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Abstract

The concept of Painlev6 chains is extended to chains of ordinary differential

equations obtained by successive and simultaneous differentiation of both sides

of equations of the general type f(x,u,ux,u2x, ... , Unx) = g(x,uuUxo, ... , Umx)

where m < n-1. The three Painlev6 chains of my previous paper are thus generated

by such successive differentiation of u2x = ku2 (KdV chain), u2x = ku3 (modified

KdV chain), and ux = ku2 (Burgers chain). Hybrid Painlev6 chains can be

analogously obtained by successive differentiation of hybrid differential equations;

2 such chains obtained from U2x = -uux + u3 and u2x = - 3 uux - u3 are described

in detail. Passive differential equations in which the balancing exponent must

depend upon the coefficients can also lead analogously to Painlev6 chains as

illustrated by those obtained from u2x = ku2/u where k = 2 or 3/2. The Schwarzian

derivative (u3x/ux) - (3/2)(u2x/ux) 2 generates a Painlev6 chain in which the

members have consecutive integral resonances starting with the ubiquitous -1.

Chains of higher order differential equations exhibiting some, but not all, of

the features of Painlev& chains can be obtained from the second order eigenvalue

problem. The dominant truncations of most evolution equations as well as the

Painlev4 canonical equations including the irreducible Painlev& transcendents

appear in Painlev4 chains generated by the methods outlined in this paper.
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I. INTRODUCTION

In recent years a certain class of non-linear higher order partial differential

equations, known as evolution equations, 1,2,3,4, 5 has become of special interest

to theoretical physicists. Such equations possess a special type of elementary

solution taking the form of localized disturbances which act somewhat like part-

icles and are therefore known as solitons. These equations have applications

in diverse areas of physics including fluid dynamics, ferromagnetism, quantum

optics, and crystal dislocations.

Solution of important evolution equations frequently involves the so-called

inverse scattering transform. 1 ,2,3,4, 5 ,6 In this connection the development

of simple methods for identifying differential equations solvable by this approach

is of interest. Thus Ablowitz, Ramani, and Segur 7 ,8 proposed the Painlev6 conjecture

stating that such solvable ordinary differential equations (ODE's) must have the

Painlev6 property, namely the location of their critical points (i.e., singularities

other than poles) must be independent of the constants of integration.

Subsequently Weiss, Tabor, and Carnevale 9 showed how the Painlev4 property

could also be defined for partial differential equations (PDE's). Algorithms have

been developed in order to determine whether a given ODE 8 or PDE 9 has the

Pain lev6 property.

In a previous paper 10 I derive three Painlev6 chains which can be used to

generate higher order ordinary differential equations having necessary conditions

for the Painlev6 property. These Painlevd chains relate directly to the first two

irreducible Painlev4 transcendents11 and the most important evolution equations

including the Burgers, Korteweg-de Vries (KdV), modified KdV, and Boussinesq

equations. The present paper develops and extends further the concept of Painlev6

chains including relationships with Schwarzian derivatives1 2 , 13 , 1 4 ,15 and the

second order eigenvalue problem1 6 of Zakharov and Shabat. 17

...................................
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THE PAINLEV9 TEST

A solution of an ordinary differential equation may have a number of

singularities which are movable or fixed depending upon whether or not their

locations depend upon the constants of integration. 7 ,8,9, 1 1 A singularity that

is not a pole (of any order) is called a critical point; such critical points may

be algebraic or logarithmic branch points or essential singularities. An ordinary

differential equation has the Painlev6 property if it has no movable critical points.

The singular point analysis for testing whether or not an ordinary differential

equation of order n has the Painlev6 property consists of the following three

steps: (1) Determination of the dominant terms of the differential equation and

its balancing exponent p in a power series which characterizes the behavior of

its solutions near the movable singularities; (2) Solution of an indicial equation

to determine the resonances rl, ... , rn which indicate the terms where the

integration constants can enter the above power series; (3) Determination whether

the coefficients of the above power series are compatible with a pure Laurent

series18 without any logarithmic terms entering at the resonances. The Painlev6

test can fail at any of these three steps as follows: (1) The balancing exponent

p is not a negative integer; (2) The resonances are not integers or the indicial

equation has a repeated root; (3) The expressions for the coefficients of the power

series terms at the resonances are incompatible with the identical zero values

required for introduction of the integration conscants. The first two steps of

the singular point analysis are relatively simple since they require consideration

of only the dominant terms of the ordinary differential equation, called1 0 its

dominant truncation. However, the third step requires the full differential

equation and is thus much more tedious and complicated. The general idea behind

the work discussed in this paper as well as my previous paper l O is to obtain the
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maximum information about higher order differential equations from the first

two steps of the PainlevA test, which are relatively easy. Thus the idea of Painlev6

chains relates to the classification of higher order ordinary differential equations

into dominance classes having the same dominant truncations and then determining

which dominance classes satisfy the first two of the three steps of the above

Painlevd test.

Consider an evolution equation of the form

ut + f(x,u,ux,u2x,...,unx) = 0 (1)

*. in which

ut =r and ujx= (t)J u j = 0,,n (2).

In such partial differential equations u may be regarded as an amplitude, x as

a distance, and t as time. Setting ut = 0 leads to time-independent solutions

corresponding to ordinary differential equations of the type

f(x,U,ux,u2x, ... , unx) = 0 (3)

Let us adjust the distance scale so that z(x) = 0 is a critical point. The dominant

behavior of solutions of this ordinary differential equation in the neighborhood

of such a critical point can be expressed as the following series:

u=aozP as z- 0  (4)

.4
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* Substitution of equation 4 into the original ordinary differential equation (equation

3) shows that for certain values of the balancing exponent p, two or more terms

may ba~ance and the rest can be ignored as z-~ 0. Deletion of the terms not

involved in the balancing in general leads to a simpler ordinary differential

equation called the dominant truncation of the original differential equation.

All equations giving the same dominant truncation may be considered to form

a dominance class. A self-dominant equation is one in which all of its terms

are involved in the balancing and is therefore identical to its dominant truncation.

The balancing exponent p may be determined either actively or passively

is depending upon the differential equation in question. Active determination of

p results when the exponents of the balancing terms are different expressions

in p so that an equation is generated by equating the different expressions for

the same exponent; solution of this equation then determines p. Passive determ in-

ation of p occurs when the exponents of all of the balancing terms are the same

expression in p so that they do not generate an equation to be solved for p. In

these cases p must be determined from an expression arising from the coefficients

of the balancing terms. In all of the differential equations discussed in the previous

paper 10 the balancing exponent p is determined actively.

'4 Now consider the dominant truncation of the ordinary differential equation

in question (e.g., equation 3) which may be represented as

f*(xuuxu2 , un) = 0 (5)

Equation 4 may then represent the first term in a Laurent series18 valid in a

deleted neighborhood of movable pole. In this case a solution of the original

ordinary time-independent differential equation (3) is of the following type:
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u=zP akzk wherez 0 (6)
k=O

The position of the singularity z = 0 corresponds to one of the n integration con-

stants. If n-1 of the coefficients ak are also arbitrary, the n integration constants

of equation 3 are then accounted for and equation 6 represents the general solution

of the time-independent equation 3 in the deleted neighborhood of the singularity

z = 0. The powers of z at which these arbitrary constants enter are called the

resonances and will be designated as rl, r2, ... , rn so that ri < rk and i < k. In

a similar Laurent series expansion of the original time-independent partial

differential equation (1), the coefficients ak must be assumed to be functions

of x and t rather than constants.

In order to find the resonances the following equation for u is substituted

into the dominant truncation (equation 5):

u = aOzP + arzP+r (7)

In the usual case of equations linear in unx the coefficient ao is determined by

equating the coefficients of the zP- n terms which are the leading terms in the

neighborhood of z = 0. If t' e balancing exponent p is determined passively, then

the value of the coefficient ao will be arbitrary and one of the resonances will

be zero. After determining a0 then the coefficients of the next higher powers

zP+r- n are equated in order to determine the resonances. In this way the resulting

equations for the resonances reduce to

Q(r)arzq = 0 q< p+r-n (8)

in which Q(r) is a polynomial in r of degree n. The roots of Q(r) determine the
I.
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resonances since Q(r) = 0 corresponds to the "indicial equation" used to solve

a linear ordinary differential equation near a regular singular point. 19 One root

of Q(r) will always be -1 reflecting the arbitrariness of the singularity z = 0 corres-

ponding to one of the n integration constants. In cases where the balancing expon-

ent p is determined passively rather than actively, a second root of Q(r) will

be zero reflecting the arbitrariness of ao in these cases. A requirement for the

Painlev4 property is that all resonances ri, ... , rn be distinct integers (no multiple

roots). Furthermore only integers greater than -1 (i.e., zero or positive integers)

indicate terms in the power series of equation 6 which can incorporate integration

constants in their coefficients.

The final step of the Painlev4 test consists of determining the coefficients

of the power series (equation 6) from ao up to the coefficient of the last resonance

arn. Because the full partial differential equation (e.g., equation 1) must be

used rather than the dominant truncation of the time-independent ordinary

differential equation, this step is considerably more complicated than the first

two steps and computer methods are often needed for the messy algebra. 20 The

Painlev6 property requires compatibility conditions to be satisfied at each of

the positive integer resonances; in this case arbitrary integration constants can

be introduced at each of the resonances without affecting the Laurent expansion

(equation 6). Failure to satisfy such compatibility condition means that

logarithmic terms must be introduced at the offending resonances leading to

- movable logarithmic branch points in violation of the Painlevd property. Since

the spacing of the resonances determines the introduction of the integration

constants in the power series expansion (equation 6), the power series for solutions

%- of differential equations having the same resonances r i and the same balancing

exponent p might be expected to exhibit some similar features. Also the

Schwarzian Painlev chain discussed later in this paper has a prototypical role

V W
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since the resonances in members of this Painlevd chain appear consecutively

from the first term on so that all of the resonances appear in the power series

before any nonresonant terms. The members of the Schwarzian Painlev6 chain

are in the same dominance classes as higher order differential equations based

on the Schwarzian derivative used by Weiss 14 to study higher order evolution

equations including seventh order analogues of the KdV equation.

Jm
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III. THE CANONICAL PAINLEV _TYPE EQUATIONS

Around the turn of the century Painlev6 and his coworkers examined second

order ordinary differential equations of the following form for the absence of

movable critical points1 1 :

u2x = F(ux,u,x) (9)

Assuming F(ux,u,x) to be rational in ux and u and analytic in x, they found that

equations of this type without movable critical points could be represented as

one of 50 canonical types, designated1 1 by the Roman numerals I to L. Among

these 50 types, six could not be reduced to simpler differential equations and

thus defined new transcendental functions; these irreducible second order

differential equations are the Painlev6 transcendents PI, PIl, Pill, PIV, PV, and

PVI, corresponding, respectively, to the canonical forms IV, IX, XIII, XXXI, XXXIX,

and L, respectively, in Ince's book. 1 1 The six Painlev6 transcendents and some

of the properties of the first four Painlev6 transcendents are listed in Table 1.

The dominant truncations of the 50 canonical Painlev6 type equations are
4.-- composed of the following four building blocks with the indicated values of the

balancing exponent p:

U2x = kau 2  (p = -2/1 = -2) (10a)

u2x = kbuux (p = -1/1 = -1) (lOb)

u2x = kcu 3  (p = -2/2 = -1) (10c)

' %
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U2x = kdux2/u (p indeterminate from (lOd)

the exponents)

Since equations lob and 10c have the same value of p, namely -1, hybrids1 0 of

the following form can be obtained from their linear c-ombination:

u2x = hluux + h2u3  (11)

The solution branches of such hybrid equations are determined by the roots of

a quadratic equation with coefficients depending upon the coefficients h1 and

h2 of equation 11. Unless the two roots of this quadratic equation coincide, the

* corresponding hybrid equation (11) has two distinct solution branches. Thus the

set of coefficients hi = -1 and h2 = +1 for equation 11 leads to ao = +1 and +2

for the two solution branches when u is expressed as the power series in equation

4 and corresponds to the dominant truncation of the canonical Painlev6 type

equation X (Table 2) which has "semitranscendental" solutions. 11 Similarly the

set of coefficients hi = -3 and h2 = -1 for equation 11 leads to ao = +1 and -2

for the two solution branches and corresponds to the dominant truncation of

the Painlevd canonical equation VI (Table 2) which has solutions1 1 of the form

u = -Wx/W (12)

when w(x) is the general solution of the linear equation of the third order

w" = q(x)w" (13).

Equation 10d is passive; since it does not determine the balancing exponent p

mJK
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it can hybridize with any of the other building blocks, namely equations 10a,

10b, and 10c.

The dominant truncations of the last 40 of the 50 canonical Painlev&type

equations (i.e., Xl to L in Ince's notation 11) contain passive terms of the

type ux/u (i.e., equation lOd) and will not be considered further here. The

dominant truncations of the first ten canonical Painlev6-type equations contain

only one or more of the active terms (equations 10a, lOb, and 10c) and are listed

in Table 2. In addition to the required -1, the resonances found in these equations

include the positive integers 1, 2, 3, 4, and 6 for p = -1 and 6 for p = -2. Thus

a variety of power series expansion behavior is possible in even these relatively

simple systems.

IV. PAINLEVI CHAINS

The following procedure can be used to generalize the concept of Painlevd

$ chains introduced in the previous paper. 10 Consider a differential equation of

order n written in the following form:

f(x,U,ux,u2x,...,Unx) = g(x,u,ux,u2x,...,umx) where m < n-1 (14)

Furthermore, require equation 14 to have the following properties:

(1) Equation 14 has the Painlev6 property with resonances -1, r2, ... , rn.

(2) Functions f and g are algebraic functions involving only sums, differences,

products, and quotients of their variables; transcendental functions such

as exponentials, logarithms, and trigonometric functions are not present

in f and g.

(3) The function f(x,u,ux,u2x,...,Unx) includes all of the terms containing the

-, J .,
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highest derivative Unx and no terms not containing unx; the equation f =

0 is thus an ordinary differential equation of order n.

(4) The function g(x,UUx,U2x,...,Umx) contains no terms with the highest

derivative unx; the equation g = 0 is thus an ordinary differential equation

of order m < n-1 called the co-order 1 0 of equation 14.

(5) The function g(x,UUx,U2x,...,Umx) cannot be obtained by differentiation

of any function h(x,u,ux,u2x,...,u(m.1)x) which is an algebraic function of

its variables.

Equation 14 defined in this manner can be the generator of a Painlev6 chain where

the members of the chain are obtained by successive and simultaneous

differentiation of both sides of equation 14. Each differentiation step in a Painlev4

chain retains all of the resonances of the previous members but adds one new

resonance reflecting the position in the power series (equation 6) of the new

integration constant. In the relatively simple PainlevA chains discussed in this

paper where f = unx in equation 14, the new resonance appears at n - p - 1. When

the new resonance duplicates an existing resonance, the Painlevd property is

destroyed and the Painlev6 chain is terminated. The number of equations in

the Painlev6 chain without double resonances is called its length and the order

of the last member of the chain without a double resonance is called the order

of the chain.

? The previous paper1 0 presents the three fundamental homogeneous Painlev6

chains listed in Table 3. The dominant truncations of the first two irreducible

Painlev6 transcendents, namely u2x = kau2 from PI (equation 10a) and u2x = kcu3

from P11 (equation 10c) generate the chains containing the modified KdV equation

(p = -2/2) and KdV equation (p = -2/1), respectively, having orders 3 and 4, respect-

ively. The other homogeneous and active dominant truncation of the second

order canonical Painlev6-type equations, namely u2x = kbuu x (equation 10b),
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wnich is also the dominant truncation of Burger's equation, is the second member

of a Painlev6 chain (p = -1/1) of infinite order generated from the first order

differential equation ux = ku2 .

The hybrid dominant truncations of the canonical Painlev6 type equations

in Table 2 can also be generators of Painlev6 chains (Table 4). Since these chains

are hybrids, they have two solution branches although these branches can coalesce

in exceptional cases (see the previous section). In the case of the solution branches

of the Painlev6 chain generated from u2x = -uux + u3 one solution branch, namely

that with a0 = 1 in equation 4, has only one member before +3 becomes a double

root and thus has a length of only one whereas the other solution branch, namely

that with ao = -2 in equation 4, goes to order six before a double root (+6) arises.

The hybrid Painlev6 chain generated from u2x = -3uux - u3 has a solution branch,

namely that with ao = +2 in equation 4, which has a -2 resonance indicating that

one of the integration constants cannot be accommodated in the power series

expansion for u (equation 6). The equations in the hybrid Painlev6 chains in Table

4, unlike those in the homogeneous Painlev6 chains in Table 3, do not appear

to relate to differential equations of obvious physical significance.

Passive Painlev6 chains can also be generated from the Painlev6 canonical

equations. Consider the following pure passive second order differential equation:

u2x = ku2/u (15)

The value of k determines the value of p in the expansion in equations 4 and

6 according to the relationship

k = (p-1)/p (16).

Table 5 shows the Painlev6 chains derived from equation 15 for p = -1 (k = 2)
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and p = -2 (k = 3/2). Note the infinite lengths of these chains and the zero reson-

ances arising from the passive determination of the balancing exponent p. The

new resonances in the third order equations of these Painlev6 chains appear at

2 - 2p and the new resonances in the nth order equations appear at 2 - 2p + n

- 3 = n - 2p - 1.

V. A SCHWARZIAN PAINLEVEt CHAIN

The Schwarzian derivative { u;x} is defined by the following expression:

{ u;x } = (U3x/ux) - (3/2)(u2x/ux) 2  (17)

It is significant in being invariant under the Mdbius transformation

u = (au+b)/(cu+d) (18).

Weiss12 , 13 , 14 , 1 5 has related the Schwarzian derivative to integrable partial

differential equations including the Burger's, KdV, modified KdV, and Boussinesq

equations.

Table 6 shows how a Painlevd chain can be obtained from the Schwarzian

derivative (equation 17). Set the Schwarzian derivative {u;x} equal to zero

2and for convenience multiply both sides by Ux to clear the terms in the denomin-

ators of equation 17 thereby giving the first member of the Painlevd chain. The

balancing exponent p is determined passively to be -1 so that the 3/2 coefficient

is required for its determination. This third-order differential equation has the

consecutive resonances r = -1, 0, +1 with the zero resonance arising from the

passive nature of this equation. In order to obtain successive members of the



-14-

n-1Schwarzian Painlev6 chain (Table 6), divide both sides by Ux, differentiate

both sides and multiply both sides by u n to clear the terms in the denominator

where n is the order of the starting differential equation. The resulting Painlevd

chain is of infinite length and a member of the chain of order n has consecutive

resonances r = -1, 0, +1,...,n-2 indicating that all of the integration constants

might appear in the first n-1 consecutive terms of a Laurent series (equation

6) if compatibility conditions are satisfied at the resonances. This Schwarzian

Painlev6 chain contains the dominant truncations of the integrable class of partial

differential equations

ut/ux + B({u;x 1) = 0 (19)

in which B is a constant coefficient multinomial in (ak/axk) { u;x}. Weiss 14

has shown that these higher order differential equations arising from the

Schwarzian derivative are useful for generating the higher order KdV and other

evolution equations of interest.

VI. CHAINS FROM EIGENVALUE PROBLEMS

The Painlev6 chains containing the KdV and modified KdV equations each

have finite lengths owing to the appearance of double roots in the indicial equation

ji (8) used to determine the resonances. These double roots can be eliminated by

hybridization with an appropriately chosen equation having the same balancing

p or with a pure passive equation. For example, the fifth order differential

equation in the KdV Painlev chain (p = -2/1),10 namely

U5x k(3uxu2x + uu3x) (20)
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has the resonances -1, +4, +5, +6, +6 (Table 3). The double root (+6) can be elimin-

ated by hybridization10 with the following equation:

U5x = 3mu 2 ux  (21).

Equation 21 arises from the (p = -4/2) chain generated by differentiating

U4x = mu3  (22).

In the homogeneous form equation 22 does not have the Painlev6 property since

its indicial equation (8) has complex roots corresponding to complex resonances.

A hybrid fifth order higher KdV equation is well known2 1 to have the following

form:

u5x = -2 0Uxu2x - 10 uu3x - 30u2ux (23).

Both solution branches of this hybrid equation have distinct integral resonances.

The branch leading to the resonances -1, +2, +5, +6, +8 is the most significant

since all of the (integral) resonances are greater than -1 indicating the possibility

of incorporating the integration constants into a Laurent expansion of u (equation

6).

How can one determine the coefficients of hybrid equations such as equation

23 which can have the Painlev6 property? Consider the second order eigenvalue

problem3

vx = -ixv + qw (24a)
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wx = rv + i~w (24b)

vt = Av + Bw (24c)

wt = Cv - Aw (24d)

Compatibility of conditions 24a-24d requires the following equations to be

satisfied:

Ax = qC - rB (25a)

Bx + 2i XB = qt - 2Aq (25b)

Cx - 2iX C = r t + 2Ar (25c)

In order to obtain a chain of higher order differential equations of potential inter-

est substitute the following power series for A, B, and C into equations 25a-25c

taking the integer n as high as the order of that of the desired differential

equation:

A= 0 Akk (26a)

B= I BkXk (26b)
k=0

n
C M 4 Ck, jk (26c)

Equate the coefficients of like powers of X in equations 25a-25c and solve the
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resulting 3n+5 equations. This procedure involves determining the 3n+3

coefficients of the power series (26a-26c) in the following sequence:

Bn, Cn, An, Bn..1, Cn.i, An.1, ... , BO, C0 ,A0  (27)

Determination of the coefficients Bk and Ck (n-2 > k > 0) requires differentiations

of Bk+1 and Ck+1, respectively, whereas determining each Ak (n > k > 0) requires

an integration. The latter lead to the n integration constants designated as ak

(n > k > 0). After all 3n+3 coefficients (27) are determined from the first 3n+3

equations, substituting these coefficients into the last two of the original 3n+5

equations (derived from equations 25b and 25c) gives equations in qt or rt,

respectively, in which all of the other terms contain exactly one of the integration

constants ak . Grouping together the terms containing a given ak while setting

aj = 0 for all j # k and adding a new equation either relating q to r or setting

q or r to a constant gives a kth order differential equation which in certain cases

corresponds to known evolution equations.3 For example k = 3, r = -1, and aj

= 0 for j 4 3 give the KdV equation in q whereas k = 3, r = q, and aj = 0 for j # 3

give the modified KdV equation. This procedure is described in greater detail

elsewhere. 3

Table 7 shows what happens when this procedure is done with fifth degree

polynomial expansions of A, B, and C (n = 5 in equations 26a-26c) substituted

in equations 25a-25c using the symmetrical relationship q = r after considering

the time-independent situation where qt = 0. The symmetry of the relationship

q = r makes the final two equations identical for each member of the chain. The

equations in Table 7 are identical with the modified KdV chain in Table 3 for

k < 3. For k > 4 hybridization is automatically introduced by this procedure. These

hybrids, at least for k = 4 and k = 5, have integral resonances. The fifth order

IP I J..
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modified KdV equation was discovered by Ito2 2 using a different method; this

equation can also be obtained by differentiation of the fourth order equation

above it in the modified KdV chain (Table 7).

Generation of the KdV equation by an analogous method requires the

relationship r = -1 which treats the variables q and r unsymmetrically. This

reduces the final two of the 3n + 5 equations from 26a-26c and 25a-25c to a

single equation only if k is odd. The resulting single equations obtained for k

- 3 and k = 5 are the dominant truncations of the KdV equation and the fifth

order KdV equation, 2 1 respectively. The absence of even order differential

equations in the KdV chain generated by this method is consistent with results

obtained by using recursion2 3 or differential 2 4 operators for finding higher order

KdV equations.

These observations suggest that the chain of KdV equations contains only

odd order members whereas the chain of modified KdV equations contains both

even and odd order members.

VII. SUMMARY

The previous paper 1 O defines the three fundamental homogeneous active

Painlevd chains (Table 3) which are generated from the equations u2x = ku2 ,

u2x = ku3 , and ux = ku 2 . The present paper shows how the concept of Painlev4

chains can be extended to Painlevd chains generated from hybrid differential
equations (Table 4) and the passive differential equation Ux --ku2/u ,(Table 5). -

In addition the Schwarzian derivative can be used to generate a Painlevd chain

with the interesting property of consecutive integral resonances (Table 6). Finally

the 2 x 2 eigenvalue problem of Zakharov and Shabat7'" is shown to generate

chains exhibiting some but not all of the features of Painlevd chains.
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