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INTRODUCTION

If energy degradation (Coulomb loss) and pitch-angle diffusion can be

neglected, then the radial transport of magnetos'pheric ring-current ions is

governed by an equation of the form

af/at - L2 (a/L) [ E(DLL/L 2 ) (a/aL)] - (F/T q)

where f is the phase-space density at fixed M and J (first two adiabatic in-

variants), DLL is the diffusion coefficient for transport in L (dimensionless

shell parameter), 0 is the third adiabatic invariant (inversely proportional

to L), and T is the ionic lifetime against charge exchange. Jentsch [19841q _ _

has described a method for obtaining approximate steady-state solutions of

this equation when DLL is exactly proportional to a fixed power (P) of L,

i.e., when D is exactly proportional to a fixed power (4-P) of 0. The pur-

pose of the present work is to describe an alternative method for obtaining

time-dependent as well as steady-state solutions of (1) while permitting the

dependence of DLL upon L (or equivalently, of DC upon D) to deviate somewhat

from a strict power law.

The alternative method is highly advantageous because even the simplest

dynamical models for magnetospheric radial diffusion lead to diffusion co-

efficients DLL that deviate in fact from strict power laws except in certain

limits. For example, the standard model [e.g., Cornwall, 1972; Schulz, 1983]

for charged-particle diffusion in a dipolar magnetic field leads to a diffu-

sion coefficient of the form

1X0- 10 L10 da-1

DyLL yZM0) [2D(y)/T(y)]2 + 10-6 L

+ 7x 10-9[Q(y)/180D(y)]2L10 day - , (2)
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where y is the sine of the equatorial pitch angle a0 , y is the ratio of rela-

tivistic mass m to rest mass m0, Z is the integer that specifies charge

state, and M0 a I GeV/gauss. The auxiliary functions Q(y), D(y), and T(y) in

(2) are well approximated [Schulz and Lanzerotti, 1974, pp. 20, 21, 44; Da-

vidson, 1976] by the algebraic expressions

48Q(y) = - 27.12667 - 45.39913y + 5.88256y8, (3a)

D(y) = 0.4600577 + 0.1066154y3 /4 - 0.1997662y, (3b)

and

T(y) =1.3801730 - 0.6396925y 3/ (3c)

A further complication is that y and y in (2) typically vary with L at fixed

M and J. The variation of y is given approximately (Chen and Stern, 1975] by

-2 0.3454/3 00665/3 r2 1 4
y 1 + 1.38048X - 0030425 4  + 010066X + [X/2T(0)] 2(4)

where X (La/8m0 M)12 J, a is the radius of the earth, and A is the earth's

magnetic moment. The variation of y with L is given by

2 (M/3a3y2m 2
y 2 + (24/Laymc), (5)

where c is the speed of light. The limiting cases X - 0 (J 0) and X - m
2

(M - 0) correspond to y - 1 and y - 0, respectively, but X - implies M/y

1 2 La/324mo[T(0)] 2 upon evaluation of the indeterminate form.

TRANSFORMATIONS

The factors [2D(y)/y 2T(y)] 2 and [Q(y)/180D(y)] 2 in (2) vary approximate-

ly as powers of L (Schulz and Lanzerotti, 1974, pp. 91, 93]. The exponents

of L are given by
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a Y Yy) 10 yT'(y) 1 Y(y) 0, y - I
2L- In 2 Y- 10 -+- (6a)

aL y 2T(y) MJ 24D(y) T (y) T(y) 2, y - 0

and

2L - l Q(&x2 I' [yD)(Y YQ (Y -- Y 0' (6b)aL D(y) L 2D(y) 2Q(y) J T(y) 0, b 0

respectively, where [Schulz and Lanzerotti, 1974, pp. 20, 211

.. .. = (7a )

aI nM,J - -4T(y) -1/2, y - 0

and

Y(y) 2yf (y'f T(y') dy' - 6[T(y) - 2D(y)] (7b)
y 2T(o), y 0

oy

The exponents of L implied by (6) remain approximately (but only approximate-

ly) independent of L for fixed (but nonvanishing) M and J. They remain

strictly independent of L only for y - 1 and for y - 0, and even in these

cases the form of DLL specified by (2) is not strictly proportional to a

fixed power of L, e.g., proportional to 0 with P a function of M and J only.

The transformation z - (1 - 3)ln L proposed by Jentsch [19841 brings (1)

into an equation of the form

aw/at , (p - 3)2 L-2DLL[(a 2 / az2) - (1/4)]w - (w/- q), (8)

where w a L (P-3)/2?, if DLL c LP for fixed 3. The transformation

1 2 -1
f (L )2 -' dL - L2 (d@/dL) f0 - dD '  (9)
LL 0 9

introduced in the present work brings (1) into an equation of the form

a,/t , (L4 /D )(O 2T/a 2) - (T/Tq) (10)

-- 5
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without recourse to the assumption that DLL o LP for fixed P. The factor

L2(d /dL) in (9) is a constant, since 0 Q.I/L, and the factor L4/DLL in (10)

is proportional to D for the same reason. The fixed limit of integration

L" - z (' - 0) in (9) lies outside the domain of validity of (1) and thus

requires the integrand of (9) to be evaluated by analytical extrapolation

for L > LI. However, it follows from (9) that P - (3- L3 DL 1 L3-P if

DLL % LP for fixed P > 3, and no other fixed limit of integration in (9)

would lead to such a simple result for t. The form of (10) suggests a time-

dependent solution

!(L,t) - FM(L) + E a n(t)g n(L) .(i

n-0

in which f (L) is the steady-state solution of (10) and the gn (L) are the

eigenfunctions of the operator A a - (L4/DLL)(2/a 2) + (1/_q ), corresponding

(respectively) to the eigenvalues k n . The expansion coefficients an (t) are

thus given by a n(t) - an (O)exp(-knt) if the transport coefficients and bound-

ary conditions are time-independent for t > 0.

STEADY STATE

The steady-state solution f(L) thus satisfies, according to (10), the

equation

(d 2/d 2) - (DLL/L q)f 0, (12)

subject to the inner boundary condition that f (L0 ) = 0 at the top of the

atmosphere and the outer boundary condition that T_(L ) correspond to the

phase-space density at the inner edge of the plasma sheet. The exact solu-

tion of (12) is expressible (cf. Schiff, 1955, p. 187; Walt, 1970, p. 4141
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in terms of modified Bessel functions of fractional order if DLL/L4rq is

exactly proportional to a fixed power (p) of . This fact suggests a modi-

fied WKB approximation of the form

(L) ( v L(Tq /DLL) /  IVCGKv(G0 ) -K C)iv(9O)  (L

P.1/2 1D/4~ AfL

1 L1 (Tq/D LL) I/4 Iv 1 )KV(^ 0 ) - V(0l)Iv(00)

(13)

for the steady-state solution of (1) and (10), where

A 1/2 4 -/2 -1/2
f (DL L' ) (L TLq(L d;'- [q(L')DL.L 1  dL

D ') -1/2M- J T hqC0)D 04,1 dO .(14)

The name "modified WKB approximation" is suggested by the appearance of modi-

fied (rather than ordinary) Bessel functions in (13) as a consequence of the

negative (minus) sign in (12). The optimal order v of the modified Bessel
Ce A

functions Iv(9) and KV(9) in (13) is given by V 1/(p+2), where p is a rep-

resentative value of

p (d in D LL/d in ) - 4(d in L/d in ) - (d in r /d In ;)LL q

( (d in D /d in () - (d in r /d in ) (15)
q

within the interval L LI  For DLL x L0 and 7 q LY exactly (i.e.,

A 1 -1/2 -1/2 (2-f3-y)/2 ^~~with fixed P and -y) one obtains 9 - 2(P+y-2)- q D 2LL X L2--.2 P/,

(P-y-4)/(3-0), and v - (P-3)/(P+y-2), in which case T_(L) is given exactly

by (13) if P > 3 and P + y > 2. The subscripts 0 and I in (13) denote evalu-

ation at L - L0 and L - L is respectively. The limit 7 (L)-- in (12) yields
q

f (L) Y [(.0- 1)/(;0- rI)]f (LI) exactly. Expansion of the modified Bessel

functions in (13) for small argument yields this same result for f (L) if P

and y are fixed (i.e., independent of L).
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The above development of a modified WKB approximation for f (L) is some-

what reminiscent of the Green-Liouville solutions described by Jentsch [1984].

His Green-Liouville solutions involved hyperbolic-sine (sinh) functions,

which are in fact proportional to modified Bessel functions of order 1 1/2.

It seems that (13) is the appropriate generalization of the procedure de-

scribed by Jentsch [1984] to situations in which p # 0.

EIGENFUNCTIONS AND EIGENVALUES

The development of time-dependent solutions of (1) is facilitated by the

eigenfunction expansion shown in (11), where

L 2(d/dL)[(DLL/L 2)(dgn/dL)] - q gn(L) + XNg (L)

(d/d)[D( dgn/dD)] + gn (L) + ngn (L) = 0. (16)q

The eigenfunctions g n(L) are required to vanish both at L = 0 and at L -LI.

Eigenfunctions corresponding to distinct eigenvalues X and X are necessari-
% n m

ly orthogonal in the sense that

JL1L-2 m(7
L gn(L) gm(L) dL - 8 m(17)

L 0 1, n m

Given a complete set Ign(L)t of orthonormal basis functions satisfying (17)

and the boundary conditions g n(L0) gn(L) 0, the required eigenfunctions

gn (L) and eigenvalues Xn can be obtained by diagonalizing the matrix repre-

sentation

= 1 2  L 1 L 2  -I(L)g() dLl g(L) DEE g(L) dL + q(L) I g (t
'"nm L0n L

0 L 00 0 (18)

L2 DL/2 )

of the transport operator A m- (a/aL)[(DLL/L )(3/aL)] + (1/ q). An optimal

set gn(L)j of basis functions would be one that can be constructed by means

of a fairly simple prescription, but one that makes the off-diagonal elements
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of A especially small in absolute value.nm

It is evident from (18) that all the eigenvalues of A are positive.nm

This situation corresponds, of course, to temporal decay of the expansion

coefficients a n(t) in (11). Moreover, if the eigenvalues k are ordered (asn n

usual) so that 0 < X0 < kI 2 < . ., then it follows from (18) that (with

increasing n) radial diffusion becomes increasingly important (compared to

charge exchange) for the determination of X . The presence of derivatives
n

of the g n(L) in the first term (but not in the second term) on the right-hand

-1
side of (18) assures this. Except for the term r gn (L), which has no coun-

q

terpart in their paper, the eigenvalue equation specified by (16) is identi-

cal in form to the one for which Schulz and Boucher [19841 successfully con-

structed an optimal set of orthonormal basis functions by means of a variant

of the WKB approximation. A further variant of that construction is required

here, since the boundary conditions of the present radial-diffusion problem

differ from the boundary conditions appropriate to the pitch-angle diffusion

problem treated by Schulz and Boucher [1984).

The analogous construction appropriate to the radial-diffusion problem

yields orthonormal basis functions of the form

g (L) -2L(9 /90 1/2 -1/ r D_/2 L C*Gn n n LL L L'L' nC

x J[C~ 1 (G 0] 2  [cac, 1(@ 0)] 2 Vl/, (19)

where

C (9 ) MJ (9 )y (a@ ) - J (Ci 0)y (9 (20a)

and

(9 M (a 0 J(90 )Y 2b
'. ( n) j ( n)Y(a ) -1 ((9)Yn (Vn). (20b)

The argument 9n of the ordinary Bessel functions J,(n ) and Y(9 n) in (19)

9
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and (20) is given by

en f D-1 dL' D_ dL',n n LU 'L, L.

0 0 *

where e 0 is the nth positive root (n-0,1,2,...) of C (9 0 0, i.e., where
n (v ) n.

C (9) 0 J (e 0)y (aa) 0 J (ae) e) a 0, (22)
v n Vn V n V n V n

and where

D dL 4 fJL LU L LL dL < 1. (23)
LL L L

41 L0

Since C (9) - C (aG) - 0 for each value of n, it thus follows from (19)-

(23) that gn(L0 ) - gn(Li) 1 0, as is required. The normalization and mutual

orthogonality (in the sense of (17)] of the basis functions g n(L) specified

by (19) can be verified by using n as the variable of integration and in-n

yoking certain indefinite integrals evaluated by Watson [1944, pp. 148-149].

The optimal order v of the ordinary Bessel functions in (20a) is given by v -

1/(p+2), where p is a representative value of

p m (d in D LL/d in r) - 4(d ln L/d In () = d in D /d in r (24)

within the interval L s L s L 1 (0 0@ 0 ). For D x LP exactly (i.e.,
0 1 "n n n LL excl

with fixed P >3) one obtains n - (L 0/L)( 92 )/2 0  (L0/L1)( 2 )/2  p

(4-)/(P-3), and v - (P-3)/(P-2). The basis functions specified by (19)

should, lead to a nearly diagonal matrix representation A nm' as defined by

(18), of the transport operator A a - (a/8)(D4 (a/aC)] + (1/rq ). In other

words, the diagonal element A nn(at least for n z 4) should greatly exceed

the absolute value of each off-diagonal element Anm (= mn ) in the same row

or column of the matrix. This major benefit of the ;;.B construction of basis
functions enables the eigenvalues and eigenvectors ot A (and therefore the

nm

eigenvalues and eigenfunctions of the transport operator A ) to be evaluated

10



by means of a rapidly convergent perturbation theory. The formal results

[Schulz and Boucher, 1984] are

k Ak A

Xn = Ann nkkn (25a)

kon Akk- Ann

and

gn(L) - Unngn(L) + E Ukngk(L), (25b)

where

U A A kn + A A (25c)

Un n An kk Jkn Ann- Ajj

for k n and

U nn [1 + E (Ukn/Unn)21-i/2 (25d)
k#n

to assure the unitarity of the transformation from the Ign (L) to the Ign(L),

i.e., to assure that the gn(L) are likewise normalized in accordance with (17).

A further use of the orthonormal basis functions gn (L) specified by (19)

is to eliminate altogether the presumably small discrepancy between the exact

steady-state solution f (L) of (1) and the modified WKB-approximate steady-

state solution f (L) given by (13). This can be done by formally expanding

the discrepancy as a general linear superposition of the g (L) and inserting
M

the formal expansion, viz.,

(L) - f (L) - Ag(L), (26)

m

into (1) for a?/at - 0. The result (after the usual straightforward steps)

is a set of coupled linear equations given by

L1  L1  L

4nm A m 'L L 2  n (L DLL (d W/dL) dL + L gn(L) 'rq ()f M(L) dL
0 0

(27)

WOMEN



for the expansion coefficients A that should be inserted in (26). The solu-

tion of (27) is numerically well-determined, since the matrix A given by
nm

(18) is supposed to'be nearly diagonal when the basis functions g (L) are

constructed in accordance with (19)-(24).

APPLICATIONS

This report was previously prepared as a short paper. This prevented

the inclusion of numerical results illustrating the usefulness of analytical

methods described above for solving problems in radial-diffusion theory.

However, the numerical results of Schulz and Boucher [19841, showing (for

example) that the off-diagonal elements of Anm are consistently smaller (by

one to several orders of magnitude) in absolute value than the corresponding

diagonal elements when analogous methods are applied to a prototypical pitch-

angle diffusion problem, suggest that the present approach will be found

highly advantageous when applied numerically to radial-diffusion problems as

well. Moreover, the ease with which charge exchange can be incorporated, as

in (19), into the radial-diffusion problem suggests that charge exchange

could similarly be handled together with pitch-angle diffusion in problems

that require this, e.g., in studies of the evolving pitch-angle distribution

of ring-current ions after charge exchange has made the equatorial distribu-

tion anisotropic enough to generate electromagnetic ion-cyclotron waves [cf.

Cornwall, 1977]. For this latter application the basis functions could be

constructed according to the prescription of Schulz and Boucher [1984]. A

long-range goal is to treat the simultaneous occurrence of radial diffusion

and pitch-angle diffusion, in which case the L-dependent eigenvalues of the

pitch-angle diffusion operator will presumably enter the mathematical de-

scription of radial transport [cf. Walt, 1970] in somewhat the same way that-1

the charge-exchange rate r (L) enters (1). However, the bimodal (radial/
q 12



pitch-angle) diffusion problem is complicated by the absence of a kinematical

quantity that both modes of diffusion simultaneously conserve, and the solu-

tion is presumably much more elusive for it than for the isolated radial-

diffusion problem treated here.
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LABORATORY OPERATIONS

The Aerospace Corporation functions as an "architect-engineer" for

national security projects, specializing in advanced military space systems.

Providing research support, the corporation's Laboratory Operations conducts

experimental and theoretical investigations that focus on the application of

scientific and technical advances to such systems. Vital tb the success of

these investigations is the technical staff's wide-ranging expertise and its

ability to stay current with new developments. This expertise is enhanced by

a research program aimed at dealing with the many problems associated with

rapidly evolving space systems. Contributing their capabilities to the

research effort are these individual laboratories:

Aerophysics Laboratory: Launch vehicle and reentry fluid mechanics, heat

transfer and flight dynamics; chemical and electric propulsion, propellant
chemistry, chemical dynamics, environmental chemistry, trace detection;
spacecraft structural mechanics, contamination, thermal and structural
control; high temperature thermomechanics, gas kinetics and radiation; cw and
pulsed chemical and excimer laser development including chemical kinetics,
spectroscopy, optical resonators, beam control, atmospheric propagation, laser

effects and countermeasures.

Chemistry and Physics Laboratory: Atmospheric chemical reactions.
atmospheric optics, light scattering, state-specific chemical reactions and
radiative signatures of missile plumes, sensor out-of-field-of-view rejection,
applied laser spectroscopy, laser chemistry, laser optoelectronics, solar cell
physics, battery electrochemistry, space vacuum and radiatio- effects on
materials, lubrication and surface phenomena, thermionic emission, photo-
sensitive materials and detectors, atomic frequency standards, and

environmental chemistry.

Computer Science Laboratory: Program verification, program translation,

performance-sensitive system design, distributed architectures for spaceborne
computers, fault-tolerant computer systems, artificial intelligence, micro-
electronics applications, communication protocols, and computer security.

Electronics Research Laboratoty: Microelectronics, solid-state device

physics, compound semiconductors, radiation hardening; electro-optics, quantum
electronics, solid-state lasers, optical propagation and communications;
microwave semiconductor devices, microwave/millimeter wave measurements,
diagnostics and radiometry, microwave/millimeter wave thermionic devices;
atomic time and frequency standards; antennas, rf systems, electromagnetic
propagation phenomena, space communication systems.

Materials Sciences Laboratnry: Development of new materials: metals,
alloys, ceramics, polymers and their composites, and new forms of carbon; non-

destructive evaluation, component failure analysis and reliability; fracture
mechanics and stress corrosion; analysis and evaluation of materials at

cryogenic and elevated temperatures as well as in space and enemy-induced
environments.

Space Sciences Laboratory: Magnetospheric, auroral and cosmic ray
physics, wave-particle interActilons, magnetospheric plasma waves; atmospheric
and ionospheric physics, density and composition of the upper atmosphere,

remote sensing using atmospheric radiation; solar physics, infrared astronomy,
infrared signature analysis; effects of solar activity, magnetic storms and

nuclear explosions on the earth's atmosphere, ionosphere and magnetosphere;
effects of electromagnetic and particulate radiations on space systems; space
instrumentation.
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