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OPTICAL SIGNAL PROCESSING

1.0 INTRODUCTION

As the bandwidth of signals increase and as the electromagnetic
environment becomes increasingly dense, processing operations such as
convolution, spectrum analysis, correlation, ambiguity function generation
and filtering become computationally intensive operations. Optical systems

have the capability to perform a large number of complex multiplications

Sy S S YNy

and additions per unit time. As the bandwidth increases, the number of
computations increase as the square of the bandwidth because the degrees of
freedom of the signal is linearly proportional to bandwidth and the

allowable computational time interval is a inversely proportional to

bandwidth. Optical processing provides high-speed, parallel computations
so that digital post-processing techniques can be used for lower-speed,
serial computation.

The research effort described in this report has resulted in several
innovative optical processing techniques for improved performance; it
covers the three-year period from 1 October 1983 to 30 September 1986. The
major accomplishments can be divided into three areas: (1) adaptive optical
processing based on transversal filtering with feedback, (2) reference beam
waveforms for interferometric spectrum analyzers, and (3) Fresnel
transforms for signal scrambling and optical switching. In the following
paragraphs, we summarize the key results in each area; further details can
be found in the referenced journal articles that have been published and
included in the Appendices.

2.0 Adaptive Optical Processing

The basic theory for an adaptive optical processor that uses
transversal filtering techniques was developed under Contract No.
DAAG29-80-C-0149 and reported in Reference 1. Under the current contract,
we performed additional analytical and experimental work to gain further
insight into the process and to validate the theory. In this processor the
Bragg cells are arranged in an orthogonal configuration to produce the
cross-product of two optical signals. Bragg cells used for processing
wideband signals are typically used in one of three configurations: (1) the

cells are parallel and the signals propagate in the same direction, (2) the
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time-reversed, or (3) the cells are orthogonally oriented to better use the
two-dimensional processing power of the optical system.

We studied the generalized case of two Bragg cells crossed at an
arbitrary angle to seek ways to increase the flexibility of the processing
operations. The two main objectives were to find configurations for which
the spatial scaling of the correlation function can be varied and for which
the time compression factor can be controlled. The first objective is
gained by changing the angle between the two cells. For example, when the
angle is 60 ‘degrees, the spatial scale factor is unity so that no
magnification changes are needed when further processing operations are
done. An arbitrary time compression factor can be achieved if the stored
reference signal is clocked at a rate different from that of the received
signal. As a result, signal acquisition can be achieved without the need
to time-reverse one of the signals (a significant advantage), the
correlation function is displayed in space, and the time compression factor
can be made to be unity. More detailed results of this analysis are given
in Reference 2; a reprint is included in Appendix A.

The stability of optical systems using feedback is a critical issue
that must be resolved. The application we studied is adaptive notch
filtering for use in signal excision. To date there have been no published
results showing high performance levels; the problem is that the systems
are very difficult to stablize. We attacked this problem by developing new
analytical models that more accurately account for the analog nature of the
processing operation. We first developed diagnostic tools to measure the
state of the system. Since measurements in the closed loop mode perturb
the system response, we probed the system response in the open loop mode;
in effect, we measured the envelope of the impulse response of the system
directly. We also developed a novel diagnostic tool to measure complex
valued frequency response of the system. In most physical systems the
impulse response is, of course, real valued; in optical systems, however,
aberrations can contribute a phase term to the impulse response. From
these measurements, then, we identified and corrected a serious phase
aberration in the impulse response of one of the Bragg cells.

The key analytical tools are new models that more accurately predict
the system transient response as well as the notch depth. We developed

several computer simulations, taking great care to account for anomalies
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introduced by discrete sampling, to numerically calculate the optimum
impulse response for a given level of phase or gain margin desired for
system stability. An interesting and important result is that the optimum
impulse response under a strong stability constraint is a linear taper from
t=0¢tot =T, where T is reciprocally related to the required notch
bandwidth. We then found a closed form analytical solution that confirmed
the validity of the simulations and showed that a phase stability margin of
90° could be obtained, with no 10ss in notch depth; this allows the system
to operate with realistic error budgets.

As a result of the interaction between the analytical and experimental
results, we increased the notch depth to 32 dB where it is presently
limited by a combination of insufficient laser power and photodetectour
sensitivity. The system as configured has a bandwidth of 50 MHz and a
notch bandwidth of the order of 200 KHz so that the system has the
equivalent of 500 tap weights. This combination of a large number of taps
and a wide bandwidth is the chief advantage of the optical approach.
Details of this work are given in References 3, 4, and 5; reprints of these
papers are included as Appendices B, C and D.

3.0 Reference Waveforms for Heterodyne Spectrum Analyzers

We previously developed the use of a distributed local oscillator,
generated by a reference wavefront, that provides for heterodyne detection
of spatial frequencies. We further analyzed the necessary properties of
the reference waveforms. The motivation for this study was that unwanted
energy from the reference beam bias term may be present in the bandpass of
the filter, along with the desired signal. We studied the case of a
generalized periodic reference waveform having equal Fourier coefficients
within the band limit of the Bragg cell. Since the spatial frequency
output of the spectrum analyzer is subjected to further processing, we

defined a mixed transform of the reference signal that characterizes it in

terms of both spatial and temporal frequencies. The first key result is
that the magnitude of the mixed transform is completely independent of the
specific waveform of a repetitive reference signal. This means that
impulse trains, pseudorandom sequences, and chirp waveforms all have the
same mixed transform. A direct consequence of this result is that the duty

cycle of, for example, a chirp waveform has no effect on the form of the
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mixed transform; a high duty cycle chip is preferred to efficiently use the
available laser power.

A second important result is that the aperture weighting function,
which includes the amplitude profile of the illuminating beam, the acoustic
attenuation and the size limitations of the Bragg cell, can be used to
control spurious modulation introduced by the reference bias term. The
spurious modulation is caused by higher order harmonics of the periodic
reference waveform that are in the passband of the filter. If we cause one
of the harmonics to be coincident with the center frequency of the filter
and simultaneously use the aperture weighting function to create a null at
this temporal frequency, the spurious modulation can be reduced
significantly. Although it may seem strange that spatial frequency nulls
correspond directly to temporal frequency nulls, this result is also
predicted by the analysis. In particular, we showed that the spatial
aperture weighting function is, for certain periodic signals, also imposed
on the output signal as a temporal modulation. This conversion of spatial
to temporal modulation can be easily visualized for a chirp waveform
because each spatial frequency component travels underneath the aperture
weighting function.

We also analyzed spurious modulation for a chirp waveform that has a
fixed phase increment from pulse-to-pulse. This waveform leads to a mixed
transform in which the harmonics, in both space and time, are not integer
multiples of the fundamental repetition frequency. The improved
performance obtainable as a result of this analysis, as well as other
details of the study, have been published in Reference 6 and is included as
Appendix E.

A related activity was the start of a study of a class of
architectures, used for heterodyne spectrum analysis, that require fewer
photodetector array elements. 1In such systems the high performance is
obtained by using an array of discrete elements; each element is followed
by a preamp, a bandpass filter, a nonlinear device, a rectifier and a low
pass filter. As a result of this complexity, arrays having large numbers
of elements (more than 100) are unattractive. We can trade some system
performance by decimating the array and scanning the spectrum across the

remaining elements. We thereby time-multiplex the spatial frequency
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information onto the detector elements. The basic tradeoffs are in terms
of laser power and dynamic range.

4.0 Fresnel Transforms for Signal Scrambling and Optical Switching

The analysis of signal processing systems is generally performed using
either time or frequency domain concepts. 1In optical systems the Fourier
transform plane physically exists, so that operations such as spectrum
analysis or correlation can be performed by placing photodetectors in the
Fourier domain. Between the time (or space) plane and the Fourier plane
there are a continum of Fresnel transform planes. Detailed analyses of
systems using Fresnel transforms are not usually made since these systems
are space- or time-variant. It is often difficult, therefore, to obtain
results that are as generally applicable as those obtained from Fourier
transform theory.

We performed an analysis of the use of Fresnel transforms and their
application to processing real-time signals in a Bragg cell processor. The
initial motivation for this study was the question of how to scramble or
protect wideband analog signals without bandwidth expansion. The normal
technique of digitizing and coding the signal resu1t§ in significant
transmission channel bandwidth expansion. Scramblers that segment the
signal into frequency bins and rearrange the frequency components have been
shown, at least in the audio range, to be relatively ineffective.
Rearranging the time samples seems to be more effective, but requires a
storage device so that a frame of information can be processed without
losing information.

Since the Fresnel transform plane in an optical system lies between
the equivalent time plane and other frequency plane, the question arises
whether techniques can be developed for analog signal protection that share
some of the features of time and frequency scrambling. We find that, given
the constraint of real-time processing, we can obtain a signal that is
dependent on both the time and frequency structure of the signal. The
major phenomena induced by the Fresnel transform is a dispersion of the
elements of the signal; the space-variance of the system can then be used
to introduce some random coding schemes such as time perturbations that are
frequency dependent. Additional scrambling techniques are available if
some bandwidth expansion is allowed; considerable bandwidth expansion can,

of course, be tolerated before we reach that required for full digitization.
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It is also possible to perform arbitrary permutations on blocks of
information, including the so-called perfect shuffle. Details of this work
were published in Reference 7 and a reprint is included in Appendix F.

The fact that permutation can be achieved suggest ways that the
Fresnel transform can be applied to optical computing. Since the Fresnel
transform is a space/time variant transform, the response to a short pulse
is a function of both its time-of-arrival and its frequency. One way to
take advantage of this property is to permute a data sequence to implement
operations such as shuffles, exchanges and bypasses. A wide range of
algorithms can be implemented by these operations.

Another possibility is to use the Fresnel transform to implement a NXN
non-blocking crossbar switch. Such a switch might have, as its input, an
N-element fiber optic array representing the communication links to N
processors, for example. By using the Fresnel transform in conjunction
with Bragg cell processor, we can connect these N input ports to N output
in a completely arbitrary fashion. Furthermore, we can accomplish the
interconnection very rapidly and without the need for multiple passes
through replicated switches, as is often needed in electronic switches.
Multiple connections from one input port to many output ports (fan out) can
be made, as well as the complementary connection (fan in). Details of this
work are given in Reference 8 and a preprint is given in Appendix G.

5.0 Misgellany

A paper entitled "Acoustic Spreading in Multichannel Bragg cells was
presented at an SPIE Conference on Spatial Light Modulators and
Applications. This work was based on work already reported in Reference 1;
we include a reprint of the paper in Appendix H and it is listed as
Reference 9.

During the week of 4 November 1985, A. VanderLugt, along with Dr. B.
D. Guenther of the U, S, Army Research Office, co-chaired a Palantir Study
on the Role of Photodetectors in Optical Signal Processing. Other panel
members were Dr. G, W. Anderson from NRL, Dr. J. Hynecek from Texas
Instruments, and Dr. R. J. Keys from Lincoln Laboratories. Photodetectors
have historically been developed for image sensing applications. We
focused on two key needs for optical processing: more dynamic range and
on-chip processing to reduce the output transfer rate. The committee has

started to prepare a paper based on the results of this study.
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During this contract, A. VanderLugt visited Dr. Graeme Duthie and Dr. \
l ‘l Jay Loomis at MICOM to discuss potential applications of optical processing
-

to phased array antenna systems.

Ny 6.0 Scientific Personnel

The principal investigator on this contract was A. VanderLugt. A. M.

E Bardos, Senior Scientist, and w., ®. Zeaudet, Associate Principal Engineer, !

fun assisted in some portions of the worx and were partially supported by this >

- contract.
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Crossed Bragg cell processors

A. VanderLugt

In optical signal processing applications, two Bragg ceils are sometimes crossed at an angle to display a corre-
lation function in space. In this paper we show how the angle can be adjusted to control the scale of the cor-
relation function. For signal acquisition, the received signal and the reference signal must be synchronized
electronically. If the reference signal is time-reversed, the crossed cell geometry displays the correlation
function in both space and time so that the optical system indicates the time at which the signals are syn-
chronized. If the reference signal has a clock rate difference relative to the received signai, the correiation
function still exists in both space and time but with the additional advantage that acquisition can be ob-
tained without the need to time-reverse the reference signal.

I. introduction

Bragg cells can be used in many different configura-
tion to implement various signal processing operations.
The most common way to use two Bragg cells for
implementing correlation is to orient them so that the
acoustic waves propagate in either the same or opposite
directions.!4 If the waves propagate in the same di-
rection, only a single value of the correlation function
¢(7) is obtained. Furthermore, the peak value of the
correlation function is obtained only if the two signals
arrive at the Bragg cell transducers at the same time. In
a signal acquisition application, a received signal must
be synchronized with a reference code signal. The ac-
quisition process may require a significant amount of
time as the reference code is stepped through all pos-
sible values in the search for ¢(0). The search can also
be done in a continuous fashion by increasing the rate
of the reference signal slightly; the process is still slow,
however, since the time scale also changes, and the rate
difference must be kept well under 1% to maintain the
correlation peak value for highly structured codes.

When the two Bragg cells are oriented at some arbi-
trary angle 6, the correlation function is displayed in
space instead of time. Said and Cooper? described a
cross-path optical correlator wherein the Bragg cells
were oriented at 45°. A more common method is to
orient the Bragg cells orthogonally to achieve correlation
or ambiguity function generation.59 In these config-

The author is with Harris Government Systems Sector, Advanced
Technology Department, P.O. Box 37, Melbourne, Florida 32902.
Received 27 December 1983.
0003-6935/84/142275-07$02.00/0.
© 1984 Optical Society of America.

urations, the scale of the correlation function is de-
pendent on 8, and the tolerance on having the signals
precisely synchronized is somewhat relaxed. Never-
theless, the time delay between the two signals cannot
exceed certain bounds established by the angie 6. We
will examine further these relationships and other im-
plications of the crossed cell geometry in detail.

An alternative method to achieve signal acquisition
is to time-reverse the reference signal and orient the
Bragg cells so that the signals counterpropagate. The
full range of possible time delays is thereby displayed
sequentially so that, at some instant in time, the cor-
relation peak is detected. The correlation function is
compressed in time by a factor of 2 when using this ge-
ometry, which may place severe bandwidth require-
ments on the photodetectors when the signals are
wideband. When the two Bragg cells are oriented at an
arbitrary angle for the counterpropagating geometry,
the correlation function is also displayed in both space
and time. The correlation function propagates at a rate
that always maintains the time compression factor of
2, however.

A third method for achieving signal acquisition that
combines several advantages of the first two is a crossed
cell geometry wherein the reference code is generated
at a clock rate different from that of the received signal.
There is no need to time-reverse the reference signal.
The correlation function is displayed in space with a
scale that is dependent on both the angle 6 and the rate
difference. The correlation function flows through the
system at a rate that can be controlled by the reference
code clock.

In this paper we first consider the results obtained for
Bragg cells oriented at an arbitrary angle. The acoustic
waves initially propagate in the same direction. but if
the angle is >80°, a counterpropagating component is
introduced. We then consider the general case for
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Fig. 1. General crossed-cell geometry.

counterpropagating signals with the reference signal
being time-reversed. The final topic is that of driving
the reference code signal at a different rate from that
of the received signal.

il. General Crossed Cell Geometry

The correlation function for two signals f(t) and g(t)
plays a central role in signal acquisition and other pro-
cessing applications; it is defined as

c(ir) = f. f(t)g(t + 7)dt, (1)

and its Fourier transform is
Clw) = F(— )G (w). 2)

Both signals must have finite durations for Eq. (2) to be
defined.

The general geometry for the crossed Bragg cells is
shown in Fig. 1. We make several assumptions to
simplify the geometry and analysis. First, we show the
Bragg cells as though they are in contact; generally one
Bragg cell w.ll be imaged onto the other with suitable
intervening optics. Second, we show the cells with the
transducer height equal to the length of the cell. This
is normally not done in practice, but the same effect can
often be achieved by the intervening optics. Third, we
will not consider how the Bragg illumination angles are
influenced by the use of a carrier frequency. We will
drop the carrier frequency from the analysis and assume
that the signals are at baseband. The most important
results of the analysis are thereby preserved.

Suppose that f(¢) is applied to the first Bragg cell so
that the acoustic wave propagates in the positive x di-
rection. In the v direction the acoustic wave has a
constant value. The signal g(t) is applied to the second
Bragg cell oriented at an angle 6 with respect to the first
cell; g(¢t) propagates in the x’ direction. Within the
boundary defined by the overlapping area of the two
cells, the diffracted amplitude transmittance function
is given by f(t =~ T/2 — x/v)g(t — T/2 — x’/v), where T
is the time delay associated with the Bragg cell and v is
the velocity of the acoustic wave.

We can obtain the function C(w) by producing the
2-D Fourier transform of the amplitude transmittance
along with an equivalent integration operation. Figure
2 shows a Fourier transform system for the crossed
Bragg cells. Collimated light from a coherent source
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Fig. 2. Fourier transform of crossed cells.

illuminates the two cells, and, given the assumptions
listed above, the Fourier transform A(p,q.t) is centered
on the optical axis:

A(p.q.t) = ﬂ; it = T12 = x/vig(t = TI2 = x'v)
1

X explj(px + qy)jdxdy. (3)

The variables p and q in plane P; are radian spatial
frequencies, and the region of integration is over the
overlapping area of the Bragg cells in plane P;. We now
want to show that, for some region in plane P3, we ob-
tain the result that A(p,q,t) « F(—w)G(w). Weusea
coordinate transformation in plane P, for which

x’ = x coef — y sind,
y’ = x sinf + y cosf,

and a similar coordinate transformation in plane P; for
which

4)

p = p’ cos¢ — ¢’ sing,

q = p’ sing + g’ cose.
In plane P,, 8 is the angle from the x’ axis to the x axis,
whereas in plane Pj, ¢ is the angle from the p axis to the
p’ axis. If we substitute Eqgs. (4) and (5) into Eq. (3),
we have that

A(p'.q’.t)'fJ-P f(t = T/2 = x/v)
1

xg(z-r/z-icoso+¥sino
v v

$)

X explj{x(p’ coso - q’ sing)
+ v(p’ sino + ¢’ cose)]idxdy. (8)

We can separate Eq. (6} into the product of two integrals
by first integrating on y and then on x toget A(p’.q’,t)
= By(p’.q".t)Ba(p’.q".t). The integrals are

By(p'.g'.t) = _Loexp[—jatt - T/2)] fq(ul expyouidu, (7
sinl :

Ba(p'.q’.t) = —v explibtt = T/2)] ff(r) exp(~jbridr, (8)

where

am= ”qp'sinw + q’ rosel.

sin
siny . COSP

h-r[p'(cnsw+—)-q'(smw———n ) . 9
ianf/ tanf

We note at this point that the integrals in Eqs. (7) and
(%) are the Fourier transforms of g(¢) and f(¢) with the
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product being of the form F(+b)G(—a); the variables
a and b are functions of p’, ¢’, and # and ¢. One con-
dition that we impose is that both transforms must have
the same frequency scale. This means that |a| = |b]
for all values of p’ and q’ as well as for all values of ¢,
given the value of f. If we equate the coefficients of p’
and ¢’ from Egs. (9), we find that the frequency scale
is equal in magnitude when ¢ = —6/2. A second con-
dition is that the Fourier transform must be a function
of either p’ or ¢’; if we evaluate the integrals along the
line p’ = 0, we obtain the result thata = b = —vq’/2
sing. When this value is used in Egs. (7) and (8), and
we form the product of the two integrals, we have

-2
Alg') =— fg{u) expl—Jjq’vu/2 sing)du
sinfl

X fﬂr) expyq'vr/2 sing)dr; 8 = 0. [$10)]

If # = 0, the value of A(p’,q’,t) can be obtained from Eq.
(6) directly. The form of Eq. (10) shows that the scale,
or measure, of the frequency variable is a function of the
angle ¢. Furthermore, since the product ¢'v is equiv-
alent to a temporal frequency variable, we define w =
q'v/2 sing. We then find that A(w) =« F(-w)G(w),
which is what we wished to show.

The result given by Eq. (10) reveals a number of in-
teresting features. First, the relationship of A(w) to
C(w), as given by Eq. (2), is clear. Second, the fre-
quency scaling is a function of the angle §. Third,
evaluating Eq. (6) along the line p’ = 0 is equivalent to
integrating the space function in plane P, along lines
parallel to the bisector of the angle §. Fourth, since Eq.
(10) does not contain any time factors, the correlation
function is fixed in space at plane P,. Some of these
features become more apparent if we examine the
equivalent operations in the space plane.

Figure 3 shows the Bragg cells crossed at § = 45°. We
represent the duration of the independent time samples
along the Bragg cells by To. As we noted above, eval-
uating Eq. (6) along the frequency axis p’ = 0 is equiv-
alent to integrating the cross product of f(¢) and g(t)
along lines parallel to the bisector of 6. The intersection
of the time samples are parallelograms; the appropriate
samples corresponding to no relative time delay be-
tween the two signals are shown as shaded areas. We
can represent a time delay axis by extending the line of
integration to some convenient point outside the over-
lapping region and by drawing a line perpendicular to
the line of integration. We note that these two lines
form an angle ¢ with respect to the original x and v axes.
The intersection of these two constructed lines repre-
sents the point at which the value ¢(0) occurs.

The basic reason for using a crossed-cell geometry is
to display the correlation function in space instead of
time. We must be careful, therefore, to establish a
notation that connects space coordinates with time-
delay coordinates. For example, as the signals propa-
gate through the Bragg cells, the amplitudes at each
sample position along the Bragg cells change. The
correlation function, however, does not propagate as a
function of time; the line of integration representing no
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Fig. 3. Cells crossed at 45°.

relative time delay always passes through the origin
about which the Bragg cell is rotated. As a result, in one
sense it is appropriate to represent the time delays along
a space-displacement axis as shown in Fig. 3. However,
I prefer to retain an explicit time domain notation and
will generally refer to the space-displacement axis as the
time delay or 7 axis.

The physical spacing of the 7 values can be related to
T\, through the observation that if g(t) is delayed by one
time sample T, relative to f(¢), the shaded area repre-
senting the correlation peak line is shifted upward so
that the intersection with the 7 axis now occurs at

174 = To/2 sine¢: 0 <o s90°. (11)

This relationship is consistent with the formulation
given by Eq. (10); if the frequencies are compressed or
expanded by a scale factor of 2 sing, the scale of the 7
axis must be expanded or compressed by the same
factor.

We note that, if 7 = 0, the number of samples that
contribute to ¢(7) changes. The integration is over the
octogonal boundary defining the region of overlap. The
effect of this integration is the same as that of a
weighting function whose general normalized form,
given in terms of 7, is

27| . T
A7) = | = ——siny, |7| § ——
T 2 cosell + tano)
2 r| T T
=] — = cos¢ /Lamb. <] < R
T 2 cosoil + tano) 2 cose
=0.|r| 2 aMn
2 coso

where T is the total time duration of the Bragg cell.
The weighting function is shown in Fig. 4 for several
values of ¢. For ¢ = 0 the boundary becomes a square.
and the weighting function is rectangular over the in-
terval from -T/2to T/2. For ¢ = 45°, the boundary is
a diamond, and the weighting function is triangular over
the interval =T/y/2 to T+ 2. At all other values of
0 < ¢ < 45°, the weighting function consists of two
straight line segments as indicated by Eq. (12). If#
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Fig. 4. Weighting function due to region of integration.

exceeds 90° so that ¢ > 45°, Eq. (12) is no longer valid.
The weighting function can be readily found, however,
by substituting (90° = ¢) for ¢ in Eq. (12) when ¢ >
45°,

The weighting function is related to the physical
boundaries of the Bragg cells. We must use Eq. (11) to
determine how many values of * occur within the
weighting function as given by Eq. (12). For example,
if = 0, Eq. (11) shows that 7, is infinity. Therefore,
within the weighting function given in Fig. 4, there is
only one time delay value available so that the correla-
tion peak occurs only when the signals are synchronized
electronically.

We can find the number of r samples for any other
value of ¢ by noting that the zero values of the weighting
function occur at T/2 cos¢ for 0 < ¢ < 45° and at T'/2
cus(90 — ¢) for 45° < ¢ < 90°. Since T = 2NT, where
N is the time-bandwidth product, we can use Eq. (11)
to find that the number of 7 increments is

N, = 2N tane; 0-< ¢ < 45°,
= 2N, 45° £ 0 < 90°.
This result shows that for values of ¢ < 45° we do not
generate all possible 7 values. In some applications
involving the correlation of wideband signals. only a few
values near 7 = 0 may be necessary to achieve the de-
sired results.

Some examples of special interest will now be exam-
ined. The first case is when there is no rotation of the
Bragg cellssothat # = ¢ = 0. We return to Eq. (6) and
find, after a change of variables, that

13)

A.g ) = ¢ sinelyg’vT/2) S fludg(u)du, (14)

where ¢ is a constant. In terms of Fig. 3, the integration
is along lines parallel to the direction of propagation,
and the weighting function, as shown in Fig. 4, is con-
stant over the extent of the Bragg cells. The integration
in the vertical direction produces the sinc-function, so
that Eq. (14) has the form of ¢(7) if the photodetector
in plane P is located at p’ = ¢’ = 0. Only a single value
of 7 is thereby obtained; if the two signals are synchro-
nized. the value is that corresponding to r = 0. If the
signals are not synchronized, the light amplitude at p’
= ¢’ = 0 is proportional to c¢(7), where 7 now represents
the time delay between the two signals. If the received
signal is Doppler shifted and the signals are not at
baseband. the correlation value will occur at some other
value of p’. Thus all the information concerning two
Bragy cells having signals propagating in the same di-
rection can be derived from the gene-al case.
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If we now allow # to increase, we find that more time
delay values become available. To help visualize how
the correlation function develops, it is useful to make
transparencies of the signal histories and to overlay
them at various angles as illustrated in Fig. 3. For ex-
ample, when 6 = 60° we find that the scales of the 7 axis
is exactly the same as the time scale as indicated by Eqs.
(10) and (11). This may be a useful feature in some
applications where we wish to perform a double corre-
lation directly by the use of a third Bragg cell. Since the
time scales are the same, no change in magnification is
needed. Unfortunately, implementing a geometry in
which 6 = 60° is generally not feasible in systems that
use 1-D Bragg cells.

It is feasible to orient the two Bragg cells at # = 90°
so that ¢ = 45°. We then find that the full range of 7
values is available as shown by Eq. (13). The correla-
tion function ¢(7) occurs (after integration) along a line
inclined at 45° to the vertical axis, and, in the frequency
plane, C(w) lies along the ¢’ axis, which is at 45° to the
vertical axis. The scaling of the r axis is compressed by
a factor of /73 relative to the real-time scale; the Fourier
transform, in turn, is expanded by the same factor. As
a result, further processing involving c(7) or C(w) may
require some magnification changes.®?

If we let # > 90°, we begin to note some interesting
features. First, the scale of the 7 axis continues to
compress according to Eq. (11). Second, the weighting
function is similar to those shown in Fig. 4; if § = 120°,
the appropriate w(7) is that for ¢ = 30°. Third, the full
range of 7 values is displayed as indicated by Eq. (13).
Although the two acoustic waves now have a counter-
propagating component, a correlation function can still
be obtained, and it is stable in space. The peak value
decreases, however, as f/ increases because fewer cross-
product terms contribute to the correlation. From
geometric considerations we find that the number of
cross products contributing to the correlation peak at
7=0is

M =2N. 0 <o =45%

(15)
= 2N/tano, 45° < ¢ < 90°. 15

We could incorporate the reduction in the correlation
peak by dividing the weighting function w() by tane
for 45 < ¢ < 90°. In terms of the functions shown in
Fig. 4, the amplitudes would then be scaled by 1/tan¢
when f exceeds 90°.

Figure 5 summarizes how some of the key parameters
vary as a function of the rotation angle. The number

_of 7 values increases from 0 to 2N as the angle increases

from 0 to 90°; the number remains constant thereafter.
The number of cross products is fixed at 2N until #
reaches 90°; the number then decreases to zero as 8
reaches 180°. The reciprocal of the ratio of the 7
sample spacing to the time-delay spacing increases from
0 to 2 (right-hand scale) as # increases from 0 to 180°.
In all cases the correlation function is a pure space
function even though the two waves mav have a coun-
terpropagating component; it is a function of time only
to the extent that the signai statistics are not sta-
tionary.
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Fig. 5. Key performance parameters as a function of angle.

lll. Time-Reversed Signais

When 6 exceeds 90°, we found that the number of
cross-product terms decreases so that, at some angle,
the cross-correlation function may no longer be useful.
To achieve a full strength correlation function, a pos-
sible option is to time-reverse one of the signals. We
have noted that the correlation function has a r scaling
that depends on # and that there is a specific value of 8
for which the 7 scale and the time scale are the same.
We now examine the situation for time-reversed signals
to see if a similar 7 scaling in both space and time exists
as a function of f.

We return to the crossed-cell geometry of Fig. 1 but

with the transducer of one of the cells placed at the

opposite end. As a result, the two acoustic waves are

. hoth counterpropagating and time-reversed. To
achieve correlation, the reference signal must be time
> delayed by an amount T,, which, for example, might
i represent one or more frames.of a signal that is periodic
or changes in a known way from frame to frame. The
product of the two waves leaving the crossed Bragg cells
. can be written as f(t = T/2 = x/v)g[T, = (¢t = T/2 +
-t: x’/v)]. The Fourier transform of this product, given
e that the cell containing g(t) is at an angle # with respect
to the horizontal axis, is
- - D - ]
! Apg.t) fj;,/(t T/2 = x/v)
X g(Ty =t + T/2=x'/v)expljipx + qy)|dxdy. (16)
- We follow the same procedure as before using Egs. (4)
o and (5) to obtain
v
Bip' gty =—expljait = T, = T fg(uiexpuau du,
e sinfl
‘ ’ Bk}
Bap g .ty = —vexplbit = 1/2)] f/lr)expt—;br)dr. 118}
;-'.; where a and b have the same values as given in Eq. (8).
-~ We see that Egs. (17) and (18) have the same form as
Egs. (7) and (8) except for slightly different exponential
. multipliers. By equating a and b and evaluating the
- function A(p’.q’.t) along the line p’ = 0, we get
Nad) = lexp(jwt'.’l + T, =Ty
- <tnf!
L -fg‘ubexpt—;wuidu f/(riexp(}wr)dr 119
~
Cal
Fl
B G R

This result is similar to that given by Eq. (10). The
exponential factor, however, is now a function of the
present time ¢, the time delay T'; of the signal g(t), and
the Bragg cell processing time T. This term consider-
ably alters the nature of the temporal display of the
correlation function c¢(7) as we shall see later.

When the two acoustic waves are counterpropagating
and time-reversed, the basic geometry is similar to that
shown in Fig. 3 except that the transducer to which g(¢)
is applied is on the opposite side of the Bragg cell.
Many of the same results apply; for example, the
weighting function which is based on geometric
boundary considerations and given by Eq. (12) is still
valid. The key difference is that the entire spatial
correlation function now propagates along the 7 axis,
whereas it is stationary when the signals are not time-
reversed.

The rate at which the correlation function moves
relative to the time delay interval 74 can be found by
noting that, during a time interval T, the correlation
function moves an amount given by T¢/sin¢. From Eq.
(11) we find that, when the signals propagate one time
resolution element, the correlation function propagates
two time-delay resolution elements. Since this factor
of 2 is independent of #, it is always present when one
signal is time-reversed.

It is, therefore, interesting that we could find an angle
for which the spatial 7 scale and the time scale are equal
when one signal is not time-reversed but that such a
condition does not exist for the temporal 7 scale when
one signal is time-reversed. In the first case, we used
the crossed-cell geometry to display the 7 values as a
function of space. Since the correlation function does
not move, independently of whether the signals are
copropagating or counterpropagating, the angle be-
tween the Bragg cells can be used to change the spatial
scaling. When one signal is time-reversed, the corre-
lation function has similar spatial characteristics so that
the Fourier transforms as given by Eq. (19) are the same
as those given by Eq. (11) but only at a particular instant
in time. At any other time, the Fourier transform is
that of some asymmetric segment of c(r). When the
correlation peak occurs at the 7 = 0 spatial position at
time t = (T — 2T,)/4, the signals are said to be matched.
In the communication theory literature the time-re-
versed counterpropagating mode of correlation is re-
ferred to as matched filtering because the presence of
the reference signal in the received signal can. in prin-
ciple, be found for any time delay. Furthermore, the
processing operation is continuous, subject to some
constraints on the ability to properly time-reverse the
reference signal.

We would like to develop a technique wherein a true
matched filtering operation can be performed without
time-reversing the reference signal. Another desired
feature would be to control the compression factor for
the temporal scale of the correlation function. Finally,
we would like to display the entire correlation function
¢(7) in space, possibly with the same scale as the time-
received signal. In the next section, we show how these
features can be obtained.
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IV. Differential Rate Correlation

Let us return to the geometric configuration given in
Fig. 3. Suppose that we drive the reference code signal
f(t) at a higher rate than that of the received signal. We
assume here that the reference signal is controlled by
a clock whose rate can be varied. If f(t) is an analog
signal, similar results can be obtained by using a Bragg
cells having different velocities of acoustic propagation.
We let k be the ratio of the time base of the reference
signal to that of the received signal.

We could analyze this case for an arbitrary angle 6 as
before, but the results are somewhat cumbersome. In
general, the same results apply in a qualitative sense.
One note of caution, however, is that § must reach some
minimum value, depending on the parameter k before
correlation occurs at all. Two useful results from the
detailed analysis will be given here. The first relates
the angle ¢ of the line of integration to the rotation angle
# and the rate parameter k:

1 1) L 1-k
ksind wng) " (1 +k
The second relationship is that the = values are sepa-
rated by

¢=arctan( 350590°. (20)

ra = kT cos(¢ — 8)/siné. (21

The specific case that we will describe is that for 6 = 90°
and k = !5 as shown in Fig. 6. The received signal g(¢)
propagates downward with time resolution elements of
duration Ty. The reference signal propagates to the
right with elemental time resolution kTy. From Eg.
(20) we find that ¢ = 63.4° when k& = %, and from Eq.
(22) we find that 74 = 0.45T,. The cross-product terms
that contribute to the valus of ¢(7) at the origin of the
T axis are shown shaded, and the region of integration
is a rectangle, which in turn produces a triangular
weighting function identical to that shown in Fig. 4.
The full range of possible 7 values is displayed in space
as before.

The major difference in the performance of the
crossed-cell configuration using a different rate for the
reference signal is that the correlation function now
moves at a rate determined by k. During a time inter-
val of Ty sec, both signals move the same physical dis-
tance; this distance, however, represents one time
sample for the received signal but 1/k samples for the
reference signal. As a result, the correlation function
will drift through the system, assuming that the refer-
ence code starts ahead of the received signal code, so
that the correlation peak will eventually pass through
the origin of the time-delay axis.

One other special case of some interest is that when
f = 45° and k = 1/2/2, we find that ¢ is also equal to 45°
and that 74 = Ty. This set of conditions states that the
spatial scaling of the 7 axis is identical to that of the
received signal so that further processing involving c¢(7)
and the time signals will not require a change in mag-
nification.

We have developed, therefore, a useful technique
whereby matched filtering can be achieved without a
time-reversal of the reference signal. The correlation
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Fig. 6. Differential rate geometry.

function is still displayed in space so that all  values are
available, and, by changing k, we can vary the time
compression factor to fill in the range between the two
discrete values (0 or 2) that are produced by the other
configurations. As k is changed, both ¢ and 7, change
so that an array of photodetectors may be required if we
wish to operate at variable rates. We note that, for this
processing configuration, the peak value of the corre-
lation function is less sensitive to Doppler effects on the
received signal since the system is much more forgiving
of small changes in the signal time base.

V. Summary and.Conclusions

The use of two Bragg cells crossed at an arbitrary
angle f serves to display the correlation function in
space as well as in time. We showed that when the two
waves propagate in the same direction only one relative
time-delay value is available. As the angle between the
cells increases, the number of time delays displayed in
space increases because the spacing between adjacent
delay values decreases. A particularly interesting
condition arises when # = 60°, because the scaling factor
for the 7 axis is the same as that for the time axis. As
a result, some triple-product operations can be achieved
directly without the need to change the magnifica-
tion.

The most often used configuration is that for which
the two cells are orthogonally oriented (f = 90°). In this
case, the maximum number of time-delay values are
produced, and the correlation peak is still at full
strength. The scale of the time-delay axis is now
compressed by a factor of v/ 2 relative to the time axis.
When f exceeds 90°, the two acoustic waves have a
counterpropagating component, but the correlation
function remains stationary. The number of cross
products that contribute to the correlation peak begins
to decrease, however, leading to a reduction in the per-
formance of the system.

We investigated the crossed-cell geometry when the
signals are time-reversed and counterpropagating. We
found that the correlation function alwavs propagates.
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for any value of 8, with a compression factor of 2. Aside
from being able to display a large range of = values in
space, there is little advantage to any geometry other
than that of ¢ = 0, for which the two signals propagate
in opposite directions.

We developed a variation of the first geometry
wherein the two signals propagate in the same direction
without time-reversal but at different rates. It is now
possible to display the correlation function in space, to
cause it to move along the t axis, and to control the
relative rate of motion (the compression factor). In this
most general case, then, we can achieve a compression
factor ranging from zero, when the rates are the same,
to any desired factor given by (1 — k)/k, where k is the
ratio of the signal rates. When k = Y4, this optical
processing architecture vields a compression factor of
2, which is the same as that for the counterpropagating
time-reversed case but without the requirement that
one signal be time-reversed.

Although the analysis given here was based on the use
of Bragg cells as the signal input devices, the analysis
is valid, with some modifications, for some other types
of spatial light modulator as well. For example, a 2-D
spatial light modulator, in which the same data are in-
serted in a column and the data flow through the sys-
tem, behaves in a manner similar to that of a Bragg cell
when its data are spread out in the direction orthogonal

to the direction of propagation. A combination of two
such modulators or one 2-D light modulator and a Bragg
cell may be useful for achieving the most general
geometries described in this paper.

This work was supported by the U.S. Army Research
Office.
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D Stability considerations for adaptive optical filtering
e} A. M. Bardos, W. R. Beaudet, and A. VanderlLugt

. We report analytical and experimental results from an interferometric optical system configured to imple-
ment a least mean square error filtering operation with an adaptive filtering loop. We describe the basic
operation, experimental optical system, and simulation model; we then compare the results of the model and
. hardware. We find that the time delay must be minimized in the closed loop signal path to achieve good
R ’ performance. Optical aberrations must also be controlled depending on the degree of phase margin required
to maintain stability. We show that 30-35 dB of stable gain can be achieved with reasonable hardware and
system tolerance requirements.

l. Introduction
In this paper we give the resuilts of experiments

We begin with a brief review of adaptive filtering
based on some earlier analyses. We simplify the de-
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conducted with an interferometric system which al-
lows for adaptive processing of wideband signals. We
designed, built, and tested an optical transversal filter-
ing system with feedback, yielding a flexible architec-
ture for various applications. The system can be con-
figured, for example, to remove agile jammers in a
wideband spread spectrum system performing an op-
eration which requires a filter' having many taps and a
wide bandwidth. Other applications are channel
equalization for wideband communication systems
and the processing of signals from phased array radar
systems for null steering or beam forming applications.
These applications often require computational rates
that cannot be met by current digital technology; even
future developments such as VHSIC are likely to fall
short of meeting the current and projected needs be-
cause communication and collection requirements
continue to expand.

In adaptive filtering the system response function
changes according to some measure of the characteris-
tics of the received signal. In the application we chose
to study, a wideband signal is corrupted by narrow-
band interference; the frequency, amplitude, and
phase of the interferer are unknown. The task of the
optical system is to measure these unknown parame-
ters and to construct a notch filter to eliminate the
unwanted signal. The desired wideband signal there-
fore has an improved SNR.

The authors are with Harris Corporation, Government Systems
Sector, P.O. Box 37, Melbourne, Florida 32901.

Received 23 December 1985.

0003-6935/86/142314-12$02.00/0.

velopment somewhat and view the basic operation
from a different vantage point to set the stage for some
new system modeling. In Sec. III we describe the hard-
ware that we constructed in support of the experimen-
tation and describe some new diagnostic techniques
for aligning the system and monitoring its perfor-
mance. The model development is given in Sec. IV in
which we established criteria by which optimally sta-
ble systems can be designed. In Sec. V we give the
major experimental results and show how they relate
to the modeling results.

. Background

In earlier analyses of adaptive filtering,!* we de-
scribed the basic operation of a frequency domain
processor in terms of an analogy to a discrete transver-
sal filter. Related work on adaptive filtering has been
reported by Rhodes and Brown,? Rhodes,* and Psaltis
and Hong.> The transversal filter includes a tapped
delay line that contains the discrete time samples of
the received signal. The output of each tap is weight-
ed, as determined by the processing operation, and
summed to provide an estimate of a signal. These
operations are called linear predictor or estimator op-
erations. If the estimated signal is subtracted from
the received signal to provide a residual signal which
controls the tap weights, the system is called an adap-
tive linear predictive system.

For this analogy, we note that Bragg cells accept
wideband signals and behave as a continuous delay line
that can be tapped optically. The basic adaptive oper-
ations can be described mathematically as a combina-
tion of convolution and correlation. The optimum
weights are obtained by correlating the residual signal
z(t) with the received signal s(¢t); the received signal is

(Y

© 1986 Optical Society of America. for this application assumed to consist of a wideband
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signal g(t) and a narrowband interference signal or
jammer. The continuous tap weights c(r) are then
given by!

cr)=G ]‘ 2(u)s(u = r)du, (1

=T,

where G is the gain in the feedback loop, T is the
integration time of the correlation loop, and r is the
continuous-time equivalent of the discrete delay time
between samples of a digital system. The estimate is
then given by convolution of the tap weights and the
received signal:

T
) = f c(r)s(¢ = r)dr, 2)
0

where T is the total delay time of the Bragg cell. The
estimate s(¢) is subtracted from s(t) to form the residu-
al signal z(t). At steady state, the strongly correlating
jammer signal has been removed from the received
signal, and the residual signal is the best approxima-
tion of the signal g(t) in a least mean square error sense.
When we substitute Eq. (1) into Eq. (2), we obtain a

time domain representation:
=G j T

]‘ z(u)s{u = 7)s(t = r)dudr. (3)
o Ji-T,

By means of the convolution theorem, we can also
express s{t) as an integral in the frequency domain:

i =G f Zriwt)|Srlwit) | expUitid, @
where Zr and St are the instantaneous Fourier trans-
forms of those portions of z(¢) and s(¢) within the
Bragg cells of duration 7. We can easily see from the
frequency domain representation how the estimate is
developed. The|Sr(w,t)|?factor puts a strong weiglit
on the spectrum at those dominant spectral terms that
represent the jammer. In effect, the instantaneous
power spectrum of s(¢) is used as a template to separate
the jammer from the signal so that it can be used in the
feedback loop.

Figure 1 shows only the key elements of the interfer-
ometric optical system and suggests how we plan to
model its system response in a feedback loop. We
represent all three Bragg cells with idealized transduc-
er heights that render the region of interaction be-
tween light and acoustic waves into a square format.
The idealization shown generates the same results as
obtained by using Bragg cells with suitable anamor-
phic optical systems described in Sec. III. The Bragg
cells, with respect to an observation plane external to
the interferometer, appear to overlap as shown in Fig.
2(a). We refer to this plane as the tap weight plane.
The transducer of the Bragg cell that is disposed at 45°
to the first two must lie on the bisector established by
the other two transducers.

We have two ways in which the Bragg cells can be
driven. If wedrive the two orthogonal Bragg cells with
s(t) and z(t), all the cross-product terms required to
establish ¢(7) as given by Eq. (1) are formed at the tap
weight plane. Inprinciple, we must integrate the light
along lines parallel to the bisector to obtain ¢(7).6 For
the moment, if suffices to visualize that the action of
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Fig. 1. Simplified system schematic.
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Fig. 2. Signal geometry: (a) tap weight plane; (b) spectrai plane.

the third Bragg cell is to convolve s(t) with the station-
ary 2-D cross products in the overlap region illustrated
in Fig. 2(a) to provide the estimate s(¢) as given by Eq.
(2). Therequired integration is effectively performed
by the photodetector because it detects light only in
the overlapping region.

The second way to drive the cells is to drive both
orthogonal cells with s(¢) as we show in Fig. 1. This
connection tends to emphasize the frequency domain
representation as given by Eq. (4); in this case we focus
our attention on the Fourier plane where the photode-
tector is located. The orthogonal Bragg cells of the S-
branch produce |Sr{(w,t)|*, which selects the strong
periodic signals from Zr(w,t). produced by the Z-
branch, for use as feedback signals.

Figure 2(b) shows the equivalence of these two con-
nection schemes. Suppose that s(t) consists of two cw
signals which appear at both positive and negative
frequencies along the two spatial frequency axes; we
assume Raman-Nath operation for the sake of this
illustration. The signals interact to also provide a set
of four spectral components in each frequency quad-
rant; these components are shown as filled circles.
The upper right quadrant is marked (++) to indicate
that both cells 1 and 2 produce a frequency upshift. In
our model the upper left quadrant is used; in this
quadrant the frequencies have a downshift/upshift
structure. The region in the upper left quadrant occu-
pied by the photodetector covers the domain of over-
lapping frequencies.

Suppose that the third cell is driven by z(¢). which
also consists of two frequencies shown as open circles;
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these signals are shown with a slightly lower frequency
so that we can visualize some important relationships.
It is easy to see that these frequency components over-
lap on the diagonal provided that the frequencies of
2(t) equal those of s(¢t) and that the optical system
magnifies the spectrum of cell 3 by y2. We cannot
then distinguish the two alternative Bragg cell drive
configurations, and we are free to select the signal
connection scheme that optimizes system perfor-
mance. For the purpose of model development, we
prefer the connection scheme showninFig.1. Wenow
describe the experimental hardware and discuss some
preliminary results that set the stage for discussion of
the enhanced model.

. Hardware

Figure 3 is a schematic of the optical system as
implemented, and Fig. 4 shows the associated hard-
ware. The basic configuration is that of a Mach-
Zehnder interferometer. Other interferometer archi-
tectures, such as a more nearly common path interfer-
ometer,” may be less sensitive to vibrations, thermal
gradients, air currents, or acoustic coupling. As a
preliminary experimental system, however, the Mach-
Zehnder configuration is convenient to use and easy to
modify as needed. Thelightsourceisa1l5-mW He-Ne
laser, whose output beam is expanded by lenses L, and
L, and divided into two beams by beam splitter BS;.
Cylindrical lens C; focuses the light into a horizontal
line to illuminate efficiently the first Bragg cell driven
by s(t). The Bragg cells are constructed from TeO;
material which is oriented to operate in the slow shear
mode. The bandwidth of each cell is 50 MHz, cen-
tered 1t 90 MHz, and the cell fill time is 40 us. A
quarterwave plate, not shown in Fig. 3, produces circu-
larly polarized light at the entrance to the Bragg cell to
improve diffraction efficiency and spectral band uni-
formity.

Lens L;produces a 2-D Fourier transform of the first
cell at the entrance to the second Bragg cell. This cell
is similar to the first, except that its tranducer is made
larger to accommodate the Fourier transform from the
first Bragg cell. Lens L, collimates the light in the
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vertical direction to illuminate the second cell at the
Bragg angle. This second cell may be driven by s(t) or
2(t), yielding equivalent results.

Cylindrical lenses C; through Cs serve to mutually
image the two Bragg cells into a square format at the
tap weight plane. Itis not necessary that this plane be
displayed explicitly; doing so, however, provides a con-
venient reference plane that can be used for diagnostic
purposes. For example, if both Bragg cells are driven
by a square wave test signal, a triangular shaped peri-
odic autocorrelation function appears at the tap
weight plane. If the test signal is a pseudorandom
sequence, the autocorrelation peak defines the r = 0
line; this information is useful for properly positioning
the third Bragg cell. It is also convenient to reference
all amplitude weighting functions and phase aberra-
tions to this plane. We note in passing that the auto-
correlation functions are oriented at 45° to the trans-
ducer faces of the cells.

The hardware causes the correlation, as described by
Eq. (1), to take place through a multiplication of the
Fourier transforms of two signals, as described by Eq.
(4). Lens Lg serves to create the Fourier transform of
the tap weight plane at the spectral plane just beyond
beam combiner BS,. A relay lens Lg, operating at a
demagnification of two, images the spectral plane onto
a single-element high-speed photodetector. In the
second branch of the interferometer, a telescope con-
sisting of lenses Lg and L; and a cylindrical lens C-
shape the Bragg cell illuminating beam. This cell is
disposed at 45° relative to the other two so that the
signal travels in a direction parallel to that of the
correlation function established at the tap weight
plane in the first branch. Lenses Cg and Lg create the
Fourier transform just beyond the beam combiner at
the spectral plane where the two Fourier transforms
are joined to make heterodyne detection possible.

One Bragg cell in the S-branch is operated in the
downshift mode, while the second one is operated in
the upshift mode; as a result, there is no net frequency
shift of the light in this branch. The cell in the Z-

AL IR SRS, 7 SIS | Y

’1
PN



AR

v v v v v
e s a4 8
.

R AR X

branch is operated in the upshift mode so that the
heterodyne action is centered at 90 MHz. It is rela-
tively easy, therefore, to subtract the estimated signal
from the received signal at rf; there is no need to
demodulate the signal to baseband.

Figure 4 shows the hardware as implemented. Most
of the components and their positions can be readily
identified by comparing Fig. 4 with Fig. 3. Weidentify
the tap weight plane in the S-branch by dotted lines.
The Bragg cell assembly in the Z-branch, consisting of
C,, the Bragg cell, Cg, and Lg, is mounted so that the
assembly can be adjusted in angle and position relative
to the components in the S-branch. The effective
focal length of the pair of lenses, denoted L; in Fig. 3,
can be adjusted to equalize the scale of the transforms.
We use prisms after each Bragg cell to bring the dif-
fracted beam to the original axis, thereby keeping the
system collinear.

The electronic part of the system consists of rf driv-
ers for the Bragg cells, a specially designed preprocess-
ing and postprocessing electronic system, and various
test electronics such as signal sources, oscilloscopes, rf
network analyzers, and spectrum analyzers. The sig-
nal source module provides a 90-MHz carrier that can
be modulated in either a8 BPSK or QPSK format by an
external signal source such as a pseudorandom se-
quence generator. This wideband signal is combined
with one or more jammers from another external
source to represent the received signal.

The photodetector subsystem detects the light and
amplifies the signal through several stages of amplifi-
cation; the output signal is then brought to the signal
processing electronics where it is subtracted from the
received signal to yield the residual signal. This signal
is fed to the third Bragg cell to close the loop. The
residual signal can also be fed to a demodulation mod-
ule which then recovers the pseudorandom sequence
and provides a means for making SNR measurements
at the output. The signal processing electronics also
include the necessary rf level adjusting pads, bandpass
filters, mixers, and amplifiers.

We developed several open loop diagnostic proce-
dures for the precision alignment needed to obtain
proper system performance. Initial alignment to ob-
tain a heterodyne signal output requires that the two
branches of the interferometer be coincident and col-
linear. Toequalize the scale of the Fourier transforms
in the two branches, we drive all Bragg cells with two
frequencies. The Fourier plane contains two spots of
light from each branch; we adjust the spacing of lens
combination Ls to achieve overlap, thus equalizing the
scale. The single Bragg cell branch has a rotational
provision so that we can match the angle of the sepa-
rate Fourier transforms. Finer adjustments are then
obtained by maximizing the photodetector current as
the parameters are varied. At some point in the ad-
justment, further increases in the output signal could
not be made, and we attempted closed loop operation.

We found the system to be stable over only a small
frequency range even though the alignment seemed
adequate. The problem is that maximizing the ampli-
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Fig. 5. Network analyzer traces for sysivm aligu.ment: (a) initial

amplitude and phase; (b) response with linear error removed; (c) full

bandwidth view with residual quadratic phase errors; (d) response
after alignment.

tude of the output is not a sufficiently sensitive mea-
sure of the phase response of the system. We there-
fore developed a technique in which we used an rf
network analyzer to help improve system alignment.
We repeated the tests with the cw signal using the open
loop mode. As a single frequency is swept over the
passband, the network analyzer displays the ampli-
tude and phase of the resultant heterodyned light out-
put. Figure 5(a) shows the amplitude and phase re-
sponse as displayed by the network analyzer at the
initial state of alignment. The linear phase is shown
by the sawtooth waveform; one vertical division repre-
sents 90° of phase, and the horizontal scale is 100 kHz/
division. As we see, the phase changes by 360° at
~100-kHz intervals for this stage of alignment.

The principal cause of the linear phase across the
spectral band is the time delay differences between the
two branches caused by the relative displacement of
the three Bragg cells along the acoustic propagation
direction. By adjusting the positions of the Bragg
cells, we removed the linear component of the phase
change to the degree shown in Fig. 5(b). Here we see
that the phase is nearly flat over ~10 MHz of the
passband. A slightly curved residual phase change is
now evident; this is indicative of a difference in the
wave-front curvatures from the two branches of the
system.

The curvature is a second-order effect that is not
easy to detect until the linear phase has been nearly
compensated; it represents several wavelengths of de-
parture from the ideal telecentric Fourier transform
and has no impact on the light intensities in the sys-
tem. The phase curvature is more readily observed in
Fig. 5(c) where we extend the bandwidth to display the
response in the passband from 70 to 110 MHz. The
phase varies slowly near 90 MHz and then with in-
creasing rapidity near the band edges as is characteris-
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tic of a quadratic function. Figure 5(d) shows the next
stage of correction where most of the quadratic phase
curvature has been removed by moving the Bragg cell
of the Z-branch along the optical path. After this
adjustment, there is still a 90° phase shift over the
bandpass and a significant change in the amplitude
response. We found the amplitude response to be a
strong function of the interaction between the Bragg
angle and polarization of the illumination. Although
we could have adjusted the Bragg angle to make the
response more uniform, we decided to optimize the
response at midband to get the highest possible SNR.
At this stage of system alignment we obtained ~12 dB
of jammer suppression; to obtain more suppression we
needed to analyze further the basic causes of system
instability and find ways to modify further the hard-
ware based on the analytical results.

IV. Model Development

The experimental results clearly indicated the need
for an enhanced model that describes the hardware
more precisely, especially phase effects unique to the
coherent optical implementation. A half-wavelength
change in the length of one branch of the interferome-
ter, for example, will change the sign of the detected
signal, thus converting the loop from a negative to a
positive feedback system and creating a runaway con-
dition. We have found that it is the phase of the open
loop response that is the most useful predictor of sys-
tem stability.

We developed a linear model that describes the opti-
cal system in terms of real-valued transfer function G,
referred to as the grand system kernel. The electrical
system model represents the optical system as a time-
dependent (adaptive) frequency response in a feed-
back system which subtracts the signal estimate s(t)
from the signal input s(¢), generating the error func-
tion z(¢) asshown in Fig. 6(a). To make a linear model
possible, we treat the inputs to the three Bragg cells as
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Fig. 6. Svstem response models: 1a) tull model: (b} pure jammer
model. ic) impulse response model.
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independent functions even though the same signal
might be driving two of those cells.

The signal estimate s(¢), the output of the detection
subsystem (detector, filter, amplifier, etc.), can be ex-
pressed as a function of the signal input s(¢) which
drives the two orthogonal cells, the residual function
2(t) which drives the third cell, and the transfer func-
tion G:

s(t) = j“ s(ES(Ez@E™ )G 7 ™ £)de'dt de ™. (5

The system kernel function G describes all the physi-
cal properties of the optical system, that is, all the
phase and amplitude effects as well as the convolution
and correlation nature of the architecture. Even cau-
sality is embedded in the kernel; instead of using finite
limits of integration, we require that G vanish for
noncausal combinations of the four arguments to pre-
vent the future from influencing the present. The
kernel function G is the transfer function of the optical
subsystem shown enclosed by dashed lines in Fig. 1.

The advantage of the linear transfer function formu-
lation, in spite of its apparent complexity, is that the
transfer functions of the various subsystems can be
chained, or cascaded, to yield a linear transfer function
for the overall system. Let us first consider a Bragg
cell whose inputs are the amplitude a(x,y,t) of the
illuminating beam and the rf drive signal r(¢); its out-
put a;(x,y,t) is the amplitude of the diffracted light.
In its most general form, the linear transfer function
model would permit all combinations of spatial and
temporal values of the two input functions to contrib-
ute to all values of the output function. Toexpress the
output light amplitude as a function of three variables,
we would need to use a kernel function of seven vari-
ables and fourfold integration over the four space-time
input variables. The integrals over three variables can
be completed, however, by using a simplified model, in
which the Bragg cell is treated as a planar time-varying
phase mask, so that the illumination wave-front and
the output light amplitude interact only at a single
space-time point. Therefore, we seek a Bragg cell
transfer function P of the following form:

ajx,yt) = [ alx, . Or( WPt x v dE . 6}

This formalism has sufficient power to express the
relevant performance characteristics of a Bragg cell
which performs five key functions: (1) it bandlimits
the electrical signal; (2) it generates a propagating
acoustic wave; (3) it performs a spatial aperture
weighting operation due to acoustic attenuation and
the finite length of the cell; (4) it converts acoustic
pressure waves into multiplicative perturbations of the
input optical wave, thus generating the diffracted out-
put light; and (5) it selects either the negative or posi-
tive spatial frequencies depending on the illumination
geometry.

We shall combine the effects of temporal band limi-
tation and Bragg selectivity into a single composite
transfer function that converts the input rf drive func-
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tion into an effective complex drive signal containing
only positive temporal frequencies for an upshift con-
figuration or negative ones for a downshift geometry.
This band limitation can be expressed as a multiplica-
tion by the frequency response in the frequency do-
main or as a convolution with the impulse response in
the time domain. The effective complex drive signal
r’(t) thus becomes

F(t) = FYBOFr}

= f j " B explizefic - t))dfdr

= [ r(t)b(t — t')dt’, (N

where B(f) is the composite frequency response, b(t) is
the corresponding complex impulse response given by

b(t) = f- B(f) exp(2rftidf. (8)
For an upshift Bragg cell geometry with bandwidth éf,
centered at /., and uniform frequency response, we
have

B* (N = rect|(f = .)/5f],

9
b*(2) = FUB(! =67 expli2nf,t) sineléft).

For a downshift configuration we need only to use a
negative carrier frequency in these equations to obtain
B=(f) or b=(t).

The propagation of the signal in the x direction with
acoustic velocity v and temporal offset ¢y can be de-
scribed by replacing the time variable ¢t with t = x/v —
to. However, in keeping with the cascaded linear mod-
el, we perform this operation using the sifting property
of the delta function. The effective signal r”(x,t) trav-
eling in the Bragg cell can be expressed in terms of the
bandlimited signal r(t), and, by using Eq. (7), we can
show its relationship to the drive signal r(t):

rr{x.t) = j FETIBIET = (1t = x/v = tg))dt”

= [ ritbtE = x/v =ty ~ t')dt’. (10}

. Weshall model the conversion of the traveling acoustic
pressure waves into light amplitude by assuming that
the input light is retarded by the index waves as ex-
pressed by an exponential multiplier exp{jer”(x,t)]. 1f
the argument is small, this multiplier is approximated
by 1 + jer”(x,t). We drop the unity term which repre-
sents the undiffracted light normally blocked in the
optical system. We define the amplitude weighting
aperture function as w(x,y); the output light amplitude
is therefore given as

ay(x. 3.t = Jew(x,v)r”(x,t)atx,y,t) (11}

We combine Eqs. (10) and (11) to obtain the complete
Bragg cell transfer function P postulated in Eq. (6):

PULY) + Jeutx bUt = xiv =ty = ). (12)

By cascading Eq. (11) through two crossed Bragg cells,
we have

ay(x,y,t) = =uw (x,yhwalx,y)r (x.)r(v.thalxy.t).  (13a)

By using Eq. (10), we obtain an expression in terms of
the two drive signals ri(t) and rs(¢) using the linear
transfer function formalism for this subsystem:

alg(x.y.t)=j f Rygx, 3.t )P (E)ra(e7)dEdE”,  (13b)

where
Ryl y ot/ ") = =€l (2,3 Wwplx,y)b7(t = x/v = t; = t')
X bt = y/v = t, = t")alxy,t). (13¢)

In the Z-branch of the interferometer we have a
single Bragg cell that is rotated 45° with respect to
those in the S-branch and is scaled optically so that its
spectrum matches the scale of the cross-spectral terms
of the S-branch. The propagation is along the diago-
nal of the second quadrant with an effective acoustic
velocity of v/yvZ to properly stretch the spectrum,; the
distance from the transducer of an arbitrary point with
coordinates x,y is (y = x)/y2. The acoustic propaga-
tion time, the ratio of distance and effective velocity,
is therefore (y — x)/v for this Bragg cell. The optical
output of cell 3, referenced to the tap weight plane, can
be written as

az(x,y.0) = jewa(x yirglx,v.tha{x,y.t), (14a)

or, in kernel form, as

aqlx,y.t) -E] Ralx,y bt ™ irg(t ™t ™, (14b)

where
Ra(x,) 687} = Jeuwq(x,v)
X bt =y +xie =ty = t"ha'lxy.0). (14e)

The light amplitudes a,; and a; of the respective tap
weight planes are Fourier transformed in the variables
x and y to obtain the spectral plane amplitudes A4,; and
Aj as functions of the spatial radian frequencies a and
B. We need only to Fourier transform the kernels in
Egs. (13b) and (14b) because the time-dependent
terms are unaffected by the spatial transforms. The
spectral plane amplitudes are

Aptadt) = l{ Kita ..t .t7yr e e it ™ de de”, (15a}
where

KialaBut.t't™) -” Ryglx vt t't")

X expjlax + 3vidxdy.
and

Ajtadt) = Kyta. 3.6t e ™irgit ™dt ™. (15b)

where

16 July 1986 / Vol 25.No 14 / APPLIED OPTICS 2318

Lal

"J

'J".'\-“

A

del'ee

PP |

rev
Gt

", L

[




—
[}
'y

<

|

e

7/
[

Kyla,3.6,t™) = f] kalx,y.t,t*)

X expljtax + 8y)]|dxdy.

The two branches are combined by a beam splitter so
that the light intensity at the spectral plane is

HaB.t) =] Ap|? +| 45|12 + 2 Refd p451

The first two terms are baseband signals whose possi-
ble effects in generating spurious in-band frequency
terms we ignore in this analysis. The cross term pro-
vides the in-band signal term that is integrated by the
detector whose aperture function is D(a,8). The sig-
nal estimate generated by the detector is

s(t) = j j ) D(a,8)2 RelA p(a,8,t)Az(a,8.t)idadB. (16)
By using Eq. (15) and collecting terms, we obtain the
grand system kernel formulation of Eq. (5) with

Gt " ™ 1) = j j' Die.8)2 RelK p(a.8.6,t'")

X Kjla.8.t.t")dadB. amn

The detector collection aperture needs to be small
enough to reject spurious terms yet large enough to
gather the desired signal located around the diagonal
of the second quadrant. While the illustration in Fig.
2(b) shows all the spectral terms that acoustic cells
operating in the Raman-Nath regime would generate,
our model of the Bragg selective devices has already
rejected most of the undesirable terms. Only the off-
diagonal cross-spectral terms of the S-branch survive.
It is important to observe that these terms do not
contribute to the signal estimate if they are sufficiently
far off-axis, since the spectrum due to the Z-branch,
and hence the product terms in Eq. (16), are zero at
those locations. We conclude, therefore, that an open
detector aperture, i.e. integration over the complete
spectral plane, leads to a good representation for most
cases.

This model does not preclude, however, perfor-
mance differences between this open detector configu-
ration and one with a narrow slit on the diagonal. For
the case of two jammers, for example, the off-diagonal
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Fig. 7. Complex frequency response.

2320 APPLIED OPTICS / Vol. 25. No. 14 / 15 July 1986

terms may begin to beat with the diagonal spectral
terms as the two jammer frequencies come within few
resolution elements of one another. Additional differ-
ences may exist in the analysis of transient phenomena
which cause momentary spreading of the spectral
spots. We further conjecture that similar subtle dif-
ferences can be observed between the performance of
the two alternative signal connection schemes.

We obtain the system kernel function and the signal
estimate for the open detector case by substituting
D(a,8) = 1 into (17), and we express it in terms of the
tap weight plane variables by using Eq. (15):

Gl emtm.t) = Re{” Rygx,y.t.t" ") (18)

X kylx, 3.0t )dxdy},

s(t) =2 Rb{[j a,._.(x.,\'.t)a;(x._\'.t)dxdy}.

For the open detector case, therefore, detection could
have been performed in the tap weight plane without
performance differences. For this case, then, we see
the significance of the triangular overlap region of Fig.
2(a), since the integral of Eq. (18) has nonzero terms
only in that domain. As one would expect, the kernel
is time stationary in the sense that it depends on time
only through the differences t — ¢t’,t = ¢t”,and t — t”.
We shall now examine a very important special case
where the time dependence can be reduced to a single
variable r = ¢ — t” simplifying the system kernel
mode] to a convolution with an impulse response.

A. Impulse Response Model

Let us examine the case of a pure jammer input to
the system without a wideband signal term present, as
shownin Fig.6(b). For asinusoidal input of frequency
fo in the two orthogonal cells, the effective drive de-
fined in Eq. (7) becomes a complex exponential. By
using Eq. (10), we write the effective signal traveling in
the x direction in the downshifted first cell and in the v
direction in the upshifted second cell in the following
form:

ri(x,y.t) = exp{=/2xfolt = x:w = t))];
ra(x.y.t) = explj2xfoit = viv = ta)]. (o

If we use plane wave illumination in both branches.
with a phase difference of ¢, define a joint window
function w(x,y), and collect all phase terms into 4. we
have

atx.y.t) = exp(ut),
a’(x,y.t) = expywt ~ jo), N
1200
wixy) = Swxywalzrywaxa,

=+ 2rfolt, = t)) = ='2

Substitution of Egs. (13a), (14a). and (20) into Eq. (18)
vields
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s(t) =2 Re{jj wix,y) exp(jé)

X exp{—=/2xfoly = xi/v]r;‘(x.y,t)dxd)'].

Let the input to the third cell be 2(t) so that the
effective signal propagating along the y — x direction is

ryx.y.t) = f 2b(t — y/v + xfv =ty = t')dt’. (22)

The detected signal given by Eq. (16) can be formu-
lated as a convolution:

3(2) -]

hir) = ” 2 Relw(x.y) exp(j2x(y — x)fo/t + 6]

z(EHhie = thdt’,

(23)

X b*(r = y/v + x/v = ty)idxdy.

The complete optical system and the two input signals
r, and r; are combined into this real-valued impulse
response h(7). This unique case, in spite of its simplic-
ity. yields powerful analytical and experimental re-
sults that helped to control instabilities. The expo-
nential term shows that the phase shifts by 180° for a
halfwave change in the optical path difference between
the two interferometer branches; time varying phase
changes must, therefore, be well controlled to preserve
the phase of the feedback signal. The window func-
tion w(x,y) must also have constant phase. Otherwise
contributions from various locations will cancel on
integration; optical aberrations, therefore, need to be
controlled in both interferometer branches.

B. Stability Criteria

Let us consider a negative feedback system having a
filter in the return path with impulse response h(r), as
shown in Fig. 6(c}. The condition for stability can be
stated in terms of the Laplace transform L(s) of the
impulse response of the feedback path. We require
that all zeros of 1 + L(s) be in the left half-plane of s.
For the feedback svstem analyzed, we may paraphrase
the stability condition: the poles of the system trans-
fer function 1/[1 + L(s)] must all fall in the left haif-
plane.

Our attempts to use the root method as a diagnostic
and predictive tool ran into practical difficulties; our
computer program, capable of finding the complex
roots of real polynomials, often reported numerical
overflow with sixty-fourth-order polyvnomials. To
overcome these limitations, we seek alternative formu-
lations for the stability condition.

We express stability in terms of the complex fre-
quency response of the feedback path: the transform
H(w) must not circle —1. the critical stability point in
the complex plane. A sufficient condition of stability
may be stated as requiring that the Fourier transform
of the impulse response must not have any negative
real values left of the —1 point on the real axis, i.e., the
system should have less than unity gain at any fre-
quency with a 180° phase shift.
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We found the Fourier transform techniques easy to
use both experimentally and analytically; fast Fourier
algorithms and network analyzers previde the neces-
sary tools. Figure 7 illustrates a frequency response
that is stable because it does not circle the —1 point of
the complex plane. The system response has a posi-
tive real value at the jammer frequency; as the frequen-
¢y increases, the response becomes complex valued
and its magnitude decreases. The phase of the open
loop frequency response H(w) along with that of the
closed loop response 1/[1 + H(w)] are shown for a
particular frequency. As the open loop phase angle
reaches r, H(w) crosses the negative real axis. Since
the negative crossings cannot go past the —1 point, the
maximum achievable gain can be determined from the
ratio of the maximum and minimum values on the real
axis.

C. Optimization Criteria

While exercising the model, we generally sought con-
ditions for which we can obtain the deepest jammer
suppression notch. To determine the closed loop sta-
bility of the single-jammer situation using the Fourier
transform criterion, we write the open loop impulse
response h(t) in the following form:

{w(t) coslwor), 3T <+ < T,

t)= 24
hith 0 elsewhere. (24

Here w represents the jammer frequency we desire to
suppress, 8T is a delay generated by hardware limita-
tions, T is the Bragg cell fill time, and w(t) is a window
function describing the amplitude profile of the im-
pulse response produced by the geometry and illumi-
nation of the optical system. The closed loop frequen-
cy response F(w) can be expressed as

Filw) = 1/]1 + Hw)]. (25)

The stability criterion, expressed in terms of F(w), is
that the closed loop frequency response phase never
reaches 180° regardless of gain.

We generated computer optimized window func-
tions over various blocking ratio values 3, which ex-
presses the inaccessible fraction of the aperture time
T. We use the stability criterion that the open loop
frequency response H(w) must have less than unity
gain at any frequency where its phase equals 180°.
Siowly varying functions (Gaussian, linear, cosine) and
their sums were used to shape the impulse response.
Figures 8(a) and (b) show the results of this optimiza-
tion for a delay equal to 1.5% of the length of the
impulse response (3 = 0.015). From Fig. 8(b), we note
that a stable gain of 45 dB is theoretically predicted for
the window function shown in Fig. 8(a). This stable
gain is obtained by measuring the amplitude at the =
crossings relative to the peak amplitude. However,
even the slightest phase error in the system will sud-
denly create instabilities at the point where the phase
nearly reaches 180° inside the central lobe, limiting its
stable performance to only 28 dB of suppression. This
optimization criterion, therefore, leads to svstems that
are intolerant of small phase errors.
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Fig. 8. Optimized system responses: (a) Gaussian impulse response; (b) frequency response for Gaussian mode! (5 dB/div); (c) linearly

apodized impulse response; (d) frequency response of linear model (5 dB/div).

We therefore recast the question into the following
form: “What is the maximum suppression that can be

X

S achieved for a given irreducible time delay with a given

- system phase error margin, and what is the optimum

impulse response shape?” We first defined a more

> stringent stability criterion that requires that the

' phase of the closed loop frequency response remain

between —90 and 90°. Stated in terms of the open

loop frequency response, we require that the real part

oy of H(w) be greater than —1 at all values of w. We refer

. to this condition as the strong stability criterion; it

- ensures a softer, more nearly monotonic frequency

response, which in turn guarantees a more gradual

! performance degradation as phase errors are intro-

o duced. Whereas the frequency response shown in Fig.

7 is stable, it does not meet the strong stability criteri-

. on because the locus of H(w) crosses into the region left

r of the line where the real part of the response is equal to

he, —1. Inthat region, the closed loop phase exceeds 90°,
thereby violating our strong stability criterion.

. For a blocking ratio of 3 = 0.015, we can achieve a

e strongly stable suppression of 32 dB with the optimum

N

impulse function as shown in Fig. 8(c). From Fig. 8(d)
we see that the phase response approaches 180° much
more gently than in Fig. 8(b), and therefore it offers a
more graceful degradation of performance with the
introduction of phase errors. This concept of strong
stability and the demonstrated experimental results
can be used to design a rugged realizable system that
» has maximal tolerance to phase errors induced by envi-
. ronmental conditions such as vibration and tempera-
ture changes.
. Computer optimizations based on the strong stabil-
t‘; ity criterion yield an interesting result: the optimum
- window function is a linear taper from the initial maxi-

e
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mum to zero at t = T + BT. Coincidentally, the
triangular geometry of the tap weight plane would
generate just such a sawtooth weighting for uniform
optical illumination, as suggested by the shaded region
shown in Fig. 2. Let us analyze the stability of a
linearly tapered impulse response at baseband. We
introduce the parameter B to define the impulse re-
sponse and note the relationship that 8 = (1 - B)/(1 +
B). We then have

- - + -
hm_[(z 7)/2B, (1-B)<r<(1+B);

)
0. elsewhere. (261

The real part of the frequency response is

G(p) = Re[H(p)] = Re{f hir) eprprbdr}. 27)

By using the coordinate transformation x = r = 1, we
obtain

8
G(p) = lf (1 = x) cos{(1 + x)pjdx.
B

2B J.
sinp sinBp . sinBp sinp
£ 2 T 42 0 - —= cosBp. (28)
P Bp Bp P P

The derivative of G(p) in integral form is

G'lp) = - % fﬂ {1 = x% cospxdx. Q29
To find the maximum and minimum values of G(p), we
observe that the derivative is zero at p = nr for all
integer n with additional roots at p values where the
integral vanishes. The maximum of the function can
be found at p = 0 and the first minimum at p = ». This
minimum was shown by computer analysis to be the
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largest minimum vaiue of G(p).
these two extremes are

1
Gip) = _

The greatest strongly stable amplitude gain, the
negative of the ratio of the maximum and minimum
values of G(p), is 1/sincB. We can express the gain in
decibels as

The values of G(p) at

. at p = 0 (maximum); (30)
sinrB

at p = r (minimum).
B .

gain = —20 log(sincB) = ~20 log{s"‘[” = WAL+ ‘3”] . (31

(1 =-3Y/(1+23

Let us compare the stable gain result with that pro-
duced by an impulse response of uniform amplitude
over the same time interval of length B:

9 - - .
hms{l/'B' (1-B)<7<(l1+B%: (32)
0, elsewhere.
The frequency response is
Hip) -[ hir) expyrp)dr = s‘ggp expyp). (33)

The maximum response is at p = 0, and, if we confine
our attention to the real axis, the largest minimum
occurs at p = 7. The associated values of H(p) are

1, at p = 0 (maximum magnitude)
Hip) = _si
=B

}
sinrB (34

at p = r (minimum on real axis).

The maximum stable amplitude gain is, therefore,
the same 1/sincB function we derived for the linearly
apodized impulse response under stricter stability
constraints. The apodization for this case did not,
therefore, affect the amount of stable gain available.
Rather, it improved the quality of that gain. The
apodization provides a 90° closed loop phase margin
allowing the system to operate with realistic error bud-
gets.

In Table I we show the amount of stable gain avail-
able, indicative of the achievable notch depth, for vari-
ous blocking ratios at the transducer end of the Bragg
cell. The blockage must be carefully controlled to
achieve a large stable gain. For example, to achieve a
60-dB notch depth,the blocking ratio must be <0.0005;

Tabie . Stabie Gain as a Function of the Blocking Ratio at the
Transducer End of the Bragg Celt
Stable gain
Blocking ratio (dB)
0.0001 739
0.0002 67.9
0.0005 60.0
0.001 54.0
0.002 479
0.005 40.0
0.01 33.9
0.02 278
0.05 19.7
0.10 13.5
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if the Bragg cell has a time-bandwidth product of 1000,
the biockage cannot exceed one-half of a resolution
element.

A comparison of modeling results using continuous
and sampled digital techniques gives us a simple tech-
nique for estimating the accuracy of the discrete pre-
sentation. The sampling of the impulse response at
Az intervals can be interpreted in the following way.
The first sample, which is located at Ar, represents the
impulse response in the adjacent region from time A7/2
to 3A7/2, omitting the time interval from zero to Ar/2.
Therefore, sampling introduces an effective half-sam-
ple time delay into the system. Differences in the
stability values obtained by discrete and continuous
models can be reconciled with remarkable accuracy by
noting that sampling effectively nulls the first Ar/2
interval of the continuous impulse response. Using
the previous numerical example, we conclude that at
least 1000 impulse samples must be used in a digital
model if gains as large as 60 dB are to be modeled
accurately.

V. Experimental Results

The impulse response model allows us to relate the
closed loop system performance to the open loop re-
sponse. As noted before, attempts to observe or mea-
sure light amplitudes at various planes in the system
operating in the closed loop mode influence system
performance. We can measure the impulse response
directly without perturbing the system and compare it
with the model description to estimate the closed loop
system performance. We measured the open loop re-
sponse in a manner similar to that discussed in Sec. III
in connection with Fig. 5 with a pure cw tone driving
the two orthogonal Bragg cells.

A time domain representation of the impulse re-
sponse can be obtained by using a short rf burst in the
Z-branch as the probe signal. The detector output is
displayed on an oscilloscope as shown in Fig. 9(a); the
horizontal axis is 1 us/div, and the vertical axis is a
linear scale. The upper trace shows the 1-us envelope
of the rf burst signal that drives the third Bragg cell.
The spectral characteristics of the impulse response
can be measured as the frequency of the input signal to
the Z-branch is swept past the cw reference tone. The
use of a network analyzer allows us to measure both the
amplitude and phase response as shown in Fig. 9(b).
The network analyzer receives two inputs known as
reference and test channels. The reference channel is
the probe frequency input to Bragg cell in the Z-
branch of the interferometer, and the test channel is
the detector output.

The vertical scaling in Fig. 9(b) is /4 rad/div for the
phase response; = crossings therefore occur at the up-
per and lower extremes of the display. The measured
stability is evaluated by subtracting the log amplitude
response at the r phase crossings from the response
where the phase is zero. Due to the asymmetry, the
higher of the two amplitude readings at the = crossings
occurs below the central frequency and limits the sta-
ble gain to 18 dB.
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Inverse transform of measured frequency response: (a)
initial performances; (b} improved cell response.

Fig. 10.

We used the measured experimental results from
Fig. 9(a) in our model and calculated the frequency
response shown in Fig. 9(d); we predict a stable gain of
~20 dB. We note that the response is symmetric in
amplitude because we assumed that the impulse re-
sponse is real. The measured asymmetric frequency
response shows that the time domain response must
have some phase errors which cannot be deduced from
the measured data shown in Fig. 9(a). To illustrate
this phenomenon, Fig. 10(a) shows the results ob-
tained by inverse transforming the measured frequen-
cy response seen in Fig. 9(b); this result reveals the
location of phase response problems in the time do-
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Fig. 11. Improved system response with reduced time delay: (a)
measured impulse response; (b) measured frequency response.

Fig. 12. Experimental results: (a) input spectrum and adaptive
system response with a 32-dB notch: (b) two-jammer input spectrum
and system response.

main. The leading edge of the impulse response has
the most prominent phase errors. When we examined
the Bragg cell in an optical interferometer, we found a
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two wavelength roll-off in the optical figure caused by
rounding of the cell at the tranducer edge. When the
cell was repolished, the phase errors were significantly
reduced, as shown in Fig. 10(b).

To significantly increase the stable gain we must
decrease the relative time delay between the two
branches of the interferometer. The time delay ob-
served in the impulse response of Fig. 9(a), ~500 ns, is
an accumulation of electrical and acoustical delays in
obtaining an optical response from an electrical input.
We found that the total electrical delay due to cables
and amplifiers was <50 ns; most of the delay is there-
fore attributed to the Bragg cell driven by the residual
signal.

Isotropic Bragg cells redirect diffracted light by
twice the Bragg angle; in such a cell we can illuminate
the transducer at the positive Bragg angle using the
upshifted diffraction mode to minimize the acoustic
delay. However, the cells used in our experiments are
birefringent, and the geometry is such that the dif-
fracted light is parallel to the transducer for the center
frequency. Anexamination of the Bragg cell driven by
2(t) showed that beveled transducer edges were re-
sponsible for a large portion of the time delay. Our
standard procedure in fabricating Bragg cells is to
bevel the edges to minimize chipping during the reduc-
tion of the piezoelectric platelet to the final transducer
thickness. For the acoustic velocity of these cells, a
0.3-mm bevel results in 485-ns acoustic transit from
the transducer to the unshadowed edge of the light.
When this cell was repolished to reduce the phase roll-
off at the transducer end, we made a special effort to
also remove the bevel. The resultant impulse re-
sponse is shown in Fig. 11(a); the time delay was de-
creased from 485 to <150ns. By examining the =
crossings located at the vertical extremes of the phase
response in Fig. 11(b), we conclude that the system can
now operate with more than 30-dB stable gain.

An example of stable performance is shown in Fig.

tained by subtracting the logarithm of the output sig-
nal from that of the input signal. It is, then, a measure
of the frequency response of the system at steady state
and shows a notch depth of ~32 dB. We also tested
the system using multiple jammers over various parts
of the frequency band. Figure 12(b) shows the results
for the case of two equal jammers, each 20 dB above the
signal; the jammers are ~4 MHz apart and both are
approximately at midband. We see that the notch
depths are of the order of 20-25 dB.

VI. Summary and Conclusions

We have constructed and tested an optical bread-
board system for adaptive filtering applications. We
developed several diagnostic and analytical tools for
relating the open loop response to the closed loop

performance levels. The key diagnostic tool is a net-
work analyzer that allows us to measure accurately
both the amplitude and phase of the frequency re-
sponse of the system. By using this tool we could
rapidly align the system' in an open loop mode and
estimate the performance in the closed loop mode.

The key analytic tool is an improved method for
modeling system performance. In this model, the en-
tire optical system is represented by an linear transfer
function that includes all known features of the sys-
tem. This model provides a methodology for analyz-
ing the impact of hardware imperfections, such as fi-
nite optical apertures and wave-front aberrations, on
the transient and steady-state system response for any
generalized signal inputs.

To analyze system stability, we focused on the pure
jammer case where the transfer function can be re-
duced to an impulse response placed in the feedback
loop, allowing control theory concepts to be applied.
After overcoming some anomalies that tend to plague
digital simulations of analog systems, we found that
the most important criterion for stable performance is
to reduce the relative time delays to a minimum and to
weight properly the impulse response. We havedevel-
oped a strong stability criterion in which we can calcu-
late the expected level of performance for a given de-
gree of phase or gain margin.

The experimental results confirmed in an iterative
and interactive way the usefulness of these tools. We
demonstrated more than 30-dB notch depths for a
system having a 50-MHz bandwidth and a time-band-
width product of 2000. We also demonstrated that
notches are adaptively established for two jammers of
unknown amplitudes, frequencies, and phases.

We are pleased to acknowledge the contributions of
G. S. Moore, C.D. Rosier, and E. H. Tegge to the design

12(a). The lower trace shows the spectrum of the  and fabrication of the electronic hardware and those of
~ received signal which consisted of a 50-MHz wideband M. D. Koontz to the design and fabrication of the
) signal and a narrowband jammer at 90 MHz. The  optical system. This work was supported in part by
s horizontal scale is 1 MHz/div, whereas the vertical  the U.S. Army Research Office.

Ay scale is 10 dB/div. The upper trace shows the notch

> formed adaptively by the system; this trace was ob-
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Optical Adaptive Filter; Analytical Model
A. M. Bardos

Harris Corporation, Government Information Systems Division
Mail Stop 13-7741, P.O. Box 98000, Melbourne, Florida 32902

Abstract

A general analytical model is developed for an adaptive optical filter. This model is
used to explain system performance limitations and relate them to specific imperfections of
the hardware implementation. Optimization of the system transfer function shows that 30-
35 dB of stable gain can be achieved with reasonable hardware and system tolerances,

Introduction

In earlier analyses of adaptive filtering, VanderLugtl'2 described the basic operation
of a frequency domain processor in terms of an analogy to a discrete transversal filter.
The transversal filter is implemented as an optically tapped Bragg cell delay line that
contains time samples of the received signal. The output of each tap is weichted, as de-
termined by the processing operation, and summed to provide an estimate of a signal, The
estimated signal S(t) is subtracted from the received signal s(t) to provide a residual
signal z(t) which controls the tap weights to form an adaptive linear predictive system.

Experimental result by Beaudet3 and coworkers, reported in a companion paper in these
proceedings, however indicated a need for a more explicit model able to describe the effects
of hardware limitations on system performance.

System description

Figure 1 shows only the key elements of the interferometric optical system and sug-
gests how we plan to model its system response in a feedback loop. We represent all three
Bragg cells with idealized transducer heights that render the region of interaction between
light and acoustic waves into a square format. The idealizatiomr shown generates the same
results as obtained by using Bragg cells with suitable anamorphic optical systems described
in Reference 3. The Bragg cells, with respect to an observation plane external to the in-
terferometer, appear to overlap as shown in Figure 2a. We refer to this plane as the tap
weight plane. The transducer of the Bragg cell that is disposed at 45° to the first two
must lie on the bisector established by the other two transducers.

The two orthogonal cells of the S-branch receive the signal s(t), and produce a light
amplitude profile on the diagonal that is proportional to the instantaneous power spectrum
of s{t). Upon interference with the properly scaled instantaneous spectrum of the residual
signal z(t), the strong spectral terms are enhanced, and thus can be subtracted by the
feedback loop.

Figure 2b shows the spectral plane of the Bragg cells. Suppose that s(t) consists of
two CW signals which appear at both positive and negative frequencies along the two spatial
frequency axes; we assume Raman-Nath operation for sake of this illustration. The signals
interact to also provide a set of four spectral components in each frequency gquadrant; these
components are shown as filled circles. The upper right quadrant is marked (++), to indi-
cate that both cell No. 1 and cell No. 2 produce a frequency upshift. 1In our model the
upper left guadrant is used; in this quadrant the frequencies have a downshift/upshift
structure. The region in the upper left quadrant occupied by the photodctector covers the
domain of overlapping freguencies.

Suppose that the third cell is driven by z(t) which also consists of two frequencies
shown as open circles; these signals are shown with a slightly lower frequency sc that we
can visualize some important relationships. It is easy to see¢ that these frequency compo-
nents overlap on the diagonal, provided that the frequencies of z(t) egual those of s(t)
and that the optical system magnifies the spectrum of cell No. 3 by \2.

Model development

We developed a linear model that describes the optical system in terms of a real-alued
transfer function G, referred to as the grand system kernel. The electrical system model
represents the optlcal system as a time depondent (adaptive) f{requency response in a feed-
back system which subtracts the 31gnal estimate S(t) from the signal input s(t), generating
the error function z(t} as shown in Figure 3a. To make a linear model possible, we treat
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the inputs to the three Bragg cclls as independent functions even though the same signal
might be driving two of those cells. The signal estimate S(t), the output of the detection
subsystem (detector, filter, amplifier, etc.), can be expressed as a function of the signal
input s(t) which drives the two orthogenal cells, the residual function z(t) which drives
the third cell, and the transfer function G:

?(t) - fffs(t.')s(t") 2(t''") G(e',t'',t ', t)dt dt'* dt' ' (1)

The system kernel function G describes all the physical properties of the optical system;
that is, all the phase and amplitude effects as well as the convelution and correlation
nature of the architecture. Even causality is embedded in the kernel; instead of using
finite limits of integration, we require that G vanish for non-causal combinations of the
four arguments to prevent the future from influencing the present. The kernel function G
is the transfer function of the optical subsystem shown enclosed by dashed lines in Figure
1.

Let us first consider a Bragg cell whose inputs are the amplitude a(x,y,t) of the il=-
luminating beam and the RF drive signal s(t); its output alx,y,t) is the amplitude of the
diffracted light. We use a simplified model, in which the Bragg cell is treated as a
planar time-varying phase mask, so that the illumination wavefront and the output light
amplitude interact only at a single space-time point. Therefore we seek a Bragg cell
transfer function P of the following form:

a,(x,y,t) = J‘a(x.y.t)s(t')P(t'.t.x.y) at' (2)

This formalism has sufficient power to express the relevant performance character-
istics of a Bragg cell which performs five key functions: (1) it band-limits the electrical
signal, (2) it generates a propagating acoustic wave, (3) it performs a spatial aperture
welghting operation due to acoustic attenuation and the finite length of the cell, (4) it
converts acoustic pressure waves into multiplicative perturbations of the input optical
wave, thus generating the diffracted output light, and (5) it selects either the negative
or the pesitive spatial freguencies depending on the illumination geometry.

We shall combine the effects of temporal band limitation and Bragg selectivity into a
single composite transfer function that converts the input RF drive function into an
effective complex drive signal containing only positive temporal freguencies for an upshift
configuration, or negative ones for a downshift geometry. This band limitation can be ex-
rressed as a multiplication by the frequency response B(f) in the frequency domain, or as a
convolution with the impulse response b(t) in the time domain. Tor an upshift Bragg cell
geometry with bandwidth 8f, centered at f., and uniform freguency response, we have

B*(f) = rect[(f-fg)/éf] )

b*(t) = F'{B(r)] = &f exp(j2nf t) sinc(4ft)

For a downshift configuration we need only to use a negative carrier freguency in these
equations to obtain BT (f) or b~ (t).

The propagation of the signal in the x direction with acoustic velocity v and a tem-
poral offset t, can be described by replacing the time variable t with t-»/v-t,. However,
in keeping with the cascaded lincar model, we perform this operation using the sifting
froperty of the delta function. We shall model the conversion of the traveiing acoustic
pressure waves into licht amplitude by assuming that the input light is retarded by the
index waves as expresscd by an exponential multiplier expljeo(x,t)), where o(x,t) is the
effective signal traveling in the Bragg cell, and € is an efficiency term. If the argument
1s small, this multiplier 1s approximated by 1+4j€ o(x,t). We drop the unity term which
represents the undiffracted light normally blocked in the optical system., We define the
amplitude weighting aperture function as w(x,y); the output light amplitude is therefore
given by equation (2) with
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(4)

P(t',t,x,y) = Jew(x,y)b{t-x/v=-t,~t')

By cascading the transfer functions of two crossed Bragg cells we obtain the light
output of the S-branch as

. (Sa)
a,,(x,y,t) -ff ky(x,y,t,t',t'') s{t')s(t')dt dt"

where

Kia{x,yat,t',t11) = = e2w, (x,y)w,(x,y)b"(t=-x/v-t,-t') b*(t-y/v-t,~t'")alx,y,t) {5b)

In the 2-branch of the interferometer we have a single Bragg cell that is rotated 45°
with respect to those in the S-branch, and is scaled optically so that its spectrum matches
the scale of the cross-spectral terms of the S-branch, The propagation is along the diag-
onal of the second guadrant with an effective acoustic velocity of v/{2 to properly stretch
the spectrum; the distance from the transducer of an arbitrary point with coordinates x,y
is (y-x)/y2. The acoustic propagation time, the ratio of distance and effective velocity,
is therefore (y-x)}/v for this Bragg cell. The optical output of cell No., 3, referenced to
the tap weight plane, can be written as

a,(x,y,t) = -[ Ky(X,y,t,t17") z(t "' )dtr (€a)

where

Ky(x,y,t 00 t) « Jew, (X,y)b*(t-y/vex/v=t,~t**)a'(x,y,t) (6b)

The light amplitudes a,, and a, of the respective tap weight planes are Fourier transformed
in the variables x and y to obtain the spectral plane amplitudes A,, and A, as functions of
the spatial radian frequencies o and 8. The two branches are combined by a beamsplitter so
that the light intensity at the spectral plane is

(7)
I(a,B,t) = | Ays 2 + | A, ! + 2Re|a,, 0%, ],

The first two terms are baseband signals whose possible effects in generating spurious in-
band frequency terms we ignore in this analysis. The crossterm provides the in-band signal
term that is integrated by the detector whose aperture function is D(a,8). The signal
estimate generated by the detector is

B(t) -ff D(a,B)2ReA,,(a,8,t)A*,(a,B,t) |dudB. (8)

From which we obtain the grand system kernel formulation of equation (1) with

(9)

GlL',t' ', trrr ) -ij(u.B)?Re{K,,(u.B.t.t'.t")K'.(U.B.t.t"')ldudB
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‘-" K”(u.ﬂ.t't..t”) " Ij‘kn(xv)ht.t'.t")e“ax’ey)dxdy
-

N and . (10)
) f‘
‘-::' K,(O,B.t,t“') .ffk’(x.y.t't!!')eJ(ux‘BY)dxdy
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o The detector collection aperture needs to be small enough to reject spurious spectreal
,iﬁ terms yet large enough to gather the desired signal located around the diagonal of the sec-
}: condé guadrant. While the illustration in Figure 2b shows all the spectral terms that

o acoustic cells operating in the Raman-Nath regime would generate, our model of the Braaqgg
Ty, selective devices has already rcjected most of the undesirable terms. Only the off-diagonal
" cross-spectral terms of the S-branch survive., It is important to observe that these terms

’ do not contribute to the signal estimate if they are sufficiently far off axis, since the
- spectrum due to the Z-branch, and hence the product terms in (B), are zero at those loca-
:,: tions. We conclude therefore, that an open detector aperture; i.e. integration over the
N3 complete spectral plane leads to a good representation for most cases. As one would expect,
N the kernel is time stationary in the sense that it depends on time only through the dif-
{i ferences t-t', t=-t'', and t-t'''. We shall now examine a very important special case where
n the *ime dependence can be reduced to a single variable T = t-t''', simplifying the system
:J‘ kernel model to a convolution with an impulse response.

A Impulse response model

.0

N Let us examine the case of a pure jammer input to the system without a wideband signal
:C term present. For a sinusocidal input of frequency f, in the two orthogonal cells, using
I planewave illumination in both branches with a phase difference of ¢ , we obtain an impulse
!", response formulation for the signal estimate

o - (11a)
" A

. s(t) = fz(t')h(t.-t')dt'

- <.

\,'

ot -

jen(y=~x)fo/ve

- h(t) -ff?ne{w(x,y)eJ (y=x)fo/v430 b'(-r-y/vox/v-t,)]dxdy (11b)
": ~-»

-':-

A
N where w(x,y) is the joint window function for all three cells, and A collects all phase
N terms.

o Wx,y) = €, Oy Wa X,y )w, 8 (x,y) (11¢) <
A 8 = ¢ ¢ 2nf, (t,~t,)=n/2. o~
LR

)

. The complete optical system and the input signals to the S-branch are combined into this o
A real-valued impulse response h(r). This unigue case, in spite of its simplicity, yields Y
. powerful analytical and experimental results that helped to control instabilities. )
~ Stability criteria .
L .
JAS -
T Let us consider a negative fecdback system having a filter in the return path with Y

S impulse response h(r), as shown in Figure 3c. We determine stability in terms of the com=-
5 plex frequency response of the feedback path: the transform H(w) must not circle -1, the .
critical stability point in the complex plane. A sufficient condition of stability may be e
stated as requiring that the Fourier transform of the impulse response must not have any ll
o negative real values left of the -1 point on the recal axis, i.e., the system should have
[~ less than unity gain at any frequency with a 180° phase shift. Since the negative cross-
T, ings cannot go past the -1 point, the maximum achievable gain can be determined from the K
"i' ratio of the maximum and minimum values on the rcal axis. a
5
. "
b '
."c - - - » - - - - - - - - - -
oy tats ".\‘ s'\', S CHh CSENRNANN \;:s' \:;\:_-. '_-.'_\_' . ‘J
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;\ Optimization criteria

7 ALl

L. While exercising the model, wc gencrally sought conditions for which we can obtain the
deepest jammer suppression notch. To determine the closcd-locep stability of the single-

-\ jammer situation using the Fourier transform criterion, we write the open-loop impulse res-

'l ponse h(t) in the following form:

-

. w(t) cos(we1), BT S 1 ET
.-: h{t) = (12)
L o, elsewhere

i Here w, represents the jammer frequency we desire to suppress, 8T is a delay generated by

‘- hardware limitations, T is the Bragg cell fill time, and w(t) is a window function describ-
ing the amplitude profile ¢of the impulse response produced by the geometry and illumination
of the optical system, The closed-loop freguency response F(w) can be expressed as

Flw) = 1/[1 + H(w)]. (13)

The stability criterion, expressed in terms of F(w}, is that the closed-loop freguency res-

- ponse phase never reaches 180°, regardless of gain.
b We generated computer optimized window functions for various blocking ratio values g8,
which expresses the inaccessible fraction of the aperture time T. Figures 4a and 4b show
- the results of this optimization for a delay equal to 1.5% of the length of the impulse
o response (f=0.015}. From Figure 4b, we note that a stable gain of 45 dB is theoretically
‘. predicted for the window function shown in Figure 4a., However, even the slightest phase
' error in the system will suddenly create instabilities at the point where the phase nearly 1
. reaches 180° insicde the central lobe, limiting its stable performance to only 28 dB of
> suppression., This kind of optimization therefore leads to systems that are intolerant to
ll small phase errors. To develop more rugged system performance, we defined a more stringent

stability criterion that reguires that the phase of the closed-loop freguency response re-

main between -90° and 90°. Stated in terms of the open loop frequency response, we reguire
- that the real part of H{w) be greater than -1 at all values of w, not only on the real axis,
We refer to this condition as the strong stability criterion; it ensures a softer, more
nearly monotonic frequency response which, in turn, guarantees a more gradual performance
degradation as phase errors are introduced.

4

]
a a a g o g

. For a blocking ratio of §=0.015, we can achieve a strongly stable suppression of 32 dB
- with the optirum impulse function as shown in Figure 4c. TFrom Figure 4d we see that the

phase response approaches 180° much more gently than in Figure 4b, This concept of strong
- stakility and the demonstrated experimental results can be used to design a rugged reaiiz-
- able system that has maximal tolerance to phase errors induced by environmental conditions
. such as vibration and tempcrature changes,

PP

Computer optimizations based on the strong stability criterion yleld an interesting
ﬁj result: the optimum window function is a linear taper from the initial maximum to zero at
N t=T+3T. Let us analyze the stability of a linearly tapered impulse response at baseband.

We introduce the parameter B to define the impulse response and note the relationship that
B={(1-B)/(1+B). We then have that

o

(2-1)/2B, (1-B) < 1 < (1+B) (14)
.. hi1) =
- 0, elsewhere.

The real part of the freguency responsc 1is

.
PRI W R e .

G(p) = Rel[H{p)] = Re| f h(v)edPY a1
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Evaluating the integral, we obtain

. .

- sinp  8inbp sinBp  sinp (15)
. cip) = . ¢ CcOsp cosBp

-, Bp P

" P Bp

The greatest strongly stable amplitude gain, the negative of the ratio of the maximum
and minimum values of G{(p) is 1/sincB. We can express the gain in decibels as

sin[ﬂ(1-8)/(1*5)]] (16)

Gain = - 20 log(sincB)= - 20 log [ *(1-61/(1+8)

In Table 1 we show the amount of stable gain available, indicative of the achievable
notch depth, for various blocking ratios at the transducer end of the Bragg cell. The
blockage must be carefully controlled to achieve a large stable gain. For example, to
achieve a 60 dB notch depth, the blocking ratio must be less than 0.0005; if the Bragg cell
has a time bandwidth product of 1000, the blockage cannot exceed one-half of a resolution
element. While this table is only valid for the linearly tapered, baseband impulse res-
ponse, it provides a strong indication of performance trends for the general case.

Table 1: Stable gain as a function of the blocking ratio at the
transducer end of the Bragg cell. 4

Blocking Ratio Stable Gain (dB)

0.0001 73.9
0.0002 67.9 .
0.0005 60.0 .

0.001 54,0

0.002 47.9

0.005 40.0 .
0.01 33.9 N
0.02 27.8 -
0.05 19.7

0.10 13.5 vy

Summar

We have developed an improved method for modeling the system performance. 1In this ‘.
model, the entire optical system is represented by an linear transfer function that in- 3
cludes all known features of the system. This model provides a methodology for analyzing
the impact of hardware imperfections, such as finite optical apertures and wavefront aber-
rations, on the transient and steady state system response for any generalized signal in-
puts.

To aralyze system stability, we focused on the pure jammer case where the transfer
function can be reduced to an impulse response placed in the feedback loop, allowing con-
trol theory concepts to be applied., We found that the most important criterion for stable
performance is to reduce the relative time delays to a minimum and to properly weight the

: impulse response. We have developed a strong stability criterion in which we can calculate
. the expected level of performance for a given degree of phase or gain margin.
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Figure 3.

System Rz2sponse Models:

(a) Full model;

(b) Pure jammer model;

(c) Impulse response model
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Figure 4.

Optimized System Responses:

(a) Gaussian impulse responsec;
(b) Frequency response for Gaussian model
(c) Linearly apodized impulse response;
(d) Frequency response of linear model (5dB/div.)
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Optical Adaptive Filter; Experimental Results
W. R. Beaudet, A. M. Bardos, and A. VanderLugt

Harris Corporation, Government Information Systems Division
Mail Stop 13-7747, P.0O. Box 98000, Melbourne, Florida 32902

Abstract

An interferometric optical system is configured with an active feedback loop as an
optical adaptive filter. The closed loop characteristics of the system are found to be
sensitive to alignment and aberrations. An open loop diagnostic procedure is applied to
the system to develop stability to a level supporting 30 db adaptively formed frequency re-
jection notches. The time delay in the closed loop signal path is found to be the limiting
factor in system performance.

Introduction

In this paper we discuss the experimental results associated with the development of
an interferometric system which allows for adaptive processing of wide band signals. This
system can be viewed as a transversal filter with feedbackl(2 for applications such as
channel equalization for wideband communication or adaptive temporal filtering. Similar
architectures can be configured for the processing of phased array radar signals for null
steering or beam forming3. Here we concentrate on this architecture as it applies to the
removal of an agile jammer in a wideband spread spectrum system. The frequency, amplitude
and phase of an interferor are unknown, for which a notch filter is constructed to elimi-
nate the unwanted signal and therefore improve the signal to noise ratio. We have found
the stability of the feedback system to be of paramount importance in achieving greater
than 30 db notch depths such as those shown in Figure 1. One trace shows the spectrum of a
received signal which consisted of a 50 MHz wideband signal and a narrowband jammer at 90
MHz. The horizontal scale is 1 MHz per division while the vertical scale is 10 db per
division. The second trace shows the notch formed adaptively by the system. This trace
was obtained by subtracting the logarithm of the output signal from that cf the input sig-
nal. It is, then, a measure of the frequency response of the system at steady state, and
shows a notch depth of about 32 db. ’

System description

Figure 2a is a simplified schematic of the Mach-2Zehnder interferometer chosen for our
experimental system. A received signal s(t) is input to both Bragg cells of the S Branch
leg. S(t) is also applied to a summing junction where z(t) is formed. This signal repre-
sents the difference between s(t) and the signal estimate. 2(t) is the output signal with
slowly varying components, jammers, removed. Two states of this input to cell 3 will be
considered for discussion. In the closed loop state, the detector output will be fed back
through the summing junction to the input to cell 3. The gain will be referenced for our
discussion to O db when the magnitude of s(t) is equal to the signal estimate at the summ-
ing junction. The amount of excess gain that can be tolerated while maintaining system
stability will be a measure of the system effectiveness in creating notch depths. That is,
the notch depth attainable increases as more gain is available to the feedback loop. The
open loop state refers to the condition where the detector output is prevented from re-
entering the system by breaking the gain path to the summing junction.

Figure 2b is a schematic of the optical system implemented. This configuration allows
us access to intermediate processing planes useful for alignment and diagnostic purposes,
although at the expense of a more nearly common path implementation which would be less
sensitive to vibration, thermal gradients, air currents and acoustic coupling. The light
source is a 15 mw Helium-Neon laser whose output beam is expanded by lenses L1 and L2, and
divided into two beams by beamsplitter BS1. Cylindrical lenses surround the Bragg cells to
focus the light into a horizontal line for efficient illumination. The Bragg cells are
constructed from TeO; material which is oriented to operate in the slow shear mode. The
bandwidth of each cell is 50 MHz, centered at 90 MHz, and the cell fill time is 40 usec.
Quarter-wave plates, not shown in Figure 2b, produce circularly polarized light at the
entrance to Bragg cells 1 and 3 to improve diffraction efficiency and spectral band uni-
formity. Cylindrical lenses C2 through C6 serve to mutually image the two Bragg cells into
a square format at the tap weight plane. Lenses C8 and L8 create the Fourier transform
just beyond the beam combiner at the spectral plane where the two Fourier transforms are
joined to make heterodyne detection possible. Lens L9 serves to demagnify the transform
onto the photodetector.
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}{ The feedback cancellation can be considered in the frequency plane as cells 1 and 2 :}

forming a reference region containing the spectrum of signals present in the system. Cell
3 is then used to form the instantaneous power spectrum of s(t) which is used as a template
to separate slowly varying signals, such as a jammer, from the signal so that it can be
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used in the feedback loop. As cell 3 forms the signal minus the signal estimate, a varying ?‘

signal that contains information does not allow the feedback signal to null s(t). o
As in any interferometer, the interfering beams must overlap to produce an output at

the photodetector. Since the interference is coherent, the light beams must also be coli- f:

near or phase differences across the overlap will decrease the output. Preliminary align- .

ments obtained by visual observation of the light beams produced a detector output over the
frequency band. The two legs were properly oriented and scaled such that any frequencies
in the Z branch leg would track the corresponding diagonal spot produced in the reference -
leg. However, closed loop operation produced oscillations when the system gain was in- -
creased beyond 0 db or that required to produce a photodetector output eguivalent to the -
input signal in the open loop mode. Here frequencies that were stable produced 3 to 6 db

of cancellation. The visual alignment done to this point was not phase competent to pre=-

dict the phase relation of feedback signals across a band of interest. -

Initial phase alignment

Analog electrical signal processing techniques are readily available to provide this RS
information but our optical system must provide electrical responses to utilize them. One LT
such way to accomplish this is to use the photodetector output and the drive signal input. u
A network analyzer was used in this manner to produce the responses measured in Figure 3.

The phase and amplitude of the detector output were measured relative to the Bragg cell -
input drives in the open loop response mode. The reference channel was driven with the <.
same signal as the three Bragg cells, and the channel under test received the photodetector E‘
output. A necessary condition for closed loop stability is that the open loop system phase
response must not pass through 180 degrees at any point where the system gain is greater

than one. Figure 3a shows the amplitude and phase from the network analyzer at the initial R
state of alignment. The phase is shown by the sawtooth waveform, where one division re- .
presents 90 degrees of phase and the horizontal scale is 100 KHz per divisison. As we see, e
the phase changes by 360 degrees at approximately 100 KHz intervals for this early stage of
alignment., By adjusting the relative positions of the Bragg cells, we removed the linear
component of the phase change to the degree shown in Figure 3b. Here we see that the phase i‘
is nearly flat over approximately 10 MHz of the passband. The residual phase change is -
slightly curved; this is indicative of a difference in the wavefront curvatures from the
two branches of the system. The upper trace in Figure 3b showns that the amplitude re-
sponse has a 2.5 db variation over a 10 MHz frequency band centered at 90 MHz.

The curvature is a second order effect that is generally not noticed until the linear -
phase has been fully compensated; it represents a few wavelengths of departure from tele-
centric operation and normally cannot be detected by visual alignment alone. The phase -
curvature is more readily observed in Figure 3c where we display the response ‘n the passband -
from 70 to 110 MHz., We note that the phase varies slowly near 90 MHz and then with in- .
creasing rapidity, as is characteristic of a quadratic function, near the band edges. Fig-
- ure 3d shows the next stage of correction; there is still a 90 degree phase shift over the
. bandpass and a significant change in the amplitude response. The amplitude response is a
. strong function of the Bragg cell alignment. We could have adjusted the Bragg angle for .o
. more uniform response but decided to optimize the response at midband to obtain the highest *

possible signal to nolse ratio (SNR). At this stage of system alignment we obtained about |
P‘ 12 db of jammer suppression; to obtain more suppression we needed to further analyze the N
basic causes of system instability and find ways to further modify the hardware based on N
t the analytical results. s
b

Impulse response considerations

To simplify examination of the system dynamics and to understand the criteria of sta- -
bility, the system is reduced to a treatment of the Z branch leg as the feedback element
and the reference leg as an established reference pattern. This is valid for the case of a
Cw jammer4,5. This impulse response model allows us to relate the closed loop system per-
formance to the open loop response. Attempts to observe or measure light amplitudes at
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various planes in the system operating in the closed loop mode influence the system perfor- <
mance. However, we can measure the open loop impulse response directly without perturbing
the system, and compare it with the model description to estimate the closed loop system -
performance, We measured the open loop response in a manner similar to that in connection uf
with Pigure 3, with a pure CW tone driving the two orthogonal Bragg cells. :!
A time domain representation of the impulse response can be obtained by using a short
RF burst in the 2 branch as the probe signal. The detector output is displayed on an -
oscilloscope as shown in Figure 4a; the horizontal axis is 1 us per division and the :
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vertical axis is a linear scale. The upper trace shows the 1 us envelope of the RF burst
signal that drives the third Bragg cell. The spectral characteristics of the impulse re~
sponse can be measured as the frequency of the input signal to the Z branch is swept past
the CW reference tone. The use of a network analyzer allows us to measure both the ampli-
tude and phase response as shown in Figure 4b. For this measurement the reference channel
is the probe fregquency input to the Bragg cell in the 2 branch of the interferometer and
the test channel is the detector output.

The vertical scaling in Figure 4b is 90 degrees per division for the phase response;
180 degree crossings therefore occur at the upper and lower extremes of the display. The
measured stability is evaluated by subtracting the log amplitude response at the 180 degree
phase crossings from the response where the phase is zero. Due to the asymmetry, the high-
er of the two amplitude readings at the 180 degree crossings occurs below the central fre-

quency and limits the stable gain to 18 db which will adapt to produce approximately 18 db
notches.

We used the measured experimental results from Figure 4a in our model and calculated
the frequency response shown in Figqure 4d; we predict a stable gain of about 20 db. We
note that the response is symmetric in amplitude because we assumed that the impulse res-
ponse is real. The measured asymmetric frequency response shows that the time domain re-
sponse must have some phase errors which cannot be deduced from the measured data shown in
Figure 4a. To illustrate this phenomenon, Figure 5a shows the results obtained by inverse
transforming the measured frequency response seen in Figure 4b; this result reveals the
location of phase response problems in the time domain. The leading edge of the impulse
response has the most prominent phase errors. When we examined the Bragg cell in an opti-
cal interferometer, we found a two wavelength roll-off in the optical figure caused by
rounding of the cell at the transducer edge. When the cell was repolished, the phase
errors were significantly reduced, as shown in Figure 5Sb.

To significantly increase the stable gain we must decrease the relative time delay
between the two branches of the interferometer. The time delay observed in the impulse
response of Figure 4a, approximately 500 ns, is an accumulation of electrical and acousti-
cal delays in obtaining an optical response from an electrical input. We found that the
total electrical delay due to cables and amplifiers was less than 50 ns; most of the delay
is therefore attributed to the Bragg cell driven by the residual signal.

Isotropic Bragg cells redirect diffracted light by twice the Bragg angle; in such a
cell we can illuminate the transducer at the positive Bragg andgle, using the upshifted dif-
fraction mode to minimize the acoustic delay. However, the cells used in our experiments
are birefringent and the geometry is such that the diffracted light is parallel to the
transducer for the center frequency. An examination of the Bragg cell driven by z(t) show-
ed that beveled transducer edges were responsible for a large portion of the time delay.
Our standard procedure in fabricating Bragg cells is to bevel the edges to minimize chip-
ping during the reduction of the piezoelectric platelet to the final transducer thickness.
For the acoustic velocity of these cells, a 0.3 mm bevel results in 485 ns acoustic transit
from the transducer to the unshadowed edge of the light. When this cell was repolished to
reduce the phase roll-off at the transducer end we made a special effort to also remove the
bevel. The resultant impulse response is shown in Figure 6a; the time delay was decreased
from 485 ns to less than 150 ns. By examining the 180 degree crossings located at the
vertical extremes of the phase response in Figure 6b, we conclude that the system can now
operate with more than 30 db stable gain.

Summar

We have constructed and tested an optical breadboard system for adaptive filtering
applications. We developed several diagnostic and analytical tools for relating the open
loop response to the closed loop performance levels. The key diagnostic tool is a network
analyzer that allows us to accurately measure both the amplitude and phase of the frequency
response of the system. By using this tool we could rapidly align the system in an open
loop mode and estimate the performance in the closed loop mode. The importance of time
delays became gquantifiable. This approach was instrumental in achieving system stability
which supported 30 db adaptively formed notch depths.

We are pleased to acknowledge the contributions of G. S. Moore, C. D. Rosier, and E.
H. Tegge to the design and fabrication of the electronic hardware, and those of M, D. Koontz
to the design and fabrication of the optical system. This work as supported, in part, by
the U. S. Army Research Office.
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APPENDIX E

SPATIAL AND TEMPORAL SPECTRA OF PERIODIC FUNCTIONS FOR SPECTRUM ANALYSIS

REPRINTED FROM APPLIED OPTICS

VOLUME 23, PAGE 4269, DECEMBER 1, 1984
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- n Spatial and temporal spectra of periodic functions for
s spectrum analysis
__ < A. VanderLugt and A. M. Bardos
=

'
b
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Both the spatial and the temporal spectra of reference signals used in interferometric spectrum analvzers

affect the system performance. We define a class of bandlimited reference signals that have N discrete fre-

D .: quency components of equal magnitude. We show that the system performance is primarily determined
. by the aperture weighting function and is much less dependent on the specific signal waveform. The aper-

- ture weighting function can be used to match the spectral shape to the photodetector size, which then opti-
mizes the dvnamic range. Further, since the spatial aperture weighting is converted to an equivalent tempo-
ral weighting, this function can also be used to control spurious temporal modulation products. The analy-

::' . sis is extended to include results for periodic chirp signals such as those produced by VCO or SAW devices
f: = and shows that the results are not affected by using a reduced duty cvcle. We also find that the effect of
. using finite as opposed Lo point photodetectors is to introduce an additional factor to the aperture weighting
‘ . function. Control of both the spatial and temporal modulation products introduced by the periodic refer-
Lo ,‘-: ence is necessary to achieve the expected dynamic range.

- M

-\ -
?} - I. Introduction Gaussian noise. We then show that, by selecting the
N In a previous paper we described an approach to in-  aPpropriate apodization and aperture conditions for the
":: terferometric spectrum analysis that provides a sig- refe_l'er!ce beam, spurious modulation can be made
N nificant increase in the dvnamic range.! The system vanishingly small. Experimental results that confirm

uses two Bragg cells in an interferometric arrangement.  these analyses are given in Ref. 2.
The signal to be analvzed is fed to one Bragg cell to I

: g . Background
provide the instantaneous spectrum, while a reference . . ) .
signal is fed to the second Bragg cell to provide a dis- The basic operation of the interferometric spectrum

< . . . .
3 tributed local oscillator at the Fourier transform plane. ~ 2nalyzer can be explained with the aid of Fig. 1. The
As a result, a fixed temporal offset frequency is gener-  Signal f(¢) drives a Bragg cell in the lower leg of the
ated at each photodetector position. This fixed fre- Mach-Zeh_nder interferometer. The instantaneous
quency offset permits a narrowband postdetection filter ~ SPectrum is
to separate the signal term from the bias terms at the

OOl AL -
PRI

'h » L

N output. Since this signal term contains the amplitude Fripa) = J:, ftt = x/u) expypzidx. Ry
.~ components of the spectrum, the dynamic range ex- . . .
w7 pressed in decibels is nearly doubled compared with wk;ergl: 1 _thtehlengéb of the B;afgg cell. ¢ Is thde ,‘;.CEUZ;"C
TN that of a power spectrum analyzer. Other advantages V&¢I, p Is the radian spatial frequency.and I = L/v.

A reference signal r(¢) drives a Bragg cell located in the
upper leg of the interferometer. Its instantaneous
Fourier transtorm Rr(p.t) also occurs at plane P,
where it is combined with Frip.t). Before being
combined. however. one of the two spectra are geo-
metrically shifted in the p direction to generate the
fixed offset frequency fq.

The intensity at the Fourier plane is the square of the
sum of the amplitudes produced by the signal and ref-
erence functions:

of the interferometric approach are improved short
pulse detectability and immunity to scattered light.

. Analytical and experimental investigations show that
the reference waveform has a significant impact on the
svstem dvnamic range by being the prime source of
spurious modulation. In this paper we give a brief re-
"t view of the operation of the interferometric spectrum
analyzer. We analvze the spatial and temporal char-
acteristics of a generalized reference waveform which

£

v s N
L%
'

¥

.
o
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-

can represent signals such as an impulse train, chirp
waveforms. pseudorandom sequences, and white Hp.t) = [Fip.l* + [Rip.0)|?
The authors are with Harris Government Systems Sector, P.O. Box + 2{Fp.O]|Rip.ti] cos|2rfqt + o),
37, Melbourne, Florida 32902. =1t + [aptr + Lupay, )y
e Received 7 July 1984. )
r.: 0003-69:35/84/234269- 11802.00/0. where we have dropped the subscript T we shall assume
' «© 1984 Optical Society of America. that all time signals are truncated by the finite lengths
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of the Bragg cells. This result shows that the intensity
function contains two bias terms, which we denote by
Ii(p,t) and I:(p,t), that have temporal frequency
components centered at baseband. The third term
I3(p,t), is the spectral cross product of the signal and
reference waveforms that, by virtue of the geometric
shift, has been offset to frequency f4. This term can be
separated from the bias terms if, for each photodetector
output, we use a narrowband filter that passes only
those temporal frequency components close to f4. The
phase ¢(p) is the difference between of the phases of
F(p,t) and R(p,t).

To model and test the performance of the system we
need to consider several other elements of the system.
Figure 2 shows the interferometer with its input signals
f(t) and r(t). The output of the optical system consists
of individual temporal signals produced by discrete
photodetectors. These signals are amplified-and passed
through a narrowband filter centered at f4. A nonlinear
device compresses the range of amplitudes to facilitate
rectification and to display the wide dynamic range of
the signal. The outputs from the rectifiers are then
low-pass filtered and fed to a multiplexer so that the
frequency components can be polled to satisfy opera-
tional needs.

. Mixed Transform Concept

The operation of any spectrum analyzer is basically
determined by the spatial Fourier transform of the time
signal that flows through the Bragg cell. In a power
spectrum analyzer, the spatial transform of the signal
is sufficient to fully describe the behavior of the system.
To obtain better dynamic range, however, the inter-
ferometric spectrum analyzer produces a temporal
signal that is subjected to further processing to extract
the information. Test equipments such as an electronic

4270 APPLIED OPTICS / Vol. 23, No. 23 / 1 December 1984
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spectrum analvzer are useful tools to assess the per-
formance of the system at various test points. It is
important, therefore, to examine the temporal spectrum
of the signals as well as the spatial spectrum to accu-
rately interpret the results and to indicate how we can
improve the performance of the system. We call the
spatial/temporal Fourier transform the mixed trans-
form because, when displaved as a 2-D function, the
independent variables represent spatial and temporal
frequencies.

From Eq. (2) it is clear that the reference waveform
R(p.t) plays an important role in the performance of the
system. The desired characteristics are that (1) the
magnitude should be nearly equal at all photodetector
sites, (2} the spatial and temporal frequencies should
be coupled so that, with a relative geometric displace-
ment between the reference waveform and the signal
spectrum, equal temporal offset frequencies are pro-
duced at all photodetector locations, (3) the amplitude
should not be a function of time, and (4) the duty cycle
of the drive signal must be high so that the light is effi-
ciently used.

In Ref. 1 we showed that, for a given bandpass filter
shape, the number of photodetectors NV is 2.5 times the
desired number of resolvable frequencies in the received
signal. The reference signal must, therefore, contain
at least N frequency components. Let r(t) denote a
signal generated by summing N frequencies produced
by equal amplitude, sinusoidal oscillators of phases .
The resulting reference signal can then be represented
by

No
rity= T cosi2anfot = on) (3}

neN,

where f; = N fpand fo = Nof are the lowest and highest
frequencies in the signal; this representation is used
because Bragg cells are bandpass devices. The value
of f, the frequency difference between adjacent oscil-
lators, is chosen so that there is one photodetector for
each oscillator in the Fourier plane of the spectrum
analyzer.

Since r{t) contains N discrete frequencies, each a
harmonic of the basic. frequency fy, it must also be a
repetitive signal with repetition period T, = 1/f,. We
can generate a surprising variety of waveforms by
specifying the phases appropriately. For example, if
we choose the ¢, to be equal to zero. r(t) is an impulse
train3;

rit) = cos{(N| + Noiwfot] M] .
sty )
If we choose the ¢, to be a linear function of n te.g.. o,
= ngyg), the impulse train is advanced or delaved ac-
cording to the sign and magnitude of ¢o. If the phases
are quadratic in n so that

dmrn?
Nfo
r(t) is a repetitive chirp function whose period is 7.
whose duty cycle is d, and whose frequency range is
from f; to fa.

An interesting example of the behavior of r(¢). which
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Fig. 3. Chirp function with duty cvcles of zero, one-half. and one.

shows the transition from an impulse train to a chirp
train, is given in Fig. 3. The upper trace shows two
periods of r(t) when the phase is zero for all n. The
middle trace is that for a quadratic phase function ac-
cording to Eq. (4), but with d = 5; we note that the re-
petitive chirp function now has a duty cycle of 50%.
The lower trace shows the chirp function whend = 1;
the chirp now has a 100% duty cvcle. Thus we find a
smooth progression from an impulse train to a full duty
cycle chirp as d is changed from 0 to 1. In all three cases
we translated r(t) to a center frequency which shows
how the reference signal will look when it drives the
Bragg cell. The center frequency in this case is three
times the highest frequency of the baseband signal. We
also normalized each waveform to reflect the fact that
the Bragg cell diffraction efficiency is constrained to a
value less than one. Each of these signals is a suitable
reference signal: the choice tends to be with a high duty
cycle chirp so that the light power is efficiently used.

Other useful reference waveforms can be generated
by a proper choice of the phases. A repetitive pseudo-
random sequence of length N = 27 — 1, where r is an
integer, can be produced if the phases for the various
frequencies are suitably chosen.* If the ¢, are random,
the resulting signal simulates a bandlimited noise source
that, nevertheless, retains a repetitive feature.

The Bragg cell presents the drive signal r(¢) to the
illuminating reference beam and to the subsequent
optics for Fourier transformation in the form of index
of refraction waves propagating at the acoustic velocity.
The amplitude profile of the illuminating beam. the
acoustic attenuation, the size limitations of the cell, and
any other weighting factors combine to form a multi-
plicative aperture weighting function a(x). These
features of the interaction can be expressed in the form
a(x)r(t = x/v). Bragg selectivity and the finite aper-
tures of the optical configuration will allow only the
positive or negative spatial frequency terms to propa-
gate. Thus we shall replace each cosine by the down-
shifted temporal and spatial frequency terms and omit
the complex conjugate terms; the optical reference input
function is then defined as

N2
rixt)=atx) S expl—j2rnfolt ~ xiv) + jon] 3
neN,
We now calculate the mixed transform of r(x,t), which
is defined as

Ria,3) = f- f- rix.t) exply2xiax = 3t)|dxdt. (6)

where we now use «a to denote a spatial frequency and
G to denote a temporal frequency. Throughout the
analyses that follow, we drop all scaling factors and
unimportant phase factors. [t is advantageous to cal-
culate the spatial transform first; we do so by using Eq.
(5) in Eq. (6) to get

- No'
Riat) = f atx) & exp|—j2mnfolt ~ x/vV + Jon)

- neNy

X explj2raxidx. [}

By separating the time and space dependent terms and
by performing the integration over space, we find
that

Riat) =Y Ata + nfp/v) expl—j27nfot + jon). (8)

"

where A(q) is the Fourier transform of the aperture
weighting function a(x). To illustrate more clearly
some of the features of R(«,t), we leta(x) = rect(x/L)
so that Eq. (8) becomes

Ria.t) = ¥ sinc[Lia + nfo/v)] exp(=j2nnfot + jon ). 19

We see that the reference signal in the Fourier plane
consists of a set of sinc¢ functions, sometimes referred
to as beads, that are centered at each of the N photo-
detector positions. Each bead has an associated pure
frequency that is a harmonic of f. We now examine the
relationship of the length L of the Bragg cell to that of
the repetition period L, = vT,. If L » L,, the Bragg
cell contains many periods of the reference signal. The
beads then become very narrow relative to their spac-
ings: these beads are centered at « = =nfy/v = —n/v T,
= —n/L,. This condition is useful when the photode-
tector spatial duty cvcle is small because the available
light is then concentrated onto the detectors. However,
the reference beam Bragg cell, whose bandwidth is equal
to the signal analysis bandwidth, must then have a very
large time-bandwidth product to handle several periods
of the reference signal.

Although it may be impractical to use several periods
of the reference signal. it is worthwhile to consider the
use of a smaller number as a means to shape the spatial
frequency amplitudes to better match the size of the
photodetectors. As noted before. the photodetectors
spacing must be equal to 1/L,. and we let h denote the
spatial duty cvcle. It is easy to show that the SNR and
dynamic range are maximized when the duty cvcle is
equal to one. It can also be shown that, if h < 1, the
dvnamic range is maximized when hL = 1.37L, under
the assumption that the Bragg cell is uniformly illumi-
nated. In general, the aperture weighting function a(x}
will cause further spreading in the Fourier plane. so that
L will need to be increased somewhat to achieve opti-
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Fig. 4. Magnitude of the mixed transform for an arbitrary signal and
uniform illumination.

mum performance. We return to the subject of aper-
ture weighting in a later section.

We now complete the mixed transform by calculating
the temporal frequency content. We have that

Ria,3) = f " Riat) exp(=j2xBtidt. (10)
We substitute Eq. (8) into Eq. (10) to find that
Ria,3) = 3 exp(jon)Ala + nfo/v)é(B + nfo). (11)

This relationship can also be written in an equivalent
form as

R(ca.3) = Ala = B/v} T exp(y0a)6(3 + nfo). (12)
n

We see that R(a,3) consists of a two-dimensionally
coupled skew function that is sampled by a set of phase
weighted delta functions creating N discrete terms, or
beads. There is one bead at each photodetector posi-
tion, shifted by the desired frequency nfo and distance
nfo/v, with a shape described by A(a). Due to the na-
ture of the sampled skew function, we find that the
magnitude of the mixed transform is independent of the
specific repetitive reference signal r(¢).

To more clearly visualize this conclusion, we note
from Eq. (12) that a set of delta functions sample the
function A{« ~ 3/v} in the temporal frequency domain.
Figure 4 shows the magnitude of R(«,3) when a(x) =
rect(x/L). For any value n, the spatial frequency re-
sponse is a sinc function centered at a = —=nfy/v. Inthis
mixed transform concept, however, the sinc function is
displayed at 3 = nfg so that, as n increases from N, to
N, we find that the sinc functions occur along a skew
line in the o, plane. This is the 2-D display that we
would expect if we were to use the v-axis of a conven-
tional Fourier transforming system to display the
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time-shifted versions of the reference signal as it passes
through the Bragg cell.

We iliustrate this concept by showing in Fig. 5 a ref-
erence signal that is shifted progressively in time in the
vertical direction. For any given spatial position xo we
find the temporal function by reading the values along
a vertical line positioned at xo. At any given time ¢to we
find the spatial function resident within the Bragg cell
by reading the values along a horizontal line through ¢¢.
From the 2-D space/time representation shown in Fig.
5, we can also obtain the mixed transform shown in Fig.
4 if the optical aperture of a Fourier transform system
is limited to £L/2 in the space dimension and is infinite
in the time dimension.

So far we have examined the characteristics of the
reference waveform as it affects the cross-product term
in Eq. (2). We now consider the bias term that is due
solely to the reference beam. From Eq. (8) we find that
the intensity Is(a,t) is

Ny Ng
Iy(ait) = |Riat)|? = 22 T exp[=j2w(n - m)fot]
neNi meN;

X exp[f{dn = om)| Al + nfo/LiA*(a + mfp/v). (13)

The mixed transform for the bias term can be readily
obtained by finding the temporal transform of Eq.

" (13):

Ia(a,8) = £ T expliton = oml]Atla + nfy/e)

n m

X A*(a + mfo/U16]3 + (n = m)fy). t14)

The conclusion that we reach from Eq. (14} is that the
bias term, in general, contributes energy at all integer
multiples of fo. There is a special set of conditions,
however, for which Is(«,3) has energy only at 3 =
This set of conditions is that a(x) = rect(x/L), that L
is equal to some integer multiple of L,, and that point
photodetectors are placed at integer multiples of fo/v.
In this special case we find that the sums in Egs. (13)
and (14) can be performed for n = m, and the result is
that the power spectrum of r(x,t) is constant in time and
at all photodetector positions.
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Fig. 5. Reference signal envelope expressed as a function of space
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The mixed transform concept and the generalized
repetitive signal function as given by Eq. (3) have il-
lustrated the importance of the reference beam aperture
weighting a(x) and the truncation positions. We have
also shown that the mixed transform of such a repetitive
signal is independent of the specific signal waveform.
We now use these concepts to study in some detail how
they apply to a specific hardware implementation that
uses a chirp signal generated by a voltage-controlled
oscillator. We develop additional analytic tools for
handling some special chirp functions and their trans-
forms. We further explore how the aperture weighting
function and finite photodetectors affect the basic re-
sults.

V. Cross-Product Term for a Chirp Reference Beam

Repetitive chirp signals can be obtained from volt-
age-controlled oscillators (VCO) or from surface
acoustic wave (SAW) devices. We generally require
that the device produce a waveform that linearly sweeps
the frequency over a range of several hundred mega-
hertz centered at the midband of the frequency response
of the Bragg cell. The sweep period is generally in the
microsecond range for wideband spectrum analysis.

Although the mathematics i this section are some-
what cumbersome, much can be learned from a detailed
analysis of the process. We derive an approximate so-
lution which can be used as a powerful intuitive and
analytical tool for understanding the nature of the in-
terferometric architecture using chirped reference
functions. These detailed results can then be related
to the experimental results and are useful in other
studies as well. We define a chirp signal as

p(t) = cos(gt?/2), (15)

where we will not, for the moment, bound the chirp
signal in time; as a result, we see that all temporal
frequencies are generated. We define the sweep rate
asg =27 W/T,, where W = f, — f, is the useful band-
width of the Bragg cell, and T, is the time required to
sweep from f) to fo. We can now define the repetitive
reference signal r(t) as

rit) = pit)» i 8t = nT,) =T ptt =nT,),
where * denotes convolution, and we retain the notation
that T is the repetition period. Following the proce-
dure used in Sec. III, we can represent the signal resi-
dent in the Bragg cell by a(x)r(t — x/v) and retain only
the negative spatial frequencies:

rix,t) = 3 aix) exp|[~jg(t = nT, = x/v)%/2). (16)
n

We can now relate r(x,t) to the repetitive chirp signal
produced by a physical device such as a VCO that is
driven by a repetitive ramp waveform. Since the Bragg
cell and the photodetector array process only those
frequencies from f; to fy, the results will be equivalent
to those that would be obtained if we were to view r(x,t)
as a bandlimited function consisting of a train of chirp
pulses with duration T, and a repetition period T,. In
the physical implementation, it is important to realize
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Fig. 6. Fourier transform arrangement for an isolated chirp pulse.

that the starting phase of each successive pulse may not
be the same. Suppose that the phase has advanced by
¢. at the end of the repetition period. Since this phase
carries over to the start of the next pulse, we find that
Eq. (16) must be modified by a multiplicative factor
exp(yno.) to accurately represent the chirp train:

rix.t) =Y a(x)lexp —jlgt — nT, = x/0)¥/2 = no ). (D
”n

The reference signal is therefore not, strickly speaking,
a repetitive signal in the sense that it contains only
harmonics of fo. We shall show later how this phase
term influences our results.

We can find the mixed transform of r(x,t) in one of
several ways. A particularly simple way is to first ob-
tain the transform for p(t) and arrive at the final result
through a multiplication by the Fourier transform of the
sampling function. Consider the reference leg of the
interferometer as shown unfolded in Fig. 6. The rep-
resentation of the chirp pulse will be described in two
different ways to connect the mathematical formalism
with a physically realizable situation. As a mathe-
matical function represented by Eq. (15), we can think
of p(t) as extending over all time (i.e., not bounded in
the vertical direction). The condition shown, then, is
one in which the useful frequency range from f; to f; is
just about to enter the Bragg cell. At a time T}, seconds
later, the last useful frequency enters the Bragg cell, and
all others can be ignored. As a physically realizable
function, the pulse representation satisfies the de-
scription given before, wherein the VCO has just been
activated by the voltage ramp. Attime T, the blanking
circuit is turned on, and at time T, a new pulse is ini-
tiated.

We now calculate the spatial Fourier transform of
r(x,t) as given by Eq. (17) with n = 0: we then account
for the summation over alln. We have for the central
pulse that

L
Plat) = f exp[=j&/2)t = x/v)?] expy27raxidx.  (18)
o

To simplify the analysis, we have ignored the carrier
frequency that translates p(¢) into the passband of the
Bragg cell as well as the aperture weighting function
a(x). We complete the square in x to find that

Plat) = explgivt + 2xac?/g1/2v?] expl{=jg/21t?)

L
X f expl=jg[x = wt + 2rar/g))2/2dx (19
0
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We can put this integral into the standard form of a
Fresnel integral to obtain

P(a.t) = exp|j(2ravt] J:t exp|~j(7/2)z3)dz,

where

b =\'g/rvi|~uvt = 27 ar?/g),

¢ = \/g/mudlLl = vt = 2ravi/g]. (20)

We now examine the important properties of the Fres-
nel integral for our application. One way to represent
the integral is by using the Cornu spiral.’ The arc
length along the spiral is given by the difference be-
tween the upper and lower limits:

c=b= \'g/—wL/u. 2n

By recognizing that L/v = T is the time duration of the
Bragg cell, and by using the relationship that g =
27 W/T,, we find that the arc length is equal to
v 2WT'§/TF,. Since the arc length is greater than the
square root of the time-bandwidth product of the Bragg
cell, which is typically of the order of several hundred,
the arc length is of the order of 10-20. As a result, the
Fresnel integral has a nearly constant value, except
when the upper and lower limits are equal to zero. At
these points, the Fresnel integral makes a rapid tran-
sition through its half-amplitude values so that the
limits tell us when the shadow regions for each edge
occur as a function of the spatial frequency.

From the limits in Eq. (20), we note that each spatial
frequency « receives light starting at t = —«wT,/W and
ending T seconds later (recall that « is always negative).
Although there are ripples associated with the leading
and trailing edges of the Fresnel integral function, we
can approximate the value of the integral by rect(t/T
= Yy — avT,/WT) to obtain some useful results. The
spatial transform then becomes

Pla.t) = rect(t/T = Yo + avT,/WT) exp(2rart). (22)

From Eq. (22) we see that, at a particular value of «, the
first factor indicates the time duration when the light
is on, and the second factor gives the associated tem-
poral frequency. We now take care of the summation;
by using Egs. (22) and (17), we find that the spatial
transform of the repetitive chirp signal is

Riat) = exp(2ravt) T rectt/T = nT /T = Yo + cwTp/WT)

X exp(—=;2ravnT,) expyno.) (23)

The mixed transform R(«,3) of the reference waveform
can now be obtained by substituting Eq. (23) into Eq.
(10):

Ria,8) = sinc[Tiav — 3) T 63 + nfo = dfo/2x). 124)

When we compare Eq. (24) with Eq. (12), we see that,
if ¢ = 0, the results are similar even though they were
obtained by quite different methods. Here we have a
skewed sinc function in « and 3 which is sampled by a
set of delta functions in 3. This result shows that a
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phase-incremented repetitive chirp function generated
by an analog circuit such as a VCO device contains N
discrete frequencies both spatially and temporally.
The phase increment ¢., however, will shift the fre-
quency sampling delta functions from integer har-
monics nfy to a fractional offset position (n + ¢./27)fo.
In the spatial frequency domain this means that, while
their spacings remain the same, the bead center loca-
tions will shift.

The method of analysis given here is equivalent to our
having used a more general model for the periodic sig-
nal, in which

rit)= T cos[2x(n + ¢./2%)fo — ¢nl,

Am—-

which accounts for ¢. as well as for allowing all
frequencies to be present in the drive signal.

We now calculate the Fourier transform from the
signal beam leg of the interferometer. Consider a cw
signal s(¢) that has a single frequency f; and a Fourier
transform arrangement as shown in Fig. 6. Let b(x)
represent the signal beam aperture function combining
all apodization and truncation effects, and let a linear
phase ramp express the geometric offset. of the signal
spectrum. The optical signal input function is then
given as

s(x.t) = bix) exp[~;2nf, (¢t = x/v)] exp(j2rayx).
At the detector plane the signal is represented by

Stat) = f- s(x,t) exp(j2rax)dx

= Bla + ag + f./v) exp(~)2xf,t),

where B(«) is the spatial Fourier transform of b(x). For
a rectangular aperture function we find that

Sta.t) = sinclla + ag + a,)L,] expl—j2xf,t), (25)

where «, = f,/v, and «y is the geometric offset in spatial
frequency needed to produce the temporal carrier fre-
quency in Eq. (2).

The product of the signal and reference term is /3(«,t)
= 2 Re[R(a,t)S*(a,t)]; this term produces the signal
that we observe at a test point located just after the
bandpass filter. For a high dynamic range svstem such
as this interferometric spectrum analvzer, it is often
useful to display a signal that is proportional to I3(a.t)
on a conventional time spectrum analyzer. We there-
fore want to find the mixed transform I3(a.3) through
the temporal transform

Lap) = j: Ialat) expl=; 2w 3t )dt (26)
By using Eqgs. (23) and (25) in Eq. (26), we find that
Ia(a,B) = sinc|(a + ag + a,)L,]
X sincltav ~ 8, + £, T} ; M3 + [y = ocfo/27 + nfo).
(27)

This result reveals that I3(«,3) has its maximum value
when a photodetector is positioned so that « = —(ay +
«,) because the spatial sinc function then has its max-
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Fig. 7. Temporal and temporal frequency signal representations as
a function of the phase increment.

imum value. Although the signal frequency «, is un-
known and must be estimated, the photodetector
spacing was chosen to be fo/U so that at least one pho-
todetector in the array will be near the peak of the
spatial sinc function.! We find that the time-domain
spectrum at the optimum detector location is

I3(3) = sinc((3 + f)T] L 6(8 + f, — ocfo/27 + nfg).  (28)

We now illustrate the results of our analysis for the
cross-product term which, after bandpass filtering, is
the desired output. We shall consider both the form
of I3(t), which is the temporal signal displayed on an
oscilloscope, and the form of I3(3), which is the signal
displayed on a temporal spectrum analyzer for a given
photodetector element. In both cases, the phase in-
crement for each pulse given by exp(jrn¢.) will affect the
results.

In Fig. 7(a), we show the form of I3(t) for four periods
of the repetitive chirp waveform when ¢, = 0. The
output, as expected, consists of a pure cosine whose
amplitude is proportional to that of the CW signal at f,.
The cosine is continuous, without any change in phase
over all time, independently of the duty cycle of the
chirp. We also show in Fig. 7(a) the value of I3(8),
which is a sinc function centered at 3 = —f4 with the
first nulls at £1/7 from the center as given by Eq. (28).
The sampling function has value when

3= /. - 0(/0/27 + l'lfo, (29)

so that the sampling function is a set of deita functions
spaced at intervals in frequency of fo. Suppose that Eq.
(29) is satisfied so that one of the samples falls at 3 =
~f4. Then,if T = T,, we find that all the other samples
fall at the nulls of sinc[(8 + f4)T}].

In Figs. 7(b)-7(d) we show the corresponding results
when the phase increment between pulses is 7/4, 7/2,
and m. We now note that there is a discontinuity in
[4(¢) at the beginning and end of each repetition period
T,. The corresponding sketches of I3(3) show that the

sampling function as given by Eq. (28) has shifted un-
derneath the fixed sinc[(8 + f4) T] envelope in such a
way that, when the phase increment is equal to =, the
sinc function is sampled symmetrically; the corre-
sponding time function shows a phase reversal at the
ends of the repetition period.

At this point we can draw an interesting analogy be-
tween the behavior of an echelon and the result pro-
duced by a repetitive chirp as given by Eq. (28). We
recall from Eq. (17) that each pulse in the chirp train is
modified by a phase factor that is fixed for the duration
of the pulse. These phase increments can be related to
those of an echelon wherein the phases between suc-
cessive steps change by a fixed amount.® The situation
shown in Fig. 7(a) is equivalent to the single-order po-
sition for an echelon. We note from Eq. (28) that there
is room for only two sampies in the central lobe of the
envelope of I3(3). If the phase increment is adjusted
so that ¢. = 7, the samples are shifted as shown in Fig.
7(d); this situation is called the symmetric position
which produces two equal amplitude outputs. In a
transmission echelon one can change from the single-
order to the symmetrical position by rotating the ech-
elon. In our interferometric spectrum analyzer, one can
change positions by changing ¢.. In both cases, the
sampling delta functions move, but the envelope does
not.

From the relationship of the sampling function to the
envelope as shown in Fig. 7, we conclude that the tem-
poral output may contain frequency components other
than f4 if the phase increment induced by the VCO is
not a multiple of 2. The worst-case condition is that
shown in Fig. 7(d); the two components within the main
lobe of the sinc function are then just at the band edges
of the bandpass filter. It is therefore desirable to con-
trol the phase of the chirp generator so that the detec-
tors can be located at the reference bead centers to ob-
tain the condition shown in Fig. 7(a).

V. Bias Terms for a Chirp Reference Beam

It is possible for the reference beam bias term to
contribute energy at frequencies within the bandpass
filter. We now consider the origin of this unwanted
energy and methods for eliminating it. The suppres-
sion of these spurious modulation terms is a key design
objective in any hardware implementation of this ar-
chitecture.

The bias term for the chirp reference beam is, from
Eq. (2), given by Is(e,t) = |R(at)|2 From Egq. (23) we
find that the mixed transform, using the same approx-
imation for the Fresnel integral, is

Iia,d) = T T expli2ravin = mT,] explj(n = mio.]
nm

X f rect(u,) rectiun, ) exp(—;2x 38t \dt, (301

where u, and up,, the arguments of the rect functions,
are taken from Eq. (23) with the corresponding indices
n and m. The integral can be evaluated by a change of
variables wherein we let
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u=u,=t/T=naT,/T = Yo+ awTp/WT

so that the integral becomes

exp(—j2z6nT,) f. rect(u) rectlu + (n = mi7T,/T)

X exp(—j2xB8Tu)du. (31)

The first rect function has value only for |u| < Y%. The
second rect function determines how many terms for the
summation on m are important. We see that if the time
duration of the Bragg cell T is equal to the repetition
period T, the only terms of interest are those for n =
m because otherwise the two rect functions do not
overlap, and the integral is zero. In this special case the
integral reduces to sinc{87), and we find that

I2{(a.8) = sinc(8T,) T 8(8 = av — ¢fo/27% + nfo). (32)

The magnitude of I(e,8) is clearly a function of ¢.. A
physical interpretation of the effect of the phase in-
crement is that the spectrum from the reference beam
has shifted by a fraction ¢./27 of the photodetector
spacing. If the photodetector array is moved to restore
the condition that each element is centered under a
bead, the delta function in Eq. (32) reduces to 6(3 —
nfo), and we find that all the sampling functions are at
the nulls of the sinc function. It is only under these
special conditions that Is(«,3) has no content at any
temporal frequency other thanat 3 = 0.

The results obtained in this section are based on the
approximation that the Fresnel integral can be ap-
proximated by a rect function. In addition, we have
ignored the aperture function a(x) which plays an im-
portant role in determining the form of I5(3). In effect,
the spatial aperture weighting is converted to a temporal
weighting; this can be seen by noting that each fre-
quency component of the chirp travels underneath the
aperture function a(x). In the appendix we derive the
exact results that remove the approximation and in-
clude the effects of the aperture function. In particular,
we find that the temporal frequency content of the
reference beam bias term can be represented by a
function G(8) that is sampled at the frequencies 8 =
nfo.- In general, G(3) will have a set of nulls, but they
may not fall at integer multiples of f.

If we do not take action to keep I»(3) small in the
bandpass of the filter, we find that the SNR and,
therefore, the dynamic range are less than expected.
Even if f4 is fairly large so that the energy in the band-
pass filter arises from distant sidelobes of G(3), the
energy in this bias term may be significant relative to
that of the cross-product term for low signal levels. We
now examine ways to control the in-band magnitude of
the reference bias term, which we call spurious modu-
lation, through appropriate aperture weighting. We
note, in passing, that the signal beam bias term as given
by |S{a,t)|? leads to a pure frequency at 3 = 0 and,
therefore, need not concern us further.
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Fig. 8. Temporal frequency content of cross-product and reference
beam bias terms.

VIl. Aperture Weighting Function

As a preliminary to a study of the aperture function,
we show the magnitudes of 15(3) and I3(3) in Fig. 8,
along with the photodetector bandpass filter response.
In this illustration, G(3) is the transform of a truncated
Gaussian illumination function. The bandpass filter
shape is approximated by a trapezoid which is constant
for B = —f4 % fo/2 and falls to zero at 8 = —f4 % fo; this
shape is required to keep the photodetector response
to nearly signal frequencies under control.!

The most critical sampling function is that associated
with the bias terrn. These samples start at 3 = 0 and
are placed at integer multiples of fo. In this example,
we see that the samplesat n = 4 and n = 5 are at local
maxima of G(83), so that a significant amount of spuri-
ous modulation is within the passband of the filter.
The relative magnitude of the spurious modulation can
be seen by applying the output signal from the bandpass
filter to a conventional spectrum analyzer, with the
signal set at zero amplitude. As the chirp period T, is
varied, the sample functions move within the envelope
of the bandpass filter, and the relative magnitudes of
the sampled frequencies will vary according to the shape
of G(B) provided the Bragg cell aperture is not changed.
Alternatively, we can see the spurious modulation
change if the aperture L is changed while the repetition
rate T, is fixed.

For the case of a(x) = rect(x/L). it is possible to
eliminate the bias term by adjusting the spatial trun-
cation and the repetition rate so that the sampling
functions fall exactly at the nulls of G(3). In practice
this is difficult to do for several reasons. The acoustic
wave within the Bragg cell is attenuated as it propagates
through the cell, and it experiences acoustic spreading
as well. The effects of other apertures in the illumi-
nation beam may introduce small ripples in the illu-
mination. Although the asvmmetry induced by
acoustic attenuation can be compensated by a spatial
shift in the Gaussian illumination, the combination of
these factors may still produce an asymmetric and, in
general, an inaccurately known weighting function.
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Another source of aperture weighting is introduced
by the finite sizes of the photodetectors. One way to
determine the effects of finite photodetectors is to in-
tegrate I3(«,3) as given by Eq. (27) over the appropriate
range on . An interesting alternative, and one that
leads to a somewhat more general resuit, is to recognize
that the results for a finite detector can be derived from
those obtained from point detectors through a convo-
lution operation. The convolution involves only the size
of the detector if its sensitivity is uniform over its sur-
face. We can then replace the convolution operation
in the detector plane by a multiplication operation in
the input plane, where the multiplication function d(x)
is the Fourier transform of the detector aperture. For
example, if the photodetector aperture ha: in extent of
h/L., where h is the duty cycle, we have that d(x) =
sinc(hx/L,). If we invoke the relationship that hL =
1.37L, to maximize the dynamic range, we find that
d(x) has its maximum value at x = 0 and drops to
sinc(0.685) at the edges of the aperture. Since d(x)
applies to both the signal and the reference beam Bragg
cells, and since L, < L., we find that the contribution
of d(x) to the signal beam weighting function b(x) is less
than that to the reference beam weighting function
a(x).

An illustration of how the total aperture weighting
function influences the shape of G(3) is shown in Fig.
9. For comparison purposes we show G(3) fora(x) =
rect(x/L) as curve A. When we use a symmetric
Gaussian illumination for which the intensity is 1/e2 at
the truncation points, we have the response shown in
curve B. We note that the Gaussian illumination
broadens the central lobe and that the maximum side-
lobe levels are significantly lower. We also note that
the first few nulls are irregularly spaced and that, even
for the higher orders, the nulls do not occur at the same
positions as those of the sinc function. Curve C shows
the shape of G(3) for the same Gaussian illumination
but with its center displaced by 6% of the aperture
width. We now note that the nulls are not as deep, al-
though the amount of induced asymmetry is small.
Finally, curve D shows the Gaussian illumination dis-
placed by 12% of the aperture width. The overall
sidelobe level is higher than with curves B and C, and
the nulls are even less well formed. We note here that
symmetric functions produce real-valued transforms
so that perfect nulls are generated between positive and
negative sidelobes. Asymmetric functions produce
complex-valued transforms and, in general, less well-
formed nulls between local maxima.

This example shows that attempts to place the sam-
ple functions at the nulls of G(3) will be difficult to
control, and for the case of asymmetric illumination, the
resulting spurious modulation may be higher than de-
sired. A second way to reduce the effects of the bias
term is to increase the offset frequency fq so that we
encounter the higher-order sidelobes of G(3). But since
the illumination is generally sharply truncated, the
sidelobe level does not roll off rapidly as a function of
frequency. Furthermore, a high value for f; has an
adverse effect on the photodetector performance since
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Fig. 9. The temporal spectral envelope of the reference beam bias
term for various aperture weighting functions.

it must now respond to much higher temporal
frequencies. Another possibility is to use a weighting
function so that G(f) rolls off more rapidly than those
functions shown in Fig. 9. For example, ifa(x) is a sinc
function, G(3) falls to zero within the bandpass.
However, the sinc function must also be truncated at
some point; if it is truncated at the fifth sidelobe, G(8)
is no more than 50 dB down in the passband. Fur-
thermore, the Bragg cell must be five times its nominal
length for us to use this type of illumination.

The best overall solution is to require that f4 be a
harmonic of fo, which would place just one sample ex-
actly at the midband of the bandpass filter. We would
then be faced with a much simpler task of requiring that
only one null of G(3), suitably deep, coincide with fq.
A truncated Gaussian illumination such as the one that
produced curve B from Fig. 9 would be acceptable.
Even though the exact form of G(3) may not be known
due to implementation uncertainties, a slight change in
the truncation points at the Bragg cell should be suffi-
cient to bring one of the nulls of G(3) to the offset fre-
quency position. Some care is needed to ensure that
the combined aperture effects are not too asymmetric
so that sufficiently deep nulls are achieved. The re-
quired depth of the null is quite large because we want
the bias term to be well below the magnitude of the
cross-product term. If the system has a design goal of
a 60-dB dvnamic range. the null must be of the order of
65-70 dB since the bias term is generally somewhat
stronger than the cross-product term.

We note that the signal beam aperture weighting
function b(x) plays no role in our efforts to control the
bias term. It can. in principle, be chosen independently
of a(x) to satisfy other system requirements such as
controlling cross-talk levels.

VIl. Summary and Conclusions

We have analvzed the role that a repetitive reference
beam has on the performance of an interferometric
spectrum analyzer. We defined a class of bandlimited
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signals that have N discrete frequency components of
equal amplitude but arbitrary phases. We have shown
that the mixed transform is a useful concept for ob-
taining a joint spatial and temporal transform of the
output of the system. Based on this mixed transform,
we showed that the performance of the system is not
dependent on the specific repetitive waveform since the
distributed local oscillator function in the Fourier plane
is identical for all such functions.

We also showed that the reference beam aperture
function plays a critical role in the performance of the
system. Since the spatial aperture weighting function
is converted to an equivalent temporal weighting, this
function can be used to control spurious modulation
arising from the reference beam bias term. When the
spurious modulation is controiled, the expected dy-
namic range is achieved.

We showed that all the results predicted by the gen-
eralized analysis also hold for implementation schemes
wherein a VCO device is used to generate a repetitive
chirp waveform. We found that the duty cycle of the
chirp has no influence on the results, but that a phase
increment from pulse to pulse may influence the output
if the bandwidth of the postdetection filter is not set
properly and the detectors are not located at the bead
centers. We also determined that the use of finite-sized
photodetectors do not seriously affect the results other
than to impart some additional weighting to the aper-
ture function. Experimental results confirm the
analysis given here.

This work was supported in part by the U.S. Army
Research Office.

Appendix

We derive an exact solution for the mixed transforms
Io(,3) and I3(«,3) for the chirp waveform produced by
a VCO. In the text we produced the intermediate re-
sults as given by 72(cv,t) and I3(a,t) so that the spatial
Fourier transform could be characterized explicitly as
a function of time. We did so by first performing the
spatial transform, followed by a temporal transform.

Here we will reverse the order of integration and ob-
tain the temporal transform first. We use Eq. (17) as
our point of departure, but write it in the time convo-
lutional form

rix,t) = a(x)exp(=jgtt — x/v)2/2] « T expynec)é(t = nT,).

ne—-

(33}

We first treat the mixed transform of the cross-product
term I3(a,03):

Isjla,8) = f.”f. r(x,t) exp(j2rax)dx

X expi—) 208t idt (34)

S‘(a.t)!

We recognize the term within the braces as I3(a,t). We
use the result for S*(a,t) as given by Eq. (25) and
rearrange the terms to get
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i3 = f atx)sinclia + ag + L.}

f Iexpl—;gtr - x/0)2 e T expunwriblt -nTr)
X expl—;27(8 = foe expulfmx )dedx. (35)

We recognize that the integral over time is the Fourier
transform of the convolution of two functions, so that
the result is the product of the transform of the two
functions. The first transform is

f- exp(=sg(t = x/v12/2] exp[~;2mtd =~ f,)t]dt.

This integral is similar to that given by Eq. (18), except
that we now integrate over infinite limits. The result
of the integration is’

v w/g expt—jw/4) expl=j2m(B = foix/v + j2n33 — [,)%/g]. (36}

The second transform is
f. I expynoc)éit = nTr) expl—;27i3 = f,)t]dt

=3 88 = fi = ecfo/27 + nfo).  (3T)

We now substitute the resuits given in Egs. (36) and (37)
into Eq. (35) to obtain, after dropping the scaling
terms,

Is(a,B) = sinc[(a + ag + a,)L| T 88 = f, = &.fo/27 + nfy)

X f. a(x) exp[j2rax = ;23 = f,)x/v]dx. (38)

The remaining integral is easily evaluated to get the
result that

Is(a.B) = sincl(a + aqg + a,)L,]

+Ala=B/e+[,/e)T 8B =fy = 0cfo/27 + nfg). (3D
When we compare this result with Eq. (27), we see that
it is indeed appropriate to replace the sinc function by
the Fourier transform of the aperture weighting func-
tion as we did in the text. This result, which is an exact
solution, substantiates the validity of the approxima-
tion.
The mixed transform of the reference bias term is
given by

I2(a.3) = f. |Rta.t}}? expt—y 273t )dt.
which can also be expressed as a convolution in 3:
Ip(a,8) = Ria.d) » R*(a.=3). 140)
By a line of analysis similar to that used above, we find

that

R(a.f) = exp(y27i32/g)Ata = 3/t) T 8(8 = ocfu'27 + nfo).

n

141
and we obtain Is(a.3) by using Eq. (41) in Eq. (40).
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Fresnel transforms and Bragg cell processors

A. VanderLugt

In the analysis of coherently lluminated optical systems we distinguish between space planes and spatial
frequency or Fourier planes. ‘Jetween these two planes exists a continuum of Fresnel transform planes; the
Fresnel domain therefore shar- 3, more or less equally according to its position, the properties of the space and
frequency domains. Since Fre-nel transforms are space-variant operations, generalized results are difficult
to obtain. When implemented by Bragg cell processors, however, Fresnel transforms have some interesting
and useful spatial/temporal prc serties. We examine the application of Fresnel transforms to analog signal
scrambling techniques. We de: ve the optimum geometry for obtaining the maximum time spreading for a
given signal bandwidth. We de-ive the system response to impulse, short pulse, and cw signals. We show
how a permutation of time saiaples can be achieved and illustrate some of the key features through

simulations.

l. introduction

Fresnel transforms arise naturally in optics for relat-
ing the complex-valued light distribution between two
planes separated by free space. They are used to
illustrate the basic nature of holography!? in which the
Fresnel transform of an object is recorded for subse-
quent reconstruction. In these cases we generally do
not evaluate the Fresnel transform explicitly; rather,
we use their properties to understand, at an intuitive
level, the structure of light patterns produced by the
object. Fresnel transforms are also used in synthetic
aperture radar processing®+; in this case, the explicit
form of scattering by point objects is used tc determine
the appropriate range and azimuth processing opera-
tions.

Fresnel transforms are not used extensively in real-
time signal processing applications because the re-
sponse in the Fresnel plane is dependent on the input
signal position and frequency. As a result, operations
such as matched filtering can be implemented only by
scanning methods. In this paper, however, we exploit
the time-variant and frequency-variant properties of
Fresnel transforms to scramble wideband signals, in
real time, to obtain privacy in a communication sys-
tem.

Until 1979, when Wyner described a scrambling
technique for analog signals,’ relatively little work had

‘The author is with Harris Corporation, Government Systems
Sector, Advanced Technology Department, P.0. Box 37, Melbourne,
Florida 32901,
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been reported on analog privacy techniques. Scram-
bling is most often implemented in the time domain by
sampling, digitizing, and encoding the analog signal;
this process generally requires that the transmission
channel have a wider bandwidth than the signal itself.
Scrambling can also be implemented in the frequency
domain by splitting the signal spectrum into several
frequency bands and rearranging them before trans-
mission. Two or more techniques are sometimes com-
bined to provide higher levels of privacy, as suggested
in areview of the early work on scrambling.® Inamore
recent collection of papers,” scrambling schemes are
described that use an intermediate storage device so
that discrete samples can be transmitted using time
nermutation schemes.

A communication system consists of a transmitter, a
¢hannel, and a receiver. The transmitter accepts the
s'znal to be sent, scrambles it to provide privacy, and
p-epares it for transmission over the channel. We
waunt to conserve channel bandwidth, in general, con-
sis ent with the degree of privacy required. The pur-
po: e of the receiver is to unscramble the transmitted
wa eform and to recover the original message. In-
creased privacy can be achieved at the cost of band-
wid'h expansion; even more sophisticated techniques
are required to achieve encryption of analog signals.”

F: r wideband signals such as TV, the application of
classical techniques becomes more difficult because
high speed A-D converters with high precision are
needed, and the resulting bandwidth expansion may
be considerable. A direct method of scrambling wide-
band analog signals with little or no bandwidth expan-
sion is therefore desirable. In this paper we examine
the possibility for scrambling analog signals both with
and without bandwidth expansion, using certain prop-
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erties of Fresnel transforms. The Fresnel transform
analvsis developed here provides considerable insight
into the basic scrambling scheme and suggests other
optical processing applications. For background in-
formation, we cite the pioneering work of Whitman et
al.® involving Bragg diffraction and optical heterodyn-
ing techniques. Other interesting techniques, using
Fourier analyses, are those given by Korpel et al..® by
Rhodes and Florence,' and by Florence.!! In Sec. II
we present the basic system concepts in terms of geo-
metric and heuristic arguments; the more rigorous dif-
fraction analvsis given in Sec. IV, after we give a brief
review of the properties of Fresnel transforms and
integrals in Sec. Ill. In Sec. V we give the results of
some simulations that illustrate the concepts and pro-
vide some additional results.

il. System Description and Geometric Representation

The system shown in Fig. 1 contains a Bragg cell in
plane Py, driven by asignal s(t). For generality, we let
s(t) be a real-valued bandpass signal with bandwidth
W centered at frequency f.. The illumination is colli-
mated light at the Bragg angle 6p, where 8 = arc-
sin(A/2A.), X is the wavelength of light, and A. is the
acoustic wavelength associated with f.. Since A, =
v/f., where v is the acoustic velocity, we have that 8z =
M./2v. The chief ray of the undiffracted beam there-
fore intercepts plane P, atn, = 83D = ADf /2v, where D
is the distance between planes P, and P-; the spatial
coordinates in planes Py and P; are x and n. In a
similar fashion, the chief ray of the diffracted light
intercepts plane P; at —n.. An aperture weighting
function a(x) accounts for the amplitude variations in
the illuminating beam, attenuation effects induced by
the Bragg cell, and limiting apertures caused by the
Bragg cell or other optical elements. Since we are
operating in the downshifted Bragg mode, we retain
only the negative frequencies associated with the sig-
nal. Thesignal produced by the Bragg cell can then be
represented by

fit.x) = alx) exp(~2nx6,/Ns(t = T/2 = x/v), 1)

where the exponential function represents the Bragg
angle illumination and T/2 is the time delay associated
with one-half of the Bragg cell length. This diffracted
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Fig 1. Bawc svstem geometry: transmitter.

signal now propagates through free space a distance D
to plane P.. The free space operator produces a Fres-
nel transform as given by

rug = { fua) expl=pr AN = nif|da, (2)
where the exponential function represents the free
space response to an impulse. This definition of the
Fresnel transform varies slightly from others in the
literature (see, for example, Ref. 12). The differenceis
primarilv in the point of emphasis; I prefer the form
given here because it (1) explicitly displays the impulse
response of free space, (2) shows the convolutional
process between the free space operator and the input
signal, (3) produces a continuous transition from the
Fresnel to the Fraunhofer transform as a function of
the distance D between the input and output planes,
and (4) retains the necessary phase factors to facilitate
the analysis of optical systems that use additional
lenses and free space intervals to achieve other pro-
cessing operations.!3 Throughout this analysis we ig-
nore scaling factors and nonessential phase terms. We
retain, however, phase terms that are functions of time
or space because they indicate the temporal or spatial
frequency variations of the light distributions.

We can detect the complex-valued function g(t,n) if
we provide a coherent reference function R() for pur-
poses of heterodyne detection. We use a lens to image
a point source from plane P, to the point —7. in plane
P,. The reference beam is aperture weighted by r(x)
in plane P, to shape R(n) as desired. A photodetector
integrates the intensity produced by the sum of R(n)
and g(t,n) over all n; the size of the photodetector is not
important, provided that it captures nearly all the light
in R(n). Since the reference beam is not frequency
shifted, the output signal from the photodetector also
has bandwidth W centered at f.; this signal is sent over
some communication channel to a receiver. The re-
ceiver is a conjugate form of the transmitter; that is,
the receiver layout is essentially the same as that
shown in Fig. 1, except that the Bragg cell is driven
from the opposite end. The output of the receiver, as
we shall show later, is a delayed version of the desired
signal s(t).

Before continuing with the diffraction analysis, we
present some of the basic scrambling concepts by using
geometric and heuristic arguments. These results are
useful for interpreting those obtained from the diffrac-
tion theory analysis in Sec. IV. To simplify this analy-
sis, we would like to characterize the Fresnel diffrac-
tion as though it propagates along the optical axis,
instead of at the angle 5 as shown in Fig. 1. We also
wish to retain the notion that s(t) contains single side-
band frequencies from f, — W/2to/ + W/2. We can
achieve both objectives by translating the origin of
plane P, adistance n,; the jusification for the use of this
temporary construct will become clear as the descrip-
tion unfolds.

InFig. 2, then, we show the Bragg cell of length L and
transit time T = L/v. Although the Bragg cell should
be shown tilted with respect to the optical axis, the
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Fig. 2. Geometrical representation of the Fresnel transforms of a
cw signal and a bandlimited impulse function.

geometric results are not affected by its position as
shown. When s(t) is a cw frequency at f,, the light
travels from plane P, to plane P, as a plane wave
parallel to the optical axis; the chief ray therefore
intercepts plane P, at n = 0. A cw frequency at the
maximum frequency fn,, = f. + W/2 will propagate as a
plane wave at the angle 6,, = arcsin(Wx/2v) = WA/2v.
The edge ray of this bundle intercepts the optical axis
at a distance D,

D, = Lv/AW. (3)

In a similar fashion, the opposite edge ray from a
frequency f. — W/2 will also intercept the optical axis a
distance D, from plane P,. If the distance between
planes P, and P, is greater than D,,, the higher fre-
quencies in the band W cannot be detected at the point
n=0. Ontheother hand, a decrease in this distance is
acceptable because light from all cw frequency compo-
nents in s(¢) will then reach the photodetector. Since
L = vT, we can derive an important relationship con-
necting the physical parameters of the optical system
with the key parameters of the signal:
v? w

E,; = —7-; . (4)
An alternative form of Eq. (4) is that L2/\D,, = WT,
this relationship is also valid for stationary spatial
signals and connects the dimensions of the Fresnel
transform system to the time-bandwidth product of
the signal. Both forms of Eq. (4) state that the system
is just capable of processing the information when D =
D,; if the distance between planes P; and P, is less
than D, the system has excess capacity, whereas if the
distance is greater than D, the system has insufficient
capacity.

Next, consider the system response to an impulse
function. A true impulse function will produce a cy-
lindrical wave propagating into free space at all angles.
But since the input signal is bandlimited, the shortest
pulse that the system can support will generate rays
confined to the range of angles |6] < 8,,. The marginal
rays for such an impulse function that has just entered
the Bragg cell are shown by dotted lines in Fig. 2.
Since the instantaneous frequency at plane P, is pro-
portional to the slope of the cylindrical wave, the trans-
mitter produces a chirp function, spanning the fre-
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R P

quency range W, as the impulse moves through the
cell. If D = D,, the photodetector receives light as
soon as the impulse enters the Bragg cell and continues
to receive light until the impulse leaves the Bragg cell;
we conclude that the impulse is spread or dispersed
into a chirp signal of duration T. If the distance
between planes P, and P: exceeds D,, there is no
increase in the time spreading of the impulse. The
maximum distance between planes P, and P- is there-
fore the value that satisfies Eq. (4); this ensures that no
frequencies are missed and provides for maximum
time spreading.

Other scrambling techniques become available if we
place the photodetector in a plane for which D < D,,,.
Figure 2 also shows plane Pa, which is a distance cD,,
from plane P;, where 0 = ¢ = 1. Although theresponse
to a cw signal is not a function of the value of ¢, the
response to an impulse is such that a photodetector
placed at n = 0 does not receive light att = O whenc <1.
From straightforward geometrical considerations, we
find that the chirp now arrives at t; = (1 — ¢)T/2 and
that the chirp duration is T, = ¢T. Therefore, as ¢
ranges from zero to one, the delay in the onset of the
chirp response ranges from T/2 to zero. The instanta-
neous frequency always spans the range W so that the
channel bandwidth is not affected by which Fresnel
plane is selected. What does change is the chirp rate;
it now becomes W/T, = W/cT. As we shall see later,
this increase in chirp rate is exactly that required to
make the receiver operate properly.

Suppose that the point of observation is now
changed to some position 5 # 0 in plane P;. The time-
of-arrival t4 of the chirp response to an impulse occur-
ring at t = 0 is now given by

ty=ty+9/v=(1-=e)T/2+ n/v, (5}

so that it is possible to obtain additional time delays
through a choice of n. If 7 is too large, however, the
photodetector will miss some of the light from cw
signals. The constraint on 5 is that

Inl = (1 —c)L/2, (6)

so that the range of available time delaysis0 = tg = (1
— ¢)T. Equation (6) defines a cone that intercepts
plane Py at x = £L/2 and whose apex is at n = 0 in plane
P,; the photodetector must be placed within this cone
to satisfy all the constraints.

A third type of envelope function that produces
some interesting results is a short pulse of duration T.
Such a pulse will behave as an impulse function when
Ty <« T and as a cw signal whenever T, approaches or
exceeds T. Consider a pulse whose duration is of the
order of T/8 as shown in Fig. 3 and let the observation
point be at y = 0 in plane P,. Further, suppose that
this pulse contains frequency components at f,, fo, and
f3 such that f; </, <fs. The photodetector receives
energy at time intervals related to the frequency con-
tent of the pulse. If we think of the pulse as a musical
chord, we find that the time difference t, between the
first two notes is given by t,, = (n; = n2)v, where n; — 0o
is the distance between the leading edges of the pulses
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Fig. 3. Geometrical representation of the Fresnel transform of a

multitone short pulse.

in plane F,. By using the basic rules of diffraction
theory, we find that

t, = (0 = n v = () = fIND 1%, N
which, through the use of Eq. (4), can be reduced to
t, =, = [)T/W. (8

Thus, we see that a chord is encoded as a succession of
pure tones, each of duration T,. In the sense of this
analogy, the transmitter arpeggiates the chord. At
any other Fresnel plane for which D < D,,, we have that
t, = {fi — f2)cT/W. Therefore, as c tends toward zero,
the time difference between successive tones also
tends toward zero and the chord appears simulta-
neously at the photodetector. Different time delays
prior to the onset of the first tone can be obtained, as
discussed before, if ¢ < 1 or if the photodetector is
displaced from the optical axes, subject to the con-
straints of Eqgs. (5) and (6).

A signal s(t) may contain impulses, pulses of various
frequencies and durations, and ew compounds. It is
clear from these arguments that the response from a
pulse at frequency f; may occur before that of a previ-
ous pulse of frequency fy, if f; < fo. Similarly, an
impulse that trails a short pulse may produce an out-
put before the photodetector receives light from the
short pulse. As a result, the transmitted signal is
scrambled according to both the time structure and the
temporal frequency structure of s(t).

For some signals the parameters W and T may be
such that Dy, is an inconveniently large distance. In
this case, we can place a lens of focal length F at plane
Py to bring the chosen Fresnel transform plane to a
convenient distance. The developments given above,
as well as those to follow, are stil] valid, provided that
we replace D by DF/(F — D), where D is the distance
from the lens to the Fresnel plane. If the focal length
is chosen so that the Fourier plane has the same spatial
extent as the space plane, the capacity of the optical
system is maximized.'* The maximum distance that
the Fresnel plane can be from the lens and still satisfy
the constraints given is D,, = F/2. Thus, the Fresnel
transform shares, more or less equaily, the characteris-
tics of a space function and its Fourier transform.
Since there is a continuum of Fresnel transform planes

between the space plane and the Fourier plane, we can
choose the one that best suits our purposes.

These discussions, based on ray traces, show how the
basic scrambling phenomena occur. We return to
them in Sec. IV, using a more rigorous diffraction
theory analysis. First, we provide a brief review of
some basic properties of the Fresnel integral used to
evaluate certain Fresnel transforms.

it. Fresnel Transform

The Fresnel transform that we need to evaluate is
given by Eq. (2). Through a change of variables, we
obtain the standard form of the transform which can
be expressed as

gitm) = f fit.n.2) exp[=jir/2):"]dz. (94

where ¢, n, and 2 are real-valued parameters. Here ¢
and 7 represent the temporal and spatial variables of
the transformation, and 2 is a normalized variable of
integration. Based on the discussions in Sec. I, we
want to evaluate g(t,n) for signals such as impulse
functions, short pulses, or cw waveforms. The spatial
limitations imposed by the Bragg cell or by the signal
itself will often allow us to express f(¢,7,2) in the form of
a rectangular function so that the Fresnel transform
reduces to the generalized complex form of the Fresnel
integral:

gltn) = fxzexp[—j(r/mz'"']d:. 1»

3

where z; = a(t,n) and z- = b(¢,n) define the end points
of the rect function. Although the Fresnel integral
cannot be expressed in closed form in terms of elemen-
tary functions, we can summarize some of its features.
We see that the integrand is oscillatory, so that we
expect g(t,n) to be oscillatory for some values of t and .
The integrand oscillates most slowly at z = 0 so that the
integral then has its largest value, provided thatz = 0
lies within the range of integration.

One way to understand the Fresnel integral in a
qualitative sense is through the use of the Cornu spi-
ral.l® The parameters z, and z, represent points on
the Cornu spiral, and 2,2 = 29 — 2, is a measure along
the arc of the spiral. When 2z, = = and z; = —«, the
value of the integral is \/2. If we keep z, fixed and
allow z, to increase, g(t,n) begins to oscillate with grad-
ually increasing amplitudes about a mean of /2. Asz;
passes through zero, g(t,n) decreases rapidly, reaches
its half-amplitude value at z; = 0, and continues to
decay toward zero as z; proceeds toward z,.

This general behavior can be used to explain the
response to the short pulse illustrated in Fig. 3. Con-
sider the ray bundle for the pulse at frequency fo; when
the pulse has just entered the Bragg cell, both z; and z;
have large negative values so that light reaching a
photodetector at n = 0 has a small amplitude. As the
pulse moves through the system, both z, and 2: in-
crease in value, with z;, remaining constant. The
physical meaning of z; and 2, is that they represent the
normalized distance, in plane P;, from the optical axis
to the leading and trailing edges of the pulse. When 2;
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= (0, the leading edge of the pulse causes the photode-
tector response to increase rapidly as the transition
from the geometric shadow region to the fully illumi-
nated region occurs. As the pulse continues to move
through the Bragg cell, the amplitude oscillates as the
internal fringes pass by the photodetector. Whenz; =
0, the amplitude decreases rapidly as the transition
into the shadow region occurs.

The key information regarding the behavior of Fres-
nel integral, then, are the limits of integration since
they characterize the transitions into and out of the
shadow regions. When 2,5 is large, the contributions
to the Fresnel integral from the pulse edges are nearly
independent and the distance between the half-ampli-
tude points is the same as the pulse width. But if z;,is
small, so that the pulse is very narrow, the contribu-
tions from the two edges interfere; the Fresnel integral
then produces a Fraunhofer pattern at the detector
plane. For z;, smaller still, the Fraunhofer pattern
spreads over larger distances in plane Py; it is this
pattern that produces the chirp response to an impulse
function.

IV. Ditfraction Representation

We now support, by diffraction theory analyses, the
conclusions from Sec. Il based on goemetrical consid-
erations. A detailed picture of how the transmitter
and receiver operate will emerge from this analysis and
additional results will be obtained. We proceed by
using the basic setup shown in Fig. 1; the signal pro-
duced by the Bragg cell f(t,x) and its Fresnel transform
g(t,n) are given by Egs. (1) and (2). As noted before, a
reference function R(n) is added to g(t,n) to facilitate
heterodyne detection. From Fig. 1 we see that the
reference function is provided by a point source in
plane Py that is imaged by a lens at the point n = =5, in
plane P,. We express R(n) as the Fresnel integral of a
wave front crossing plane P;:

R(n) =I r(x) exp[j(r/\D)x?

X exp(j2xxn /AD) exp{—j(x/\D)(x — n)*]dx,  (11)

where r(x) is the aperture weighting function for the
reference beam, the first exponential is the equivalent
lens function at plane P;, and the second exponential
represents the tilt necessary to focus the light at n =
-1 in plane P,. We add R(7) to g(t,n) to obtain the
intensity at plane P:

ltt;m) = \Rin) + glt.n)]?
= |Rin)* + g(t.n)|? + 2ReJR* (n)g(t.m)). (12)

The output voltage from the photodetector can be
obtained by integrating I(t,n) over the photodetector
surface:

ot = j It.mdr. (13)
When we substitute Eq. (12) into Eq. (13), we obtain
three signals which we denote by v;(t), va(t), and v3(t).
The first signal is a constant so that its tempora) fre-
quency is concentrated at f = 0. The second signal has
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temporal bandwidth W, centered at f = 0. The third
signal has bandwidth W, is centered at f., and can be
separated from the first two by a bandpass filter. The
desired signal is then

raft) = [ Re(n)glt,ndn + c.c (14)

We evaluate one term of Eq. (14) and take the real part
of the result at the end of the analysis. We substitute
Egs. (2) and (11) into Eq. (14) to find that

ux(!)’-‘f f j rr(x)f(t,y) expl=)2xxn /AD)

X exp|=j(x/\)x?)
X expy(n/MN[(x = 0)° = (v = 7 |idxdydn.  (15)

We integrate first on 5, noting that the factors in n2
cancel; the n-dependent terms vield

jc exp|—j(27/A\D)(x = y)n]ldn = é(x ~ ¥). (16)

We use the sifting property of the delta function to find
that the output of the transmitter is

uglt) = J r*(x)f(t,x) expl—,;27zxn./AD) expl~jir/AD)x*|dx. (17)

Let us now consider the structure of the receiver.
The receiver must first convert the temporal signal
v3(t) to a time-space representation through the use of
a Bragg cell. The receiver must then produce an in-
verse Fresnel transform of the diffracted light so that
s(t) can be recovered from the output of a photodetec-
tor by heterodyne detection. We conclude that the
receiver must be a conjugated form of the transmitter.
For example, since the transmitter produces a cylin-
drically diverging wave front from an impulse, the
receiver must produce a cylindrically converging wave
front to reproduce the impulse. This concept is the
temporal equivalent of the spatial concepts used in
holography to create and reconstruct wave fronts from
2-D or 3-D objects.1?

The receiver geometry is therefore the same as that
shown in Fig. 1, except that the received signal enters
from the opposite of the Bragg cell. The acoustic
signal propagates with a negative velocity component
relative to that of the illumination so that the diffract-
ed beam is upshifted. We again apply the Fresnel
transform relationship to find that the light distribu-
tion at plane P; is

hit,t) = J

b (t = T/2 4+ v/v) exp(—j2raby/N)

X expl=j(z/ADI(> = &d, 18)

where ¥ and £ are now the coordinates of planes P, and
P,, and b(y) is the aperture weighting function for the
receiver.

As in the transmitter, we add a reference beam R(§)
to h(t,t) at —¢., square-law detect the sum, filter out
the baseband terms v4(t) and v(t), and integrate the
cross product term over the photodetector surface:

tett) = [ Re(s (e, 6rde. (1%
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We now use Eqgs. (1), (2), (14), and (18) to find that

et = [ [ f [ a* (x)BGIRMR* ()slt = T = /v + y/e)
X exp[j2xfy(x = v}/A)
X expli(x/AD)(x — 9 ~ (v — §)*}idxdvdndt. (20)

We first integrate on n and find that
I R(n) explj(=/AD)x = n)%]dn = r(x) exp(j2rxn/\D)
X expljtx/AD)x?] (21)

by virtue of the relationship given in Eq. (11). A
similar result applies to the integration on ;. We
combine Eq. (21) with Eq. (20) to obtain

o[ [

X exp[j2rfg(x = v¥/A] expli(22/AD)(xn, = ¥¢,)]
X expli(#/AD)(x? ~ y*)]dxdy. (22)

a* ()b Wstt = T~ x/v + 3 /v)

To match the structure of the transmitter and receiver,
we set 7. = £, so that Eq. {22) reduces to

vglt) = [- J. a*(b)IrxIr (Vs*(t = T — x/v + y/v)

X explj2rf (x — v)/v] expli(x/AD)(x? — y*)}dxdy. (23)

We change variables through a scaling operation and a
rotation of the axes by 45° to arrive at the result that

ve(t) = J st = T = q) expli2nf.q)m(g)dq, (24)

where
mig) = ]’ a*lr + @e/2Jbl(r - q)e/2)

X rl(r + @/2)r*[(r = g)v/2) exp|—j(xv¥/AD)rq]dr. (25)

The aperture functions thus combine to play a dual
role in determining the performance of the system.
On the one hand, a(x) and b(y)} are equivalent to time
windows that determine the signal history resident
within the Bragg cells; r(x) and r(y) may further re-
strict the time interval for which v3(t) and vg(t) are
valid. On the other hand, Eq. (24) shows that the
recovered signal is the convolution of the input signal
and a system impulse response. The impulse response
is proportional to the Fourier transform of the overlap-
ping product of the aperture functions. As such, the
aperture functions determine the frequency response
of the system ana they play the role of bandlimiting
modulation transfer functions. This dual role will be
further illustrated in subsequent paragraphs where we
evaluate Eq. (25) in detail; for the moment, we assume
that m(q) is approximated by an impulse function.
We can then perform the convolution indicated by Eq.
(24) to find that

velt) = s{t = T, (26)

which is, apart from an unavoidable time delay, exactly
the signal that was fed to the transmitter.
In this analysis we have not placed any constraints
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on the distance between planes P, and P, or the posi-
tion of the photodetector in plane P,, other than the
constraints given by Egs. (4) and (6). We have shown,
therefore, that the signal s(t) can be recovered from the
output of thereceiver for any system geometry, provid-
ed that the transmitter and receiver have conjugate
structures. This important result shows that time
delays induced by the transmitter geometry are com-
pensated exactly in the receiver. This feature will
become clearer as we examine the response to some
specific signal waveforms.

A. Impulse Response

We now derive the response of the system to an
impulse. Welet s(t) be an impulse function é(¢) in Eq.
(1) and solve Eq. (17) for the output of the transmitter:

vy(t) = r (vt — L/2)a(ot ~ L/2) exp|—j2%f.(t — T/2)]
X exp[—j(xv?/AD)¢t - T/2)?, Q27

where the aperture function a(vt — L/2) determines
the time interval for which the impulse is in the cell; if
a(x) = 0 for|x| > L/2, the impulse is in the system for 0
<t < T. We see that vs(t) is a chirp function on an
offset frequency, with its amplitude modified by the
aperture functions. 1f the aperture functions are real
valued and slowly varying, the instantaneous frequen-
cy of va(t) is given simply by the time derivative of the
phase:

=1+ @WA\Dut — T/2), (28)

which is valid for all D = D,,. If the Fresnel plane is
Jocated so that D = D,,, we can use Eq. (4) in Eq. (28) to
show that the frequency is /. — W/2 at t = 0 and
increases with time until ¢ = 7', when the frequencyisf,
+ W/2. Thus, the chirp function has bandwidth W,
centered at f.. Since the instantaneous frequency of

- the chirp is a linear function of time, we see that the

aperture functions in Eq. (27) determine the frequency
response of the system. That is, the envelope of the
chirp function is a direct measure of the MTF of the
transmitter.

In Sec. II we argued that the onset of the chirp
response occurs at ¢; and that the chirp response ends
atty = t; + T,. These arguments were predicated on
the concept of a bandlimited impulse function, a func-
tion that has no meaning in geometrical representa-
tions of signals. We now show that those concepts are
consistent with diffraction theory. WeletD =¢D,,, s0
that Eq. (28) becomes

f=1 +(WicT)t = T/2). (29)

Suppose that the chirp response starts at some arbi-
trary time t; to produce frequency f; and ends at t, to
produce frequency fo. We substitute these values into
Eq. (29) to find that

fo= 1= (W/eTIT,, (30

and, since f; — f; must equal to W, we find that T, must
beequaltocT. Conversely, if weset (fo+/1)/2 = f., we
find that t; = (1 — ¢)T/2. Thus, the output of the
transmitter has bandwidth W and a center frequency
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f. for anyv system geometry. These results confirm
those developed in Sec. I1.

Additional time delays can be obtained if the refer-
ence beam is directed to other points in the Fresnel
plane. Inthiscase, Eq. (17) has aslightly altered form,
but it is easy to show that the spectral content of va(t) is
not affected by the change in geometry. A key result,
then, is that we can alter the impulse response in terms
of time delavs or chirp durations, without increasing
the necessary channel bandwidth.

We now feed v3(t) to the receiver and show how the
chirp function is converted to a bandlimited impulse.
We can either substitute va(t), as given by Eq. (27), into
Eg. (19) by way of Eq. (18), or we can set s(t) equal to a

delta function in Eq. (23); in either case, we remove the

baseband signals v4(t) and v;(t) with a filter to obtain
velt) = explj2sf (t — T)] explitzv2/AD)t = TV7]
X j‘ bir*la* (vt + 3y = Lir(et + y = L)

(31)
X explj(2rve/AD)t — T))dy.

The integral is the Fourier transform of the product of
four aperture functions, similar to that for m(g) from
Eq. (25). Suppose, for sake of convenience, that all
aperture functions are rectangular functions. We
combine the functions so that the integral becomes

L2
] expl/(2ryt/ADNt = Th]dy = t expl— j(zv*/ADMt — TH¥]

L=yt
X sinc[(/AD)e(t — T];
0=t=T. (32)

If the aperture functions are not uniform, we conclude
that the impulse response is broadened somewhat, but
its basic nature is not significantly changed. We use
Eq. (4) in Eq. (32) and combine Eq. (32) with the
remaining terms of Eq. (31). The real part of the
result is

velt) = t sinc[(W/T)t(t = T)] cos|2xf (1 = Ti}: 0=t=T (33

This result shows that vg(t) consists of a carrier fre-
quency f., modulated by a curious form of a sinc func-
tion envelope. The argument of the sinc function is
quadratic in time and its amplitude is linearly propor-
tional to time. The time interval between successive
nulls is small when t = 0, increases to a maximum value
when t = T/2, and becomes small again when t = T.
The first zeros of the sinc function occur at time inter-
vals of 1/W before and after the central value; this
satisfies our notion that a bandlimited impulse re-
sponse must be reconstructed at the output of the
receiver.

The interesting result given in Eq. (33) tends to
disguise the spatial/temporal evolution of the receiver
response. When v4(t) first enters the receiver, light is
diffracted from only a small signal packet near x = L/2,
which is the position of the transducer in the receiver.
The resultant sinc function is spread over a large re-
gion in plane P3, but since the instantaneous frequency
of this packet is f. — W/2, the centroid of the sinc
function is directed toward less negative values of ¢&.
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This light is therefore far away from the reference
beam position and its amplitude is small because the
packet length, proportional to vt, is small. As time
increases, the packet size increases, and the scale of the
sinc function contracts as its centroid moves at velocity
v through plane P,.

We see, then, that a well-formed spatial sinc func-
tion is always produced by va(t). As time increases,
the scale of the function decreases so that, when v3(t)
fills the Bragg cell, the most compact spatial sinc func-
tion travels past the fixed reference spot R(§). The
time convolution of the moving diffraction pattern and
the fixed reference beam produces Eq. (33). The rea-
son for the quadratic argument of the sinc function
now becomes clear: the factor (¢t — T) provides infor-
mation about the distance from the centroid to the
reference beam, while the factor t provides informa-
tion about the spread of the sinc function as well as its
magnitude. As the chirp function leaves the Bragg
cel], the sinc function vanishes in a fashion opposite to
that in which it evolved.

In Fig. 4 we plot the envelope of vg(t), as given by Eq.
(33), for the cases where T'= 10 usec and W = 50 MHz
(WT = 500), and where T = 10 usec and W = 100 MHz
(WT = 1000). Note that the envelope has significant
amplitude only near ¢t = T and its shape is essentially
the same as that for a sinc function whose argument is
linearin time. The result for WT = 1000 is shown as a
solid line; we see that the first zero occurs a time 1/W
before the central value. The result for WT = 500 is
shown as a dashed line; the central lobe is broader by a
factor of 2, as expected, because the frequency content
for the lower time-bandwidth product signal is less.
The sinc functions shown in Fig. 4 also specify the
required reference beam spot sizes; the conversion
from time to space is obtained by using the acoustic
velocity.

The scale of the impulse response derived here gives
the performance of the system for all geometries, a
result that seems strange at first. Suppose that the
distance from the imput plane to the Fresnel plane
decreases in the transmitter. The chirp duration then
decreases to ¢T and, since the bandwidth is constant,
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Fig. 4.

Impulse response of a transmitter/receiver system for two
different time-bandwidth products.
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we find that the chirp rate must increase to W/cT. In
the receiver, this function produces a traveling focused
spot that has its maximum amplitude at a distance
corresponding to a focal length of ¢D,. Thus, the
[/No. of the chirp is independent of the geometry, as is
the size of the reconstructed impulse; these results are
a direct consequence of the bandlimited nature of the
system. A further conclusion is that the required ref-
erence beam spot size is determined solely by the
bandwidth of the signal. Asshown in Fig. 1, the refer-
ence beam can be focused at any plane P3 for which D <
D,,, provided that the imaging condition between
planes P, and P;are satisfied. Inthelimitasc—=0,the
reference beam will be focused at plane P, and the
transmitter output will be a time delayed version of
s(t), without any time spreading. Thus, even though
the chirp rate may become very high as ¢ — 0, a fixed
reference spot size will always resolve the information
content of s(t).

B. Short Pulse

We now examine the response of the transmittertoa
short pulse of frequency f; and duration Ty, where 1/W
« To < T. It is convenient to denote the frequency
associated with this tone burst by f, = f, — /. and to
confine f, so that|f,| = W/2. We represent the signal
within the Bragg cell of the transmitter as

Jle.x) = a(x) rect{(x — vt + L/2 + vT /v Ty) expl—j2xfgx/))
X exp|=j2#(f, + f )t = T/2 = x/v}], (34)

where the rect function controls the duration of the
tone burst. We substitute Eq. (34) into Eq. (17) and
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perform the algebraic manipulations needed to obtain
the standard form of the Fresnel integral:

ealt) = expl=y2x(f + [ Wt = T)]
X ]' a(\AD72 2 + [ L/W)r*(VAD/2 z + f,LIW)

X rect[(VAD72 z + f,L/W = vt + L/2 + vTo) /v Ty)
X exp|=j{z/2)2*dz. (35)

We shall numerically compute Eq. (35) later and quan-
tify the constraint on Ty. For the moment we can say
that the Fresnel transform has value only in the vicini-
ty of z = 0, provided that T is not too small and that the
aperture functions are slowly varying; Eq. (35) then
becomes

Uylt) = a(f L/WIr(f L/W) exp|=j2=(f. + [}t = TN}, (36}

where the aperture functions are evaluated at the mid-
point of the short pulse. The time interval for which
v3(t) has value is derived from the argument of the rect
function in Eq. (35):

fiLIW—uvt = L/2+0Ty= 20Ty/2. (37)

The time at which the leading edge of the output
arrives is determined by using the positive sign on the
right-hand side of Eq. (37):

t,=T/2+[TIW, 38)

which reveals the relationship between the time of
arrival and the frequency content of a short puilse.
When f; = W/2, light is diffracted at maximum nega-
tive angle relative to 65 and the leading edge arrives

N
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b

Fig. 5. Transmitter and receiver geometry for a multitone short pulse.
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Similarly, the

with the maximum possible delay.
pulse arrives at t = 0 when [, = —W/2. The trailing
edge of the response always occurs an interval T later
than the arrival of the leading edge. As suggested by
Eq. (36), the aperture functions behave as modulation

transfer functions. For example, the values of the
aperture functions are a(L/2) and r*(L/2) when f, =
W/2. These values are consistent with the fact that
the response to a short pulse with this frequency occurs
whent = T.

It is apparent, then, that the transmitter response is
a function of the duration and frequency of the short
pulse. Further, if the pulse contains several frequen-
cies, the output consists of a sequence of responses
spaced in time according to the difference between
adjacent frequencies. The time difference between f,
and f; is, from Eq. (38), simply (f; — f,)T/W, which
confirms Eq. (8). InFig. 5 weillustrate how the multi-
ple tones are generated and reconstructed with the
appropriate transmitter and receiver configuration.
In the transmitter section, a short pulse with frequen-
cies f), f2, and f3 is just about to leave the Bragg cell.
The photodetector in plane P, has, therefore, just fin-
ished forming vs(t) for this pulse. When the part of
v3(t) due to f, enters the receiver, light is directed
toward the positive values of {£. Assuccessive frequen-
cy components of v3(t) enter the receiver, their Fresnel
transforms combine as they move toward the photode-
tector. Asdepicted in Fig. 5, the pulses in the receiver
are positioned so that the original multitone signal is
well formed, both spatially and temporally, at plane
P;. In this fashion, all the components of the arpeg-
giated chord join to reconstruct the chord as the output
signal ve(t). We note in passing that the arpeggiating
rate is the same as the chirp rate for any given geome-
try; this is consistent with the idea that an impulse
function, which is the limiting form of a short pulse,
contains all frequencies and the arpeggio becomes a
glissando.

To more fully explore the system response to short
pulses, we wrote a program to compute Eq.(35) for
pulses having a normalized width k = To/T = Ly/L.
For convenience, we removed the time dependence
and normalized the coordinate in the Fresnel plane so
that p = 2n/L. In Fig. 6 we show the magnitude of the
response as a function of p for various values of k. If
the pulse is fairly wide, the diffraction pattern resem-
bles the pulse itself, except for some internal fringes.
The width of the diffracted pulse, taken as the distance
between the half-amplitude response points, is essen-
tially unchanged. Thus, we can say that the Fresnel
transform of a long pulse is, aside from the internal
fringes, similar to the pulse itself. In all cases, the
Fresnel pattern is symmetrical about p = 0.

When k = 0.01, we find that the Fresnel transform
has a smaller central magnitude and begins to take on
the form of a sinc function. In Fig. 7 we show the
Fresnel transforms for shorter pulses, and we see that
they more accurately represent the far-field patterns
of pulses as the pulse duration decreases. The central
lobe of the pattern just covers the region|p| = 1 when k
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Fig. 7. Fresnel transforms of pulses with normalized widths rang-
ing from 0.001 < k < 0.01 in steps of 0.001.

= 0.001. Since these results were computed for a

system having a time-bandwidth product of 2000, we
find that a pulse containing just two resolution ele-
ments spreads light over a region |} = L/2 in the
Fresnel plane.

In Fig. 8 we plot the value of p at which the response
to a pulse has its half-amplitude value. As expected, o
= k for the longer pulses and, in the absence of diffrac-
tion, the nearly straight line relationship would extend
to the origin. For small values of k, however, we find
that p « 1/k. Thetransition between these two regions
occurs at kg = 0.025 when WT = 2000 and represents
the transition from Fresnel diffraction to Fraunhofer
diffraction. From the computer solutions we obtain
the general relationship that

1.58
VZTW
at the transition point. We use Eq. (4) in Eq. (39) to
find that the transition from Fresnel to Fraunhofer
diffraction occurs when Lo = 1/1.25\D,,, which is close

to the approximation usually stated in optics texts.
We claimed earlier that Eq. (36) is a valid approxi-

ko = (39)
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Fig. 9. Configuration for permutation of time samples.

mation to Eq. (35) provided that Ty is not too small.
We can use the results from Figs. 6-8 to gain further
insight to this qualitative claim. When T > kT, the
effect of diffraction from one edge of the pulse is nearly
independent, at plane P, from that of the other edge.
When T, < kT, the diffraction from the edges com-
bines to produce the far-field patterns. Stated anoth-
er way, when T < kT, the argument of the Fresnel
integral of Eq. (35) is not slowly varying with respect to
the kernel so that the integral cannot be evaluated
through the principle of stationary phase simply by
settingz = 0.

We are now in a position to show how to implement,
for certain signal formats, the time sample permuta-
tion method described by Wyner.> Suppose that an
analog signal is sampled at time intervals of T” seconds
by a gating function to produce a frame of N samples
that are T, seconds in duration, where T satisfies the
criterion for a short pulse. Each of the N samples is
multiplied by cos[2x(f, + f;)t] where ; is a frequency
drawn from a set of N frequencies in the band +W/2.
We have thus converted the analog signal to a pulse
amplitude modulated signal; the associated frequen-
cies f; will determine how the time permutation
evolves.

. . oy
e - _.- - L]

R

Suppose that the Bragg cell contains N samples of
the signal as shown in Fig. 9. Again, we appeal to the
geometric representation used in Sec. II to illustrate
the idea. We let N = 8 and show the situation at the
point in time when the first frame of information has
entered the Bragg cell. Each time sample has an asso-
ciated frequency which we now denote as mf,, |m| = N.
For example, the fifth sample (n = 5) has an associated
frequency —3f, which is just sufficient to move this
time sample to the second time slot in plane P;. Sam-
ple n = 3 in plane P; has an associated frequency +2f
which moves it to the fifth time slot in plane P;. Since
the sample positions in plane P are a permutation of
the sample positions in plane P, there are N! ways in
which the frame of N samples can be transmitted.

Asshown in Fig. 9, the photodetector placed at n = 0
is just ready to receive light from the frame of data. As
the data flow through the Bragg cell in a continuous
fashion, the samples are permuted in time. The sam-
ples from the next frame are frequency encoded, ap-
propriate to the new permutation, while the previous
frame is being transmitted. The Bragg cell must be
2N samples long to accommodate the maximum time
delay required when the first sample in a frame must
be moved to the end of the frame. As shown, the
frequencies have been chosen to perform a particular
permutation called a perfect shuffle.’® When the con-
jugate receiver is used, we perform the inverse permu-
tation or unshuffle automatically to reconstruct the
proper sample sequence.

C. Continuous-Wave Signal

When the input signal is a cw signal represented by f,
= f; = f., the rect function in Eq. (35) is valid for all
time and can be removed from the integrand. We then
have that

alt) = exp[—j2=(f, + [}t = T} j- a(\\D72 2 + fL/W)

xr(0D72 : + IIL/W) exp|—j(z/212°]dz. (40)

From Eq. (40) we conclude that the integral gives the
modulation transfer function of the system. When
the aperture functions are slowly varying, the integral
has significant value only when 2 = 0, and the MTF can
be approximated by a(f;,L/W)r*(f,L/W).

This result suggests that frequency excision can be
performed for a cw frequency by stopping a region of
either the signa) or reference aperture function. Since
there is a one-to-one correspondence of spatial posi-
tions to spatial frequencies, a stop at x = f,L/W in the
reference beam aperture will create a notch to excise
the frequency f, even though the system does not con-
tain a frequency plane. Frequencies cannot be excised
as cleanly, however, as when a stop is placed in a
Fourier plane, because the Fresnel integral in En. (40)
can be evaluated at z = O only if the integrands are
slowly varying. As the stop becomes very narrow, this
stationary phase approximation does not describe the
physical situation accurately. If L,> kuL, the spectral
notch is reasonably well formed. But as Lo — 0, the
notch actually broadens and the performance of the
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excisor degrades. A stop produces a result similar to
that of a short pulse; we can represent a stop at fre-
quency f, as

rax) = rx) = rif L/W) rectftx — /,L/W)/L"l. (41)

where L, is the width of the notch. As shown by
numerical computation, the second term in Eq. (41)
produces a response similar to that shown in Fig. 6.
Since kg = 0.025 at the transition region for a system
with a time-bandwidth product of 2000, this method
for frequency excision can be used only if we wish to
remove at Jeast 2.5% of the total frequency band. Fin-
er frequency excision can be made by placing r;(x) in
the front focal plane of the lens that creates the refer-
ence beam (see Fig. 1). In this case, any one of WT
frequencies can be cleanly excised, because the stop is
placed in the equivalent Fourier transform plane of the
system.

D. Alternative Methods for Time Delays

In Sec. 11 we showed that time delays can be
achieved when the Fresnel plane is located at D < cD,,.
Additional delays can be achieved by changing the
point at which the Fresnel transform is detected. One
possibility, then, for secrambling the datais to provide a
broad reference beam at the Fresnel plane and touse a
sequence of discrete photodetectors to provide the
time delays. If these photodetector positions are a
distance my,no, ... ,n; away from the point n = 5, the
time delay is

t,=(1-cT/2+ /v (42)

The advantage of this approach is that the channel
bandwidth remains fixed for any selected photodetec-
tor. The disadvantages are that the reference beam
power is not used efficiently, a large number of photo-
detectors are required, and the minimum time delay
increment is determined by the finite size and spacings
of the photodetector elements.

As we showed in Sec. IV.A, the focused reference
beam provides the required sampling of the Fresnel
transform so that a large area photodetector can be
used. We can take advantage of this fact by switching
the reference beam to various positions 5, to obtain the
time delays. Alternatively, we can keep the reference
beam fixed and cause the Fresnel transform to switch
to different positions. Any relative displacement of
the Fresnel transform with respect to the reference
beam position will do.

If the angular displacement of either the Fresnel
transform or the reference beam is achieved by means
of a Bragg cell, however, the required channel band-
width will increase. Suppose, for example, that the
input signal is of the form m(t) cos{2x(f. + fn)t], where
m(t) is a baseband signal and f, is randomly selected
from the frequency range |f;| = W,/2. From Fig. 1 we
see that the effect of introducing the frequency hop is
to deflect the entire diffraction pattern of m(t) by an
angle %8, about the Bragg angle 65, according to
whether [, is greater than or less than zero. We do not
give the detailed analysis of this alternative method to
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achieve time delays here, but it is apparent from Eq.
(36) that, if no further steps are 1aken, the channe]
bandwidths must be equal to W + ¥}, centered at £,
However, if we also modulate the ref>rence beam with
cos(2nfut), we find that a channe} barrdwidth of W wil]
accommodate the transmitted sign:! without losing
the random delay feature. The reference beam can be
modulated without changing its positi. nin plane Py by
using an acoustooptic modulator in pl: ne P of Fig. 1.
At the receiver, the signal v;(t) is deiopped by the
same frequency [, to remove the effec's of the time
delays, and the reference beam is shiftc:! by f). so that
the output of the receiver vg(t) always h.:s bandwidth
W centered at f..

Although the channe) bandwidth is not . xpanded by
using this technique, we have placed the b rden on the
Bragg cells which must be designed to op rate over a
bandwidth W+ W,. Thetimedelayinthe esponseto
an impulse is now

ty = (1 = )T/2 + (cT/WYf,, 43
with the side constraint that
Iy = (1= c)W/2c, (44)

We note that f), is not constrained by geometric consid-
erations; rather, it is limited by the degree to w 1ich we
are willing to expand the signal Bragg cell ban. width.
Suppose that W, = hW so that the bandwidth - xpan-
sionisafactor1 + h. Wethen find thatc = 1/(. + 2h)
so that the range of time delaysis 0 = ¢, = 2h. /(1 +
2h). Time delays play a significant role in preve 1ting
the fine detail from being reconstructed in the p oper
position unless the hopping code is known. A -ime
delay range of 7/3 would probably be adequate: this
implies that h = 1/4 so that the Bragg cells would ) 2ed
25% more bandwidth to handle the hop frequencic ;.

V. Simulations

We illustrate some of the scrambling techniqu =s
described so far by their effects on images. Sin e
images are often transmitted in a raster scanned fc -
mat, the random time delay features can be readi. -
visualized and simulated. We wrote a program t
compute the spatial version of Eq. (2) for each scannet
line of the image; the results were then displayed on «
video monitor. Since the transmitter output is rea:
valued, we added a bias term to the output to avoid
distortion due to rectification of the negative values.

In the first example, we illustrate the Fresnel trans-
forms for rectangular pulses that vary in width from
128 pixels at the top of 2 pixels at the bottom [see Fig.
10(a)). The ends of the pulses form a staircase pattern
and the Fresnel transform for each scan line is comput-
ed in the horizontal direction only. Figure 10(b)
shows the Fresnel transform; these patterns differ
somewhat from those we normally observe because
here we display the biased magnitude, not the more
familiar intensity, of the Fresnel transform. The
width of the Fresnel transform is equal to that of the
pulse, when the pulse width is large, as seen near the
top of Fig. 10{b); evidence of internal fringes is lacking
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due to the exposure required to capture the response
from the shorter pulses. When the pulse width be-
comes very small, as near the bottom of Fig. 10(a), the
Fresnel transform broadens into the far-field pattern
as shown in Fig. 10(b); the peak amplitude also de-
creases as the sinc function becomes broader. These
results parallel those shown in Figs. 6-8.

Figure 11(a) shows a scene that has regions of high
contrast. low contrast, fine detail, and coarse detail.
The Fresne! transform of this scene is shown in Fig.
11(b). Note that the fine detail associated with verti-
cal edges is spread over a large region in the horizontal
direction. The clearest examples of this spreading are
in the upper left-hand corner and in the left central
part of the scene. Detail in the parking lots is scram-
bled; the two rows of vehicles in the central part of the
scene are nearly blended together in the transformed
output. Long horizontal lines are not, of course, al-
tered appreciably in the vertical direction because the
Fresnel transform is 1-D in this case.

Figure 11(c) shows the Fresnel transform for the
same scene but with a random time delay imparted to
each scan line which simulates a random frequency
hop of the signal. The delays were selected from the
uniformly distributed 16-pixel interval at the nominal
start of scan. The contribution to the scrambling from
the time delays is not a large as initially expected,
because the random delays produce a result which,
viewed macroscopically, is similar to a low pass filter-
ing operation. Since the Fresnel] transform is also a
low pass operation (see Fig. 10), the time delays do not
seem to add significantly to the scrambling. They do,
however, play a significant role in reconstructing the
original signal at the output of the receiver. From Sec.
IV.D, we find that this range of delays requires 7%
more bandwidth from the Bragg cells but no additional
channel bandwidth.

The scene is now reasonably well scrambled except
for the lowest possible frequencies. These can be fur-
ther scrambled by randomly altering the polarity of
the Fresnel transform on each scan line as shown in
Fig. 11(d). In this example we simply multiplied the
Fresnel transform for each scan line by 1 before
adding the biaslevel. As aresult, the effects of polari-
ty reversals are most evident in the bright regions of
the scene. A more effective scheme would be to
change the polarity about the mean value of the entire
scene. The random polarity is relatively more useful
than the random time delays in this example.

These examples do not illustrate all the phenomena
or exhaust the possible variations on the scrambling
techniques available. For example, because we have
computed the Fresnel transform of spatial signals, the
temporal frequency characteristics of the transmitted
signal are not evident. Nor do they illustrate the
interesting frequency-dependent time-of-arrival ef-
fects for tone bursts or muititone short pulses. We
must also keep in mind that the results shown in Fig. 11
could be obtained from the transmitted signal because
we did not introduce or scramble the sync pulses neces-
sary to define the start of scan. These pulses would
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normally be scrambled so that the image would be
more difficuit to reconstruct.

So far we hgve described scrambling techniques in
which we have generally preserved the channel band-
width. If we wjshtoimplement the random time delay
technique, however, we must have sufficient time be-
tween raster scan lines to accommodate the desired
range of delays. If this time interval is not available,
the channel bandwidth must be increased. As noted
before, a modest increase in channel bandwidth may
be an acceptable frade-off relative to the large increase
required when dszitizing and encoding the wideband
signal. We now b riefly consider generalizations of the
scrambling techni.jue that do not preserve bandwidth.

As can be seen from Fig. 1, we have the option of (1)
using a signal r;(t) 10 modulate the reference source at
plane P, in time only, (2) using a signal ro(t,x) to
modulate the reference beam at plane P, in space and
time, or (3) using & signal ra(t) to phase or frequency
modulate the inputsignal. We can also, of course, use
combinations of thes2 modulation schemes.

Consider, for exam.ple, a modulating signal r(t) that
has constant amplitude but a slowly varving frequen-
cy. Its effect on the output of the transmitter, when
the input is an impulse function, is to produce a chirp
function that is aberra: »d in the sense that its temporal
frequency is not a linegr function of time. Without
compensation, this sign il cannot be compressed in the
receiver to provide good resolution. If, however, the
signal r;*(t) is applied tc the received signal, the conju-
gate of the aberration is provided so that the original
signal can be recovered. By combining the types of
modulation cited, severaj énteresting effecs can be pro-
duced. We shall defer a discussion of them to a subse-
quent paper.

VL. Summary and Conclusions

The Fresnel transform, not frequently used in signal
processing, has some interesiing and useful properties
when applied to Bragg cell processors for purposes of
signal scrambling. We have derived the optimum op-
tical geometry, given the key ;-arameters of a wideband
time signal. We showed that a photodetector can be
placed anywhere within a cone defined by the ends of
the Bragg cell and a point on the optical axis located a
distance D, from the Bragg ce!l. A wide range of time
spreading and time delayvs ca:? be obtained thereby,
depending on the position of the photodetector within
the cone.

The time of arrival of the leading edge of a pulse is
dependent on its frequency; muhitone short pulses can
be divided into separate pulses 1-ith most geometries.
For some signals it may be useful to time permute a
sequence of sample pulses by con: -olling the frequency
of the pulse. As an example, a srquence of N pulses
with different amplitudes can be rearranged in any
order by using a Bragg cell whose iength is equivalent
to 2N pulses. A perfect shuffle o the N pulses can
thus be performed, as can exchanyeand bypass func-
tions. Thus, there may also be soine useful applica-




tions of Fresnel transforms in optical numeric comput-
ing.

Simulations illustrate some of the basic concepts for
scrambling analog signals in a raster format. If we
allow for some bandwidth expansion of the transmis-
sion channel, a much broader range of scrambling op-
erations becomes available by virtue of modulating the
reference source in time or space or both.
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programming for the Fresnel transforms, R. H. Cofer
and J. H. Reece for help with the simulations, and A.
M. Bardos for helpful comments and criticism.
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Ny Abstract !
The Fresnel transform provides a means to implement circuit switching networks by using optical
5! techniques. Since photons can cross paths without interaction, non-blocking configurations are easy to .
s achieve. Furthermore, any arbitrary interconnections between two N-port systems can be configured; the o

network can be rapidly reconfigured as needed due to the dynamic nature of acousto-optic cells.
w4 Introduction 3
. i
' Fresnel transforms have some useful spatial/temporal properties when used in conjunction with 4
acousto-optic cells., A Fresnel transform having a low dispersion coefficient, as determined by the a
N propagation distance D, will closely resemble the signal. As the dispersion coefficient increases, the "
", Fresnel transform begins to sort the information according to its spatial position, corresponding to the ’
- time coordinate, and according to its angular spread, corresponding to its frequency content. For a very :
large dispersion coefficient, the Fresnel transform is equivalent to the Fourier transform; it thern most ;
- accurately represents the frequency content of the signal. Betweer. the space and the Fourier dcmains, -
! : then, there exists a continuum of Fresnel transform planes that have a mixture of the dominant properties B
i? of the time and frequency planes.
’ These properties of Fresnel transforms have been applied to scrambling analog signals.! Analyses of
the Fresnel transforms of CW, impulse, and short pulse sigrnals were developed in terms of spatial/tempora. X
- content. Some scrambling schemes were then introduced, including one in which the time samples are 3
-:. permuted. It is the permulation idea that suggested the application of Fresnel transforms to optical N
- computing. .
In this paper we review the basic results from Reference 1, We then consider some ways that this *
e scheme can be used for interconnection schemes in computers.? The Fresnel transform provides for both )
[ local and global interconnects on a dynamic basis, as we shall see,
The Fresnel Transform
:} Consider a Bragg cell located at plane P, in Figure 1. Suppose that the cell is constructed of a
W material that allows operation in the tangential mode.? As a result, when the applied signal is
< s(t) = cos(2nfst), where f, is the center frequency of the cell, the diffracted light is normal to the exit
face of the cell. As the frequency varies from f,-W/2 to f,*W/2, the light is deflected over the arguiar
range h[:em. At any plane, located a distance D from the Bragg cell, we can represent the Fresnel
. transform of a signal s(t) as .
N~ - <
\
. g{t,n) = fs(t,x) expl~j(a/aD)(x-n)*]ladx, (1) N
. 2w .
where the exponential function represents the free space response to an impulse; x is the spatial =
- coordinate at plane P, and n is the spatial coordinate at the Fresnel transform plane P,. The cell serves .
,g; to convert the temporal signal s(t) into a space/time signal s(x,t) by the relztionship that A
s(x,t) = a(x)s(t-T/2-x/v), (2) N
. N
it where a(x) is an aperture weighting function that includes the truncation points at x = + L/2, v is the
P acoustic velocity, and T = L/v is the fill time cf the cell. A CW drive signal at the minimum frequency
fm = fo- W/2 produces a light wave that propagates as a plane wave at the angle 8np = arcsin{wa2v). The
edge ray of this bundle intercepts the optical axis at a distance Dp:
"
" Dy = Lv/IW. . (3)
fo In a similar fashion, the opposite edge ray from a frequency fqo+ W/2 will also intercept thé'optical
axis a distance Dy from plane P,. 1f the distance betlween planes P, and P, is greater than Dy, the higher
frequencies In the band W cannot be detected at the point n = 0. Since L = vT, we can derive an important
relationship connecting the physical parameters of the optical system with the key parameters of the
. signal:




A («)
ADm

Next, consider the system response to an impulse function. Since the input signal is banclimitec, the
shortest pulse that the system can support will generate rays confined to the range of angles b = 205. The
margirnsl rays for such an impulse function that has just entered the Bragg cell are shown by dotted lines
in Figure 1. If D = Dy, the photodetector receives light as soon as the impulse enters the Bragg cell ang
continues to receives light until the impulse leaves the Bragg cell; we conclude that the impulse 1S spreaa
or dispersed into a chirp signal of duration T. The temporal frequency of the chirp varies linearly in
time from fo - W/2 to fo + W/2. If the distance between planes F, and P, exceeds Dy, there is no increase
in the time spreading of the impulse. The maximum distance between planes P, and P, is therefore the value
that satisfles (4); this ensures that no frequencies are missed and provides for maximur time spreading.

Ak third type of signal envelope is a short pulse of duration T,; such pulses are of greatest interest
to us here. Consider a pulse whose duration is of the order of T/8 as shown in Figure 2, and let the
observation point be at n = 0 in plane P,. Further, suppose that this pulse contains frequency CORpPONLENLS
at f,, r,, and r, such that f,>f,>f,. The photodetector then receives energy at time intervals relatec to
the fregquency content of the pulse. If we think of the pulse as a musical chord, we find that the time
aifference ty, bLetween the first two notes is given by tp «~{n, - 1,)/v, where n, - n, is the distance
betweern the leading edges of the pulses in plane P,. By using the basic rules of diffraction theory, we
find that

t, = (n; = ny)/v = (f, - fz)ADm/Va. (5}

which, tnrough the use of (4), can be reduced to

tn = (£, = £,)T/NW. (e)

Thus, we see that a chord is encoded as a succession of pure tones, each of duration T,. The beravior
of tnese short pulses provide interesting possibilities for optical cormputing.

The discussions so far are based on geometrical optics; we need to consider diffraction effects to
better understand the response in the Fresnel plane. To more fully explore the system response to short
pulses, we wrote a program to compute the Fresnel transform for pulses having a normalized length
k=T /T=L, /L (See Reference 1 for details). For convenience we removed the time dependence and normalized
the coordinate in the Fresnel plane so that p=2n/L. In Figure 3, we show the magnitude of the response &s
a function of p for various values of k. If the pulse is fairly wide, the diffraction pattern resemtles
the pulse itself, except for some internal fringes. The width of the diffracted pulse, taken as the
aistance between the half-amplitude response points, is essentially unchanged, Thus, we can say that the
Fresrel transforn of a long pulse is, aside from the internal fringes, similar to the pulse itself for ali
values of

K 2 1.58 .

/2TW
The number of pulses that can be stored in the cell is, to a first order approximaticn, proportional to 1/k
SO that

(73

< Y0.87W. (6)

N =

1
k

We can therefore store up to 40 such pulses {n the cell if the time-bandwidth product of the cell is
Tw = 2000, and still retain spatial resolution at the Fresnel plane. We may need to reduce this number
somewhat, in some applications, to reduce cross-talk between adjacent pulses.

Application to Computing

We have illustrated the properties of the Fresnel transforms of CW, impulse, and short pulse signals.
We now concentrate on how we might use these properties in optical computing. We first review a methnod for
permJting time samples as an analog scrambling technique.!»* Suppose that an analog signal is sampled at
time intervals of T' seconds by a gating function to produce a frame of N samples that are T, seconds in
duration, where T, satisfies the criterion for a short pulse. Each of the N samples is multiplied Ly
cos[?nrjt], where rJ is a frequency drawn from a set of N frequencies in the band fo2W/2, We have thus
converted the analog signal to a pulse amplitude modulated signal. The associated frequencies rj will
determine how the time permutation evolves,

Suppose that the Bragg cell contains N samples of the signal as shown in Figure &, We let N = 8 ana
show the situation at that point in time when the first frame of information has just entered the Bragg
cell. Eacn time sample has an associated frequency which we now denote as mf,, H S N; these frequencies
are measured from feo- For example, the fifth sample (n = 5) has an associated frequency -3f, which 18 just
sufficient to move this time sample to the second time slot in the Fresnel plane. Sample n = I in tne
Bragg cell has an associated frequency + 2f, which moves it to the fifth time slot in the Fresnel plane.
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Since the sample positions in plane P, are a permutation of the sample positions in the inpul plane, there
are N! ways 11 which the frame of N samples can be transmitted, -

As shown in Figure 4, the photodetector placed at n = 0 is just ready to receive light from the frame
of data. As the data flows through the Bragg cell in a continuous fashion, the samples are permured in
tine. Tne samples from the next frame are [requency encoded, appropriate to the new permutation, wnile the
frevious frame is being transmitted. The data flow is continuous in time, provided that the cell has been
fully loaded and matched in length to the frame length. The Bragg cell must be 2N samples long to
accommodate the time delay required when the first sample in a frame must be moved to the end of the frame,
As shown, the freguencies have been chosen to perform a particular permutation called a perfect shuffle.?®

Shur'fles and exchanges are used extensively in computer architectures for parallel processing,®+*®
such as the FFT, and circuit switching networks,”’»*'* such as concentrators, expanaers, partitioners, and
sorters. We could also view the permutation scheme of Figure 4 as a means for interconnecting one set of
N computers or processors with another set of size¢ N, including some or all of its own members. In tris
fasraon it is possible to implement operations requiring feedback. In the case snown, the first bits from
each data word could be interleaved to produce a serial bit stream that modulates those frequencies
synthesized under the control of the processor that determines the desired interconnection. The
photodetector circuitry then deinterleaves the data and puts the bits ontc the appropriate bus associated
with each processor. The same permutation pattern is retained until all the bits in a8 word or a sequence
of words have been -transmitted.

The interconnection scheme can be changed at any time without interrupting the flow of data into the
Bragg cell. There will be, however, variable gaps between the last bit of a word transmitted with the old
setup to the first bit of a word with the new setup. Another disadvantage of this scheme Is that the
required electronics at the input/output are complicated. The bit rate in the Bragg cell, and therefore
tne bandwidth of the photodetector, is N times the bit rate of the individual processors. Finally, the
light is not as efficiently used as we would like. Clearly, this scheme is more useful as a scrambler than
as a crosshar switch.

We can relieve some of these protlems by adding more sources and photodetectors to introduce more
parallelism. Figure 5 shows a similar Bragg cell configuration, but one with a set of N light sources such
as injection laser diodes which illuminate the Bragg cells via ccllimating lenslets; the cell is alsc only
half as long as the one used for data permutation. We associate each source with one of tne transmitting
processors. Thnese sources may be modulated with data or, in some applicetions, they may simply be operated
in a pulsec¢ mode upon command. We associate each photodetector with one of the receiving processors., If
the subsequent processing is to be all optical in nature, the photodetectors can be replaced by optical
fiters; this ray be an attractive alternative anyway because the detection process car then be physically
performed near the processor electronics.

The basic mdode of operation is that the network controller selects the freguencies necessary to
establish the desired interconnection scheme, Each of the N' interconnections can be set by an N-bit worsd
from the controller. The binary data from the transmitting processors modulate the sources which produce a
very short pulse with high peak power once per bit interval. We see that the frame rate for the Bragg cell
must be equal to the bit rate from the processors.

Tre cystem shown in Figure 5 has several advantages relative to that shown in Figure 4: (1) tne
photocetectors bandwidth is the same as the bit rate for any particular processor instead of N times tnat
rate (altnougch the sources may be on for only a short period of time, the associated pnotogetector
circulitry can be designed to be consistent with the bit time, thus reducing the noise bandwiGth and
imgroving the system performance), (2) the available lighl power can be used more efficiently because there
are N sources and each can be operated at rated average power, (3) there is no need to interleave or
deinterleave the infeormation at the input or output, and (4) there are no gaps in the data flow when tne
interconnection scheme is changed.

An important feature of a switching network is the ability to implement expanders that fanout data
from one processor to several processors. Such systems are more powerful because they can implement more
tran N! interconnections. A basic fanout i3 shown in Figure 6, where we see that transmitting processor T4
is connected to receiving processors R2, RY, and R6; when we fanout, we address two or more frequency
synthesizers at the same time. The connection can be made without interference because optical switches
are non-blocking. To avoid contention at the receiving processors, the number of transmitting processors
must be less than the number of recelving processors and the controller must ensure that no receiving
processor gets concurrent data. If a single transaitter is set to fanout to M receiving processors, the
number of interconnect schemes is

N2[(N-1)1!]2
ML (M=1) 1] (N-M)!

; M>1. (%)

Ouviously, more than one transmitting processor can operate in the fanout mode, provided that contentions
are resdolved,

There are other possible uses for the Fresnel transform. To 1llustrate these, we must first
distinguish between direct and heterodyne detection. 1In direct detection we measure the intensity of the
lignt; the high frequency and phase {nformation is lost in the process. In heterodyne detectioh’ we
measure the amplitude of the light, with the phase informaticn encoded on a high frequency temporal
waveform, Thus, all three tmportant paramelers of the signal are retained.

The advantage of direct detection is system simplicity, and our discussions so far are based on using
this detection scheme. If, for example, we were to us¢ heterodyne detection, we could resolve contention
in the fanout mode of operation. Suppose that data from T2 and T3 1in Figure 6 are required concurrently at
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#8. Since the required frequencies are f, and f, we can retairn the identity of the transmitting processor
by measuring the frequency content of the reccived signal. Such a feature alsc requires, of Course, more
complex detection circuitry. If we use direct detection, the magnitude at RB is the suim Of the inlensities
that are generated by T2 and T3 operating indupendently; we then lose the igentity of the lransmitting
processor.

In some switching applications it may be useful to complete a connection only when several independent
events occur concurrently. 1In this case we could use direct detection and comparators to set the critericn
for interconnection based on magnitude only. Figure 7 shows a case where T3, TG, and T8 (which may
represent one set of parts) activate K5 at some instant in time. If the port opening activity takes place
during a special setup time, several ports may be opened by & combination of frequency selection and laser
source selection as tne signal travels through the cell.

One disadvantage of this scheme 1s that the bit rate, on a per channel basis, is the same as the frame
rate for the Bragg cell., In Table 1 we give the relevant figure for two quite different, yet typical,
dragg cell configurations, The key parameler 1s the frame rate which, in both cases is much too low. The

Farameter Case Case 2
T tus 40us
W 500MHz 50MHz
TW 500 2000
N = /0.Biw 20 40
Frame Rate 1MF/S 25KF /8

Tatle ': Comparison of two Bragg Cells

]

frame rate jmproves as N decreases, but such ccncessions tend to defeat the purpose of tne sWitch. We can
increase the bit rate by introducing rmore channels as shown in Figure 8. Suppose that we let each channel
represent one element of an M-pit word. We can now transmit one M-bit word in a frame period. To do sc
requires an N x M element photodetector array.

Ariother possible way to increase the bit rate is shown in Figure 9. A linear array of N sources (nst
shown) illuminate an %W channel Bragg cell. Tne sphecrical/cylindrical lens creates a Fourler transform in
the vertical direction while maintaining the Fresnel transform in tnhe horizontal direction. The proper set
cof freguencies are applied to the Bragg cell to establish the desired interconrectior. The bit rate is now
determined by how fast the sourles can pe modulated.

compariscn to the Fourier Transform

Frecnel transforms, as applied to short temporal pulses, sort informatior. according LC the angular
diffraction caused by the spatial frequency content of the data. The information can be spatially rescived
if tne propagation distance from the signal to the Fresnel plane is sufficiently large; this distance is
dependent on the pulse lengtn, A Fourier transform also has these properties and, since 1t is the
far-field limiting version of a Fresnel transform, provides the maximum spatial separation of the angular
components of the signal. Hocw, then, do these two transforms compare?

The key difference between these transforms is that the Fresnel transform retains a direct
space-to~time dependence; that is, the time at which data arrives at a detector is & function of both its
frequency and position. It is therefore possible to reorder data in a sequence as we showed in Figure &,
Such an arbitrary permutation cannot be done using the Fourier transform and a single getector.

The interconnection schemes shown in Figure 5 and 6 can be achieved with the Fourier transform except
trnat the frequency encoding scheme is different. Tne applied frequency 1s a function of only the
destination in the Fourier transform mode whereas {t is a function of both the socurce and the aestination
in trhe Fresnel transform mode. It {s nol, therefore, possible to identify the source processors when using
either direct or heterodyne detection. There are, therefore, some similarities and differcnces between the
Fresne) and Fourier transforms, Wwhich is more useful requires more detailed analysis for a given
application.

Fresnel transforms, coupled with the usc of Bregg cells, can implement dynamic interconnection schenes
that may be useful in computer architectures. The fact that they are one-dimensional devices may not pose
a problem since optical fibers can be used to distribute {nformation from the switch pcint to the
destination., Two-dimensional extensions of these schemes are cobvious, with a multi-channel configuration
belng most useful. All poussible permutations can be implemented, avoiding scme of the limitations
associated with repcated use of algorithms such ac the perfect shuffle,

This work was supported by the U. S, Army Kescarch Offace.
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Acoustin spreading in multichannel Bragg cells

A. Vanderlugt, G.S. Moore, and S.S. Mathe

Harris Corporation, Government Systems Sector,
P.O. Box 37, Melbourne, Florida 32901

Abstract

In some applications,the performance of multichannel Bragg cells 1s compromised by the
spreading of the acoustic waves as they propagate; the spreading causes the signals in the
channels to overlap. The overlapping can be significantly reduced by a spatial filter in a
Fourier/image plane; the spatial filter is shown to be equivalent to a cylindrical lens
whose power is a function of the distance from the transducer.

Introduction

In some signal processing applications, multichannel Bragg cells are required to handle
wideband parallel signals. One example is that of processing signals from a phased array
antenna wherein we associate each channel of the Bragg cell with an antenna elemen&. Multi-
channel Bragg cells were developed inthe early 1960's by Lambert and his associates +2, and
cells with as many as 128 channels have been described®. As the channels become more .
densely packed, the transducer heights are reduced causing the acoustic energy to spread over o
larger angles as 1t propagates through the interaction material. The acoustic waves from
adjacent channels therefore overlap after a short propagation distance; if the overlapping
could be compensated so that the diffracted light from each channel is confined to that
channel, a more widely useful multichannel Bragg cell would result. We show how this can be
achieved with a holographic element.

.y

Theory

The model that we use for analyzing the acoustic spreading is the same as that used
before4 and is shown in Figure 1. An electrical signal drives a piezoelectric transducer
having height H and an interaction width W. The transducer launches an acoustic wave within
the Bragg cell which changes the index of refraction; this, in turn, causes the phase of
light from a coherent source to be modulated in space and time. If the drive signal is
an RF signal at frequency fc, the acoustic wavelength is \. = V/fo, where V is the velocity
of sound in the medium.

Bbnbedinie’ o ol atde

The acoustic wavefronts propagate in a fashion similar to optical wavefronts derived
from a line source (H -» 0). If W .- H, we can model the wavefronts as cylindrical sheets
which, for an isotropic medium, spread at an angle ¢ with respect to the x-axis. The
degree to which acoustic spreading occurs is a function of the anisotropy of the medium, the
acoustic wavelength, and the transducer height.

The first step is to calculate the Fourier transform of a single channel Bragg cell
driven as shown in Figure 1. We wish to derive the transform in the y-direction only, while
we image the Bragg cell in the x-direction. We begin by considering the transducer to be an
infinitesimal line source and account for its finite height by multiplying the Fourier
transform by a sinc-function. The Fourier integral to be solved is4

¢.x
Gix,2) = _-]l_xj exp[-12-y /2 x(1-2s)lexp(=j2-7y/A)dy. (1)

_¢"x

where : i1s the angular spatial frequency, s is a parameter that characterizes the degree of
anisotropy as given by the elastic constants,Q' % 1s the wavelength of the acoustic wave
within the medium, and - is the wavelength of light. The region of integration is over a
wedge whose apex is at x = 0 and . is the angle at which the acoustic beam has its first
nulls. The far field value of o»_ 1s

t. = A(1-2s8)/H (2)

In reference 4, we solved (1) in terms of error functions having complex valued arguments.
An equivalent result that is somewhat simpler to derive and provides more physical insight
can be obtained through the use of Fresnel integrals. We let

152 7 SPIE Vol 465 Spatial Light Modulators and Applications (1984

) VUL LR B LPS T L LY

- R S . B - - R
.-t - .
o

R
PRrOSIWRI. W Vo |

- s A

R T R S RN
P NS N W, T P PRI AP S ¥




I a4 e dbal AL S AP SN - I D
AOANARAREAL AR AL ER RS e "".‘

A
.
"Ll
N 5
! .
{ gi
.! f'o'
} c = n/Ax(1~2s)
< (3)
e d = nB/X
' so that hbY
: [ 32
G(x,8) = exp(-j (cy?+2dy)ldy (4) <\
t J X f-@ X “:
I\ o}
. . .
' By completing the square of the exponential and by changing variables, we obtain :;
~
N b :"«‘
G(x,8) = L exp(3jd?/c) sinc(BH/).)J exp(-ju?)du, (5)
-~ vj;\x -
- a LA
- rh
c. _ _ _ _ ] . ] [
5 where a = -9 xvc + d//¢, b = ¢ x»c + d/vc, and sinc(2H/})} is the multiplicative factor

needed to acfount for the finife height of the transducer. The integral is a Fresnel
integral that further modifies the amplitude of G(x,8). Depending on the values of the
limits, this function may be nearly rectangular (similar to the near field diffraction

PN

- pattern of a slit). o
{' If we denote the total amplitude weighting of G(x,8) by £(x,8), we have that -
N ]
: G(x,B) = f(x,B)exp[jnxA(1-25)8*/1%]. (6) ;;
We now concentrate on the phase part ¢f G{x,2). The key point is that the phase factor is
o quadratic in 8 and linear in x. At the transducer, where x = 0, there is no optical power, .
S‘ whereas the optical power is greatest at x = L. If the optical power could be canceled, the >
LY

inverse Fourier transform would confine the light to rectangular channels with no spreading
into adjacent crannels. In principle, the optical power can be compensated by a section of
a conical lens whose power varies linearly from zero, at x = 0, to a value of LA(1-28)/)F?
at x = L. An alternative method is to construct a holographic correcting element from one
channel of the Bragg cell; such an element will then correct the acoustic spreading for all
channels simultaneously in the same fashion as would a matched filter (See Figure 2).

’

N

A

The use of a holographic_element for comensating the acoustic spreading has been

R

reported by Vodovatov, et al’. The derivation given there for the value of G(x,8) does not N

agree with (6), particularly with respect to the phase factor having quadratic dependence A

on £ and linear dependence on x. The result from (6) however, is consistent with the

observation that the channels can be separated by focusing at a different plane using

auxiliary optics. i |
—

Experiments ~

We constructed a holographic element from one channel of a 32-channel Bragg cell. This
cell has a nominal bandwidth Af = 80 MHz at a center frequency fc = 135 MHz. The cell is ’.
fabricated from telurium dioxide material having a longitudinal velocity of 4.2 Km/sec. The
active length of the crystal is L = 6 mm so that the time delay is *l.5usec and the time-
bandwidth product is ~120. The transducers have heights equal to 100 um and they are placed
on 250 um center spacings. The acoustic wavelength at the center frequency is 31 um. The g
light source is a 10 mW He-Ne laser for which * = 632.8 nm. The holographic element was
constructed on a S0-120 glass plate with a reference-to-signal beam ratio of unity near :=0. -

Figure 3 shows the uncorrected and the corrected output when channels are driven at the -
frequency corresponding to A_. Figure 3a shows the degree of acoustic spreading for the o !
uncorrected case. Of the tw&€lve channels available, we drove the top channel to illustrate ~
how rapidly the acoustic energy spreads and the bottom four channels to illustrate how the
beams overlap and add coherently. We see that the beams are well separated only in the
region near the transducer as noted earlier. If we wish to process a significant amount of

.

time history, we find that the beams begin to overlap at a position that is only 10% of the o

available aperture. Figyre 3b show the corrected output; we see that there is very little te
evidence of beam spreading and that the light has been confined to within channel heights as

det2rmined by the transducers. The amount of beam spreading is a function of the drive ..

frequency; it is greatest at the low frequency band edge (due to a large ') and least at the v

high frequency band edge (where )\ is small). l

Summary and Conclusions
We have shown that the effects of acoustic spreading within the Bragg cell can be compen- §¢
S

-
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) sated in the sense that the diffracted light can be more nearly contained within channels as
defined by the transducers. The results show that the best performance, in terms of
correcting for the acoustic spreading is obtained when we use a Bragg cell interaction
medium that has a large value of s. The correction for acoustic spreading can also be
improved by a factor of two if the correction is optimized at the midpoint of the cell.

The use of a holographic corrector plate for the acoustic spreading, as well as a

e broader understanding of the basic diffraction patterns, opens the way for new application

L of multichannel Bragg cells. As the bandwidths of communication and collection systems

1 - ; B

- increase, the need for such devices will expand because they help utilize the full parallel
processing capabilities of optical systems. Multichannel cells may also find application
in matrix/vector and matrix/matrix computing systems. A more complete discussion of this

:: method for compensating for acoustic spreading is given in reference 9.
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Figure 1. Model for Acoustic Spreading Figure 2. Optical System for Constructing "
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