
TUFTS UNIV NEDFORD MA DEPT OF ELECTRICAL ENGINEERING
D PREIS 31 OCT 86 ARO-212t4 2L-EL DAAG29-84-K-6i88

NCLASSIFIED F/G 9/5 N

lllllllolllE/EEEEEEElishE
EEEEEEEEohmhhE
IEEE...



I2.0

1.25 1± fi

icRQCOPY RESOLUTION TEST CHART



Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

P.0. Box 12211 PROGRAM PROJECT TASK WORK UNIT

Research Triangle Park, NC 27709-2211 ELEMENT NO. NO. NO. ACCESSION NO

11. TITLE (include Security Clasfication)

High-Speed Pulse Propagation in Integrated Circuits (Unclassified)

12 PERSONAL AUTHOR(S) Dr. D. Preis, Associate Professor of Electrical Engineering

13a. TYPE OF REPORT 113b. TIME COOrED 14. DATE OF REPORT (Year, Month, Day) 1S. PAGE COUNT
Final I FROM 4 0.8/31/86 I 1986 October 31 T 45

16. SUPPLEMENTARY NOTATIONTh h/~sadoThe view, 0innons~ ndlor findings contained in this report are those
of he authsr(),and shyuld not be const ud as. an fficial Deartment of the Army position,

Dn ri -r P nn-PpRnn jgQ

17. COSATI CODES I TI. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP VHSIC, Interconnects, distributed circuits, pulse propagation, time-domain

analysis, coupling, crosstalk, interference, matching, nominal resistance,
EMP, reflection coefficient, surface waves, lateral waves.



"High-Speed Pulse Propagation in Integrated Circuits"

Final Technical Report

D. Preis, Ph.D.
Associate Professor of
Electrical Engineering

31 October 1986
U. S. Army Research Office

Contract Number DAAG 29-84-k-0188
Tufts University

Medford, MA 02155

Approved for Public Release; 0,

Distribution Unlimited

!I~~ecesslOn For "----
NISGRA&I

DTIC TA]B
Un '=Onc e d
Justificatio

yDistribution/

uAvaileblltty CodesD i Avail and/or

DiSt ISpecial

The view, opinions, and/or findings contained in this report are those of
the author and should not be construed as an official Department of the
Army position, policy, or decision unless designated by other documentation.



-2-

Table of Contents

Page

1. Introduction and Overview 3

2. Summary of Important Research Results 4

3. Distributed-Circuit Signal Path Characteristics 6

4. Nominal Resistance and Matching 11

5. Peak Path Currents and Interference 14

6. Incident Electromagnetic Waves or Pulses 15

7. Circuit-Theoretic Path Coupling Model 21

8. Field-Theoretic Path Coupling Model 40

a



-3-

1. Introduction and Overview

The subject of this report is the characterization and interaction

of signal paths in very-high-speed integrated circuits. A long-range

objective of research on this problem is optimization of signal

propagation to increase operating speed and minimization of both

internal and external interference. This can be accomplished by

developing suitable theoretical models for the physical phenomena

involved. These models are based on circuit theory and linear system

theory, distributed circuits and transmission-line theory, and field-

theoretic considerations. Several new and interesting results are

reported here and many new useful formulas given.

First, the signal path is modelled as a distributed circuit and

the propagating waves of voltage, current, and power flow (as a function

of time and position along the path) are evaluated analytically for

increasingly complicated, but more accurate, path models. Then the

problem of matching the input voltage pulse shape to the path or,

conversely, the path impedance to the pulse shape is considered. This

leads to the new concept of nominal resistance and a simple way to

predict peak possible path currents. Next, the tangential components

of the electromagnetic field at the surface of an integrated circuit

(that couple to and excite the microcircuits) are derived for an

incident electromagnetic wave or pulse. These fields as well as

reflected and transmitted wave power depend in detail on the complex

reflection coefficient which also is given in both exact and approximate

forms. Then, the effects of signal path electrical parameters in

crosstalk and coupling is investigated and the coupled responses (or

cross impulse and step responses) are determined in analytical form

based on a circuit-theoretic model. Finally, the three-layer geometry

of an integrated circuit excited by an infinitesimal oscillating

current moment at the substrate surface is analyzed to determine

approximate analytical expressions for the complete electromagnetic

field at other points on the surface. Aside from the quasistatic

near fields, further coupling and interference can occur due to the

radiation of both a surface wave in the substrate and a lateral wave

above the substrate.
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2. Summary of Research Results

Each of the following six major research results is discussed in

more detail in a separate section of this report.

* Complete analytical expressions for propagating waves of

voltage, current, and power in the time domain for three

different transmission-line models of integrated circuit signal

paths.

* Determination of finite-energy and finite-power voltage pulse

shapes that are matched to the signal path and/or load to produce

maximum current and instantaneous power.

* Development of the concept of the nominal resistance of a complex

impedance which can be used to predict maximum possible path/load

currents.

0 Derivation of the complex reflection coefficient and tangential

electromagnetic fields at the surface of an integrated circuit

due to an incident electromagnetic wave or pulse.

0 Analysis of inductive and capacitive coupling mechanisms in

integrated circuits to determine coupled or cross-impulse and

cross step responses and their dependence on lumped parameters

of the signal paths.

* Theoretical study of the complete electromagnetic field produced

by an infinitesimal oscillating current moment located on the

dielectric substrate of an integrated circuit including discovery

of a propagating surface wave (in the substrate) and a lateral

wave (above the substrate).

U
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3. Distributed-Circuit Signal Path Characteristics

In an integrated circuit signal path the circuit parameters

(resistance, capacitance, inductance, and conductance) are distributed

on a per-unit-length basis. Therefore, conventional circuit analysis,

4 which concentrates or "lumps" these parameters into circuit elements,

is not an accurate approximation unless the frequency of operation is

very low. If the actual waveshape of the voltage or current that

propagates along the path is required then a distributed circuit (or

transmission-line) model of the signal path is a better approximation.

The purpose of this section is to present analytical formulas

derived for voltage, current, and power (energy/time) as a function of

time and position on the signal path for three different distributed

circuit models. The response of these different models to a unit step

of input voltage is given. Path response to an arbitrary logic

sequence of voltage step transitions can be computed by superposing

step responses.

A Figure 3.1 is a schematic representation of an integrated circuit

signal path excited at time t = 0 by a unit step function of voltage

(a transition at t = 0 from zero to one volt). The problem is to find

the path voltage v(x, t) and current i(x, t) at a distance x from the

source when the distributed parameters R, C, G, and L, the series

resistance, shunt capacitance, shunt conductance, and series inductance

(all per unit length) are specified.

I X .. R:L,G,C

-~I volt + + I - o ( I

v(X, t)

U t -

Fig. 3.1 Voltage and current at position x on signal path due
to input voltage step.

'1%



-7-

Case 1. G =L = 0. Here it is assumed that series inductance and

shunt conductance are negligible. (In an integrated-circuit signal

path model these parameters are very small.) This is called the RC

line or Thomson cable. The voltage v(x, t) in response to a unit step

voltage input is,

x 2RC

v(x, t) = erfc - volts, (3.1)
4t

where erfc(y) is the complementary error function of y. Rational

* function approximations of the error function and its complement are

available in Handbook of Mathematical Functions (Abramowitz and Stegun,

eds.) #7.1.27 and #7.1.28, page 299. The current that flows in response

to a unit step voltage input is,

- -x 2RC/(4t)i(x, t) = - e amp. (3.2)
7r Rt

In (3.1) and (3.2) the quantity x 2RC is the product of total path

resistance and capacitance of the path of length x. The voltage rises

to 50% of its final value in approximately x 2RC seconds; the current

maximum occurs at t = 0.5 x 2RC and, the instantaneous power (product

of voltage and current) is a maximum when t = 1.6 x 2RC. Thus the

quantity x 2RC is like a time constant that gives an order-of-magnitude

estimate of the "speed" of the RC line. Stated in different terms,

"slowness" of the signal path is proportional to path length squared

and the RC product.

Case 2. L = 0. If the shunt conductance G of the signal path is

significant (due to losses in the dielectric substrate) then it is

necessary to include a non-zero G in the analysis. This yields the

so-called "leaky cable." There are two loss mechanisms, the resistance

of the conducting signal path itself and the conductance of

insulating substrate medium. The results of an analysis for the

voltage and current in response to a unit step voltage input

are,
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-2t/C C x2RC -G
v(x, t) = e erfc + - rfc - e d , (3.3)

( 4t C 4.T
0

and,

C Cr 2 2d

[ tt J0
(3.4)

Comparison of (3.3) and (3.4) with (3.1) and (3.2) indicates that

there are two effects of the "leakage" caused by shunt conductance G.

First, the current and voltage waves are attenuated exponentially in
-Ct/ C

time by the factor e . Secondly, a component is added to each

response consisting of a progressive integral of the attenuated wave.

The major effect of G is attenuation of signal strength due to loss.

A secondary effect is waveshape change of the step responses. Both of

these effects can be minimized Ly reducing the G/C ratio or increasing

path capacitance per unit length.

In both Cases 1 and 2 the absence of inductance L eliminates the

usual propagation delay of x FLC seconds normally associated with

transmission lines. Each of the previous cases represents overdamped

propagation because the ratio of attenuation constant to phase constant

is equal to or greater than one so that waves damp out in less than

one wavelength. Although they are more complicated, (3.3) and (3.4)

are probably a bettar approximation to the physical situation and could

be used, for example, to "fit" experimentally measured data.

There are two factors affecting overall "speed" of the signal path.

The first is the slowness and attenuation of a step transition due to

characteristic times associated with resistance/capacitance combinations

(e.g., x 2RC and C/G seconds). The second factor is the introduction of

an overall propagation delay equal to x FEE seconds when series

inductance L # 0. While the series inductance is normally very small,

it does affect voltage and current waveshapes, too. These considerations

lead to the third, and most general, case in which all parameters
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R, C, G, and L are non-zero.

Case 3. All parameters non-zero. The voltage and current in

response to a unit voltage step excitation of the general line is

more complicated than in the previous two cases but still computationally

tractable. Owing to a propagation delay of x [III seconds, both

responses are zero until t • x /i when they have the general form,

.- - + x

v(x, t) = e (3.5)

l(R 
G)/1 J(R G--C1 2

+ - XC e 2 )dT
x ) ( c2 -x2LC

and,

i~xt) IL e2 L ) 1 L t :xLC(3.6)

G L 2 2
+i-e2 C 1 2~+ D C)F~- t xLC dr,

for t k x iLC The modified Bessel functions of the first kind 1o(Y)

and If(y) in (3.5) and (3.6) are represented by rational approximations

in Handbook of Mathematical Functions (Abramowitz and Stegun, Eds.)

#t9.8.1 through #9.8.4, page 378.

Two combinations of the four line parameters appear in (3.5) and

(3.6). The combination (R/L + G/C) is an attenuation or damping

term while the combination (R/L - G/C) is proportional to the amount

of signal linear distortion the line causes (in the distortion-free

line R/L u G/C, so that the distortion terms are zero).



-10-

In summary, (3.1) through (3.6) are complete analytical

expressions for the voltage wave v(x, t) and current wave i(x, t)

that propagate along a transmission-line signal path model when

excited by a unit step function of voltage. The corresponding power

flow p(x, t) is the product of these two waves and equals the energy/time

at the position x and at time t. Equations (3.1) and (3.2), for the

RC line, are valid when both the series inductance L and shunt con-

ductance G of the path can be neglected. When substrate losses are

significant, the shunt conductance G must be included. This leads to

(3.3) and (3.4) in which the current and voltage waves of the RC line

are attenuated and distorted due to the GIC ratio. If finite series

inductance is incorporated then an overall propagation delay xfiPC

seconds is introduced and both the voltage and current waves consist

of distorted and non-distorted parts. These last results are more

complicated because they involve integrals of Bessel functions.

The three different transmission-line or distributed circuit models

of integrated circuit signal paths presented here are useful because

they give the voltage and current waves in the time-domain (which can

* be compared directly to experimental measurements). Using these models

the engineering tradeoffs between pulse strength, shape, propagation

characteristics and ohmic losses can be computed for arbitrary choices

of path parameters.

In practice, the actual signal path is finite and terminated

with some load. This gives rise to reflected waves of voltage and

current. These can be computed knowing the incident wave and load.

A more rigorous and comprehensive analytical approach to this

general problem would use a field-theoretic analysis to determine all

possible modes of wave propagation including a determination of the

4. complex wavenumber k for the current that propagates along the
c

conducting signal path. An analysis of this sort would reveal the

extent to which distributed-circuit transmission-line models accurately

represent dominant wave phenomena on integrated circuit signal paths.

An alternative approach is to compare predictions from transmission-line

models with experimental measurements on actual signal paths.



4. Nominal Resistance and Matching

Two important issues to consider when devising an optimum signal

pulse launch-propagate-receive system are: (1) how to match a voltage

pulse shape to the input impedance of the loaded signal path or to

the load itself in order to maximize the input current and power, and

(2) given the voltage pulse shape, how is the optimum signal path or

load impedance determined. Two classes of voltage signals were con-

sidered. First, where the total energy of the input voltage is fixed

and its shape is to be determined. Second, where the maximum amplitude

of the voltage signal is limited and its transitions from maximum to

minimum value are to be determined. A secondary consideration is

whether operation is bandlimited. Both of these problems have been

solved and simple formulas for the voltage signals and their relation

v to load impedance are available.

For each class of input signal (i.e., finite energy or finite power)

a new quantity called the nominal resistance of a complex impedance

*was defined as the ratio of peak applied voltage to peak current under

matched conditions. Nominal resistance is a function of the electrical

properties of the signal path and/or load, namely, the inverse Fourier

transform of the reciprocal of the impedance. Thus, knowing the

nominal resistance and the class of input voltage signal the maximum

(or peak) path or load current can be predicted.

A summary of the mathematical details and some supporting experimental

data are included in the reprint (see next page) "Nominal Resistance

of a Complex Impedance," Electronics Letters, vol. 22, no. 13,

pp. 703-704, June 1986. A more comprehensive paper on this general

subject entitled, "Peak Transient Current and Power into a Complex

Impedance: Theory and Experiment" (31 pages, 12 figures, 1 table) is

currently in review.



NOMINAL RESISTANCE OF A COMPLEX where the constant k is determined from eqn. 3. The peak
IMPEDANCE current squared, in response to eqn. 5, is2

Indexing terms: Circuit theory and design, Time-domain i2(O) = E Y210 dt =E I Y"1112 dw (6)
analysis. Impedance f 2n f

The theoretical relationships between broadband electrical
input inpedance and maximum instantaneous input current with E specified by eqn. 3. The ratio of peak voltage to peak
are given for classes of input voltage signals with or without
bandwidth limitations. A nominal resistance associated with current or nominal resistance for the matched-filter input
a complex impedance is defined, and this quantity can be voltage eqn. 5, found from combining eqns. 3, 5 and 6, is
used in circuit analysis or design to predict maximum pos-
sible transient current. Results from several experimental max [sit)]
measurements are presented. (71

). 2(ld(r

When a complex load impedance Z((w) is driven by an arbi- For the second problem, the convolution eqn. I is maximised
trary -voltage waveform t1t), the maximum value i,,,. of the when the input voltage is
transient current i(t) that flows into the load cannot be pre-
dicted without carrying out a detailed mathematical analysis rj(t) = ro sign bi -t)] (81
to obtain the transient response in analytical form.' This is
impractical when tit) is a member of a class of unpredictable The peak current in response to eqn. 8 is
waveforms such as. for example, a logic sequence of step tran-
sitions, a noise process or finite-energy analogue signals corre-
sponding to segments of speech or music. Prior knowledge of Q(O) = ro Itf I dt (9)
i, is essential, however, when specifying the output current f
and power capabilities of the circuit that produces the voltage -
tit) to drive the load impedance Z(u). Three specific, practical
examples are (il estimating interstage peak currents in ampli- The nominal resistance. corresponding to eqns. 8 and 9, is
fiers. (ii) predicting logic-line-driver peak currents in inte-
grated circuits, and (iii) determining audio-power-amplifier R. .10)
peak output current required to drive a given loudspeaker - t I0 dt0
system.

In this letter a new quantity is introduced, called the If operation is limited to the finite bandwidth a rad s, then
nominal resistance associated with Z(w). defined as the ratio substitution of .v(t) for .t) in eqns. 7 and 10 is necessary.
of peak applied voltage to peak current. Nominal resistance where y,(t) is computed from eqn. 2 using finite integration
depends not only on Z((,)l but also on the class of input signal limits +0.
(finite energy or finite power) and the operating bandwidth. Fig. I illustrates impedance magnitude against frequency
Knowing the nominal resistance, the maximum possible peak for a 14 35 Q2 carbon resistor R and five different complex
current can be predicted for design or analysis purposes. impedances numbered 1-5. These data were measured digi-

The current il) that flows into a complex impedance Z(w) tally and represent discrete values every 48 Hz throughout a
in response to a voltage tit) is given by the temporal convolu- 20 kHz bandwidth. Table I lists both the DC value (t = 0)
tion and minimum value (for w > 01 of the impedance magnitudes

in Fig. 1. The quantity tit) in eqn. 2 was estimated for each

i(tl)= f txllit - x) dx (11

where305
-p-.

3'0 YI(,JW" de) (2) 20

which is the inverse Fourier transform of the admittance 10 /1 _ _.

current in response to a unit impulse of voltage. .__.3
Two separate problems are considered here. First. maximise 0...... ....

the current i(t) when the total energy E of t(t) is finite: 01 ID 20
f1kHz

Fig. I Input impedance magnitude of 14 35 fn resistor R and hi' difltr-

0 < E -- f t'2t) dt < or. 13) en! complev impedances

-, impedance as the current in response to a 20 jis-wide rec-
tangular voltage pulse. Using 1024 samples 50 kHz sampling

that is. find the shape of iit). Secondl), maximise i(tl when the frequencyl of each "ltI. based on an average of 2000 trials to
amplitude of tit) is restricted by improve signal noise ratio, nominal resistances were evaluated

numerically by approximating the integrals in eqns. 7 and 10
0 < I t4t)1 < ro < - (4) with finite sums. The resulting numerical values of R. and R,,

are also given in Table I.
where r, is a constant. It is assumed that eqn. 2 exists and Examination of the data in Table I will reveal that R,. the
that if )it) contains singularity functions they are of order no nominal resistance corresponding to a matched-filtered, finite-
higher than a delta function MlO. Thus. for example, Z(w) may energy input voltage, was not found to be less than the
not contain a capacitor across its input terminals, minimum impedance magnitude, but R., the nominal resist-

The solution to the first problem, from the matched-filter ance for a voltage-limited finite-power input, can be approx-
principle," is imatel) half of the minimum impedance magnitude.

The accuracy of a nominal resistance computation depends
t',lt) = k)V- t) 1 on how well the quantit) )it) in eqn. 2 is estimated experimen-

~' '%
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Table I ent voltage pulse shapes or, indirectly, as the inverse FFT of
the measured complex admittance.Impedance Z(O) --=~ I Z(wa) I=. . R, D.PES th'ttJA

o> 0 D. PREIS* 6rh .Afa) 19M6
Department of Electrical Engineering

0 0 f) Tufts University

R 14-35 1435 14-35 1435 Medford, MA 02155, USA

1 8.84 9-38 10-86 6'12
2 6.18 4-67 6-89 3-12
3 7.05 2-95 3-84 1.51
4 3.57 3-28 6-18 1-86
5 20.66 8"38 11-97 4-67 References

tally. Comparison of the inverse FFT of the sampled values of 1 PnR1s. t.: 'A catalog of frequency and transient response. J.. Audio
)It) derived from the 20 ps pulse measurements indicated that Eng. Soc.. 1977. 25, pp. 990-1007
the admittance spectral magnitude I Y(wo)I was within + I dB 2 PAPOULIS, A.: 'Maximum response with input energ. constraints
of the true admittance magnitude measured independently. In and the matched-filter principle', IEEE Trans.. 1970. CT-17. pp
this connection, it also is possible to estimate ),t) using differ- 175-182

Reprinted from ELECTRONICS LETTERS 19th June 1986 Vol. 22 No. 13 pp. 703-704

-i&
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5. Peak Path Currents and Interference

The concept of nominal resistance introduced in the previous section

has further application in the study of crosstalk, inductive coupling,

and interference between signal paths. For a given signal path

and/or load there exists a specific logic sequence that will excite

extremely large peak instantaneous currents (as well as large rates of

change of current). Such currents can potentially interfere with

other circuits through the mechanism of inductive coupling. If the

input impedance of the path and/or load is Z(w) then the logic sequence

producing the maximum possible value of instantaneous current is produced

by the voltage v(t) = v sign[y(-t)] where v0 is the maximum voltage

of the logic sequence and y(t) is the inverse Fourier transform of

Y(w) = I/Z(uo). The peak current and nominal resistance formula are

given in equations (9) and (10), respectively, of the reprint in the

previous section.

When, in analysis or design of integrated circuit signal paths

and loads, the question of maximum possible instantaneous current arises,

the answer is simple and direct. The maximum possible transient current

i in response to any logic sequence is given by a formula similar in-- max

form to Ohm's Law, namely, i = v /R . In this equation, R is themax onn
nominal resistance of the path and v0 the maximum voltage of the logic

sequence. Thus nominal resistance is an important new parameter that

characterizes a signal path and/or load. The smaller R is then
larger the maximum transient current can be. Nominal resistance can be

c;lculated from y(t), the current in response to a unit impulse
excitation of the signal path, using equation (10) in the previous

section. The currents i(x, t) in (3.2), (3.4), and (3.6) of section 3

of this report can be used to compute Rn for transmission line models

of signal paths if they are first differentiated with respect to time

(because they are the currents in response to a unit step rather than

impulse of voltage).

'N=!



-15-

6. Incident Electromagnetic Waves or Pulses

In terms of high-frequency electromagnetic fields an integrated

circuit is a three-layer problem consisting of air above, a lossy

dielectric substrate, and an imperfectly conducting metal ground plane

underneath. When this circuit is illuminated from above by an incident

electromagnetic plane wave (or an electromagnetic pulse consisting of a

superposition of plane waves of different frequencies) part of each wave

is reflected away and the remainder transmitted (refracted) into the

dielectric substrate and conducting layers.

An important quantity, which completely characterizes the reflection

of incident electromagnetic waves at the air-dielectric interface, is

the complex reflection coefficient f r The squared magnitude of the

reflection coefficient 0 tf "2r , 1 is a direct measure of the ratio

of reflected power to incident power. The reflection coefficient fr
depends on the electromagnetic properties of each of the three layers

(i.e., permittivity, permeability, and conductivity), the incident wave's

* frequency, and the orientation of the incident wave's electric and

magnetic vectors with respect to the plane of incidence.

For a given three-layer geometry, Ifr1 2 indicates what proportion of

the incident wave's power is reflected (harmlessly) away while

(potentially damaging) wave power that is absorbed by the integrated
is 1 - Ifr2 . Therefore, to minimize possible damage to ancircuitisI-I i.Teeoetomnmzposbedmgtoa

integrated circuit caused by an incident electromagnetic wave of frequency

W, the reflection coefficient at that frequency should be Ifr 1- 1

for all likely angles of incidence. When dealing with an incident,

high-energy electromagnetic pulse, the potentially damaging effects

of electromagnetic radiation are minimized when ir If ' 1 for those

frequency ranges throughout which the spectrum of the pulse contains

significant energy.

The reflection coefficient also provides insight into the problem

of shielding or radiation hardening of integrated circuits. Because the

three-layer geometry and its electromagnetic properties as well as the

frequency range of incoming electromagnetic energy (usually) are all

given quantities, the frequency ranges where the reflection coefficient
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I fr ' 0, or small compared with unity are vulnerable and, consequently,

do need some external shielding.

The fact that fr is a complex function (i.e., having both

magnitude and phase) has further technical implications. Certain

incident pulse shapes may produce extremely high momentary field

strengths in the integrated circuit if they are, for example, conjugate

matched to the complex transmission coetficient (which is related to

the reflection coefficient). This situation is similar to matched

filtering. Due to phase linearization, waves superpose at one instant in

time rather than being dispersed in time. Thus, information provided by

the complex transmission coefficient is useful in two ways. First, to

shield against such pulses and, secondly, to design electromagnetic

pulse shapes that are, for a given energy, potentially most damaging to

integrated circuits.

A further use of the complex reflection coefficient is in the

determination of the tangential components of the electric and magnetic

field at the interface between air and dielectric surface. These fields

can excite (couple to) the circuits on the dielectric surface.

Figure 6.1 shows the three-layer geometry consisting of air

(Region 0), dielectric (Region 1), and conductor (Region 2). Consider a

%-&. k

" ox

E inc

kk

inc

B ic(up)
oy

* Region 0 (air, axis

Region 1 (dielectric, k)

'II Region 2 (conductor, k 2

z axis

Fig. 6.1 Plane wave incident on boundary z = 0 of dielectric
Region 1.

-" .



-17-

plane wave incident from the air (Region 0, z ! 0) on the plane boundary

z = 0 between regions 0 and 1 as shown in Fig. 6.1. Region 1 has

uniform thickness I and is bounded at z =1 by Region 2 (z 2 ).

The complex wave number in each region is,

?oj= I u[ + A-./ )] , j = 0, 1, 2, (6.1)

where e and O-are the real, effective permittivity and conductivity,

respectively, and the permeability/,/ is, by assumption, that of air.

The angles 90, 91, and &2 in Fig. 6.1 are related by Snell's law.

For an electromagnetic field of the electric type (i.e., with the

electric field in the plane of incidence), the result of a lengthy

derivation for the complex reflection coefficient f is,
er

k Cos 9 CosO k k coOO
1 2SCO o ko2 1s }tan(kllcoO 1)

k cos9-k cos92 - 0 2 1-
2 0 0 2 cos 1

f 1 I. (6.2)

er -k cos6?.cosL kk Cos (F1 2 0 0o2 11ankcsI
k cosO+k cos +- tan(kCos
2 o o 2 Coso81

With the notation,

k = xkx + zk z, kx = ksin9 and k = kcos9 , (6.3)

the reflection coefficient can be expressed as,

k2 k 2z k - k22 a

ke -22oz-ko 2z - 'klkoz-lz)- koklkl2)j talz *(64

f •z 1 (6.4)
er 2

k 2k +k k k k k  tan(k
2 oz o 2z ik1 °Z(. - 0kkljJ lz

This is the general formula for the plane-wave reflection coefficient of

the electric type for the three-layered region.

The general formula (6.4) can be simplified with the practically

valued inequalities,



-18-

j2 1 >> 2x 1>> 21, 1 0k1 k 2 k 2 2

to the form,

k 22koz - ko2k2z k2 .

e t'_ +2i (6.6)
er k22k oz + ko2k2z

In this approximation the first term is the reflection coefficient of

the two-layered region with = 0.

The electromagnetic field of electric type on the air-surface of

the dielectric is,

ik x

B (x, 0) = B oynC(0,O)e ox [1 + f er], (6.7)

Eo(x, 0) =-W B inc(0, O)e ox x - f]Cos , (6.8)ox k oy e
0

P E (x, 0) = -W inc 0)e [1 f f Sint (6.9)

ozk oy er 0
0

where fer is given by (6.4) or (6.6). The tangential components

B oy(x, 0) and E ox(x, 0) are of primary interest in the excitation of

circuits on the dielectric surface.

The reflection coefficient for fields of the magnetic type

(i.e., with the magnetic field in the plane of incidence) for the

three-layer problem of Fig. 6.1 is,

[kScsOk cos - s1k1

k cos6 -k cost9 - -k cO 9  n~ os
0o 02 2kI oe

fmr - [k2 cos Jk onO (6.10)

k cos 9 +k cose - -c+ k cose tan(kcocoss] )a 0 1Cos
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With the notation,

k = ksinO, k = kcos&, (6.11)x z

(6.10) becomes,

[k2z-k oz taklk - i k tan(k

f k_ z L klz (6.12)
fmr I2zkoz

k + k 2 z + kl tan(klz)

L k lz  lz

This is the general form for the plane-wave reflection coefficient of the

magnetic type for the three-layered region.

With the condition,

(6.12) simplifies to the form,
k -k

oz k2z

f =- - 2ik Q. (6.14)
mr k

oz 2z

In this approximation the first term is the reflection coefficient of

the two-layer region obtained with f = 0.

The electromagnetic field of the magnetic type on the surface of the

dielectric is,

tk x
E oy(x, 0) = E oyic(0, 0)e ox[1 + f ]r, (6.15)
Eoy(X O Eoy m ,

k 0k x

B (x, 0) = - E inC (0, O)e x D - f]cse (6.16)
ox in o

B (x, 0) = - E inc(0, O)e x [1 + f ]sin* (6.17)
oz O) oy mr 0



-20-

The tangential components E oy(x, 0) and B ox(x, 0) play an important

role in exciting the electrical circuits on the dielectric surface.

In summary, the following new research results are contained in

this section. For a plane wave of arbitrary angle of incidence on the

dielectric surface of a three-layer model for an integrated circuit,

the complex reflection coefficient is given in both exact and approxi-

mate analytical form for the electric field of the wave in the plane

of incidence [(6.4) and (6.6)] and for the magnetic field of the wave

in the plane of incidence [(6.12) and (6.14)]. The tangential components

of the electromagnetic field capable of exciting circuits at the air-

dielectric interface are given in exact analytical form [(6.7), (6.8),

(6.9) and (6.15), (6.16), (6.17)]. These expressions are relatively

simple and suitable for numerical computation. Because frequencyW is

an arbitrary parameter contained in the complex wavenumbers (6.1), these

results also are applicable to electromagnetic pulses composed of a

superposition of (or spectrum of) plane waves. The general formulas

can be used to analyze both existing geometries and materials or proposed

new ones.
*"4

b.

I-- -%"p.i
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7. Circuit-Theoretic Path Coupling Model

The objective of this section is to present analytical formulas

and curves for coupling between signal paths in integrated circuits

based on lumped-parameter circuit theory models. Wihile this is an

oversimplification of the general coupling problem, the conclusions

based on the analysis are consistent with those drawn from the more

complicated field-theoretic path coupling model in section 8 of this

report.

Simple, capacitively coupled RC circuits are analyzed to illustrate

the time-domain and frequency-domain nature of capacitive coupling.

Next, a more general coupled circuit, that includes both inductance and

resistive loading of the signal path, is analyzed to show the effects of

capacitive and inductive coupling separately. Analytical expressions

are given for coupling gain and coupled (or cross) impulse and step

responses. Several curves of cross impulse and step responses are

presented. Means of reducing coupling are discussed.

Consider the elementary circuit in Fig. 7.1 used to model first-order

capacitive coupling between signal paths on an integrated circuit. The

lower RC line is driven by voltage v.i (t) and coupled via the mutual

capacitance C mto the upper RC line which is not driven but has an

output voltage vm t) due to mutual coupling. The problem is to determine

the voltap.- transfer function between v.i and v min the frequency domain,

then find v Mwhen v.i is either an impulse or step function of voltage.

Assuming C m -ce C, the current through C mis small relative to

that through C in the lower line and this leads to the voltage transfer

function (in terms of the complex frequency variable s),

V m(s) I R C

V(s) = 1 +lRC I +sRC sR . . (7.1)
in

The term in front of the brackets is the voltage across C in the lower

line while the term in the brackets represents the voltage coupled

through Cm

The magnitude of the spectrum of the transfer function (7.1) is showsn
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SR

+ C "C
V. (t)
in C G= I1/PIC

C coupling spectrum

i. (s)0<

logo: log wo

-C cross impulse response

C
-Ot C

cross step response
C

a~t) a.ct e w M

1 t

Fig. 7.1. First-order capacitive coupling: circuit, complex transfer
function and coupling spectrum, coupled impulse response h(t),

* coupled step response a(t).
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in Fig. 7.1. Coupling is bandpass having a maximum at the frequency

W =x = l/RC where the coupling coefficient equals 0.25 C IC. To either

side of w4 = '-, coupling rolls off at 6dB/oct. The inverse transform

of (7.1) yields the "cross-impulse response" h(t), that is,

h(t) = v (t) when v.i (t) = E(t). When the lower line is excited by an

impulse S(t) the coupled voltage h(t) has the shape shown in Fig. 7.1.

The peak value of h(t) equals 0KC I C and it occurs when t =0. The

areas under the positive and negative portions of the impulse response

are equal and opposite. This occurs because the step response a(t),

which equals the integral of h(t), has a final value of zero (corre-

sponding to the zero-frequency value of the coupling transfer function).

The maximum value of the step response is 0.368 C I C and occurs at

t = I/* = RC.

As Fig. 7.1 summarizes, the maximum of the voltage coupling

coefficient, cross impulse and ste responses are all proportional to

CI C, the ratio of coupling capacitance to line capacitance. This ratio

could be made small by increasing the capacitance of the signal path,

or decreasing the mutual capacitance, or both.

A more realistic model would include some resistive loading at

the end of each signal path as well as path inductance and inductive

coupling. This increases both the order of the differential equations

describing the circuits and the number of circuit parameters.

The objective of the second modelling approach to follow is to

determine the voltage coupled from one signal path to another due to

capacitive and inductive coupling. Each coupling mechanism is con-

sidered separately and both frequency-domain and time-domain responses

are evaluated in analytical form. This lumped-parameter signal-path

model provides considerably more insight into the nature of coupling.

It quantitatively describes the dependence of coupled voltages on

the parameters of the signal path, namely, path resistance, capacitance,

inductance, loading and mutual capacitance and inductance.

Figure 7.2 shows the second lumped-parameter signal-path model.

The lower and upper signal paths each have path resistance R, inductance

L, and capacitance C and each path is loaded with a resistor R0

Capacitive coupling between the two paths is taken into account by the
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s q

'

R 0 L V(s)

inl
] /

(),/1/ m

V. (s) 0
in

V°

Fig. 7.2. Lumped-element model for capacitive and inductive coupling

between signal paths used to evaluate cross impulse and

cross step responses shown in Figs. 7.3-7.6.
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mutual capacitance C and inductive coupling by mutual inductance L.

Only five circuit parameters are needed to describe coupling:

R, L, C, R , and Cm for capacitive coupling or R, L, C, R and L for

inductive coupling. In Fig. 7.2, the lower signal path is excited with

the arbitrary voltage V in(s), where s = T-+ jW is the complex frequency

variable, and the voltage coupled to the (undriven) upper signal path
is V (s).

nTo denote capacitive couplin6 the notation V (s) = V C(s) is used.

The voltage transfer function V in(s)/V in(s) can be evaluated simply

when it is assumed that the current through C is small compared tom
that through the parallel combination of C and R in the lower path.

Also, the mutual inductance L is ignored. The result is,

,: ,.,,Cos)
.) m 1 s(s + R/L)

i~k _(7.2)

-in s2 +s(' + ) +1( +

The voltage transfer function is bandpass with maximum mid-frequency

gain given by,
F (s)

""-"V C
In m 1 1

V in (S) C LC ( + (7.3)

Ln R
0

At very high frequencies the gain rolls off at -12dB/octave and has

the general form,

V C(s) cn n 1 1
(7.4)

V. (s) C LC 2In S

At low frequencies the gain rises at +6dB/octave and takes the form,

OP ...- *~
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V C(s) Cm m sRC

= - . (7.5)
V.i (S) CR

These results show that, for fixed path parameters R, L, and C,

capacitive coupling is reduced when either the mutual capacitance Cm

and/or path load resistance R is decreased. When path parameters are0
adjustable, capacitive coupling is reduced h increasing the path

capacitance C, keeping the mutual capacitance fixed, so that the ratio

C /C decreases.
m

Transient responses can be derived from the general voltage transfer

function (7.2) by inverse Laplace transformation. Two transient responses

are of particular interest: the coupled voltage when the input is

an impulse h(t) or unit step u(t). These coupled voltages (or cross

impulse and step responses) are denoted by hC M and a C(t), respectively.

When the cross impulse response is known the coupled response to an

arbitrary input voltage waveform can be evaluated by temporal convolution.

The cross step response yields the actual time-domain waveform of the

coupled voltage due to a typical step transition of a logic sequence.

The impulse response h C (t) is the inverse Laplace transform of
m

the voltage transfer function (7.2) which can be rewritten as,

V." V M C(s) C s(s +C3 )-. m m 1I(+.3
S-_ . - . , (7.6)

V in (S) C LC (S +ol) 2(s + 0<2)2

where,

o = - + -+= - + - ( 7 . 7 )
2 L o 2 L R 0 CL C R 0

l( + ) 1 ( 1) 4 R
C< - +  - - I + - , (7.8)

2 2L RC 2 L RC LC R0 o o

.. . . . • %, . .. . 0 0% ,- ,-, 0%-. ,% - .% o --..-... % % % -k.% ,.- , ,.,
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3 = R/L. (7.9)

There are three possibilities for the numerical values of the parameters

w and 2 : complex conjugates, real and equal, or real and distinct

(depending on whether the quantity under the radical sign is negative,

zero, or positive, respectively). Here, the last possibility is assumed,

namely,

*2

- + _ > 1 + . (7.10)
L 0

Physically, this assumption implies that the coupling mechanism is

overdamped so that the transient responses will consist of exponential

terms of the form e or te rather than exponentially damped

sinusoids.

When the voltage transfer function is expanded in a partial fraction

expansion and its inverse Laplace transform taken, the cross impulse

response is found to be,

Cm I - t -O t

h C W " -CLC (a I -t blt)e 1 + (C1 + d1t)e 2 (7.11)
C CLC 111

where the constants a1 through d1 are,

:'3(el +0-2) - 12a - __ _ _ __ _ _ __ _ _' (7.12)

(o2 - o<1

b I =-o 1  (7.13)
(.e2 -,1

) 2

,1 1

,= oK3(a. + e2 ) - 2oeI e2 (7.14)

"0e 1. )3

.". C.I  =
" ( I- 2)



-28-

(03 -o<2
d I  -CW, (7.15)

1 2

withal, oc2, ando<3 given in (7.7), (7.8), and (7.9), respectively.

Figures 7.3 and 7.4 are graphs of the cross impulse response (7.11)

for several choices of parameters. The step response equals the integral

with respect to time of the impulse response or the inverse Laplace

transform of 1/s times the voltage transfer function (7.2). It is,

C m 1 -W otJ

am (t) = - . - (a2 + b2t)e t + (c2 + d2 t)e , (7.16)
C LC

where the constants a2 through d2 are,

W 1 + <2 - 20<3

a 2 = (7.17)
3

w(% 2 2

'3 1 '

l + C2 - 2oe
1 2 3

c2 = (7.19)
(o,1 - )

e' 3-e2

d 2 = (7.20)
(0/I - )

withel, -2' and° 3 given in (7.7), (7.8), and (7.9) respectively.

4Figures 7.5 and 7.6 are graphs of the cross step response (7.16)

for the same choices of parameters as in Figs. 7.3 and 7.4. In the

denominator of every term of each transient response is the constant

factor,

Ir
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Fig. 7.3. Normalized capacitively coupled cross impulse responses
vs. normalized time.
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Fig. 7.4. Normalized capacitively coupled cross impulse responses
vs. normalized time.
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Fig. 7.5. Normalized capacitively coupled cross step responses

vs. normalized time.
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-_ 2 + -2 . (7.21)

0 0

The maximum value of the step response can be estimated to be of the

order,

a C (t) max C m 1 O~m
m max C LC2

C m 1I

m 1(7.22)

C LC

-+ - - 1+

o 0

It is interesting to compare this last result with the previously calcu-

lated value of mid-band gain (7.3) which was,

V. (S) C LC 2
in midband ( +2)2

CCm 1 1
m 1 1 *(7.23)

C LC2

0

To minimize capacitive coupling, these last two time-domain and fre-

quency-domain expressions imply that the product,

Cm 1 1
= - . . (7.24)

.11
C LC (R 10c , L / R o c) 

2
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should be made as small as possible. If R/L >> 1/(R C) then this

product simplifies to,

Cm L/R

PC = R C -J (7.25)
SC RC

which has the interesting interpretation of C /C times the ratio of them

L/R time constant to the RC time constant. To minimize PC reduce

C m/C, the ratio of mutual capacitance to line capacitance, decrease

the L/R time constant, and increase the RC time constant. The product

PC can also be written as,

CLm

P 2C = - (7.26)

R2C
2

and this suggests that, for both fixed path ohmic loss (or heating)

and mutual capacitance Cm, path capacitance should be increased and path

inductance decreased to reduce capacitive coupling. L
To denote inductive coupling the notation V m(S) = Vm (s) is used

in Fig. 7.2. The voltage transfer function V (s)/V in(s) can be

evaluated by assuming that the current I(s) in the lower path is

insignificantly influenced by I'(s), the current induced in the upper

path due to mutual inductance L . Also, the mutual capacitance C is

ignored. Under these assumptions, the voltage transfer function is,

V mL(s) Lm I s(l + sRoC)/(R0C)

= - - . - . (7.27)
Vin(S) L LC s2 + s + 1 + (l + R)1 2

The voltage transfer function (7.27) is bandpass with maximum

mid-frequency gain given by,

Vm L s Lm I
V Cs) -Ln 1 1 .(7.28)

Vi(s) L LC (R

0

W&R- *~~ .1..~~.q%.~ ~ % -
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At very high frequencies the gain rolls off at -12 dB/octave and haspI
the general form,

LI
V L(s) -L= m Dl 1 1

. . .(7.29)

V in(s) L LC s2

At low frequencies the gain rises at +6 dB/octave and takes the form,

V L(s) 1' m

A -sL • (7.30)
, . (S) 2

R(l + )

These results show that, for fixed path parameters R, L, and C,

inductive coupling is reduced when either the mutual inductance L

and/or load resistance R is decreased. When path parameters are

adjustable, inductive coupling is reduced by increasing the path

inductance L, keeping mutual inductance fixed, so that the ratio

L /L decreases.

Transient responses can be derived from the general voltage transfer

function (7.27) by inverse Laplace transformation. As before, the

coupled voltage when the input is an impulse h(t) or unit step u(t)

is evaluated. These coupled voltages (or cross impulse and step

* responses) are denoted by hL t and a L (t), respectively. Knowing the
M m

. impulse response, the coupled response to an arbitrary input voltage

waveform can be evaluated by temporal convolution. The step response

yields the actual time-domain waveform of the coupled voltage due to a

typical step transition of a logic sequence.
LThe impulse response h (t) is the inverse Laplace transform of

the voltage transfer function (7.17) which can be rewritten as,

V L(s) -L s(s +*- 4)

- - * - ' , (7.31)

Sin(s) L LC (s + l) 2(s + 2)2

I r
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where,

_O = l/(R C), (7.32)4o

anda< and o2 the same as for capacitive coupling and given by (7.7)
1 2

and (7.8). Using a partial fraction expansion and performing termwise

inverse Laplace transformation, in the same way as for capacitive

coupling, the coupled impulse response due to inductive coupling has

the general form,

-Lm 1 - t tL 1 2
h (t) . (a +b t)e + (c + d3t)e 2 (7.33)
m L LC

where the constants a3 through d3 are,

4 1 12

a3 
=  , (7.34)

0<2 Q<13

4 1
b3 = -9 (7.35)

2  1

(c,( + o 2 -

2 12

c 3 = (7.36)

(2e4 O 2
(%d--2

d3 = - 2 (7.37)

1 2

No curves of the cross impulse response (7.33) need be plotted because

they are identical to those in Figs. 7.3 and 7.4 when the substitutions

-Lm/L*-PCm/C and -- are made. To verify these substitutions

compare (7.33) to (7.11). Note, however, that the polarity of the

inductive cross impulse response is inverted relative to the capacitive

%-----------------------------------------------------
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cross impulse response.

The coupled step response due to inductive coupling has the form

L l(1
L(t) J'a4 + b4t)e  + (C4 + dt) 2t (7.38)

Lm LC

where the constants a4 through d4 are,

a4 = , (7.39)

4 1

b = , (7.40)

(De- 2 )2

2Oe + - 2 -
.2 1 4

, 4 = , (7.41)

('I - 0"2)

04 <2

d . (7.42)

As with the cross impulse responses, the cross step responses for

inductive coupling can be seen in Figs. 7.5 and 7.6 with the substitutions

-Lm/L--nCm/C and 4 ---o. Again, polarity is reversed.

Similar to capacitive coupling, the denominator of each term in

(7.23) has the constant factor,

(o(°<2 - )2 = (e-I 2 -- +-. (7.43)
2 1 LC R

0 0

• .This implies that the maximum value of the step response can be estimated

to be of the order,
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L m 11
am (t) max - -

L LC ((< 2

-L

m 1 1
(7.44)

LL LR 2 C

0 0

This last result can be compared with the previously calculated midband

gain (7.28) which was,

V V L(s) -Lm m 1 1

V in(s) midband L LC (c<+c2) 2

-L m 1 1
- . -. . (7.45)

L LC2

To minimize inductive coupling, these last two time-domain and

frequency-domain expressions imply that the product,

, L
L m 1 1

L=- - (7.46)

L 2 C
" L((oC)

generally should be made as small as possible. If R/L >> 1/CR C) then
0

this product simplifies to,

Lm L/R
P L =- " --_ (7.47)

L RC
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which is the product of L I L and the ratio of the L/R time constant

to the RC time constant. The product P Lcan also be written as,

LL

P (.48

L

R 2C

and this suggests that, for both fixed path ohmic loss (or heating) and

mnutual inductance LV path capacitance should be increased to reduce

inductive coupling.

The conclusion based on the foregoing analysis of the coupling

model is that there are several options available to reduce coupling

and interference in integrated circuit signal paths: (1) increase

path capacitance; (2) decrease mutual capacitance and mutual inductance;

(3) increase path loading; (4) if ohmic losses and heating are not

critical, increase path resistance. Option (1), increasing path

capacitance, appears most promising. This can be accomplished by increasing

the relative dielectric of the substrate and/or reducing the thickness

of the substrate layer.
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8. Field-Theoretic Path Coupling Model

An important type of electric circuit consists of conducting paths

* . on a dielectric sheet that is bounded on one side by air, and on the

other side by a conducting plane. This is the case for the majority of

chip area in an integrated circuit because of the many interconnections.

The interaction of circuit elements on such a structure includes not

only the conducting paths but also the coupling due to electromagnetic

waves that are generated and travel in and along the surface of the

dielectric. This is particularly important where extremely high

J I frequencies are present due to very high clocking rates. It is well

known that a dielectric-coated metal plane supports a surface wave

that propagates in the dielectric. However, such surface waves are

4 usually derived as possible solutions of Maxwell's equations when the

conditions of a surface wave are imposed (viz., that the surface wave

be exponentially attenuated in the air in the direction perpendicular

to the dielectric). It is not obvious that such a wave is, in fact,

generated by alternating currents located on the air-dielectric boundary.

A first step in the determination of the fields generated by such

currents is a complete analysis of the electromagnetic field of a

unit infinitesimal horizontal dipole (i.e., an infinitely small con-

ductor with an electric current moment Ih e= 1 amipere-meter) located

on the air-dielectric surface as shown in Fig. 8.1.

unit
electric

diple Region 0 (air, k) x axis

r -- xaxis

~eRegion 1 (dielectric, k C)

IRegion 2 (conductor, k ) l

z axis y axis

(a) (b)

Fig. 8.1(a) Side view of unit electric dipole on plane boundary
z = 0 between air and a dielectric; Wb Top view of unit electric
dipole on dielectric surface and observation point P( -, 'fl, 0) where
the 9 and 4p components of the electric field vector are to be
evaluated.
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Once this is known, the fields generated by conductors of finite

length can be derived. These include single conductors, parallel

conductors forming a transmission line, and various circuits with

small lumped elements.

The electromagnetic field generated by a unit dipole when on the

boundary between air (Region 0, z t 0) and a dielectric or conducting

half-space (Region 1, z ? 0) is well known. The radial component of

the electric field EI1 (f,<P, 0) includes a wave of the type known as

a lateral wave which travels in the air along the boundary and a

direct wave that travels in the ad acent half-space. The lateral wave

in Region 0 has the coefficient e with associated amplitude factors,

the direct wave in Region 1 has the coefficient e with associatedIamplitude factors. Because the wavenumber k differs, these two waves

propagate at different velocities. Unfortunately, these known formulas

region, like an integrated circuit.

Corresponding new formulas were derived for the horizontal electric

dipole on the boundary of a three-layered region shown in Fig. 8.1.

The mathematical details are too lengthy to be presented in this report

and will be published elsewhere. Only the major research results and

their relevance to the coupling/interference problem in very-high-speed

integrated circuits are discussed here.

The following practical approximations were used to derive the

new formulas for the fields:

2 k21, k 2 1, (8.1)

k0 I~(1 2 ' 22

where the wavenumber,

k. + i = o(. + ir./w,,] 1 1 2, (8.2)

and w = 29f, the radian frequency. In (8.2) the quantities/io, E,

and c-have their usual meanings. In (8.1), lkl1 1 is interpreted as

the electrical thickness of the dielectric layer whose physical

thickness is 2.
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The general form for the radial electric field at the air-dielectric

surface due to a horizontal electric dipole (see Fig. 8.1) is,

"/10V ikl 'l kkp
4,0) -Tr cos 2eL [ 1( k +)

22 2

+ e (ie) (8.3)

2

+ ikl9 ( - ° e i l 1h
to Q2 3 2 2  J

This includes contributions from a surface wave that travels in the
ik1dielectric region 1 with the propagation factor e and a lateral wave

that travels along the surface in the air with the propagation factor
ikoe

e . These two waves have different velocities of propagation.

The quasi-static or near field part of (8.3) is,

U Wo COSf kl1
E Q, CP, 0) - i +  + i) + k (1 + i/2 (8.4)

At large distances, the lateral wave dominates and,

2 ik
-OO k0 2j e

El( , ^, ) , - , ko ' 1. (8.5)
2Irk1

The general form for the phi component of the electric field at

the air-dielectric interface due to a horizontal electric dipole

(see Fig. 8.1) is,
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2
ik~ 1 ik 1 kI

E 10) = - sin e (8.6)
'rrk 2 L 2  3

ik ik k eikl  kl ik\1
-i[le2 o( + e .

The quasi-static or near-field part of (8.6) is,

* ~ico sin

Eq(?, , 0)P, -- [1 + 2ik19], Ikl1 2 <z1. (8.7)
'9' 2 32,rkl e

At large distances the far field has the form,

-iW"Vo ik 1

Eif , €, 0)., - sin - 1 - ki9], Iklid 2 «1. (8.8)
"27T e

Although the general formulas for the components of the electric

field, (8.3) and (8.6), are complicated, some important observations

relevant to coupling and interference in integrated circuits can be made.

First, reducing electric field strength in the region near the current

element is desireable because coupling and interference are proportionally

reduced. The near field terms in (8.4) and (8.7) each have the

coefficient,

~1
- - . (8.9)
k1 (, + i/W) 1 1/2

Therefore, increasing the permittivityE 1 of the dielectric layer

reduces field strength (and, consequently, coupling and interference

with nearby conductors and circuits). At high frequencies ai 1w becomes
1

smaller tending to increase field strength. Increasing the conductivity

of the dielectric layer to compensate this may be a poor choice because
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signal losses in the dielectric will increase and heating could be

problematic.

At larger distances away from the current element the lateral wave

has the coefficient,

kv2

- = . (8.10)

kl [/Po( 1 + io I)]
11

Again, field strength is reduced by increasing the dielectric's

permittivitylEG. Coupling and interference also can be reduced at

larger distances from the current element by reducing the physical

thickness I of the dielectric layer as can be seen from (8.10). Because

k02 appears in the numerator of (8.10), increasing k would proportionally
increase the strength of the lateral wave and coupling or interference

due to it. This means that using a material with G >C in place of
0

air in Region 1 is not good from the standpoint of interference/coupling
due to the lateral wave.

The general expression for the radial electric field contains

several I/k2 terms which can be made smaller by increasing the con-

ductivityo-2 of the ground plane as can be inferred from the relation,

k2 = [,,io(E2 +i Cr2/w)]12. (8.11)

In summary, from the field-theoretic path coupling model based on

a study of fields generated by a horizontal current moment parallel to

the air-dielectric surface of the three-layered problem, coupling and

interference generally can be minimized by: (1) increasing the

permittivity G o f the dielectric layer; (2) decreasing the thickness

of the dielectric layer; (3) increasing the conductivity of the ground

plane below the dielectric layer. These results are consistent with

that from the previous section, namely, increase path capacitance to

minimize coupling and interference.

The interesting new research result in this section is the

existence of two mechanisms of coupling from a current moment on the
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dielectric surface: one due to a lateral wave and the other due to
a surface wave. Because the velocity of propagation of one wave is
different from the other, these interfering signals arrive at some
point on the surface of the dielectric at different times. This may

be critical at very high clocking rates.
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