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Abstract 

A generalized likelihood ratio test is known to be able to reliably detect a signal 

known except for amplitude in incompletely characterized colored non-Gaussian 

noise, although it is computationally intensive. A Rao efficient score test is proposed 

as a computationally simpler alternative. The Rao test shares all the asymptotic 

properties of the generalized likelihood ratio test for large data records and small 

signal amplitudes. Its detection performance is asymptotically equivalent to that 

obtained for a similar detector designed with a priori knowledge of the unknown 

noise parameters. Computer simulations of the performance of the Rao detector 

support the theoretical results. A Rao detector built with the knowledge of the 

true form of the noise PDF is shown to significantly outperform a detector which 

assumes the noise to be Gaussian. 



I. Introduction 

Detection of a weak signal in noise is a problem of general interest, having been 

addressed by previous researchers. The problems studied range from detection of a 

completely known signal in known white Gaussian noise [Van Trees 1968] to detection 

of an unknown signal in unknown colored non-Gaussian noise. An attempt to solve the 

latter problem has been made recently by Kay and Sengupta [1986, 3]. It was assumed 

that the signal is known except for its amplitude which can be positive or negative. The 

problem is cast as testing of composite hypotheses and a generalized likelihood ratio 

test (GLRT) [Kendall and Stuart 1979] is employed to solve it a using parametric rep- 

resentation of the noise statistics. The GLRT is found to be particularly well-suited for 

this problem in that it has many attractive asymptotic properties such as consistency, 

unbiasedness and constant false alarm rate (CFAR). It is also asymptotically optimal in 

the sense that knowledge of the unknown noise parameters would not improve its per- 

formance provided the data record length is sufficiently large. However the GLRT has 

a serious disadvantage, namely, its computational complexity. It necessiates computing 

the maximum likelihood estimates (MLE) of all the unknown parameters under both 

the hypotheses. Computing the MLE of the signal amplitude is particularly difficult in 

the presence of other unknown parameters. 

This paper proposes a Rao efficient score test [Rao 1948] as an alternative to the 

GLRT for the detection problem discussed above. The Rao test is shown to be equiva- 

lent to the GLRT when the signal amplitude is small. Consequently, it is also equivalent 

in performance to a clairvoyant Rao detector, which assumes the noise parameters to be 

known. It greatly reduces the computational complexity of the GLRT without sacrific- 

ing its optimality properties. A coimection is established between the Rao detector and 

a locally optimal (LO) detector which assumes the polarity of the signal and the noise 

parameters to be known. Computer simulations support the theoretical predictions of 

the asymptotic performance of the Rao detector. 



The paper is organized as follows. Section II introduces the Rao test as an asymp- 

totic approximation to the GLRT. Section III presents two different noise models and 

defines the GLRT for each one. Section IV derives the corresponding Rao tests. Sec- 

tion V discusses the performance of the Rao test and compares it to the LO detector. 

Section VI derives the Rao detectors for the special cases of autoregressive (AR) noise 

with Gaussian and mixed-Gaussian distributions. Section VII reports the results of 

computer simulations and Section VIII sumarizes the main results. 

II. GLRT and Rao Test 

Let {ui,U2,--- ,UN} be a set of independent and identically distributed [i.i.d.) 

random variables each having a probability density function (PDF) /(u; 0) depending 

on the q-dimensional parameter vector e = [9i 62 ••• 9q]'^. Consider the following 

composite hypothesis testing problem 

where 0r and 0^ are r and 5-dimensional parameter vectors, respectively, with r+s = q. 

0 is an r-dimensional vector of O's. 0^ is assumed to be unknown. It is sometimes called 

the vector of nuisance parameters. The GLRT [Kendall and Stuart 1979] for testing 

(1) is to decide ^i if 
N 

^0 = ^f >^ (2) 
max JJ/(u„;O,03) 

"■   n=X 

for some threshold 7. Let 0^ and ©^ be the MLE's of 0^ and 0^ under }li and 0s be 

the MLE of 0^ under ^o- Denoting the likelihood function by 

N 

£(0„0,) = J];/(u„;0„03), 
n=l 
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the statistic (or likelihood ratio) for the GLRT can be written as 

The quantity 

^^_ £{er,Qs) 

i:(o,03) 

K(O„0,) = —lni:(0„0,) 

(3) 

is defined as the efficient score for the parameter &{ and 

V(0„0,) = [7i(0„0,)72(0„03) ••• V;(0„0,)]^ 

is the vector of efficient scores for the parameter vector 0^. It follows from the asymp- 

totic properties of the MLE that under regularity conditions of the PDF [Kendall and 

Stuart 1979] V(0^, 0^) is asymptotically of the form 

V(0„0,)=I(0„0,)(0_0) (4) 

where 0 is the MLE of 0 and 

mr,e,)]ij = -E 
d^ 

ddidOj \ni:{Qr,Os) i,J = l,2,' (5) 

which is the {i,j) element of the Fisher information matrix.   Integration of (4) with 

respect to 0 results in [Cox and Hinkley 1974] 

i:(0r,0a) = Cexp --(0-0)^1(0,,0,)(0-0) (6) 

where C is a constant not dependent on 0. The numerator and denominator of (3) 

correspond to the maximum of the right hand side of (6) under ^/i and Mo, respectively. 

The maximization with a few asymptotic arguments yield [Kendall and Stuart 1979] 

yeild 

1 
£G = 

exp 
1A 
O^I©,Q,(O,0,)0, 

(7) 



ISrOr (©rj ©s) is the r xr partition of l(0r, ©s) corresponding to the parameter vector 

©r or 

[l0.e.(©r,©.)],, = -i? 
_5^ 

lni:(0,,0,) »,i = i,2,. 

Therefore for large data records (asymptotically) it follows from (7) that 

2ln£a = B^l6.e.(O,0.)0r (8) 

This result was proved rigorously by Wald [1943]. An alternative approximation of £G 

can be made by rewriting (6) the following way by using (4) 

i:(©„03) =Cexp 

The approximation of IQ is 

to = exp 

where Vr(©r, ©a) is the r x 1 partition of V(0r,0a) corresponding to 0r, 

V,(0„03) = [^i(0.,O,) V2[Qr,Qs) •■■ V;(0„0,)]^ 

and J(0r, ©a) is the r X r partition of l~^(0r, ©s) 

J(0., 0,) = [lo^e. (©., Qs) - le.e, (©r, ©ajleje. (©r, ©3)l|,©, (©r, 0a)] "'     (11) 

The terms in the brackets of are found by partitioning the Fisher information matrix 

-^V^(0„ 0a)I-^(©r, ©a)V(0„ ©a) 

ivnO,0a)J(O,0a)V,(O,0a) 

(9) 

(10) 

for0 

I(©) 
■le.0.(0r,©a)      le.0,(0r,©a) 

.l0,0.(©r,©3)     l©,e.(0r,©a) 
(12) 

and the partitions are defined as 

l0.©.(©r,©.) = ^ 

l©.e,(©r,0a)=i? 

d\nf\fd\nf 

dQr JV ^©r 

d\nf\/dlnf 
dQr J \ dOs 

le,eAQr,Qs)=ll^eAQr,Qs) 

T        (p^   p> \- jr   idlnf\fd\nf^ ^ 
50., a©. 

r xr 

r X s 

s xr 

s X s 

5 



This definition of the information matrices is equivalent to the previous definition (5). 

From (10) it follows that the following test statistic proposed by Rao [1948] is asymp- 

totically equivalent to 2 In ic 

£fl=V,^(O,03)J(O,0,)V,(O,0,) (13) 

Rao's test for the complex hypothesis testing problem (1) is to decide }li if 

^R>i (14) 

where 7' is a suitable threshold and is equal to 2^-7 if the above asymptotic equiv- 

alence holds. The test is called Rao efficient score test since it uses the vector V^ of 

efficient score functions. Note that estimation of 0^ and Qg under "Hi is avoided by 

using the Rao test instead of the GLRT. This is an outcome of the approximation of a 

finite difference by a derivative as in (4) which holds only if the alternative hypothesis 

[Hi) tests for small departures from 0^ = 0. The computational simplicity of the Rao 

test makes it quite attractive for the composite hypothesis testing problem described 

above. A more rigorous derivation is available in [Rao 1973]. 

The statistics OUR are difficult to obtain in general. For large data records (asymp- 

totically) it may be shown that both 21n£G and LR are distributed in the following 

manner [Rao 1973]. 

^R ~ Xr under ;/o (15a) 

^fl~x'^(r,A) under ;/i (156) 

Here Xr represents a chi-square distribution with r degrees of freedom and x''^{r,\) 

represents a noncentral chi-square distribution with r degrees of freedom and noncen- 

trality parameter A. Note that x'^(r,0) = xl or the distribution under MQ is a special 

case of the distribution under }lx and occurs when A = 0. The noncentrality parameter 

A, which is a measure of the discrimination between two hypotheses, is given by 

A = 0,^ [le.e, (0,0,) - le.e. (0,03)Ie;©, (0,0a)li,©, (0,0«)] 0, (16) 

6 



All the terms in the brackets of (16) are partitions of 1(0^, 0^) as given by (12). 

III. The Detection Problem and the GLRT Solution 

III A. THE GENERAL LINEAR MODEL 

Consider the following detection problem. 

;/o:y = Wu 
(17) 

^1 : y = Wu + fis 

where s = [si 52 • • • SN]"^ is a vector of known signal amplitudes, u = [ui U2 • • • «Ar]^ 

is a vector of i.i.d. noise with a symmetric PDF, /x is an unknown scalar (either positive 

or negative) and W is an invertible {N x N) matrix whose elements are functions of a 

set of unknown parameters ^ = [01^2 • • • V'M]- 

[W],y=W.-,(*) 

Since UH,   M = 1,2,-•-TV are t.i.d., the PDF of U can be expressed as 

N 

f(u;$) = ]~[/(u„;$) (18) 
n=l 

where /(u„; $) is the marginal PDF of each Un dependent on the unknown parameter 

vector $. / is assumed to be an even PDF, i.e., f{-u) — f{u). 

The linear model of (17) is capable of representing a large class of correlation 

patterns of the background noise. The assumption of a known PDF with unknown 

parameters $ adds flexibility to the model while still maintaining the parametric form. 

A detector based on this model would be insensitive to a change of polarity of the signal 

shice fj, can be positive or negative. (17) is written as the hypothesis testing problem 

Mo:e^ = [0^ 0f ] (19a) 

;/i : 0^ = [0^ 0f ] 0^ ^ 0 (196) 

7      ■ 



where 
©r = M (a scalar) 

(20) 
fc)s = [W    $  J (vector of nuisance parameters) 

The vector y is a linear function of the vector of i.i.d. random variables u under either 

hypothesis. Using this fact the joint PDF of y is found to be 

under MQ        (21a) 

N 

under yI        (216) 

where w„y(^) are elments of W"^ which are known functions of *. 

c^ny(*) = [W-1] nj 

The GLRT for testing (17) has been shown to be [Kay and Sengupta 1986, 3] equivalent 

to deciding ^i if 
N       I   N 

^^ = —r-^ ^^>'^ (22) 

n=l    \^y=i 

^, A and $ are joint MLE's of ^, /x and $, respectively, under ;/i. * and $ are joint 

MLE's of ^ and $ under ^/Q. 

IIIB. THE AR NOISE MODEL 

The detection problem for AR noise is . 

^0 : y = X 

(23) 
>/i : y = X + /is 

with 

X = [Xi  X2   ••■   XN]'^ 

8 



It is assumed that the sequence {xi,X2,-■ ■ ,XN} is the output of a p-th order all-pole 

filter excited by white driving noise or 

p 

'^n —       / ^ ^jXn—j + Uni n = l,2, ,N 

n = l,2,---,N 

Alternately, 
p 

assuming ao = 1. If the samples y_p+i,y_p+2,• • •,yo are assumed to be 0, then (23) 

can be shown to be aspecial case of (7) where W-^ is a lower triangular Toeplitz matrix 

[Kay and Sengupta 1986, 3]. The results of the previous section can then be used to 

determine the GLRT. Alternatively, the GLRT can be derived on the basis of the 

conditional likelihood function, assuming the data records to be large. The conditional 

likelihood of yp+1, yp+2 ,•••, Viv given yi, y2, • • •, y? is 

f(yp+ijyp+2,---,yiv|yi,y2,---,yp) 

n  ■'"(Z^^J/'^-y;^ under ;/o (24a) 
n=p+l     \j=Q 

N /  p 

n=p+l    \y=o 
under "Hi (246) 

The GLRT is then given by 

tr = 

N 

n=p+l    \j=Q  
N /  p 

n=p+l    \y=o 

(25) 

where hat's indicate MLE's under MQ and double hat's indicate MLE's under ){i, re- 

spectively, oo and CQ are defined to be unity. 

Computation of (22) or (25) involves evaluation of the MLE's of all the parameters 

under ^i. The Rao test, as indicated in the previous section, is able to avoid this 

computation. The following section illustrates how this is accomplished. 

9 



IV. Rao Test for the Detection Problem 

IVA. THE GENERAL LINEAR MODEL 

For the detection problem of (17) 0^ and 0^ are given by (20).  hi this case IR 

defined in (13) can be computed from the likelihood function or PDF of y (see (21)). 

It is observed that 

•ainf(y;0,,0,)- 

dQr 
V,(O,0,) 

0r=O 

^lnf(y;M,0,) 
M=0 

dfj, 

dfj, 

N N 

X{f [Yj^nAmvi - i^s^)\'^ 
H—O 

N 

n/K;^) 
n=l H=0 

since from (17) u„ can be written as 

N 

y=i 

under Mi. Therefore 
N 

n=l 

N 

^ln/(u.;$) 
Ai=0 

N    I      N 
^l—0 

/(un;$) 

(26) 

(27) 
n-l    \        jrrl 

It has been proved for the detection problem considered here (and specifically if f{u) 

is an even function) that [Sengupta 1986] under certain regularity conditions 

le.e, (0r, 0a) = I^e. (M, 0a) = 0 

10 



Hence from (11) it follows that 

N 

n=l 

N 

''"^(-*))(|7 du 

= E^ 
n=l 

N a In/ 
5Un 

».e, J"'(0,e3)=7^^(0,*,$) 

N    I      N 
J/($) (28) 

where 

J/($) = E 
a In/ 

Ai=0 

Substituting (27) and (28) in (13) 

(29) 

iR = 

N     /      N 

J2 I -Y'^r.ji^hj 
n=l   \      j=:l 

N -1 -, 2 

N    I       N 

n=l \    y=i 

(30) 

If $ is a scalar, //($) can be stored in a table as a function of the parameter. But if 

$ is a vector consisting of multiple parameters, it is a difficult task to evaluate it by 

integration for each value of $. On the other hand it is possible to use the asymptotic 

• 11 



equivalence [Kay 1985] 

If{^)=E 
r\ 2 

N 

N 

E 
n=l N 

7=1 

Substituting in (30) 

£R = 

N N 

n=l  \     j=l 

N 

,y=i  

-1 2 

iV 

N    I      N 

n=l \    y=i 

AT 

E 
n=l 

-1 2 

In the case of white noise 

^ Jl,    n = y, n,y = 1,2,-••,AT 
0>    ^T^y, n,j=l,2,---,iV 

^nj = 

and (31) reduces to 

tR = 

N 

n=l 

r(yn;$) 
/(yn;$) 

\n=l        /  n=l 

r(y.;$) 
f[yn-M 

as obtained by Kay [1985] 

IVB. THE AR NOISE MODEL 

(31) 

12 



The parameter vector in the AR noise case is . 

©r = M (a scalar) 

©8 = [a    $  J (vector of nuisance parameters) 

In this case it is easier to use the conditional likelihood functions given by (24). The 

vector of efficient score functions is found to be 

V,(O,0.) = -1„ 

dfj. 

N 

n ^   X^«y(yn-y -M5n-y);^ 
n=p+l     \j=0 

N 

n /K;^) 
/i=0 

n=p+l 

where u„ can be written from (23) as 

p 

/i=0 

u 
j=0 

imder Mi. Hence 

AT 

V,(O,0,)=   Yl 
n=p+l 

N 

= E 
n=p+l 

AT 

^ln/(u.;$) 

dun\ (  d 
djX J \dun 

p 

M=0 

ln/(u„;$) 
M=0 

n=p+l  \    j=0 dUr 
ln/(u„;$) 

/x=0 

w- 

n=p+l \    y=o /(un;$) 
M=0 

(32) 

(33) 

For the case of AR noise it has been proved that for f(u) an even function and under 

certain regularity conditions [Sengupta 1986] 

le.e. (e„ 03) = I^©. {n, 0,) = 0 

13 



Hence from (11) 

N 

= E^ 
n=p+l 

N 

= E^ 
i.e., J"'(O,0.)=/;.;.(O,a,$) 

N 

dUn dfj. 

y=o 

a In/ 
5u„ 

J/($) (34) 

where J/($) is as defined in (29). Substituting (33) and (34) in (13) 

iR^ 

N 

J2     \-J2^J^n-j 
n-p+1   \    j=0 

3=0 

N       I      p 

n=p+l \    y=o 

(35) 

As before, evaluation of the integration involved in J/($) can be avoided by the asymp- 

totic equivalence 

J/($) = E 

N-p 

N 

E 
n=p+l 

-. 2 

\y=o 

14 



Substituting in (35) 

tR = 

N       I       p 

n=p+l   \     j=0 

-, -, 2 

Vy=o 

\y=o 

N-p 

N       I       V 

n=p+l  \    y=o 

N 

E 
n=p+l 

Vy=o  

\y=o 

(36) 

Either (35) or (36) can be convenient for use depending on the number of unknown 

PDF paxameters. 

V. Asymptotic Performance of the Rao Detector 

Asymptotic distributions of IR under }{Q and Mi are given by (I5a) and (156), 

respectively. For the general linear model Qr = tJ- and 0^ = [^^ $^]^ while for the 

AR noise model 0r = // and 0^ = [a^ $^]^. Therefore in either case the noncentrality 

parameter is 

A = /x2[/^^(0,03) - I^©. (0,0a)le;@. (0,03)lJ@. (0,0,)] 

= M%^(O,03) 

since I^e. (0,0^) = 0, as indicated before. The probability of false alarm 

(37) 

is 

PFA = P{^R>l'm (38a) 

and the probability of detection is 

15 

(386) 



Both the probabiHties can be calculated from the tables of noncentral and central chi- 

square distributions, respectively. 7' can be set to produce a given false alarm rate and 

PD caji be calculated accordingly. 

It is known that the GLRT for the detection problems considered here is asymp- 

totically optimal in the sense that its performance is equivalent to that of a clairvoyant 

GLRT built with perfect knowledge of 63 provided the data record is large [Kay and 

Sengupta 1986, 3]. This result applies to the Rao test as well, since it is asymptotically 

equivalent to the GLRT. The clairvoyant Rao test assumes that ^ and $ are known or 

that from (30) 

^RC = 

n=l \    y=i 

^J=l 

N 

N     /       N 
(39) 

E -E^-yW^y   ^im 
n=l  \    y=i 

for the general linear model and in the AR noise case 

^RC = 

N 

E   "E^y^'^-y 
n=p+l  \     y=o 

j=0 

N 

-, 2 

(40) 

E -E^y^n-;|     J/($) 
n=p4-l   \    j=0 

Note that all the parameters are assumed to be known.   Asymptotically IRC is dis- 

tributed as 

^RC ~ Xr under ^0 (41a) 

tRC-x'^[r,\,) under ^1 (416) 

16 



where 

A, = 6,^10^0,(0,03)0, 

As indicated before, A and A^ are asymptotically equivalent for both the models con- 

sidered in this paper. Therefore 

A = Ac = M^ J;.^(0, 0,) (42) 

For the general linear model substitution of (28) in (42) produces 

2" 

A a'lfi^) (43) 

while in the AR case (35) can be substituted in (42) to obtain 

A = 
n=p+l  \    y=o 

O'lfi^] (44) 

a^ is the variance of u„ and has been added to facilitate the interpretation of A. The 

noncentrality parameter is found to dependent on the noise PDF only through the 

quantity a^If, assuming all the PDF's under consideration have the same variance. 

It is knovm that this quantity is greater than unity for all non-Gaussian PDF's [Kay 

and Sengupta 1986, 1]. For a Gaussian PDF c^Ij = 1. Therefore all other parameters 

remaining the same, a non-Gaussian noise background will produce a larger value of 

A than a Gaussian background, leading to a larger probability of detection. It can 

be shown that for non-Gaussian and Gaussian noise backgrounds with identical power 

spectral densities (PSD), a^If is the ratio of the SNR necessary in the Gaussian case 

to the SNR necessary in the Gaussian case, in order to produce a given probability 

of detection [Kay and Sengupta 1986, 3]. Section VII reports the results of computer 

simulations which illustrates this. 

It is of interest to notice the connection of the Rao detector with a locally optimum 

(LO) detectors [Middleton 1966], [Czarnecki and Thomas 1984]. A LO detector for the 

17 



detection of a known signal with unknown but positive amplitude in known colored noise 

maximizes the probability of detection in the neighborhood of // = 0 and is represented 

by the statistic 

TLO = Hm — Inf (y; fx, Q,) (45) 

with usual notations. The test decides Mi if 

TLO > ILO 

where 71,0 is an appropriate threshold. An equivalent test is to decide ^/i if 

;7j^^=nc,>7io = -r/Vw^ (46) 

Since the performance of the Rao detector is asymptotically equivalent to a correspond- 

ing clairvoyant detector, it is possible to do a comparison on the basis of known nuisance 

parameters. From (13), IRC is given by 

^RC = [V,^(0, 63)J(0,03)V,(O, 03)] 

d "'^ 
^lnf(y;O,03) 

which is observed to be the square of T'^Q. TLO is Gaussian for large data records 

[Middleton 1966] while ZRC is chi-square distributed with a single degree of freedom. 

Therefore for a given probability of false alarm the locally optimal detector will have 

a slightly larger probability of detecting small amplitudes of signal. This makes intu- 

tive sense, because (46) is a one-sided test while GLRT and the Rao detectors allow 

for positive and negative amplitudes of the signal. This is an example of trading off 

performance m order to make the test two-sided. This comparison applies to the case 

of known nuisance parameters only. In the case of unknown nuisance parameters the 

LO detector is not defined, while the Rao detector exists and achieves the performance 

of a clairvoyant detector asymptotically.   Furthermore, the LO detectors for positive 

18 



and negative values of /i are different (i.e., the inequality is reversed for negative am- 

plitudes) and hence they are impractical in situations where the polarity of the signal 

can change. 

VI. Rao Test for Gaussian and Mixed-Gaussian Noise 

VIA. THE GAUSSIAN CASE 

The Rao detector is now derived for the special case of the zero mean Gaussian 

noise. Attention is restricted to AR noise only because of the abundance of available 

results [Bowyer 1979], [Kay 1983]. In this case $ = a^, a scalar, and 

f{un;cr^) 
V^ 

2a2 
Tra-' 

such that 

(47) 

Substituting (47) in (35) and using the fact that If{o^) = l/a^ for a Gaussian PDF, 

'-R 
n=p+l J = l y=i 

N 
(48) 

where 

n=p+l  \ j=i 

1 ^ 
N-p 

n=p+l 

and the estimates are obtained under ^o or assuming the signal to be absent. 

Figure 1 shows the block diagram of the Rao detector. In the Gaussian case the 

least squares estimators are known to be close to the MLE and hence any of the least 

squares techniques (such as the autocorrelation method, the covariance method, the 
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Forward/backward method and so on) [Kay 1986] can be used to produce the estima- 

tors in (48). The numerator appears to be a prewhitener-correlator [Van Trees 1968] 

except for the squaring required to make the test two-sided. The denominator serves 

to normaUze the statistic so that a constant false alarm rate (CFAR) is maintained 

asymptotically. Note that it is not necessary to estimate jj, or to assume a prior value 

for it. Also, assuming oi, 02, • • •, Op = 0 or white noise will result in the square a sim- 

ple correlator or a matched filter in the numerator of tu, which is known to be the 

uniformly most powerful (UMP) test for the detection of a known signal in white noise 

[Van Trees 1968). In the case of the general linear model the moving average (MA) 

filter with transfer function A{Z) defined by 

P 

A[Z) = l + ^ajZ-^ 

will have to be replaced by an inverse transformation W~^ 

VIB. THE MIXED-GAUSSIAN CASE 

The mixed-Gaussian PDF is particularly useful in representing a special class of 

non-Gaussian noise processes, namely, a nominally Gaussian background contaminated 

with occasional impulses [Sengupta and Kay 1986, Ij. The PDF is given by 

f{ur.;al,ale) = ^^e\   ^^IJ + ^.^e\   2a| 

where e is a mixture parameter and 0 < e < 1. The subscripts B and / are used to 

denote background and interference, respectively. An alternative formulation of the 

PDF is 
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where p = c7J/a%. Assuming p » 1, one can allow for a wide range of amplitudes and 

frequencies of occurence of spikes by appropriately choosing p and e. The Rao detector 

proposed in this paper is suitable for the mixed-Gaussian PDF (since it is symmetric) 

and therefore is applicable to many sonar and radar detection problems where the noise 

background contains impulses resulting from reverberation and clutter, respectively 

[Kay 1983]. The Rao detector for mixed-Gaussian PDF is now derived. Once again 

only the AR noise case is considered. It is assumed that cr| and p are known, so that 

$ = e, a scalar. From (49) it follows that 

/(wn; e) (7% 

V2^ 
24; + 

pyj2'Kpo\ 
2pa% 

. \/2^ 

u: ut 

24, + 
u 

\Jl-npo 
2pa\ 

= ~zrr(wn;e) (50) 

where r(u„;€) represents the term in the brackets. Note that (50) differs from (47) 

only by the weighting function Y{un\ e) which suppresses the high values of u„ [Kay 

and Sengupta 1986, 2]. In the Gaussian case e = 0 and r(un;0) = 1 for all Ur,. The 

weightmg function r(«n;e), which is an even function of u„, thus accounts for the 

non-Gaussian nature of the PDF. In the mixed-Gaussian case, IR can be calculated by 

substituting (50) into (35) 

iR = 

J2      ^^ + I]%-5„_y        y„ + Ylajyr,^,-    F    y„ + f^a.yn-j; e 

-I 2 

;=i j=i y=i 

iv 

n=p+l  \ y=i 

(51) 

Note that F and If depend on the value of e.   Figure 8.2 shows the block diagram 

corresponding to (51) and has two apparent differences with Figure 1 (the Gaussian 
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detector). These are the blocks used to compute T and If. Substitution of cr|, T and 

If by a^, 1 and l/a^, respectively, would lead one back to the Gaussian case described 

by (48) and Figure 1. The function T can be replaced by a suitable approximation, 

such as the Butterworth function to avoid computation of the exponentials. The MLE's 

can also be replaced by a reasonably accurate estimator, {e.g., a. weighted least squares 

estimator) [Kay and Sengupta 1986, 2]. With all these simplifications (51) would pro- 

duce a detector which will reduce computation substantially without a significant loss 

of performance. 

Vn. Computer Simulations of Performance of the Rao Detector 

This section reports the results of computer simulations of the performance of the 

Rao detector. The clairvoyant Rao detector is considered to be one basis of comparison, 

while the theoretical or asymptotic performance is regarded as another. Two AR noise 

processes are selected for computer simulations. The corresponding parameters are 

listed in Table A. Process I is broadband while process II is narrowband. A mixed- 

Gaussian process with (T| = 1, p = 100 and e = 0.1 is chosen as the driving noise, e is 

assumed to be imknown and so estimated, while a% and p are assumed to be known. 

The known part of the signal, i.e., Sn, n = 1,2,-•• ,N is assumed to be unity, /x 

is adjusted to yield different values of SNR in the following way. The theoretical noise 

variajice is, as obtained from (49), 

a2=a|[(l-e) + ep] (52) 

The noise power Pn of the AR process can be obtained from the stepdown procedure 

using 0-2 and the process parameters [Kay 1986]. The signal power (actually the signal 

energy) is the defined as 

Pe=NtJ,^ 

Defining SNR to be the ratio of P^ and P^ (which represents the SNR at the output 
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of a correlator), it follows that 

{SNR)Pr, 
^ = V        AT (53) 

Thus fx is calculated for a given process such as to produce a desired SNR. N, the 

number of data points is chosen to be 1000. A probability of false alarm PpA = 0.01 is 

used to evaluate the detection performance. The value of 7' necessary for this is 6.635, 

as obtained by a search routine so as to satisfy PFA = 0.01. 

In order to evaluate the asymptotic performance of the Rao test, the noncentrality 

parameter A = Ac as given by (44) is calculated from n for each value of SNR as per 

(53). For the chosen values of the PDF parameters, a^If is calculated by numerical 

integration and is found to be 9.0. PD as defined by (386) is computed from a table 

using the values of A and 7' obtained previously. 

The theoretical value of the threshold 7', as described above, is used for the Rao 

detector. This requires one to verify of the theoretical predictions of the asymptotic 

statistics of (.R under MQ in order to use the theoretical threshold. Computer simulation 

results based on 1000 experiments with 1000 data points each using the theoretical 

threshold in the absence of the signal result in a false alarm in 11 cases for process I 

and 10 cases for process II, corresponding to an experimental false alarm rate of 0.011 

and 0.01, respectively, which are very close to the true value of 0.01. This is expected, 

since the MLE's when MQ is true are expected to be more accurate than the MLE's 

when ;/i is true (since the MLE's are computed under the assumption that MQ is true). 

Therefore the use of a theoretical threshold is justified and convenient. The statistic 

IR is computed from (51) for 500 different blocks of data, each of length N = 1000, 

for a given SNR. The number of times the statistic exceeds 7', scaled by 500 (the 

number of experiments), is regarded as the experimental value of the probability of 

detection. This is repeated for different values of SNR in a suitable range (so as to 

observe the transition from Pp = 0 to Pp = 1). The MLE of the AR filter parameters 
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involved in (51) under ^o are replaced by the two-stage weighted least squares estimator 

proposed by the authors [Kay and Sengupta 1986, 2] to reduce computation and avoid 

convergence problems for short data records. Once these parameters are estimated, e 

is computed as 

'.=~rZ-i P-I  V<T2 B 

from the prediction error power a^ of an MA filter fed by the observed data with 

coefficients ai, 02, • • • Op (see (52)). J/(e) is computed for each e from a stored table by 

interpolation. T hi the numerator of ER is replaced by the Butterworth approximation 

f{u)=       ^'   ^+K, 
1+ 

u 

m order to reduce computation. The parameters Ki, K2, Uc and /3 are selected to 

approximate T over the range of e. 

The statistic £RC for the clairvoyant Rao test, as defined by (40), is computed 

in a similar way using true values of all the parameters. This is used to determine 

the probability of detection {PD) of the clairvoyant Rao detector for each SNR via 

computer simulations. 

Figure 3 plots the probabilities of detection of the Rao detector and the clairvoyant 

Rao detector along with the theoretical or asymptotic performance vs. SNR for the 

noise process I. Figure 4 plots the same for the noise process II. The three curves 

exhibit remarkable similarity for each process. It can be concluded that (15) and 

(38) adequately represent the performance of the computationally efficient detector 

proposed in this paper, all the approximations incorporated, even for moderately sized 

data records. 

The performance of the Rao detector is now compared to that of a Gaussian Rao 

detector. A Gaussian Rao detector (defined by (48)) is computationally much simpler. 

The purpose of comparing these two detectors is to show how much one can lose as a 
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result of an incorrect Gaussian assumption about the driving noise. All least square 

estimators are close approximations to the MLE if the PDF is assumed to be Gaussian. 

The covariance method is used to obtain the estimates involved in (48). The same 

theoretical threshold 7' is used. (Computer simulations based on 1000 experiments 

with 1000 data points each using the theoretical threshold indicate for process I an 

experimental false alarm rate of 0.009 which is close to the true value of PFA)- The 

experimental threshold for process II is found to be 0.012 PD is calculated from the 

number of times (out of 500 independent trials) IR exceeds 7'. iV = 1000 is used 

and PD is computed for different values of SNR in a suitable range. Figures 5 and 

6 plot the resultant experimental performance of the Gaussian Rao detector in the 

same scale with those of the mixed-Gaussian Rao detectors, actual and asymptotic, 

for the two noise processes described before. They indicate a substantial degradation 

in performance as a result of the Gaussian assumption of the driving noise. It is also 

observed that the performance of the Gaussian Rao detector matches the predicted 

asymptotic performance of a Gaussian Rao detector in Gaussian noise having equivalent 

variance. This can be explained in the following way. Since it is assumed that s„ = 

1, n = 1,2, •••,iV     (48) can be written as 

IR = 

N       / p ^ --^ 

n=p+l  \ j=i 
(54) (7V-p)a2 

Assuming the estimates of the AR filter parameters to be reasonably accurate, the 

term in the parantheses is approximately the nth sample of the driving noise which is 

assumed in this case to be mixed-Gaussian. By Central Limit Theorem arguments the 

sum of N - p such random variables scaled by {N - p)d'^ has a Gaussian PDF with 

variance one assuming a^ to be close to the variance of the said mixed-Gaussian PDF. 

Therefore the asymptotic statistics of IR in this case will be the same as what it would 

have been if the noise were Gaussian with the same variance. It can be concluded 

that the asymptotic statistics of the Gaussian Rao detector in mixed-Gaussian noise is 

25 



represented by (15) and (44), despite modeling error. However this conclusion holds 

for large data records and small D.C. level signal amplitudes only. A large value of /j, 

is expected to cause a significant degradation of performance of the LS estimators so 

that the above interpretation of (54) is no longer valid. A short data record will make 

the Central Limit Theorem inapplicable. Comparing the asymptotic performances of 

the Gaussian and non-Gaussian detectors, cr^ Jy is found to describe quantitavely the 

improvement of the mixed-Gaussian detector over the Gaussian detector when the true 

noise actually fits the mixed-Gaussian model and the signal is a D.C. level. Figures 5 

and 6 show a constant difference of approximately 10 dB between the performances of 

the Gaussian and mixed-Gaussian detectors which matches the theoretical prediction 

of 9.6 dB (since <7^ J/ « 9 in this case). 

Vin. Stimmary 

The Rao efficient score test proposed in this paper is found to be well suited for 

the problem of detecting a weak signal of unknown amplitude in the presence of col- 

ored non-Gaussian noise of unknown PDF and PSD parameters. Since the Rao test is 

asymptotically equivalent to the GLRT, it shares all the attractive asymptotic prop- 

erties possessed by the GLRT. It greatly reduces computation by completely avoiding 

estimation of the unknown parameters under ^i. The Rao detectors were derived for 

Gaussian and mixed-Gaussian background noise processes. The performance of the 

Rao detector is found to be equivalent to that of a clairvoyant Rao detector built with 

perfect knowledge of the nuisance parameters. The experimental performance matches 

the theoretical predictions of the asymptotic performance for large data records. A 

detector which assumes the noise PDF to be Ga\issian, while it is actually not so, is 

found to be much inferior in performance. 
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Table A: Parameters of the AR processes used for simulation 

Process 

n 

Ol 

-1.352 

-2.760 

02 

1.338 

3.809 

03 

-0.662 

-2.654 

04 

0.240 

0.924 

poles 

0.7exp[y27r(0.12)] 
0.7exp[y27r{0.21)] 

0.98exp[y27r(0.11)] 
0.98exp[j2;r(0.14)] 
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Figure 1   Block diagram of Rao detector for Gaussian noise 
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