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By means of a sampling theorem, the passage is made from
lattice dynamics to nonlocal elasticity. Foundations of nonlinear (and
linear) nonlocal elasticity is established on the basis of the nonlocal
actions in contimum theory. The solutions are presented for the pro-
blems of screw-dislocation, anti-plane line crack and point defect in an
elastic solid. Agreements with the atomic results and experiments are
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1. Introduction Cﬁ

All materials are made up of subbodies which constitute their sub-
structure or microstructure. The size of subbodies may vary from atomic
dimensions to the macroscopic scale such as grain size. Depending upon
the nature and accuracy of the physical phenomena to be modelled, the
average distance of subbodies play a central role. This distance may
vary from the order of the lattice parameter a (10-8 cm in perfect cry-
stals), to a few millimeters as in granular solids. The boundary and
initial conditions brings into play another characteristic length A
(e.g. thickness of a plate, wave length). The domain of applicability
of a mathematical model depends on the ratio e=a/A, For classical
continuum theory e=0 and for the lattice dynamics e=1. Since for
real amorphous materials, lattice dynamic calculations are not possible
or extremely costly, we may ask whether continuum theories can be con-
structed to cover the range 0<e<1.

Indeed, such models entitled micropolar, micromorphic and nonlocal
theories, have been proposed during the past two decades. Literature is
fairly extensive on several sections of these theories (see [1,2]). The
solutions of various critical problems have verified our hopes and ex-

_pectations in that by means of nonlocal models, accurate predictions are
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possible of the physical phenomena in submicroscopic scales. As a
result, various long standing problems, such as crack tip singularity,
dislocation core, point defects have been treated accurately [3-6].
Nonlocal plasticity [7], nonlocal fluid mechanics [8], nonlocal electro-
magnetism [9,10] are yet to be explored. Nevertheless, a few problems
treated in these areas have already shown their power and potential,
indicating that we are on the right path,

In this paper, first I present an account on linear nonlocal elas-
ticity based on lattice dynamical models (Section 2). This shows us
the firm physical foundations of the nonlocal elasticity. Next, I pre-
sent a general theory of constitutive equations (Sections 3 and 4),
which can be used to develop constitutive equations of memory-dependent
materials (e.g. polymeric substances) undergoing finite deformations.
Section 5 contaius an account of some approximate models which can
account for shurt nonlocality. These models are conducive to simpler
mathematical treatments. The last three sections (Sections 6-8), con-
tain solutions of some critical problems which fall outside of the
domain of classical elasticity, since they give rise to stress singu-
larities. The solution of the screw-dislocation problem (Section 6)
leads to a finite maximum stress near the dislocation. The cohesive
strength of perfect crystals based on this solution is in remarkably
good agreement with those based on the atomic theories. The solution
of the anti-plan¢ crack problem presented in Section 7 contains no
stress singularity so that the fracture criterium can be based on phy-
sically realistic maximum stress hypothesis. As shown in our other
works (cf. [3,5,11]), it gives excellent agreement with experimental
results. The last section contains the solution of the point defect
problem.

2. Lattice Dynamical Foundation of Linear Elasticity

According to lattice dynamics, a perfect crystal consists of discrete
atomic mass points attached to each other by springs (Fig. 1a). Let
u(n) denote the displacement vector of an atom located at a discrete
point marked by n from the equilibrium position x°(n).” If e, are
a set of base vectors and eX are their reciprocals, i.e. -
k k

€ g = &y

We may write for the undeformed and deformed positions of an atom
initially located at x°(n) (Fig. 1b):

(2.1) @ = %, x@ = £ @ +um

For a net consisting of atoms which are located at the "knots" of
akparalle]plped with equal edge lengths (which are paraliel to e,)

n* may be taken to be integers. Such a lattice i to e
lattice. g a lattice is called asimple

The potential energy (internal energy) of a lattice is a functio
: n
only of the distance between atoms, e.g.
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(2.2) Vo=l Ul - x@hl]
Do

A Mechanical analogy is a spring where the restoring force is a func-
tion of the change of length of the spring, For the harmonic approxi-
mation, it is simple to show that only quadratic terms in U, in the
polynomial expansions of U about u=0 survives, and we have

(2.3) Vs 3 1 uk(n) ¢, (m,n") u*(n")

~a

(a)

(b)

Fig_qre 1: Atomic Model
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where the constant potential energy corresponding to the equilibrium
configuration is discarded and

(2.4) b ) = U (xm) - x°@"])

The Lagrangian of the system has the form

@28 L =3 In@im-am -3 1 e emnd. e

where m(n) is the mass of nth

applied to it.

atom and g(n) is the external force

Lagrange's equation now reads

(2.6) mn) i+ ] ¢@mn')um) = qn)
nl ~

~

This is the basic equation underlying the non-relativistic lattice
dynamics.

To pass to the so-called quasicontinuum representation, we need to
convart the summations 1n (2.5) and (2.6) to integrations., This is
doie by means of a s function based on a sampling theorem in-
troduced by_Shannon l% [.  According to this theorem, if the Fourier
transform f(k) of a function f(x) vanishes outside a region

]k|> ko then this function is defermined uniquely from its discrete
values f(n) f(x) at x= n. In fact, if
2.7) B9 - v, ] @ ek

~

is the Fourier transform of f(x) , then the inverse transform is given
by

(2.8) £ = v, 1 f@ &),
n
where
{
1 k X
(2.9 §,(x) = « ~ dk
) B\X 3 J <
B

and v_ 1is the volume of an elementary cell constructed on the vector
Por a simple lattice with lattice parameter a, |e | = a.
3 -~

v=a" and the domain of k is 0< |k|< 'Tal' It is clear that §,(0) =

vol and 8g(n) =0 for all other n#0.
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We note the important fact that f£(x) given by (2.8) coincides
exactly with f(n) at discrete points X= n, however being completely
arbitrary elsewhere. Thus, we expect thit the predictions of the non-
local theory will agree w1th those of lattice dynamics at the atomic
points, differing possibly in between.

Using the foregoing process, we obtain the nonlocal representation
of (2.3)and (2.6)

210 V= 3 j J 4+ 8xx) ul) dvi9 dv(x")

~

vy

(2.11)  eli(x) + J o06,x")ulx) dv(x') = qx)
v

where p(x) 1is the mass density.

The invariance of ¢ under rijid translations and rotations
further shows tnat (cf. Kunin [ 6, p. 14], the Fourier transforu. of
$ can be written as:

(2.12) o (k') = M gk Kk

Consequently,

(2.13) V=2 H MM (x,x1) 03, () e (x") v av'
U

(2.14) tkﬁ so -tY = 0

where we wrote dv'=dv(x') and

ke - oV _ komn
(2015) t —(S—e—l:; = J C (5’)‘5') em(§') dav'
v
2 1
(2°16) qk = pf ’ eIm = 7 (um’n * un,m)

Here &V/ dek , Tepresents functional partial derivative. If the ma-
terial properties vary slowly over a distance d, then

Ckﬂmn

(2.17) ®x) = M & (xx")
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§ y where cmm(x) are the elastic moduli of zeroth-order, with respect

O to d. ° ~In the limit as the internal characteristic length (e.g.
L a) goes to zero, becomes Dirac delta measure and (2.15) gives
) classical Hooke's 1au~fl.3 Now we are on familiar grounds.

e

The function 8g (x) given by (2.9 ) have been determined for
ft,:‘ various crystals. For cubic lattices, 8y has the simple form
Bl

.3 3 m(x;-x1)

£ (2.18) 83x-x") = 7> I —2_ sin 13

2 " i=1 x-x; 2

5 171

Another simple case is that of Debye continuum, which corresponds to
the case of a spherical Brillouin zone, with radius k=w/a. For this

t case, we have (cf. Xunin [6, p. 37])

25

s kK sin(kr) .

:3 (2.19) 6B(3() = anrz( =5 - COS KT) , T = J~-~
i for the three-dimensional case and

:

Fa . - K

W

S for the two-dimensional case.

f- ~ For engineering materials, it is useful to select other functions
0> which give better match with the dispersion curves in the neighborhood
2 of k=0. We make the following important observations:

Fa) i) In nonlocal elasticity, the total internal energy is a

by functional of the strain (eq. 2.13).

Y /

jﬂ ii) The internal energy density coincides with those of the

&, lattice dynamics at the discrete points occupied by the atoms.
» iii) The displacement fields at the atomic points are the same

2' for both the nonlocal elasticity and the lattice dynamics.

v

Qs_.; iv) Nonlocal elastic moduli can be determined from the inter-

O] atomic potential.

*

Frs v) In the limit, as the internal characteristic length (e.g.

38 lattice parameter a) goes to zero, nonlocal elasticity

IQ reduces to classical (local) elasticity.

= The development given above is for the so-called hammonic approximation
i (linear theory) and non-dissipative systems.

The interatomic potential is a nonlirear function of the distance.
The harmonic approximation is valid only in the neighborhood of its
minimum, When dislocations, holes and impurities exist (as in the case
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of reai materials), the dissipative effects come into play. In such
situations, it is very difficult (if not impossible) to construct a
nonlocal theory starting from lattice dynamics. Moreover, continuum
approach make sense on its own grounds as an independent discipline.
In Section 4, we present one such development.

3. Basic Axioms of Constitutive Theory

Some years ago (cf. Eringen [13]), I organized the basic elements
of the constitutive theory of contimuum mechanics into eight axioms:

(1) Axiom of Causality

(i1) Axiom of Determinism

(iii) Axiom of Equipresence

(iv) Axiom of Objectivity

(v) Axiom of Material Invariance
(vi) Axiom of Neighborhood
(vii) Axiom of Memory
(viii) Axiom of Admissibility

Of these (vi) and (vii) represents approximations that can be made be-
cause of the decay of interatomic interactions with distance and past
times, Axiom (i) enunciate that the motion and temperatures of all
material points are the cause of all physical phenomena. In fact, even
the temperature can be discarded if the intrinsic motions of sub-
bodies are taken into account. For example, according to the kinetic
theory, the average kinetic energy of intrinsic motions is the absolute
temperature.

Axiom (ii) and (iii) state that all other state variables (e.g.
internal energy), at a point of the body, are functionalsof the motions
and temperatures of all points of thebody. Here is the nonlocalidy!

Axiom (iv) and (v) expresses the invariance requirements for the
response functionals, the first being the invariance under translations
and rotations of the spatial frame and the second, under the material

Symmetry group.

Finally, Axiom (viii) imposes the compatibility of these fumnc-
tionals with the fundamental laws of motion and thermodynamics.

In Section 4, we proceed to show how these ideas can be used to
develop a nonlocal continuum theory.

4. Theory of Nonlocal Elasticity

According to the axiom of causality, all state variables Z (Free
energy { , entropy n, stress T,, , heat Qp are functionals of the
motions and temperatures of all points X' of the body, at all past
times -« <t' < t, For simplicity, hefe we consider only isotheérmal
elastic solids with no memory. Consequently, we have

(4.1) W()'S,t) = ?[3‘5()5"1:)’)5'] ’ X'el
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where x'=x(X',t) is the motion of a point X' in the body V, and
¥ is a functional of the motion of all points X'eV . This is also
postulated for all other members of Z. Applications of the invariance
under rigid body translations and rotations shows that ¢ is a func-
tional of the distance between the reference point and all other points
in the body

i
Y

5
b
i‘
N

@2 WX = ¥[xX,0 - xX,0], X

But we have, in rectangular coordi%z;teq (see [13, p. 45]),

- %
(4.3) xk(z',t) - xk(l(,t) = f RkL CLK dXg
X

where R, and C are, respectively, the rotation and deformation
tensors. Consequerlgc‘ly, ¢ can be considered a functional of R ani
C. The dependence on R is admissible only through the difference
R(X',t) - R(X,t) on account of the objectivity. For non-polar ma-
terials {Axiom (v)), this dependence is eliminated completely so that
we arrive at

(4.4) YO = [CE,D,X' ;CKD,X, X'#X
For non-heat conducting solids, the second law of thermodynamics

states that

(4.5) [ 1 oghen®) + bl vz 0

where o, , n, e>vo and TKL are, respectively, the mass density of

the Lody at the natural state, the entropy density, the absolute tem-
perature, and the Piola-Kirckhoff stress tensor of which TKL is rela-
ted to Cauchy stress tensor ter by

(4.6) = L

s by KL ¥k,K%%,L

Note that, as against classical (local) continuum theory, we posit that
the total entropy of the body must be non-negative.

The axiom admissability (viii) requires that (4.4) must not violate
(4.5). In order to calculate {§ we need some smoothness requirement
for the functional Y. To this end, we can assume that C(X',t) belongs to
a Banach or Hilbert space. However, if we confine our appe-
tite to a more limited class of functionals, namely the linear fumc-
tionals, in the sense of Friedman and Katz {l14], then we can write

@) o ¥t = [ FIG, 0.5 C0L,5 VO
\'

The total internal energy is given by

e x - . AT TR =~ b+ x =
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(4.8) J pU(X,t) AV = IJF@uy;gydev
Vv

Since the change of the order of integrations does not affect V, we
assume that

% *
(4.9) FICLX'5CX =F,  F=F[CX;C,X"]
where and henceforth, a superposed asterisk indicates the interchange of
X and X',

We“assume that F is continuously differentiable with respect to
C' and C. Using (4.7), we calculate

o (BF Lm, 3F .
(4.10) polp = J (.31_:‘- S' e 9) av!

-~

v
OF , (OF % o
J g * Gggr) PL V0
v
where .
] F ey _ (OF %2
(4.11) D = J Bere €' - B 01 av'
Clearly, v
(4.12) J DAV = 0

: \
since the integrand of ¥ is skew-symmetric function of X and X'.
Substituting (4.10) into (4.5), we have

%* .
(4.13) ‘J{TKL -‘J Be—+ g—é’-.K-E) ] dV'} G dv > 0
KL

If this is to be valid for all values of C throughout the body,
it follows that ~

oF oF *
(4.149) T. = f [ + ) ] av?
KL v Cpp. BCKL'
Thus, we have proved

THEOREM: The stress comstitutive equations givem by Equation

(4.14) is compatible with the second law of thermo-
dynamics.

Note that (4.14) is exact, and it is valid for arbitrarily large elastic
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strains. By means of polynomial expansions of F in C', we obtain
various nonlinear theories and the linear theory,

Linear Theory

It is practical to introduce the linear strain measures
_1
(4.15) CKL GKL + 2 EKL , EKL =3 (UK,L + UL,K)

where U is the displacement vector. We write

= '
(4.16) F CO + CmINEKLEm
where

* *
(4.17) Co =%  Cxomv = Cuow = Crawv = G
Substituting (4.16) into (4.14), we obtain

(4.18) T,, = | Coran(X,X') BN (X',t) AV
KL k(X X") By (X

For the linear theory, (4.6) gives tk KL GkK‘SSLL s consequently,

(4.19) tkz = I ijbmn(x x') e (x' ,t) dv(x')

v

where

o = Sk kdneSvnthn

(4.20)

-

=2 )
=7 Wy Y e
Hence we obtained the constitutive equations of the linear theory of

nonlocal elasticity again, without any resort to the atomic structure.

For homogeneous medium ¢ = =¢(x'-x) and for the homogeneous and
isotropic medium, c¢ will be an isotropic function of K=x'-x, i.e.

Ao S8 * Mo Syban * bpm)
R WL L)

(4.21) Cromn

2 (Kka Snk * KkKnGm)L * I<JLKm(Skn+
+ K'R'Kn ka)

+)‘3 K “mn

10
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where A ,u, and A, are functions of IEI
(4.22) {)‘o’po’xa} = {)‘0(|5|)s uo(|§|), Aa(lfl) ’ 0=1,2,3

The material moduli A, are the contributions of the interatomic orien-
tations to the isotropy. They are not present in local elasticity. Be-
cause of the appearance of k. , we expect that these terms are gener-
ally much smaller than A_ and u We also expect that A and 1y
attenuate with distance in the same way. If these two assumptlons are
accepted, then (4.19) may be put into the simple form

(4.23) tye = J al]x'-x]) o, (x") dv(x")
v
where Oy g is the classical (local) Hookean stress, i.e.,

(4.24) Og = A errdkg + Z“ekg

and A and u are the classical Lamé constants.

The kernel function o(]x' -xl) appearing in (4.23) is of the di-
mension length~3. Consequently,” it must depend on the internal charac-
teristic length. In fact, according to Eq. (2.17),

(4.25) afjx'-x]) = &(x'-x)

5. Approximate Models

(i) If the fields are slowly varying over a characteristic dis-
tance d, we can replace the integral operators with differential
operators. This simply means that we expand c(k) or a(k) into power
series of k e.g.

G.D) G ® - ke or, (Rg) (K)o (k)

With ¢ being real constants, (4.19) gives couple stress

klmnrl...Tr

theory involving r derivatives of €m °

(ii) A more useful case involves matching c or & in the wave
nunber space with the dispersion curves, based on “atomic models. For
example, according to the Born-Kimmin lattice model,

(5.2) “B(k)/woj = (ZK/nk) sin (nk/2¢)
where
2 22 2
(5.3) Woj = k cy» 6T O+ /e, Cg = u/p
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are, respectively, the classical circular frequencies of the irrotation-
al and equivoluminal waves. Here «k 1is the upper limit of k (the
boundary of the Brillouin zone), e.g., for one-dimensional lattice

kK = 7/a, where a is the lattice parametei,

If we use (4.23) with (4.24) in (2.14), with £=0 for the har-
monic waves, we obtain -

(5.4) w?(k)/ng = akd)

where o« is the Fourier transform of o . A polynomial form of 1/a
is most convenient to approximate (5.2):

(5.5) Va = 1+ Bj(k/n)z + Sj(k/n)4

At k=0, this gives classical value w, =woj and at k-« , it
satisfies the condition dw(k)/dk=0 if Gj =1. Hence, we have

(5.6) & o= [+ Bk + ktt
J

(5.7) wlay; = L+ 8007+ R

The parameter B. may be comnected with the ratio of the boundary
frequency w; (k) to J the Debye frequency wg.l , 1.e.
(5.8) ’ w; (K)/w? = (2 + Bj)'l/z

from which it follows that -2<g. <w, Fig. 2 displays the dispersion

?;r\zr)e based on (5.7), along with 7 that based on the Born-Karmian model

1.0}

o . 1 i —rk k'l e
0 02 04 06 08 1.0

k/x

Figure 2: Dispersion Curves
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It is more practical to leave B; and §; free for a better fit-
ting at a lower wave mumbers for macrg»scopic e;lgineering problems.

Therefore, we take
(5.9) & = @+l +yuHT,
With this we have

(5.10) 1+ eix?

4.4, - -
*Yk) f, = o

The inverse Fourier transform of this gives

2.2 . 4.4
(5.11) Q-€evV+yV )th, = o
In terms of (4.23), this implies that
(5.12) - eZVZ + Y4V4) °‘(’£"§) = 5(2‘(1-5)

where 6(x'-x) is the Dirac delta function. If we take the divergence
of (5.11)7and use (2,14), we obtain

2.2 . 4.4 .-
(5.13) okz’k+(l-ev +vyV)(p fg‘-puz) = 0

or, on using (4.24),

2.2

(5.4)  O+2) w gt uy g+ (0 vt (ot~ 0ty = 0

These equations replace the Navier equations of classical elasticity.
They are singularly perturbed. Note that for the static problems and
vanishing 5%)7 forces (5.13) reduces to the equations of equilibrium
of the classical elasticity and (5.14) to Navier's equations. However,

since the real stress is not oy, but tyqo in order to determine the
stress field, we must invert (1'52.10).

6. Screw Dislocation

A screw dislocation is a constant discontinuity in the displace-
ment component u., at a point in the plane x,=0. The discontinuity
vector has a smgfe component of magnitude b “called, Burger's vector.
In this case, Uy =uy = 0 and u =u3(x ,xz) . Since all components of
the stress tensor vanishes excep% t3 &nd t., , the equations of equi-
librium are satisfied by introducing %he stréss function ¢(xl,x2) by

(6.1) t13 = ¢’2 ’ t23 = -¢’1

Equations (5.11), in the simplest case y=0, gives
252 2.2

(6°2) (1 -eV )¢’2 = 013 ’ (1‘6 v )¢’1 = - 023
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o
ted
?g For 0,7 and 0,7, we have the expressions
6.3 = =
- (6.3) 13 % WUz gy 23 © MUz 2
‘ from which it follows that
Ry 6.4 -
o (6.4 913,2 9231

Using (6.2), this gives
L (6.5) a- ezvz) v2¢ = 0

j An appropriate solution of (6.5) vanishing as r= (x + xg)% + oo is

. given by
o _
% (6.6) ¢ = Gy +Canr +C, Kylr/e)
”3 where Ky(z) is the modified Bessel's function, G and C, are
arbitrary constants, and (r,8) are the plane polgr coordmates, i.24,
:§< (6.7) X) =Tcosb, X, =T sin 0
i
: *§ The stress field referred to polar coordinates is given by
a (6.8) t, = t31 cos 6 + ts; sin 9,
bl : - . .
zg tze t:’)l sin 6+ t32 cos 6
K It is simple to show that
13 -
;’3 (6.9) tar T 0 e~ "o
b
"?‘: Employing (6.2), (6.3) and (6.6), we find that
i (6.10) Ug = Cy
R o
153 ,
\‘:; The jump discontinuity u3(21r) - u.(0) = b is the Burger's vector b,
x‘: Consequently, C1=-b/21r » and we have
=2 (6.11) ¢ = Co - (ub/2m) fn r + C)K,(x/e)
P
;* At the eye of the dislocation r=0, t, will vanish if C, =
-% - wb/2me |, Hence, the stressfield is given“" by
¥ = - -.I:. =
b. (6.12) ty = #bf 0-sK@el, t,.=0
% .
3 i This result was also found in another way in our previous works [5].
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The non-dimensional stress field

(6.13) T = (2me/b)(t,g/w) = oML - oK (0)]
is plctted as a function of p=71/e in Fig. 3. Unlike classical re-
sult t 0 has no singularity at p=0 and it approaches clas-
sical value 1/p for large p. It has a maximm at about p=1.1,
given by

. b
(6.14) to max/u = 0,3993 »—

The strain energy per unit length L in the z-direction of a cylindri-
cal tube of inner radius T, and outer radius R, is given by

R
2
= b

x (6.15) /L = ZTLJ tg €, T dr= ‘é‘“_ [ (R/15) +Kg(R/€) - Ky(x,/€)]
N Again, contrary to the classical result, this has no singularity at

A Ts~0. For large R, the strain energy depends on the size of the
Y solid, as expected.

: By use of (6.14), we can detemine the cohesive strength t < of a
’f; perfect crystal. To this end, we write
e,
V-, - by _
‘.\‘: (6016) tze max = 0.3993 -Z-TTE— = tC
. Based on phonon-dispersion, € = 0.39a, where a is the lattice

’ parameter. Using this for an aluminum crystal, we find that
! 6.17)  t/u = 0.2 {an: [11<110 >}
?
. This is very close to the theoretical strength ty/u = 0,11, based on
1 atomic models, For distributed dislocations maCroscopic strength
o can be estimated. For such considerations, see [15].

4

.
= 7. Mode III Crack

i A line crack located at lel <c, X,=0 in the plane x3=0 is
subject to a constant shear stress t,z=-t, along the upper surface

Pod
-

of the crack and tp along the lower.~ The stress field is that of
Mode III, i.e. the only non-vanishing stress components are ts and
ty3. To determine the stress field, we must obtain appropriate solu-
tions of (6.5) and (6.3), subject to the boundary conditions

b
[
2

L%

s w wt el
&

R 7.1) ti3= 017" % x| <c, x,=0
3 uz; = 0 ' Ix1|>c, x,=0
> 2, 2%

3 (7.2) {t23, u3} +0 as (x] * xz) + o

15

4 . -
f



,

o
ﬁ’%i«a 3

v

g
a m‘&’

f&" e,
eIy,

Sl'ad
A

i € By
S,

e (P A

o8} \
CLASSICAL
T
| \
o7 \
\
\
\
0.6 =~ \
\
T \\
0.5t N
\
\
\
04} A
LY
LY
03 S~

tp"[l-pK,(p)]

ol i | 1 .
0 { 2 3
. —p
Figure 3: Non-Dimensional Hoop Stress for Screw
Dislocation
(7.3) tjz =0 x| +¢ X,=0

Of these, (7.3) expresses the vanishing of the surface traction on the
tip surfaces as these surfaces become two distinct points at x3=0 .

An appropriate solution of (6.5) vanishing at infinity in the
upper plane X, > 0, is found by means of the Fourier transform tech-
nique o

2% "8 "AXp
(7.4 ¢ = °u | [EAER) e “+B(E)e 7] sin(Exp)dE

0
where A(§) and B(§) are to be determined from the boundary condition
and

(7.5) Az (g2 e eHF
Using (6.2) and (6.3), we find that
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. ~EX
(7.6) uy = &F J EAE) e © cos(Exy) dg

The stress field is given by

=<}

tygfu= - G dr EE A e 2em® e 2 singx)d,
(7.7) .
tyz/u = - ;2;;5 ‘r [£°AcE) e-£x2 + EB(E) e-kle cos (gx;)dg
0
At the tips of the crack, ti3 vanishes if
(7.8) B = A(E) €8 A/A
and we obtain o
tigfu = - %—% JEZA(Q (e-Exz - e-uz) sin{gx;) dt ,
7.9 -
o Gy = - @F [taee 2 -Fe D costery) o
0

The remaining boundary conditions at Xy = 0 read

24

f
tCEL + k(eD)] J_y0x)dr = tofux¥, 0<x<l
(7.10) 0
C(e) J_,(xx) dz = 0, x>1
0
where we set
K(er) = - z[z? + ef17Y/2
(7.11) X = xl/c: R r=ck e =c/e
- i
c@ = <% Ao

and used J_j(z) = (2/112)35 cosz, to replace cos(xz) with its expres-
sion in termS of the Bessel's function J_Jf(z).

The solution of the dual integral equations (7.10) is not known.

However, it is possible to reduce the problem to the solution of a
Fredholm equation as shown in our previous work [11]. An approximate

17
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solution for small e can be obtained and it has the classical form

(7.12) C,(0) = /2% e /m 13

This solution suffices for calculations when the crack size is larger
than 100 atomic distances. Indeed it can be shown that the next per-
turbation is of order e/c,

Substituting (7.12) into (709)2 , Wwe obtain t,

along the crack
line Xy = 0:

3

(e

(7.13)  tys/t, = - I J @01 - 2@ + e cos(zx) dz

0

From (7.13), it can be deduced that as e+» (e=0) tys gives the
classical elasticity solution. For e=0 (no crack) tys = 0 and
for e#0, there is no singularity along the x-axis. The““non-dimen-
sijonal stress T=t, /t, as a function of the non-dimensional distance
x1/c along the cracé line is shown in Fig. 4 for two different values
of €(=0.1 and 0.01). From these figures, it is clear that the bound-
ary condition at the crack tip is satisfied very well, especially for
€=0,01, as expected, Outside of the crack, the stress reaches a maxi-
mun, afterwards decaying with distance, to the classical elasticity
solution. In our previous work [3,5,11], we have introduced a fracture
criterium based, physically realistic, maximum stress hypothesis, This
gave excellent agreement with the results of atomic theories and experi-
ment. Further study of this problem may be necessary in order to take
accont of the inhomogeneity caused by the presence of the crack.

CLASSIC THEORY
(€20)

CRACK TIP ‘
100 105 1o 115

00% 010% |

FIGURE 4+ STRESS DISTRIBUTION
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8. Cylindrical Hole (Defect)

A cylindrical hoie of radius r_  with axis x, in an infinite
elastic medium may be treated as a tRo-dimensional 8rob1em. In plane
polar coordinates,

(8.1) Xy =rcosg , r2=rsin6

With the Airy stress function ¢(xl,x2)
(8.2) t1° 9220 tpttqe =t
equations o1 equilibrium are satisfied identically.

The strain tensor € Tust obey the compatibility equations

(8.3) 1,22 ¥ €22,11 " 212,02 = O
For g WE have the relations
(8.4) 2u et = kg =V OppSpp k,2 =1,2
and for Oy from (5.11) with y =0,
(8.5) a-evht, = oy,

all of these being valid in rectangular coordinates.
" Combining (8.2) to (8.5), we obtain
(8.6) a-evhy vty - o0

But from (8.2) to (8.5), summing over k and £ , we have

2.2, 2. 2 .
(8.7) A-eV) Vo = b VY] YE
Consequently
(8.8) vigew = 0
whose general solution is
(8.9) Veu = C1 smr + G,

Since Veu can be replaced by its expression referred to polar coordi-
nates, =~

(8.10 Y'B “rar (ru), u= u(r)s:r
(8.9) is integrated to give
g g
C
2 1
(8.11) ru = Fr@Mmr-1)+3010+C

19




Using the fact that u must vanish as r +«, we obtain

(8.12) ru =(C
With this, Veu=0 and (8.7) are integrated to give
(8.13) ¢ =A) +A,anr + ASIO(r/c) + A4K0(r/e)

where A, to A, are constants, and I, and KO are the modified
Bessel's functions. To calculate the Stress Y field in polar cocordi-
nates, we observz that

2
tog =V & - Ty

i
58
-

(8.14) t...=1 =
6=0

The stress field will vanish at r=e if A3= 0, and it will have the
classical elasticity value C for e=0 if A2= -2uC. Hence

22
trr = - (2uC/e"p )[1+APK1(p)] ’
(8.15) tog = (ZuC/ezp‘)[l-*A4>K1(p) + A DZKO(DJ],
tre =0
peu = C
where
(8.16) p =1/, A= A4/ZnC

The constant C is connected with the volume change at r=0, and
constant A is left undetermined. By expanding Kg (p) and Kl(p)
Tear p=0, we find that :(:'cr2 A=-1 the singularity of the “stress
field can be reduced from p™ to fnp -t p=0, i.e. in the
vicinity of p=0, we have

_ 2 ¢ 1
3.17) t.. = (uC/eﬂ)lln(p/Z) -z -],
tog = (C/X) [20(p/2) + 7 = Y()]
where
- (1) = C=0.5772...

-~

C being the Euler constant. In terms of the displacement field, these
read

t,, = (upu/e) alp/2) - -y ,
(8.18) 1
tog = (upu/e) [an(p/2) + > - v@)] .

On physical grcunds, u must be finite at r=0, Sinc® interatomic
distance is of the order of ¢ , we see that for finite u, - and
too +0 as p +0,

-~
20
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Although u-+» as p~+ 0, we may assume that the lowest value of

r=e , i.ec p=1. For this value of p , both tor and tyg are
finite.
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