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ABSTRACT

This paper discusses the classical Lamb problem for the elastic wave
equation. The motivation, for the authors, is to be able to conveniently
construct Green's functions (matrices) for later use in formulating and
solving various inverse problems. For example, we will want to be able to
solve for operturbations from constant reference densities and Lamé
parameters, Hence, Green’s function for the homogeneous isotropic equation
is discussed. Due to the scattering taking place in inverse problems it is
usually impossible to retain the P-SV and SH decoupling; hence, we do not
pursue this decoupling in the formation of the Green’s functions herein.

While nothing conceptually new is presented here, the approach is a bit
different and, we believe, is helpful in isolating some important issues.
The approach is algebraic in nature and makes heavy use of several simple
facts from linear algebra; for example, the spectral decomposition of
special matrices. This approach facilitates some helpful decoupling,

particularly in solving for reflection coefficients.
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B GLOSSARY

(‘r!:"

Y,
T..z:&: 8, b, ¢ generic vectors in R’.

\."

:{-:? A (various) 3 by 3 matrices.
‘B’Q‘

¥

B B(*) boundary operator at x, = 0 surface; equation (17).
:::: Cpr g pressure and shear speeds; above equation (12).

RN

B

,:::: c 3 by 3 matrix used in constructing R; equation (28).
‘(.'g'C

ol D, D’ determinants associated with reflection coefficients;
sl equation (36).

o

2,'*‘:: f constant body force; equation (2).

Sy

e F free space portion of Lamb Green’s function; equation
o’ (18).

e

)
“,: g arbitrary body force; equation (1).
P

f‘:*f G free space Green's function; equation (11).
{ﬁ“ G,, G, portions of G; equation (12),

‘ .
"‘{- h vector associated with horizontal shear wave;
i b

7y .

f equation (8b).

;:' H Green'’s function for Lamb problem; equation (37).

i)
;§|  § 3 by 3 identity matrix; equation (5).

'Y

\,
dag k = (k,,k,;,k,) spatial Fourier transform variables;
g equation (5).
ke
': k = |k| ; below equation (5).

.\
;{,‘ x = k/k ; below equation (5).
,’ k' = (k,,k;) ; equation (18).
Wy
f L(-) basic differential operator in matrix fcrm; equatijon
i

‘::0_' (5).
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ﬁ%“ M(.) operator L(:) - pw®I ; equation (9).
;fﬁ Ny, N, portions of M *; below equation (11).

P vector associated with pressure wave; equation (8a).
;3%' r reflection coefficients, subscripted with p, h, v;
R equation (32).

&

R reflection portion of the Lamb Green's function;

R equation (28).

o\ T transpose of vector or matrix,
u

1]

displacement vector; equation (1).

v
2
1<

vector associated with vertical shear wave; equation

§
i 0 (8c).

L]
I

= (x5,%3,x,) spatial coordinate; equation (1).
"Ej x' = (x,,X,); equation (18).

:,g*. 8() Dirac delta function; equation (2).

: v gradient operator; equation (2),.

A A Laplacian; equation (3).

z| R e small positive number.

A Lamé parameters; equation (1).

;}\‘ p density; equation (1).

Wy 6j eigenvalues; equation (7).

" frequency: equation (2).
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INTRODUCTION

s A .-

The purpose here is to present a somewhat different point of view

toward constructing Green’s functions (matrices) for a variety of problems

- .~

associated with the elastic wave equation. The primary interest of the

PO,

authors is inverse problems for various acoustics and elastic experiments
(e.g. Cohen et al [4] and Boyse and Keller [2]). 1In this regard a clear
view of certain basic principles and a systematic approach to comstructing
Green's functions is particularly important. A convenient setting for such
studies is the frequency domain, hence the emphasis below is in obtaining
the corresponding Green’'s functions. However, some mention is made
regarding techniques for inverting to the time domain,.

The approach taken here is algebraic in nature, making repeated use of
several very elementary properties of square matrices, Consequently, it is
a bit more contemporary in style than that found in most sources and, we
believe, a little more natural. There are of course many high quality
studies of the classical problems discussed here (e.g. Aki and Richards [1],
Cerven} and Ravindra [3] and Johnson [7]) and the suthors lay no claim to
the discovery of heretofore unkmown phenomena, or even methods. The hope is

that the general approach will be useful in attacking new problems in a more

-

straight-forward fashion.
Rather than attempt to discuss things in great generality, we choose to
] illustrate the approach on a well-known problem. In particular, our goal
here will be the construction of the Green’s function for (one statement of)
the Lamb problemy a single traction-free reflecting surface at z = O,

Along the way the "free space” Green's function will be obtained. In order

! to exploit the convenient algebraic properties we tend to Fourier transform
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o as much as possible at each stage. By making use of a simple algebraic
o decomposition of a constant matrix (associated with P, SV and SH modes)

valunable insight is gained and a certain amount of desirable decoupling is

1) facilitated. For example, the nine reflection coefficients are rather
2
3 naturally found by solving three 3 by 3 linear systems (instead of ome 9 by
&
9 system),
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n
K
?

o,y

115t

- -
x oW

- am e &
A

L

FEE

" "l\.
NN

N N N
4‘1",‘\~,~ AT 4'

+
WERLESY | ‘ﬁ . ‘:‘hs W%, ’, "N, M'tﬁ ,.\l’l,

fﬂf(l/:‘ R L PRI TN PR R §
..;_._,«. 8L LA e s AT

Lt
*¢ 37 N
»‘.. ! Y )

F Ay \--:‘*qq.-n._’.‘ Al _'.,




o'
_ef(

g
a. SOME PRELININARIES
3
.
’ The linear equations of elasticity in an isotropic, inhomogeneous media
ﬂi; are given in terms of the displacement vector uw = y(x,t) as

2

o :

pa, u= V(AV-u) + V X (pV X @) + 2(V-uV)u + glx.t) ,
£
a8 (1
fﬂ x=(x_,x_,x ) . t20

o - b § 3 3

)

&

r In particular, we seek various solutions when g(x,t) = 8(x~y)58(t)f where f
-
fﬂ is a constant vector or, later, a constant matrix, Hence, we seek various
]

‘¥

jﬁ Green's functions for this equation. We Fourier transform in time
*

(t Do, u(x,t) > u(x,0)) producing

!

n

: VOAV-u) + VX (uV X u) + 2(VepV)u + po u = -8(x-y)f . (2)

Our attention will focus on the homogeneous, isotropic case in which A,

j 3

i
g: p and p are constants. Then (2) becomes
o
" (A+p)V(V-u) + pAu + po'u = -8(x-y)f . _ (3)
.
u,
‘Q‘ We use the following notation:
e
1. e, x, etc, will denote column vectors. When a row vector is
(AN =
Eﬁ needed, we write e.g. ET. where T denotes transpose.
% 2. The inner product of two vectors is denoted by ng or u'v. The
%
W
. outer (or tensor) product is demoted by ggT and is of course a 3
) by 3 matrix.
;k 3. E. etc. will denote unit vectors: E = !"!l* Moreover, k denotes
i
Sh
, lx .
W
L
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4. k', x', etc. will denote the first two components of k, x:

e‘g‘ E' = (kx'kz)'

5. Fourier transform is defined by

£(t) —>j at e f(ey

g(x) —9] dx o ik°Z g(x) , xeR orR

(Note the difference in definition for time and spatial
transforms. This facilitates the notion of "outgoing” below.)

Some elementary facts from linear algebra are now stated. These facts

are established in about any standard text (e.g. Strang [9), Hoffman and

Kunze [6], or Mostow and Sampson [8]), and can be easily verified by the

reader.

1. Let a2 be a unit vector. The matrix P = ggT is a (orthogonal)

projection matrix (i.e. P>x = P(Px) = Px; moreover, if x is
orthogonal to a then Px = 0). Clearly Px = aa'x = ca, ¢ = 8°%; so
P projects R® orthogonally onto the line spanned by a.

2. Suppose a, b and ¢ are unit vectors and mutually orthogonal. Then

the identity matrix can be decomposed into the three projections;

I = E!T + QQT + E£T~ (This is easily verified by applying both

sides to an arbitrary vector x).
3. Suppose A is a 3 by 3 matrix with orthonormal eigenvectors &, b, ¢

and eigenvalues o6,, 0,, o,, respectively. Then A has the spectral

decomposition

»

N}\' \"'-\F\,"\ ‘ \(" '..‘5_‘.{“‘_. -_ ‘ - '-\. -F -- ‘n ;\ -‘ - ~.(. . e w - 3 g R I e .' I -- - "_." r n:_- _". -_..-_. -...'~n I
p 0 5 R PR . RS AT . . A
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A=o¢ aaT + o bbT + o_cc
1—— 3—— 3

(This is verified by applying both sides to an arbitrary vector

I = a,a + a,b + asc). Finally, if the oj # 0 then A is invertible

and A™' has the convenient expression

-2+ _1 _T,1 _T. .1 T (4)

(This is verified by multiplying AA™* and using fact 2. above).

For vectors in R*®, the following is easily verified:

T
a
[o,v.w] |§T ] —ml +wb ewe’
T
c

5. Suppose Ab = ob, then observe that

(A + eI)b = (ot+e)d ,

i.e. the eigenvalues of A + eI are those of A shifted by

e, and the eigenvectors are unchanged.
Returning to the elastic equations (3), we next Fourier transform the
spatial varisbles (x —k) thus reducing “egr problem to an algebraic one (at

least temporarily). The resulting equation can be written

£ . (5)

(L(E)—pmzl) u(k,0) = e k'Y

where




SRR
,4,{- :’A:.J Y l'. .,

-

1

L(K) = (+p) kKT + yk’I

(A+p) K'KED + px® 1

A+ k' .

Formally, therefore, if no boundary conditions are imposed, the "free”

solution in the transform variables can be expressed
u(k,0) = (L(K)-po 1) e 1K T (6)

In the next section we invert this (k —x) in the simplist possible context,
obtaining the "free space” Green's function. This will make good use of the

above algebraic observations and will set the stage for the subsequent

section where the Lamb problem is considered.
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THE FREE SPACE GREEN'’S FUNCTION

By the free space Green’'s function we mean the matrix solution to (3)
with f = I. Perhaps the easiest way to invert (k -> x) the expression for
u(k,w) in (6) is to first perform the spectral decomposition of the matrix
in (5). This turns out to be surprisingly easy and generally informative.

First, note that it follows immediately from the facts noted sbove that
the matrix A = L(k)-pk?] = (x+p);gT above is a projection operator (omto k):
hence k is an eigenvector with associated eigenvalue (A+p)k>. Moreover, the
only other eigenvalue is zero and the associated (2-dim) eigenspace must be
orthogonal to k, It follows that L(k) = A + pk®I has the same eigenvectors

and (shifted) eigenvalues

2 2

Gk’ + pkt = (F2oxt

Q
]

(7

o = pkz

For convenience we select and denote the eigenvectors as follows,

Associated with o, we take

p=k-x/ [k (82)

where p suggests pressure (or longitudinal) wave. For o, We can choose any

two vectors orthogonal to p. We select

1 1
E = —_— (kl‘—kl’O) = "k*,— (k’o kl'o) (8b)
kl + kz
1 3
= kk.kk.- . (8¢)
v kk' ( lk ' )
- 7 -
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o Note that p, h, v form an orthonormal set. The symbol h suggests the

horizontal component of the shear (or transverse) wave and v syggests the

“ vertical component of shear. In particular, h is horizontal in the sense
1‘3 h.(0,0,1) = 0. 1In the homogenmeous case (p, A and p constant and no body
3& forces), the corresponding waves will remain orthogonal until encountering
ad some form of inhomogeniety or boundary.

A

We can now decompose the matrix L(l_g)—psz using these eigenvectors and

eigenvalues as follows

o rripi

o M(K) = M(k:w) = L(K) - po I
N
by
I: = (01 - pwz) I_)l_’T + (a’ - p(uz) [gl_:T + y_zT] .
.;j Note, once again, the eigenvalues for M have been shifted by pu® relative to
e
] those of L. Assuming o, - po” # 0 8nd 6, - pu® # 0, the inverse of M(k) is
._4
¥y Mot = LT e LT W] . (9)
o G, ~puw o,"pw
\‘._-
Hence, the formal "free” solution to (3) (im (k,w) - space) is
ir‘
MY
s
G alk,m) = M(x)"* e HET ¢ (10)
o)
Y
Ry where M(k)™* is given by (9). To complete the construction of the free
W space Green's matrix G{(x,t;y) it remains to invert transform the matrix in
a4
20 (10), i.e. matrix
e - . -
b Gk wiy) = ¢ Ty ™", (11)
>
l' ]

2 ,‘n _‘r

r

This inversion follows familiar procedures (e.g. see Aki and Richards [1]),

N

P -

=

oy _ﬁ,.),\),. _-‘:\('.v Fey ,,-,. - .(’{"-.-.-‘.‘ .‘- Vo S ."'"V-)""u LTS 2 }u\, Lt L N
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Py,
o
:: but is outlined here for sake of completeness.
bl
. In (9) we replace EQT + !!T by I - pp! (algebra fact 2.
i -
- using (7) we have
'
[
\q
- -1 _ 1 T
- M(k) = = ———pp +——[I'22]
s o, ~pv o,~pw
l(
&t
) 1 1 1 T
SN -
,:‘ G,~pw o, pw G,"pw
s
i

3 2

c - ¢
(‘ = 111 2 I+ l [ a3 s: :Lt ] kkT
3 - p - _ ——
;5 p(csk o) (cpk w )(csk ® )
b

= N (k) + N_(k)
o where
‘.
» ¢t = M2
¥ P p
;
. L]
>, =k
‘:‘ s p
1¥ Hence in this notation,
.{'
3
¥ ; _k'
% G(k,0;y) = e - I [Nl(g) + N,(E)]
W
)
i:\ 26 (k.wiy) + G (k,wiy) .
b.
[
The inversion (k —>x) of G, is standard and proceeds or follows:

B
3
s
D
9
Vg
e,
4
¢ -9 -

AN R W A '-*-*-'J:"-\.-- - Y R . IRV AR LR g
‘o - o .
¥ PR T EN J,\J,- R J, AT _,,\“\ ‘pS SORSAN

$
ISy ‘ ‘k\\l‘ql‘u“qlqlw “‘

above) and

(12)
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Gl(i.w.!)

(13)
(2n)’pc?
s

1§ This triple integral can be evaluated by going to spherical coordinates
ol

)

%,E k 5 (r,08,p). These steps are outlined below in discussing G,. The result,
Dot

after using p = pc:. is

S sy FAgN
:::"I Gl(_x_'(!)nz) ann |z-3 exp [cS |_X_ ZI] I . (14)

'.b{ The more interesting step is the inversion of G; in (12), which we

outline.

kkT
3 2, ——

k- o0)

iy : _

Py st (e c c

%ﬁ G,(x,m;y) = 1 [ dk ik (x7Y) — sz
p(cpk - w)(ec

v wig e

(15)
o 2 3,

P 1l s p dk e“."‘!'!’ 1 kk
A0 8n’ pc?e® ) T (x* - m’/e;)(k’— m’/cs’)"

1, 05) s'p -=

T

N 2 a [ ®
Litdg c - ¢ 3

ey -1 s p|__2 ] ik ik (2P
B 3 2 2 9x.0x = 2 2, 2 2 1 2 .
:”43 8n PeCy i ] (x - o /cp)(k -w/e)

D Note that the term in brackets is a matrix, say B = (bij), with elements

- 10 -
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2 ik« (x-y)
b,, = 3 l dk e - - -
3

T - e - W)
P s

—

Observe that this integral is like the integral for G,, in (13), except for
the additional poles at k¥ = * w/cg. In evaluating the integrals in (13) and
(15) the usual procedure is as follows. Comvert to spherical coordinates,
k 3(r,8,¢), with r = |k| and x-y serving as the "north pole." The angular
integrals are dome routinely; then the r integral is donme by the residue
theorem. As in Aki and Richards [1], one assumes Im(w) 2 O which dictates
that one take the residue integration path with Im(r) 2 0. This results in

the two poles at k = + w/cp and k = + w/cg contributing and gives

Sl Lol 8

In some applications this form of 6 = G, + G, (i.e. in (x, w) domain)

e e

is desirable. If not, the inversion (v —t) proceeds as follows. Referring

to (14) we have

. i

G (x.t;y) = é%- do t.':-imt G (x,0,5) .
V-
)

= i%. do e-mt yem i_! P [ ;f |x-!| ] I E

(]

t L
‘m&(t"!_zl/cs) I .

ﬂ Similarly inverting G’(!,m;!) in (16) leads to

- 11 -




U P T T T T S T T T O P P T P I T T TPy

> z I3
- ;L_l do e-xwt[ 1 ) 1 (elmlx-yllcs - .iml;—y'/cp) ]

3 ]x—y
o 4npw axiaxj - =

1 a’ 1 ® e—i(ot iw -y /e tolzev /e
4np axiaxj [Z“I!TT[ do 3 [e I- I s — e |_ !l p] .

Recognizing the o integral as the second integral (in t) of the delta

functions 6(t—|§—y|/cs) and 6(t-|§-y|/cp). we have

. - 1 az 1 [ _ |£-II _ _ l!_ZI ]
G, (x,t;y) 4np axiaxj [ ==yl L(t ¢y ) - Lt c, ) '

where, if H(t'-t) is the Heaviside function,

t 0, tflrx
L(t-<) = j H(t’'-<) dt’' = .
- t—<x, to<
Note that if the two spatial derivatives were to be carried out om the L
functions in G, one would obtain the delta function character similar to
that in G,(x,t;y) above. Finally G(x,t;y) = G, + G, produces the free space

Green's function in (x.,t) space. )
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THE GREEN'S FUNCTION FOR THE LAMB PROBLEMN

The traction-free boundary conditions at the x, = 0 plane can be
expressed
.
pa’ 0 ual
Bu(x,=0) { 0 nd, 3, ulx ,x,,x,)) =0 , (17)
x=0
3
L2, A9, (A+2p)9, |

where aj = 3/3xj. We are now seeking solutions to equation (3) with f = I
for x, 2 0 and satisfying (17). Because of the restriction (17), we cannot
now fully transform (x —> k) the problem. Hence we begit/py inverting (k, -
x,) the matrix G(k,w;y) given by (11) and (9); this will provide the free-
space portion, F, of the Green's function we seek in (k’,x,.,w) space. Then
we will work on the portion, R, defined below, that will cause (17) to be
satisfied; and our final Green’'s function will be
H=F - R.

We define the free-space portion in (k’,x,)-space by

1 i
F(k'.x ,wiy) = E;.I_m dx, oKy %, G(k,w;y)

(18)

Since the residue theorem is to be applied it is necessary to clearly

identify the poles, relative to k,, for fixed X' = (k k). Consider the

_13_
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WA 3,3 2
c’k?-u? = P x? 3 e

|
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—~~
L
1
|e
A d
]
[¢)
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Lot
+
L.
t
[

"
o
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-
|
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¢ral where

(19)

*»"; and similarly,

[[}
Q
—~
[

I
~

| .‘ 2 3- 3 2 2 3
2'4= csk © S 3 kls
o] (20)

T
g
"
"

/ ’s

e The sgn(w) will be explained below. In this notation we have

\

N F(k',x wiy) =

(21)
R Y -ik"y' ®

b e - = 1 T 1

‘ —z_np‘—l ‘"‘.[:,—(k—,—z—‘_"_’ *—,—,——,—["h”"]]

e p{ks - k,p) cs(k’ - k’s)

P e X T

It remains to select the proper integration paths for the application of the

;|

e,

residue theorem, There are four poles, k, = ¥ k;p » t k,g - (Since p = k/k

._.

L2

g

? and etc. for b and v, there is an apparemt pole for X’ = k"+k: =0. A
]

little algebra shows that there is no pole there). Since we are seeking a
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4
free-space solution due to 8 point source (at x = y) we want our solution }:
\J
0
F(k'.x,,w;y) to be “outgoing” or x, > ¥ ®. (By ‘outgoing” we mean the }
e
following. Should omr F be inverse transformed (w — t) onme would have a £
‘;h
composition of wave forms like expl[-iwt ¥ k,p(x,-y,)] ; and similarly for 3
k’s' For all such forms to be outgoing, for t > 0, it is necessary that .t
sgn(ik,p(x,—y,)) = sgn(w) wunder all conditions). With the specification
N
£
sgn(k,p) = sgn(k,s) = sgn(w) in (18) and (19), it remains to include in our o
)
integration path the poles in (21) by the rule:
v
. - :;
for x, > y, - include poles k’ k,p, k’s 3 3
(22) e,
for x, (y, , include poles k = —k'p' —k's . ?;
o
With the integration paths determined, the residue theorem is applied N
)
fI to (21) producing o
ol .
y <
"4
F(k',x ,o,y) =
759 (23) iy
,'LI -
.-;\ e_l.!' .z' eikjplxj-y' I ~~'r eikjslx]—yj | ~~r ~~T ::il
?, i 2 ') 4 +—_a_z_[-l—‘+!!] :
: P c k c k -

PP s 38

-

2
f. -

§
:*T' where @, Er V are the p, h, v vectors with k; evaluated at the proper pole. 4$
o il
%ﬁ That is, "
o, -
S8 ~ 1 _ T N
.J} Pt (kl.kz.k'psgn(x’ y,)) :
L1 R »

o

1 T
l_l - i—, (kl'-kl'O)

[N
[}

. \
o] 2
w ~ 1 2. T ':\
i gr T I:iT (k,k, gsgn(z,-y,) . kzk’ssgn(x,-y,) ke Eé
Eha A
FENRY where k. = |(k,.k; .k, )| snd kp = [(k kK )| . Note that simce
L] o) ’-“
AL 8
) ol
I:. ) .‘.| ¥
:"".:'i.o , ‘
i - 15 - b,
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1 LI # k,,, the P and ¥ vectors are not orthogonal. However, E remains

4 orthogonal to P and ¥. We will also use the notation

1 T
i i = ema ’ . *
-p k (kx kz ksp)
f vt=—-1-—("'kk *rk - k'|’)T
= kK k' "TT1ag ' T Tatsg ! I °

The wave vectors with the + are associated with the upward moving waves

b
’ (x; > y,) and those with the - with downward moving waves (x, < y,).
X Next we apply the boundary operator B to F; however, we do this in
y )
o (k',x,) - space. Hence define the transform (x' — k') of B in (17) by "
o
F (T8 0 ink
‘e ’ - .
\ B(k .x’) = 0 (T8 ipk, R (24) o
> : +3
" Iin i)\kz (1""2")3' .:').
d 4ni]
s i.e, the operator in (17) with 3, > ik, ., 9, = ik,. -~
9] ..‘.'“b-\
2 Before applying B to F, we will decide the general location of the ‘3:::'
) g
" s
" source, i.e. y. We will assume that y, > 0 (source above the x, = 0 plane). :'\.
“ In the common y, = 0 situation, our point of view will be that y, > 0 first ;—-‘-‘
L) “)
.v
and then one lets y, 0. Hence as we apply boundary operator B to F, at x, '}c t
LM Y«
:‘ = 0, we use the expression of F in (23) with x, ¢ y,. This results in § = '.
‘:
N p » etc. and produces 7
¥ b
o i
o SN
s
" "ﬂ;:
! g
7 T
; ]
-l‘.'t
nt
Q:‘ ¥
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BF(x,=0) = B(g'.x,) F(E'.g’.m;z)

x,=0
., —ik'-y’ -ikx (x -y )
BGkr,x,) |0 T fe ap T Tal T
= 2p 3.3 2 =
c'k
P 3p
-ik (x -y.)
#E2 (T k vy T ] (25)
s 3s x =0
3
“k'-y’ ik, y
_ e & P pgr.-k ) E_B_T
2p czkz sp
p 3P
0 S 4
+ 278 B -k, ) (mh 4 yv D)
c k s
s 3s

where B(k,-k, ) is B(k',x,) with the 3, replaced by the appropriate value of

ik,; i.e. -ik, in the first case in (25); similarly for B(k',-k,.).

’p

Since F accommodates the forcing term (8§(x-y)8(t)I in (x,t)-space) and

has BF(x,=0) given by (25), it remains to find matrix R satisfying the

homogeneous equation with boundary conditions BR(x,=0) = BF(x,=0).

Moreover, as discussed above for F, we want R to be "outgoing” as I, S + o=,

The homogeneous vector equation in (k',x,) space appears

(L(k',x ) ~ po’I) u =10 (26)

where L(k',x,) is L(k) with ik, replaced by 3,. Equation (26) represents a

sixth order ordinary differential equation in that it consists of three

second order equations in x,. Its genmeral solution consists of linear

combinations of six vector solutions; however, all outgoing solutions (as

),r(

Tt
Eg fi. ‘:!:::o h 1‘& ',“‘i 'o"? ’. "“'::?‘ .

1P e
< A n
LG
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2
(X
il
‘gq X, 9 ) consists of combinations of the following three vector solutions
o
o
] .
.':. ik b 4

g, (x5k) =0 P gt

g,‘ ik, x,
1, 2,(x k') = e h (27
k\
"
ik’sx’ .
Y g,(x k') = e vt
¥ N)
2
Ql That these g; solve (26) follows from earlier work on F; however, it is easy
#
o to verify this directly., For example, putting 8 = ¢, in (26) we have
b
o ik
< ! | X
\ Gﬂ (L(E'.x’)-Pm‘I) e P pt
oY ik, 1, . ..
e = e (L(!'-k,p) P ~Pup)
[} »
W
AN _ °1k3px3 ((l+2u)k’p+-pmzp+)
o
"05
o ik x
W,
;: ) =e¢ P ’p (c;kz—w’) g+ =0 ,
s
&4- where we used equations (7) and (20), and in the last two lines
i
] '
k&. 2 = x ’+k:p. The key step in this verification is the first ome, in which
)
o L(§'.x,)exp(ik,p) = exp(ik,p)L(g'.k,p). This is a routine calculation. TIn
K~; the same manner ¢, and ¢, also solve (26). The other three solutions are
{{
A
:}'f the "incoming” (for x, > 0) solutions obtained by using p~, v , —k,p and -
35
b k,, in (26). Since these are of no interest to us, we can express each
%éa column of R(k’',x,;y) as a linear combination of ¢ ,, ¢, and g¢,. Thus, in
Ve
R{s matrix form we have
KX
ﬂ%f
o
;t'::l
b
i
RS - 18 -
o
':t,.‘l,‘d '.l.g.l". ‘“! | W W 0

‘lr'

) 3 A 0"0 \3 A’ 1‘ 'u“w:'o' A TN R Aot ‘ e SEIIAN ‘ .l ';: .
= H L} 1
l. .’1‘-‘\ v . ot ‘ .1‘. 3 " '-il' 'G’.‘)‘c .':.O.c‘l'f.l.‘ .!““'...q l‘hl. .‘_ " l. imm & ﬁ
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=

~—

e
L]

-

[
<

~
]

l(xi;g') ¢
(28)

[21'21'23] c 4

where C = C(k',»;y) is a "constant” matrix (relative to x,). Our remaining
task is to find the nine elements of C so that BR(x,=0) = BF(x,=0). Of
course one wants to avoid solving a system of nine equations for the Cij» sO

we proceed with some care. We return briefy to BF(x,=0) in (25) and rewrite

BF(x,=0) = o B'(-k )p'p"T + aB'(-k_ ) [ hhT + v'v_T ] . (29)
P p - - s st L= - -
where
B'(k ) = B(kx',k ) ,
3 - 3
3
~ik’'-y' ik ¥y
a = ie e p?
P c3 2
p P
E (30)
F —iE"Z' ik;sy;
_ e e
oy = 2 3
c
s 38
Referring to (27) and (28) we have
= ' Y B ' *lec (31)
} BR(x,—O) = 1B (ksp)g , B (k,s)y. B (kss)! .

We now anticipate equating BF{(x,=0), in (29), to BR(x,=0) and work on matrix

C. VWrite
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hh
-T

ar p tal(r h+r v

T -T - T

c r + h +

-1 %o pp us(rhp =T e I

T - -

<, = ar P T 4 as(r l_l +r v T . (32)
P PV - s hv

This is possible since p , h, v are independent vectors. (The ay, ag were
inserted as a convenience, i.e. to cancel shortly with those in (29) above.)

Note that with this form of C we obtain, using (27) and (28),

ik’ x, ik’sx’ ik, x,
R(k'.x,,0;y) = ¥(k',x ;y) C= | e P oot e h,e “° vt ic

(33)
ik x T
= e 'P° +[ r p +ta(r h+r 7) ]
= P PP ~ s hp vp -
ik’sx’ T
+ + ( h + -
e _[ aprph P as thh h b o h 2 ) ]
ik x T
+e °S°? +[ r p talr h+r - ] )
- P pv hv vv -

where ey and a, are defined in (30) above. This follows from the algebra

fact 4. above.

It remains to calculate the nine reflection coefficents. The
computational advantage to the form in (33) is that it expedites the
evaluation of the unknown r’s. We now refer to BR(x,=0) in (31) where C is
defined in (32) and equate the result to BF(x,=0) in (29). In particular,

equating coefficients of B'T, QT. !—T leads to these three 3 by 3 linear

systems:

-,.

RS n"\. " ‘.’**.}:'-"\ «.‘\."- -*’-"\‘-'_

1\\ () 'Q"‘l O OX bg.\' 'Lx'{a

-_._, .-; o
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‘('
.‘9
K B'(-k, )p” = x Bk )pt + B k) e nee vt ] (342)
%f 3p = PP ’p = 1s ph - ) A
v

B'(-k )h = B'(k + ' + + ]
h ( .. rhp ( sp)g + B (kis) [ Tih h Ty (340b)
R
“' + +

B (—kss)! = tva (ksp)g + B (kss) [ Toh h + LI 4 ] . (34¢)
X
'
1 Note in particular that the three systems (34) can each be solved
} independently for the unknowns (e.g, for Top' Tpht Tpv in (34a)). Also note
R that the three systems have the same 3 by 3 matrix of coefficients,
"
Y
E am B ot Bk b B v ] (35)
) ip s - is -
b This fact can of course be used in solving for the r’s by, e.g., inverting A
'Y and multiplying the left sides of (34) by A™*., The terms in A come from
§
\ evaluating the matrices B'(.) = B(k’,-) and vectors g+ and !+ at the values
s of k,p and k,g given by (19) and (20). Similarly the quantities in the
k
X left sides of (34) are evalvated at -k__ and -k,_.
) 'p 's
¥

When the three systems in (34) are solved we obtain
\
[}
\ kKK .
A r =-D'/D, r. =0, r =-4—P_%(x -x')/D,

1244 rh pv kp 58

-0, = -1, =0, 3
‘ rhp 0 Tih 1 Ty 0 (36)
s 4k k k ‘s
‘ r =——3P(x’-x )/D, r,=0, «r__=-D'/D,
3 vp ks s vh vv
; where
‘l.v
r 3 2 ]
o D=4k k k'°+ (k -k’
0 1p s 3s
i' D’ =4k k k'° - (k' k')’ .,
‘ 3p 38 38
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j:: Notice in (36) the various aspects of decoupling that takes place in the
‘N‘\:

'§ reflection matrix R. For example, the middle three equations in (36) state
o8]
- the well known fact that an incidence h (i.e. SH) wave gives rise (in this
!

;;{: setting) only to a reflected h wave, And similarly, incident p and v waves
“):: onl roduce and v components

[ yop P p .

R

‘ In summary, in (k',x,,w)-space, the Green's function for the Lamdb
%

::;:; problem can be expressed

wtid

|’|

..'[.‘

)

‘::::: H(E'.x’.m:g) = F(E',x’.wzz) - R(E"‘,"”‘Z) (37)
X

::": where F is given by (23) and R by (33)., In some applications this form of H
L)

RN

;::0‘ is adequate, while on other occasions it is preferred to have H in

(x.t)space. Unfortunately, a complete closed form inversion back to (x.t)

-:':',;: has not been accomplished. Perhaps the most successful attempt has been the
1

:"f'_:: ingenious methods due to Cagniard and deHoop [5], in which the imversion
- (k' 9x') can be reduced to a single (finite) integral representation for
IS

_-:: H(x,t;y). Illustrations of this technique can be found, e.g., in Aki and
'-'J

g Richerds [1].

Uy

K

e

BN

) »

42

e

v

§

‘ '

e
4

nS

ol

::"l\‘

\/

a2

"‘“’:.1

— - 22 -

.‘jln:'

\ V, Q‘..‘;‘:" .\ 1-.‘ - 7' ! ,ﬂ"(;.... '\ T\ '~ ¥ " P N - \}_\ﬂ‘.}‘.ﬂn'?n g ALK TS o0 \!\'\.._:._.‘w._:\..'. \
T . A?h‘?:i,.,f:,‘v",}"i: n'.:Ei"\:\‘hit_ﬁb.-,:t..:b.;'hq' t.:l::,h.:“':tz‘.:g:‘” ,'A.“ ..ga.!;:‘,‘“!::.l’.:."QJ'Q ...!‘:.'lu..,l ,b.l'oh‘:’!‘:!i.‘!‘:;;h" h o ' N\ ":




hade g W T TYE Y OTWewoew hia S A Boh Moo Ath hla 4. 4 TRy sk ol Jald Sod Sal lol Aal Jiol WHEFNI T TEENETTEN E WG TT I Y

[1] Aki, K., and Richards, P., 1980, Quantitative Seismology, Theory snd
Methods, Vol. 1 and 2, W.H. Freeman.
[2] Boyse, W., and Keller, J., 1986, Inverse elastic scattering in three .

dimensions, J. Acoust. Soc. Am. 79 (2), 215-218.

{31 Cerveny, V., and Ravindra, R., 1971, Theory of Seismic Head Waves,
University of Toronto Press, ¢

[4] Cohen, J.K., Bagin, F.G. and Bleistein, N., 1986, Three-dimensional

T T

Born inversion with an arbitrary reference, Geophysics, 51 (8),
1552-1558.

[5] deHoop, A.T., 1960, Modification of Cagnaird’'s method for solving

seismic pulse problems, Applied Science Research, B8, 349-356.

[6] Hoffman, K., and Kunze, R., 1961, Linear Algebra, Prentice-Hall.

{7] JYohnson, L.R., 1974, Green's function for Lamb's Problem, Geophys. J.
R. Astron. Soc. 37, 99-131,

(8] Mostow, G., and Sampson, J., 1969, Linear Algebra, McGraw-Hill,

[9] Strang, W.G., 1980, Linear Algebra and Its Applications, Academic

Press.

\]

§

v

..

»

",

¢

| .
{

! ]

o

-

4

| j
t

- 23 - -

v

...n.,.o.,. D4 2 ’,.,:. N e o M AN iy e Y IR e N

(RN : )
.‘n" ,- ,..c. .z W, ‘ i ,)“‘s‘ £ g.‘i’“ ¢ 'Cm t-a.\"‘u oty &1\ XY SN \a el "‘v.. oGk, J,.\'\\,ﬁ“ih,cil.o LOUGRY



=

"

W

’ '.l‘

iJ

%} ACKNOWLEGEMENT

o

Ay

. The authors gratefully acknowledge the support of the Office of Naval

fs Research, Mathematics Division, through its Selected Research Opportunities
\I

:ﬁ Program, and the Conscrtium Project on Seismic Inverse Methods for Complex

¥ Structures at the Center for Wave Phenomena, Colorado School of Mines.

8,

d

;t' Consortium members are Amoco Production Company, Comoco, Inc., Geophysical

N ‘\-:

::- Exploration Company of Norway A/S, Marathon 0il Company, Mobil Research and
; Development Corp., Phillips Petroleum Company, Sun Exploration and Research,
- Texaco USA, Union 0il Company of California, and Westerm Geophysical.

; »

by

A

g

N
RS
\

¥

(A

>

e

»

o

£ LI =P

-

-

AR

..24_

.-’-x~‘.\-'-‘.\

»
'.. 7’(‘"’ "')". .ff. -v Kot *'?' --"",: ':f:-‘.:-"v’.\\': (.; 7"{1“.‘:“. -l':" ) 1’ \..;"' < \“ \(l', \ \ H‘

et
‘r <7 \)5 3N
‘ Y ""'(‘4 . ,«.f‘,u ) " AR -{i x‘;-»\.n,a B N M ;h. .,,k‘h". A"."- tha i .'~ "‘n "5’- "ﬁ'




- ad

SR

Y
a as md

- o

Y
W ¢ t"‘.»",;“

Wt

— TR TS T Y

SECURITY CLASSIFICATION OF THIS PAGE (Phen Dats Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

. REPOAY NUMBER ]’z. GOVY ACCESSION NO.

RECIPIENT'S CATALOG NUMBER

CWP-042
4. TITLE (ana Subdtitle) S. TYPE OF REPORT & PERIOD COVERED
SOME ALGEBRAIC ASPECTS OF THE LAMB PROBLEM Technical
6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) 3. CONTRACT OR GRANT NUMBER(s)
David S. Gilliam and Frank G. Hagin N0O014-84-K-0049
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::3?".‘30‘-."-53S."r’n’u'lf.‘;'fs’ TASK
Center for Wave Phenomena NR SRO-159/84APR20(411)
Colorado School of Mines
Goldepg, CO 80401
1. CONTROLLING OFF|CE NAME AND ADDRESS 12. REPORT DATE
Office of Naval Research November 1, 1986
Arlington, VA 22217 13. 1;:!EROFPAGES
4. MONITORING AGENCY NAME & ADDRESS(!! di{ferent from Controlling Ollice) 18. SECURITY CLASS. (of thie repory)
Unclassified
1Sa,

DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

distribution is unlimited.

This document has been approved for public release and sale;

its

17. DISTRIBUTION STATEMENT (of the adbatract entered in Block 20, I different fros Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)

elastic waves, Green's function, inversion.

20. ABSTRACT (Continue on reverse side If necessary and tdentify by dlock number)

l\‘;»‘

i

KoM

TI F I NOV 688 (S 08SOLETE
VAN T3 EDITION O (o]

0D 1473

S/N 0102-014-4801

R

G Ve o‘* ¢" ‘b‘v" v‘\;‘,ﬁ.c. N i

s 'l
‘.h £y .."!S ;‘i .‘3

'|
.‘f " “‘l. l'\?‘. i"u 1 Q! '*i“

SECURITY CLASSIFICATION OF "HI8 PAGE (Fhen Data Entered)

® gt ﬂ
W ﬂ'

h""‘&‘l" W,

- L3
s e
"' W %\
".h‘o'. okl

n‘

TN TN N TN PN TN PN SN W IN ¥ Y Y VOwrrvywy

¥
e




“ saleaad Bna Ead o g o g o) L s o T IY PrTr  T TTT WTr TWE W I TN T E Er EN T EDr E I r I T I ETOT WTR T I Y rTea
2
e
J‘: SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered!
¥y
e
% Block 20
n
ABSTRACT
.
: This paper discusses the classical Lamb problem for the elastic wave
", equation. The motivation, for the authors, is to be able to conveniently
: construct Green's functions (matrices) for later use in formulating and
.‘ . . . .
A solving various inverse problems. For example, we will want to be able to
solve for perturbations from constant reference densities and Lame
‘ﬂq parameters. Hence, Green's function for the homogeneous isotropic equation
i: is discussed. Due to the scattering taking place in inverse problems it
.:. is usually impossible to retain the P-SV and SH decoupling; hence, we do
%{ not pursue this decoupling in the formation of the Green's functions herein.
Lo 2L
While nothing conceptually new is presented here, the approach is a
Ef bit different and, we believe, is helpful in isclating some important
gt& issues. The approach is algebraic in nature and makes heavy use of several
LA . - . . .
‘@2 simple facts from linear algebra; for example, the spectral decomposition
sJ of special matrices. This approach facilitates some helpful decoupling,
> ’ . . . oo .
N particularly in solving for reflection coefficients.
)
RS
32
'_\
.
»
A
[
1, :
2,
i
' L]
2
&f
s
4
Vel
3 -,
¢
t
i5¢
&
Ny,
L]
;
5
A
W)
..‘.
e
W
b
Jhy
&
I.'
Y,
SECURITY CLASSIFICATION OF Twi$ PASE When Date Fntered)

-~
r('

-

i
AN

S}Nx’ SRS xf\S\' YRR \fu e ‘{. ALY, CY ﬂﬂ\F\ WSty
. o
ARG .¢. 8 ' NWEIAAY "O NEHLGS ‘s .t'»

ACHRRERE R A S A s s.'
MR LI NI o . -"'r._¢ 4):5" ‘

ALATALMAIAY ALY l‘d‘:




TETTINY WY TRI T T T T

¥
By
W
5
A
)
y,
*,
"
o
[E
o4
..:' {
o
Y
Ayt
L)
c":-
{
(
L) !,
W

.'“
w
%

DS S A R R A S A L S S A LN TN CA O C U LPNCLIOELN Py AOR LA AN A L PR i AR e T TR N T



