 )]
- 2

= P, exp[-(td/TAu) ] (4-41) .

s

where 7...2':
e REY

= - At

Tau T Pou”CxuVy (4-42) R3N

is the antenna filtered decorrelation time due to the uplink only and .s;a.‘
T

where v, is the effective uplink drift velocity along the uplink x \
axis. The bistatic path has a two-time mutual coherence function given by ‘.
A

h IR

r b(aﬁo’td) = rAu(ﬁioﬁtd)rAd(GQOQtd) ':."“

)

- (-2 “2y,2 _ oy

PPy expl-(rg, + gitgl - (4-43) :’7:

,0",’5

The bistatic path decorrelation time Tab under the frozen-in ﬁ
approximation is then given by .
Ty S (TAZ + 1 )'l/2 . (Frozen-in Approximation) (4-44) ::".

Q0%

A

The decorrelation time for the turbulent approximation can be obtained i"_,
from this expression by noting that under this approximation, the .'
decorrelation time is not filtered by the antennas. Therefore, the :{.,'
bistatic decorrelation time becomes E
‘;&:I‘-
o (-2 -i/2 . . ) B

Tob (Tou + Tod) . (Turbulent Approximation) (4-45) A
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where T ou and Tod are the uplink and downlink decorrelation times without
antenna effects. This expression is valid only if the Doppler frequency
spectrum is Gaussian. If this is not the case, then a slightly different
relationship holds between the bistatic path decorrelation time and the
decorrelation times of the two individual paths (Dana 1982).

If both the uplink and the downlink have the same decorrelation
time at the outputs of the receiving antennas, then under the frozen-in
(turbulent) approximation, TAb(Tob) is equal to TAg/'z (ToE/JZ). If
however, one of the links has a much smaller decorrelation time than the

other, then t is equal to the smaller value of TAE(TOE)'

ab{ “o’
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SECTION 5
CHANNEL SIMULATION

The purpose of this section is to describe a statistical channel
simulation technigue that allows realizations of the impulse response
functions to be generated at the outputs of multiple antennas with spatial
and temporal correlation properties given by the GPSD derived in Section 2
and with Rayleigh amplitude statistics., The realizations generated with
this technigue represent only the diffractive part of the received voltage
and they are valid only under strong scattering conditions where the GPSD
is valid and where Rayleigh statistics apply. Under these conditions
however, they represent a solution of Maxwell's equations for propagation
of RF waves through randomly structured ionization.

The basic formalism to generate statistical realizations of the
channel impulse response function without antenna effects explicitly in-
cluded was developed by Wittwer (1980) for isotropic irregularities and
was extended by Knepp (1982) to the case of elongated irregularities.

(The elongated case corresponds to a 90° penetration angle and to an
infinite axial ratio.) The channel simulation technigue has been general-
ized in this report to include the effects of anisotropic scattering and
the effects of multiple receiving antennas and has resulted in a new DONA
software channel simulator for antenna applications (Dana and Wittwer,
1985) .
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[t will be assumed in this section for the sake of limiting the
discussion that the multiple antennas are identical in beam profile, ori-
entation, and pointing angle. It is also assumed that the antenna centers
are colinear. These restrictions may be easily 1ifted by using the more
general formalism reported by Wittwer (1986).

The frozen-in approximaticn will be used in most of the deveiop-
ments in this section to descripe the temporal fluctuations of the inci-
dent signal. The generalization of the channel simulation technique to
the turbulent approximation is discussed in Section 5.2 along with a
second technique proposed by Wittwer (1986) that is valid in the a equal
infinity limit. A comparison of realizations generated under the frozen-
in and turbulent approximations is made in Section 5.4,

The scattering of the signal is described in the x-y coordinate
system shown in Fiqure 5-1, which is normal to the line-of-sight. The x
axis corresponds to the direction with the minimum decorrelation distance

v

=

g

\

Rotation Angle X
/ -

Antenna /

Center

Figure 5-1, Scattering and antenna coordinate systems,
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which, to be conservative, is chosen to be the direction of the effective
velocity between the antennas and the random diffraction pattern. The

antennas are described in the u-v coordinate system, which lies in the
x-y plane, where the antenna centers lie along the u axis. The angle

x (0 < x < n/2) is the rotation angle between the scattering coordinate
system and the antenna coordinate system, In the figure, one of the
antennas is depicted at the origin of the x-y coordinate system. The
mth antenna is specified by Em where 3m is a position vector in the x-y
plane that points to the mth antenna center.

5.1 GENERATION OF REALIZATIONS (FROZEN-IN APPROXIMATION).
The technique for generating the realizations of the impulse
response function at the outputs of multiple antennas is outlined below.
For a given signal delay, random samples of the impulse response function
at the outputs of the antennas are generated on the two dimensional x-y
grid shown schematically in Figure 5-2, The y coordinates of the grid
correspond to the y coordinates of the multiple antenna centers Yor The x
coordinates of the grid correspond to the x positions of the antenna
centers X, as a function of time due to the effective velocity of the
antenna relative to the random diffraction pattern.

5.1.1 Discrete Evaluation of the GPSD.

The first step in generating the impulse response function at
the output of an antenna is the evaluation of the GPSD on a discrete

Ky = Ky - 1 grid, The angular-delay grid centers are defined by
K, = k&K,
K. = 1AK
y y
Tj =Tt jart (5-1)
85
SRS S ._;-'\{'. S AN \.,._ N NI ASR Y }\‘ ~~~~~~ PP AR TREN

B JCRRIN
.....................

........
............




Antenna Center

"Cn

Ume1

Ym

Ym-1

Effective Velocity

Figure 5-2. x-y grid of impulse response function.

where k, 1, and j are integers, The starting delay tg and the angular
and delay grid sizes will be defined in Section 5.1.3. The mean signal
energy at each grid point is
(k+1/2)AKX (1+1/2)AKy rJ+A1/2
- .2
= (2n)=% [ K, [ K, [ dr sp(K K
(k-1/2)AKx (1-1/2)AKy rJ-Ar/z

B0, o9 (5-2)

where SA(KX,K“,r) is given by Equation 3-22 in the x-y coordinate system.
The mean signal power in the jth delay bin is

P, = -
. TP AN (5-3)
W)
o0 and the total mean power in the grid is
) Py (5-4)
J

These two quantities are useful in verifying the statistics of random
realizations as discussed in Section 5.3.
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The integral over delay in Equation 5-2 can be done in closed
form with the result that the mean signal energy in the k-1-j grid cell is

(k+1/2)AKx
i Ek,],j = {lg/(8w5)] [ &K, ~ exp (~Kizg/4) X
(k-1/2)AKx
(1+1/2)aK
dK Y exp (-K222/46%) G(K_,K ) E,(K ,K ) (5-5)
2y yo Xyl T3y
(1-1/2)AI<.y

where

= 2,42y 92 2 0
EJ(KX,Ky) = erf {a[mcoh(1j+Ar/2) - A(Kx+Ky)£o/4]//2}

erf {alu o (14-81/2) - A(K§+K§)zg/4]//3} (5-6)

and where erf is the error function. Because the antenna heam profile
appears explicitly in the integrand of Equation 5-5, Ek,1,j is valid only
for an antenna with beam profile G(Kx,Ky). However, at this point the
location of the antenna is arbitrary as long as the beam profile remains
fixed. If the different anteanas have different beam profiles (or the
same profile with different pointing a~gles), then a separate Ek,l,j must
be calculated for each different G(Kx,Ky).

The value of a in Equation 5-6 is chosen to be large enough so
that under the most disturbed propagation conditions the antenna filtering
of the freguency selective bandwidth is not limited ty the value of a,

The procedure for choosing a is as follows. The ratio fA/fo under con-
ditions where the decorrelation distance approaches zero is obtained by
combining Equations 2-57 and 3-36 with the result

g
E
A
n
N\

Pl
CleammL X v S L ORI S Y A

Limit f,/f = a2+l . (5-7)
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Using the minimum decorrelation distance, the maximum value of fA/fo is
obtained from tquation 3-38 for a set equal to infinity. The value of a
is then chosen so that the difference between a® + 1 and the maximum value
of fA/fo is small, As discussed by Knepp (1982), it is possible to set a
to infinity. However, the resulting discontinuities in the GPSD present
numerical difficulties in the signal generation process that are avoided
with a finite value of a, An alternative channel simulation technique
which depends on a being infinite is discussed in Section 5.2.2. This
latter technique was developed to generate signal realizations under the
turbulent approximation but it could be applied to the generation of
frozen-in approximation realizations as well,

5.1.2 Random Realizations.

The impulse response functions will be generated one delay at a
time starting with the smallest delay (j=0) and working to the largest
value of delay (j=jmax). For each delay, the steps that are performed
are outlined in this subsection.

The Fourier transform HA of the impulse response function at
the output of an antenna is

h

= 2 -
A(kAKX,]AKy,tj) (4n /AKXAKyAr)Ek,],j/Ek’]’j . (5-8)

The normalization factor (4n2/AKXAKyAr) has been chosen so that after BA
is Fourier transformed from the angular Ke - Ky domain to the spatial
domain, hAAr will represent the voltage received during the delay interval
j- At/2 to Tj + 4t/2, The quantity Ek,l,j is a complex, zero mean,
Gaussian random variable with the properties

T

*

Cr1,5ta,8,v7 % %k,ab,8%,y
0,5 =0
<E = 0 {5-9)

£ > =
k,]iJ a)B,Y




where Gm n is the Kronecker delta symbol. The random numbers & may be

generated using the equation

£ = /-1n uy exp(2miu,) (5-10)

P ek e e

where u; and uz are independent random numbers uniformly distributed on
the interval {0,1).

There is no explicit y coordinate since realizations will be
generated only at y coordinates corresponding to antenna centers. This is
accomplished by first generatjng Ny samples of HA in the K_y domain and
then by Fourier transforming hA to the y domain using discrete Fourier
transforms (DFTs). One DFT is performed at each KX coordinate grid point
for each unique antenna center y coordinate. In continuous notation, this
transform is

o

ﬁA’m’Kx,r) = (l/2m) EA(KX,Ky,r) exp (iKyym)de (5-11)

where Y is the y coordinate of the mth antenna center. The DFT equiva-
lent of this equation is

Ny/2-1

ha,m(k&Ky,T5) = (8Ky/2m) ] ) exp (118Kyym) ha(kKy,18Ky,75) . (5-12)
1=-N /2
y

Now the Ky to x Fourier transform is performed for each
antenna. In this case, a fast Fourier transform (FFT) may be used. In
continuous notation

®

(1/27) [ exp (iK,x) hy (K, 7)dk

-m

-
—
>
»
-y
~—

n

< (5-13)
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The discrete equivalent of this equation is

le/2'1
kdx,t,) = (8K /2m) g . /zexp (ik'aK kax) hA’m(k‘AKx,r
X

h .) (5-14)

A,m( J

T W AT W B S —— e > — ———

where Nx is the number of x coordinate grid points.

The quantity hA,m(kAx’Tj) is the impulse response function at
the output of the mth antenna when that antemna is located at x position
kax. Under the frozen-in approximation, a time step At may be associated
with 8x using the effective velocity:

At = Ax(ro/io) (5-15)

s fe w308 WS LN L B

where L is the decorrelation time of the incident signal. The quantity

hA,m
output of the mth antenna at time kat.

>

(kAx,rj) then also represents the impulse response function at the

ry
K’

5.1.3 6rid Sizes. g%
.
The grid sizes of the channel simulator are chosen on the basis éé
of the statictics of the signal out of the antennas which are given by the A
filtering eguations in Saction 3.2. The angular grid sizes are chosen so oy
the antenna filtered GPSD will be small or zero at the edges of the angu- :%
1ar grid and so there will be a sufficient number of samples per decor- g
relation distance to resolve the fades of the Rayleigh amplitude distribu- 21
tion. The delay grid size &t is chosen on the basic of the sampling i;
period of the receiver and the number of delay samples ND of the :'
realizations is chosen so the total delay spread of the realization NDAr ;é
will encompass at least 95 percent of the delayed signal energy.
e
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5.1.3.1 The Ax -AKx Grid. The x grid spacing is

Ax = £, /N (5-16)

Ax/ 0
where le is the filtered x direction decorrelation distance (Cquation 3-
41). The quantity Ng is the number of samples per .decorrelation dis-
tance or time where Ny should have a value of 10 or larger in order for
the realization to accurately represent the duration and separation of the
fades of the Rayleigh amplitude distribution {Dana 1982).

The number of x grid points Ny is subject to two constraints:
First, Ny should be a power of 2 so a fast Fourier transform can be used
to transform from the Ky, domain to the x domain. Second, Ny should be
greater than or equal to 100 N,. Equivalently, there should be at least
100 x direction decorrelation distances in the realization in orde- for
the realization to represent a reasonable sample of the random process.
Under the frozen-in approximation, 100 decorrelation distances corresponds
to an elapsed time of 100 decorrelation times.

Here reasonable is defined in terms of the application. Typi-
cally, the realizations are used to exercise simulations of transiono-
spheric communications links and each realization with NX/NO- 100 can be
used to calculate receiver performance averaged over 100 decorrelation
times. The resulting receiver performance measures wiil have some statis-
tical variation due to the finite time duration of the simulation, This
variation can be reduced by either using lo. er realizations or by using
several realizations with the same signal , .meters but with different
random numbers and by averaging the results from the multiple realiza-
tions. This latter approach allows an estimate of the statistical varia-

tion in the receiver performance to be made.
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Returning to the grid spacing, the x direction distance spanned
by the realization is Lx = NxAx and AKX is .

AK, = Zn/Lx = 2n/N, ax . (5-17) A

The functional dependence of the GPSD on Ky is given aroroximately by

€ = exp[-(KxxAx/Z)z] . (5-18) f
In discrete notation, K = kaK where [k| has a maximum value of N,/2. ;
Using the maximum valve for K, of NxAKx/Z' the value of ¢ at the edge

of the K grid is exp[-(nNO/Z)z] which is essentially zero for N equal :
to 10. ;

XX LAY > D T YT X Y X R N S OB a

Py

5.1.3.2 The XKy Grid. The number of Ky grid points is determined by )
requiring that the GPSD is small at both ends of the K grid. The func- 3

y _
tional dependence of the GPSD on Ky is given approximately by b
= r 2 :
e = exp[-(KylAy/Z) ] (5-19)

A convenient minimum value of ¢ is exp(-n%) = 5.2 x 10-3. Using this
value results in the following condition on Ny:

S5 0 X IR 25 L ST

-

> n/ (XK 2 . -20
Ny > 4/ (&K 2y, (5-20) )
» H
kﬁ It is desirable to minimize the number of Ky samples generated to mini=
1y mize computer memory and execution time requirements for signal genera- ]
ﬁ tion. A reasonable minimum value for Ny is 32.
rﬁ
o The AKy grid spacing is then
-L‘.
-‘1 K = 2n/L (5-21) ‘
£ y My -
where the length of the realization in the y direction is chosen as
AN
\'
<. L = maximum (162 : 4 maximum ( ] (
% y 18, AL (5-22) .
4 Y
o
< (]
. t
e |
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The first condition, Ly = 161A,y, results from letting Ny = 32 in

gquation 5-20., The second condition, Ly = 4 maximum (|ym!), is chosen

to minimize aliasing of the impulse response functions of the antenna with
the 1argest value of Y and the antenna with the smallest value of Y If
the value of L is determined by this latter condition, then the value of
N_. will need to be larger than 32 in order to satisfy the condition on N‘y

y
given by Equation 5-20.

5.1.3.3 The Delay Grid At. The delay grid size is usually chosen so
there are an integer number of delay samples in a sample period of the

communications link receiver. There should be at least two delay samples
per symbol in order to represent the frequency spectrum of the symbols.
The number of delay samples is chosen so the delay spread of the realiza-
tion Npat will encompass at least 95 percent of the delayed signal
energy. However, the delay spread of the signal depends on the anisotropy
of the signal, on the value of «, and on the antenna filtering. For a
given frequency selective bandwidth of the incident signal, the delay
spread of the signal out of an antenna increases as the antenna filtering
is reduced (or as %, is increased), as the value of a is decreased, and
as the penetration angle is reduced (as the incident signal becomes more
isotropic). Without antenna filtering, 95 percent of the signal energy
under isotropic scattering conditions arrives with delays in the range
-0.25 < Weoh? < 3,45 when x is set at its minimum value of 4 (Wittwer
1980). To be conservative, this same criterion is applied under all
conditions The minimum delay spread of the impulse response function
realizations must therefore satisfy the condition

-0.25 < anAr < 3.45 . (5-23)

The minimum number of delay samples required is then

Ny > 1+ 3.7/(2nfy 1) (5-24)
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where the first delay bin (j=0) has a center delay of

T -O.25/(2an) . (5-25)

5.2  GENERATION OF REALIZATIONS (TURBULENT APPROXIMATION),

The GPSD developed in Section 2 has the form given by Equation
2-102 which is reprocduced here:

> >

S(K_L’T’ND) = SD(ND)S(K_L,T) . (2'102)

Under the turbulent approximation, the Doppler frequency spectrum SD(uD)
is independent of the angular-delay part of the GPSD S(KL,r). The Doppler
frequency spectrum and therefore the decorrelation time of the signal is
then the same for any angle and any delay.

Two techniques for generating realizations of the impulse
response function under the turbulent approximation will be discussed in
this section. The first technique is a generalization of the technique
used for frozen-in approximation realizations and is valid for appropri-
ately chosen large but finite values of the parameter a. The second tech-
nique, proposed by Wittwer (1985), is valid only for infinite values of
a. However, for reasons described in Section 2.8.1, this limitation does
not reduce the usefulness of Wittwer's technique. Indeed, it has the
advantage of requiring less computer storage and cpu time to generate
realizations than are required with the first technique. Both techniques
are somewhat different than that described in Section 5.1.

5.2.1 Finite a Technique.

The starting point of this generation technigue is Egquation 5-8
which is rewritten as
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'(tn)/Ek,l,J

K,1, ] (5-26)

- i ) )
hA(kAKX,IAKy,rj,tn) (4n /AKXAKyAT)g

where t, are discrete times for which the impulse response functions

will be calculated. The temporal variation of the impulse response
function is given by the temporal variation of the random numbers
Ek,l,j(tn)' These random numbers must still satisfy the conditions given
by Equation 5-9., The grid sizes AKy and At are calculated using the cri-
teria given in Sections 5.1.3.2 and 5.1.3.3 respectively. The grid size
AKx for this model is chosen using the same arguments that were used to
select AKy. That is, the number Nx of Kx grid points is first chosen to
be 32 and then Equations 5-21 and 5-22 (with y replaced by x) are used to
calculate AKx'

The impulse response functions at the outputs of multiple
antennas are calculated in a manner similar to that outlined in Section
5.1.2. At a given time, the impulse recponse function for the mth
antenna, with center coordinatas x_ and.ym, is calculated from HA using a

two dimensional Fourier transform. In continuous notation,

«© -]
- -2 t . . ~
hA,m(t’T) = (2n) i de J de exp (1Kxxm+1Kyym) hA(t,Kx,Ky,T) . (5-27)

The discrete equivalent of this equation is

" _ 2
hA,m(rj,tn) = (AKXAKy/4n ) x

N /2-1 N /-] |
k—lN /2 ]_XN /2 exp (1kAKXXm+i]AKyym) hA(kAKX,]AKy’TJ.,tn) . (5-28/-
=a x = y

This operation is repeated for each set of unfque antenna center
cnordinates and then for each delay.
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At the next time step tn+l = tn + At (where At=ro/N0), the h
j are recalculated according to the Doppler frequency ¥
b

spectrum. A convenient form for the Doppler spectrum is an f-“ power

spectrum because it can be readily synthesized using two-pole low-pass

N Y

random numbers 5k 1

e o

R filters. The noise sample B ) j(tn+1) can then be obtained directly f
v L : . . -
%. from T j(tn) and a complex white Gaussian noise sample. Once the noise N
~ samples ¢ have been updated, the impulse response functions at time tn+1 b
- ¢
! are calculated using the above equations. ;
o 5.2.2 Infinite a Technique.

<h W]

This technique will utilize the delta function relationship

AR

between angle and delay given by Equation 3-47 for the infinite x limit.

& . . .
& For the jth delay bin, the GPSD will be non-zero only for the angles :
2 that satisfy the condition :
.“n. ) \
: A (i 2ar 2 52 . )
! seon(T5=81/2) < AKPKD) 24 < uepy (35450/2) (5-29)
g e
§j In this 1imit, weeh 1s related to the frequency selective bandwidth as ;-
g Y = - ;_
"2, Deoh = 2tf, - (5-30) ]
o The impulse response function may now be generated in the angular domain N
’i without regard to delay. Once this has been done, Equation 5-29 may be t
%& used to assign an annuylus in the Kx - Kv plane to each delay bin. 9
we ) _‘
1a) ‘

The startina point for this technﬁque is then the energy in a

~
Vi (}
'} i
1
(]

EE Kx - Ky grid cell:

_5: (k+1/2)K (1+1/2).u<y
v— E g = (2¢)-% | & ;i dK G(K_,K )S(K K ) (5-31) ‘
v ) . ¥ X"y Xy
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where the angular power spectral density is

S(Kx,Ky) = | S(Kx,Ky,t)dr

. (rlg/G) exp [-(K2e2/4) - (K§z§/462)] (5-32)

The random angular spectrum of the signal at discrete time t, is
rewritten from Equation 5-26 as

———
-

ha(k8Ky 18Ky, ta) = (477/8KyEKy)EK 1(ta)VE ) . (5-33)

For the jth delay bin, the Fourier transform of the impulse response

function a> time tn is

hA\kAKx,lAKy,tn)/Ar , if Equation 5-29

ha(kBK 18K LTt ) s (5-34)

Mo me  ma B L, R e N S .I

0 , otherwise

The impulse response functions at the outputs of multiple antennas are
then generatea from hA(kAKx,lAKv,rj,tn) using Equation 5-28.

The savings in computer resources between this technique and
that described in Section 5.2.1 is the result of the fact that only the
random anqular spectrum instead of the random angular-delay spectrum is
required at each discrete time for the latter technigue. Thus Ek,l is
stored rather than Ek,l,j and at each discrete time the random numbers
Ek,}(tn) are updated and stored rather than 5k,1,j(tn)'

For this technigue, the mean signal power in the grid is

} Ek’] (5-35)

= 7
Pe = 1
K




and the mean power in the jtp delay bin is
+At/2
TJ T

PJ 2 f GA(t')dt' (5-36)
‘tj-At/z

E where Gao(t) is the power impulse response function given in Equation
| 3-48. For general anisotropic scattering and antennas, this integral must

be performed numerically.

f 5.3 REALIZATION PARAMETERS.

A check can be made of the generated realizations of the impulse
response function by computing the mean signal power in the grid, scatter-
| ing loss, frequency selective bandwidth, x direction decorrelation dis-
tance, and the cross correlation between antennas and then by comparing
these quantities with their ensemble values whicn are given in Section
3.2, The realization signa! power in each deiay bin may also be compared
with the ensemble values to ensure that the realization has the proper
delay distribution of signal energy. For reasons discussed below, this is
often a better check than comparing the realization and ensemble fregquency

€. o_-~

-

selective bandwidths,

Because eacn realization contains a finite number of decorrela-
tion distances or times, the agreement between the realization parameters
and the ensemble values will not be exact. In addition, the realization
parameters will also vary from antenna to antenna. However, as the reali-
zations are made longer in distance (i.e. Nx is increased while No is kept

S CERETEY, S S

fixed) the agreement will improve.

R ¥ U

An exception to this is the frequency selective bandwidth which
requires both a long realization in distance or time and a fine gridding
in delay t0o make an accurate measurcment. In particular, if the delay
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grid size At 1s chosen so there are only a few delay bins encompassing the
delay spread of the signal, then the measurement of the time delay jitter
will be limited by the delay grid size. The resulting frequency selective
bandwidth, which is computed from the time delay jitter, will be inaccu-
rate. An accurate measurement of the frequency selective bandwidth re-
quires on the order of 20 to 30 delay bins in the delay region which
encompasses 95 percent of the signal power (see Fquation 5-21). Because
the delay sample size At is often chosen on the basis of a channel symbo)
period rather than to achieve an accurate measurement of the frequency
selective bandwidth, a comparison of the signal power in each delay bin
with the ensemble values may be a better check that the realization has
the proper delay distribution.

The accuracy with which the GPSD 1s evaluated can be checked by
computing the mean power PG in the Kx - Ky - 7 grid (Equation 5-3 or
5-35). Thesmean power out of an antenna should be equal to 1/LS where L¢
is the ensemble scattering loss of the antenna. The difference in the
values of Ps and 1/LS is equal to the amount of delayed signal power that
is not included in the delay grid if the integrals involved in the evalua-
tion of the mean signal power in each grid cell are done with sufficient
accuracy. If the minimum delay criterion given by Equation 5-21 is met,
then these two values should agree to within a few percent.

~ The following subsections describe the algorithms used to
measure the realization parameters.

5.3.1 Scattering Loss.

P

The mean power of the realizations will be, in general, less
than unity because of the signal attenuation caused by the antenna beam
profile. The difference between the mean power of the realization and
unity is equal to the scattering loss. The steps for computing the
scattering loss of a realization are as follows:
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l. Compute the impulse response function integrated over al}
signal delays. In continuous nutation, this is

(x} = f hA’m(X,T)dT . (5'37)

This integral is evaluated in the channel simulator as

hA’m(kAx) s At } hA’m(kAx,jAt) (5-38)

where the sum is over all delay bins. The quantity
hA,m(kAx) represents the voltage that would be received
by the antenna under flat fading conditions (e.g. when
the transmitted modulation is turned off).

2. The power Py of the impulse response function is averaged
over the realization:
N
X
o] =
pr= (/M) § lh
k=l

A’m(kAx)lz . (5-39)

3. The scattering loss in dB is computed for the mth antenna:

Ls,m = -10 log,,(Pm) . (5-40)
5.3.2 Frequency Selective Bandwidth and Delay Distribution.

The frequency selective bandwidth is computed by calculating the
time delay jitter of the signal. Sufficient delay resolution is required
to do this computation accurately. The realization delay distribution is
given by the mean power of the jth delay bin. These values may be
compared with the approximate ensemble values given by Equation 5-3 or
5-36. The algorithms for computing the frequency selective bandwidth and
the delay distribution are as follows:
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1. Calculate the first two moments of delay:
n, _ n . 2 -
Pac™ > = (1/N,) 7Y (da1) 'A'mA,m(kAx,jAt)I . {(5-41)
k J
This is evaluated for n=1 and for n=2.
2. The time delay jitter is
- 2 211/2 -
o = [<iB> - <02V . (5-42)
3. The frequency selective bandwidth of the realization is
computed from o, as
fam = M(2m) (5-43)
4. Calculate the mean power in the jth delay bin:
2
Pim ™ (1/N) z |A'th (kAx,JAt)| . (5-44)

5.3.3 X Direction Decorrelation Distance or Time.

The x direction decorrelation distance or the decorrelation time
fs computed by finding the l/e point of the autocorrelation function of
the impulse response function., The algorithm used to compute the decor-

relation distance or time is:

1.

Calculate the power spectrum of the realization. In
continuous notation this is
| LX/Z
Sm(Kx) = l(l/Lx) / hA,m(x) exp (-H(xx)dx'2 (5-45)
-Lx/2

where x is replaced by t to compute the decorrelation time.
The discrete equivalent of this equation is
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Sp(kaK,) = l(l/Nx) E'hA’m(k'Ax) exp (-1kAka'Ax)|2. (5-46)

2. Next zalculate the autocorrelation function as the Fourier
transform of the power spectrum. In continuous notation,

PolX) = _{ Sp(K,) exp (1K x)dK (5-47)

and in discrete notation

Poom(kdx) = (AKX/Zn) E.Sm(k‘AKx) exp (1k'AkaAx) (5-48)

where

P, = (&K /27) E.Sm(k'AKx) . (5-49)

3. Finally, find the value of & or T, where
A,x A

ol y) = on(ty) = Ve . (5-50)

5.3.4 Cross Correlation Between Antennas.

The x direction spatial correlation properties of the realiza-
tions may be verified by computing the x direction decorrelation distance
and comparing with the ensemble value., Another important and measurable
quantity is the cross correlation of the realizations of two antennas.

The algorithm for measuring the antenna cross correlation is

Ny

py(m,n) = kzl hA’m(kAx)h;’n[(k+ks)Ax]/[Nx/PmPn ] (5-51)
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where kg, the relative index of the two antenna centers, is given by

I<s = (xn-xm)/l.\x . (5-52)

Here Xn and Xy are the relative x coordinates for the antenna centers,

5.0 EXAMPLES.

In this section, examples are presented of the channel simula-
tion techniques outlined in Section 5.1. First a comparison is made
between the ensemble signal parameters and the values obtained from random
realizations of the impulse response function at the output of an antenna.
These results show that the random realizations do indeed have signal
parameter values that are close to the ensemble values. Then some exam-
ples of the voltage amplitude at the output of a matched filter to a
transmitted square pulse are shown to illustrate some of the effects and
techniques that have been discussed in this report. It is assumed in this
section that mean ionization or dispersive effects are neqligible in com-
parison to stochastic diffraction effects. It is further assumed that the
penetration angle is zero so the scattering is isotropic about the 1ine-
of-sight.

5.4.1 Signal Parameters of Random Realizations.

The signal parameters at the outputs of the square, Gaussian
antennas without pointing errors and without sidelobes are considered
here. The random realizations of the impulse response function were
generated at the outputs of two antennas whose centers are displaced by
the distance D where D is the length of a side of one antenna, The rnta-
tion angle was chosen to be 45°. The configuration is similar to that
depictcd in Figure 5-1 except that there are only two arrays rather than
the three shown in the figure. The algqorithms presented in Section 5.3
were then used to compute the realization signal parameters.
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Under these conditions, Equations 3-55 give the ensemble scat-
tering loss, ZA/ZO, and fA/fo. The cross correlation of the impulse
response functions out of the two antennas is, from Equation 3-40,

pp = exp [-(0/2)%(2/20)%) . (5-53)

Figure 5-3a through 5-3d present, respectively, the ensemble
(solid lines) and realization (dots) values of the scattering loss, fre-
quency selective bandwidth, x-direction decorrelation distance, and the
voltage cross correlation pp of the impulse response functions at the
outputs of the two antennas. Except for the cross correlation, the reali-
zation values plotted are the average of the values for the two antennas.

Because of the finite length of the realizations, the agreement
between the realization values and the ensembie values is not exact.
However, over the range of D/l0 shown from 0.1 to 5, the agreement of the
scattering loss and the ratio fA/fo with the ensemble values is quite
good. Somewhat more scatter about the ensemble values is seen in the
values of the ratio zA/lo and the cross correlation function. The ratio
LA/zO anpears to be biased to the high side which is attributed to the
linear interpolation algorithm used to solve Equation 5-50 for the l/e
point of the realization autocorrelation function.

5.4.2 Received Voltage.

This final section presents examples of the receivad voltage out
of an integrate and dump filter that is matched to a transmitted square
pulse. These examples are intended to illustrate the effects of frequency
selectivity and antenna filtering on a transionospheric communications
link and to illustrate the differcnces in the structure of the received
signal depending on whether the frozen-in or turbulent approximation is
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used to generate the impulse response function realizations. The follow- _3
ing calculation will also illustrate how the received voltage can be con- o
structed from the impulse response function realizations in a digital sim- ff
ulation of the link. Additional examples for specific system applications t%
may be found in Bogusch, et al. (1981) and in Bogusch, Guigliano, and 5.
Knepp (1983). —
W
The received time-varying, complex voltage from a transmitted :%;
impulse under conditions where the mean ionization effects are negligible o
is given by the inverse of Equation 2-103: —
® 41'
U(wta ,t) = [ h(t,t) exp (-iut)dr (5-54) 3
W
where h(t,t) is the impulse response function and wy is the carrier fre- ‘:
auency. The quantity U(w+wo,t) then represents the voltage at a relative ;i:
frequency « out of an antenna at time t. For a transmitted square pulse ?ﬁ
with a chip duration Tc' the voltage out of the matched filter at time t 3
can be written as b
-] &i"'-
e(t,t) = (1/2n) iM(w)U(wwo,t) exp (iwt)dw (5-55) )
where 1t is the relative time delay of the matched filter and where :;
M(w) = T_sin?(wT_/2)/(uT_/2)? (5-56) ""_
e
is the combined spectrum of the square pulse and the matched filter. "f
In an actual simulation, these two integrals are performed at tf,
baseband (wo=0) and must be performed discretely. If the impulse response ?\
function is generated with Np delay samples of size Atr, then the dis- ol
crete freguency domain voltage at time t is
3
.
:
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Ny -1 3
U(kdw,t) = V ath(jar,t) exp [-ikAw(rS+jAt)] (5-57)
j=0 3

PN Lo o RN
2

u"
«Va'n

where bw = 2W/NDAT. Here the delay T defines the start of the delay grid

upon which the impulse response function is generated (Equation 5-1). W
However this delay may be ignored at this point because it will be
accounted for when the received voltage is constructed. The range of the
index k in this equation is from O to Np-1 so the range of frequencies ¢
represented is from O to (Np-1)dw. The zero frequency of U(kdw,t) must
correspond to the smallest frequency of M(w) within the receiver band-

%

width, The discrete received voltage is then given by '

Np-1 '

D sin?{(k-Np/2) suT /2] )

e(t,t) = (AwTC/Zﬂ) N > U(kdw,t) exp [ikdw(t-1')] :
k=0 [(k-Ny/2) 80T /2] (5-58)

If at is chosen to be TC/2, then AmTC/2 = 2n/ND and e{t,t) represents a
signal that is band-limited to the frequency range -l/TC to +1/TC. Note
also that e(t,t) is unambiquous in delay only over the interval from O to
N.-1)At, The arbitrary starting delay t' is included in Equation 5-49 to

A A

(
M D
;H account for the delay TS which may have been ianored in Equation 5-48 and

to ensure that e{t,t) is not aliased in delay.

In the examples that follow, the random realizations of the

D

impulse response function were generated with a delay sample size of TC/Z

9
“ »
i% and with 32 delay samples. The chip rate RC = l/TC was set at 1 MHz,
O, However, the frequency selective effects depend only on the ratio of the
iﬁ frequency selective bandwidth to the chip rate fo/RC. Then the voltage
b .
ﬁj out of a matched filter was calculated from the impulse response functions 4
- using Equations 5-48 and 5-49. The amplitude of this voltage is plotted
- as a function of the delay of the matched filter and as a function of
o time. '
S
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The effect of frequency selectivity on the received voltage
amplitude is shown in the next set of figures. The impulse response
functions used for these signals were generated using the frozen-in
approximation and an omnidirectional antenna. Delay in chips is plotted
on the abscissa of the figures and time or antenna position is directed
into the figure. The total time duration of the plots is 10 <,.

The signal in Figure 5-4a where fo/Rc = 1.0 clearly shows the
effect of signal fading as the peak amplitude rises and falls with time,
The matched filter output in the figure is somewhat rounded rather than
being & triangle because the signal is band-limited to the frequency range
between the first nulls of the transmitted spectrum. Some minor distor-
tion of the output waveform is seen but for the most part the signal is
contained within the period of one transmitted symbol. For this channel
the fading is nearly flat which means that all frequency components within
the signal bandwidth propagate essentially the same way through the dis-
turbed ionosphere and there is very little time delay spreading of the
received signal.

Figure 5-4b shows a signal generated with fO/Rc = 0.5. The
impulse response function of this signal was generated using the same set
of random numbers and the same angular-delay grid that was used for the
impulse response function of the signal in the previous figure. The only
difference in the two impulse response functions is the distribution of
signal energy within the delay bins. Thus there is strong correlation in
the signal structures seen in the two figures. For this smaller value of
the frequency selective bandwidth, more of the signal energy is arriving
at longer delays. There is one time about three quarters of the way into
the figure where there are two distinct peaks in the matched filter output
anplitude. It is these sort of structures that can cause delayv tracking
algorithms in receivers to lose lock and that cause interswvmbol inter-
terence which can degrade demoduiation performance.
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Figure 5-4a. Matched filter output amplitude for fO/RC = 1.0.
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Figure 5-4b. Matched filter output amplitude for fO/RC = 0,5.
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The matched filter output amplitudes for fo/Rc equal to 0.2 and
0.1 are shown in Figures 5-4c and 5-4d respectively. The signals in these
figures are much more distorted than the signals in the previous two
figures with the signal energy being spread out over multiple chips. This
anount of multipath delay spread produces severe intersymbol interference
and reduces the amplitude out of the matched filter at a given delay.

Another effect that is evident in these signals is that the
signal received at long delays varies more rapidly in time than the signal
received at shorter delays. This is a result of the frozen-in approxima-
tion, Figure 5-5 shows a signal with fo/Rc = 0.1 whose impulse response
function was generated using the turbulent approximation, Again 10
decorrelation times of the signal are plotted. It should be remembered
when comparing the signals in Figure 5-4d and 5-5 that the Doppler
spectrum has a Gaussian form for the frozen-in approximation and an f-"
form for the turbulent approximation. It is this fact that accounts for
the more spikey appearance of the turbulent approximation signal. Also
the impulse response function generation techniques are sufficiently
different so there is no correlation between features seen in the two
fisures. The thing to note about the turbulent approximation signal is
that the features at long and short delays have the same decorrelation
time,

Finally, the effect of an antenna on the received signal ampli-
tude is shown in the last set of figures. The impulse response functions
used for these signals were generated using the frozen-in approximation
and a square Gaussian antenna., As is the case for all signals plotted in
this section, the scattering is isotropic about the line-of-sight. A1l of
these signals have the ratio fO/RC set at 0.1 while the ratio D/lO is
varied. Again the signal amplitude out of the matched filter is plotted
versus delay with time directed into the figure. The total time duration
of tne plots is 10 <o
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Figure 5-5. Matched filter output amplitude for a siaqnal generated using
the turbulent approximation (fo/RC = 0.1).

Figure 5-6a shows the matched filter output amplitude for a
Gaussian sguare antenna with 0/1o = 0.5. For this antenna and isotropic
scattering, the ensemble sccttering loss is 0.4 dB. This signal is not
identical to that shown in Figure 5-4d, although similarities can be seen,
because of the antenna filtering and because the anguiar-delay grid sizes
depend on the ensemble signal parameters at the antenna output. Figures
5-6b through 5-6d show respectively the matched filter output amplitude
for D/x0 equal to 1.0 (ensemble scattering loss equal to 1.3 dB), 2.0

(ensemble scattering loss equal to 3.9 dB), and 5.0 (ensemble scattering
loss equal to 10.0 d8).

The effects of an antenna on the signal parameterc are readily
apparent from these figures as the ratio D/%, is reduced. The signal
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Figure 5-6a. Matched filter output amplitude for 0/10 = 0.5.
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Fiqure 5-6b. Matched filter output amplitude for D/.io = 1.0.
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Figure S-6c. Matched filter output amplitude for D/io = 2.0.
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Figure 5-6d., Matched filter output amplitude for D/Jt0 = 5.,0.

115




energy arriving at longer delays is preferentiatly suppressed by the
antenna, For D/lo equal to 5.0, the output.signal looks almost flat with
very little distortion of the matched filter output, However, the output
signal amplitude is 10 dB smaller on the average than it was without
antenna filtering., Also, the 'decorrelation time or distance of the
signals is seen to increase a§ the antenna filtering increases.
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APPENDIX A
PHASE VARIANCE DUE TO ELECTRON DENSITY FLUCTUATIONS

A relationship between the phase variance imparted on the wave
as it propagates through the ionization layer and the electron density
fluctuations will be derived in this appendix. This relationship is given
by Equation 2-51 which was derived using the Markov approximation.
However, it will be shown here that the relationship requires only that
the layer thickness be large compared to the decorrelation distance of the
electron density fluctuations along the line-of-sight.

[t was shown in Section 2 that the total phase change of the
wave as it propagates through the ionization layer is

¢ = reX<ne> f E(B,z,t)dz . (A-1)

The autocorrelation function of the phase fluctuations is then

+» > L L +> >
<4(p,t)8(p't")> = (rAcn >)? cf) dz (f)dz' <g(p,z,t)E(p',2',t')> (A-2)
where L is the thickness of the scattering layer. For spatially and
temporally stationary random electron density fluctuations, the expecta-
tion must be a function of the differences A;, z-2' and At only. Denoting
the autocorrelation of E(B,z,t) by BE(AS,z-z',At) and the autocorrelation
of 6(P,t) by B¢(A3,At), Equation A-2 becomes

. LL
8p,8t) = (r Xn >)2 [ dz [ dz' B
€ o o0

B E(As,z-z',At) . (A-3)

o
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This double integral may be reduced to a single integral by changing the
order of integration with the result

L
> _ 2 -+
B¢(Ap,At) = (rex<ne>) L { (1 - Izl/L)Be(Ap,z,At)dz . (A-4)

If the correlation distance of Be(AB,z,At) along the 2z direction
is small compared to L, then BE(AE,Z,At) will become small before 'z'/L
approaches unity in the integral and the 'z'/L term may be ignored. The
limits of the integral may then be set to * = and the integral reduces to

B. (8p,8t) = (rdn 2L [ 8 (8p,z,A0t)dz . (A-5)

¢ o &

The remaining integral is denoted by A(AE,At) so the autocorrelation of
the phase fluctuations is

&> _ . 2 >
B¢(Ap,At) = (rex<ne>) L A(ap,At) (A-6)

which is the same as the final expression in Equation 2-51.




APPENDIX B
SIGNAL PARAMETERS FOR K=" ELECTRON DENSITY FLUCTUATIONS

In this appendix, the expansion coefficients Ay and A; are
calculated using the quadratic approximation of the correlation function
A(Bd) of the electron density fluctuations and usina the delta layer
approximation. From these coefficients, the phase variance, decorrelation
distance, and the coherence bandwidth of the signal incident on the piane
of the receiver are written in terms of physical parameters. However,
these signal parameters are computed from a disturbed ionosphere mode)
using the more general formalism of Wittwer (1979, 1980) which accounts
for the finite thickness of the scatterina region and other complicating
effects. The purpose of this appendix is only to illustrate the depend-
ence of the signal parameters on geometrical and electron density fluctua-

| tion parameters.

A power-law form of the PSD for the three dimensional electron

density fluctuations is assumed:

3/2 2
8 LrLSLt<Ane>P(n)

4 ¢ (E) = (8~1)
4 3 2 + + +n
<> T(n-3/2)(14K LK)
where
1 _ _
i Li 0 0
* 2
= B-2
L 0o L, (B-2) -
0 L L2 i3
’ yz z .
."4
1 - - “
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The scales Lr, Ls’ Lt and Ly, Lz‘ Lyz are defined in Section 2.6 in
terms of the outer scale Lg, the penetration angle v, and the axial

ratio q. The root mean square value of the electron density fluctuations
is <An§>. For KoLK > 1, OE is proportional to K'Z". Thus a K=* PSD for
the three dimensional electron density fluctuations corresponds to the

n =2 case.

The correlation function A(Ed) under the delta layer approxi-
mation is given by Equation 2-70 which is reproduced here:

A(Sd) = (2n)-2 {i exp(igl-zd)og(glsz=0)dZEl . (2-70)

Using Equations B-1 and B-3 and performing the angular integral, Equation
8-3 reduces to
_ o > .+ .-> 1/2
- avn qéLor(n)<AnZ> JolPg El pg) /% ul
A(pd) = f u du
I‘(n-3/2)<ne>2 0 (1+u2)n

/7 as ,\A2¢~>;>- + > >
- 77 Qfg(n-1)<tng> (od'gl-od)(n 1)/e Kn-l[(pd’El‘pd)l/z] (8-3)
2"‘3r(n-3/2)<ne>2

where Jo is the Bessel function of order 0, Kn_1 is the modified Bessel
function of order n-1, ;L is a 2x2 matrix containing the x-y components
of f, and § is defined in Equation 2-69.

For all values of n except n = 2, A(pq) can be expanded in a

power series of the form

AB) = ARl (x/L )T + (yL )21™?) (8-4)
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where m = min(2,2n-2). For n = 2, A, does not exist unless an inner scale
1i is imposed. This is accomplished by truncating the integral over u

in Equation B-3 at a cutoff u = e'l where € is chosen to be 11/L0. For
values of n greater than 2, the J, Bessell function in the integrand of
Equation B-3 can be expanded and the resulting series can be integrated
term-by-term, The first two terms of the expansion give

277 q8L_T(n)<an?>
A, = 0 e [1-1/(1+e72)""] (8-5)
r(n-3/2)<ne>2

and

Ay = (=)L [1e(n-1)e7?) . (8-6)

a(n-2)[(1+4e72)"1 1)

In the limit that n = 2, the A; coefficient becomes
2 -
2) ) 2

(te LIS (8-7)

In(l+e”
-2

Az
4¢

This expression can be further reduced in the limit that ]i « L0 to
Ay = 1n(L0/11)/2 . (B-8)

Now the phase variance, the decorrelation distance, and the
coherence bandwidth can be written in terms of geometrical parameters and
electron density fluctuation parameters. Using Equation 2-52, the phase
variance due to the structured ionization is

2 . 2,002 }
o, * quLOLG(reA) <en.> (B-9)

where L6 is the thickness of the delta layer. The decorrelation distance
and the coherence bandwidth are defined in Equations 2-78 and 2-79
respectively, Using these definitions,
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2,2
2(zt+zr) LO

22 = (B-10)
0 2 2
ztln(Lo/li)o¢
and
2m A(z +z )L
_ 0 t r"o
Weoh . (B=11)

2
kztz'jn(Lo/li)o¢

These equations are only valid for the delta layer approxima-
tion, for the quadratic phase structure approximation and for a K=" three
dimensional electron density fluctuation PSD. 1t can be seen from the
equations that the values of 20 and w.op 2re only weakly dependent on the
inner scale 1j.
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