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PREFACE

This report was prepared by Jon S. Mounts, Montgomery C. Hughson, and
Dave M. Belk of the Computational Fluid Dynamics Section, Aerodynamics
Branch, Aeromechanics Division, Air Force Armament Laboratory, Eglin AFB,
Florida. The work was performed under work unit 25670308 during the fiscal
year period from 1 October 1985 to 30 September 1986.

This report presents the investigation of finite-volume techniques
employed in current Euler codes, in use in the Computational Fluid Dynamics
Section.
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SECTION I

INTRODUCTION

Researchers in aerodynamic analysis and design have turned to numerical
techniques, with the advent of the supercomputer (Cyber 205, Cray X-MP, Cray
2, etc.), to solve for the fluid flow about weapon/store configurations.
Current aerodynamic research at the Air Force Armament Laboratory (AFATL) is
aimed at solving the equations that govern fluid flow problems using a
variety of approximation techniques. The governing partial differential
equations (PDE) form a nonlinear system which must be solved for the unknown
pressures, densities, temperatures, and velocities to yield the aerodynamic
characteristics for a given weapon/store configuration at specific flight
conditions.

To obtain a thorough approximation for the flow field about a configu-
ration, we must solve the complete Navier-Stokes equations. However, due to
limitations placed on researchers by current computer systems (time and
storage), certain simplifying assumptions must be made to obtain results.
By assuming an inviscid, adiabatic flow field (dropping viscous and heat
transfer terms), we obtain the Euler equations. Results obtained from a
solution of the Euler equations are particularly useful in preliminary
design work where information on pressure alone is desired. These equations
are also of interest because they incorporate many major fluid dynamics ele-
ments such as internal discontinuities (shock waves and contact surfaces).
The Euler equations govern the motion of inviscid, non-heated gas and have
different numerical characteristics in different flow regimes. For steady
problems, the equations are elliptic in subsonic flow and hyperbolic in
supersonic flow (Reference 1).

Research at AFATL is aimed at solving the three dimensional Euler
equations to approximate the flow about arbitrarily-shaped weapon/store
configurations. This research is accomplished using various implicit and
explicit finite-difference and finite-volume techniques. Currently this
work has lead to an analysis of two explicit, finite-volume procedures for
solving the Euler equations. To help in this analysis of the numerical
characteristics inherent to the two approaches, a single equation serving
as a numerical analog to the Euler equations has been found. The inviscid
Burgers equation (nonlinear wave equation) serves as this simple nonlinear
analog to aid in our understanding of these techniques (Appendix A)
(Reference 1).
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SECTION II

UPWIND SCHEME

Several numerical techniques have been developed that will solve the
partial differential equations that govern fluid flow, heat transfer, and
combustion problems. These methods can be either explicit or implicit,
central difference or upwind, single or multi-step, and first- or second-
order accurate.

An explicit, second-order, one-sided, or upwind difference scheme for
the numerical solution of hyperbolic systems has been developed by Warming
and Beam (Reference 2). There are several advantages to the use of the
Upwind schemes.

(1) One-sided schemes are often desirable along both fixed external
boundaries and along moving internal boundaries (such as shocks), where a
spatially centered scheme would require one or more points inside or across
the boundary.

(2) An explicit, second-order upwind scheme can have twice the
stability bound of a symmetric scheme using the same number of spatial grid
points.

(3) The dissipative-dispersive properties of an upwind scheme are
superior to those of a symmetric scheme.

(4) switching schemes across a discontinuity can reduce the spurious
oscillations usually associated with a second-order accurate shock-capturing
technique. Warming and Beam's goal was to develop a hybrid scheme which
exploits the advantages of a second-order upwind scheme for aerodynamic
flows. This multi-step procedure applied to the inviscid Burgers equation
is shown as follows:

n+l n t nPredictor: U =U - -% F (la)
i Ax I

Corrector: (ib)
Un U + U At nU.U.F --

I i 2Ax I
2

At A2 n+l
A F.

where; 2Ax a.

F. F. - Fi (2)

A thorough error analysis has been performed on the Upwind scheme to

aid in our understanding of the numerical characteristics inherent to this
technique (Appendix B). This analysis includes consistency, convergence,
numerical stability, phase and dispersion error, and artificial dissipa-
tion (Reference 3).
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SECTION III

FINITE-VOLUME APPROACHES

For our research in computational aerodynamics, we have settled on the
finite-volume (FV) approach, as opposed to the finite-difference (FD)

method, to solve for the physics of the flow about a weapon/store configura-
tion. Fundamentally, the primary difference between the two methods is that

for the FV approach we solve for the flux at the face of a cell; the FD

approach solves for the flux at the center of the cell (Figure 1). To

accomplish this FV technique we must extrapolate either the flux or the
dependent variable from the center of the cell to the face of the cell. The

advantage to using the FV method is that, inherent to the approach, the

conservative property of the PDE is fully maintained.

1. EXTRAPOLATION TECHNIQUES

As mentioned above, there are two extrapolation techniques that must be
studied to determine which yields the optimum results. The flux term is
U(i) 2 /2 where the dependent variable is U(i). For the upwind scheme,
extrapolating the flux yields

2 (U(i)2/Z) - (U(i-1) 2/2) or (3)

2 (U(i+1) 2/2) - (U(i+2) 2/2)

depending on the direction of the flow of information. When extrapolating
the dependent variable for the same inviscid Burgers equation, we get;

(2U(i) - U(i-1)) 2/2 oi. (4)

(2U(i+1) - U(i+2)) 2/2,

again, depending on the direction of the flow information. In this way, the
dependent variable extrapolation technique yields

2U(i) 2 -2U(i)U(i-1) + U(i-1) 2/2 or (5)

2i+)2 2
2U(i+)2 -2U(i+1)U(i+2) + U(i+2) /2

This result shows an extra term, - 2U(i+1)U(i+2) , (as compared to Equation
3) which will have some effects that are inherent to this type of numerical
method.

2. DIFFERENCING TECHNIQUES

The flow solvers (Euler codes), being examined by our research, use two
types of differencing techniques to solve for the flux at the face of a
cell; both of these techniques have been developed by Whitfield (References
4, 5, and 6).
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The first differencing technique (Figure 2) employs a dependent variable
averaging (DVA) approach to determine the direction of the flow of informa-
tion across a cell face. For a specific cell face, the value of the depen-
dent variable (U) is averaged from both sides of the cell. This yields a
value for the dependent variable and, depending on the sign of U, is used to
extrapolate (using one of the techniques discussed above) from one side of
the cell face or the other, to obtain a value for the flux at the face of
the cell.

,* The second differencing technique (Figure 3) employs a dual dependent
-variable technique (DDV) in which the value for the dependent variable (U)

is determined for both sides of the cell face and, depending on the sign of
U, can utilize both values of the dependent variable if the direction of the
flow of information is toward the cell face from both directions. The
direction of the flow of information determines whether the value of the
dependent variable, U, is used from one side of the cell face (or the other)
or from both sides, to extrapolate the flux to the cell face.
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SECTION IV

NUMERICAL RESULTS

For this analysis, both the extrapolation and differencing techniques are
examined using the inviscid Burgers equation to model the propagation of a
wave in time. The numerical analysis used here to study the inviscid
Burgers equation should yield second-order accurate results. This level of
accuracy is typified by dispersion or ringing effects which overshoot the
actual, physical results.

The first phase of our study looks at forcing a wave to propagate in only
one direction. This allows us to better examine the differences between the
two extrapolation techniques; since the wave is moving in only one direc-
tion, the differencing techniques are essentially the same. Figure 4a shows
the effects of using the DVA technique with dependent variable extrapola-
tion. The results are atypical, for a second-order accurate solution
method, in that no dispersive effects (ringing) are apparent downwind of the
wave. Figure 4b gives the results for the DVA technique using flux extra-
polation. These results show the characteristic dispersive effects yielded
by a second-order scheme in which the numerical solution overshoots the
exact solution on the downwind side of the shock. Figure 4c shows results
for the DDV technique with dependent variable extrapolation in which we
again observe what appears to be dissipative characteristics to a second-
order scheme. In Figure 4d the results are given for the DDV technique
using flux extrapolation. Once again the flux extrapolation approach yields
typical second-order results with ringing effects. To better study the
effects of the extrapolation approaches, a Courant number of 1.50 was used
since at a Courant number of either 1.00 or 2.00 the numerical technique
yields the exact solution (by satisfying the shift condition in Equation
B.9) (Reference 1).

The second phase of our examination studies the effects of the two differ-
encing approaches (DDV and DVA) by forcing two waves to meet at a cell face
of equal velocities (magnitudes). A Courant number of 2.00 is employed so
that the effects of the two extrapolation techniques are negated (by satis-
fying the shift condition in Equation B.9) (Reference). Figure 5a shows the
results for the DVA technique using dependent variable extrapolation which
yields the exact solution to the mathematical model. Similar results were
yielded in Figure 5b for the DVA technique using flux extrapolation. Figure
5c yields the results for the DDV technique with dependent variable extrapo-
lation and shows the exact solution, as does Figure 5d for the DDV technique
using flux extrapolation. For this simple model both differencing tech-
niques (DDV and DVA) yield the same results; therefore, a more complicated
test must be accomplished to better understand the limitations of the
approaches.

For the final phase of this investigation, all aspects of the problem are
examined by forcing two waves to approach each other at unequal velocities
(magnitudes). Due to the unequal velocities, U , the effective Courant
number changes for each direction. Figure 6a shows the effects for the

8
- .5 .



S..'
S.v

CL

0 Lr0

- mi

fyf

M m

* if a-



AM - - b -- - - - - - -

a. 0S S

Lf-I

cc

4' C5

7- E <c

V200

OLJ

mxii

10'



*t..- . ." * ..
4  

S,

*rfiJ) II II II II 1 II II II I I II II II II I II I II II II II II II I I II II It II n II II II i II

\', / 4 4d 4 .. ''. 44 N.. 4- 4- 4- 4- 4- N 4- '. 4 "-' N.J -' t-'-' .l 4.'i t" -' t 4' .'~ t,' ' i'~ t'- . J

C

4- I -'I , '

'

* 0I

r r-(



Liin

.0

060

7 -- C-,

'1212



- '~~-.y. ' ~nr~ C ~ .-. ~ ~ ~ . -. i " W J wIga, J Xr6r * r *~

r. . . . . . . .- . . . . .

* I- I

* ys~ i n i nll II I II n ni n u n u ni n u n i Ii ii i Ii ii i ii it i4i
* ~ ~~~~~~ OC-Y~- - - ~r ~ - __- ~-

S rr~-~- C~fjWWW WWC fl~fflf

* ~ ~~~~~~~ Hfff Zllll'lln-f ~ l fll ~ l f ~ ll
04

I~13



* ~ ~~~~~ ..- - - - - - Y . . .. . . . . . . . . .- .

I I I I I I I I I I I I I I

* I-
J) II II II II II II f II II II II II II II II II II II II I f II II II II I II II II II II II II II II

CLC

r II-2
-. 11 i

S- . _, (-V

f I-)

! 7

44)

-- 14

1~1

"p . " . " . % " In% % " " . " . , . " . " . " % . " . " . " . " . % . , - , . " . " % . . " "



r 0.. I I I I I ! I I I I ! I I

- r,0 It If I1 II II It I I I II II I !1 II i II II II II II II i II II Il II II I1 II II It II It i1

"A '' ,- ,'. " *" - , ''- ttItL tl " ~J t. '. LLIttIr~ ' "

"J 0"

*..,,, X

,- : =.:"-.:

-- , _ _,-,_ __.---.--.--

--

.. a5

'



.4 . -4.. S. -. 4 - . .. * 4 .-.

.4,w0w00w(wC M( M0m W mm wwwwC M(

* L

U t) 11 11 it II if 1I II II II II 1I II II it if II II if II II 1I fI II II it it 1I II I I i t

-. n C

* I 2Z

- I .4II 3 mJL
-,V

- 16

Z )



. .. . . . . .~ .~ ~. . . . .F . . . .p- . .

, 7:

117



DDV technique with dependent variable extrapolation. The results show the
atypical (dissipative) solution yielded by the dependent variable extrapola-
tion. As the waves meet, the wave with the greater magnitude runs over the
lesser wave at an average wave speed. In Figure 6b we obtain the results
for the DVA technique using flux extrapolation. This approach yields the
expected second-order results and also shows the greater magnitude wave
running over the lesser wave at an average (or deduced) velocity. Figure 6c
shows results, similar to those in Figure 6a, for the DDV techniques using
the dependent variable extrapolation approach. As in Figure 6a, we observe
the dissipative effects on the solution and the propagation of the larger
wave at an average speed after the collision. Figure 6d shows the results
for the DDV technique with flux extrapolation. As in Figure 6b, the
expected dispersive effects are observed and, again, the greater wave moves
at an average velocity after the collision.

A further analysis was performed to attempt to find weaknesses in the dif-
ferent approaches. In this case the effective Courant number was doubled
thereby pushing the CFL condition towards its limit of 2.00. Figure 6e
shows results, similar to those in Figure 6a, for the DVA technique with
dependent variable extrapolation; however, the propagation of the wave after
the collision has twice the velocity. In Figure 6f the results are, again,
similar to those in Figure 6b with the exception of the wave propogation
being at twice the speed. Figure 6g shows the only major discrepancy in our
analysis. The DDV technique with dependent variable extrapolation shows
good results until the meeting point for the unequal waves. At the colli-
sion due to diffusive effects, the effective Courant number goes well above
the stability limit of 2.00 and the solution diverges. However, when the
DDV technique is applied with flux extrapolation (Figure 6h), we again
obtain typical results similar to those in Figure 6d.

18
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SFCTION V

CONCLUSION

This investigation has yielded several important conclusions dealing with
both the extrapolation techniques and the differencing approaches.

(1) The dependent variable extrapolation technique, used for both the
dual dependent variable (DDV) and the dependent variable averaging (DVA)
differencing methods, tends to negate the typical dispersive effects found
in second-order accurate schemes. This is primarily due to the extra term
found when applying the dependent variable extrapolation to the inviscid
Burgers equation. When applying the flux extrapolation technique to both
differencing methods, the expected dispersive effects are obtained.

(2) No significant differences were appareat when comparing the differ-
encing techniques (dual dependent variable and dependent variable averag-
ing). Both techniques closely modeled the correct mathematical solution,
when using the flux extrapolation approach, throughout most of the investi-
gation. The only inconsistency in the study occurred when the DDV differ-
encing approach was used with dependent variable extrapolation (Figure 6g).
In general, this tends to show that the DVA approach may be a more robust
method than the DDV approach.

Therefore, the recommended approach to solving the inviscid Burgers equation
for this examination is to apply the dependent variable averaging differ-
encing technique with flux extrapolation. This method will also be directly
applied to the three-dimensional Euler equations for the solution of the
inviscid flow field about arbitrarily shaped weapon/store configurations.
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APPENDIX A

INVISCID BURGERS EQUATION

Burgers equation (1948) can serve as a nonlinear analog of the fluid
mechanics equations. This single equation has terms that closely duplicate
the physical properties of the fluid equations, i.e., the model equation has
a convective term, a diffusive or dissipative term, and a time-dependent
term. (Reference 1)

Ut + UUx =Uxx (A.1)
Unsteady term Convective term Viscous term

Equation (A.1) is parabolic when the viscous term is included and is a good
model for the boundary-layer equations, the parabolized Navier-Stokes (PNS)
equations and the complete Navier-Stokes equations. If the viscous term is
neglected (inviscid Burgers equation), the remaining equation is composed of
the unsteady term (Ut) and the nonlinear convection term (UU x). The
resulting hyperbolic equation

Ut + UUx = 0; (A.2a)

in conservation law form

Ut + (U 2 /2) = O, (A.2b)

may be considered a simple analog of the Euler eqautions for the flow of an
inviscid fluid. The analogy can be drawn due to the fact that both equa-
tions are first-order, hyperbolic, quasi-linear, partial differential equa-
tions and both model discontinuities, such as shocks, in the flow field
(Reference 1).

Burger equation is a partial differential equation because U=U(x,t) and Ut
and Ux are both used in the equation. It is a first-order equation because
only first derivatives appear. Equations (A.2a) and (A. 2b) are nonlinear
because the unknown variable, or dependent variable, U, is multiplied by
itself or its derivatives. Burgers equation belongs to a special class of
nonlinear equations called quasi-linear equations. A quasi-linear equation
is one in which the highest order derivatives appear to the first power, as
is most easily seen in Equation (A.2b). The three-dimensional Euler equa-
tions of inviscid fluid flow are another example of quasi-linear equations.

To provide a good test case for the finite volume approaches, we need to
know some exact solutions to Burgers equation. First, solve Equation (A.2)
with the general initial conditions,

U(x,0) = f(x). (A.3)

The solution to the problem will be of the form U=g(x,t). Now consider a
three-dimensional space with xt, and U coordinate axes, and define

0 = U - g(x,t). (A.4)
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The surface 0 (x,t,U)=O in the three-dimensional space defines the solution
to the problem. In other words, any point on the surface, say x0o, to, Uo is
a point of the solution given by U(xo,to)= UO. A vector perpendicular to
the surface is given by grad 0 = (Ox' Oy' Oz ) ' and any vector perpendicular
to grad 0 must be tangent to the solution surface. If (xo, to, Uo ) is a
point of the solution, and, for infinitesimal displacements, (xo +dx, to+dt,
Uo+du) is also a point of the solution, then

grad *.dx = 0,

or *xdx+ 4tdt+ *Udu = 0. (A. 5)

Using Equation (A.4) in Equation (A.5)

-gx-gt + du = 0. (A.6)

6. From Equation (A.2) the following results when U= g(x,t),

gt + Ugx = 0,

from which we can tell that if we take dx, dt, and du in the following
ratios, Equation (A.6) will be satisfied:

dt/1 = dx/U = du/0. (A.7)

If r is taken as a parameter along the solution curve, then Equation (A.7)
can be written:

dt/dr = 1 , dx/dr = U, du/dr = 0; (A.8)

with the initial conditions:

t = 0, x = xo , U = f(xo).

Solving these equations gives

t(r) = r , U(r) = constant = f(x0 ) and

dx/dr gives

x(r) = rf(x O ) + constant and x(0) = constant = xO .

Therefore;

x(r) = rf(x o ) + x
x(t) = tf(x O ) + x0.

For an example, 'take

f(x) = 1-x , 0 < x <

2 x8 > 1
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1.) For xo  1 (Figure A-i);

x(t) = tf(x 0 ) + x= xo

U(r) = f(xo) = 0
U(x,t) = 0.

2.) For xo <_ 0 (Figure A-i);

x(t) = t + x0
U(r) = f(xo ) = 1
U(t+xo0 t) = 1

since xo = x-t when U(x,t) 1.

3.) For 0 < x < 1 (Figure A-i);

X = (x-t)/(1-t)

U(x,t) = (4-X)/(.-t).

This method of characteristics analysis shows the Burgers equation capabil-
ity to produce shocks or discontinuities in the flow field. This capability
allows one to test numerical shock-capturing methods using the inviscid
Burgers equation and apply them to the three-dimensional Euler equations for
inviscid fluid flow.
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APPENDIX B

ANALYSIS OF NUMERICAL TECHNIQUE

This section of the analysis examines the numerical characteristics of

the Warming-Beam algorithm for the general finite-difference approach

(References 1 and 2). Finite-difference methods involve approximating the

continuous domain of any problem by a discrete domain (grid) and approxi-

mating the PDE's governing any problem by one or more algebraic or finite

difference equations (FDE's). The total error in the solutions of FDE's is

made up of discretization error and stability error. Stability error is

small for stable FDE's since by definition disturbances and errors cannot

grow. Therefore, discretization error accounts for most of the total error.

The discretization error is made up of dissipation and dispersion error.

For this examination the governing PDE is the inviscid Burgers
equation:

Ut + (U2 /2)x = 0 . (B•I)

To determine if a FDE is an algebraic analog of a PDE,and is agood
approximation of the exact solution of the PDE, we must involve the concepts
of consistency, numerical stability, convergence, phase and dispersion error,
and artificial dissipation (Reference 3).

1. LINEARIZATION

For the purpose of linear stability theory, we employ a linearization
method to the nonlinear PDE,

Ut + UUx = 0.

The resulting linearized PDE is the convection or linear wave equation:

Ut + CU x = 0, (B.2)

and, for continuity, the linear equation will be used throughout the FDE
analysis.

Locally, the PDE may be approximated by the linear PDE with constant
coefficients even though the PDE is globally nonlinear. This approach
yields reasonable results; however, the resulting stability criteria (to be
discussed in more detail in subsection 3) is necessary, but not sufficient.
The resulting Warming-Beam upwind scheme for the linear wave equation is as
follows:

n+1 n n n
Predictor: + C Ui -U_ 1  = 0 (B.3a)

At Ax
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n+1 n+1 n n+1 n+1
Corrector: Ui - 1/2 (Uj + O) + C Ui  -Ui I

At A x
2

n n n
-C Ui -2Ui _I+ Ui_ 2' (B.3b)

A x

2. CONSISTENCY

To analyze the consistency of the FDE (Equation B.3a,b) used to model
the PDE (Equation B.2), we must express UP iU in terms of
Ui' and its derivatives by using a Taylor series expansion:

Un + l = n + i  t+ At "' tUi2.+-U t-+. + U i 3- +  • -•( B .4a )
i i 3

n + 2 n i " A 2  " 8 3

U. U. + U. 2At + U.4A + U .B "' (B.4b)
i i ] 2! i 3!

n n " A 2  "'A 3

U i _ n U i n U I  t + U. 2 . - U At + - -(.4c)
! i 3:

The reason for this is that the FDE was derived by applying the FIDE at grid
point i and time level n. Substituting the expansions into the FDE yields

U t + CUx = O (A x
2  x At, At 2 )  (B.5)

therefore, Equation (B.5) is mathematically equivalent to the FIDE as the
grid spacing (A x) and time-step size (A t) approach zero.

An FDE is consistent if for every i and n;

lira FDE =PDE (B.6)

0.A x 0
• " At 0

Consistency measures the extent to which an FDE approximates a PDE in some

limiting case. A consistency analysis was performed on the upwind scheme
and it was found that the upwind scheme, when applied to the convection

~equation, is unconditionally consistent. This means that the
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n n
lim (FDE)i = (PDE)i  (B.7)
At - 0
AX -~ 0

n n

regardless of how x and t approach zero. Terms such as A tU i or A xU
can be added to the FDE and the resulting FDE will remain unconditionally
consistent; therefore, there are an infinite number of unconditionally
consistent FDE's for a given PDE. Consistency alone, however, will not
guarantee the accuracy of the solutions of the FDE's since all computations
are performed by using finite A x and A t.

3. STABILITY

Numerical stability is concerned with how errors propagate as the solu-
tion is advanced in a time-like variable, and is a concept applicable only
to parabolic and hyperbolic PDE's. An FDE is stable if the stability error
approaches zero or does not grow. A given FDE may yield stable or unstable
numerical solutions depending upon the value of some dimensionless parameter

( = c A t/ A x). The need to obtain stable numerical solutions is
critical to the solution of a given PDE since only stable numerical results
have a chance of being physically meaningful. Conditionally stable FDE's are
those that yield stable solutions when A x and A t are in a given form ( =

c At/ A x). Unconditionally stable FDE's are those that give stable solutions
for any A x and A t. Unconditionally unstable FDE's give unstable solutions
for every Ax and A t. Typically, stability bounds for implicit methods are
less restrictive than those for explicit methods

There are many different mathematical methods for analyzing the
numerical stability of FDE's. For this examination, the Von Neumann or
Fourier method is employed. In the Fourier method, the numerical stability
of an FDE is analyzed by introducing a disturbance into the numerical solu-
tion at every grid point in the spatial domain at some arbitrary time level.
The disturbance is expanded into a Fourier series and each Fourier component
of that series is analyzed separately. The FDE is stable if all of the
Fourier components do not grow in time and unstable if any one of the
Fourier components grows in time. The method of analyzing each Fourier
component separately is valid only when the FDE's are linear with respect to
the dependent variable. For this examination the FDE is not linear and must
be linearized before the stability property can be determined.

A Fourier stability analysis has been performed on the upwind scheme
using the linear wave equation. Results show that it is conditionally
stable with the following conditions:

0 < = c t/A x <2 (B.8)

4. CONVERGENCE

An FDE is convergent if the numerical solution of the FDE approaches the
exact solution of the PDE as the time-step size and grid spacing approach
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zero. A convergent FDE can yield a solution of any desired accuracy by
reducing the time-step size (L t) and the grid spacing (A x). The analysis
of the convergence of an FDE for a complex PDE is extremely difficult, and
convergence analysis techniques are only available for linear PDE's.

The convergence analysis has been performed for the upwind scheme with
respect to the linear wave equation and results show the FDE to be conver-
gent (Reference 1).

If the FDE is well-posed, consistent, and stable (as is the case in this
examination); the Lax Equivalence Theorem states that the FDE of the linear
PDE is convergent. Therefore, according to this theorem, the Warming-Beam
upwind scheme should be convergent. For FDE's of quasi-linear and nonlinear
PDE's, the Lax Equivalence Theorem serves as an important guideline; hence,
consistency and stability are crucial tests for convergence.

5. MODIFIED EQUATION

In the modified equation analysis, a PDE is derived that is mathema-
tically equivalent to the FDE to be examined. The resulting PDE is called
the modified equation.

The modified equation is derived by the following two-step procedure:

(1) Expand each term in the FDE in a Taylor series expansion.

(2) Express all time derivatives (with the exception of the first-
order time derivative) in terms of spatial derivatives.

The modified equation for this examination is given by

(x2/6 4/82t
U +CU = (c-x /6) (]-,) (2-)) U - ( x /8t) (l-)(2-) U +...(B.9)

t x xxx xxxx

This method of analysis is used exclusively in support of the dissipation

and dispersion error investigations.

6. PHASE AND DISPERSION ERROR

Dispersion is mathematically described by the odd-order spatial deriva-
tives. The coefficients of the odd-order spatial derivatives in the
modified equation for the FDE must be identical to the corresponding coeffi-
cients in the PDE in order for a FDE to have the same dispersive character-
istics as the PDE it is to represent. If the corresponding coefficients are
different, then the solutions of the FDE's contain dispersion errors. Since
the coefficients of the odd-order spatial derivatives in the modified equa-
tion do not match the corresponding coefficients in the PDE, the FDE con-
tains dispersion error. The order of dispersion is equal to the order of
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the coefficients of the lowest odd-order spatial derivative excluding the
first order spatial derivative. Therefore, the FDE contains second-order
dispersion; the higher the order of dispersion, the lower the dispersion
error.

U + CU = 0
t x

(x2/ A4/ 1 2
Ut + CU - (cAx /6) (l-v) (2-\) U + (Ax /8At) v( v) (2-v) U + .. 0

The dispersion error is examined by the Von Neumann method (Reference
1). The dispersion error for each Fourier component of a disturbance after
n time steps is given by

n(0pde - Ofde) (B.10)

where

Opde = phase angle of the amplification factor (PDE)

Ofde = phase angle of the amplification factor (FDE)

The dispersion error after n time steps, for this analysis, is given by

n - tan 1-2) (+2 (l-v) sin 2 sin 2 (B.11)
tan y(1+2 (1-v) sin)2

2
The relative phase shift error for a given Fourier component after one

time step is

Ofde / Opde (B.12)

The relative phase shift error for this examination is

tan 1-2 ,(j+2 (l-\) sin 2) sin 2 (B.13)

vsin y (1+2 (1-v) sin2 y

-Y\)
The dispersion error is given by these two relationships because the phase
angle of the amplification factor depends only on the odd-order spatial
derivatives when the highest time derivative is first-order.

For leading phase error, the relative phase shift error must be greater
than unity for a given Fourier component (the numerical solution for that
Fourier component gives a wave speed greater than the wave speed given by
the exact solution). Lagging phase error results when the relative phase
shift error is less than unity for a given Fourier component (the numerical
solution for that Fourier component gives a wave speed less than the wave
speed given by the exact solution).

The Warming-Beam upwind scheme, with respect to the convection equation,
has a lagging phase error when v is greater than one and a predominantly
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leading phase error when is less than one. When v does not equal one, the
relative phase shift error increases as the wave number, y (Kj Ax),
increases (Figure B-I).

7. ARTIFICIAL DISSIPATION

As diffusion spreads a disturbance in every direction, the disturbance
is smoothed out over an increasingly large area. Diffusion reduces spatial
gradients and lowers the magnitude of the disturbance by spreading it out;
this phenomenon is termed dissipation. Diffusion is mathematically des-
cribed by even-order spatial derivatives in a PDE; if the even-order spatial
derivatives in the PDE are zero, the PDE will not have any dissipation.

In order for a FDE to have the same dissipative characteristics as that
of the PDE it is modeling, the coefficients of the even-order spatial deriv-
atives in the modified equation for the FDE must be identical to the corre-
sponding coefficients of the PDE. The PDE for our examination is, again,

Ut + CUx = 0

The modified equation for the upwind scheme is given by (Equationf B.9)

CU= (cx/6) (l-v) (2-\) U + (Ax /8At)v (i-v) (2-v) U -+.Ut +Cx xxx xxxx

Therefore, since the corresponding even-order coefficients are not identical,
there is fourth-order dissipation error in the solution of the FDE.

The dissipation error is examined using the Von Neumann method. The
dissipation error for each Fourier component of a disturbance after n time
steps is

Gnpde - Gnfde ) A° ,  (B.14)

Gpde = amplification factor (PDE)

Gfde = amplification factor (FOE)

A0  = initial amplitude of the Fourier component

The dissipation error is given by this relationship because the modulus of
the amplification factor depends on the even-order spatial derivatives when
the highest time-derivative is first-order.

The dissipation error, for this examination, for a given time-step, n,

is given by

1- [ (1-4 ')(l- v)2 (2-) sin 4 1/2 ] n (B.15)

For values of ' less than one, as decreases, the dissipation error
increases, and for values of v greater than one, as v increases, the dis-
sipation error inccreases. Also, for values of v not equal to unity, as
the wave number, y (kj A x ), increases the dissipation error increases
(Figure B-2).
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