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Abstract 

The problem of detecting a signal known except for amplitude in incompletely 

characterized colored non-Gaussian noise is addressed. The problem is formulated 

as a testing of composite hypotheses using parametric models for the statistical 

behavior of the noise. A generalized likelihood ratio test is employed. It is shown 

that for a symmetric noise probability density function the detection performance 

is asymptotically equivalent to that obtained for a detector designed with a priori 

knowledge of the noise parameters. Non-Gaussian distributions of the noise are 

found to be more favorable for the purpose of detection as compared to the Gaussian 
distribution. 



I. Introduction 

The theory of detection of a known signal in presence of Gaussian noise having 

a known covariance matrix is well developed [Van Trees 1968]. In many applications, 

however, the covariance matrix is not known a priori. This difficulty can be alleviated 

by characterizing the correlation pattern of the noise by a simple model and using 

estimates of the model parameters to design a detector [Whalen 1971], [Bowyer et al 

1979], [Kay 1983].  The difficulty increases when full information regarding the noise 

probability density function (PDF), usually assumed to be Gaussian, is unavailable 

due to insufficient knowledge about the noise source [Knight et al 1981]. There is no 

uniformly most powerful (UMP) test in this case because the use of a Neyman-Pearson 

criterion leads to a detector which depends on the unknown parameters. The Bayesian 

method of assigning priors to the unknown parameters of the noise PDF produces an 

'optimal' detector [Lee et al 1977], but requires a multidimensional integration.   Its 

performance is critically dependent on the accuracy of the choice of priors. A robust 

detector [Kassam and Poor 1985], on the other hand, does not use any partial knowledge 

about the noise PDF and therefore is not expected to perform well.  Locally optimal 

(LO) detectors for this problem have been studied extensively by Czamecki, Martmez, 

Thomas and others [Czarnecki and Thomas 1984], [Martinez and Thomas 1982]. Their 

results however rely on a known covariance matrix and marginal PDF of the noise. A 

third dimension is added to the problem if the amplitude of the signal is not known 

[Kay 1985]. A locally optimal detector can not be used since it depends on the polarity 

or sign of the amplitude, which is usually unknown. 

This paper addresses the problem of detecting a deterministic signal known except 

for amplitude in the presence of incompletely characterized non-white non-Gaussian 

noise. The approach chosen here is to use the theory of the generalized likelihood ratio 

test (GLRT) for composite hypothesis testing [Kendall and Stuart 1979]. The work 

presented here is an extension of the work of Kay [1985] in which the noise is assumed 
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to be non-Gaussian but white. In this case the covariance matrbc is assumed to be 

known except for a few parameters. Maximum hkelihood estimates (MLE) for these 

parameters are then used in the GLRT. The asymptotic performance of the GLRT 

detector is shown to be equivalent to the asymptotic performance of the clairvoyant 

GLRT detector (one which uses perfect knowledge of the unknovra parameters) for a 

symmetric noise PDF. Therefore the GLRT asymptotically achieves an upper bound 

in performance and is optimal in this sense. 

The paper is organized as follows. Section 11 gives the theory of the GLRT which 

will be used extensively in the subsequent sections. Section III formulates the detec- 

tion problem and derives the GLRT for it. The case of autoregressive (AR) noise is 

considered separately. Section IV discusses the performance of the GLRT detector and 

compares it to that of the clairvoyant GLRT detector. Section V draws some general 

conclusions about the performance of the GLRT . Section VI summarizes the results 

and discusses the implementation aspect of the problem. 

n. Review of Generalized Likelihood Ratio Itest 

Consider the problem of testing the value of the parameter 0 = [0^ Qj] ^ based 

on the a data set y = [yi y2 • • • VN]. ©r and 0^ are assumed to be vectors of dimension 

r and s, respectively. A common hypothesis test is 

.  ;/o: e^ = [0^ 0f ] 

;/i : 0^ = [0^ 0f ]        0.^0 ^^^ 

0«, referred to as the vector of nuisance parameters, is of no concern and may assume 

any value. Assuming the observed data y has a joint probability function f(y; 0^, 0^), 

a generalized likelihood ratio test for testing (1) is to decide ^i if 

f(y;Q„e.) 
°    f(y;o,e,) *^ <'' 

for some threshold 7.   0 is an r-dimensional vector of zeroes.   Q^ is the MLE of 0^ 

assuming )^o is true while 0^ and 0, are joint MLE's of 0^ and 0^ assuming Mi is 



true.  03 is found by maximizing f(y;O,03) over G^.  Similarly, 0„ ©3 are obtained 

by maximizing f(y; 0^,03) over 0^ and 03. 

The statistics oi ic are difficult to obtain in general. For large data records (asymp- 

totically) it may be shown that 21n£G is distributed in the following manner [Kendall 

and Stuart 1979]. 

2In£G~Xr 

21n£G~x"(r,A) 

under ^0 

under ^1 

(3a) 

(36) 

Here Xr represents a chi-square distribution with r degrees of freedom and x''^{r,X) 

represents a noncentral chi-square distribution with r degrees of freedom and noncen- 

trality parameter A. Note that x'^(r,0) = xl or the distribution under ;/o is a special 

case of the distribution under )ii and occurs when A = 0. The noncentrality parameter 

A, which is a measure of the discrimination between the two hypotheses, is given by 

A = 0?- [le.e, (0,0.) - le.e. (0,0,)I-,^e. («> 0a)l|.e. (0,0.)] 0r (4) 

where 0^, 0« are the true values. The terms in the brackets of (4) are found by 

partitioning the Fisher information matrbc for 0 as 

'le.e.(0r,0«)   le.e.(0r,0a) 
1(0) = 

^l©.e.(0r,0.)   Ie.e.(0r,0a) 
(5) 

and the partitions are defined as 

d\ni\fd\ntY 
dQr ) \ dQr 

le.e.(0.0.)=^^(^^j(^—^ 

Ie.e,(0r,03)=li^e.(0r,0.) 

le.e.(0r,0a) =E  ' ^' ^ 
dQ, dQ. 

r xr 

r X s 

s xr 

s X s (6) 



All the paxtitions of the Fisher information matrix are evaluated at 0^ = 0 and the 

true values of 03 for use in (4). 

The motivation for using a GLRT is that for large data records it exhibits certain 

optimality properties. A uniformly most powerful (UMP) test does not exist in many 

situations. However, of all the tests which are invariant to a natural set of transfor- 

mations the GLRT exhibits the largest probability of detection. The GLRT is said to 

be the asymptotically uniformly most powerful invariant (UMPI) test [Lehmann 1959]. 

It is also a consistent test in the sense that the probability of decidmg MQ when Mi is 

actually true approaches 0 for large data records. Asymptotically the GLRT is unbi- 

ased, i.e., the probability of detection when )li is true is larger than the probability 

of false alarm. (This result follows from (3) and properties of the chi-square distribu- 

tion.) Finally, although the GLRT does not usually exhibit a constant false alarm rate 

(CFAR) it does so for large data records. It is difficult to find the conditions under 

which the asymptotic results apply to finite length data records. The following heuristic 

conditions follow from [Cox and Hinkley 1974]. 

1) The asymptotic statistics of the MLE's used m the likelihood ratio should 

be applicable, i.e., they should be Gaussian with mean equal to the true 

parameter value and covariance matrix equal to the inverse of the Fisher 

information matrix. 

2) The two hypotheses should be reasonably close and only slight departures of 

©r from zero should be tested. 

ni. Formulation of the Problem and GLRT Solution 

The detection problem considered here is the following. 

;/o:y = Wu 
(7) 

)/i : y = Wu + )us 

where s = [^i 52 • • • SN]"^ is a vector of known signal amplitudes, u = [ui U2 • • • UN]'^ 
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is a vector of independent and identically distributed [i.i.d.) noise with a symmetric 

PDF, /x is an unknown scalar (either positive or negative) and W is an invertible 

(TV X A'') matrix whose elements are functions of a set of unknown parameters ^ = 

[W].y=W,,(^) 

Since Un,     n = l,2,---N are i.i.d., the PDF of u can be expressed as 

N 

f(u;$) = []/(un;$) (8) 
n=l 

where /(u„; $) is the margmal PDF of each u„ dependent on the unknown parameter 

vector $. / is assumed to be symmetric, i.e., f{-u) = f{u). Note that the covariance 

matrix of the noise is a^WW^ where a^ is the variance of u^. 

(7) represents a general set of problems. The unknown matrix W allows for a 

large class of spectral characteristics or correlation patterns of the background noise. 

For large data records autoregressive (AR), moving average (MA) and autoregressive 

moving average (ARMA) processes can be represented by the above formulation of the 

underlying random process if W is the impulse response matrbc of the corresponding 

filter. Secondly, the PDF of Un can be chosen to characterize specific problems in a 

realistic way. The parameter vector $ is left unknown in order to add Bexibility to the 

noise PDF model. Thirdly, by allowing n to be positive or negative the detector will 

be able to accommodate a change of polarity in the signal. 

The problem of (7) can be recast as 

;/o : 0^ = [0^ Gf] (9a) 

:      ; ;/x : 0^ = [0^ 0^        0.7^0 ,       (96) 

where 
©r = M       a scalar 

0a = [^    $  ] (vector of nuisance parameters) 

6 
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Since (9) is equivalent to (l), the GLRT for testing Mi vs. )^o is given by (2). In 

order to evaluate the MLE's it is necessary to find the joint PDF of y under either 

hypothesis which can be found from the joint PDF of u in the following way. From (7) 

it follows that 

u = W-V under MQ (lla) 

u = W-i(y-/is) under )ii (ll6) 

W-^ exists because W is assumed to be invertible.   The elements of W^ are also 

knovm fimctions of ^. 

l'^-%=^vm (12) 

(11) bemg an affine transformation, the joint PDF of y can be written as 

under MQ 
u=W-iy 

under Vi 
u=W-i(y-M8) 

j under }IQ        (13a) 

which m view of (8) and (U) reduces to 

'(^'*'^)=Mw)in(^^^"'^^ 

^^^'^'^^=Mi^n(/("-^) ^, \undern,        (136) 

Therefore the GLRT for this problem is to decide ^/i if 

N     / N ^ ^\ 

, n=l     \j = \ ^ 
^^- ^7-lv N >^ (14) 

1=1   VJ = I / 

where hat's denote MLE under )lo and double hat's denote MLE under Mi. It is assumed 

that the values of |det(W)| under HQ and Mi axe nearly the same. This assumption 
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simplifies the problem considerably. The threshold 7 is adjusted to achieve a given 

probability of false alarm, as will be discussed in the next section. 

Note that if * is knovra so that W"-V can be computed, then (7) reduces to 

;/o:W-V = u 

which is simply the problem of detecting the transformed signal W-^s of unknown am- 

plitude n in i.i.d. noise from the transformed observation vector W'^y. The likelihood 

ratio corresponding to the GLRT for this problem is 

N       / N 

Xlf\jynjm{yi-hsj)-,^ 
n=l     VJ = 1 

ta = N       / N 

fl/  E'^ny(*)y;;$ 

The same statistic is used for the case of unknown * by replacing it with its MLE 

under the respective hypotheses for numerator and denominator as per (14). 

Another special case of (7) arises when the noise is white, ».e., W = I, where I is 

the identity matrix. (14) then reduces to [Kay 1985] 

N 

J{f{{yn-hn)-A) 
B       n=l 
to j^ > 7 

n=l 

It was indicated earlier in this section that the linear model (7) is capable of 

representing the case of AR noise for large data records. The advantage of AR modeling 

of the noise as opposed to an ARMA or MA model is that it is easier to estimate the 

unknown parameters as required by the GLRT. This case is now examined in detail. 

The detection problem for AR noise is 

)/o : y = X 

(15) 
. ^1 : y = X + )us 
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with 

X = [xi  X2   ■■■   XN^ 

It is assumed that the sequence {xi,X2, • • ■,XN} is the output of a pth order all-pole 

filter excited by white driving noise or 

p 

alternately, 

Un-Xn+'^ ajXn-j = ^^ajXyi-j, n = 1,2, • • • iV 
y=i y=o 

assuming OQ = 1. u„ can also be written as a function of y under either hypothesis 

Un = ^ajyn-j, n = 1,2, • • • iV under MQ (16a) 

under Mi 

y=o 
p 

^oy(y„_y-^s„_y), n = l,2,---iV 
y=o 

(166) 

Note that ui, U2, •■■ Up involves samples prior to yi which are outside the observation 

interval. These are assumed to be zero for simplicity. For large data records this 

assumption will not change the character of the GLRT. In the matrix form 

/  ui   \        /I 

Un 

«p+l 

Or 

0     a. 

\   /    yi-fiSi     \ 

Vp+i - iJ.Sp+1 (17) 

\ UN J \0 ... 0 ap ... Ij \ y^-f^sN J 

under ^i. The equation is the same under MQ, except that /x = 0. (17) is a special case 

of (11) with * = a = [ai 02 • • • Cp] and M = p. W-^ is a lower triangular Toeplitz 

matrix given by 
ro,      ifi<j, 

w,y(a) = <^ Oi_y,   ifj<t<y + p, 
I 0, if j + p < i. 
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To avoid having to assume that {y-(p_i), y-(p-2), ■ ■ •, yo} are zero one can proceed 

as follows. Considering only the last [N - p) equations of (16) which expressed in the 

matrix form are 

/ "p+i \        / 1 

«2p 
«2p+l 0     a- 

\   UN   J        V 0 0     a. 

\    /   Vp+l - M5p+1   \ 

y2p - M-S2p 
y2p+i - ^J'S2p+l 

Ij V       VN - fJ-SN       J 

+ 

^Op_y+i(yy-^5j) 

P 

X]°P-J+2(yj-M5;) 
y=2 

<»p(yp-M-Sp) 
0 

(18) 

under )^i. Substitution of /^ = 0 in (18) gives the corresponding equation for UQ. 

(18) is also a special case of (lib) except that only the last {N - p) of the N scalar 

equations implied by (lib) are used. Smce the added vector causes a departure from 

the general model, the previous results can not be used. To determine the GLRT first 

consider the conditional likelihood function. In this case the conditional likelihood of 

yp+i,yp+2,-",yiV given yi,y2,---,yp is . 

f (yp+i > yp+2, • • •, yiv |yi, y2, ■ • •, yp) 

N 

n   /    &yn-;;$ 
n=p+l     \j=0 

N /  p 

"     n   /    &(y''-J-M5n-;);$ 
n—p+l    \y=o 

under ^o 

under )ii 

(19a) 

(196) 
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The likelihood ratio is given by 

£^ ^ f(yp+i>yp+2,• • •,yjvlyi,y2, • • •,yp;Qr,Qa) f(yi,t/2,• • •,yp; Qr,Q3) 

f(yp+i,yp+2,---,y7v|yi,y2,---,yp;O,0,) f{yuy2,---,yp;0,Qs) 

n=p+i   V;=o 
N 

n / Z^^yy"-;-;^ 
n=p+l     VJ=0 y 

f(yi)y2,---,yp;A,a,<^ 

f(yi>y2,---,ypiO,a,$ 

A 

where OQ and CQ are defined to be unity. The second term is dropped for ease of 

computation. A heuristic justification for ignoring the second term is that when N is 

large, its contribution to IQ will be negligible. The closer the poles of the AR model 

to the unit circle, larger is the requirement for N [Box and Jenkins 1970], [Kay 1981]. 

With this simplification, the GLRT decides )^i if 

p 

iG = 

N 

n=p+l    \j=0 
N 

n /(&yn-y;^ 
n=p+l 

>7 (20) 

A comparison of (14) and (20) shows that the latter uses fewer terms in the product. 

However both formulations are clearly asymptotically eqivalent. Figure 1 is a block 

diagram to generate 2 hi£G from the data. The reason for computing 2 In^c instead of 

IG will be clear from the discussion in the next section. The block diagram is very much 

similar to that obtained by [Kay 1983] for the detection of a completely known signal 

in unknown colored Gaussian noise. In the Gaussian case In / is a simple quadratic, 

while for the general non-Gaussian case it will be highly non-linear. Figure 1 also uses 

an estimator for fi which was assumed to be known hi [Kay 1983]. 

rV. Asymptotic Performance of the GLRT Detector 

Asymptotic distributions of 2 In IG under )^o and Mi are given by (3a) and (36) 

respectively.  In this case 0, = /z, 0, = [^^ $^]r for the general linear model and 
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©3 = [a^ $^]^ for the AR case. Hence the noncentrality parameter is 

A = M' [W(0, O.) - I^e, (0, G3)Ie,'e. (0, O^jlje. (0,0,)] (21) 

The probabiUty of false alarm is 

PFA = P{2lniG>i'\)^o} (22) 

where 7' = 2 In 7. The probability of detection is 

PD = P{2\niG>l'\Mi} (23) 

Both the probabilities can be calculated from the tables of noncentral and central chi- 

squared distributions, respectively. In practice, 7' can be set to produce a given false 

alarm rate and P© can be calculated from (23) accordingly. 

As indicated before, there is no UMP test for the detection problem considered in 

this paper. Therefore there is no upper bound to which the performance of any detector 

may be compared. However the performance of the GLRT is better appreciated when 

compared to that of a clairvoyant GLRT. A clairvoyant GLRT is one which uses perfect 

knowledge of the nuisance parameters Qg. The likelihood ratio in this case is 

g,,_f(y;Qr,Q3) 

"""^    f(y;o,0.) 

which in view of (13) is 

N      / N 

toe =  ^^ y  

n/(E'^ny(^)yy;* 

where ^ and $ are assumed to be known. Asymptotically, 2 In £GC is distributed as 

2b£GC~Xr under ;/o (24a) 

2]niGc-x'^r,\,) under ;/i (246) 
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where . 

Ae = 0,^Ie.e.(O,03)0r 

For the problem considered here, r = 1 and Qr = /J,. Hence 

Ae = M^/^^(O,03) (25) 

Comparing A and A^ as given by (21) and (25), respectively, it is apparent that A is 

equal to A^ less an additional term. Assuming that IQ^Q   is positive semidefinite, 

Ac>A 

From the theory of noncentral chi-square distribution it can be shown that P^ as given 

by (23) is a monotonic function of the noncentrality parameter, which implies that PD 

for the clairvoyant GLRT is greater than or equal to that for the GLRT [Sengupta 

1986]. Therefore the clairvoyant GLRT detector, although impractical in this case, 

provides an upper bound on the performance of the GLRT detector. In order that the 

upper bound be achieved, A should be equal to Ac. This will occur if 

lMe.(O,0,)=O       . (26) 

Appendices A and B show that this is indeed the case for the general Imear model of 

(7) and the AR noise model of (15), respectively, if as assumed / is a symmetric PDF. 

Therefore the asymptotic performance of the GLRT is equivalent to the performance 

of the clairvoyant GLRT for detection in presence on non-Gaussian noise modeled as 

in (7) or (15). This implies that one can do as well in detecting a signad of unknown 

amplitude as if the unknown noise parameters were known. 

V. General Conclusions about the Performance of the GLRT 

A key to the asymptotic performance of the GLRT detector is the noncentrality 

parameter A, which is found to be equivalent to Ac. It would be interesting to examine 
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how A depends on the statistical properties of the noise. First consider 

Uf^,Qs) =E 
ainf 

N       , N 

= E 

N 

51n     J]/K;$) 
vn=l 

N 

= E^ 
n=l 

dpt 

^ln/(u„;$) 

2-t 

using (116) and (12) 

(27) 

The last step follows from the facts that u„'s are i.i.d.  and that the cross-terms are 

zero, since 

E 
dn ln/(u„;$) 

5)U 
i;[ln/(u„;$)]=0 

under certain regularity assumptions on / [Bickel and Doksum 1977].   Writing (116) 

explicitly as 
N 

J = l 

it follows that 

(28) 

(29) 

Hence (27) can be rewritten as 

N 

n=rl 

AT 

[fe^/(-*>)(|f 

n=l 

N a In/ 
5Un 

14 



a^Ifi^) (30) 

where a^ is the variance of u„ and 

J/($) = E 
a In/ 

does not depend on /i or u„. The expectation is with respect to Un only smce Un's 

j.j.d. It follows from (25) that 

axe 

A = A. = 
N N 

1=1 \ j=i 
a2j/($) 

= ^8^(W-^^W-^)sa2j/($) 

= (MS^)(cr2wW^)-i(/.s)^c72j/($) 

= S^R-lso[c72j^($)] (31) 

where R = a^WW^ is the iV x iV autocorrelation matrix of the colored noise and 

So = fis Is the signal vector including the amplitude. SJR-^SQ is the signal to noise 

ratio (SNR) at the output of a prewhitener followed by a matched filter (or correlator), 

both built with perfect knowledge of the filter parameters (*). To be more precise, 

if the data is passed through an ideal whitener ( a filter which will completely whiten 

the noise) and correlated (multiplied term-by-term and summed) with the output of 

a similar filter through which only the known signal is passed then SJR-^SQ is the 
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squared ratio of the contributions from the signal and noise parts of the data. In the 

case of AR noise, a similar derivation using (166) (instead of (28)) gives 

n=p+l \    y=o 
(32) 

and 

A = M 
N 

0-2     Z^     I       / ^0-jSn-j 
n=p+l  \     ;=o 

a'lfi^) (33) 

= ^(As)^(As)a2j^($) 

where A is the (iV - p) x iV Toeplitz matrix 

f a-p    ...    ci     1 

0     Up    ...    d A = 

0 

1 

\o 0        Qr 

0\ 

■••   0 

ai    Ij 

Therefore 

X = s^R-ho{a^If{^)] (34) 

So = MS as before and R = ^^(A^A)-^ is approximately the covariance matrix of the 

noise. Clearly, A is proportional to the SNR at the output of a prewhitener-correlator 

(usmg true value of a) in the AR case also. 

Having established similar results in the cases of AR noise and the general linear 

model, an attempt is now made to examine them. The AR noise model is chosen for 

this purpose because of its intuitive frequency-domain interpretation. Figure 2 is a 

block diagram representing (33). It shows that A can be obtained by inverse filtering 

the signal and summing the squares of the output of the filter, ff the signal has most 

of its power at the frequency where the inverse filter has a zero, the output power and 

hence A will be small leading to a small probability of detection.  In other words, it 
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is difficult to detect the signal if the peaks of the signal spectrum coincides with the 

peaks of the noise PSD. This makes perfect intuitive sense. On the other hand it is 

possible to maximize A by choosing a suitable signal s for a given noise background. 

This can be done by constraining the signal energy to be constant and maximizing the 

SNR at the output of a prewhitener-correlator over all possible signal shapes. Writing 

the Toeplitz matrbc R in terms of its orthonormal eigenvectors {vi, V2, • • •, vjv} and 

eigenvalues {Ai, A2, •••, AN} 

N 

^ = EV>vJ (35) 
j=i 

it follows that 

Hence 

^-' = th,-J 7—'Ay 

s5-R-'so = f:-^{s„Sf 

N 

'Av = Eh^ (36) 

where ?y = s^vy is the component of the signal SQ along the eigenvector Vy.   The 

condition of constant signal energy can be written as 

8^So = P, (37) 

Since the eigenvectors are orthonormal 

"" N N N 

E->-J .T So = S^ So = Pa (38) 

The SNR given by the weighted sum (36) has to be maximized subject to constraint 

that the unweighted sum of the squares is fixed at Pg as m (38). In general, R will 

be positive definite and all the eigenvalues will be positive. If there exists a minimum 
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eigenvalue Kk, then the SNR is maximized by choosing <;k = -/Pj and ?y = 0 for 

j i^ k, I.e., by choosing SQ to be proportional to v^. Since the probability of detection 

given by (23) is a monotonic function of A which is proportional to the SNR at the 

output of a prewhitener-correlator, the above choice of the signal shape for a given 

signal energy also maximizes the probability of detection. If one of the eigenvalues A^ 

is zero, then it is possible to chose the signal in such a way that there is no component 

of noise along the signal vector and therefore the SNR is infinite giving rise to singular 

detection. Therefore the probability of detection is maximized by choosing the signal 

in the direction of the smallest noise component. This is the discrete time equivalent 

of a well-known result for the continuous case [Van Trees 1968]. An interesting special 

case occurs when iV -> oo such that the eigenvectors become 

Hence the optimum signal is a sinusoid in the direction of the eigenvector associated 

with the minimum eigenvalue. For very large data records the eigenvalue Ay correspond- 

ing to the eigenvector Vy approaches the value of PSD at the frequency /y. Hence the 

signal easiest to detect would be a sinusoid at the frequency at which the noise PSD 

has a minimum. This is also apparent from the frequency domain equivalent of (36) 

(using Perseval's theorem) 

0.5 

where So{f) is the signal spectrum (Fourier transform of SQ) and Puu is the noise PSD. 

With the constraint that 

/ 

0.5 
2 So{f)M = i 

-0.5 

which is equivalent to (37), the integral is maximized if the numerator is large only 

where the denominator is small or zero. This result has a nice intuitive justification. 
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However if the filter parameters are completely unknown the above result can not be 

used to select a suitable signal. 

The next issue of interest is the effect of the noise PDF on the detection perfor- 

mance. A reasonable basis of comparison should be formed for this purpose. Therefore 

the Gaussian and non-Gaussian noise processes are assumed to have the same PSD, 

i.e., the same spectral shape and power and detection of the same signal is considered. 

Consequently, the comparison is done on the basis of a fixed signal to noise ratio (or 

s^R~^so). Under these assumptions, the probability of detection is larger for that noise 

PDF which has a larger value of a'^If. In other words, given two noise backgrounds 

with the same PSD but different underlying noise PDF's, in order to achieve the same 

probability of detection, more SNR is required for that background for which o'^If '.s 

smaller. It is known that among all symmetric and integrable PDF's, the Gaussian 

PDF is the only one for which a'^If attains its minimum value of unity [Sengupta and 

Kay 1986]. Therefore for a given noise PSD, it is easier to detect a signal known except 

for amplitude in non-Gaussian noise than in Gaussian noise. From (34) it follows that 

in order to have the same noncentrality parameters in the non-Gaussian and Gaussian 

cases 

where SMZNG and S}/ZG are the SNR's requu-ed in non-Gaussian and Gaussian 

noises, respectively, in order to achieve a given probability of detection {i.e., a given 

A). The above equation can also be written as 

^O^og,o^rjj±=lOlog,,{a'lf) (39) 

Therefore 101ogio(cr^J/) is a measure of the SNR bonus in dB for a non-Gaussian 

distribution. The result also holds for the special case of white noise when (33) becomes 

A = 
.2JL 

CT2J/($) (40) 
2   '' 

n=l 
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The quantity CT^JJ: is now shown to be independent of scaling.   If the random 

variable uhasa. PDF /(u) then the normalized random variable u = u/a has. the PDF 

hence 

"'"-'L 

g{u) = cr/(u) 

du 
f{u] 

7-00        1   r« 

/•OO 

a2 -du 

=/: g(u) 

Hence cr^ J^ depends only on the shape of the PDF and is unaffected by scaling. There- 

fore the SNR bonus quantified by (39) is the same for any value of the noise power as 

long as the powers of the non-Gaussian and Gaussian processes are the same. 

It is interesting to note that the same quantity represents the amount of departure 

from Gaussianity for the problem of estimating AR filter parameters of a non-Gaussian 

AR process. The OR bounds for these parameters are found to be less m the case of a 

non-Gaussian PDF than the corresponding bounds in the Gaussian case by a factor of 

o'^If [Sengupta and Kay 1986]. 

As an illustration of the improvement made by the proposed detector over the 

Gaussian detector, consider the mixed-Gaussian noise PDF 

The first term on the right hand side is referred to as the background component with 

variance a| and the second term is called the interference component with variance 

CTj.  e is called the mixture parameter and is regarded as a measure of the degree of 
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contamination of the background Gaussian process by the interference process. The 

model Is useful in representing a nonunally Gaussian noise background characterized by 

the presence of sharp spikes or impulses [Sengupta and Kay 1986]. Assuming a% = 1 

and aj = 1000, Figure 3 plots the SNR bonus given by (39) vs. e (in this case $ = e). It 

shows how much improvement can be expected over the Gaussian case in terms of SNR 

while detecting a signal known except for amplitude in colored noise. The comparison 

is made, as indicated before on the basis of the same PSD m the Gaussian and mixed- 

Gaussian cases. It should be mentioned, however, that introduction of impulses m an 

otherwise Gaussian environment does not improve the probabihty of detection, which 

is expected intuitively. This is because of the fact that introduction of impulses also 

increases the noise power by a considerable amount. This increase in noise power is 

alleviatedhy employing a non-Gaussian detector. As an example, for e = 0.1, the overall 

noise variance is approximately 100<r| (as compared to a| before the introduction of 

impulses), i.e., the noise power increases by 20 dB. It can be observed from Figure 3 that 

the SNR bonus is also approximately 20 dB for e = 0.1. Therefore the mixed-Gaussian 

detector does not suffer from a loss of performance unlike the Gaussian detector whose 

threshold of detection is expected to go down considerably with the introduction of 

impulses. 

VI. Summary 

The GLRT for the detection of a signal known except for amplitude in unknown 

colored non-Gaussian noise was derived in section III through parametric modelmg of 

the noise PDF and covariance matrix. The popular time series models such as AR, 

MA and ARMA for the noise are asymptotically special cases of the proposed linear 

model for large data records. The GLRT was found to achieve the performance of a 

clairvoyant GLRT asymptotically, i.e., knowledge of the nuisance parameters is not 

required to attam an upper bound in performance. The effects of the signal spectrum 
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and the noise PSD on the detection performance was discussed. It was observed that 

it is difficult to detect a signal whose spectrum matches the noise PSD. If, however, 

most of the signal is along a direction of low noise component, it is very easy to detect. 

The asymptotic performance of the GLRT for Gaussian and non-Gaussian noise models 

were compared. It was concluded that detection in non-Gaussian noise is easier than 

detection in Gaussian noise for the same noise PSD. The improvement in performance 

of the GLRT in a non-Gaussian noise background over the Gaussian case is easily 

quantified in terms of the SNR 'bonus' as a function of the nobe PDF parameters. 

In order to implement the GLRT described in section HI one needs to find the 

MLE's of the unknown parameters under each hypothesis. Some work along this line 

has been done for the case of AR noise [Sengupta and Kay 1986, 2], using reasonable 

approximations to reduce computation. This work is approriate for estimation under 

the null hypothesis {){i) and extension to the case of alternative hypothesis (Mi) is not 

straightforward except for the special case of a d.c. signal {sj = 1, j = 1,2,-• • ,N). 

Evaluating the joint MLE of the mean or the location parameter (/z) and the AR filter 

parameters may be particularly difficult for most non-Gaussian processes. Computa- 

tionally efficient approximations to the GLRT, such as the Rao test and the Wald test 

[Rao 1973] can be used for this purpose. Estimation of the mean and the other param- 

eters under Ui can thus be avoided for small signal amplitudes [Sengupta 1986]. This 

problem will be addressed in a future paper. 

References 

[l] H.L. Van Trees, Detection, Estimation, and Modulation Theory, Chapter 4, 

New York: John Wiley, 1968. 

[2] A.D. Whalen, Detection of Signals in Noise, Chapter 9, New York: Academic, 

1971. 

22 



[3] D.E. Bowyer et al, "Adaptive Clutter Filtering using Autoregressive Spectral 

Estimation", IEEE Trans, on Aerosp. Electron. Syst., pp. 538-546, July 1979. 

[4] S.M. Kay, "Asymptotically Optimal Detection in Unknown Colored Noise via 

Autoregressive Modeling", IEEE Trans, on Acoustics, Speech and Signal Processing, 

pp. 927-940, Vol. ASSP-31, Aug. 1983. 

[5] W.C. Knight, R.G. Pridham and S.M. Kay, "Digital Signal Processing for 

Sonar", Proc. of the IEEE, pp. 1451-1506, Nov. 1981. 

[6] S.C. Lee, L.W. Noite and C.P. Hatsell, "A Generalized Likelihood Ratio For- 

mula: Arbitrary Noise Statistics for Doubly Composite Hypotheses", IEEE Trans, on 

Info. Theory, pp. 637-639, Vol. IT-23, Sept. 1977. 

[7] S.A. Kassam and H.V. Poor, "Robust Techniques for Signal Processing", Proc. 

of the IEEE, pp. 433-481, Vol. 73, Mar. 1985. 

[8] A.B. Martinez and J.B. Thomas, "Non-Gaussian Multivariate Noise Models for 

Signal Detection", ONR report #6, Sept. 1982. 

[9] S.V. Czarnecki and J.B. Thomas, "Nearly Optimal Detection of Signals in Non- 

Gaussian Noise", ONR report #14, Feb. 1984. 

[10] S.M. Kay, "Asymptotically Optinial Detection in Licompletely Characterized 

Non-Gaussian Noise", Submitted to IEEE Trans, on Acoustics, Speech and Signal 

Processing, 1985. 

[11] Sir M. Kendall and A. Stuart, The Advanced Theory of Statistics Vol. II, 

Chapters 18-19, New York: MacMillan Publishing, 1979. 

[12] E.L. Lehmann, Testing Statistical Hypotheses, New York: John Wiley, 1959. 

[13] D.R. Cox and D.V. Hinkley, Theoretical Stastics, Chapter 4, London: Chap- 

man and Hall, 1974. 

[14] G.E.P. Box and G.J. Jenkins, Time Series Analysis: Forecasting and Control, 

Chapter 7, San Francisco: Holden-Day, 1970. 

[15] S.M. Kay, "More Accurate Autoregressive Parameter and Spectral Estimates 

23 



for Short Data Records", presented at the ASSP workshop on Spectral Estimation, 

Hamilton, Onterio, Canada, Aug. 17-18, 1981. 

[16] D. Sengupta, "Estimation and Detection for Non-Gaussian Processes using 

Autoregressive and Other Models", M.S. Thesis, Dept. of Electrical Engineering, Univ. 

of Rhode Island, 1986. 

[17] RJ. Bickel and K.A. Doksum, Mathematical Statistics: Basic Ideas and Se- 

lected Topics, Chapter 4, San Francisco: Holden-Day, 1977. 

[18] D. Sengupta and S.M. Kay, "Efficient Estimation of Parameters for Non- 

Gaussian Autoregressive Processes", submitted for review to IEEE Trans, on Acoustics, 

Speech eind Signal Processing. 

[19] S.M. Kay and D. Sengupta, "Simple and Efficient Estimation of Parameters 

of Non-Gaussian Autoregressive Processes", submitted for review to IEEE Trans, on 

Acoustics, Speech and Signal Processing. 

[20] C.R. Rao, Linear Statistical Inference and its Applications, Chapter 6, New 

York: John Wiley, 1973. 

APPENDIX A 

Asymptotic Optimality of the GLRT 

for a General Linear Model of the Noise 

Assuming that / is an even distribution and ©a is as given in (10), it will now be 

shown that (26) holds for the detection problem defined ui (7). It suffices to prove that 

I^i,{(x,^,^) = E 

and 

/;.*(/x,^,$)=i; 
d^ 

ahif\/ahf 
dfi   )[  6<if 

'ainf\/ahf^ 

= 0 (Al) 

(5$ 
0 {A.2) 
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To prove (A.l) it is observed that 

^   /(91nf\/(91nf 
dfj, J y 8%l)j 

^E '<91nf\ Y^v-^ (d\nf\ fduik 

•^/^ yferife v^^'W v<9V'; 
N    N 

ttt[ V di'j 
du>ik 

E ainf\ /(91nf 
6fj,   J \ dtui 

{A.3) 

Uik is written without its argument (see (12)) to make the notation easier. 

E r^akfWainf 
ofi  J \ duj. ik J. 

E 

N        ( N N       I   N 

d^j, duik 

Un can be used as the argument of / (see (28)) to simpUfy the equation. 

E 
ainfX /ainf 

dfx   I \ dijJi 
= E 

^in(n/("-*)) <91n(n/("-*) 
,n=l >n=l 

5^ a^iA 

AT     N 

n=lm: 
^ In/Ki^j'jf^ln/Cu™;*) 

5/i . 5W,A 

n=l 
|:hi/(u„;$)V^ln/(un;$)^ 5/x ,^W,A 

(A.4) 

All the cross-terms are zero because u„'s are i.i.d. and 

E ^ln/K;$) = 5;^^[ln/(un;$)]=o (A.5) 

under certain regularity assumptions on / [Bickel and Doksum 1977]. The derivatives 

w.r.t. fj, and u;,fc can be written in terms of the derivative w.r.t. Un- Note from (28) 

that 

^"n   _ [Vk- IJ-Sk     if n = i 
dijjik      1 0 if n 7^ t (A.6) 
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From (A.6) and (29) it follows that (A.4) can be rewritten as 

N 

E 
d\ni\ /ainf 

dfj,  j \ dujik 
d\nf\ fdun\ /^ln/\ fdun 
dun  J  \ dfJ, J  \ dUn  J  [duJik 

N 

^ In/(„,;*) Vk - (J-Sk 

odd 

odd 

{Vk - ^tSk) is a linear function of u, as observed from (7).   The PDF / is even and 

expectation is taken on a function which is odd over each Un. Therefore the expectation 

must be zero. 

E dhd) fainf\i 
dfi J \duikj_ 

N 

■^CJ.ySy      E 

J = l 

N 

■\2   f   N 

^ln/K;$)      i^Ukju^ 
j=i 

N 

-J2'^ijsj Y.'^kjE 
3 = 1 ;'=i 

^to/K;») U,' 

duidu2 • • -duN 

"E'^.y^; I J_^ [^ In f{ui; $)J   /(u,; $)du, J^ c.,, y^^ uy/(uy; $)duy 

s   -^^--^  
/oo   r   a -| 2 

^ k^ In /(«.-; ^)    tii/(u.-; $) dui 

' V ■        odd 
even 

0 
= 0 

This is true for each i and k, so that -  ■ 

£ Y^lnfX /51nf\] 
= 0 
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{A.l) follows directly from (A.3) and {A.7). 

{A.2) can be proved in a similaj way. Consider 

jr\(d\ni\ /ainf 

N N \\ f  N       f N 

= E 
dij, d4>i 

= E 

N N 

dlniUfiur,;^)]   51n    n/(u„;$) 
,n=l ,n=l 

dn d4>i 

N     N 

n=lm: 
iV 

|i'"^(""'*')(4''^'""''*' 

n=l |;'"^'""^*')(4'"^'"'"'*' (as Un's are t.j.tf.) 

Using (A.6) this becomes 

i; 'fd\nf\ fd\nf\ 

N     /       N 

= J2 -H^^y^y 
n=l \    y=i 

\ 
■ 1 

E (al'"^(''"^*))(a>^(''"^*)) 
V 

odd even 

odd 

Under the assumption that / is even, In / is even, derivative of In / w.r.t. u^ is odd and 

the derivative of In/ w.r.t. (f>i is even [Kay 1985]. Therefore the expectation is taken 

on an odd function and should be equal to zero as explained while proving {A.7). This 

bemg true for each <f>i one can conclude that {A.2) holds. (26) is a direct implication 

of {A.l) and {A.2). 
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APPENDIX B 

Asymptotic Optimality of the GLRT 

for an AR Model of the Noise 

It is now shown that (26) also holds in the case of the GLRT given by (20) for 

detection in AR noise. Note that the conditional likelihood function (see (19)) is used 

and the vector of nuiscince parameters is       . 

0a = [a$] 

with the notations used before. Proving (26) in this case is equivalent to proving that 

'ahif\/ahf\^' V(M,a,$) =E 
dn 6a 

and 

To prove (5.1) it is observed that 

Y51nf\ /^ahifNl 

ainf\ /ainf 
dfj.   } \  (5$ 

= 0 

= 0 

{B.l) 

(B.2) 

E 

= E 

N N p 

n=p+l      \j=0 /  / \n=p+l     \>=0 

dfj. dai 

(16) Coin be used to simplify the argtmient of /, 

ahifN /5bf 
E 

dfi J \ doi 

d^i   n  /("n;$))   5hi(   J]  /(«n;$)) 
Vn=p+1 J Vn=p+1 / 

dfi dai 

N N 

E E^ 
n=p+lm=p+l 

AT 

E^ 
n=p+l 

l;'"^'""'*')!^'"^''*'"'*' 
|;ln/(«„;*))(Ai,/(„„;4) (B.3) 
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The last step follows from {A.5) and the fact that u^s are lid. The derivatives w.r.t. 

fj, and at can be written in terms of the derivative w.r.t. Un- From (166) it follows that 

dUn 

3=0 
[BA) 

and 

dai 
= {Vn-i - HSn-j) (5.5) 

Using these results (B.3) caji be rewritten as 

N 

= E^ 
n=p+l 

dlnf\  /dUn\ /5hi/\ fdur. 

N 

n=p+l \    y=o 
^ln/(u„;$) Vn-i - fJ-Sn-i 

odd 

odd 

{Vn-i - fJ-Sn-i) is a linezir function of {un-i,Un-i-i,••• ,ui} and hence is an odd func- 

tion of each u„. Therefore the expectation is taken on an odd function which shoud 

be equal to zero since the PDF / itself is even. This being true for each a,-, it can be 

concluded that (B.l) holds. 

Proof of (B.2) is similar. Consider 
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E ainf\ fainfM 

= E 
(9/i 

= E E^ 
n=p+lm=p+l 

AT 

n=p+l 

n=p+l   \      ;=:0 

5^ 

d<j>i 

|l^"^(""'^0(4^"^^"'"'^^ 
ln/(u„;$)VAin/(u„;$)^ (as Un's axe iid) 

al:'"^(''-*')(l:'"^'""'*0 
odd 

odd 

(using (B.4)) 

Since / is even, derivative of In/ w.r.t. Un is odd and that w.r.t. 4>i is even. The 

expectation is therefore taken on and odd function and must equal zero. Since this is 

true for each </»,-, it can be concluded that (B.2) holds. Consequently, (26) holds for the 

case of AR noise when the GLRT is computed on the basis of conditional likelihood 

function as in (20). 
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