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INTRODUCTION

The modifications of surface waves by a depth-varying current

field are described mathematically by the inviscid Orr-Sommerfeld

equations of hydrodynamic stability (Peregrine (3)). The solution of

these equations is required to derive the wave parameters of interest

(the amplitude, frequency, direction, and wavelength of the wave).

This solution can be difficult to obtain, even numerically.

An alternative approach to the analysis of the modifications of

surface waves by depth-varying current fields is developed here. The

approach is based on an approximate dispersion relation for wave-

current interactions derived from the governing Orr-Sommerfeld equations

(Skop (5)) coupled with the wave kinematic/wave action formulation of

surface wave propagation (Bretherton and Garrett (1), Crapper (2)).

The approach is particularly useful in that it focuses directly on the

wave parameters of interest and eliminates the requirement to solve

the inviscid Orr-Sommerfeld equations to derive these parameters.

The validity of the approach is demonstrated by comparisons with

exact Orr-Sommerfeld solutions.

THE GOVERNING EQUATIONS

Let t deonote time and let xl, x2 , and z define a Cartesian

coordinate system with z = 0 as the undisturbed free surface of the water

column and decreasing with depth. Within some region of this space, a

current field is imposed. The horizontal components of the current

field are denoted by Ul and U 2 and the vertical component by W. The

current field is allowed to vary in space and time.

A surface wave is taken to propagate from some region of space

where the current field vanishes into the region of space where the

1
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current field is imposed. We wish to ascertain how the surface

wave is modified by the current field.

We assume only that the imposed current field varies slowly in the

horizontal coordinates and time relative to the wavelength and period

of the surface wave. Then, as viewed by the surface wave, the imposed

current field appears to vary only in the z coordinate over at least

several wavelengths of propagation or periods of oscillation of the

surface wave. Further, under the slowly varying assumption, the

continuity equation for the imposed current field appears locally as

3W/3z - 0 to the surface wave. Hence, as viewed by the surface

wave, W can be put equal to zero without loss of generality.

We denote the velocitites and pressures associated with the surface

wave as ul, ul, w*, and p* and write the total fluid velocities and

pressure as the sum of those quantities associated with the surface

wave and those quantities associated with the imposed current field.

Substituting the total fluid velocities and pressure into the Euler

equations, linearizing with respect to the surface wave quantities,

and applying the slowly varying assumption to the imposed current field,

we find the equations that govern the local variations of the surface

wave as

au' au~ aw
--- I + --- 2 ___. 0 (1a)
3xI 3x2 3z

au auau au I ap
-- U2 --- + w* (Ib)

at 3xI  3x2 az P 3Xl

aua* au~ *U 1u aj *

--- + U1 --- 4 U2 --- . w* (1c)
at axI  ax2  az P ax2

2



aw 3w aw I ap
t ax+ ax 2  az)

where p specifies the density of the water. At the mean free

surface z = 0, the local kinematic and dynamic boundary conditions on the

surface wave are obtained as

* a + * * ,

--- + U l -+ U2--- x2 w 0 (2a)
at '3x 1  ax2

a* * 
2 * a2n *

p - pgn + y (--- + ---- 0 (2b)
DX2  ax2
1 2

Here, n* is the elevation of the surface wave, g is the acceleration due

to gravity, and y is the coefficient of surface tension.

We seek wavelike solutions to equations (1) and (2) as

u, u1 (z) expli(kixl + k2lE2 - wt)1 (3a)

u*
2 = u2 (z) exp[ti(kl1x + k 2% 2 - 0t) (3b)

w= w(z) exp[li(k 1x I + k 2x 2 - wt)] (3c)

p*= p(z) exp[i(klx I + k2x2 - wt)] (3d)

n= n exp[i(klxk + k2x2 - Wt) (3e)

4, where kI and k2 are the components of the wave number vector of the surface

wave and where w is its radial frequency. In accord with the slowly

varying nature of the imposed current field relative to the surface wave, KI,

A% k 2 , w, and the amplitude functions of equations (3) can vary with xl, x2,

and t but, again, only slowly over at least several wavelengths of propaga-

tion or periods of oscillation of the surface wave. Substituting equations

3
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approach to the analysis of the modification of surface waves by depth-

varying current fields. The approach is particularly useful in that it

focuses directly on the wave parameters of interest and eliminates the

requirement to solve the inviscid Orr-S'mimerfeld equations to derive these

parameters.

AN APPROACH TO THE ANALYSIS OF THE MODIFICATION OF SURFACE WAVES BY

DEPTH-VARYING CURRENT FIELDS

The Wave Kinematic Equations

The surface wave phase function 0 is defined by

* = klxl + k 2x 2 - wt (6)

Recalling that k I, k 2 , and w are slowly varying funcitons of X1 ,x2, and

t, we have

k, =-- , k2 . . (7)
axI  3x2  Dt

Taking the mixed second derivatives of *, we find the wave kinematic

equations as

3ki 3k2
- - --- = 0 (8a)

ax2  axI

akl aw 8b
-- --- = 0 (8b)
at axi

ak 2  a w--- + --- = 0 (8c)

at ax 2

I5



Equations (8) are not linearly independent and serve to determine only two

of the three phase measures. The dispersion relation for the surface

wave is required to complete the wave kinematic equations.

An Approximate Dispersion Relation for Wave-Current Interactions

Following some algebra, equations (4) can be reduced to a single

equation for w as

a 2 U1  a 2 U2
kI .... + k2 -

a2w 3z2  az2
-- (k2  + ) w = 0 (9)2  k1U1 + k 2 U2 - w

where we have denoted the absolute value of the wave number vector by

k - (ki + k2) I/2 . Similarly, equations (5) can be reduced to a single

ft' condition on w at the mean free surface z = 0 as

(klUl + k2U2 _ W)2 aw

, az

2 yk2 aU1  U2
[k (g +---) + (klU1 + k2U2  w)(kl--- + k2--))w (10)

Equations (9) and (10) can be further simplified by introducing the

effective current field U defined by

kI  k2

U = -- U1 + -- U2  (11)
k k

Denoting the surface wave celerity by c = w/k, we then find

a 2 U

a2w  
3z2

--- - (k2 .----- ) w w 0 (12a)3 z2  U - c

while, at the free surface,

6
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(U-C) w Yk2  a
(U~)2-- [(g + --- ) + (U- c) -- ] w (12b)

3z P 3z

let us assumne, for the moment, that the magnitude of the effective

current field U is smaller than some characteristic celerity co of the

surface wave. We can then write

U = C cO (13a)

where Uis a dimensionless velocity of order unity and where c is a

dimensionless smallness parameter. Also, we can seek perturbation

solutions for c and w as

c = co + Ec1 + .. (13b)

w -wo + ew1 + .. (13c)

Substituting equations (13) into equations (12) and equating like powers

of C, we find the boundary value problem for w0 as

-k wO - 0 (14a)
322

2 aw0  yk2

co--- (g + --- )wo = 0 at z =0 (14b)
Iz P

and that for wl as

k l - - Wo (15a)

aw yk2

2
3 w1
co -- (g + ---)w1

2co(coU -i - - 2o --U at z 0 (15b)
3z a0 -w

7
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The solution to equation (14a) that vanishes as z + -o is

w0 = ekz (16a)

and, from equation (14b), we find

c o = a(k)/k (16b)

where

yk
2

oCk) = g-k (1 + -)1/2 (17)
Pg

We recognize a(k) as the dispersion relation for the surface wave

in a region of space where the current field vanishes and co as the

surface wave celerity in this same region of space. Further, we see

that our assumption that the effective current field U is smaller than

co is satisfied for very long deepwater waves (k + 0) and for very

short capillary waves (k + -). If surface tension is neglected, the

assumption is still satisfied for very long deepwater waves.

Substituting for w0 in equation (15a) and using variation of

parameters, we obtain the particular solution for w I as

z aU
S ez f -- e' k  d& (18a)

and, from equation (15b), we find, after some algebraic manipulation and

integration by parts,

0
c 2k c o f D e 2 kZdz (18b)

8
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Substituting equations (16b) and (18b) into equation (13b) and using

equation (13a), the perturbation solution for the surface wave celerity

is determined as

a(k) 0
c .....- + 2k f U e2kz dz (19)

k -W

and replacing the effective current field U by its definition from equation

(11), we find the approximate dispersion relation

0 0
w = a(k) + 2k [k1 I U1 e

2kz dz + k2 f U2 e
2kz dz] (20)

Equation (20) was first derived by Stewart and Joy (6) and later modified to

account for water of finite depth by Skop (5). Skop also noticed that

equation (20) was not limited to very long deepwater waves or very short

capillary waves. For, on integrating equation (20) repeatedly by parts,

one obtains

kz aUl k2 3U2s 1
W = a(k) + (klUIS + k 2U 2 s) - (-- ---- ) + 0(-) (21)

2k az 2k Iz k

where the subscript "S" denotes the current and its derivatives at the free

surface. Equation (21) is, through terms in the surface shear, identical

to the asymptotic dispersion relation obtained by Peregrine and 9mith (4)

for short gravity or gravity-capillary waves (k >> 1) riding on a depth-

varying current field. Hence, equation (20) provides a doubly asymptotic

approximation to the exact dispersion relation for surface waves on a

depth-varying current field.

Given a specified current field, equations (8) and (20) serve to

determine the three phase measures -- k I , k 2 and w -- for the surface

wave throughout xl, x2 and t. To complete the analysis of the modifications

9
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of the surface wave by a depth-varying current field, an expression allowing

the calculation of the surface wave amplil-ude n is required.

The Wave Action Equation

The surface wave action function A is defined by

A = E/o (22a)

where E, the energy density of the wave, is given by

yk2

E Pgn 2 (l + --- ) (23a)
2 p.. " Pg

The wave action obeys the conservation law

3A a a
-- + --- (cglA) + -- (cg2A) = 0 (24)
at ax1  3x2

Here, cgl and cg2 are the components of the group velocity of the surface

wave and are found from the dispersion relation as

cgl-- ' cg2 = -- (25)

Equation (24) was originally derived by Bretherton and Garrett (1) on

the basis of Hamiltonian dynamics. A more physically motivated derivation

of this equation can be found in Crapper (2).

Equation (24) provides the required expression for determining the

surface wave amplitude n throughout xl, x2 and t.

Remarks

Equations (8) are purely kinematical in nature whereas equation (24) is

purely dynamical. The accuracy of the approach that has been developed

10
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here for the analysis of the modifications of surface waves by depth-

varying current fields thus depends entirely on the accuracy of the

approximate dispersion relation defined by equation (20). This disper-

sion relation appears in two contexts ii the approach: first, to complete

the wave kinematic equations and second, to determine the components of

the group velocity that arise in the wave action equation.

As has already been noted, equation (20) is asymptotic to the exact

dispersion relation for waves on a depth-varying current field for long

deepwater waves (k + 0) and for short gravity or gravity-capillary waves

(k >> 1). Hence, the overall accuracy of the approximate dispersion

relation is determined by its ability to mimic the exact dispersion relation

at intermediate wave numbe-,. Skop (5) has demonstrated, by example, that

this ability is excellent for two depth-varying current fields for which

Taylor (7) obtained exact dispersion relations in his study of hydraulic

breakwaters. The first of these was a uniform current extending from

the surface to some depth d, while the second was a uniformly sheared

current extending from the surface and vanishing at some depth d.

We wish to examine here a significantly more complex depth-varying

current field than either of the two current fields previously considered

by Skop.

THE SUBMERGED JET

We consider the depth-varying current field defined by

11
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0 0>z>-ad

UO z
---[a + -] -ad > z > -d
1 -a d

U1 - (26a)
UO zJ -- [2 - a + -] -d > z > -(2 - a)d
1-a d

0 -(2 - a) d > z

U2 = 0 (26b)

As shown in Figure 1, this current field represents a symmetric submerged

jet. The maximum velocity in the jet is -U0 and occurs at z - -d.

The width of the jet is 2d(l - a) and the jet velocity goes to zero

at z = -ad and z = -2(2 - a)d. If one desires, the jet can be

thought of as a model of an internal wave trapped at a thermocline.

0,0 0U,

-ad

-2 (-a)d

Figure 1. Schematic of the current field characterizing a symmetric

submerged jet.

12
O ' e I -a-a

INi ,I



We take a surface wave propagating from x = -m into the jet.

Then, in the surface wave phase function, we can put kI - k and k2  0

without loss of generality. We also assume, for this example, that

surface tension is unimportant and set the coefficient of surface

tension y = 0. Substituting equations (17) and (26) into equation

(20), we obtain the approximate dispersion relation as

Q = F- --- F - __ e 2 aK[ I - 2e2(l_ )K + e 4 (1a)KI

2(1 - ai) (27)

where the dimensionless frequency S, dimensionless wave number K,

and the Froude number F are defined by

= Vd/g w, K = kd, F = UO/gd (28)

The exact dispersion relation for the submerged jet is derived in the

Appendix. We find it satisfies the fifth order polynomial in 0

p5 Q
5 + P4Q4 + P3 3 + P2Q2 + Pla + PO = 0 (29)

where

P 5 
= 4(1 - a)3  

(30a)

P4 = 2(1 - a)2F {[e -2( I - )K - 21e - 2 K + 2(1 - a) K + e - 2 a K

(30b)

P3  a( - ){2F2[(, - c)I - 1 + - 2 ( 1 - a ) K

+ 2F2 [(l - a)Ke- 2 (l-)K + e-2(l-) -_ lle-2K

- F2 (I + e-2aK)(e - 2 (I -a)K - 2) e - 2 (l - a)K

+ F2 12(I - ))( - I(I + e- 2 xK) - 4(1 - c)2 K}
(30c)

13
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P 2  F{2(1 - a)2 '[e-2 (l-a)c - 2] e - 2

-2(1 - a) 2 K[2(l - a)K - 1]

- F2(l + e-2aK)[(l - a)ic e-2(l-a)K

+ e- 2 (l-a)K - le-2(l-a)c

+ F2(l + e-2aK)[(l - )K - 1 + e-2(1-a)K ]

+ 2(l - a) 2 K(e- 2 a K - 1)} (30d)

p1 = (1 - )F2{2K[(l-)ie - 2 ( l - L) K

+ e-2(l-a)K - lle-2K

- i(e-2aK - l)[e-2(l-a)K - 2]e-2(l-a)

- 2K[( - a)K - 1 + e- 2 (l-a)K~e-2aK

+ K[2(1 - a)K - l](e - 2 a K - l)} (30e)

PO - F3 K(e- 2 aK -1[,-aKe-4(l-) KP0  i e - l)[(l - ) e la I

+ e - 4 (l - ) K + (I - M)K - 11 (30f)

As mentioned previously, the roots of equation (29) as a function of

K for fixed values of a and F provide information on both the

dispersion relation for the surface wave and the stability of the imposed

current field. The root that is relevant as being the dispersion relation

for the incoming surface wave is identified by its asymptotic behavior

from equation (21) that 9 + K-as K + -.
*.i

Figures 2, 3, 4, and 5 show comparisons of the approximate and exact

dispersion relations for the symmetric submerged jet. In Figure 2, the

comparisons are made for a - 0 and values of F - 0.25, 0.50, and 1.00

which represent a progressively stronger jet. In Figures 3, 4, and 5, the

value of F is fixed (at 0.25, 0.50, and 1.00, respectively) and a takes

the values a- 0.00, 0.05, and 0.20 which represent a progressively

14
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3.6

3.0-

2.4
0.25

C) 1.8 0.50
No Current 10

F1.80

0. 0
0 1 2 3 4 5 6 7 8 9 t0

K

Figure 2. The dispersion relation for water waves on a symmetric
submerged jet as a function of the Froude number F with the submergence
parameter a = 0. Increasing values of F correspond to progressively
stronger jets. Exact solution (-); approximate solution (---).

3.

F =0.25

2.4

f (Y 0.00

1.2

0.6

0.0 -
0 1 2 3 4 5 6 7 8 9 10

K

Figure 3. The dispersion relation for water waves on a symmetric sub-
merged jet as a function of the submergence parameter a with the Froude
number F = 0.25. Increasing values of a correspond to progressively
narrower jets. Exact solution (-); approximate solution (---).
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3.

F--0.50

3.0-

2. 4-

1.8- No Crret02

1.2= 0.0 5

0.6

0 1 2 3 4 5 6 7 8 9 10

K

Figure 4. The dispersion relation for water waves on a symmetric sub-
merged jet as a function of the submergence parameter a with the Froude
nu.ber F = 0.50. Increasing values of a correspond to progressively
narrower jets. Exact solution (-); approximate solution (---).

3. 6

F 1.00

3.0

2. 4

0 1 No Cr 0.20
0.0

1.2

UU' 0..

K

Figure 5. The dispersion relation for water waves on a symmetric sub-
merged jet as a function of the submergence parameter a with the Froude
number F = 1.00. Increasing values of a correspond to progressively
narrower jets. Exact solution (- ); approximate solution (---).
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narrower jet. In each figure, the dispersion relation fl -

applicable to a region where the current field vanishes, is shown for

reference.

The general observation to be made from Figures 2 through 5 is that

the approximate dispersion relation provides a highly satisfactory

representation to the exact dispersion relation for the submerged jet

throughout wave number space. The representation is best for the weakest

and widest jets and degrades with increasing jet strength and decreasing

jet width.

A second observation to be made from these figures is that a totally

submerged current field can appreciably modify the dispersion relation

for a surface wave vis-a-vis its dispersion relation in a region where the

current field vanishes. This fact could have important implications for

the understanding and interpretation of oceanic features sensed by radar.

CONCLUS IONS

An approach has been developed for the analysis of the modifications

of surface waves by depth-varying current fields . The approach is based

on an approximate dispersion relation for wave-current interactions derived

from the governing equations of the problem (the inviscid Orr-Sommerfeld

equations) coupled with the wave kinematir/wave action formulation of

surface wave propagation. The wave kinematic/wave action formulation

arises purely from kinematic and dynamic considerations; hence, the

accuracy of the approach depends entirely on the accuracy of the approx-

imate dispersion relation with respect to the exact dispersion rela-

tion. We have demonstrated here and elsewhere (Skop (5)) that the

approximate dispersion relation provides a highly satisfactory repre-

17
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sentation to the exact dispersion relation for a variety of depth-

varying current fields ranging from simple to complex in structure.

The approach is particularly useful in that it focuses directly

on the wave parameters of interest (the amplitude, frequency, direction,

and wavelength of the wave) and eliminates the requirement to solve the

inviscid Orr-Sommerfeld equations to derive these parameters.
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APPENDIX - DISPERSION RELATION FOR THE SUBMERGED JET

With U2 -0 and kl - k, the effective velocity U defined by equation

(11) becomes U -U 1 . Noting from equat-ion (26a) that a 2 U1/azL 2 0,

equation (12a) for the vertical velocity component w becomes

--- k w- 0(Al)
3Z2

Since U1 = 0 and alUl/az = 0 at the free surface, the boundary condition

there is, from equation (12b) with y =0,

aK.

c2--= gw at z - (A2)

Discontinuities in the velocity gradient of the submerged jet occur at

z o d, -d, and -(2 - cx)d. Across these discontinuities, the

vertical velocity and the pressure must be continuous. Hence, we have

wand (U1 - c) --------w (A3)
3z az

must be continuous at z -- ad, - d, and -(2 -a)d.

We seek solutions for equation (Al) as

ak(z+ad) + b 2ek(+ad) -agd > z > -d

kaz~d + b eczd -d > z > -(2 -a)da~3

a4ekz(ad -(2 - a)d > z

where a1 through a4 and bl through b3 are constants of integration. Apply-
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ing the boundary and continuity conditions specified by equations (A2)

and (A3), recalling that c = w/k, and introducing the dimensionless

parameters defined by equation (28), we find

Q2(,- b1) = i(al + bl) (A~a)

ale- l + ble K= a2 +b 2  (A~b)

~ZaeK - be)=(a -b) (a2 + b2) (A5c)
SI~ a i - a - i e " ) SI( 1 -a )

a2e -Ia + b2e (1 K= a3 +b 3  (AMd)

(FK + S1)[a 2e_(l-),c _ b2e ( Ia) ICI

+ F ae( 1 a) II + b e ( l-) K

F
=(FK + Q)(a3 - b3) - (a3 + b3) WAe)

a3 e-(l1 ) + b3e (1-01C = a4  (A5f)

(1 3 a) a3 e(aI

+b3 e (1-a) KI-f a4  (A5g)

Elimination of the constants of integration from equations (A5) leads to

the exact dispersion relation given by equation (29).
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