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Abstract

The concept of Painlevé chains is extended to chains of ordinary differential
equations obtained by successive and simultaneous differentiation of both sides
of equations of the general type f(x,u,uy,Udy, ..., Unx) = B(X,UUx,UDx, -oe)y Umx)
where m < n-1. The three Painlevé chains of my previous paper are thus generated
by such successive differentiation of uy = ku2 (KdV chain), u2y = ku3 (modified
KdV chain), and uy = ku2 (Burgers chain). Hybrid Painlevé chains can be
analogously obtained by successive differentiation of hybrid differential equations;
such chains obtained from uy = -uuy + u3 and uzx = -3uuy - u3d are described
in detail. Passive differential equations in which the balancing exponent must
depend upon the coefficients can also lead analogously to Painlevé chains as
illustrated by those obtained from uy, = kug/u where k = 2 or 3/2. The Schwarzian
derivative (u3y/uy) - (3/2)(upx/uy)? generates a Painlevé chain in  which the
members have consecutive integral resonances starting with the ubiquitous -1.
Chains of higher order differential equations exhibiting some, but not all, of
the features of Painlevé chains can be obtained from the second order eigenvalue
problem. The dominant truncations of most evolution equations as well as the

Painlevé canonical equations including the irreducible Painlevé transcendents

appear in Painlevé chains generated by the methods outlined in this paper.




T T T T O T T T T T O T TR T OO T OrOr o b oaat B odd Rt T T

I. INTRODUCTION

In recent years a certain class of non-linear higher order partial differential
equations, known as evolution equations,1r2'3r415 has become of special interest
to theoretical physicists. Such equations possess a special type of elementary
solution taking the form of localized disturbances which act somewhat like part-
icles and are therefore known as solitons. These equations have applications
in diverse areas of physics including fluid dynamics, ferromagnetism, quantum
optics, and crystal dislocations.

Solution of important evolution equations frequently involves the so-called
inverse scattering transform.1:2,3,4,5,6 In this connection the develophent
of simple methods for identifying differential equations solvable by this approach

is of interest. Thus Ablowitz, Ramani, and Segur7r8 proposed the Painlevé conjecture

stating that such solvable ordinary differential equations (ODE's) must have the

Painlevé property, namely the location of their critical points (i.e., singularities

other than poles) must be independent of the constants of integration.
Subsequently Weiss, Tabor, and Carnevale? showed how the Painlevé property
could also be defined for partial differential equations (PDE’s). Algorithms have
been developed in order to determine whether a given ODE8 or PDE? has the
Painlevé property.

In a previous paper‘lo | derive three Painlevé chains which can be used to

generate higher order ordinary differential equations having necessary conditions

for the Painlevé property. These Painlevé chains relate directly to the first two

irreducible Painlevé transcendents11 and the most important evolution equations
including the Burgers, Korteweg-de Vries (KdV), modified KdV, and Boussinesq
equations. The present paper develops and extends further the concept of Painlevé
chains including relationships with Schwarzian derivatives12,13,14,15 and the

second order eigenvalue problem'l6 of Zakharov and Shabat. 17
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THE PAINLEVE TEST

A solution of an ordinary differential equation may have a number of
singularities which are movable or fixed depending upon whether or not their
locations depend upon the constants of integrati'on.7r819r11 A singularity that
is not a pole (of any order) is called a critical point; such critical points may
be algebraic or logarithmic branch points or essential singularities. An ordinary
differential equation has the Painlevé property if it has no movable critical points.
The singular point analysis for testing whether or not an ordinary differential
equation of order n has the Painlevé property consists of the following three
steps: (1) Determination of the dominant terms of the differential equation and

its balancing exponent p in a power series which characterizes the behavior of

its solutions near the movable singularities; (2) Solution of an indicial equation
to determine the resonances r1, ..., 'p which indicate the terms where the
integration constants can enter the above power series; (3) Determination whether
the coefficients of the above power series are compatible with a pure Laurent
series 18 without any logarithmic terms entering at the resonances. The Painlevé

test can fail at any of these three steps as follows: (1) The balancing exponent
p is not a negative integer; (2) The resonances are not integers or the indicial
equation has a repeéted root; (3) The expressions for the coefficients of the power
series terms at the resonances are incompatible with the identical zero values
required for introduction of the integration conscants. The first two steps of
the singular point analysis are relatively simple since they require consideration
of only the dominant terms of the ordinary differential equation, called10 its

dominant truncation. However, the third step requires the full differential

equation and is thus much more tedious and complicated. The general idea behind

the work discussed in this paper as well as my previous paper10 is to obtain the
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maximum information about higher order differential equations from the first
two steps of the Painlevé test, which are relatively easy. Thus the idea of Painlevé
chains relates to the classification of higher order ordinary differential equations

into dominance classes having the same dominant truncations and then determining

which dominance classes satisfy the first two of the three steps of the above

Painlevé test.
Consider an evolution equation of the form
ug + fX,U,Uy, U2y, 0ee lny) = 0 N
in which
Uy =%-tli and Ujx = (g-()J u i=0,1..,n (2).
In such partial differential equations u may be regarded as an amplitude, x as
a distance, and t as time. Setting up = O leads to time-independent solutions
corresponding to ordinary differential equations of the type
X, U Uy, U2y, ooy Upy) = 0 (3
Let us adjust the distance scale so that z(x) = 0 is a critical point. The dominant
behavior of solutions of this ordinary differential equation in the neighborhood

of such a critical point can be expressed as the following series:

u=agzP as z+0 4)
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Substitution of equation 4 into the original ordinary differential equation (equation
3) shows that for certain values of the balancing exponent p, two or more terms
may ba.ance and the rest can be ignored as z+ 0. Deletion of the terms not
involved in the balancing in general leads to a simpler ordinary differential

equation called the dominant truncation of the original differential equation.

All equations giving the same dominant truncation may be considered to form

a dominance class. A self-dominant equation is one in which all of its terms

are involved in the balancing and is therefore identical to its dominant truncation.

The balancing exponent p may be determined either actively or passively
depending upon the differential equation in question. Active determination of
p results when the exponents of the balancing terms are different expressions
in p so that an equation is generated by equating the different expressions for
the same exponent; solution of this equation then determines p. Passive determin-
ation of p occurs when the exponents of all of the balancing terms are the same
expression in p so that they do not generate an equation to be solved for p. In
these cases p must be determined from an expression arising from the coefficients
of the balancing terms. In all of the differential equations discussed in the previous
paper“0 the balancing exponent p is determined actively.

Now consider the dominant truncation of the ordinary differential equation

in question (e.g., equation 3) which may be represented as
£*(X,U,Ux,U2x, +oer Unx) = 0 (5)
Equation 4 may then represent the first term in a Laurent series 18 valid in a

deleted neighborhood of movable pole. In this case a solution of the original

ordinary time-independent differential equation (3) is of the following type:
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u=2zP ! ay zK where z # 0 (6)
k

The position of the singularity z = O corresponds to one of the n integration con-
stants. If n-1 of the coefficients ay are also arbitrary, the n integration constants
of equation 3 are then accounted for a}md equation 6 represents the general solution
of the time-independent equation 3 in the deleted neighborhood of the singularity

= 0. The powers of z at which these arbitrary constants enter are called the
resonances and will be designated as rq, rp, ..., rp so that rj <ri and i < k. In
a similar Laurent series expansion of the original time-independent partial
differential equation (1), the coefficients ay must be assumed to be functions
of x and t rather than constants.

In order to find the resonances the following equation for u is substituted
into the dominant truncation (equation 5):

u=agzP + apzP*r 7)

In the usual case of equations linear in upy the coefficient ag is determined by
equating the coefficients of the zP™N terms which are the leading terms in the
neighborhood of z = 0. If t' e balancing exponent p is determined passively, then
the value of the coefficient ag will be arbitrary and one of the resonances will
be zero. After determining ag then the coefficients of the next higher powers
ZP*r-N are equated in order to determine the resocnances. In this way the resulting
equations for the resonances reduce to
8)

Qra,z9=0 q < ptr-n

in which Q(r) is a polynomial in r of degree n. The roots of Q(r) determine the
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resonances since Q(r) = 0 corresponds to the "indicial equation" used to solve

a linear ordinary differential equation near a regular singular point.19 One root
of Q(r) will always be -1 reflecting the arbitrariness of the singularity z = O corres-
ponding to one of the n integration constants. In cases where the balancing expon-
ent p is determined passively rather than actively, a second root of Q(r) will
be zero reflecting the arbitrariness of aQ in these cases. A requirement for the
Painlevé property is that all resonances r1, ..., rp be distinct integers (no multiple
roots). Furthermore only integers greater than -1 (i.e., zero or positive integers)
indicate terms in the power series of equation 6 which can incorporate integration
constants in their coefficients.

The final step of the Painlevé test consists of determining the coefficients
of the power series (equation 6) from ag up to the coefficient of the last resonance
ar,. Because the full partial differential equation (e.g., equation 1) must be
used rather than the dominant truncation of the time-independent ordinary
differential equation, this step is considerably more complicated than the first
two steps and computer methods are often needed for the messy algebra.20 The
Painlevé property requires compatibility conditions to be satisfied at each of
the positive integer resonances; in this case arbitrary integration constants can
be introduced at each of the resonances without affecting the Laurent expansion
(equation 6). Failure to satisfy such compatibility condition means that

logarithmic terms must be introduced at the offending resonances leading to

movable logarithmic branch points in violation of the Painlevé  property. Since |

the spacing of the resonances determines the introduction of the integration !

e constants in the power series expansion (equation 6), the power series for solutions
oy
[y . . .
:{ of differential equations having the same resonances r; and the same balancing
AN . o o N

exponent p might be expected to exhibit some similar features. Also the
Lo Schwarzian Painlevé chain discussed later in this paper has a prototypical role
j‘
B
l,
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LW
T,‘ since the resonances in members of this Painlevé chain appear consecutively ‘
d from the first term on so that all of the resonances appear in the power series
Py ® . . .
K before any nonresonant terms. The members of the Schwarzian Painlevé chain
are in the same dominance classes as higher order differential equations based
J
on the Schwarzian derivative used by Weiss14 to study higher order evolution
LY
. equations including seventh order analogues of the KdV equation.
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"
)
.,_. Around the turn of the century Painlevé and his coworkers examined second
! 4 order ordinary differential equations of the following form for the absence of
sz',l .
movable critical pointsﬂ:
L
'.’ T U2y = Fluy,u,x) 9)
LA
v-}_ Assuming F(uy,u,x) to be rational in uy and u and analytic in x, they found that
N
ot
J:.‘_ equations of this type without movable critical points could be represented as
one of 50 canonical types, d‘s:‘signated"'I by the Roman numerals | to L. Among
.
these 50 types, six could not be reduced to simpler differential equations and
f-“_:'. thus defined new transcendental functions; these irreducible second order
) differential equations are the Painlevé transcendents P, P, Py, Piv. Py, and
N
"'-. Py, corresponding, respectively, to the canonical forms IV, IX, X, XXXI, XXXIX,
ion and L, respectively, in Ince’s book.1T The six Painlevé transcendents and some
. of the properties of the first four Painlevé transcendents are listed in Table 1.
" The dominant truncations of the 50 canonical Painlevé type equations are
i
o, composed of the following four building blocks with the indicated values of the
oY)
2 balancing exponent p:
Iiﬁ
e
Ny
(> Uy = kau? (p=-2/1=-2) (10a)
"W
f::',
;‘:;. U2y = kppuuy P=-11=-1 (10b)
A
g
. U2y = keud (p=-2/2=-1) (100)
Lo |
aI
::-k
ot
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U2y = kqug/u (p indeterminate from (10d)

the exponents)

Since equations 10b and 10c have the same value of p, namely -1, hybrids10 of

the following form can be obtained from their linear combination:

U2y = hquuy + hou3 (11

The solution branches of such hybrid equations are determined by the roots of
a quadratic equation with coefficients depending upon the coefficients hq and
ho of equation 11. Unless the two roots of this quadratic equation coincide, the
corresponding hybrid equation (11) has two distinct solution branches. Thus the
set of coefficients hq = -1 and hy = +1 for equation 11 leads to ag = +1 and +2
for the two solution branches when u is expressed as the power series in equation
4 and corresponds to the dominant truncation of the canonical Painlevé type
equation X (Table 2) which has "semitranscendental" solutions.? Similarly the
set of coefficients hq = -3 and hy = -1 for equation 11 leads to ag = +1 and -2
for the two solution branches and corresponds to the dominant truncation of

the Painlevé canonical equation VI (Table 2) which has solutions17 of the form

U= -wy/w (12)

when w(x) is the general solution of the linear equation of the third order

w” = qlx)w” (13).

Equation 10d is passive; since it does not determine the balancing exponent p
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it can hybridize with any of the other building blocks, namely equations 10a,
10b, and 10c.

The dominant truncations of the last 40 of the 50 canonical Painlevé-type
equations (i.e., Xl to L in Ince’s notation 1) contain passive terms of the
type u,%/u (i.e., equation 10d) and will not be considered further here. The
dominant truncations of the first ten canonical Painlevé-type equations contain
only one or more of the active terms (equations 10a, 10b, and 10c) and are listed
in Table 2. In addition to the required -1, the resonances found in these equations
include the positive integers 1, 2, 3, 4, and 6 for p = -1 and 6 for p = -2, Thus
a variety of power series expansion behavior is possible in even these relatively

simple systems.

IV. PAINLEVE CHAINS

The following procedure can be used to generalize the concept of Painlevé
chains introduced in the previous paper.10 Consider a differential equation of

order n written in the following form:

X, U U, UDx¢peee,Unx) = B(X,U,Ux,U2%/eee Umyx) Where m < n-1 (14)

Furthermore, require equation 14 to have the following propertics:

(1) Equation 14 has the Painlevé property with resonances -1, ra, ..., rp.

(2) Functions f and g are algebraic functions involving only sums, differences,
products, and quotients of their variables; transcendental functions such
as exponentials, logarithms, and trigonometric functions are not present

in f and g.

(3) The function f(x,u,Uy,uU2y,...,Uunx) includes all of the terms containing the




highest derivative unpx and no terms not containing upy; the equation f =

0 is thus an ordinary differential equation of order n.

(4) The function g(x,u,uy,Udx,...,Umx) cONtains no terms with the highest
derivative upy; the equation g = 0 is thus an ordinary differential equation
of order m < n-1 called the co-order 10 of equation 14.

(5) The function g(x,u,ux,uzx,...,umx) cannot be obtained by differentiation
of any function h(x,u,uy,u2y,...,4(m-1)x? which is an algebraic function of
its variables.

Equation 14 defined in this manner can be the generator of a Painlevé chain where
the members of the chain are obtained by successive and simultaneous
differentiation of both sides of equation 14. Each differentiation step in a Painlevé
chain retains all of the resonances of the previous members but adds one new
resonance reflecting the position in the power series (equation 6) of the new
integration constant. In the relatively simple Painlevé chains discussed in this
paper where f = upny in equation 14, the new resonance appears at n - p - 1. When
the new resonance duplicates an existing resonance, the Painlevé property is
destroyed and the Painlevé chain is terminated. The number of equations in
the Painlevé chain without double resonances is called its length and the order
of the last member of the chain without a double resonance is called the order
of the chain.

The previous paper 10 presents the three fundamental homogeneous Painlevé
chains listed in Table 3. The dominant truncations of the first two irreducible
Painlevé transcendents, namely ujy = kau2 from P) (equation 10a) and upy = kcu3
from Pjj (equation 10c) generate the chains containing the modified KdV equation
(p = -2/2) and KdV equation (p = -2/1), respectively, having orders 3 and 4, respect-
ively. The other homogeneous and active dominant truncation of the second

order canonical Painlevé-type equations, namely ugyx = kpuuy (equation 10b),
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g
b
ei:: wnich is also the dominant truncation of Burger’s equation, is the second member
v of a Painlevé chain (p = -1/7) of infinite order generated from the first order
:;:: differential equation uy = ku2.
&\
i%: The hybrid dominant truncations of the canonical Painlevé type equations
K in Table 2 can also be generators of Painlevé chains (Table 4). Since these chains
:' are hybrids, they have two solution branches although these branches can coalesce
1,
i:. in exceptional cases (see the previous section). In the case of the solution branches
o of the Painlevé chain generated from ug, = -uuy + u3 one solution branch, namely
:'." that with ag = 1 in equation 4, has only one member before +3 becomes a double
t root and thus has a length of only one whereas the other solution branch, namely
2 that with ag = -2 in equation 4, goes to order six before a double root (+6) arises.
3«. The hybrid Painlevé chain generated from uyx = -3uuy - u3 has a solution branch,
.: namely that with ag = +2 in equation 4, which has a -2 resonance indicating that
* one of the integration constants cannot be accommodated in the power series
it
: j‘ expansion for u (equation 6). The equations in the hybrid Painlevé chains in Table
E ?_j 4, unlike those in the homogeneous Painlevé chains in Table 3, do not appear
" to relate to differential equations of obvious physical significance.
g
':.0. Passive Painlevé chains can also be generated from the Painlevé canonical |
'.‘n:,:' equations. Consider the following pure passive second order differential equation: ]
“ad
i = ko
Y 2x = kux/u (15
»

The value of k determines the value of p in the expansion in equations 4 and

7

? “Ej 6 according to the relationship
s k = (p-1/p (16).
)&'
o
)
5' Table 5 shows the Painlevé chains derived from equation 15 for p = -1 (k = 2)
: )
o
Y
o
a . ]
§ - Cal Y a A n ]
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e
3
;:':: and p = -2 (k = 3/2). Note the infinite lengths of these chains and the zero reson-
K
i ances arising from the passive determination of the balancing exponent p. The
RS new resonances in the third order equations of these Painlevé chains appear at
c::'
‘ 2 - 2p and the new resonances in the nth order equations appear at 2 - 2p + n
e
utr -3=n-2p-1
"gi
'1'.‘5
;;: V. A SCHWARZIAN PAINLEVE CHAIN
’.l'"‘
::::‘ The Schwarzian derivative { u;x} is defined by the following expression:
)
'.:: :
§
£
{U;x } = W3/uy) = (3/2Xu2y/uy)2 (A7)
_r‘.
X
"
": It is significant in being invariant under the Mdbius transformation
W
W
‘} U = (au+b)/(cu+d) (18).
N
: Weiss12,13,14,75 has related the Schwarzian derivative to integrable partial
N
:E: differential equations including the Burger’s, KdV, modified KdV, and Boussinesq
;: : equations
‘ -
Table 6 shows how a Painlevé chain can be obtained from the Schwarzian
X
‘:" derivative (equation 17). Set the Schwarzian derivative {u;x} equal to zero
0y
‘.:" and for convenience multiply both sides by u,% to clear the terms in the denomin-
B Y
ators of equation 17 thereby giving the first member of the Painlevé chain. The
1590
O
QN balancing exponent p is determined passively to be -1 so that the 3/2 coefficient
b, “
f:.:a is required for its determination. This third-order differential equation has the
KX
- consecutive resonances r = -1, 0, +1 with the zero resonance arising from the
3
::'.:. passive nature of this equation. In order to obtain successive members of the
\::n,
L

L) - mc e o9
B »
‘..v i"ﬁq't‘- bl r 0’.?“’,'

prp g
"y
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Schwarzian Painlevé chain (Table 6), divide both sides by u;‘q, differentiate
both sides and multiply both sides by u;‘ to clear the terms in the denominator
where n is the order of the starting differential equation. The resulting Painlevé ‘

chain is of infinite length and a member of the chain of order n has consecutive
resonances r = -1, 0, +1,...,n-2 indicating that ;alll of the integration constants
might appear in the first n-1 consecutive terms of a Laurent series (equation
6) if compatibility conditions are satisfied at the' resonances. This Schwarzian
Painlevé chain contains the dominant truncations of the integrable class of partial

differential equations

up/ux + B{u;x D =0 19

in which B is a constant coefficient multinomial in (3k/3xK) {u;x}. Weiss14
has shown that these higher -order differential equations arising from the
Schwarzian derivative are useful for generating the higher order KdV and other

evolution equations of interest.

VI. CHAINS FROM EIGENVALUE PROBLEMS

The Painlevé chains containing the KdV and modified KdV equations each
have finite lengths owing to the appearance of double roots in the indicial equation

(8) used to determine the resonances. These double roots can be eliminated by

hybridization with an appropriately chosen equation having the same balancing
$\ p or with a pure passive equation. For example, the fifth order differential

equation in the KdV Painlevé chain (p = -2/1,10 namely

. ugy = k(3uyuoy + uu3y) (20)
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has the resonances -1, +4, +5, +6, +6 (Table 3). The double root (+6) can be elimin-

ated by hybr'idization‘l0 with the following equation:
usy = 3muuy, Q7.
Equation 21 arises from the (p = -4/2) chain generated by differentiating

ugy = mu3 (22).

In the homogeneous form equation 22 does not have the Painlevé property since
its indicial equation (8) has complex roots corresponding to complex resonances.

A hybrid fifth order higher KdV equation is well known21 to have the following

form:
usy = ~20uyu2y = 10 uu3y - 30u2ux (23).

Both solution branches of this hybrid equation have distinct integral resonances.
The branch leading to the resonances -1, +2, +5, +6, +8 is the most significant
since all of the (integral) resonances are greater than -1 indicating the possibility

of incorporating the integration constants into a Laurent expansion of u (equation

6).

How can one determine the coefficients of hybrid equations such as equation
"W
}' 23 which can have the Painlevé property! Consider the second order eigenvalue

problem3

Vy = =iAV + gw (24a)

W A O B
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)
Y
) Wy =PV + iAw (24b)
Yy
. vt = Av + Bw (24¢)
.
2 we = Cv - Aw (24d)
'
Compatibility of conditions 24a-24d requires the following equations to be
W satisfied:
v
¢ Ax=qC-rB (25a)
[
3 By + 2i AB = qq - 2Aq (25b)
'y
l
Cyx-2idC =ry + 2Ar (25¢)
v
by In order to obtain a chain of higher order differential equations of potential inter-
)
est substitute the following power series for A, B, and C into equations 25a-25c
5‘
.'; taking the integer n as high as the order of that of the desired differential
.
) equation:
g n
A= 7 Agrk (26a)
b k=0
"
i n
B= § Bk (26b)
k=0
b, n
C-= Eb Cklk (26¢)
ty k=

Equate the coefficients of like powers of A in equations 25a-25c and solve the
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resulting 3n+5 equations. This procedure involves determining the 3n+3

coefficients of the power series (26a-26c) in the following sequence:
Bn, Cn, An, Bn-‘], Cn-‘], An-1, veeyp BO, CO,AO (27)

Determination of the coefficients By and Ck (n-2 > k > 0) requires differentiations
of Bg+1 and Ci41, respectively, whereas determining each A (n > k > 0) requires
an integration. The latter lead to the n integration constants designated as ayg
(n > k > 0). After all 3n+3 coefficients (27) are determined from the first 3n+3
equations, substituting these coefficients into the last two of the original 3n+5
equations (derived from equations 25b and 25c) gives equations in q; or r¢,
respectively, in which all of the other terms contain exactly one of the integration
constants ak. Grouping together the terms containing a given ak while setting
aj =0 for all j# k and adding a new equation either relating q to r or setting
g or r to a constant gives a kth order differential equation which in certain cases
corresponds to known evolution equations.3 For example k = 3, r = -1, and a;
=0 for j # 3 give the KdV equation in q whereas k = 3, r = q, and aj = Oforj+#3
give the modified KdV equation. This procedure is described in greater detail
elsewhere.3

Table 7 shows what happens when this procedure is done with fifth degree
polynomial expansions of A, B, and C (n = 5 in equations 26a-26c) substituted
in equations 25a-25c using the symmetrical relationship q = r after considering
the time-independent situation where q; = 0. The symmetry of the relationship
g = r makes the final two equations identical for each member of the chain. The
equations in Table 7 are identical with the modified KdV chain in Table 3 for
k < 3. For k > 4 hybridization is automatically introduced by this procedure. These

hybrids, at least for k = 4 and k = 5, have integral resonances. The fifth order
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>
AN modified KdV equation was discovered by lto22 using a different method; this
-
ot 4
h equation can also be obtained by differentiation of the fourth order equation
o above it in the modified KdV chain (Table 7).
. v
; Generation of the KdV equation by an analogous method requires the
oy
v relationship r = -1 which treats the variables q and r unsymmetrically. This
:;:','_ reduces the final two of the 3n + 5 equations from 26a-26c and 25a-25c to a
:',( .
_ single equation only if k is odd. The resulting single equations obtained for k
Y
= 3 and k = 5 are the dominant truncations of the KdV equation and the fifth
Y
:‘ . order KdV equation,21 respectively. The absence of even order differential
00
b . . . . . . .
’-h equations in the KdV chain generated by this method is consistent with results
W)
= obtained by using recursion23 or differential24 operators for finding higher order
> KdV equations.
e
W These observations suggest that the chain of KdV equations contains only
.1.'
odd order members whereas the chain of modified KdV equations contains both
‘.:;: even and odd order members.
3
2
1
Vil. SUMMARY
b'*‘
o
JI" /‘\\.
. :‘. /
ﬁ The previous paperl0 defines the three fundamental homogeneous active
-Il ) TR -
Painlevé chains (Table 3) which are generated from the equations ujy = ku2,
We ‘ o “® TRt
: : Uy = ku3, and Uy = kul. The present paper shows how the concept of Painlevé
)
Y
t chains can be extended to Painlevé chains generated from hybrid differential
i equations (Table 4) and the passive differential equation ugy, = kuf/u . (Table 5), -~
.
\‘h‘ In addition the Schwarzian derivative can be used to generate a Painlevé chain
" ~
’ with the interesting property of consecutive integral resonances (Table 6). Finally
l"!
"oy the 2 x 2 eigenvalue problem of Zakharov and Shabat7 is shown to generate !
i. N
3::: chains exhibiting some but not all of the features of Painlevé chains.
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