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SABSICr

This paper discusses the classical Lamb problem for the elastic wave

equation. The motivation, for the authors, is to be able to conveniently

construct Green's functions (matrices) for later use in formulating and

solving various inverse problems. For example, we will want to be able to

solve for perturbations from constant reference densities and Lam

parameters. Hence, Green's function for the homogeneous isotropic equation

is discussed. Due to the scattering taking place in inverse problems it is

usually impossible to retain the P-SV and SH decoupling; hence, we do not

pursue this decoupling in the formation of the Green's functions herein.

While nothing conceptually new is presented here, the approach is a bit

different and, we believe, is helpful in isolating some important issues.

The approach is algebraic in nature and makes heavy use of several simple

facts from linear algebra; for example, the spectral decomposition of

special matrices. This approach facilitates some helpful decoupling,

particularly in solving for reflection coefficients.
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GLOSSARY

a, b, c generic vectors in R3.

A (various) 3 by 3 matrices.

B(.) boundary operator at x3 = 0 surface; equation (17).

CP, c s  pressure and shear speeds; above equation (12).

C 3 by 3 matrix used in constructing R; equation (28).

D, D' determinants associated with reflection coefficients;

equation (36).

f constant body force; equation (2).

F free space portion of Lamb Green's function; equation

(18).

9 arbitrary body force; equation (1).

G free space Green's function; equation (11).

G1 , G2  portions of G; equation (12).

h vector associated with horizontal shear wave;

equation (8b).

H Green's function for Lamb problem; equation (37).

I 3 by 3 identity matrix; equation (5).

k = (kl,k2,k,) spatial Fourier transform variables;

equation (5).

k = jkI ; below equation (5).

k = k/k ; below equation (5).

k' = (kl,k , ) ; equation (18).

L(-) basic differential operator in matrix fcrm; equation

(5).
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M(.) operator L(.) - pw=I ; equation (9).

N1 , N2  portions of W-1 ; below equation (11).

P vector associated with pressure wave; equation (8a).

r reflection coefficients, subscripted with p, h, v;

equation (32).

R reflection portion of the Lamb Green's function;

equation (28).

T transpose of vector or matrix.

U displacement vector; equation (1).

v vector associated with vertical shear wave; equation

(8c).

=- (x,,x2,x,) spatial coordinate; equation (1).

xf = (Xl,x,); equation (18).

8(-) Dirac delta function; equation (2).

V gradient operator; equation (2).

A Laplacian; equation (3).

a small positive number.

Xp Lam6 parameters; equation (1).

P density; equation (1).

eigenvalues; equation (7).

frequency: equation (2).

L
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INIOM -rON

The purpose here is to present a somewhat different point of view

toward constructing Green's functions (matrices) for a variety of problems

associated with the elastic wave equation. The primary interest of the

authors is inverse problems for various acoustics and elastic experiments

(e.g. Cohen et al [41 and Boyse and Keller [2]). In this regard a clear

view of certain basic principles and a systematic approach to constructing

Green's functions is particularly important. A convenient setting for such

studies is the frequency domain, hence the emphasis below is in obtaining

the corresponding Green's functions. However, some mention is made

regarding techniques for inverting to the time domain.

The approach taken here is algebraic in nature, making repeated use of

several very elementary properties of square matrices. Consequently, it is

a bit more contemporary in style than that found in most sources and, we

believe, a little more natural. There are of course many high quality

studies of the classical problems discussed here (e.g. Aki and Richards [11,

Cerveny and Ravindra [31 and Johnson [7]) and the authors lay no claim to

the discovery of heretofore unknown phenomena, or even methods. The hope is

that the general approach will be useful in attacking new problems in a more

straight-forward fashion.

Rather than attempt to discuss things in great generality, we choose to

illustrate the approach on a well-known problem. In particular, our goal

here will be the construction of the Green's function for (one statement of)

the Lamb problems a single traction-free reflecting surface at z - 0.

Along the way the "free space" Green's function will be obtained. In order

to exploit the convenient algebraic properties we tend to Fourier transform

-- -



as much as possible at each stage. By making use of a simple algebraic

decomposition of a constant matrix (associated with P. SV and SH modes)

valuable insight is gained and a certain amount of desirable decoupling is

facilitated. For example, the nine reflection coefficients are rather

naturally found by solving three 3 by 3 linear systems (instead of one 9 by

9 system).
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so= LIEINARIIES

The linear equations of elasticity in an isotropic, inhomogeneous media

are given in terms of the displacement vector u = u(x,t) as

2

oat u= VO.V-u) + V X (pV X u) + 2(V-pV)u + g(x.t)

(1)

x=(x,xz,x s) , t - 0

In particular, we seek various solutions when g(x,t) = 6(x-y)8(t)f where f

is a constant vector or, later, a constant matrix. Hence, we seek various

Green's functions for this equation. We Fourier transform in time

(t -4w, u(x,t) -4 u(x,w)) producing

P~i I
V(XV-u) + V X (pV X u) + 2(V.pV)u + po u = -B(x-Y)f (2)

Our attention will focus on the homogeneous, isotropic case in which X,

p and p are constants. Then (2) becomes

(X+_)V(V.U) + PAU + PW2 u = -6(X-y)f (3)

We use the following notation:

1. u, x, etc. will denote column vectors. When a row vector is

needed, we write e.g. uT, where T denotes transpose.

2. The inner product of two vectors is denoted by uTv or u-v. The

outer (or tensor) product is denoted by MyvT and is of course a 3

by 3 matrix.

3. k, etc. will denote unit vectorst k = k/ak_. Moreover. k denotes

-3-
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4. k'. x', etc. will denote the first two components of k, x;

e.g. k' = (k1 ,kz).

5. Fourier transform is defined by

f(t) -* dt e i 1Af(t)

'0

g(x) -cc dx e ik'x g(x) x e or R3

(Note the difference in definition for time and spatial

transforms. This facilitates the notion of 'outgoing" below.)

V Some elementary facts from linear algebra are now stated. These facts

are established in about any standard text (e.g. Strang [9], Hoffman and

Kunze [6], or Mostow and Sampson [8]), and can be easily verified by the

reader.

1. Let a be a unit vector. The matrix P = aaT is a (orthogonal)

projection matrix (i.e. P1x = P(Px) = Px; moreover, if x is

orthogonal to a then Px = 0). Clearly Px = aaTx = ca. c = a'x; so

P projects R3 orthogonally onto the line spanned by a.

2. Suppose a, b and c are unit vectors and mutually orthogonal. Then

the identity matrix can be decomposed into the three projections;

I = aaT + bbT + ccT. (This is easily verified by applying both

sides to an arbitrary vector x).

3. Suppose A is a 3 by 3 matrix with orthonormal eigenvectors a, b, c

and eigenvalues al. o2, 0,. respectively. Then A has the spectral

decomposition

.J.

- 4-



A= aaT + o + cc
1--- 2--- 3---

(This is verified by applying both sides to an arbitrary vector

x = all + a2b + a3c). Finally, if the oj A 0 then A is invertible

and A- ' has the convenient expression

A- 1 aa T + 1 bb T + 1 ccT- - -- 0-c 4
Y1 -- a2 -- C3

(This is verified by multiplying AA-1 and using fact 2. above).

4. For vectors in R3, the following is easily verified:

T

[uTwT T
u,v,w] IbT =ua + vbT + wc

5. Suppose Ab = ob, then observe that

(A + eI)b = (o+e)b

i.e. the eigenvalues of A + eI are those of A shifted by

e, and the eigenvectors are unchanged.

Returning to the elastic equations (3). we next Fourier transform the

spatial variables (x -4k) thus reducing' Qr problem to an algebraic one (at

least temporarily). The resulting equation can be written

(L(k)-p,,2 1) u(k,w) = e-  f (5

where

-5-
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L(k) = (X+p) kkT + pk'I

= (X+p) k2k;T + pk 2 I

= A + PkIl

Formally, therefore, if no boundary conditions are imposed, the "free"

solution in the transform variables can be expressed4,4

u(k,w) = (L(k)-pw IY 1 e- (6)

In the next section we invert this (k --)x) in the simplist possible context,

obtaining the "free space" Green's function. This will make good use of the

above algebraic observations and will set the stage for the subsequent

section where the Lamb problem is considered.

4-r
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T= FRM SPACE GRERN'S FUN TION

By the free space Green's function we mean the matrix solution to (3)

with f = I. Perhaps the easiest way to invert (k -*x) the expression for

u(k,w) in (6) is to first perform the spectral decomposition of the matrix

in (5). This turns out to be surprisingly easy and generally informative.

First. note that it follows immediately from the facts noted above that

the matrix A = L_-0k_ = (X+p)kkT above is a projection operator (onto k);

hence k is an eigenvector with associated eigenvalue (X+p)k2 . Moreover, the

only other eigenvalue is zero and the associated (2-dim) eigenspace must be

orthogonal to k. It follows that L(k) = A + pk2 I has the same eigevvectors

and (shifted) eigenvalues

-' = (X+P)k2 + Pk = (X+2p)k2

(7)
2

For convenience we select and denote the eigenvectors as follows.

Associated with ol we take

pkk/ kl (8a)

where p suggests pressure (or longitudinal) wave. For Y2 we can choose any

two vectors orthogonal to p. We select

h = I (k -k .0) -L (k2 ,-k ,0) (Sb)
21  1 k

1 2

v - 1 (k k kk -Jk'J) (8c)
kk' 1 3 2 3

-7-



Note that p, h, v form an orthonormal set. The symbol h suggests the

horizontal component of the shear (or transverse) wave and v suggests the

vertical component of shear. In particular, h is horizontal in the sense

h.(0,0,1) = 0. In the homogeneous case (p, X and p constant and no body

forces), the corresponding waves will remain orthogonal until encountering

some form of inhomogeniety or boundary.

We can now decompose the matrix L(k)-pw 2I using these eigenvectors and

eigenvalues as follows

M(k) = M(k;w) a L(k) - pwI I

( a - poJ ) ppT + (a I - p 1) hh + vv T

I 2 J

Note, once again, the eigenvalues for M have been shifted by pwz relative to

those of L. Assuming a, - pw2 A 0 and o2 - pW2 # 0, the inverse of M(k) is
-4

M(k)- I = 1 pT + 1 [T+ vv]Tl (9)
%1.

Hence, the formal "free" solution to (3) (in (k,w) - space) is

u(k,,)) = M(k)- , e ik)y f (10)

where M(k)-1 is given by (9). To complete the construction of the free

space Green's matrix G(x,t;y) it remains to invert transform the matrix in

(10), i.e. matrix

G(k,w;y) a e- M(k) (11)

This inversion follows familiar procedures (e.g. see Aki and Richards (11),

-8-
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Abut is outlined here for sake of completeness.In (9) we replace hhT + vvT by I - ppT (algebra fact 2. above) and

using (7) we have

1 T + 1 1 T]

o 1 -pw a -pb -

I + _ kk T

p (c k 2-t I P (c~k2-w2)(c~k2-t) --

.p s

N,1 W____) + N2( W )

--

where

c 2 P--

r, P P

. Hance in this notation,

G(k,w;y) 0 --7 [N,( _ W N 2_ W

-G I (k. o; V) + G 2(k~ow;y).

~The inversion (k --)x) of G i is standard and proceeds or follows:

N XV -*p,

r5 e p

Hec n hsnoain



- -- - - - - -

S "~ (13)

r dk ei - ) - 1

*(2,T'pc~i k 2- W2 C

This triple integral can be evaluated by going to spherical coordinates

k -4(r,8,f). These steps are outlined below in discussing G.. The result.

after using p = pc2, is

U (X,(O;y) - 1 exp I '~1I .(14)

T- t -lP F-YT [ cs

The more interesting step is the inversion of G 2  in (12), which we

outline.

ck(xy - c pT
G -(Xt j dk e 2-'2 2 2-p kk

-- (270) -p(c 
2 k- W )(C k W

V p
(15)

2 2 CD

1 cSik.(x-y) 1T- J2 dk e- 2- (02/C 2____
pR P 20 - (k 2 

-W
2/c2)(k2 - Ic )

S p -cc p

-1 - a2  d e ik-(x-y)1

8ff jCC ax 1 ax~ j (k 2  a/C 2 ) )(k2 - 2) J

s p L -m

Note that the term in brackets is a matrix, say B =(bij). with elements

- 10



a ik- (x-y)
ij ~ dx (k2j - w1/c)(k 2 -W

2
/c)

p s

Observe that this integral is like the integral for GIL# in (13). except for

the additional poles at k w /cs In evaluating the integrals in (13) and

(15) the usual procedure is as follows. Con-,art to spherical coordinates,

k -4(r.0,0), with r = Ifi and x-y serving as the *north pole." The angular

integrals are done routinely; then the r integral is done by the residue

theorem. As in Aki and Richards (11, one assumes Im~W 2 0 which dictates

that one take the residue integration path with Im(r) 0. This results in

the two poles at k = + w/c pand k = + to/c1 contributing and gives

(x~w;y) - 1 a [ (e ito x-I/c -I C5 - W I-Ic (16)
2 - 4npto) a ax.x LXY Ixy I

In some applications this form of G = Gi+ Ga (i.e. in (x, to) domain)

is desirable. If not, the inversion (wo -Wt proceeds as follows. Referring

to (14) we have

G1(x.t;y) 1 d. e itot G I(x.y)

dw eltot 1 exp 'w±
2fJ 4 n13I-Il c 5 !Z

Similarly inverting G,(x,ta;y) in (16) leads to

0 11



~G (xzt; y)

1ik d, 1 4n2a 1 ~ . (e iWISZYI/Cs - 0iWIJ*!I 1/C P)J

41tp 
8 x)Z T! 7

1 O d • ei l-- l/cs - iwli-YI/c 1+, OZOZJ j 2n1_-_I.I  dw ea -W

Recognizing the w integral as the second integral (in t) of the delta

functions U(t-I_-fl/cs) and 6(t-x-7I/cp), we have

G (x,t;y) = - az Lt - --1 - Lt-
2- - 4 jrp axzaX j  T F c C JJip p

where, if H(t'--) is the Heaviside function,

i t O , t-<L(t-) = J H(t'-) dt' = I

Note that if the two spatial derivatives were to be carried out on the L

functions in G. one would obtain the delta function character similar to

that in Gl(x.t;y) above. Finally G(x.t;y) = G, + G, produces the free space

Green's function in (x,t) space.

I"

-12-
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THE GREEN'S FUNCTION FOR TE LAMB PROKM

isa

The traction-free boundary conditions at the x3 = 0 plane can be

expressed

PE3 0 Pa1

Bu(x,=0) 0 Pa3  Pa z u(x 1 x 9 x,)1 1= 0 = 0 (17)

-. ) a2 (X+2p)a

where a. a xj. We are now seeking solutions to equation (3) with f = I

for x 0 and satisfying (17). Because of the restriction (17). we cannot

now fully transform (x --) k) the problem. Hence we begin by inverting (k. --

x3) the matrix G(k,w;y) given by (11) and (9); this will provide the free-

space portion. F. of the Green's function we seek in (k',xw) space. Then

we will work on the portion, R, defined below, that will cause (17) to be

satisfied; and our final Green's function will be

H = F - R.

We define the free-space portion in (k',x)-space by

-D

(18)

= 2.1  dk ' I • -epik + hhT +

Since the residue theorem Is to be applied it is necessary to clearly

identify the poles, relative to k,, for fixed k' = (kizlka). Consider the

- 13 -



(reciprocal of) first term involving a pole above,

2 2

c 2 k-w = c2 (k2- ) = c2 (k2 + k2_ {0)
p p c 2

P p

-c 2(k
2 - k2

p 2 ap

where

k3p sgn(wo) C2 - k' (19)

p

and similarly,

c = c 2 k 2s s 8 ss

(20)

k3s sgn(w) 2 - 1
C s

The sgn(w) will be explained below. In this notation we have

F(k',x W;y)

(21)

a0 dy I ppT + " + vv Tj
2fp _ 1 c0 2(k 2 ) c k2(k,)hh vv - k2.)

It remains to select the proper integration paths for the application of the

residue theorem. There are four poles. k, = ± k , ± ks (Since = k/k

25

and etc. for h and v, there is an apparent pole for k2 = k +k = 0. A

little algebra shows that there is no pole there). Since we are seeking a

- 14 -
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free-space solution due to a point source (at x = y) we want our solution

F(k',x 3 ,w;y) to be "outgoing' or x, -4 - =. (By 'outgoing' we mean the

following. Should our F be inverse transformed (w -- t) one would have a

composition of wave forms like exp[-iwt - kp(X3 -Y3 )] ; and similarly for

k 3 s. For all such forms to be outgoing, for t ) 0, it is necessary thatsi
sgn(±kp(z,-y3 )) = sgn(w) under all conditions). With the specification

sgn(k 3p) = sgn(k~s) = sgn(w) in (18) and (19), it remains to include in our

integration path the poles in (21) by the rule:

for x ) y , include poles k = k p, k
33 'p 35

(22)

for 13 ( Ys , include poles k, = -kp, -kJS

With the integration paths determined, the residue theorem is applied

to (21) producing

4|
F(k',x,W,y) =

(23)

Se-ik'- e kspix - y ' l -iT + eik sIxI-Y81[ . .+ ;r

2P c 2k a ckak J
p SP 5 I

where -h, 7 are the p. h, y vectors with k, evaluated at the proper pole.

That is,

(k k,k sgn(x -y ))

p 1

=: h = h = . - (k, ,-k 1 0) r  M

- = 21z- (k1 k 1.y) rk'

v= ksgn(x , k ,ksgn(x -y. ) , - z)r

where k. = I(k,k 1,k,,)l and kp = I(k,.kzksp)I . Note that since

- is - .--



#kp A k, the j and i_ vectors are not orthogonal. However, remains

orthogonal to P and V. We will also use the notation

}1

P+_ (k,k, )T
- k 1 2 1

p

1T
_ (±±k kks Ik T2kk 1 ' + 11 ' - Ik') T

The wave vectors with the + are associated with the upward moving waves

(xs > ys) and those with the - with downward moving waves (x. < y,).

Next we apply the boundary operator B to F. however, we do this in

(k',x,) - space. Hence define the transform (x' -- k') of B in (17) by

pas 0 ipk1

B(k',x) = 0 pa ipk J (24)
:. ik I  ik.k (X+2p)8

i.e. the operator in (17) with a1 --) ik, a - ik" s.

Before applying B to F, we will decide the general location of the

source, i.e. y. We will assume that y. > 0 (source above the x. = 0 plane).

In the common y. = 0 situation, our point of view will be that y, ) 0 first

and then one lets y3 -0. Hence as we apply boundary operator B to F, at xs

- 0, we use the expression of F in (23) with x. < y3. This results in =

, etc. and produces

16
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BF(x =0) Bl~ B (k', ,Dw;Y)~

-e Bk'_'y' ) -i 0p (x p -y a -
-~', 3 2p c 2 ck'

I p 3p

e-ik 3S(x 3 -y) 3hhT + v-v TJJ()

s 3s 1X=

3S3

ik3; ~e. ic~ in th fis:csk n 2) smlrl o B(k',-k..)

+ 2 (k' -k )W 2h 1)u=0(6

where B(k',-k,~) is (k) with te , replaced by Euten apprpreslet of

sh order grivny (25)erenil remain tfind mhati consaisfying thee

heoone equations ith boundageryl condition consists ofx li0).

comeihmon os vector eqlutionsin however, sace appearngsouin(a

(L~kx )- P~ I) = 0(26

Jill,- 4.

w e L fif sLk ih k elcd b , quto 2) rpeet



13 ) )consists of combinations of the following three vector solutions

ik x

=e ik h (27

1k x,

t,(x ;k') =e ikx V+

That these fi solve (26) follows from earlier work on F; however, it is easy

to verify this directly. For example, putting u =in (26) we have

a"(L(k',x 3)-pw' aI) a ik 'P x3 p +

- k x

e i 3p 3 (L(k',k 3p +32+)

ae ik spx, ((X+2p)k'p +- PW 2 2

a ikjx 3 (c Ok - w) p + =0
p-

where we used equations (7) and (20), and in the last two lines

k1 = k 1 -i- The key step in this verification is the first one, in which

L(k , x,)exp(ik, p) = exp (ik,P)L(k',k,p). This is a routine calculation. In

the same manner t. and f. also solve (26). The other three solutions are

the "~incoming" (for x, > 0) solutions obtained by using p, ,-kp and -

k in (26). Since these are of no interest to us, we can express each

column of R(k', ',;Z) as a linear combination of and ,. Thus, in

matrix form we have

- 18
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R(k',x 3 w';y) = I x ;k') C

= ~ ~(28)

where C = C(kl,w;y) is a "constant" matrix (relative to x3). Our remaining

task is to f ind the nine elements of C so that BR(x 3 0O) BF(X3 =0). Of

course one wants to avoid solving a system of nine equations for the cij, so

we proceed with some care. We return briefy to BF(x,=O) in (25) and rewrite

BF(x ,=O) =aB'(-k )P-P-T + a B'(-k) hh T + V v-T) (29)

where

B'(k ) B(k'.k 3

i-ikI.y' eik Ipy

a

p 3p

(30)

i-ik'.y' eik 3sy
a is c 2 a

Referring to (27) and (28) we have

BR(x 3=0) = I 'k 3 p+, B'(k 3S)h, B'(k 3s)v~ + (31)

We now anticipate equating BF(X3=0), in (29). to BR(x,0O) and work on matrix

C. Write

-19 -
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" T -h - TI4 a r p + a (r h + r v_ ppp - s h- vp- )
C CTaprp p-T + (r h+r v- (32)

phL s hh - vh -

C 2p pv p S hv - vv-

This is possible since p-, h, y- are independent vectors. (The ap, as were

* - inserted as a convenience, i.e. to cancel shortly with those in (29) above.)

Note that with this form of C we obtain, using (27) and (28),

ik3px ik xI ik3s
R(k',x',;y) = (k',x y e , h. e v+

(33)

eik 3p x3 p+[ Ppp-+a(rhp h -) IT

A. -h p vp -

ik x
S e arp p- + as(r h + r v)

ik x s T

+ e [aprpv a (r h + r vv [-

where ap and a s are defined in (30) above. This follows from the algebra

fact 4. above.

It remains to calculate the nine reflection coefficents. The

computational advantage to the form in (33) is that it expedites the

evaluation of the unknown r's. We now refer to BR(x3 =0) in (31) where C is

defined in (32) and equate the result to BF(x 3 =0) in (29). In particular,

equating coefficients of p-T, hT, v-T leads to these three 3 by 3 linear

systems:

- 20 -
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B'(-k p)p- = r B'(k sp)p+ + B'(k S) r h + r v+  (34a)- pp p- '5 Lph - pv- -

B'(-k s)h = r hpB'(k p)p+ + B'(k s) [rhh h + r v v +  (34b)

B'(-ks )v- = rvpB'(k )+ + B'(k s) rvh h + rvv v . (34c)

Note in particular that the three systems (34) can each be solved

independently for the unknowns (e.g. for rpp, rph# rpv in (34a)). Also note

that the three systems have the same 3 by 3 matrix of coefficients,

A I B'(k )2 + , B'(k )h , B'(k )v+] (35)
L 3p is - - J

This fact can of course be used in solving for the r's by, e.g., inverting A

and multiplying the left sides of (34) by A- '. The terms in A come from

evaluating the matrices B'(.) = B(k',-) and vectors p + and v+ at the values

of k3 p and k 3  given by (19) and (20). Similarly the quantities in the

left sides of (34) are evaluated at -kp and -kas.

When the three systems in (34) are solved we obtain

k k'k

r = -D'/D rph = 0 rpv = -4 2p s (k -k' /D.pp phpvk 35s~P

rhp = 0, rhh -1, rhv = 0, (36)

4k€ k k k,

r = 1 (k2 -k)/D r = 0 , r =D'/D
vp k s  s vh vv

where

D = 4k k k'2 + (k2 -k' )
2

3p is is

D'= 4k k k' 1 - (k1 -k'
sp 28 33
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Notice in (36) the various aspects of decoupling that takes place in the

reflection matrix R. For example, the middle three equations in (36) state

the well known fact that an incidence h (i.e. SH) wave gives rise (in this

setting) only to a reflected h wave. And similarly, incident p and v waves

only produce p and v components.

In summary, in (kx ,w)-space, the Green's function for the Lamb

problem can be expressed

H(k',x ,;y) = F(k',x ,w;y) - R(k',x ,w;y) (37)

where F is given by (23) and R by (33). In some applications this form of H

is adequate, while on other occasions it is preferred to have H in

(x,t)space. Unfortunately, a complete closed form inversion back to (x,t)

- has not been accomplished. Perhaps the most successful attempt has been the

ingenious methods due to Cagniard and deHoop [51, in which the inversion

(k' -4x') can be reduced to a single (finite) integral representation for

H(x,t;y). Illustrations of this technique can be found, e.g., in Aki and

Richards [1].

'S
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