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Summary

Pilot workload in the cockpits of modern tactical aircraft has grown

in proportion to technology advancements in sensor, display, and

electronic capabilities, as well as ever increasing mission requirements

in the interests of versatility and survivability. These combined

influences have created a serious problem of information overload for

today's pilot and, unabated, will likely grow worse in the future. Even
a cursory analysis of the growth of the number of controls and displays

throughout the history of military (and civilian) aircraft testifies to
the exponential growth in information processing overhead we are

continuing to place on our pilots.

The objective of this effort is to review the literature in the area
of artificial intelligence (AI) to identify research activities and

development efforts that may be related (or relatable) to the management

of aircraft systems by the pilot.

Since the role of the pilot has shifted through the years from that
of an airframe controller to a manager of complex systems, the initial

chapter of this report provides a survey of the literature that includes
the application of AI in general, and expert systems in particular, to

management problems across a wide range of disciplines.

Chapter 2 provides an overview of ongoing and planned efforts by

various government agencies to develop a broad range of AI systems,
supporting both military and civilian applications.

Chapter 3 picks up where Chapter 2 leaves off to discuss expert
system developments within industry (many of them directly supporting,

or in preparation to support, government projects) together with an
indication of future directions of the technology and discussion of

issues and concerns voiced by leading experts in the field. Since the
material covered in Chapter 3 is of considerable breadth, a separate

summary is provided as an overview of the technology, applications,



problems, successes and research and development needs that were

identifiled.

Chapter 4 treats what has been deemed by many AI practitioners as

the most important design aspect of expert systems, the interface

between the system and the user. Several of the more prominent design

considerations that have received research attention are discussed,

together with an indication of the cooperative research and development

activities that need to be performed jointly by human factors and expert

systems specialists to assure the interface problem is adequately

addressed.

Automated image understanding is the subject of Chapter 5. Although

this is a technically difficult area, significant progress is being made

on both the scene analytic and processing hardware technology fronts

that promise at least potential breakthroughs in the decades to come.

Chapter 6 reviews the technology and research directions in the

processing and understanding of spoken natural language. Although some

of the problems in this area are technically similar to those in visual

image understanding, speaking with brief pauses between words and using

c%,nstricted vocabularies permit useful applications of speech

recognition systems today.

In each of the above chapters, parallels between the research and

development activities being reviewed and actual or projected pilot

4 cockpit management functions are drawn where appropriate.

The final chapter draws from all previous material to summarize

projections, cautions and promises associated with the development and

application of AI and expert systems. Readers wishing to acquire a

better appreciation for the content of the total report, without having

to read each individual chapter, might do well to review the summary

section of Chapter 3 (pp 59) and then read Chapter 7.
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PREFACE

This work was accomplished largely while the author was on long-

term, full-time training (at Wright State University, Dayton OH) under

the sponsorship of the Armstrong Aerospace Medical Research Laboratory

(AAMRL), during the period September 1985 to June 1986. Efforts

expended before and after that period were performed under the Human

Engineering (HE) Division Project 7184, Task 11, Work Unit 45. The

report provides the basis for a dissertation submitted to Columbia

Pacific University in partial fulfillment of the requirements for the

degree of Doctor of Philosophy (Engineering Psychology).

Since this author wished to conduct as thorough a review of the

relevant artificial intelligence (AI) literature as was reasonably

possible, and at the outset had few preconceived notions as to the

specific applications of AI that might be encountered in the literature,

a multifaceted approach to the literature review was developed. This

included computerized keyword searches on titles and abstracts in the

open literature, titles and abstracts of technical reports and work

units in DTIC (Defense Technical Information Center), manual searches of

citation indices, the holdings of three university libraries and three

Air Force libraries, and each new book or periodical that was found to

be released on the subject over approximately the September 1985 - June

1986 period, together with many technical discussions with local (Air

Force and university) personnel knowledgeable in various aspects of the

AI field.

Because the materials discussed in each chapter of this document are

largely independent from that treated in other sections (with some

possible overlap between Chapters 2 and 3), a separate biliography is

provided at the end of each chapter. To facilitate an overall

perspective of the total coverage, as well as provide quick access to

specific topics, a Master Table of Contents is provided at the beginning

of the document.
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CHAPTER 1

An Introduction to Artificial

Intelligence and Expert Systems

Introduction

This chapter provides an overview of the current literature in the

general field of artificial intelligence (AI), together with an

exposition on the subarea of expert systems. Some examples of prominent

applications of expert systems in a variety of disciplines are provided

to generate a framework for understanding how such systems could and are

being developed to support cockpit management problems, as well as other

military and civilian applications.

The growth rate of expert systems will be shown to be as dramatic as

their potential for changing the way in which functions across a broad

spectrum of disciplines may be performed in the future. We are at the

threshold of a new science in the exchange of information, knowledge,

and exploration of reasoning processes.

Artificial intelligence is a scientific/engineering discipline that

can be broadly defined as the application of computers and programs to

tasks that normally would require reasoning and perception by humans.

Within this discipline there is a broad range of interests and

activities, including the subareas known as expert systems, planning and

problem solving, robotics, computer vision/image understanding, and

natural language communication, as well as explorations into the nature

of intelligence itself. It is the subarea of expert systems and its

supporting field of knowledge engineering that seem to provide the

greatest near-term potential for application to cockpit management

problems. Expert systems are meant to provide the user with a

sufficient set of rules, facts, characteristics, and conditions so as to

reflect the reasoning processes and expertise of a knowledge domain

9



specialist (e.g., a flight control expert, or a master mission planner)

all of which may be brought to bear on the problem at hand.

Applications of these systems are being developed across a broad range

of technical areas. Manuel (1985) reports that nearly every major U.S.

corporation either has or is initiating an AI group to develop or

explore expert systems in their technology areas.

Although the earliest efforts were performed mostly by computer

scientists, major contributions are now being made across a broad

multidisciplinary spectrum. For example, there are engineers

concentrating on robotics and image analysis/pattern reccjnition;

operations research people are developing search techniques and optimal

decisions under uncertainty; cognitive psychologists are studying human

systems for pattern recognition and semantic analyses; philosophers and

linguists are attempting to synthesize intelligent behavior for

application to natural language understanding systems, while persons

across the spectrum of disciplines are developing expert systems (albeit

most to only the demonstration prototype phase) to mimic the application

of their knowledge in some constrained problem area.

A Survey of the Literature

N The first efforts made to review the Al literature were computerized
searches of listings in the Engineering Index and of technical report
titles and work units within OTIC (Defense Technical Information

Center). Although these searches identified some relevant and useful

documents, their content proved to be relatively disappointing for the

purposes of this effort. Upon surveying other available citation

indices, two prominent periodical literature reference sources were
identified (i.e., the Applied Science and Technology Index and the

Business Periodicals Index) that contained the breadth and depth of

citations needed to initially gain an appreciation for the extent of

Nexisting lieauein the area. A reiwof teApplied Sineand
Technology Index, starting with 1958, indicated that the first entry for

10



AI occurred in 1966. The article was entitled simply "Artificial

Intelligence", and was published in Scientific American by MIT Professor

M.L. Minsky (1966), still a prominent researcher in the field. A

similar review of the Business Periodicals Index showed no activity

until 1981. A comparison of the number of Al citations in these two

periodical indexes, illustrated in Figure 1, gives rise to three

interesting facts.* First, as already implied, the appearance of

articles in business periodicals lagged that for applied science and

technology by 15 years. Second, of the total number of business

oriented articles cited (128), very nearly half (63) were published

during the year 1985. And third, since AI first appeared in the

business media, the publication growth rate appears to be substantially

higher than that for the applied science and technology areas,

indicating an impressive buildup of momentum.

Waterman (1985) provides a catalog of expert systems in which he

describes the stage of development that each of a total of 179 systems

had attained at the time of publication of his book. Although the

listing he provides cannot possibly include all existing systems, a

compilation of those cited, categorized by application area and stage of

development, provides perhaps a relative, if not absolute, indication of

the breadth and depth of expert system tools more or less available.

The entries from Waterman's catalog (pp 244-299) were tabulated to

create Figure 2. The data have been ordered by total number of

citations per application area. These same data have been cumulated

across application areas and plotted in Figure 3 as a function of

development stage only. The area noted as "other categories" includes

* This comparison was justified by the basis that both of these index
sources are produced by the same publisher, are mutually exclusive in
their coverage of periodicals, have similar periodical identification
methods in that subscribers (ostensibly libraries and larger
corporations) vote as to the source documents to be included in the data
base, and represent approximately the same annual total number of
citations.

11
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Figure 1. A comparison of number of citations for Artificial
Intelligence in Applied Science and Technology Index vs. Business
Periodicals Index.

principally systems that were viewed by Waterman as more for exploring

reasoning processes, learning by discovery, or as aids in developing

expert systems within particular knowledge domains.

For clarity, the application categories in Figure 2 are, reading

from left to right: medicine, military science, electronics, chemistry,

computer systems, law, information management, engineering, geology,

space technology, agriculture, manufacturing, mathematics, physics,

process control, and meteorology. It is obvious from Figure 2 that the

medical field has been the most heavily invested in, probably because of

12
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Figure 3 specifically illustrates the preponderance of expert

systems that are only at the research prototype or demonstration

prototype stage, and the relatively small proportion (9 out of the 179

systems surveyed, or 5.0 percent) of systems that were actually

commercially available.

OTHER CATEGORIES
(3.9%/)

COMMERCIAL SYSTEMS
(5.0%)

FIELD PROTOTYPE
(6.8%/)

PRODUCTION
PROTOTYPE

RESEARCH PROTOTYPE (2.30/6)
(52.2%/)

DEMONSTRATION
PROTOTYPE

(29.8%/)

Figure 3. Proportions of Expert Systems at Various Stages of
Development

Some Application Examples

To provide the reader with a better idea of what the expert systems

that have been developed actually do, how they do it, and how they have

been validated, a discussion of the synopsis of expert systems research

provided by Duda and Shortliffe (1983) provides an excellent starting

point. Their historical perspective over the last 25 years describes

the evolution of emphasis in AI as shifting from the early attempts to

use computers to exhibit intelligent behavior (conceivably through the

identification of few powerful techniques) to a knowledge-based approach

which has evolved into the area of expert systems. Classification

- .~ 14



routines now represent the most successful of expert system programs.

In the medical diagnosis area, these are designed to weigh symptom data

and provide the clinician an assessment of the most probable causes.

Several different approaches for combining probabilistic data have been

used, including Bayesian techniques.*

Primary examples cited by Duda and Shortliffe fall into the

application areas of medicine, chemistry, computer science, and geology.

MYCIN (used for diagnosis and treatment of infectious diseases) uses

a rule-based approach, and as such, must obtain specific information

about the patient to formulate both a diagnosis and suggestions for

therapy. A rule in MYCIN consists of a series of if/and/then logical

statements and the strategy in rule selection is goal-oriented. The

program "reasons backwards" from its initial goal (i.e., determination

of the cause of infection). At any point in the process, the user may

ask the program "why" a particular question was being asked. MYCIN

provides both the reason for the question and the rule being pursued,

thus allowing the user to trace the reasoning applied. The inability to

* determine the source of the automated inquiry in some other

statistically based diagnostic systems has resulted in user acceptance

problems, even though performance of these systems might have been

excellent.

Another medical expert system, known as INTERNIST, is used to

diagnose problems of internal medicine. Ford (1985) states that

INTERNIST can diagnose approximately 500 diseases through analysis of

some 3000 symptoms. In an assessment of the performance of this system,
43 diagnostic problems (taken from the New England Journal of Medicine)

were correctly diagnosed 25 times by the program, as compared to 28

* See bibliography for paper by Duda, Hart and Nilsson (1984) for a
treatise on the application of Bayesian methods to rule-based inference
systems.
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times by the physicians treating the patients, and 35 times by the

expert physicians authoring the journal papers.

The DENDRAL program is designed to analyze mass spectral patterns to

suggest the chemical structure of unknown compounds. It is based on an

algorithm developed in 1964 by the Nobel Prize-winning chemist, Joshua

Lederberg. The algorithm starts with a set of mass spectroscopic data

and identifies all molecular structures that could be predicted from

that set of data (see Harmon and King, 1985). In 1965, Lederberg joined

with others at Stanford, notably Edward Feigenbaum, to see if the

algorithm could be translated into a set of heuristics that perhaps

could produce the same results but much more rapidly. The heuristics

were developed through intensive discussions with expert chemists. This

information extraction process required approximately 15 person-years

and produced not only the DENDRAL program, but also the field of

knowledge engineering, as it was termed by its creator, Edward

Feigenbaum. The DENDRAL program has led to approximately 50

publications in the chemistry literature and has been effectively

validated through routine use by chemists.

The expert system PROSPECTOR is used to identify ore deposits and

select drilling sites. Validation of PROSPECTOR was performed in 1980

(see Waterman, 1985) by actually drilling at sites in eastern Washington

according to its predictions. PROSPECTOR analyzed the geological,
I

geophysical, and geochemical data describing the area and predicted both

concentrations and lack of concentrations of ore-grade molybdenum

deposits at particular sites. Several drillings by a mining company

confirmed PROSPECTOR's predictions.

The XCON (also referred to as R1) program is considered one of the

most successful commercial applications of expert systems technology and

is in everyday use by Digital Equipment Corporation, being applied to

each VAX configuration sold. Experience across more than 3000 orders

processed in one 3-month period showed that over 85 percent of the

16
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configurations were flawless, while the remaining were usable after

simple corrections. Manuel (1985) states that XCON saves the company

approximately $18 million each year, and also results in much greater

customer satisfaction.

A major differentiation in the logical approach used by various

expert systems has to do with whether the rules in a rule-based system

are applied to the facts (or data base), or whether the facts are

applied to the rules. The most popular approach (as used in MYCIN, for

example) uses a backward chaining strategy in which the data are used to

select a number of the most plausible hypotheses (or solutions) in a

high-level screening process. The expert system then proceeds with a

line of questioning appropriate to acceptance or rejection of each of

the hypotheses considered and provides a ranking of possible solutions

in their order of likelihood. In contrast, a forward chaining strategy

would attempt to reason forward from a given set of facts to identify a

solution. The behavior of a forward chaining system can appear to be

erratic as it first works toward one solution and then another in its

logical sequence. The relatively incoherent series of questions

produced by this forward chaining process undoubtedly produces lower

user confidence than the "goal-directed" backward chaining approach

might. In addition, user queries under a backward chaining system are

much more easily satisfied since both the data and the final solution

being pursued can be identified to the user, thus providing the

rationale for the line of reasoning being used. In order to gain

reasonable pilot acceptance, cockpit application of expert systems will

almost certainly have to provide explanations to the pilot when

requested. Since the backward chaining approach provides this

capability most directly, it will most likely be preferred by system

designers and pilots as well.

Projection of Expert Systems Technology into the Cockpit Management

Arena

Using efforts such as those described above as an experience base

for the development of expert systems for cockpit management
17
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applications, it seems clear that future efforts must evolve around the

identification and encoding of knowledge, requiring the collaboration

of pilots, engineers, skilled domain specialists, and behavioral

scientists*, together with AI specialists. Strategies for dealing with

inference and uncertainty are also reasonable areas for future

concentration, as are techniques for adjusting the level of explanations

to accommodate a range of user needs. This implies that the program

must maintain a model of the user in terms of what he/she knows and what

is trying to be accomplished. This fact represents the major difference

between expert systems and their closest relatives in the management

decision area, so-called decision support systems.

Michaelson and Michie (1983) discuss the differences between expert

systems and (procedurally based) decision support systems (DSS).

Routine decisions can be modelled by DSS's when they are understood well

enough to be able to be specified through mathematical formulae and be

procedurally programmed using languages such as BASIC, COBOL, FORTRAN or

Pascal. On the other hand, expert systems more typically employ unique

symbol processing techniques (using list or logic oriented languages

such as Lisp or Prolog, respectively) to incorporate a knowledge base

(if/and/then rules) which is processed according to a strict, goal-

oriented, deductive inference process in order to achieve a pattern

match with the present situation. Ford (1985) characterizes OSS's as

helping decision-makers use data and models to solve relatively

unstructured problems. As such, the DSS might be in the form of a

management information system, or other such data base to which

quantitative analysis techniques can be applied by the user. In

contrast, the expert system provides a problem-solving capability by

codifying the knowledge of experts so that their reasoning, skill, and

intuition may be applied to the problem at hand, thereby (hopefully)

* The processes of extracting knowledge from experts and modeling the
communication needs of the user draw on the skills of the behavioral
scientist.
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providing a better conclusion or decision. Ford (1985) points out,

however, that the DSS provides inherently greater personal flexibility

because the user controls all queries, while the expert system may offer

little or no flexibility. In any event, the greatest relative advantage

of the expert system is its ability to explain its reasoning process by

displaying the rules used to make a decision.

Blanning (1984) draws a distinction between decision support systems

and expert systems on the basis that DSS's use causal models, as opposed

to the judgmental models used by expert systems. Such causal models may

treat the areas of production, distribution, marketing or the financial

structure of an organization. Blanning suggests that designers of

expert systems for management must realize the existence of DSS models

and provide interfaces between these and expert system models where

appropriate. In discussing existing and possible expert systems for

management, he cites several examples that generally fall into three

categories of management concern and function that overlap completely

with major pilot management tasks in the cockpit: resource allocation,

problem diagnosis, and scheduling and assignment. Blanning projects

that since resource allocation is such an important managerial function,

expert systems will probably be developed to assist in that process

(e.g., allocation of an R&D budget to proposed projects, or the

preparation of budgets by governmental agencies, as well as by

independent firms). In the problem diagnosis area, Blanning envisions

the codification of observational data to trigger identification of an

impending or real problem. Such codification would lead to rules such

as: "If net selling price is more than $2 below budget, sales volume is

more than 10,000 units above budget, and profit contribution is more

than 5% below budget, then there is evidence (0.7) that price discounts

are excessive." Totally analogous rules could be generated for

assisting the pilot in identifying otherwise insidious problems with

aircraft systems, external threat composition or any other combination

of elements that is predictive of a change in situation that the pilot

should be made aware of. Blanning (1984) concludes that "developers of
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management information systems and decision support systems will

certainly find in expert system technology a fertile field for research

and practice, and developers of expert systems will certainly find

management applications a fertile field for research and practice."

Elam and Henderson (1983) also discuss concepts of knowledge

engineering applicable to the development of decision support systems.

They argue for the incorporation of knowledge engineering techniques to

improve the acceptability and utility of OSS's.

A report by Myers (1984) offers the most conservative view of the

potential application of expert systems to management operations that

could be identified through this review. Opinions voiced by

representatives in the banking, computer chip, and computer mainframe

industries generally indicated doubts that their "gut-feelings,"

expertise, and experience in their business worlds could be put into an

expert system, since these decision drivers are poorly understood by the

experts themselves.

It should be noted, however, that perhaps the management

representatives would have been more enthusiastic about expert system

applications to their speciality areas if they had had some experience

with the process of information extraction from their respective areas

* through the help of someone specially trained to assist in that process.

Such (knowledge engineers) have obviously been the cornerstone of
P. knowledge base developments within the most successful expert systems.

One may hypothesize many scenarios for the application of AI and

expert systems to cockpit management problems. The most reasonable

forecast of future investments in AI for cockpit management applications

would seem to be those that play a role in the training process, have

relatively short-term payoff, and are perceived to be cost effective.
Based on these criteria, the most likely candidates for earliest

implementation would seem to be systems for speeding up and/or
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A simplifying the tasks of mission planning (and replanning, when an

unexpected event occurs during the mission), navigation and navigation

systems management, diagnostic systems, and threat systems management.

Indeed, it will be shown in Chapters 2 and 3 that these and many other

application efforts are in various stages of development.

From an industrial management perspective, Harmon and King (1985)

portend that, in the coming years, problem solving and decision making

will be automated just as surely as production lines are, and that

expert systems will be the "robots" of middle management. They project

that tasks thought to be impossible to computerize will become amenable

to computer solutions and jobs and individuals associated with older

ways of problem solving and decision making will change or be replaced.

They conclude: "As with past technologies, those individuals that can

blend the power of these new technologies with the necessities and the

N constraints of their organizations will be the winners."

Conclusions

It seems that the major challenge to aircraft system designers will

be to determine how the advanced technology of AI and expert systems can

best be woven into the fabric of their technology areas so that

improvements in man-machine and operational effectiveness are

demonstrable. The key to success of such ventures will most likely be

the extent to which pilots find the systems rewarding to use in terms of

reducing workload during critical mission phases, increasing their

situational awareness, and improving their chances of survival under

dangerous flight regimes or threat environments.

* In the process of developing this report, the author was continually

reminded of the words of Allen (1978) regarding the importance of

'I information processing to the advancement of science. He states:

"Information processing is the essence of scientific activity. As

physical systems consume and transform energy, so too does the system of
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science consume, transform, produce, and exchange information." What

more satisfying approach to information exchange could there be than one

in which the expert system becomes the vehicle for transfer of knowledge

and technology from the senior pilot, engineer, or scientist to his less

experienced colleague in the cockpit of tomorrow's aircraft.
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CHAPTER 2

Artificial Intelligence Development

Applications in DARPA, DOD and NASA

Introduction

This section reviews ongoing and planned efforts to develop a broad
range of Al (including expert systvpis and robotics) applications by
various government agencies. Funding of these efforts has been spurred

by the burgeoning computer technology, together with concerns by the

various organizations that today's data processing, analysis, and
decision making requirements may be performed more reliably and

efficiently by programs specially designed to use the codified knowledge
base of experts. Harsh or unfriendly environments provide yet another

setting where AI developments in the field of robotics find great user
support.

It will be demonstrated that we are at the threshold of a surprising

range of application capabilities which may eventually dramatically
reduce the present required reliance on real-time human judgement.
Exploration of AI technology and the development of expert systems offer
the opportunity for considered, higher quality judgements, but without
the time lags usually associated with ponderous rumination, especially

by those at the lower decision making levels.

It is important to recognize at the outset that these systems do not
think or reason in the way that humans do. When design and technology
permit, however, they may allow relatively complex information
processing and decision processes to be performed rapidly and accurately
under situations that man may find difficult or impossible.
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DARPA Sponsored Efforts

The Defense Advanced Research Projects Agency (DARPA) has embarked

on an ambitious program to develop computer technology that will perform

at several orders of magnitude beyond present systems. Ulsamer (1985)

quotes Dr. Robert S. Cooper, past DARPA director, as estimating

processing power of these machines to be up to 10,000 times as great as

the largest current-generation computers. This development effort is

part of DARPA's Strategic Computing Program which will spend

approximately $600 million over its first five years. Klass (1985)

describes DARPA's overall program goals as aiming to "provide the U.S.

with a broad line of machine intelligence technology and to demonstrate

applications of the technology to critical problems of defense." Three

application programs have been initiated to assist in the technology

demonstration process. The first of these is the autonomous land

vehicle (ALV) program which is designed to provide a "strong pull for

vision and image understanding technology." The ALV is to use a single

TV camera, and through processing routines, determine the path of a road

and follow it automatically. Although initial demonstrations will

involve only about 20 feet of travel before the vehicle must stop and

recompute the road, successive planned increases in computational power

over the following year will allow a continuous speed of about 10

kilometers per hour, with 60 kph as the target speed by the end of the

program. It is also planned that this eight-wheeled, 5000 pound vehicle

will eventually have a five-color laser scanner/radar that will allow it

to detect obstacles by measuring their absorption and reflection at the

five different wavelengths. This will allow it to traverse open

terrain. The on-board expert system will plan routes by combining a

digital terrain map with sensed environmental data, plot strategies to

avoid obstacles, update its own terrain data base and generate all

steering and speed commands. DARPA estimates that such a system will

require approximately 6,500 rules, together with an average execution

rate of 7,000 rules per second. A single execution consists of a

complete cycle of examination, interpretation, and response to one rule

in a particular situation.
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To support the four orders of magnitude increase in computational

power required to process all the required data, DARPA is also investing

heavily in gallium arsenide (GsAs) and gallium aluminum arsenide

(GaAlAs) material production technology. These materials are superior

to the conventional silicon materials used in today's computer chips in

terms of their tolerance to radiation from nuclear weapons, as well as

their much wider operating temperature range. Rockwell International

* and Honeywell are the contractors involved in this technology

* development.

Wallace et al. (1985) describe the first results obtained in

continuous motion road-following tests for the AVL, performed by the

Robotics Institute of Carnegie-Mellon University. Preliminary vision

and control systems have been developed which allow traversing of an

outdoor path at 2 cm/sec with an image processing time of 2 sec/image.

Although locomotion rate is low, it should be realized that this

represents the first complete system, including the low-level drive

motors and the top-level control loop and user interface.

The second major thrust in DARPA's Strategic Computing Program is
the Pilot's Associate Program. Stein (1985) states that the Pilot's

Associate will provide expert advice regarding situation assessment,

mission planning, systems status, and tactics to the pilot. A key

aspect of this program will be a natural language interface with the

V pilot. There are four initial expert systems to be developed. The

situation assessment manager will assess the tactical environment (i.e.,

wieather, terrain, targets, threats, and the capabilities of on-board

systems to meet the demands of the mission). The tactical planning

manager would recommend a best course of action, given the present

tactical situation. The mission planning manager would assist the pilot

in maintaining, managing, and revising mission plans to accommodate the

present situation. The systems status manager would identify

malfunctioning, non-operational, or impending system problems and

attempt to transfer the lost or nearly lost function to another system
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or systems. The Pilot's Associate Program is being directed by the Air

Force Wright Aeronautical Laboratories (AFWAL) at Wright-Patterson Air

Force Base, Ohio.

The last component of DARPA's Strategic Computing Program is a

battle management system for both land-based and shipboard use on a Navy

carrier task force. A facility will be developed for capability

demonstrations in Hawaii, next to the CincPacFlt command center. The

objective of this program is to develop expert systems to allow a

command center to perform 96-hour look-ahead contingency planning, and

communicate with the system using natural language. Texas Instruments

is the integration contractor for the Hawaii facility, and Bolt Beranek

and Newman is developing the natural language subsystem. Carnegie-

Mellon University is developing a situation assessment expert system,

and Computer Corp. of America is developing a graphic interface display

which will be installed shipboard.

Computer hardware and software to support these various efforts are

being developed through several joint efforts by universities,

industrial research laboratories, and entrepreneurial companies with the

hope that greater numbers of students will become interested in the

advanced computer processing techniques this program will require and

thus build our national resources and capabilities in this area.

The Mitre Corporation, under funding by the Rome Air Development

Center, has developed a laboratory-based expert system to analyze

tactical intelligence data. The system, known as "Analyst" (see Freck

and Bonasso, 1985) is programmed in Lisp and incorporates rules

generated through interviews with tactical intelligence experts. To

transform the laboratory-based system into a useful operational tool,

Mitre feels the system needs to be put into the field and adapted to the

specific needs of a field command, as well as be made more user-friendly

to accommodate the average GI intelligence analyst. Since Analyst

employs a user developed data base created via keyboards and graphics,
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'K information and rules can be modified to adapt the system to a new

tactical need. DARPA has been sufficiently impressed with the progress

thus far to team with Mitre to perform two field experiments with the

system to examine user interaction issues. DARPA will apply the results

to its Space Strategic Computing Program.

Buffalano (1985) states that DARPA will have spent $15-20 million in

expert systems efforts in FY85. It is anticipated that over the next

three years DARPA will spend $4 million to develop the "New Generation

Expert System" which will be a modular and generic system, supposedly as

easy to use as a "user-friendly" spreadsheet or data base management

4 system. The new-generation system will incorporate a natural language

interface and sophisticated graphics as input-output media.

NASA Sponsored Efforts

Wolfe (1985) describes several roles for Al and expert systems

supporting future shuttle and space station functions. A total of eight

NASA divisions are working to develop systems to be used for payload

processing, fluid system management (e.g., loading liquid oxygen),

tracking, data acquisition, electrical power system management, network

control, robotics and simulation, to name a few. NASA is projecting a

technology freeze date* of 1987 for application of these systems to the

space station, even though the first launch is not scheduled until 1992.

Expert systems development efforts at Johnson Space Center are

further described by Marsh (1985). Among those discussed for space

station or shuttle applications is the Flight Design System (FDS) in

which the user will tell the program what the mission goals are, and FDS

will calculate the appropriate launch information, such as when and what

*The technology freeze date refers to the date at which the design of
systems can no longer be changed.
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direction to launch, as well as what altitude to perform particular

functions. The NAVEX (Navigation Expert System) will perform the work

of three controllers monitoring and routing the data from radar stations

tracking the space shuttle. In an evaluation of NAVEX during mission

41-C, the program correctly rerouted weak signals from the shuttle when

television news transmitters interrupted data from the shuttle as it

landed. NAVEX performed the rerouting faster than the controllers.

Another system, known as FIXER (Fault Isolation Expert for Enhanced

Reliability), is designed to identify faults in the shuttle's system for

removing carbon dioxide from cabin air. The RENEX (Rendezvous Expert

System) will perform on-board mission planning, together with fault

isolation and recovery functions under nonideal conditions. NAVEX and

RENEX were created using the expert system shell called Automated

Reasoning Tool (ART) from Inference Corporation, Los Angeles, CA and run

on a Symbolics 3600 computer. FIXER was developed using another shell

called Knowledge Engineering Environment (KEE), developed by Intellicorp

of Menlo Park, CA.

A prototype AI deep-space mission planner has been developed by the

Jet Propulsion Laboratory for unmanned spacecraft such as Voyager and is

described by Vere (1985). The system runs on a Symbolics 3600 computer,

works 10-50 times faster than a human analyst, and is called "Devisor."

Spacecraft sequences for planetary encounters are generated by the

system on the basis of goals input to it. For example, a goal might be

to obtain a recording with an instrument pointed in a particular

direction, within a particular time window. Devisor would then consult

its knowledge base to retrieve the set of actions, events, and

inferences needed to accomplish the goal. An action might be to move

the instrument platform to a specific orientation and position the tape

recorder to a predetermined point. An event could be the stoppage of

camera platform oscillations after movement, and an inference might be

the interpretation of that state. Devisor generates a plan of action
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for each new set of goals. This plan resembles a PERT* chart with
critical path and float times identified. The intent with this system

is to transmit only the go&*ls to the spacecraft and depend on Devisor to

generate an acceptable plan. This design eliminates the transport

delays that would normally be encountered if signals had to be

transmitted back and forth between the ground and the spacecraft.

Devisor creates a plan by working backwards from its knowledge base to

find an action that matches each of the goals. This is known as a

"best-first search process" and is the basis for generation of an

acceptable, as opposed to an optimal, plan.

Grenander (1985) provides additional insight into the development of

Devisor. First, transferring the program from a DEC PDP-10 computer to

a Symbolics 3600 computer with 4-million bytes of memory reduced nominal

processing time from 2 hours to 8 minutes. Secondly, as has been

observed in most other expert system development efforts, knowledge

engineers had to work closely with the domain experts. In this case,

information from a total of seven technical and management specialists

had to be integrated, including that from two Al researchers, a

spacecraft specialist, a sequencing expert, and three managers at

various project levels. Thirdly, development of such a system is not

5' cheap. Devisor, together with two smaller systems (one to display where

the spacecraft is with respect to satellites and planets, and the other

A4' to display a color-coded timeline to allow the user to decide when

external constraints would permit an observation) required approximately

four years and $3 million to bring them to the prototype demonstration

stage. Due to the success of the project, however, future developments

are planned which will provide greater system autonomy for a Voyager

type vehicle. These include the capabilities to monitor both progress

toward a planned goal, and fault diagnosis to assess the cause of goal-

threatening situations.

*PERT stands for Program Evaluation and Review Technique and is
commonly used in the management of system development efforts to
identify where critical dependencies exist among event sequences.
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According to the April 22, 1985 issue of Aviation Week and Space

Technology (no author specified - pg 83), the NASA Advanced Technology

Advisory Committee recommended accelerated development of Al software

and robotics for space station applications. Specifically, the group

wanted 13% (or $1 billion) of the total space station cost to be spent

on expert systems, robotics and other forms of automation.

It is important to point out that the AI and expert systems that are

being developed and demonstrated by NASA are not programs that try to
N learn. Instead, they are programs that imitate the plans and decisions

of experts that have already been proven (see Marsh, 1984)*.

Air Force Sponsored Efforts

The April 22, 1985 issue of Aviation Week and Space Technology also

provided an overview of advanced technology initiatives at the Air Force

Wright Aeronautical Laboratories (AFWAL) at Wright-Patterson AFB, OH.

Preliminary workshops at the Avionics Laboratory defined the Al

application areas of: a) vision and image understanding; b) generic

aerospace electronics systems; c) design automation; and, d) maintenance

and diagnostics, as primary candidates to be evaluated. It is intended

that the first efforts be performed through basic and applied research

contracts with universities and indu! try.

Anderson et al. (1984) describes a prototype expert system that

would be incorporated into a Pilot's Associate to handle in-flight

emergency procedures in an advanced tactical aircraft. The total system

includes the expert system itself (which contains the knowledge base,

inference engine, and message display) together with an environmental
simulation that contains the controls, displays, and other interface

* The essence of this comment came from an interview by Marsh with
Robert H. Brown, Chief of Technology Development for NASA.

31

4iN



elements required between the expert system, aircraft subsystems and the

pilot. An example of how the system would function in response to an

in-flight emergency in the form of an F-16 canopy loss is described. In

this situation, reducing airspeed to 180 knots, lowering the pilot's

seat, setting breathing oxygen to 100%, and, depending on the

criticality of fuel, extending the flaps, may all be performed by the

expert system.

An expert tactical navigation system (the "Expert Navigator") is

described by Pisano and Jones (1984) in which a knowledge-based approach

to the management of navigation sensors is being evaluated using a high-

fidelity F-16 simulation of a deep interdiction mission. The effort is

being performed as part of the Adaptive Tactical Navigation Program by

the Analytic Sciences Corporation, Reading, MA, under contract to the

Air Force Avionics Laboratory. The objective of the program is to

improve the utility and management of the navigation sensor suite,

including GPS (Global Positioning System), INS (Inertial Navigation

System) and digital terrain aids (e.g. SITAN - Sandia Inertial Terrain

- Aided Navigation). Expert Navigator consists of two parts, a

"Resource Manager" and a "Mission Planner." The function of the

Resource Manager is to monitor the performance of the navigation sensor

suite (degradation may emanate from internal or external causes) and

relate present operating characteristics to planned mission events. For

example, an elevated ECM (Electronic Countermeasure) level may be sensed

and cause a reduction in the judged validity of position information.

Similarly, missed turnpoints or overflight position discrepancies may be

identified by the Resource Manager. When such events occur, they

trigger a "concern indicator" (signalling that something unexpected!

unplanned has happened that may threaten successful accomplishment of
the mission) which then fires a series of events designed to determine

* the probable cause of the problem and what to do about it. Both the

concern indicators and the proper courses of action (rules) were

developed after extensive interviews with Air Force aircrewmembers.

Each of eight concern indicators selected for demonstration can trigger
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30 to 50 rules. The second half of the system, the System Planner,

continuously projects the capability of the navigation suite (at its

present capability level) to support the primary mission and suggests

alternatives when the primary mission cannot be supported. The System
Planner uses the projected accuracy of the navigation system, together

with its prestored data regarding the target, and waypoints to it, on-

board weapons and their delivery modes, threats, and planned altitudes

for the various legs of the mission, to compute a projected CEP

(circular error probability) for each available attack option. By

comparing the computed CEP with that required to successfully eliminate

the targets, a prioritized set of attack options is generated. Pilot

interface with the system is through a voice recognition system.

Results of this effort will feed into DARPA's Pilot's Associate Program.

Lineback (1985) describes an interactive flight simulation work
station (called Imaps - for Interactive Mission Analysis Planning

Station) being developed by Merit Technology Inc., Dallas, TX. The

purpose of this work station is to combine commercially available

graphics software for out-the-window scene generation with digital

terrain data from the U.S. Defense Mapping Agency to produce a visual
flight simulation capability at far lower cost ($50,000 to $500,000,

depending on simulation complexity) than conventional mainframe-based
flight simulators. The author projects that Imaps could be used to

train pilots on expert systems and other AI based avionics. Pilots

would be able to practice flying the mission with known threat

placements in the data base prior to the actual mission. The Imaps

system is being integrated for use by several defense contractors and

government agencies.

The last, and most futuristic Air Force effort to be discussed here,

concerns battle management, which is recognized in the Strategic Defense

Initiative (SDI) Program as one of the most challenging technical

aspects facing its developers (see Ropelewski, 1985). This awareness
resulted from SDI architecture and candidate technology studies
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conducted independently by 10 industry teams, each funded at $1 million.

A second phase effort will be performed by four or five of these teams

to further narrow the field of technologies and architectures.

Navy Applications

Aside from the DARPA supported battle management system for land-

based and shipboard use described in the DARPA applications section of

this report, no U.S. Navy AI developments were identified in this

review. However, an expert system for evaluating electronic warfare

(EW) tasking plans for the Royal Navy is described by Gadsden (1984).

This system is designed to provide advice on allocation of EW equipment

and uses a backward-chaining Bayesian-inferencing expert system shell to

develop inference nets similar to those used by the Prospector system

(see Waterman, 1985) to identify ore deposits and drilling sites. The

tasking involves the proper/reasonable assignment of frequency bands for

jamming enemy radar equipment, once radar emissions are detected. The

conventional (manual) approach requires the planner to determine what

enemy ships and aircraft might be in an area, what equipment they might

be carrying, what their emission spectra are, and what allocation of

jamming equipment and frequencies might best defend his own force. This

manual procedure involved looking up a great many numbers in several

printed volumes, a time consuming, tedious, error prone, and judgmental

process. The EW tasking advice system consists of the expert system, a

data base containing equipment characteristics and tasking rules,

together with a color display and keyboard for operator interaction.

With it, the operator places symbols on the screen corresponding to the

enemy ships and aircraft he expects, together with similar data for his

own composite of ships and aircraft. The equipment data base is

accessed automatically and allocations are made according to the rules

provided by the knowledge base. In the process of developing this

system, special attention was paid to the man-machine interface design,

facilitating use of the data base, interactive display graphics, and

algorithm portrayal.
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Army Sponsored Efforts

Campen and Gorden (1984) discuss the application of AI to Army

tactical operations. They posit that the biggest threat we face in a

next world war "is that NATO may lose the first key battles because it

has too much data." They argue that the ability to acquire needed

information and use it effectively will provide a stronger advantage

than numerical superiority of combat forces. The designs of present day

intelligence data processing systems suffer from having been designed

for other intelligence users, rather than for commanders and operations

officers. Heuristic expert systems are needed to supply the commanders

and operations people the information they need. By means of a

fictitious tactical scenario involving the use of an expert system by a

Soviet commander, Campen and Gorden illustrate the deductive power such

a system could have when meshed with intelligence reports from that

commander's ground and airborne forces throughout the course of the

battle. Rules and relationships used by the expert system were presumed

to have been compiled from U.S. and NATO doctrinal literature,

*professional literature, satellite photography, and from monitoring our

radio broadcasts and observing NATO exercises and training. The picture

these authors paint strongly supports DOD development of such systems to

increase the productivity of the best analysts, and helps inexperienced

or poor analysts perform as well as the best analysts performed

previously.

The Army is especially interested in developing robots for dangerous

battlefield tasks, such as clearing mine fields and handling heavy

ammunition. The May 1985 issue of Data Processing (pg 47) describes the

Battlefield Robotic Ammunition Service System (BRASS)*. This system

* The original source of the information presented in this article is
from the report entitled "Artificial Intelligence and Robotics in
Military and Paramilitary Markets", IRD, 6 Prowitt Street, Norwalk, CT
06855.
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locates, carries, and positions a pallet of ammunition next to a gun

Vsite. It then installs fuses into the rounds and prepares them for

firing. The system is expected to be especially beneficial during very

hot or very cold weather when soldiers performing these tasks become

highly fatigued.

Summary

As a final note, the May 1985 issue of Data Processing states that

more than 40 companies in the U.S. are developing various types of Al-

based military and paramilitary robots, and that annual production of

these systems is projected to pass the half billion dollar mark by 1994.

By then, an additional $1 billion per year is also expected to be spent

on research and development of military robots and AI.
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CHAPTER 3

State-of-the-Art Review and Projection

of Future Expert System Developments

Introduction

The remarkable recent expansion of interest in expert systems has

been kindled by the burgeoning computer hardware technology, growing

interest in easier to use software languages and programs, and

motivation by DOD, industry, and academia to perform certain tasks more

efficiently. In many cases, basic research from university AI

laboratories has spawned impressive advancements in processing

capabilities, owing to rather radical departures in computer

architecture and algorithm design. A notable example is the Symbolics

3600 family of processors (designed at MIT and marketed by Symbolics

Inc., Chatsworth, CA) having the capability to process symbolic

information using the Lisp language, as well as Prolog, Ada, Fortran-77,

and Pascal. These systems represent today's state-of-the-art and are

finding growing applications in expert systems development, as well as

industrial automation, computer-aided electronic circuit design

(especially VLSI -Very Large Scale Integrated circuits), and automated

management of details to help control complexities in development of

complex software systems.

The purpose of this section is to provide insights into a broad

spectrum of technology developments, some of which relate to the power

of computational processing, while others deal with the real, potential,

or forecasted application of this technology. Since the field of Al in

general, and expert systems in particular, owes its foundation to

academic study of basic scientific issues regarding reasoning processes

and the reflection of these in prototype programs, continuing

development of this area from a basic research, as well as a

philosophical perspective is described. The opinions of those more
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critical in their philosophical and experiential perspectives are also

discussed.

Finally, since the amount of information in this section is

considerable and represents various positions that at times may seem

congruent and at other times at odds with each other, a summary section

is provided to help the reader gain a "thumbnail" impression of where we

are now, what we know, and what needs to be done.

Industrial Expert System Developments

The February 17, 1986 issue of Aviation Week and Space Technology

contained a technical survey of artificial intelligence (pg 40-92) and

provided an excellent update of military as well as industrial

developments. Significant strides are being made to increase the

capacity and reduce the size of symbolic processing hardware. For

example, Texas Instruments (TI) reported their development of a 32-bit

Lisp language computer chip, measuring 1 cm sq., containing more than

500,000 transistors. This single chip contains the equivalent of about

two-thirds of the components in the central processing unit (CPU) of

TI's Explorer symbolic processor (introduced in 1984) having two 11 X 14

in. CPU boards in a package measuring roughly 3 cu. ft. The new chip

will be delivered to DARPA as part of a demonstration compact Lisp

machine having an eight-megabyte capacity. Tl's intentions are to use

the Lisp chip as the heart of the microprocessor in a variety of

symbolic computing applications. The compact Lisp machine will be built

in a 3/4-ATR (airborne transportable rack) configuration (7.5 X 7.63 X

12.51 in.) for standard rack mounting. Corporate estimates at TI

project there will be 20 to 30 expert systems onboard an F-16 or an ATF

(Advanced Tactical Fighter) of the future, each requiring its own

dedicated Lisp machine.

S. Since the architecture of the compact Lisp machine is identical to

Ii that of the Explorer, TI used an Explorer system to demonstrate an
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Emergency Procedures Expert System (EPES) for F-16 applications

involving multiple emergencies. The first demonstration treated a

simultaneous loss of canopy at altitude and failure of the engine shaft.

Supposed appropriate courses of action, gleaned primarily from flight

manuals (over a seven-month period), were incorporated into the

knowledge base. When these were shown to an F-16 pilot, he reported

that, although TI had accurately extracted the technical information and

procedures, "no living pilot would do it that way." Subsequently,
another 11 months were spent redeveloping the knowledge base, this time

using pilot interviews as data. As a subcontractor to McDonnell

Aircraft Co. (McDonnell and Lockheed Georgia were dual winners of

DARPA's Phase I contract for the Pilot's Associate Program), TI will

draw from its EPES experience to develop the Battle Management Program,

which is also being funded by DARPA.

The McDonnell Aircraft Co. (MCAIR) has a number of internally funded

programs designed to support aspects of the Pilot's Associate Program as

well as other AFWAL interests. These include: a) intelligent avionics

management systems, b) a reconfiguring flight control system, c) an

airborne threat engagement management system, d) an inertial navigation

system fault analysis and management system, e) an intelligent sensor

allocation and cueing system for air-to-air attack, f) aircraft

maintenance aids, and g) mission route planning. MCAIR feels that

putting Al techniques into the cockpit will be the most difficult

V application to actually achieve, due to the rapid response required to

pilot queries, and have therefore initially invested most heavily in

maintenance aids and route planning. In addition, they have completed a

two-year effort to develop an Al system to advise a pilot on how to

W reconfigure his sensor suite based on partial failures. Significant

progress has also been made on the flight control reconfiguration

problem. A set of control laws was developed based on the experiences

of a flight control expert. These laws are used to mimic the flight

control expert's advice concerning the optimum combination of control

parameters that the pilot needs to manipulate in the face of present

aircraft capabilities and mission requirements.
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The Boeing Co. has established an Artificial Intelligence Center

(Bellevue Washington) in which several initiatives are being explored.

Among these are efforts to develop: a) expert systems for space station

operations, b) "brilliant" munitions that would, for example, use

pattern recognition in combination with the expert system to verify

targets or autonomously change targets in flight, c) knowledge-based

software engineering for generating expert systems, d) robotics for

automation of aircraft production, and e) expert systems as pilot

decision aids. Boeing is using Intellicorp's KEE (Knowledge Engineering

Environment) expert system shell to develop expert systems for various

command, control, communications and intelligence (C31) applications.

One system is being developed for the AWACS (Airborne Warning and

Control System) aircraft to assist the radar operator in correlating

information from electronics support sensors. Another is being

developed to assist the Tactical Officer aboard the Navy's P-3C aircraft

in the placement of sonobuoys for submarine detection and tracking. The

KEE shell is implemented in Lisp and run on Boeing's Symbolics 3640 and

3670 computers. Some of the other programs (such as the "brilliant"

munitions research) are being performed using the programming tool

called Automated Reasoning Tool (ART) from Inference Corp. (Los

Angeles), which is also implemented in Lisp and run on the Symbolics

machines. The market costs of the KEE and ART packages in 1986 were

$10,000 and $15,000, respectively.

New high-speed computers, designed especially for expert systems

applications, are in the development planning process as part of DARPA's

Strategic Computing program. The February 17, 1986 issue of Aviation

Week and Space Technology (pg 45-52) quotes Saul Amarel, Director of the

Information Processing Techniques Office at DARPA, as saying his office

is funding programs to develop "more advanced computers designed for

symbolic logic Al and signal processing applications." BBN (Bolt

Beranek and Newman), Inc. already has a symbolic logic computer on the

market (called Butterfly) that can be configured with up to 256

microprocessors. DARPA is sponsoring the upgrade of this system to

42



double its speed by replacing the original Motorola M-6800

microprocessors with M-68020 (32-bit) units, each having four megabytes

of memory. In addition, this enhanced Butterfly will use a Motorola M-

68881 processor to allow floating-point calculations, which will help

improve speed further.

Similarly, Carnegie-Mellon has developed a very high speed computer

(called Warp) designed to handle signal processing as required to

extract information from imagery. Warp would be used in conjunction

with a symbolic logic computer to achieve specific goals. Warp is

referred to as a systolic processor, having multiple array processors,

each consisting of multiple microprocessors. DARPA has funded General

Electric Corp. to build seven of the Warp machines, each having 10 array

processors. Each of these processors will perform 10 million 32-bit

arithmetic floating-point calculations per second (i.e., 10 megaflops),

for a total system top processing speed of 100 megaflops.

Thinking Machines, Inc. of Cambridge, MA has developed the

"Connection Machine" for symbolic processing, which has been

demonstrated to operate successfully with 64,000 individual

microprocessors, each with four kilobits of memory. The design of the

Connection Machine makes it "very amenable to using wafer-scale

integrated circuits," a characteristic which, according to DARPA's

assistant director of Information Processing Techniques Office, Stephen

Squires, "could provide very advanced symbolic logic capabilities in a

very small size." Squires projects that by combining new signal

processing techniques as represented by systolic arrays and signal

processors having programmable interconnections, operating speeds of 10-

50 billion floating-point operations per second (gigaflops) should be

possible within the next several years.

An AI testbed is being funded jointly by DARPA and the Army which

will use a Butterfly processor to study how best to analyze and make

decisions on the information content of various types of electronic
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reconnaissance imagery (e.g., FLUR - forward looking infrared) as well

as help deduce, based on the identified targets, what type of military

organization is involved and where its headquarters is likely to be

found as a function of enemy doctrine and tactics. DARPA has a similar

effort underway with Hughes Aircraft Co. to extract target information

from reconnaissance photoimagery.

In another demonstration program, DARPA will apply expert system

techniques to seismic data from an array of sensors located around the

world in order to detect when a low-level nuclear test has occurred.

Ensco, Inc. and Teknowledge Inc. will jointly develop the expert system,

ostensibly in conjunction with the experts at the Air Force Technical

Applications Center, Patrick AFB, Florida, who now perform the function

manually, but are not able to cope on a real-time basis with the

extraordinarily high data rates (up to 10,000 bits of data per second)

of high quality seismic sensors.

* Grummuan is also exploring several technology development areas,

according to the Aviation Week report (pg 83-85). Three major

* technology thrusts are discussed. The first of these is the ALERT

(Algorithm, Learning, Evaluation, and Recognition Technique) system in

which optimum mathematical algorithms can be developed for specific

applications such as aircraft or speech recognition using a library of

pattern recognition algorithms. The system allows significant

reductions in classification algorithm development time. Their second

thrust is in the area of expert maintenance diagnostic systems. In a
study with BBN, Inc., Grumman found AI techniques significantly reduced

false alarms associated with built-in-test (BIT) equipment. Similar

* efforts are underway (funded by Honeywell) to develop an expert flight

control maintenance diagnostic system for fly-by-wire controlled

aircraft (su~ch as the F-16 and the X-29). Grumman states that for the

X-29, at least, the large amount of flight data needed to build such an

expert system is already available. Their third technology thrust is to

develop a knowledge-based system for multisensor fusion. Such a system
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"1would accept all the information available from an aircraft's sensors,

process that information and make the most relevant and important

information available to the pilot at the moment he needs it." It is

envisioned that the system would: a) manage the multisensor system, b)

detect when a sensor fails, c) schedule sensor use and reconfigure the

suite for optimum sensor use, d) assess threats, e) resolve conflicts

between sensors, and f) use what is referred to as evidential reasoning

to draw conclusions based on the evidence provided.

Grumman also has several year's experience with a combat analysis

simulation tool called TOPCAT which can be used to study a broad range

K of combat and survivability techniques. Each "game" the device plays

considers all combinations of initial conditions. The outcome of a

particular game is compared with all relevant preceding games, and

favorable strategies used in each game are identified and incorporated

into each successive game until an 'optimum' strategy for winning the

game is generated.

Raytheon has several expert system developments underway as well.

One goal is to "put a distributed expert system into a deployed radar

system" in order to compare a signal with stored Soviet signal data to

determine how the incoming signal should be classified. Other goals

involve development of systems for missile test stations, battle

engagement planning, and target classification. According to their

spokesman, Raytheon is cautious not to create Al hype, but rather to

demonstrate that expert systems can be useful in operational

environments.

Forecasts of Expert Systems Technology

A comprehensive expert system technology forecast is provided by

Schindler (1985). He points out that, due to the short supply of

2' qualified personnel in this field, a great amount of activity by

researchers is being spent trying to develop the tools and methodologies
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to be able to simplify the Al product development process. Areas being

addressed include the lai guages, knowledge base schemes, user

interfaces, and the inference paradigms. Since hardware costs are also

of concern, efforts are underway to address processing speed, code size,

and transportability problems between machines. As systems gain more
exposure, the ease of use problem is becoming recognized as a most

serious area of concern to the Al industry. Many of the systems now

under development are directed toward banking, insurance, and investment

planning application, rather than to engineering. However, systems

using reasoning based on first principles (e.g., laws of physics,

chemistry, and mathematics) have also started to emerge.

As noted previously in this report, it is becoming popular to
separate the reasoning software (or inference engine) from the domain-

specific knowledge base in an expert system, and market the former as
"generic" expert system shells into which the user may incorporate his

own domain knowledge. A potential drawback of such shell systems is

that they still retain enough of the flavor of the original goals for

which they were developed, that applications far removed from the

original may not be realistically supportable. Some of the more general

tools such as the Automated Reasoning Tool (ART), Knowledge Engineering

Environment (KEE), and Knowledge Engineering System (KES) may have

overcome these problems and are predicted to be more characteristic of

expert systems in the mainstream of the future.

Schindler predicts that within the next ten years, custom-made

expert systems developed by industry to address particular production

and maintenance problems will become the basis of products to be offered

commiercially. Also, since software availability will limit the utility

of Al machines, much effort will be devoted to languages such as OPS83

(by Production Systems, Pittsburgh, PA) which provides constructs
similar to those in Pascal that simplify the association between rules

and algorithms. Although the OPS83 compiler with 20,000 lines of code

written in C can "execute an average of 50 rules per second on a VAX-il-

780", the Lisp and Prolog languages will continue to be important tools.
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In Schindler's view, automation of the software generation process

constitutes what may be the most important appli~dtion of expert

systems. The process control function will probably be the first

realization of such capabilities. Another problem that has worried

developers is how to extract the knowledge from the domain expert and

represent it in the knowledge base. This problem is being addressed by

the Boeing Computer Services Co. (Seattle, WA) who will introduce the

Expertise Transfer System (ETS) which will allow the development of a

* knowledge base without the help of a knowledge engineer.

Perhaps the ultimate application of a knowledge base would be to the

holdings of active libraries. Optical storage offers the potential

medium which could then be queried by an artificial librarian to find

any source information desired.

Schindler also suggests that expert system skills will provide the

bases for fifth-generation computers in this country. The Japanese

approach in their fifth-generation computer project is to rely heavily

on massive parallel processing. The U.S. approach (assuming expert

system shells as its foundation) relies more heavily on sequential

* paradigms (though parallel processing will be used as appropriate) since

* they must step through a search tree.

Combining component and architecture technology, Schindler projects

that by 1990 production-type expert systems will run 100 to 200 times

faster than they did in 1985. Similarly, the costs of expert systems

have dropped dramatically (by a factor of 100) since their first

appearance in the mid-1960s. By 1990 a 500-rule system (fairly

powerful) may cost as little as $50,000 to develop.

Manuel (1985) argues that if expert systems are to achieve

widespread acceptance, they must be able to be used by people who are

not Al specialists. The expert system shells (reasoning software or

inference engines) that are available run from $200 to $50,000 and can
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be implemented on several computers, from an Apple Macintosh at the low

end to a dedicated and specialized Lisp machine at the high end.

However, many of these programs still do not relieve much of the

preliminary programming burden.

In reviewing thE' state-of-the-art, Manuel discusses some of the

larger and more comprehensive expert system development tools such as

KEE and ART. As of the July 1985 date of that report, IntelliCorp had

installed approximately 200 of their KEE systems for about 60 customers

(many organizations have up to 10 installations). Similarly, Inference

Corporation had installed about 50 copies of their ART system in roughly

30 company facilities. An Inference Corporation executive is quoted as

saying that "although ART has extensive on-line help and an abundance of

documentation to ease the first-time user along, it requires a learning

investment to truly master its range of possibilities." He further

claims, however, that ART can be used after a few months of training and

some assistance to the customer's programmers to help them build the

first one or two systems. NASA is using ART, for example, to create

expert systems for space station and shuttle applications. ART is

designed to run on specialized Lisp machines (from Symbolics Inc. and

Lisp Machine Inc.) but may also be run on VAX computers having VAX-Lisp.

According to Manuel, ART consists of four primary elements, including "a

knowledge-representation language, a compiler that maps the knowledge

into Lisp code and data structures, a run-time applier for solving

specific problems, and an environment that allows the developer to

control and monitor the system during the development process." Newer

32-bit microprocessor based personal computers are providing a viable

hardware alternative to dedicated Lisp machines, although their relative

performance is only about half that of the latter. Costs for the

dedicated Lisp machines are projected to decline by approximately 35%

annually for the next few years, due to fierce competition, VLSI

4, technology, and encroachment by PC machines. The cost of a Lisp machine

in 1985 was $55,000 (including two megabytes of RAM, a 140 megabyte disk

drive, and a high-resolution monochrome display). At the same time
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hardware is coming down dramatically in price, sales of AI software are

projected to grow from less than $100 million in 1985, to over $1.7

billion in 1990. Many of these programs will be aimed at the PC market

to allow potential users to "get their feet wet" and learn by building

something useful to them in their specific application arenas. Manuel

(1985) describes several relatively inexpensive ($495-$995) packages

available for the popular PC machines, as well as some that lay in

between sophisticated systems such as ART and the under-$1000 class of

programs. The Knowledge Engineering System, for example, can run on

several varieties of machines and comes in specialized forms such as the

KES.PS, a production oriented, rule-based inference system, KES.Bayes,

for development of statistically or probabalistically based inferences,

and KES.HT, for hypothesis testing using frame-like descriptions as its

knowledge base (e.g., diagnosing engine problems from descriptions of

symptoms).

Schwartz (1985) provides an overview of the importance of the PC to

the delivery of expert systems in today's market, as well as a

projection of the importance of the PC in future expert system

* developments. He notes the tremendous growth in PC computing power and

that 1981 was the year that the total PC and individual workstation

computing power equalled that of all other computers combined. When

tabulated, 1986 sales of PC's alone are expected to show PC computing

power to equal that of all other systems. Although initial versions of

expert systems tended to be implemented on dedicated workstations, there

is a great trend to use PC's that Schwartz projects will continue and

accelerate into the future. The reason for this is the growing

availability of Al languages, as well as the large installed base of

PC's, together with their declining price. However, he predicts that
dedicated workstations will still remain popular due to the reduction in

system development time they generally offer.

Schwartz offers a listing of 17 expert system building tools (or

shells) available for PC's and written in a variety of languages,
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including not only the more popular Lisp, Prolog, C, and Turbo Pascal,

but also the more traditional Basic, Fortran, and Assembler languages.

Although the majority of these systems run on the IBM-PC, some can be
* implemented on the Apple Macintosh, Commodore 64, Apple II, and Atari

800 machines. Prices for these shells range from a minimum of $20 for a
program written in Basic to a maximum of $15,000 for one written in Lisp

which can also be linked to other systems. The average price of the

programs listed was a little over $3,000. Schwartz predicts that since

many of the PC-based systems are aimed at the development of expert

systems having less than 200 rules (relatively small), these systems

will find widespread use in the business and technical domains as so-

called "technician systems." He projects also that little or no help

will be required from knowledge engineers due to built-in induction
extraction mechanisms in these tools. The systems that will be built

will serve to bolster the learning curve and assist the more junior
* members of an organization in routine operations. In addition, Schwartz
* predicts that: 1) Dedicated expert systems using application-specific

integrated circuits on hand calculator type devices will pervade the

* world of tomorrow; 2) Many of our daily activities will be aided by low

cost expert systems. These include commuter route selection, business
/ and investment decision making, human interaction, personal health care,

and even wagering; and 3) Automated knowledge acquisition will allow

every expert to become his own knowledge engineer.

Kabrisky (1984) furnishes an especially imaginative, insightful and
humorous view of the future promise of AI. As a professor at the Air
Force Institute of Technology (AFIT), he describes the attributes of the

"Friendly Machine" and projects the verbal exchanges it would have while
serving as expert tutor to an elementary school child. The "Friendly

Machine" would always know where the child is in the curriculum and how

well the child is doing. In Kabrisky's assessment, the verbal exchanges
between the "Friendly Machine" and the child require only three

* components; namely a speech synthesizer, a natural language handler, and
a speech recognizer. Since speech synthesizers are already available,
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and natural language handlers that can deal with constrained but

acceptable exchanges have been around for some time (Kabrisky cites

Weizenbaum, 1966), only the area of speech recognition remains as the

technological barrier to development of the "Friendly Machine."

Kabrisky describes progress in his laboratory toward the decoding of

natural speech. A single sentence is subjected to an acoustic analysis

which provides a listing of probable word sequences. Those word

sequences that do not conform to rules of English grammar and sentence

structure are rejected, while the remaining sequences become candidates

for what was actually meant. The technological problem yet to be

overcome involves the machine knowledge base required to properly sort

through the list of grammatically acceptable English sentences to find

the one that most closely matches the context and semantics provided by

the preceding part of the exchange, and the machine's "understanding" of

the knowledge of the user. Kabrisky projects that since man is limited

in terms of the number of things he can keep track of, the memory and

simultaneous manipulation capability of the machine can be expected to

provide a problem solving capability that far exceeds our ability to

understand.

Cross (1984) further describes activities at AFIT's Artificial

Intelligence Laboratory and an updated AFIT overview is included in the

February 17, 1986 issue of Aviation Week and Space Technology (pg 61).

Cross has concentrated on joint applications efforts of interest to

DARPA, the operating commands, and other Air Force laboratories. One of

these is a prototype interactive mission planning system, developed on a

Symbolics Lisp machine. Defense Mapping Agency (DMA) terrain data are

used by the system to allow a pilot to preplan a flight course using a

mouse and information windows on the display. The program provides a

host of outputs, including mission flight time, fuel required, "bingo",

U fuel point, and known enroute threat locations. A pilot advisory

function tells the pilot how a threat may be defeated (e.g., by an

increase in airspeed, or a rapid descent). Cross reports very favorable

reactions to this demonstration system by Tactical Air Command (TAG)
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general officers and pilots and hopes to transfer this technology as

soon as its maturation and TAC's budget allow.

Basic Research and Philosophical Issues

Winograd, Davis, Dreyfus and Smith (1985) convened as a panel during

the Ninth International Joint Conference on Artificial Intelligence to

discuss how far expert systems can go in their development and what they

can be expected to do. The meeting was spurred by the great wave of

enthusiasm about the potential for expert systems in every area of human

life and work. Randall Davis (MIT) emphasized that the first question

that should be answered does not concern what expert systems can do, but

rather what do we know? Once we establish what we know, then, Davis

contends that we will be able to address the technology issue and ask

...how easily can we encode that knowledge? Davis further argues that

although expert systems is a weak technology, that problem will

eventually (though not soon) be remedied. Finally, Davis states that

- expert systems is a technology for treating ideas that are not

completely understood, and that this situation will not change. The
implication of these premises is that rule-based expert systems are

guaranteed to fail occasionally since they will never have all the

knowledge needed to perform flawlessly.

Stuart Dreyfus (University of California, Berkeley), in his

presentation to the panel, characterized the development of expert human

understanding as progressing through five stages. These he defined as

the beginner, advanced beginner, competent performer, proficient

performer, and, finally, expert. Dreyfus contends that expert systems

can be developed to the competent performer level, at which point

behavior is organized "by selecting plans, goals, or perspectives which

determine hierarchically what facts to consider and what rules to

apply." Going beyond this to the proficiency level requires the

performer to recognize the goal based on prior experience in comparable
"situations in which goals were chosen and events were chosen and events
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either confirmed the wisdom of the choice or showed it to be mistaken."

The expert, on the other hand, does not need to reason out either

strategy or action, but rather simply "associates with each prototypical

situation in his memory the decision, action or strategy that he has

found to work." Dreyfus indicates that expert systems can be neither

proficient nor expert, since they cannot recognize situations

holistically without decomposing them into their components, and they

cannoc, "know what to do without applying rules to decompose knowledge."

Drt is uses the fact that expert systems never perform quite as well as

experts to support his contentions.

Brian Smith (Xerox PARC) concentrates on the importance of having an

appropriate model in the expert system, which reflects our understanding

of the behavior of the system with which we are dealing. He feels we

are not lacking in techniques to study the relationships between the

system and our model of it (i.e., the activity called program

verification). What we lack, however, are tools to study the

relationships between the model and the world. Therefore, in Smith's

view, we are unable to assess the adequacy of models, or even predict

when models might fail. Smith concludes that expert systems should only

be developed and used where we have confidence in the accuracy and

appropriateness of the underlying model, and that a theory of models

needs to be developed to better understand how they should work.

As the final presenter in this panel effort, Terry Winograd

(Stanford University) first quoted a participant in the Japanese Fifth

Generation Computer Project who had some over-zealous claims for the

technology the project may likely produce. He then lamented the term

"expert system" because it often promotes an inflated image of how these

systems work and what they can do. He stated further that Al program

failures will, in part, reflect the user's inability to understand what

the program is doing, as opposed to what it appears to be doing if the

user accepts the metaphor of "thinking" on the part of the program.
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Nilsson (1983), in his Presidential Address at the Annual Meeting of

the American Association for Artificial Intelligence, projected that AI,

"perhaps together with molecular genetics, will be society's predominant

scientific endeavor for the rest of this century and well into the next

- just as physics and chemistry predominated during the decades before

and after 1900." Although he has a basic research orientation, he urged

supporting more applications of AI so that weak spots in the science of

Al can be identified and corrected. Nilsson projects that in addition

to the present emphasis on expert systems and natural language

interfaces, future applications will address AI planning systems such as

project planning, error-recovery planning, and robot task planning. In

reference to the Japanese Fifth Generation Computer Project, he projects

that conceptual breakthroughs will be needed, especially in the areas of

common sense reasoning and language processing, if the goals of the

project are to be fully met. Finally, Nilsson proposes a new research

project that he feels will stimulate advances in the basic science of

AI. The goal of this project would be to develop a new class of Al

programs that (like time-shared computer operating systems, or airline

reservation systems) are never turned off. These programs may be

referred to as "computer individuals." Such programs "would have a

constantly changing model of the world and of the user(s). They should

be able to engage in extended dialogs in natural language." The idea is

that such programs would force research in the area of machine learning.

Nilsson sees computer individuals performing the roles of personal

assistants, meeting schedulers, expert consultants and mobile robots.

However, he estimates that we are now at about the same stage in being

able to build such programs as physicists were in the 1930's in being

able to harness nuclear energy. That is, "we know something profound

can be done, we have a few clues about how to proceed, we know that much

more basic research must be done - and we want to get on with it."

Demonstrating a more academic orientation, Waltz (1983) provided an

assessment of the present status of natural language processing and

expert systems. Although most of his concerns in the natural language
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processing area remain valid, it is interesting to observe that many of

his comments regarding problems that need the most work in the expert

systems development area are presently enjoying appreciable

concentration. (Examples are the ART, KEE, and KES packages described

by Schindler (1985) which provide general expert system development

capabilities and satisfy Waltz's criticism as to the narrowness of the

technology.) Waltz identifies some important areas for further Al

research, such as the utility and application of certain forms of

inference, including "reasoning by default, reasoning by analogy,

synthetic reasoning (i.e., design), and especially planning and

reasoning under uncertainty." Another area ripe for research is what

Waltz refers to as meta-level architecture, the goal of which is "the

construction of programs that can explicitly reason about and control

their own problem solving activity." Waltz emphasizes the need for

high-quality user interfaces, incorporating friendly features such as

high-quality graphics, fast response times and perhaps natural language

capabilities, especially for naive users.

Rational Skepticism of Al Claims

Because the people involved in development of these (AI) systems

naturally tend to be enthused about the technology they are a part of,

the great preponderance of literature available has been from the hands

of these developers, or a byproduct of their activities. In any event,

the result has been that there are few antagonists that speak with

sufficient authority to provide convincing arguments as to why

investments in AI technology should not be made. One notable exception

is Herbert Dreyfus, author of the book entitled "What Computers Can't

Do" (1976). More recently, he has teamed with his brother, Stuart

Dreyfus, to produce the book "Mind over Machine" (1986). Both are

professors at the University of California, Berkeley, in the philosophy

and industrial engineering departments, respectively. In an article in

the January 1986 issue of Technology Review, they provide an

ultraconservative and disconsenting view of planned DARPA expert system
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developments. They point to the fact that no expert systems have been

developed which display common sense or that can understand natural

language, and that "computers are no more able today to deal

intelligently with uncertain data than they were a few years ago when

our computerized ballistic-missile warning system interpreted radar

reflections from a rising moon as an enemy attack." This provides the

basis of their major concern that "the success of the DARPA program

requires basic scientific breakthroughs, neither the timing nor the

nature of which can be predicted." The Dreyfus's position could

obviously be the subject of great debate and is reminiscent of the

controversy surrounding the Artificial Heart Program at NIH (National

Institutes of Health) (see Lane, 1981) where, indeed, knowledge and

technology required to make the program successful were not available.

In reality, some compromises will doubtless be made in DARPA's Strategic

Computing Program, based upon the progression of technology and learning

throughout the effort.

Martins (1984) provides a similar, though less caustic, perspective

based on his experience (until 1982) as director of the Rand Corp.'s R&D

Program in Information Processing Technology and his current position as

president of a management consulting group (Intelligent Software Inc.,

Van Nuys, CA) specializing in applications of advanced computing

techniques. Although the power of some of his points may be diluted by

the progress made in hardware and software technology since the article

was published, his admonitions nevertheless represent a wealth of

experience that bear consideration. He relates that even though

software development costs are high and development times seem unusually

long, the resulting expert systems are "effective only for relatively

simple applications," and use code that is "generally hard to

understand, debug, extend, and maintain." Furthermore, he states that

expert system shells are too expensive, poorly supported and documented,

difficult to use, and produce programs that are inefficient and highly

limited in their real-world applicability. He further advises that

because expert system rules are not independent, adding new rules to a
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large rule-based system nearly always requires revison of some subset of

* '~ the existing rules and there is no obvious way of knowing exactly which

old rules need to be changed or in what way. Martins attributes the

notable expert system successes (most described in Chapter 1 of this

report) to six interdependent factors: brilliant programmers, the very

narrowly defined and/or easy problems worked, generous funding over a

long perod of time, luck, development of customized tools (without the

use of shells) and finally, misleading advertising as to the utility and

* intelligence of some of the programs. He cites the confusion between

* science and engineering as being the culprit for the above state of

affairs. That is, AI researchers, mostly in university laboratories,

who should and do "habitually contemplate toy problems, designed to
highlight particular themes adiseantoxcueothers,prdc

methods and attitudes appropriate to this kind of scientific

investigation (that) are of limited usefulness in confronting difficult,

real-world engineering problems." As for the future of expert systems,
Martins projects that they will become popular for use with PC's for

A relatively unsophisticated computational problems such as electronic

checklists in the banking, insurance, or sales industrip-. Developments

in relatively more complex areas will rely on "insight, iinagination, and

deep understanding of both computers and the application domain" which

will provide the foundation for future "prodigious achievement."

Lessons Learned

According to the February 17, 1986 issue of Aviation Week and Space

Technology (pp 79-81), TRW Inc. (Los Angeles) is attempting to use Al to

help solve some of its problems caused by the increasing size and

complexity of its computer systems. In so doing, TRW is coming to

question some of the popular claims some proponents of Al have made.

Some of their experiences are as follows: a) although Al languages
provide excellent program writing and debugging capabilities "that can

speed programming up by a factor of ten," the programs, once written,

"are not much easier to change than conventional languages," since any
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particular application program is designed to run under such specific

conditions that most of the flexibility is lost; b) the notion that

computer logic can be developed apart from the knowledge it works on

does not hold since the program logic in real applications programs will

be affected by the type of knowledge it uses, and vice versa; c) AI
programs offer no more reasoning capability than conventional programs

using conventional algorithms; d) successful AI programs are usually

written by an expert in the problem area having some computer

programming capability, not Al specialists, as "common knowledge" would

purport, and; e) graphics and symbols have proved easier communication

tools than natural language. In one prototype system (BETA -Battlefield
Exploitation and Target Acquisition) a variety of battlefield

information was collected, collated and displayed to Army officer

intelligence analysts in a mock battle evaluation. The analysts could

control the amount of information they received from the BETA system.

When they relied upon their intuition only, they lost the battle. When
they accepted all the information BETA could provide, they still lost

the battle. TRW hypothesizes that the ideal amount of information will

lie somewhere in between these two extremes and that it will vary for

each individual. In addition, since unexpected action is the essence of

a good battle, human participation will always be needed.

TRW is also using expert systems to help tune radar identification

systems having several thousands of parameters to adjust. Though their

original system, developed in the early 1980's with 77 rules, was only

60% effective, its performance has been improved substantially through

the addition of more rules (100 now and may grow to 200 in the future).

It was found that the original AI language in which the tuner program
was written was so slow that it had to be rewritten in a more efficient

language (unspecified). TRW's experience also showed that extracting

knowledge from experts can be difficult, and since the generalized

expert system was written in another language, field representatives

2 will not allow modifications to it for fear of causing software problems

they can't fix.
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Westinghouse is applying expert system techniques in two major

areas, according to spokesmen (see Aviation Week, February 17, 1986, pp

91). One is development of a submersible vehicle that can enter and map
a harbor, come back out and compute the optimum locations for mines, and

then depart. Another development will use a new Al inference engine

processor, which its manufacturer (Zenologic Corp., Berkeley, CA) claims

will perform 300,000 logical inferences per second.

Westinghouse found that their first attempt to develop a rule-based

expert system to assist them in their in-house overhaul facility did not
produce a very efficient or effective product. They then talked to

their test technicians to see how they did their jobs and found that
nearly every one of them carried a little notebook in their back pockets

to write down useful tips based on prior experience. These bits of
information were captured into a revised expert system which now

interacts with technicians through questions. Westinghouse will next

explore how to have the technicians enter logbook type data into the

expert system using natural language.

Summary

What has this section provided by way of a glimpse into expert

system development activities and capabilities on the near and far
horizons? It is obvious that sizeable investments are being made by

government agencies, industry, and academia alike in order to develop
new hardware, software, and an experience base to advance the technology

and state-of-the-art of expert systems at a remarkably rapid rate.

Similarly, these developments have spurred considerable philosophical
debate and conjecture as to what capabilities future systems may

actually be able to demonstrate, as well as what type of academic and
technical expertise are most appropriate for advancing the technology

most efficiently.
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The following listings are provided to assist the reader in

formulating an overall impression of where expert systems technology now

stands, what applications are under development (some may never reach

2 fruition), what problems and successes are either being experienced or

projected, and what are seen as primary needs by the development

community.

The Technology

1. Computers especially designed for expert systems applications (with

symbolic processors) are being upgraded from original 8-bit (Motorola M-

6800) to 32-bit (Motorola M-68020) microprocessors.

2. So-called "systolic processors" (having multiple array processors)

are under development (by Carnegie-Mellon University and General

Electric Corporation) which will be able to perform 100 million 32-bit

ar-ithmetic floating-point calculations per second (i.e., 100 megaflops).

3. Texas Instruments (TI) reported development (under DARPA funding) of

a 32-bit Lisp language computer chip, measuring 1 cm. sq. and containing

more than 500,000 transistors.

4. TI projects 20 to 30 expert systems could be used on board future

aircraft (maybe an upgraded F-16 or Advanced Tactical Fighter - ATF).

5. Expert system shells containing the reasoning software (inference

engines) are available that allow the user to incorporate his domain

knowledge to build his own expert system on anything from a PC to a

sophisticated symbolic processor.
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Applications

1. Space station operations.

2. Brilliant munitions (expert systems with pattern recognition

capabilities to verify targets).

3. Knowledge-based software engineering/generation.

4. Robotics for production automation.

5. Decision aids.

6. C31 (Command, Control, Communication and Intelligence) systems.

7. AI test bed for evaluating performance of expert systems which

combine FLIR imagery with intelligence information.

8. Nuclear test detection through high-speed seismic sensing and

processing.

9. Battlefield management.

10. Tuning of radar identification systems.

11. Pattern recognition algorithm library for aircraft or speech

recognition.

12. Maintenance/Diagnostic systems (e.g., flight control system

maintenance)

13. In-flight flight control reconfiguration (under battle damage or

system failure conditions).
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14. Multisensor fusion.

15. Sensor suite reconfiguration (under partial failure conditions).

16. Navigation and navigation system management.

17. Air combat management (multiple ground and airborne threats).

18. Mission planning.

19. Threat radar signal classification.

20. Submersible vehicle for harbor mapping and mine laying.

21. Handling of multiple inflight emergencies.

22. Process control.

23. Library information retrieval systems (requires optical storage

medium)

24. Project planning.

Problems

N 1. Extracting knowledge from experts may be difficult.

* 2. Software field representatives are reluctant to modify software

packages for specific applications for fear of causing problems they

cannot solve.

3. Specialized Al languages have not shortened program modification

time as anticipated. (However, program development and debugging times

are reduced tenfold over conventional languages, according to some

authors.)I 62
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4. Existing application programs are not easily modified to fit new

applications since computer logic cannot be divorced from the specific

application being worked.

5. AI programs offer no more reasoning capability than conventional

programs using conventional algorithms.

6. Programs cannot be written to display common sense.

7. Programs cannot deal intelligently with uncertain data.

8. Recognition of connected speech and its meaning may prove to be

practically (both meanings) insolvable due to contextual uncertainties.

9. Rule-based expert systems are guaranteed to fail occasionally since

they will not have all the knowledge they need to perform flawlessly.

10. Expert systems can be expected to perform more poorly than experts,

but better than an advanced beginner. As Dreyfus (in Winograd, et. al.,

1985) states, going beyond the competent performer level to the expert

level requires recognition of situations holistically, without

decomposing them into their components, and expert systems cannot do

this.

11. The user interface problem will become more severe as more people
try to use these systems. The design of intelligent data bases, easy to

use and modify software, and good user-system interaction schemes remain

major challenges.

12. Expert system shells are overpriced, use code that is difficult to

understand, debug and maintain, and are poorly documented. The result

is that most programs are inefficient and highly limited in their real-

world applicability.

63

.~. .r . . . .



Successes

1. A subject matter expert having some computer programming capability

can write successful programs (i.e., you don't have to be an AI

specialist).

2. Graphics and symbols communicate better than natural language.

3. Technicians maintaining equipment can provide better diagnostic

inputs to an expert system than the engineers who design the equipment.

4. Of the three components needed for natural language discourse

(i.e., speech synthesizer, natural language handler, and speech

recognizer), only the speech recognition function remains as a technical

barrier.

5. Expert systems may handle more information faster than a human.

6. Expert systems will provide the basis for fifth generation

computers in this country.

7. The speed of production expert systems will increase dramatically

(projected to be 100 to 200 times faster in 1990 than in 1985).

8. Costs of expert systems (both hardware and software) will continue

to drop dramatically due to technology and competition.

9. Due to the number of PC installations, PC-based shells have

tremendous growth potential in market share of expert system products.

(in this country, total PC computing power exceeded that of all other

systems in 1986.)

10. Future application-specific expert systems will reside on chips in

hand calculator type devices and pervade tomorrow's world.
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11. There will be many consumer applications of low-cost expert

systems, such as investment decision making, personal health care, and

commuter route selection.

12. The knowledge acquisition process will become automated so every

expert may become his own knowledge engineer.

13. Given intense exposure to real world problems, together with

adequate resources, the lessons learned in AI labs can become the

foundation for "prodigious achievement."

Primary Needs

1. Human factors research into user interface problems with expert
systems and knowledge acquisition systems is sorely lacking.

2. Expert systems that learn by their own mistakes must be initiated

so the AI community can gain some experience with this vital capability.

3. Expert systems and shells that can be used by non-Al specialists

and nonprogrammers must be developed if this technology is to reach its

full potential.

4. Development of techniques to easily and reliably extract knowledge

from the domain specialist is required.
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CHAPTER 4

Human Factors Research in

Artificial Intelligence and Expert Systems

Introduction

To be discussed in this section are human factors design issues and

research relating to the development of expert systems for military

and/or industrial applications. For those interested in a slightly

broader perspective on human factors and Al (i.e., including intelligent

robotics, and natural-language understanding, as well as expert systems)

the review by Hillman (1985) is highly recommended.

The January 1986 issue of IEEE Spectrum (pp 86) quoted Andrew P.

Sage (President of IEEE's Systems, Man, and Cybernetics Society) as

saying that "the major challenge in this (expert system) field is to

design systems for easier human interaction." Sage elaborated by saying

that "the major breakthroughs needed to solve the human interaction

problems depend on design of intelligent data bases, behavioral and

human factors in systems design, and intelligent programming and

decision-support generators."

The intent here is to inspect in some detail, those studies that

were identified through a review of the literature to address important

design characteristics of expert systems and to illustrate the direction

of research activity that, although generated in related study areas,

can nevertheless be brought to bear on the subject.

Design Considerations for Expert Systems

Although in the review of literature for this effort there were few

citations identified that specifically treated the human factors design

aspects of the human-expert system interface, there is a growing body of
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anywhere from too much to too little explanatory information available,

depending on the experience of the user. The more complete the display,

* the more time required to generate it, and the less workspace will be

available. In the extreme case, some commercial vendors have learned

that when they try to make their systems very easy to use with little or

no experience, the associated processing overhead degrades system

response time to such an extent that serious user complaints have

resulted.* In any event, it is clear that there is an important

tradeoff between how much supportive information should be provided, the

impact that has on remaining available workspace, and the acceptable

amount of time required for processing. In addition, this tradeoff

varies as a function of recency and amount of user experience. Norman

-~ advocates using a psychological measure of "User Satisfaction" to

quantify the tradeoff relationships among these parameters so as to be

able to determine when user satisfaction has been maximized to a

reasonable extent. It would seem mandatory to include a similar

capability in airborne expert systems so that the aircrewmember could

customize processing overhead and display update rates according to his

needs and experience, thereby maximizing satisfaction and, hopefully,

man-machine performance.

Rouse (1984) describes an integrated methodology for a top-down

approach to the development and evaluation of decision support systems
(OSS's). Since expert systems seem to have DSS's as first cousins, the

highly formalized procedures presented by Rouse may produce beneficial

effects when applied to expert system development efforts. In

particular, the design of information provided to the user, as a

function of the system's model of the user, may be facilitated

considerably using Rouse's approach. According to Rouse, requirements

* As Norman states, ".. the long, informative displays or sequence of
questions, options, or men~us tha. may make a system usable by the
beginner are disruptive to the expert who knows exactly what action is
to be specified and wishes to minimize the time and mental effort
required to do the specification."
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on the des I (n of I rf ormat ion presented can he expected to be marked 1 y

different as a function of whether the dec is ion inak Inq task Involves

Situation assessment, as opposed to planninq and coitim itment, or

execution and monitoring. Similarly, the decision making strategy will

differ as a function of the famil iarity of the situation confronting the

user. For exampIe , fami liar situations allow the user to call up

appropriate courses of act ion directly. Therefore, the information

should be presented such that the familiar pattern may be recoqnied.

On the other hand, totally unfamiliar situations require the user to

employ analytical reasoning abilities. Information to support decisions

in these situations should emphasize causal or functional relationships.

Rouse describes various levels of evaluation for DSS's. For example,

the compatibility between information displayed to the user, and

responses required from the user must be assured; the "messages"

displayed by the system must be understandable by the user; and the DSS

must actually improve man-machine performance. Such evaluations may be

performed analytically or empirically. Details on a taxonomy of

* knowledge requirements for decision makers to be able to use a OSS are

provided in Rouse, et al. (1984).

The System and Users Need Models nf Each Other

Another potentially important aspect of efficient and proficient

interaction between the expert system and the user is that each has an

appropriate model of the other. Since both the human and the expert

system may act as decision makers (i.e., either independently or

jointly), the allocation of tasks to each side of the interface is a

basic system design issue. Ideally, a particular task should be

allocated to the machine or the human, depending on which has the

resources available at that moment to do the job best. Revesman and

Greenstein (1983) delineate the development and application of a

computer model to predict actions a human will take at a given point in

time within a process control situation. The model has two stages,

representing human event detection performance (based on a discriminant
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analysis*) and control action prediction, respectively. The model was

applied to a situation in which simulated variations of sheet metal

thicknesses being produced by 9 separate machines (i.e. as represented

by a set of 9 traces on a CRT) had to be monitored by subjects to make a

decision as to when a machine needed to be repaired. Information as to

mean time between failures (MTBF - in seconds for each machine), time to

repair (TTR) the machine (TTR - in seconds), and the cost per second of

allowing the machine to remain failed was displayed above each trace.

Subjects could effect a "repair" by pushing a numeric key associated

with each machine. Both the subjects and the model used the MTBF, TTR

and cost information to make the decision to "repair the machines." In

one condition, the model performed all repairs based on its knowledge of

what the human would do at that time to attempt to minimize the expected

cost of operating the system. No actions were made which conflicted

with or duplicated those of the subject. In another condition, no model

of the subject was used and the computer simply made repairs on its own

so as to minimize the expected cost of operating the system. For each

of the above conditions, two levels of computer communication were used

in which the computer either did or did not inform the subject when an

action was taken. The results of this study indicated that system

performance improved when the computer had a model of the human and the

two were operating in parallel. Communication to the human of what the

model was doing further enhanced system performance.

Along similar lines of concern, Harris and Helander (1984) raise

several issues regarding ergonomic aspects of human-machine information

exchange and the symbiotic (see Licklider, 1960) process. They maintain

that since it may be impossible to determine which member of the human-

* Discriminant analysis is a mathematical means of maximizing the
diStdnce in multifactorial space between the weighted parameter
representations of two objects. For example, we might ask how dogs and
cats could be best parametrically described so as to always be able to
discriminate between them.
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machine dyad might be at fault when an incorrect output is produced

(because the behavior of each is partly dependent on the other), a whole

new arena of product liability will be forged with respect to misleading

decision aids. The authors illustrate their point by hypothesizing the

range of acceptance of an expert system's output as a function of the

experience level of the user. For example, the recommendations of a

MYCIN-like system would be regarded differently by a highly experienced

physician than by a fresh paramedic at a remote site who may have no

other sources of reference available. As another example, the output of
a weather advisory system for general aviation aircraft may lead to

different levels of acceptance by users based on the interaction of the

apparent authoritativeness of the system and the differential

personality tendencies of the users, as well as their experience level.

In any event, as these authors state, "the influence of authoritative

demeanor (on the part of the expert system) on human decision-making is

yet unknown." Harris and Helander also differentiate between simulated

versus synthetic intelligence and the resulting effect on how system

failure would be viewed by their users. Synthetic intelligence involves

the notion that since machines are not biological, they need not be

constrained in their intellectual activity by what we know of as

biological intelligence. New approaches to problem solving by machines

employing synthetic intelligence may be vastly different in their

functioning and information processing approaches. Since a system

designed with simulated intelligence would presumably behave as closely

to the human as possible, the failure modes of this type system should

be more predictable but may be less easily detected than their synthetic

intelligence counterparts.

Harris and Helander's final point has to do specifically with the

it requirement to develop and maintain an adequate model of the user

throughout the human-machine dialogue. They discuss the difficulty of

finding engineering documentation that specifies the physical and

psychological characteristics of the user. When such models have been

developed, their application specificity has disallowed identification
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of general principles for their design. These authors conclude that a

great deal of maturation will be required for psychological theory to be

helpful to systems engineering problems. The concerns expressed by

these authors are especially relevant to the development of expert

systems for cockpit applications. Surely the information packaging and

content will need to be varied as a function of both the general

experience of the pilot, and his/her experience with the particular

expert system being used. The requirements for development of a user

model could be minimized, however, by the use of a credit card type user

identifier and system conditioning capability whereby major

configurations of the onboard expert systems would be dictated by the

known attributes of the pilot. Such individualized conditioning

capabilities are popular topics for those interested in advanced

aircraft control systems as well (see Reising and Moss, 1985).

Evaluation of User Performance

The first impression offered by any expert system, as well as its

continued utility, is a function of the design of the user interface.

Whiteside et al. (1985) evaluated user performance with command, menu,

and iconic interfaces across seven commercially developed, top-level

interactive software systems (four command, one menu, and two iconic).

A population of 76 subjects was used which represented three classes of

computer experience, ranging from little or no computer experience, to

transfer users (i.e., persons who used interactive computers daily but

had no experience with the particular system being evaluated), to daily

users of the system being tested. After a brief introduction to the

system to be used (system documentation was also provided), subjects

were asked to perform file manipulation tasks involving simple

operations such as displaying, merging, and sending files to other

users. Performance was evaluated objectively through a composite user-

performance score which combined task completion times, proportion of

tasks completed, and a 5-minute criterion time interval to provide a

measure of the rate of tasks completed per 5-minute interval. (This
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interval represented a presumed mean fastest possible time for a
practiced subject.) Sessions were also videotaped and interviews and

questionnaires were administered at the completion of the experiment.

The results of this study highlight the complexity of the user interface

problem. Although there were found to be large usability differences

between the systems tested, these differences were not related to the

particular, style of interface, but rather to particular design qualities

built into the interfaces, regardless of what style they were. There

were also problems common to all systems. For example, there were

difficulties concerning lack of feedback on all systems. Users on all

systems were found to repeat previously made entries, being apparently

unaware that their input had already been accepted. They also

consistently overlooked messages that were displayed anywhere but in the

center of the screen. When problems were broken down by style of

interface, it was found that many problems with the iconic systems

related to the required rote knowledge of the complex syntax of mouse

position, number of clicks, timing of clicks, up-stroke vs. down-stroke,

A and choice of button pressing while moving vs. pressing while not

moving. A major problem with the command systems was the lack of

examples of command-like syntax from which to fashion one's own

commands. Users were also overwhelmed by the amount of help available

(which was sometimes irrelevant) as well as error messages, many of

which were misleading and confusing. Many users of the menu system

"became so involved with maneuvering through the menu structure that by

the time they had done this successfully, they forgot what the task was"

4 .. and they.. "got stuck for want of information about how to change

states." In fact, the menu system was found to produce the poorest

performance and subjective reactions, a surprising result since the

primary intent of a menu driven system is to facilitate the user
interface. Remarkably enough, the best systems (which represented at

least one of each style of system) were the best for new users and

system users alike. This result argues strongly against the existence

of a learnability versus usability tradeoff for these types of systems

and instead supports the notion that these qualities are congruent.
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I:. Roberts and Moran (1983) reported similar findings in their evaluation

of text editors. Whiteside et al. conclude that it is the crafting of

these interfaces that is most important and that this crafting comes

with product maturity. They feel, however, that the crafting process

can be accelerated through application of human factors expertise and

iterative testing of prototype software prior to final release of the

product.

Regarding another mode of potential interface, Michaelis, Miller,

and Hendler (1982) describe efforts by a team composed of artificial

intelligence and human factors specialists to develop a computer-

processable, human-engineered subset of natural language which could be

used to teach computer programming in an "intelligent tutoring system".

N The impetus for their work is based on research by Ford, Weeks, and

Chapanis (1980) and Michaelis (1980) in which one member of each of

several two-person teams received instruction from his/her partner

regarding how to build an odd shaped wooden model from an assemblage of

pieces provided. The instructions were provided either by voice or by

teletypewriters (Ford et al.) or by teletypewriters alone (Michaelis).

In each study, half the subjects were rewarded for minimizing the number

of words used to reach a correct solution (i.e., the fewer words used,

the greater their earnings), while the other half was rewarded only on

the occurrence of a correct solution. Results of these studies showed

that not only did self-imposed brevity not affect problem solving

accuracy, but also self-limited teams actually solved their problems

faster than their unrestricted counterparts and they did so using about

one fifth as many words with about one third as many messages and word

types. Next, the protocols (recorded transactions) were analyzed to

determine if there were systematic differences in problem-solving

strategies or order of subtasks performed. None were found. These

studies provide strong evidence that asking people to be concise in

their comm~unications with the attendant reduction and restriction in

natural language usage may improve, not hamper, the communication

~ ~..process.
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In a similar study, Kelly and Chapanis (1977) found that when the

communication process was limited to only the 300 words most often used

by an unrestricted team, the problem solving accuracy and speed by

restricted versus unrestricted teams did not differ.

In total, the above studies imply that constrained natural language

communication between a pilot and the on-board expert systems could be

developed that would not result in diminished understanding by the pilot

or by the expert systems of the knowledge, intentions, or actions of

each.

Jenkins (1984) relates an experiment in which an expert system (in

the form of a response tree) was used to assist in the solution of a

process control problem in a simulated nuclear power plant application.

Specifically, subjects were provided training on the types of response

trees they would be required to use to identify the best solution to a

reactor core cooling problem. Eight groups of subjects (in a 2 X 4

design) corresponded to two levels of task difficulty, and four levels

of use of the expert system, ranging from mandated use, to optional use,

to knowledge of how to use the system, but it was inoperable, to no

knowledge or use of the expert system whatsoever. Dependent measures

* -included maximum fuel temperature reached, number of control

activations, and number of response tree uses. The results provide

several interesting insights into the interpretation and use of response

trees. As might be expected, when offered a choice, the response trees

tended to be used only on the more difficult problems, and, when used,

caused considerably more time to be spent to reach problem solution than

when the response trees were not available. Not only did subjects tend

not to use the response trees when they were available, their use did

not improve operator performance. The authors state that these results

may have occurred because the test scenarios may have been too easy, or

the simulated cooling system may not have been complex enough. Also,

even though it had been emphasized to operators during their training

period that failures had to be manually inputted to the response tree
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aid, their performance under pressure indicated that they presumed the

computer already knew about the failures. Needless to say, this

mismatch between computer capabilities and user expectation reduced the

usefulness of the aids and again highlights the requirement for an

appropriate model by each side of the user-system interface. A final

and very important lesson offered by this research has to do with the

credibility of the information provided to the user on his/her display.

It was found that even when the displayed information was incorrect

(because of incorrect user inputs to the computer), the operators still

placed high confidence in the accuracy of the computer generated data.

Jenkins's findings emphasize the importance of aligning the user's

expectations of the performance of the expert system with its actual

capabilities. Also, displays must incorporate sufficient information

for the operator to detect immediately when he/she has made an

irrational or incoherent input. This does not necessarily mean that the

system must be able to detect every inconsistency, but rather that a

sufficient record of action sequences be represented for the operator to

detect when a blunder has been made. The challenge to the expert system

design community will be to provide this capability while still adhering

to criteria of display simplicity and minimal clutter. Reliance on

graphic and pictorial representations will help accomplish these

objectives.

Summary

Where do we stand regarding the development of a human factors data

base for expert systems? As has been attempted to be shown here, many

of our early grapplings have come from the allied research areas of

human-computer interaction, decision support systems, and response (or

fault) tree diagnostic systems. It is only fitting that we extract

usable information from these sister domains where appropriate.

However, it is also necessary that the human factors community establish

the required contacts with developers of expert systems so that each
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discipline is made aware of the needs and knowledge base of the other.

Cooperative development of future expert systems could be expected to

facilitate the development process as well as result in systems that are

easier to use and market.

Prime candidates for cooperative research and development efforts by

human factors and expert systems specialists include the following

activity areas:

a) Extraction of knowledge from domain specialists.

b) Exploring alternative interfacing strategies such as the use of

natural language.

c) Developing models of expert system behavior that communicate

immediately to the user what the system is doing and why.

d) Developing display techniques that facilitate the above

communication process.

e) Developing user activity definitions that convey satisfactorily

to the system what the user is doing and why. (The question here is how

to infer intent through a sequence of actions.)

f) Developing expert system building software that allows a domain

specialist (who is not a computer scientist) to most easily construct an

expert system for his own area.

g) Cooperative development of research goals and protocols that

better address problems of utility assessment and user satisfaction.
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CHAPTER 5

Image Understanding

Introduction

Because of the potential merging of expert system capabilities into

pattern recognition and image understanding subsystems in future

airborne applications, it is important to review the technology and

research being performed in the area variously referred to as computer

vision, visual sensing, image understanding, and machine pattern

recognition. Development and application of robotic vision systems, per

se, is discussed in the Handbook of Artificial Intelligence, Vol III

(Cohen and Feigenbaum, 1982) and will not be reviewed further here. The

same volume contains a description of three computer vision systems (pp

306-31?), each developed during the 1970's, which have provided the

historical foundation for development efforts today.

Horn (1980) states that the task of a vision system is to produce a

description of what is being viewed. The input to this process may be

one or more images in the form of two-dimensional distributions of scene

radiance values. The output must be able to specify aspects of the

three-dimensional reality, as well as be useful to perform some specific

task.

Horn feels that machine vision is complex enough to warrant its own

methodology and will not likely succumb to the traditional bag of tricks
such as linear systems theory, statistics or communications theory.

-. Systems can be dichotomized into those which work at reasonable speeds,
* and those which work reasonably well. An example of the former are

machines that extract topographical information from stereo pairs of

aerial photos. They work reasonably fast but still require human

intervention when gross confusion occurs due to differences in, for

instance, sun angle or slope shading. So called "automatic" terrain
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classification systems have also been built that suffer the same '1

problems. On the other hand, MIT researchers have developed usable edge

detection and line finding systems that work well but require large

capacity computers and long processing times.

Horn describes the roots of machine vision as coming from the fields

of image processing, pattern recognition and scene analysis. Image

processing typically employs transform techniques to result in an image

for human viewing that is better than the original. Pattern recognitionj

involves mathematical feature extraction, followed by pattern
classification and has not lived up to the promises implied by the level

of mathematical sophistication typically employed. Scene analysis

efforts attempt to produce line drawings of the essential elements of

the scene in order to determine its contents. Technical problems in

performing useful scene analysis have led some researchers to exploit

prior knowledge regarding the likely contents of the scene being viewed.

The direction of research in image uneerstanding is shifting from an

analysis of relatively rapidly changing or uniform intensity areas to

analyses of such things as reflectance color, shape, illumination

conditions, and shadowing.

Processing Architecture

Mudd (1980) describes work performed by Hughes, Malibu under the

DARPA Image Understanding Program to determine processing requirements,

as well as machine organization for complex image processing and

analysis. The intended application for this work is both the real-time

tactical scenario requiring remote sensing and analysis, as well as

automated prediction and inspection for machine assembly.

Although the complexity of the image understanding problem, in terms

of the processing requirements, algorithm definition and throughput

speed have not allowed a unique solution, technology developments in the

Very Large Scale Integrated circuit (VLSI) and Very High Speed
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Integrated circuit (VHSI) areas are predicted to provide the salvation

needed. Estimates of processing requirements for various manipulations

(in terms of millions of instructions per second, or MIPS) were orders

of magnitude beyond the capabilities of machines current at the 1980

publication time of this report.

Mudd projects that the manipulations that need to be made would be

by so-called "primitive" processors, each performing a single function

such as convolution, edge detection, histogramming, or other statistical
operations. The output of these primitives would be passed to a

symbolic processor which would match features, determine the shape of

objects, and make mission related decisions. Many of the primitives

themselves are envisioned to be incorporated directly at the focal plane

of the sensor. Charge coupled devices (CCD's) and metal-oxide-

semiconductor (MOS) materials technology offer significant opportunities

for such integration, since CCD's (imagers themselves) and MOS chips can

be packaged as sensing/processing units. Mudd contends that with such

technology, together with the development of other low level primitives,

processing at real-time television rates is possible.

Finally, control and integration of primitives is considered since

each primitive would operate at its own rate and have unique connections

and timing requirements with other processors. The anticipated gate

densities for VLSI and VHSI components (on the order of 105/chip and

clock rates near 108 Hz) will allow much of the hardware to be put on

relatively few chips.

Model Developments

In his book "Artificial Intelligence," Winston (1984)* discusses

some of the problems involved in making a computer understand an image.

* Patrick Henry Winston is a professor of computer science and Director
of the Artificial Intelligence Laboratory at MIT. He states that most
of the ideas presented in his book were developed through long-sustained
support by DARPA and ONR (Office of Naval Research) and that it has been
personnel in these agencies who made the field of Al possible.
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Although his orientation is toward robot vision systems, the ideas

presented are equally applicable to an airborne sensor and processing

system. In his approach, the first consideration in image understanding

* is to map image brightness (more properly termed image irradiance, or

the power per unit area at the sensor plane). Facts about brightness

changes are then used to form a "primal sketch" (a term coined by Marr,

1982) which is devoid of any surface texture information and contains

only an outline of the major surfaces of the object. From the primal

sketch, a "12 -D sketch" is constructed which provides arrows emanating

from the surfaces depicting vectors normal to those surfaces. The final

level of representation explicitly defines how objects fill space and is

referred to as the "world model." The body of a conventional desk-top

telephone, for example, can be thought of as a combination of a vaguely

* wedge-shaped object having two U-shaped protrusions, all of which occupy

some finite space. Winston hypothesizes that "all powerful vision

* systems must use something like primal sketches, 2 -D sketches, and

world models." However, he points out that no one knows how this

information is organized or flows through the various representations,

as it must in the human (ostensibly, prior to organization by any

Gestalt types of operations). He suggests that in a top-down flow, for

example, our image understanding may be based on "controlled halluci-

nation .., whereby early vision is guided by firm expectations about what

is to be seen" ... and ... "in this respect, image understanding is like

language understanding." In any event, Winston asserts that it is clear

that visual systems will use whatever information is best at any point

in time and that they are sensitive to and use information quality

(image quality) in the decision making process.

In Winston's treatment, the next topic in the image understanding

process is how one localizes edges in a scene. One way to deal with

typically noisy edges in an image is to construct an average-brightness

array which effectively smooths small differences in brightness. If one

then constructs an average-difference array (i.e., differences between

adjacent pixels) from the average-brightness array, and then performs
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that process a second time, the result is called a point-spread function

(two-dimensional in this case). This function identifies how a single

isolated brightness point input to a sensor will spread across an output

image. There is physiological evidence (Hubel and Wiesel, 1962, 1979)

that, at the retinal ganglion and visual cortex levels, there are cells

having response characteristics that mimic this function. From a two-

dimensional perspective, this function resembles a Mexican hat, thus its

designation as a sombrero filter. Hubel and Wiesel found corresponding

spatial excitatory and inhibitory effects in terms of modulation of cell

firing rate about spontaneous levels.

The perception of distance from stereo cues also must be accounted

for by an image understanding system. Winston points out that the

fundamental problem in stereo vision is correlating objects in the left

and right images so that their disparity can be assessed. Exactly how a

biological visual system does this is not well understood, but it is

clear that any machine visual system would have to perform this function

if it is expected to move in or interact with its environment.

The final area discussed by Winston that will be covered here has to

do with the determination of surface orientation from shading

information. An image can be considered to be a reflectance map of the

objects contained within it. The computational trick is to determine

object orientation based on known information concerning the relative

position of the light source, the visual system, and reflectance

characteristics of the object's surface. If one were to illuminate a

sphere from various angles relative to the observer, for example,

isobrightness lines could be determined that relate to the direction of

the illuminating source according to the cosine of the angle between the

observer and the source. Such information :an be used by biological and

machine vision systems alike to determine the orientation of objects

when the object geometry and position of the illuminant is known.

Another excellent report that addresses more recent developments in

computer vision and pattern recognition is provided by Fu and Rosenfeld
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(1984). Since remote sensing typically yields only a 2-D image, image

analysis is often only two-dimensional. Their treatment of computer

vision parallels that of Winston (1984) in his discussion of image

understanding and will not be covered further. However, Fu and

Rosenfeld define pattern recognition to be concerned primarily with the

description and analysis of measurements taken from physical or mental

processes, and indicate that all mathematical methods that have thus far

been used to solve pattern recognition problems can be categorized as

either decision theoretic (i.e., statistical) or syntactic (i.e.,

structural). Decision theoretic approaches represent patterns in terms

of N features (e.g., shape, texture, spectral components) represented in

an N-dimensional feature vector, which is then compared with some

criterion to arrive at a measure of similarity, distance, a likelihood

function, or a discriminant function. Feature space is transformed so

that an optimization criterion may be applied to discriminate among

classes of objects so as to either maximize the distance between

classes, minimize distance within a class, or perhaps both. Popular

approaches (with digitized scene pixels) for generating pattern features

include the Fourier, Harr, and Walsh-Hadamard transformations. To

reduce the number of dimensions in feature space, the Karhunen-Loeve

expansion and/or the principal components method may be employed.

A second approach to the categorization of a set of N features is to

use a distance measure that relates to the probability of misrecognition

so that features may be selected which maximize the distance between the

subset of features selected to classify the objects. A Bayes

classification rule and/or contextual information is often used to
minimize the probability of misrecognition.

Application of the syntactic approach requires that the pattern be

represented as a pattern of primitives and the relations between them,

or in the form of a string or tree. Primitives are the simplest

subpatterns or components that can be easily treated using decision-

theoretic techniques. Patterns between the primitives are represented
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by a sentence (consisting of a string or a tree) using a specialized

pattern description language having a formal pattern grammar. Typical

primitives for handwriting may be various types of strokes, while those

for continuous speech may be phonemes. However, since neither of these

types of primitives can be extracted easily by a machine, recognition of

handwriting, as well as continuous speech, remains a significant

challenge.

Syntactic recognition may use anything from simple template matching

to a full syntactic analysis (including grammatical descriptions or

parsing) to generate a complete description of the pattern and the

syntactical relationships involved.

Fu and Rosenfeld conclude that the most serious problems for pattern

recognition technology involve identification of efficient feature

extraction and selection techniques*, together with the selection and

extraction of primitives. Also, since pattern recognition algorithms

tend to be computationally slow, they await special computer

architectures and VLSI technology to provide support to real-time

applications.

Barrow and Tenenbaum (1982) propose a computer model by which line

drawings may be interpreted as three-dimensional surfaces. They base

their model on the presumption that sufficient information as to surface

orientation is available from extremal (object edge) and discontinuity

(superposition) boundaries so that three-dimensional space curves and

smooth surfaces within the scene may be logically reconstructed.

Conceptually, the model behaves as most people do when asked to

interpret, in three dimensions, what is presented to them in two. For

example, an elipse is most commonly interpreted as a tilted circle,

rather than "some bizarrely twisting curve (or even a discontinuous one)

*The same may be said for speech recognition.
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that has the same image." The extremal boundaries define points in the

image where the surface orientation can be inferred exactly (i.e.,

normal to the line-of-sight, or perpendicular to the line tangent to the

extremal boundary). Although discontinuity boundaries do not directly

constrain possible surface orientation, "local two-dimensional curvature

in the image does provide a statistical constraint on the local plane of

the corresponding three-dimensional space curve, and thus relative depth
along the curve." Since surface normals at each boundary must be

orthogonal to the tangent at any point on the surface, the only
remaining degree of freedom for surface orientation is a swing along the

axis of the tangent line.

The Barrow and Tenenbaum model consists of three steps. First, each

line in the image must be sorted as to whether it represents an extremal

or discontinuity boundary. Secondly, normals are constructed along

extremal boundaries and surface contours are interpreted on the basis of

logical geometry. Lastly, boundary conditions are used as the basis for

interpolation to construct surface orientations. The model has been

tested using simple geometric shapes (e.g., a trapezoid was correctly

interpreted as a tilted rectangle, and an elipse was correctly

interpreted as a tilted circle). However, when less than ideal (i.e.,

noisy) data are input to the model, the computational procedure becomes

slow and ineffective. Another limitation to the approach involves the

problem of how to extract line (boundary) information from grey-level

imagery. Nonetheless, Barrow and Tenenbaum contend that a developmental

approach such as theirs is significant since it can be used to explain

surface perception without having to resort to analytic photometry

techniques.

Some Applications

Bajcsy, Joshi, Krotkov, and Zwarico (1985) describe a basic research

project to develop a prototype system (LandScan-Language Driven Scene

Analysis) having data-driven modules which build a surface graph of an
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aerial scene from stereo images. A set of query-driven modules allow

the user to probe the data base for information of interest. A scene

model is then constructed consisting of those objects that represent the

interests of the user. Though not yet developed, the authors intend to

provide a natural language interface for the query portion of the system

which would "apply locative linguistic constructs to some representation

of visual data and reason about this data."

Tenenbaum, Barrow, Bolles, Fischler, and Wolf (1980) discuss

experiments dealing with the extraction of information from LANDSAT type

imagery for monitoring and/or tracking conditions at geographic sites.

Applications may include industrial plants where thermal or chemical

pollutants, oil spillage, etc., may be of interest, or the detection and

tracking of forest fires or icebergs. The first task in their procedure

is to determine the geometric correspondence between the sensor image

and map coordinates. A camera model is developed that specifies the

location, orientation, and focal length of the camera, and trigonometry

is applied to evolve the solution. A map data base is used to provide a

3-D description of major landmarks and monitoring sites: the San

Francisco Bay Area in these experiments. The camera model is used to

predict the appearance of landmarks (both natural and manmade) and

slight differences between predicted and actual appearances are used to

calibrate the camera model further. Once final calibration has been

achieved, the authors claim it is possible to determine the precise

location of geographic sites to within one pixel. (There are 16 million

pixels in a typical 4000 X 4000 LANDSAT image.) This allows one to

answer such questions as whether a plant has increased its discharge of

pollutants, or whether sea water has intruded further up a river delta.

Such data provide a much richer base to draw from than is possible using

the traditional multispectral analysis approach and the resulting image

statistics. Similarly, several types of monitoring tasks become

trivial. The counting of box cars on a railway, ships in a harbor,

planes on a runway or cars on a highway are examples.
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Tenenbaum, et al. (1980) conjecture that the payoffs from automated

monitoring using this technology could be substantial. They envision a

system that would extract updated site information from new imagery and

periodically distribute it on a subscription basis to interested users

via communication satellites. An expert system using such information

could provide substantial intelligence input to tactical or strategic

planning operations.

In what is becoming a classic paper, Sakai, Nagai, and Kanade (1972)

present a processing scheme in which a binary-valued (thresholded) line-

like picture is generated from a digitized (140 X 208 pixels, 32 gray

shades) photo. This scheme uses a Laplacian operator (i.e., a two-

dimensional secondary differentiation) to identify areas where

brightness changes are high. The positions of facial features (e.g.,

eyes, nose, mouth, chin, and chin contour) are defined in the line

picture. The program considers predictive contextual (or syntactic)

information to assist in locating the geometric features. For example,

it looks for eyes where eyes should be, not where the mouth might be.

The procedures for finding the various facial parts are divided into

subroutines and these may be automatically modified to do more detailed

analysis if the program fails to detect the part in the predicted area

-/ on the first pass. The general technique used to identify the position

of facial parts may seem primitive by today's (1986) standards. It is

done through what is referred to as "integral projection" and

conceptually amounts to placing a slit over the feature suspected to be
a nose, eye, etc., and counting the number of digital pixels across the

slit. A horizontal slit is used across the eye areas, and a vertical

slit is used on the nose/mouth/chin area. Histogram plots of actual vs.

predicted, one-dimensional pixel distributions are compared, and the

sampling slit position is readjusted iteratively until an acceptably

close statistical match is made. A chin contour is similarly located

using slits along radial projections from the center of the upper lip.
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The success rate across some 800 photographs of people of various

ages, with and without hats, beards, and glasses and at various head

turn and tilt positions was remarkably high, except for persons wearing

eye glasses or having a beard (for which it was zero). Correct results

were obtained 91% of the time, for example, for full faces with no

glasses or beard, and nearly 80% for a turned face with no glasses. The

procedures are offered as an approach to computer classification of

human faces and are analgous to those that might be used to discern to

which of a class of objects (e.g., which model of tank) a potential

target may belong.

frKuan (1984) explores how terrain map knowledge should be represented

frspatial planning or route selection purposes by an autonomous

robotic vehicle. He presumes that the DMA (Defense Mapping Agency)

digital terrain data base (with roughly 10M X 10M resolution) would be

used, since it contains both terrain elevation as well as cultural

information. Cultural features include not only notation of the surface

material (water, soil, trees) but also symbolic representation of roads,

bridges, towers, etc. Details of such things as road width, whether or

not paved, and one or two-way, are also stored. Another source of

functional map information is the topographic map data base, such as

represented by the U.S. Geological Survey Map. Sources such as these

would provide obstacle information (e.g., big mountains, lakes, deep

rivers) which would be combined with intelligence information regarding

enemy positions, location of mine fields, and threat regions to provide

delineation of areas that should not be penetrated. Spatial planning

would then be performed on the basis of reconnaissance mission orders

that are translated into operational requirements that serve as

constraints or criteria for route planning (e.g., "Investigate the

region between Mountain-i, Mountain-2, River-i, Bridge-i, and Bridge-2.

Don't go to already occupied enemy regions; check on the valley region

to be sure it is clear of enemy occupation; make sure that enemy is not

traveling through River-i by boats; and go back to the starting point").

Depending on the nature of the area being traversed, it may be better to
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use sensor systems to, for example, follow the road, rather than
following specified grid positions as would be mrore reasonable in an

open terrain situation. A "connectivity graph" may be used to determine
how to travel through open terrain at minimum cost and is constructed by

identifying the types of links possible between various points in the
area (as determined by roads, bridges, or the lack thereof). At this

point, the route planner can provide a more detailed route description,
together with mobility factors, that will determine vehicle speed, the
sensor required, and the algorithms to be used for processing sensor
data. The route planner can also develop defensive/evasive action plans
during the period it is monitoring route execution. For example, if
enemy forces are encountered when the system is traveling through open
terrain, the planner can find the closest high concealment region and

plan how best to escape.

Gilmore and Semeco (1985) describe development work on a knowledge-
based route planning system that could be used by autonomous ground
vehicles for navigating through terrain. The system (known as TREK):
"1) analyzes a digital map to generate a global route, 2) performs scene
interpretation to generate local routes, 3) maintains a track of its
position through scene matching" (i.e., by comparing the present scene
to its stored digital map), anid "14) uses knowledge-based processing to
validate and improve preliminary plans in light of predetermined mission

goals." The system is written in Lisp and runs on a Symbolics 3600
computer. From the discussion offered by the authors, it appears that
the system is in an early stage of development, though they do plan to
incorporate the system into two functional mobile robots (which process

additional sensory inputs) that were donated by IBM for research into
materials handling and manufacturing applications.

Conclusion

It is obvious that the problem of understanding how we understand
image content is a complex one, even for biological vision and
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processing systems. As researchers attempt to model the necessary and

sufficient characteristics in computer vision systems, the complexities

of the problem become further appreciated.

This section can provide only a sampling of the voluminous

literature in this area (over 25 books have been dedicated to the design

of computer vision systems alone, according to Fu & Rosenfeld, 1984).

The presentation has been an overview of some of the problems and

current capabilities in image understanding. The reports by Havens and

Mackworth (1983), Brazakovic and Tou (1984), and Connell and Brady

(1985) should be consulted for more detailed treatments of the topic.
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CHAPTER 6

Natural Language Processing/Understanding

Introduction

Although speech recognition and speech synthesis hardware has been

on the market for several years and has found application in everything

from home computer games to control and warning systems for automobiles,

the real challenge in this area has and will continue to be recognition

of continuous, unrestricted speech. Since use of a constrained

vocabulary of brief utterances may provide the pilot a valuable mode of

interaction with his aircraft systems (including expert systems), this

section is provided to indicate the technology available, techniques

being explored to advance the technology, and some directions being

taken to explore what would be required of a natural language system.

Speech Recognition and Coding

Doddington and Schalk (1981) describe how computers recognize

speech. A most important characteristic is the formant frequency (i.e.,

the frequency at which the voiced energy peaks) which is due to the

acoustic resonances of the mouth cavity as controlled by the tongue,

jaw, and lips. Sundberg (1977) gives a particularly good account of how

the formants and other sounds are vocalized. The first step in speech

recognition is to transform the input signal into a set of features or

parameters. The features may be, for example, the spectrum amplitudes

of each of a set of perhaps 16 to 30 bandpass filters. Or, features may

be defined to be the rate of zero-crossings (i.e. the number of times

the voltage representation of speech changes algebraic sign, from plus

to minus, or minus to plus) in each of several broadband frequencies to

obtain an estimate of the formant count in each frequency band. In

another technique, called linear predictive coding (LPC), the speech

signal is represented by the parameters of a filter that best relate to
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the input speech. Regardless of the features extracted, they are

typically averaged over a 10 to 20 millisecond interval and sampled 50

to 100 times each second. The most difficult part of the recognition

problem is how to synchronize cr time-align the input with the reference

patterns. Typically, alignment is performed at the beginning and ending

of a word and features are identified within each of usually 16 equally

spaced slices of time. This input pattern is then compared with the

reference vocabulary words and a measure of similarity computed for

each. The reference word producing the least difference becomes the
"recognized" word. When large differences occur between the input

pattern and all of the reference words, the recognizer rejects the

input.

White (1978) provides an overview of several speech recognition
techniques based on template matching. To automatically recognize

speech, the problems of how to represent speech as compactly as possible

(to conserve memory) and then how to search for template matching

efficiently (to minimize processing time) must be solved. One means

consists of converting the input speech to a series of N dimensional

vectors (the signal space), which are then compared to stored reference
utterances (templates). A single word may be decomposed into a number

of vectors, based upon the occurrence of stop consonants or other
definable boundaries between sounds. Dynamic programming may be used to

stretch, or compress an unknown utterance to produce a better temporal

alignment with template utterances.

Several techniques have been developed to represent speech as

compactly as possible. In one class of recognizers, the auditory

spectrum is divided into 16 to 29 frequency channels (channel bandwidths
are proportional to their center frequencies) and a tabulation of log

amplitude outputs of each channel is used to characterize the utterance.

(Only the difference between adjacent channel outputs may be actually

coded. This is typically referred to as a pulse code modulation (PCM)
process and is a common technique to reduce the number of bits required
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to represent a complex signal). Data rates can also be reduced by

eliminating steady state speech segments and periods of silence. A run-

length coefficient is used to tell the synthesizer, for example, how

many times to repeat an interval. (This is referred to as variable

frame-rate encoding.) Another data reduction technique uses a principal

components analysis approach to extract the principal dimensions or

factors from the input data. White states that some of the more

successful recognition devices represent speech as a sequence of events

that may be assigned binary values. Although there may be more features

than dimensions in the original signal, the simplicity of the binary

comparison process apparently overcomes the complexity.

Two basic techniques are used to perform a dynamic search process.

The first, the sequential pruning test, makes a left-to-right comparison

between template and encoded utterance and eliminates templates early

on, as they appear to not match. The second approach uses a hypothesize

and test paradigm in which a compressed template data base is compared

with the basis vectors representing speech. A comparison with the set

of full templates hypothesized to match best is then made. A typical

utterance can be reduced dramatically in the original compressed

template comparison process without loss of accuracy. Finite state

models may be evolved to represent state transition probabilities to

provide further compressing capabilities in future systems.

Andrews (1984) discusses the fact that linear predictive coding

(LPC) has associated with it a standard (called LPC-1O) for

government/military applications so that equipments across vendors can

be made compatible. The major advantage of LPC is that it potentially

allows coding of speech at much lower bit rates than popular

alternatives (e.g., 1.2 K bps may be possible, as compared to 32 K or 64

K bps for PCM systems, for example) while maintaining high speech

quality. The basic approach using LPC is to model the spectral shaping

(performed by the glottis and vocal/nasal cavity of the human vocal

tract) using a recursive, time-varying filter having time-varying

99



coefficients. Once these coefficients are obtained, the driving

function can be derived and corresponds to glottal excitation and vocal-

cord vibration (for voiced sounds) and turbulent excitation (for

* unvoiced sounds). Both excitation level and rate of attack are encoded

as well. LPC may also be used to synthesize speech by using a time-

varying linear filter with predictive coefficients and white noise

and/or a pulse train as the excitation signal. Andrews states that

although LPC synthesis does not yet work well for the speech of women

i~ and children, improvements are being made (through "amplitude spectral

shaping, adding random-phase spectral components in the voiced

excitation signal, and randomly phased spikes in the conventional

* unvoiced excitation signal").

Levinson and Liberman (1981) provide a detailed discussion and

analysis of the acoustic effect of the shape of the vocal tract on the

resulting sound. The shape of the vocal tract is modeled as a transfer

function representing the series of resonating cavities that modulate

the original fundamental frequency (emitted by the vocal cords) in

particular ways characteristic of particular sounds.

In terms of the supporting hardware, Andrews (1984) claims that VLSI

technology is the most important recent development in speech coding

equipment and projects that there will be rapid and dramatic cost and

performance improvements in the near future. LPC voice coders are being

especially impacted through the development of digital signal processing

(DSP) chips which are much easier to program and much cheaper than their

predecessors. The future for continuous speech recognition technology,

Andrews predicts, is not nearly as bright, and the ability to recognize

unrestricted continuous speech from any speaker remains a distant goal

and will not be realized until AI progresses mud, further. Much of the

problem has to do with the spelling and pronunciation ambiguity within

the English language. In this regard, the Japanese have a distinct

*1 ~ advantage with their language and have announced their intentions to
have a speaker-independent, continuous and unrestricted speech

recognition system by 1990.
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Most systems commercially available in this country are limited to

recognition of well-defined utterances of relatively small vocabularies

(perhaps 200 words) by a single speaker. Continuous speech recognizers

are available but suffer from very limited vocabularies (perhaps less

than 50 dissimilar words). To make these systems speaker-independent

forces yet another reduction in vocabulary size, since each member, or

at least representative members, of the user population must provide

his/her own template.

Averbuch et al. (1986) report on the laboratory development of an

IBM PC based (and housed) speech recognition system that is able to

recognize up to 5,000 words spoken singly. It is reported that the

system (called Tangora, after the Guiness Book of World Records' fastest

typist - 147 wpm for one hour) can be trained for the voices of

individual speakers by using a 20-minute speech sample. The 5000 word

vocabulary accounts for 92.5 percent of the most often used words out of

a collection of 27 million words contained in a sample of busines

letters and office memoranda. The modular architecture of the system

permits expansion to a 20,000 word vocabulary (which would account for

97.6 percent of words in the sample) through the addition of one PC

Expansion Unit. The processor works with a 12-bit A/D converted signal

which it converts each one-hundredth of a second to a 20-dimensional

vector (based on an auditory modeling procedure) which is then quantized

and classified as one of 200 possible sound types. A decoder, having

internal feedback from a hypothesis search section to a match engine

section, operates on the input stream using three parallel paths so that

each path handles one third of the total vocabulary. The data are

deciphered by performing an acoustic match between the input stream and

the statistics of its language model. Averbuch et al. do not provide

particulars concerning error rate or recognition rate (although they do

say the system operates in real time) but indicate that they are

presently studying: 1) how well the Tangora system performs over a

several-month period of time across a large sample of speakers; 2) the

effects of ambient noise on its performance; and 3) several human

factors issues related to its utility.
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Cockpit applications of voice recognition systems suffer from a

unique set of problems. Background noise can be a problem due to

differences between what was present when the system was trained and

when it is used in the combat environment. Similarly, differences in

physical and emotional stressors present during training versus airborne

and/or combat maneuvers present special challenges.

Understanding Natural Language

A natural language interface, whether it be through a verbal or a

keyboard exchange, involves the generation of an idea by the user and a

user translation of that idea into a statement that can be understood by

the program. If all works as planned, the program will understand the

statement and take appropriate action that produces some result. That

result must, in turn, be translated to a statement the user can

understand. Rich (1984) addresses the problems and design

considerations involved in construction of the first half of this

language understanding process, understanding of user utterances by the

program. The major problem confronting the developers of English

natural language understanding systems has to do with the ambiguities of

the language (at both the word and sentence level) and the difficulty in

accounting for all the different ways a single request for action might

be phrased in a truely unrestricted system. To lessen the problem, one

may restrict the number of words, word order, or syntax allowed.

However, doing so defeats the purpose of using natural language to start

with (i.e., minimizing the time required to learn the interface

language). To translate from a natural language statement to something

the program can understand typically involves three steps. First, the

statement must be divided into its components (words) and those words

matched to the list of words (dictionary/lexicon) the program

understands, along with the context in which the words appear, and

sometimes even a list of what sentence forms are acceptable. Often the

ambiguity problem goes away when the context in which the word appears
is considered. The next step in the understanding process involves a
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syntactic analysis (or parsing*) which may be conducted using either a

top-down, or a bottom-up approach. Both approaches operate on the basis

that a sentence must be constructed using a set of rules. For example,

it must have a noun phrase, followed by a verb phrase. The noun phrase

may contain a series of adjectives prior to the noun, etc. Such rules

comprise the grammar of the language. The top-down approach is

characterized by the diagramming method taught in high school. In the

bottom-up approach, intermediate word groups are constructed in a

"building-block" approach until the top constituent is included, at

which time the parse is complete.

The last step required to understand the user's statement is called

semantic processing. This step is often conceptually split into a

determination of what the statement means, and a determination of what

to do about it. To actually conduct a dialog, statements (especially

incomplete ones) must be interpreted within the context of the preceding

exchanges. For example, a reference to "he" must be understood as being

the person just mentioned. Since natural language poses interpretation

problems that artificial languages (such as programming languages) do

not share, Al techniques must be applied to make the natural language

interface viable.

Waldrop (1984) further addresses the problems involved in what it

means to understand natural language. The fundamental problem for a

language translation machine (say from Russian to English, for example)

is that it should "know" a great deal about the world prior to working

with its dictionary. It really needs a universal encyclopedia. The

famous ELIZA program (Weizenbaum, 1966) which imitates a nondirective

(Rogerian) psychotherapist, represents the other end of the spectrum,

having only a pure stimulus-response capability without regard to the

* More specifically, parsing refers to the process of deciphering how
words in a sentence are related to each other. Diagramming a sentence
is one common approach.
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context in which the utterance is n. le. According to Waldrop (1984) a

step up from ELIZA was provided in the Ph.D. dissertation by Terry

Winograd at MIT. His program (called SHRDLU) converts words into

program fragments which are then ordered based on sentence structure.

The program works with a simulated robot arm that manipulates simulated
blocks on a simulated tabletop. To develop capabilities at higher

levels requires not only machine recognition that different sentences

can mean the same thing (e.g., "Bill bought the car from Fred" equals

*T "Fred sold the car to Bill."), but also that the context in which the

word appears will change the meaning (e.g., "The duck is ready to eat",

or "Sue made the bed" as opposed to "Sue made an A on the test.").

Noam Chomsky, a linguist at MIT, has developed theories of

"transformational" grammar. His theories provide quasimathematical

rules for manipulating factors such as tenses, word order, and word

endings. According to Waldrop, however, such formalism has proven to be

too cumbersome to be used in practical computer programs.

Another approach to trying to understand the deep structure of

language has been taken by Roger Schank at Yale University. His

"conceptual dependency" model maps words into so-called "primitives" so

that, for example, verbs that involve changing the physical location of

an object (e.g., walk, move, lift) are mapped into a single primitive

"ACT" called "PTRANS" (for physical transport). Similarly, "an

attribute such as Mary is dead maps into a primitive STATE, Mary Health

(-10)."* Rumelhart and Ortony (1977) describe similar primitive-based

systems.

In summary, Waldrop cites Barbara Grosz of SRI International as

stressing the large amount of inference and mutual accommodation that

occurs below the level of literal word meaning. For example, the

* That is, since Mary is dead, her health is rated -10 on a scale from

+10 to -10.
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sentence "Can you pass the salt?" is not a request for a yes-no answer,

but rather an attempt to elicit a particular response. A listener (as

well as a computer) must understand what response is appropriate. At

any rate, a great amount of work remains to be done before we understand

what "understanding" really is.

Reichman-Adar (1984) carries some of the above ideas (by Rich, 1984)

further by concentrating on how present utterances are related to

previous ones in natural conversation. In a dialog, necessary

constraints are placed on the participants in order that they not be

confused as to each other's meaning. These constraints were proposed by

Grice (1975) as a set of conversational maxims. Whenever any of these

are violated, an "inappropriate" conversational move results. Examples

of Grice's maxims are: a) The conversational contribution should be

only as informative as required, not more nor less; b) The speaker must

be relevant, while taking into account the fact that there are

"different kinds and foci of relevance" and that it is alright to change

the subject of the conversation; and c) The speaker must avoid obscurity

and ambiguity in his/her expressions, and present ideas in an orderly

fashion. Reichman-Adar uses these rules, together with extensive study

of natural dialogs to form the basis of an abstract computational system

for discourse processing that could be used to structure one module of a

working computerized discourse system. The major elements of the system

include cues, expectations, and segmentation, which provide capabilities

-irresponding to what occurs in natural conversation when topics are

developed, suspended and resumed, without having to explain or commiient

at the junctures. At any point in time, the listener must be able to

determine if what is being said is done so to illustrate, support, or

disagree with previous statements, or if it represents a shift to a

previous topic or to a new topic altogether. To be useful as a module

in a computerized discourse system, sufficient computational capability

must be present so the program would not be confused and have to ask,

"But what does this have to do with what we were talking about?", any

more often than a human listener might. The program must maintain a
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discourse frame of reference. That is, it must keep track of what is

currently being said and decide how it relates to previous discourse.

Similarly, the program must be able to determine whether the current

talk is an embellishment/continuation of previous utterances, or is the

start of a new topic having a different frame of reference. Such

conversational moves may present a claim, give support to a claim,

explain a claim, challenge a claim, shift to a new topic, or resume an

earlier exchange. The current discourse frame of reference also must be

considered in the context of the previous frames of reference that have

occurred. This is analogous to figure-ground relationships found in

other sensory processes (re: Gestalt psychology) and provides strong

organizational qualities to our perceived world. The current frame of

reference provides the "figure," while the previous discourse serves as

the "ground." Conversational moves establish expectations as to what

moves might follow. For example, a series of utterances followed by the

clue words, "But, first" tells the listener (and should tell the

program) to be ready to shift gears into either a new topic, or to a

piece of information he/she will need in order to understand some future

segment of discourse. Much of the knowledge shared by listeners and

speakers has to do with the components of allowable conversational

moves. For example, a bit of technical discourse will be quite

different when talking to a grade school child, as opposed to one's

colleague, much of the difference owing to the nature of the

conversational moves required.

The discourse module Reichman-Adar proposes keeps track of all the

relationships discussed above, together with interactions among them in

dedicated registers. As examples, the "Expectation-List register"

consists of a list of discourse expectations that are as yet

unfulfilled; the "Domain-Constraints register" is composed of a list of

the points previously conceded by the conversants in an argument to

assure that these are not used again; and the "speaker register"

maintains track of whose conversational move is presently being

processed. Although the Reichman-Adar approach to machine processing of
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natural discourse must address the difficult subtleties of the English I
linguistic system, these must be treated if the flavor and content of

our meta-communication processes are to be translated into a form useful

for unrestricted person-machine dialog.

Sedelow (1976) provides an analysis of referential linkages in

extended strings of written words. The author argues for the

application of a general-purpose thesaurus for determining semantic

frames of reference and semantic differences among various elements of I
the word string. An extensive analysis of the meaning(s) of a short 6-

line passage was undertaken to illustrate the principles that would have K

to be exercised, using the thesaurus along with a dictionary and parser.

The primary technique would be to use the dictionary, parser, and

thesaurus in combination to evaluate the semantic distances between the

alternative word meanings in order to arrive at a best possible

interpretation of the passage. Sedelow feels the importance of

computer-based discourse analysis for natural language applications

cannot be overemphasized.

Some Applications Research

Doddington and Schalk (1981) point out the problems with which

speech recognition systems have to deal. The primary problem is that a

particular speech sound is voiced according to what sounds come before

and after it. For example the "t" and "r" sounds in the sequences "what

time" and "chair ramp" will be coarticulated as single sounds,

respectively. These and other mergings and blendings at the boundaries

between words in the flow of natural language cause word end points to

be very difficult to determine reliably and are the source of almost all

word-recognition errors by discrete-word recognizers. Connected-speech

recognizers do not suffer from this problem to such an extent and are

therefore able to perform better in discrete speech applications as

well. Recognition of continuous speech (for short word sequences using

a small vocabulary) requires that the speech signal be divided into
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intervals corresponding to particular acoustic patterns that may

correspond to words, syllables or phonemes. The more pronounced the

pause between words, the better these systems perform.

Levinson and Liberman (1981) state that one way to reduce the

complexity of the continuous speech recognition problem is to take

advantage of the allowable sequences of words in a sentence or syllables

in a word and define, within the computer, every possible transition

between states (word-to-word or syllable-to-syllable) along with their

associated probabilities. Based on the acoustic measurements, the

recognizer selects the path corresponding to the product of transition

probabilities that is found to be the largest.

According to Doddington and Schalk (1981) the second most common

problem concerns the inconsistencies of word pronunciation by a single

speaker over time. Factors that contribute to this involve anything in

the environment that may affect noise and reverberation, microphone

placement, as well as the loudness of speech. Recognition performance

can deteriorate significantly under changes as smalT as + 6 dB in the

input level, according to these authors.

Doddington and Schalk evaluated a total of seven speech recognizers

that ranged in price from $500 to $65,000 and that represented speaker-

dependent and speaker-independent, as well as connected and discrete-

word recognition systems. The test trials consisted of a 20-word

vocabularly composed of the 10 digits (zero through nine) and 10 command

words (i.e., yes, no, start, stop, go, help, rubout, erase, enter, and

repeat). After an initial enrollment session, consisting of ten passes

through the vocabulary, eight test sessions (all using discrete-word

inputs) were conducted for each of eight men and eight women over nearly

a two-month period. Their data indicate that substitution errors

(mistaking one word for another) spanned the range from .2 percent (for

one of two $65,000 systems tested) to 12.6 percent (for the $500
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system*). In all but one of the seven systems tested, error rates were I
higher for women than for men (by an average of 1.6 percent).

Doddington and Schalk insist that due to differences in the speaker

population, background noise, microphone characteristics and vocabulary

used, the only reliable way to estimate performance for some particular

set of conditions is to actually measure performance under those

conditions.

The design of knowledge-based help systems has been addressed by

Fischer, Lemke, and Schwab (1985). Although their work has been

performed in the context of keyboard text editing systems, their ideas

and methods are applicable to verbal natural language dialogs as well.

Knowledge-based help systems should be based on a model of the task to

be performed, together with a model of the user and his/her progression

through the elements of the task. Fischer et al. describe two

operational prototype systems, representing both passive and active

capabilities. Passive help systems may supply keywords or synonym lists

to provide assistance. Active help systems may take the form of canned

error messages, but must include a model of the task and user to

recognize suboptimal (not just erroneous) user actions so that

appropriate messages can be formulated and presented. This would

require that a metric of the adequacy of user actions be developed and

these authors point out that although this is a very difficult task,

making the metric visible to the user would allow him/her to change it

if, for example, the help system forces the user to do something in a

way that was really not desirable.

These authors describe their attempts to develop both the active and

passive help systems. In order to better understand the real needs of

the user, they asked an expert with their text editor system (called

BISY) to assist persons of various proficiencies in its use and recorded

* The manufacturer of this system has since used the data from this
study to revamp the algorithm used so as to reduce substitution errors
to an advertised 6.4 percent level.

109



the types of help requested. Based on this information, a help system

(PASSIVIST) was developed which allows the user to type out the question

he/she has. PASSIVIST then picks out the key words in the question and

indicates to the user what it has understood. For example, the question

"How can I delete the next line?" is responded to by denoting the key

words to be "delete next line," together with an indication that the

words "How, can, I, the"~ were ignored. This has the obvious advantage

of allowing misconceptions to be corrected and provides the basis for

development of a model by and for each side of the human-computer

interface. Once the user is satisfied PASSIVIST is correct in its

interpretation of his/her problem, a solution is provided by displaying

the series of commands required to solve the problem. Another system,

called ACTIVIST, was developed to similarly explore the characteristics

required for an active help system that attends to suboptimal user

behavior. ACTIVIST recognizes what the user is doing or wants to do,

evaluates how the user tries to achieve his goal, constructs a model of

the user based on the results of the evaluation, and decides when to

interrupt and in what way. During (or at the conclusion of) an editing

session, ACTIVIST shows the model of the user that has been built up,

including how often optimal, suboptimal, or wrong commands were used, as

well as how often messages were provided to the user. As the frequency

of optimal commands of a particular variety increases, ACTIVIST will

modify its tutorial strategies.

Fischer et al. conclude that as editing functions and user actions

become more sophisticated, the number of actions that must be monitored

will exceed the computational power available. The solution to the

problem will be to restrict the number of inferred action sequences the

program monitors, deleting those that have been done reliably in the

past.

Biermann, Rodman, Rubin, and Heidlage (1985) describe an

J experimental evaluation of an interactive, natural language system that

uses a commercially available discrete speech recognizer (Nippon
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Electric Corp. Model DP-200) that requires a pause of approximately 300

ms between utterances. The purpose of their research was to determine:

how fast subjects would learn to speak in a way that the machine would

recognize their sentences; what word and sentence error rates would

result; how fast commands could be spoken; and how acceptable users felt

the system was. The context of the user interaction with the system was

the solution of a set of three simultaneous linear equations in three

unknowns. Although subjects (volunteers from a college mathematics

course) were free to use any method to solve the problem, most addressed

the problem in the traditional way by producing an identity matrix in

the first three columns (which provides the solutions in the fourth

column). Prior to the experimental sessions, each subject was asked to

train the machine using a set of 100 words, each spoken with rising,

flat, and falling inflection. Then the system was tested by having

subjects speak commands typical of the type to be used during

experimental sessions. The recognizer signalled a rejection by an

auditory beep over a headset. A "recognized" word was displayed on the

CRT. Subjects were asked to end each sentence with the word "over,"

which indicated a request to the system for command execution.

Sentences could be aborted by the word "forgetit." The results

indicated that about 77 percent of the over 6000 input sentences were

correctly processed. The "forgetit" terminations accounted for another

13 percent of total transactions. The remaining failed transactions

were due to user errors (3.15 percent - due to too many or too few words

for the parser to handle), incorrect substitution errors (2.05 percent -

due to the recognizer making an incorrect substitution which was not

noticed by the subject), system errors (1.68 percent - computer did not

respond correctly to a syntactically correct sentence), change of mind

(1.25 percent - subject corrected himself), unimplemented commands (.66

percent - subject used an illegal word), and logout (.59 percent -

subject terminated the process due to time-consuming parsing process).

As to the question of learnability, these researchers found that about

one hour of practice was sufficient for most subjects to learn the

system, and they felt that a motivated user could certainly use the
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system in under two hours. Subjects averaged 46.5 words per minute,

with a range of 40.8 to 57.0. Their transaction rate increased from a

little over four per minute during the early sessions (first 1/6th) to

over six per minute during the last block (last 1/6th) of the sessions.

As for user acceptance, the subjects displayed no serious hostility

toward the system and all completed the experiment "willingly and

cooperatively."

Summary

A fine general discussion of the linguistic considerations needed to

make computers understand natural language can be found in the book

"Artificial Intelligence" by Patrick H. Winston 1984, (pp 291-334) and
is recommuiended for those readers who may have particular interest in

that area.

In addition, Lea (1980) provides a comprehensive review of speech

recognition research and technology (up to about 1978) in his book

"Trends in Speech Recognition". This source is highly recommended for

those wishing to gain a thorough appreciation for virtually all aspects

of the speech recognition problem, applications, advantages and

disadvantages of automated speech recognition, together with research

status and needs. The book is a compilation of 27 original papers

authored by leading experts in this field.

It should be clear from the reports reviewed in this section that,

in order to generate a program that would demonstrate artificial

intelligence in terms of 'understanding"' an unrestricted natural

language flow and to respond in an intelligent fashion, more artificial

intelligence would have to be built into the program than we now know

how to provide in any concrete way. Such English language systems are

probably several decades away from realization. In the meantime, useful

systems will be developed and fielded, which, though they lack a true

natural language dialog capability, provide the trained user a mode of
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machine interaction that will be welcomed and, if designed properly,

will even reduce workload.

Cockpit applications of these systems could be especially powerful

for control of selected subsystem operations during periods of peak

stress, if and only if the emotional and environmental stressors of the

moment do not reduce the reliability of the voice recognition system

below acceptable standards.
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CHAPTER 7

Summary Comments on the Development and Application

of Artificial Intelligence and Expert Systems

An expert system can be expected to usually make poorer decisions

than the experts who assisted in the development of the system, even

though the expert system may arrive at a decision faster. The poorer

expert system performance is expected due to the inability of the

experts to consider all possible contingencies during the rule

formulation phase of the knowledge acquisition process, or an inability

to describe what they are actually doing in the decision-making process.

In addition, when new rules are added to a knowledge base in order to

upgrade an existing expert system, the complexity of determining if and

how old rules must be modified (or deleted) to be compatible with the

V new rules is not minor and may result in logical inconsistencies that

may be extraordinarily subtile, leading to erroneous (or unintended)

decisions some proportion of the time.

On the other hand, the expert system may outperform the human

decision maker, even an expert in the field, for a variety of reasons.

If the expert system had been developed by a team of experts, the

chances are great that their group decisions (that were incorporated

into the logic structure of the expert system) are of higher quality

than any single expert's might be (see Jewell and Reitz (1981) for a

discussion of individual versus group decision-making). Since the

expert system is deterministic in nature, it will not have the frailty

of being variable in its output. This offers considerable advantage

over the human, especially under emotional, environmental, or high

workload conditions in which human thought processes may yield less than

optimal decisions.

Similarly, with VLSI technology comes the promise of very rapid

processing of a relatively large number of rules (comprising a

$ 116

%



.4

comprehensive expert system) so that problems having significantly

greater complexity than a single human could possibly deal with in a

short period of time may be solved more rapidly and properly/accurately

by an expert system. At a minimum, expert systems can be expected to

significantly assist less experienced personnel in the more routine

aspects of a process or task and play the role of advisor early in the

learning process.

In concert with opinions voiced by business representatives, both in

and outside of the aerospace industry, as well as by some academicians,

it is apparent that initial expert system development efforts will be

most fruitfully spent in the areas that are easiest to develop and

implement. Decision aiding systems, diagnostic systems for aiding

maintenance tasks, as well as mission, project, and route planning

systems are among the most likely candidates for early implementation.

Other strong contenders will be shells from expert systems developed

within industry to solve routine production, process control, and/or

maintenance problems. Classification of threat signals, sensor suite

management, navigation system management, and automated software

generation are among the next most likely candidate tasks for expert

systems applications.

The projected dramatic reduction in symbolic processing hardware and

software costs will continue to foster greater interest and activity in

expert system developments throughout government, industry, academia,

and the home market areas.

The greatest source of real and potential problems in the

implementation of expert systems remains to be centered squarely at the

user interface. The most prominent of these concern the presumed

experience level of the user (by the system designer), the construction

and maintenance of a model of the user by the system, the ease with

which the user can develop and maintain an accurate model of the system

and what it is doing, and the extent to which the user is satisfied by
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the response (quantitative and qualitative) of the system. Evaluation

of command, menu and iconic interfaces has shown that no particular type

emerges as inherently better than the others and that a good example of

any one of the three types will be judged to be good by novice and

expert users alike, thus dispelling the notion that there is a

learnability versus usability tradeoff for these interfaces.

Another rather surprising result that bodes well for the use of

constrained vocabularies in problem solving situations (in the cockpit)

is that self-limited brevity actually seems to augment the problem

solving process, indicating that communication under these conditions

*may actually be enhanced.

Of all the challenges to the AI community, the automated

understanding of image content stands as the most difficult from all

perspectives. To operate in real-time, or even near-real-time requires

a level of sophistication of processing hardware, software and

supporting algorithms/models that will likely not be achieved in any

comprehensive sense for several decades. One of the most difficult

problems in machine recognition (that the human performs easily) is

identification of the content (the background or ground) in which the

object of interest (the figure) is situated. Most often, the human will

recognize the object, based on what he/she knows about the context of

the situation. The storage, piecing together, and application of this

contextual information by the computer will constitute a major step in

AI capabilities for airborne, industrial, medical, and other

applications as well.

Running a close second to the difficulty of the image understanding

problem is the problem of recognizing unconstrained, continuous speech.

Machine recognition and understanding of the context in which the talk

is situated poses many of the same types of problems for continuous

speech as it does for machine visual systems. Similarly, partially

blended (or nonexistent) boundaries between objects, whether they be

118

- - - - - - ,., , - . - 'a.. \
4

tIP. *J



words in a continuous stream, or elern2nts in a scene, generate similar

requirements on the part of the receiver/sensor to rely on contextual

cues to extract meaning and understanding.

Ambiguities in the English language provide another sticky problem
for discrete as well as continuous speech recognizers. Another major
problem has to do with the variety of ways a single statement, request

for action, or question may be phrased and the associated equivalences

that need to be provided for in the program.

Superimposed on all these difficulties is the fact that even a

single speaker will not utter the same word or sentence exactly the same

each time and this variability is added to whatever environmental

differences (e.g., noise, reverberation) may also be present during

various occurrences of an utterance.

In the face of all the expressed concerns with machine understanding

of natural language, it is nevertheless reasonable to expect that a

trained user with a high quality, trained system (using a constricted

vocabulary) may find this mode of man-machine interaction highly

desirable and even necessary if the user is to perform at highest

efficiency.

In conclusion, when considering the development and application of

Al and expert systems in general, we must recognize that in order to

maximize our probability of success, we must understand the science of

the problem being addressed. An example of what happens when this is

disregarded was mentioned in Chapter 3, in connection with the

artificial heart program. That effort failed primarily because no one

understood the rejection mechanisms of the human body, yet political

motivation caused the program to push the limits of its technology

beyond the breaking point. An analogous situation could easily occur in

the Al and expert systems area. The great caution that must be levied
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is that we not try to extend the capabilities of these programs beyond

the limits justifiable by the knowledge base that is available to

support them.

By now there has been a sufficient body of experience accumulated by

developers and appliers of expert systems to instill, in some cases,

modest reservation, and in others more extreme views as to the pitfalls

awaiting the purveyors of this technology. When programs are developed

and applied by users blindly, without questioning the assumptions or

logical flow underlying suggested courses of action output by these

programs, totally unpredictable problems can (and most certainly will)

arise that cause the credibility of the programs to suffer to the extent

that further development and use of these tools will likely not be

pursued.

On the other hand, given proper support to the developers of these

systems, and realistic expectations by users as to what is achievable

with the programs, real and significant advancements in the

sophistication, utility and application of AI and expert systems can and

will continue to be made.
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Glossary of Abbreviations, Acronyms, and

Special Terms

AAMRL - Harry G. Armstrong Aerospace Medical Research Laboratory

A/D - analog-to-digital (conversion)

AFIT - Air Force Institute of Technology

AFWAL - Air Force Wright Aeronautical Laboratories

AI - artificial intelligence

ALERT - Algorithm, Learning, and Recognition Technique

ALV - autonomous land vehicle

ART - Automated Reasoning Tool

ATF - Advanced Tactical Fighter

ATR - airborne transportable rack

AWACS - Airborne Warning and Control System

BBN - Bolt Beranek and Newman (Inc.)

BETA - Battlefield Exploitation and Target Acquisition

BIT - built-in-test

bps - bits per second

BRASS - Battlefield Robotic Ammunition Service System

CCD - charge coupled device

CEP - circular error probability

C31 - command, control, communication, and intelligence

DARPA - Defense Advanced Research Projects Agency

DMA - Defense Mapping Agency

DOD - Department of Defense

DSP - digital signal processing

DTIC - Defense Technical Information Center

ECM - electronic countermeasure

EPES - Emergency Procedures Expert System

ETS - Expertise Transfer System

EW - electronic warfare

FDS - Flight Design System

FIXER - Fault Isolation Expert for Enhanced Reliability

FLIR - forward looking infrared I
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GPS - Global Positioning System

IMAPS - Interactive Mission Analysis Planning Station

INS - Inertial Navigation System

KEE - Knowledge Engineering Environment

KES - Knowledge Engineering System

Lisp - list processing (language)

LPC - linear predictive coding

MCAIR - McDonnell Aircraft Company

MIPS - millions of instructions per second

MOS - metal-oxide-semiconductor

ms - milliseconds

MTBF - mean time between failures

NAVEX - Navigation Expert System

PC - personal computer

PERT - Program Evaluation and Review Technique

PCM - pulse code modulation

RENEX - Rendezvous Expert System

SDI - Stragetic Defense Initiative

SITAN - Sandia Inertial Terrain

TAC - Tactical Air Command

TI - Texas Instruments

TTR - time to repair

VAX - Digital Equipment Corporation's name for a family of their

computers

VHSI - very high speed integrated (circuit)

VLSI - very large scale integrated (circuit)
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