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INTRODUCT ION

The modifications of surface waves by a depth-varying current
field are described mathematically by the inviscid Orr-Sommerfeld
equations of hydrodynamic stability (Peregrine (3)). The solution of
these equations 1s required to derive the wave parameters of interest
(the amplitude, frequency, direction, and wavelength of the wave).
This solution can be difficult to obtain, even numerically.

An alternative approach to the analysis of the modifications of
surface waves by depth-varying current flelds 1s developed here. The
approach 1s based on an approximate dispersion relation for wave-
current interactions derived from the governing Orr-Sommerfeld equations
(Skop (5)) coupled with the wave kinematic/wave action formulation of
surface wave propagation (Bretherton and Garrett (1), Crapper (2)).
The approach is particularly useful in that it focuses directly on the
wave parameters of interest and eliminates the requirement to solve
the inviscid Orr-Sommerfeld equations to derive these parameters.

The validity of the approach is demonstrated by comparisons with

exact Orr-Sommerfeld solutiomns.

THE GOVERNING EQUATIONS

Let t deonote time and let x|, x3, and z define a Cartesian
coordinate system with z = 0 as the undisturbed free surface of the water
column and decreasing with depth. Within some reglion of this space, a
current field is imposed. The horizontal components of the current
field are denoted by Uy and U and the vertical component by W. The
current fleld is allowed to vary in space and time.

A surface wave 1is taken to propagate from some reglon of space

where the current field vanishes into the reglon of space where the

WL n"! \-\ -.-\ RV AN PR -:\‘-‘._-',.u RGN .
P - n -
“




)
S, current field is imposed. We wish to ascertaia how the surface
wave 1s modified by the curreant fleld.

We assume only that the Imposed current fleld varies slowly in the
Q” "~ horizontal coordinates and time relative to the wavelength and period
of the surface wave. Then, as viewed by the surface wave, the imposed

current field appears to vary oanly 1in the z coordinate over at least

:}i
2*‘ several wavelengths of propagation or periods of oscillation of the
‘(-
surface wave. Further, under the slowly varyling assumption, the
Ay
g? continuity equation for the Imposed current field appears locally as
RS
~¥’ dW/9z = 0 to the surface wave. Hence, as viewed by the surface
’i,n‘_
wave, W can be put equal to zero without loss of generality.
&;’ We denote the velocitlites and pressures assoclated with the surface
'¢| ’
?’, wave as u¥, u¥, w¥, and p* and write the total fluid velocities and
o
%!
pressure as the sum of those quantities associated with the surface
QQ wave and those quantities assocliated with the iImposed current field.
L1
a‘q Substituting the total fluid velocities and pressure into the Euler
‘
i
equatlons, linearizing with respect to the surface wave quantities,
AKX
$$¢ and applying the slowly varyiag assumption to the imposed current field,
4,
R
.* we find the equations that govern the local variations of the surface
i:!.l
) wave as
o, * *
fo aul du, ow
,,x =+ ——— $ === =0 (la)
:ga dx] 9xp 3z
[
NN
:'lt.' au’: But Bu’l‘ au, 1 Bp*
:%5' ===+ U} ===+ Uy === +t wk === = =~ - ——o (1b)
0::": it Ix] 3xy 9z p Ix)
'4.5‘0
o 3u; au; au; v, 1 ap*
gg‘ ===+t U] === + Up === +t Wk === = = « ——o (lc)
‘\‘: » at x| 2 9) dz p Ixy
‘hh
e
. 2
R
,\;I:, ..".“. H}..:-q. 0 _)\ _1-'1 ' I , 'r (' ~ '\(t{-\:p \ A ::\ 2ONS - ‘.--_,:."N_‘-’;:f ‘h*'\ - '4"(‘-/ '.:'- o Y
ATERNNS LR IR R s R T R A e



! : w* aw* aw* 1 3p*
-—— + U} === 4+ Uy == = = = === (1d)
- at x| Ixy p 3z

, -
: ‘ where p specifies the density of the water. At the mean free
[

’ surface z = 0, the local kinematic and dynamic boundary conditions on the
G;.'.
2?5 surface wave are obtained as
ALY
'S? * * *
tst’ an an an %
et ===+ U ===+ Uy === -w =0 (2a)

ot Ixy Ix2
o
o
N 2. % 2. %
94n I4n

:. p* - pgn* + v (-o5=+ ==5-) = 0 (2b)
W Bxl Ix;
.*l‘
;%,{ Here, n* is the elevation of the surface wave, g is the acceleration due
;5} to gravity, and v is the coefficient of surface tension.

. We seek wavellke solutions to equations (1) and (2) as
‘i-..
L=

50 x
Ezi u; = uy(2) expli(kyxy + koxy = wt)] (3a)
A %*
8 uy = uy(z) explilk x; + koxy - wt)] (3b)
gt %*
ﬁ%: w = w(z) exp[i(klxl + koxy = wt)] (3c)
‘Fh p* = p(2) expli(kyx] + koxgy = wt)] (3d)
A *
A n =n exp[i(klxk + kzXz - wt)] (3e)
b
: t where kj and k) are the components of the wave number vector of the surface
Yoy

*E wave and where w I8 its radlal frequency. In accord with the slowly

varying nature of the imposed current fileld relative to the surface wave, xj,

.:2 ko, w, and the amplitude functions of equations (3) can vary with x;, x3,

1IN

h 2 and t but, again, only slowly over at least several wavelengths of propaga-

e

- tion or periods of oscillation of the surface wave. Substitutlag equations

R

%

Y

:ﬁﬁ 3

o
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! approach to the analysis of the modification of surface waves by depth-

i varyling current fields. The approach 1s particularly useful in that it

-;l;' focuses directly on the wave parameters of interest and eliminates the
1
-\# ] requirement to solve the inviscid Orr-Sommerfeld equations to derive these
1)
:g:, parameters.
we
1:..;' AN APPROACH TO THE ANALYSIS OF THE MODIFICATION OF SURFACE WAVES BY
WY
1. 50
"y DEPTH-VARY ING CURRENT FIELDS
’h‘,
& The Wave Kinematic Equations
.
.J‘
j:. The surface wave phase function ¢ is defined by
:::
i
¢ = kyx] + koxg - wt (6)
o
bo
:z-' Recalling that k), kp, and w are slowly varying funcitons of xj,xp, and
1]
2 t, we have
94 3 3¢ 36
;E: kl = ——— kz T m—— W= = —-— (7)
3¢ Xy 3)(2 at
"
b,
)
e Taking the mixed second derivatives of ¢, we find the wave kinematic
i'
o equations as
]
>
.‘.
_ ok ok 9
A ——— - === =0 (8a)
N 9% ) Xy
a
e
hRX 9k, 3w
_ -a---— + 5-— = 0 (8b)
! t X1
3 .
7
" 3k dw
——= ¢ === =0 (8¢c)
at 3)(2
[
t;
[} .
'1'
VT,
." 5
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Equations (8) are not linearly independent and serve to determine only two

of the three phase measures. The dispersion relation for the surface

wave is required to complete the wave kinematic equations.

An Approximate Dispersion Relation for Wave-Current Interactions

Following some algebra, equations (4) can be reduced to a single

equation for w as

2y, 2%,
kyj==n= + ko-->-
32y 222 322
-—E-—(k2+ Yw=0 (9)
az klUl + szz - W

wherz we have denoted the absolute value of the wave number vector by
k = (k% + k%)llz. Similarly, equations (5) can be reduced to a single

condition on w at the mean free surface z = 0 as

ow

2
(k Uy + koUy - w) s; =
) k2 au; U,
k(g + -;-) + (kyU; + kU, - w)(klgg— + “25;‘”‘” (10)

Equations (9) and (10) can be further simplified by introducing the
effective current fleld U defined by
ky k2

U==--U; + == U (11)
kK Tk 2

Denoting the surface wave celerity by ¢ = w/k, we then find

22 (k2 4 e Yw=0 (12a)

while, at the free surface,

e '_;. o . E
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, W k2 YY)
(U=-¢c) -=[(g+—=)+(U-¢) ==]w (12b)
9z o dz

Let us assume, for the moment, that the magnitude of the effective
current fileld U is smaller than some characteristic celerity cp of the
surface wave. We can then write

U=¢ecoU (13a)
where U is a dimensionless velocity of order unity and where € is a

dimeansionless smallness parameter. Also, we can seek perturbation

solutions for ¢ and w as

C=C0+ €C1+ eee (13b)

w=wyt ewp e, (13c)

Substituting equations (13) into equations (12) and equating like powers

of €, we find the boundary value problem for wg as

aZWO
2
——— -k wo = Q0 (ll‘a)
3z2
2 awo Ykz
cg === - (g + —==)wy =0 at z =0 (14b)
9z o}

and that for w) as

2%, ) X4l
-=>= = k%W = - === w, (15a)
322 3z2
2 ow Ykz
ch ==~~~ (g + —~=)w, =
03 BTN
_ awp au
2¢n(cql = ¢4y) === = ¢c§ -~ w, at z = 0 (15b)
0% 1) 3 0 35 ¥0
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The solution to equation (l4a) that vanishes as z + —= ig .
K
k)
)
Y vy = ekz (16a)
N
K
B and, from equation (1l4b), we find
[}
.
A cg = o(k)/k (16b)
0
X where
y o(k) = gk (1 + ---)1/ (17)
. eg
We recognize o(k) as the dispersion relation for the surface wave
3 in a region of space where the current field vanishes and cg as the
a
12 surface wave celerity in this same reglon of space. Further, we see
"
: that our assumption that the effective current field U is smaller than
: co 1s satisfied for very long deepwater waves (k + 0) and for very
Y
2 short caplllary waves (k + =), If surface tension is neglected, the
B>
b assumption is still satisfied for very long deepwater waves.
K Substituting for wg in equation (15a) and using variation of
)
' parameters, we obtain the particular solution for wj as o
Y
* wz 2
w, =-e % [ --¢ & 4t (18a)
Ly 1
o —w OF
$
and, from equation (15b), we find, after some algebraic manipulation and
integratlon by parts,
¥
4
N
.? 0 _ 2K
:: ¢y = 2%k cg [ U ez (18b)
) -a0
L]
0
b
8
-ﬂ‘-,ll-’ rv(‘.'\,' hat B ﬁfu‘.—..-'.-'.,{ -"‘fs’-f"&\f ‘\'- « S .‘\ -“ “N « -
1S4 A% <7 3 ) : S IOLnLS N
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Substituting equations (16b) and (18b) into equation (13b) and using
equation (13a), the perturbation solution for the surface wave celerity
is determined as
o(k) 0
c = ———+ 2k [ Ue2kzZ 4, (19)
k —o

and replacing the effective current field U by 1ts definition from equation

(11), we find the approximate dispersion relation

w=o(k) + 2k [k; fo v e?% 4z + k, fo U, e?KZ 4z] (20)
—oo -

Equation (20) was first derived by Stewart and Joy (6) and later modified to

account for water of finite depth by Skop (5). Skop also noticed that

equation (20) was not limited to very long deepwater waves or very short

caplllary waves. For, on integrating equation (20) repeatedly by parts,

one obtains

1
w= o(k) + (kyUyg + kolUpg) = (== ~==- $om oo ) + 0(=) (21)
1715 7 227257 7 "ok ez 2k 3z K
where the subscript "S" denotes the current and its derivatives at the free )
surface. Equation (21) is, through terms in the surface shear, identical
to the asymptotic dispersion relation obtained by Peregrine and Smith (4)
for short gravity or gravity-capillary waves (k >> 1) riding on a depth-

varylng current field. Hence, equation (20) provides a doubly asymptotic

. approximation to the exact dispersion relation for surface waves on a
depth-varylng current fleld.
determine the three phase measures -- kj, k2 and w -~ for the surface

0
Given a specified current field, equations (8) and (20) serve to i
Y
[}
L]
wave throughout x1, x2 and t. To complete the analyslis of the modifications :

\

'

O




of the surface wave by a depth—-varying current field, an expression allowing

the calculation of the surface wave ampli*ude n is required.

The Wave Action Equation

The surface wave action function A is defined by
A =E/o (22a)

where E, the energy density of the wave, is given by

1 vic?
E = = pgn2(l + ——=) (23a)
2 og

The wave action obeys the conservation law

A : (cg1A) i (cgoA) = 0 (24)
at  oax; B ax, = B2

Here, cgl and cg2 are the components of the group velocity of the surface

wave and are found from the dispersion relation as

Jw dw (25)
Cg] = === , Cgp = ===
8l 7 3y 82 " 3k,

Equation (24) was originally derived by Bretherton and Garrett (1) on
the basis of Hamiltonian dynamics. A more physically motivated derivation
of this equation can be found in Crapper (2).

Equation (24) provides the required expression for determining the

surface wave amplitude n throughout x;, x2 and t.

Remarks

Equations (8) are purely kinematical in nature whereas equation (24) {is

purely dynamical. The accuracy of the approach that has been developed




here for the analysis of the modifications of surface waves by depth-
varying current fields thus depends entirely on the accuracy of the
approximate dispersion relation defined by equation (20). This disper-
sion relation appears in two contexts in the approach: first, to complete
the wave kinematfic equations and second, to determine the components of
the group velocity that arise in the wave action equation.

As has already been noted, equation (20) is asymptotic to the exact
dispersion relation for waves on a depth—varying current field for long
deepwater waves (k + 0) and for short gravity or gravity—capillary waves
(k >> 1). Hence, the overall accuracy of the approximate dispersion
relation is determined by {ts ability to mimic the exact dispersion relation
at intermediate wave numbe.:.. Skop (5) has demonstrated, by example, that
this ability is excellent for two depth-varying current fields for which
Taylor (7) obtained exact dispersion relations in his study of hydraulic
breakwaters. The first of these was a uniform current extending from
the surface to some depth d, while the second was a uniformly sheared
current extending from the surface and vanishing at some depth d.

We wish to examine here a significantly more complex depth-varying
current field than either of the two current fields previously considered

by Skop.

THE SUBMERGED JET '

We consider the depth—varying current field defined by

11
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a 0 0>z > ~-aod ]
; |
ﬂ:‘. Up z

W ———la + =] ~ad > z > -d .
‘{ l-a d

U = (26a)

W Uo z

R - —=[2 -a+ -] -d>z>~=(2-a)

2 l-a d

3

i

0 (2 -a)d >z

"

@

i

“

"

i

"

Us =0 (26b)

[

2

,-".

' As shown in Figure 1, this current field represeants a.symmetric submerged

. jet. The maximum velocity in the jet is -Up and occurs at z = —d.

'

: The width of the jet is 2d(1 - a) and the jet velocity goes to zero

f: at z = ~ad and z = =2(2 - a)d. If one desires, the jet can be

| thought of as a model of an internal wave trapped at a thermocline.

K

.O

o 0,0 ——> U,

o«

v

i:‘ -ad

t,l.

|

' |
", - |
o “Uo .
¢ »

o

49 - (2-a)d N
B

X)

K Figure 1. Schematic of the current field characterizing a symmetric

7, submerged jet.
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We take a surface wave propagating from x = —» into the jet.
Then, in the surface wave phase function, we can put k; = k and kg = 0
without loss of gemerality. We also assume, for this example, that
. surface tension is unimportant and set the coefficient of surface
tension Y = 0. Substituting equations (17) and (26) into equation

(20), we obtain the approximate dispersion relation as

Q= V¢ - ___E-___ e=20K[1 = 20~2(1-a)x 4 o=4(1l=a)k]

2(1 = a) (27)

where the dimensionless frequency 2, dimensionless wave number «x,

and the Froude number F are defined by
Q=+Vd/g w, « = kd, F = Up//gd (28)

The exact dispersion relation for the submerged jet is derived in the

Appendix. We find it satisfies the fifth order polynomial in Q

P5Q5 + p494 + p3Q3 + pznz +p2+py=0 (29)
where
ps = 6(1 = a)3 (30a)
pa = 2(1 - a)zF {[e-Z(l_G)K - Z]e-’ZK + 2(1 - G)K + e-2<xl<} ‘
(30b)
py = (1 = a) [2F2[(1 - @)k - 1 + e~2(17a)x)
+ 2F2[(1 - a)ke=2(1=a)k 4 o=2(1-a)x _ 1]e—2x
- F2(1 + e~20K)(e=2(1=a)x _ 2) ¢=2(1-a)k
+ F2(2(1 = a)k = 1](1 + e~20%) ~ 4(1 - a)2«}
(30¢)
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py = F{2(1 - @2x[e=2(1-0)x _ g o=2¢
- 2(1 - &)2¢2(1 - @)k - 1]
- F2(1 + e~20K)[(1 - a)k e—2(1-a)k
+ e~2(1=a)k ~ 1}e-2(1-a)k

+ F2(1 + e720K) [(1 = a)k ~ 1 + e—2(1-a)K)

+ 2(1 - )2 k(e~20¢ - 1)} (30d)

pp = (1~ ) F2 {2k [ (1-a) ke "2 (1-a)x
+ e-z(l"a)l( - 1]e'2'<
- k(e~2ac - 1)[e~2(1l~a)k - 2]e~2(1-a)k
- 2k[(1 - o)k -1+ e-z(l—a)K]e—ZaK

+ k[2(1 - @)k = 1](e~2a¢ ~ 1)} (30e

pO = F3K(e—2“K - 1)[(1 - a)Ke-A(l‘G)K

+ e~4(1=a)k 4 (1 = a)k - 1] (30

As mentioned previously, the roots of equation (29) as a function of
« for fixed values of a and F provide information on both the
dispersion relation for the surface wave and the stability of the imposed
current field. The root that is relevant as being the dispergion relation
for the incoming surface wave is identified by its asymptotic behavior
from equation (21) that @ + vk as k + =,

Figures 2, 3, 4, and 5 show comparisons of the approximate and exact
dispersion relations for the symmetric submerged jet. In Figure 2, the
comparisons are made for a = 0 and values of F = 0,25, 0.50, and 1.00
which represent a progressively stronger jet. In Figures 3, 4, and 5, the
value of F is fixed (at 0.25, 0.50, and 1.00, respectively) and a takes

the values a = 0.00, 0.05, and 0.20 which represent a progressively
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Figure 2. The dispersion relation for water waves on a symmetric
submerged jet as a function of the Froude number F with the submergence
parameter a = 0. Increasing values of F correspond to progressively
stronger jets. Exact solution (——); approximate solution (---).
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Figure 3. The dispersion relation for water waves on a symmetric sub-

merged jet as a function of the submergence parameter a with the Froude
number F = 0.25. Increasing values of a correspond to progressively
narrower jets. Exact solution (—); approximate solution (---).
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Figure 4. The dispersion relation for water waves on a symmetric sub-
merged jet as a function of the submergence parameter o with the Froude
nuuber F = 0.50. Increasing values of a correspond to progressively
narrower jets. Exact solution (—); approximate solution (---).
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Figure 5. The dispersion relation for water waves on a symmetric sub-
merged jet as a function of the submergence parameter a with the Froude
number F = 1.00. Increasing values of a correspond to progressively
narrower jets. Exact solution (—); approximate solution (---).
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narrower jet. In each figure, the dispersion relation @ = /E,
applicable to a region where the current field vanishes, is shown for
reference.

The general observation to be made from Figures 2 through 5 is that
the approximate dispersion relation provides a highly satisfactory
representation to the exact dispersion relation for the submerged jet
throughout wave number space. The representation is best for the weakest
and widest jets and degrades with increasing jet strength and decreasing
jet width.

A second observation to be made from these figures is that a totally
submerged current field can appreciably modify the dispersion relation
for a surface wave vis—a—vis its dispersion relation in a region where the
current field vanishes. This fact could have important implicatiomns for

the understanding and interpretation of oceanic features sensed by radar.

CONCLUSIONS

An approach has been developed for the analysis of the modifications
of surface waves by depth-varying current fields. The approach is based
on an approximate dispersion relation for wave—current interactions derived
from the governing equations of the problem (the inviscid Orr—-Sommerfeld
equations) coupled with the wave kinematic/wave action formulation of
surface wave propagation. The wave kinematic/wave action formulation
arises purely from kinematic and dynamic considerations; hence, the
accuracy of the approach depends entirely on the accuracy of the approx-
imate dispersion relation with respect to the exact dispersion rela-
tion. We have demonstrated here and elsewhere (Skop (5)) that the

approximate dispersion relation provides a highly satisfactory repre-
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sentation to the exact dispersion relation for a variety of depth-

varying current fields ranging from simple to complex {n structure.

The approach is particularly useful in that {t focuses directly

on the wave parameters of {anterest (the amplitude, frequency, direction,

and waveleng+th of the wave) and eliminates the requirement to solve the

inviscid Orr-Sommerfeld equations to derive these parameters.
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APPENDIX —— DISPERSION RELATION FOR THE SUBMERGED JET

With Uy = 0 and k; = k, the effective velocity U defined by equation
(11) becomes U = Uj. Noting from equation (26a) that 8201/322 = 0,
equation (12a) for the vertical velocity component w becomes

2y

3z2
Since U; = 0 and 3U;/3z = 0 at the free surface, the boundary condition

there {s, from equation (12b) with y = 0,

2 ow
cé —— = gw at z = 0 (A2)
9z
Discontinuities in the velocity gradient of the submerged jet occur at

z=-od, =d, and =(2 - a)d. Across these discontinuities, the

vertical velocity and the pressure must be continuous. Hence, we have

ow 3U1
w and (U] -¢) =—— = -——w (A3)
9z 9z

must be continuous at z = - ad, - d, and -(2 - a)d.

We seek solutions for equation (Al) as

ajef? + bje 2 0>z > -ad
azek(z+ad) + bze"“(2+°d) -ad > z > d

T azek(z¥d) 4 o~k (z4d) -d>z>-(2-a) o
aaek[2+(2_°)d] -(2 -a)d >z

where aj through a; and b; through b3y are constants of integration. Apply-
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ing the boundary and continuity conditions specified by equations (A2)
and (A3), recalling that ¢ = w/k, and introducing the dimensionless

parameters defined by equation (28), we find

WK

Qz(al - bl) = K(al + bl) (A5a)

ale—a" + ble(‘K = 82 + bz (ASb)
- F

Q(ale ax - blem() = 9(82 - b2) + Z"l‘"")‘ (32 + b2) (ASC)
-

ape™(1m% 4 b (lmx ooy, (A5d)

(Fx + sz)[‘,_.ze-(l--m)'< - bze(l-a)K]

b [agem(10)k bye(1-®x]
(1-a)
F
= (Fx + @) (a3 - b3) - ——-= (a3 + b3y) (ASe)
(1-a)
a3e—(l_u)K + b3e(1—a)K = a, (ASf)
Q[a:;e-'(l-'o‘)'< - b3e(1_°)K] - [a3e"(1""’)'<
(1 -a
+ by 179K} =g 5 (ASg)

Elimination of the constants of integration from equations (AS) leads to

¢ the exact dispersion relation given by equation (29).
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