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OPTICAL SIGNAL PROCESSING

1.0 INTRODUCTION

As the bandwidth of signals increase and as the electromagnetic

environment becomes increasingly dense, processing operations such as

convolution, spectrum analysis, correlation, ambiguity function generation

and filtering become computationally intensive operations. Optical systems

have the capability to perform a large number of complex multiplications

and additions per unit time. As the bandwidth increases, the number of

computations increase as the square of the bandwidth because the degrees of

' freedom of the signal is linearly proportional to bandwidth and the

allowable computational time interval is a inversely proportional to

bandwidth. Optical processing provides high-speed, parallel computations

so that digital post-processing techniques can be used for lower-speed,

serial computation.

The research effort described in this report has resulted in several

innovative optical processing techniques for improved performance; it

covers the three-year period from 1 October 1983 to 30 September 1986. The

major accomplishments can be divided into three areas: (1) adaptive optical

processing based on transversal filtering with feedback, (2) reference beam

waveforms for interferometric spectrum analyzers, and (3) Fresnel

transforms for signal scrambling and optical switching. In the following

paragraphs, we summarize the key results in each area; further details can

be found in the referenced journal articles that have been published and

included in the Appendices.

2.0 Adaptive Optical Processing

4" The basic theory for an adaptive optical processor that uses

transversal filtering techniques was developed under Contract No.

DAAG29-80-C-0149 and reported in Reference 1. Under the current contract,

we performed additional analytical and experimental work to gain further

insight into the process and to validate the theory. In this processor the

Bragg cells are arranged in an orthogonal configuration to produce the

cross-product of two optical signals. Bragg cells used for processing

wideband signals are typically used in one of three configurations: (1) the

cells are parallel and the signals propagate in the same direction, (2) the

cells are parallel and the signals counter-propagate with one signal being

7
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time-reversed, or (3) the cells are orthogonally oriented to better use the

two-dimensional processing power of the optical system.

% We studied the generalized case of two Bragg cells crossed at an

arbitrary angle to seek ways to increase the flexibility of the processing

operations. The two main objectives were to find configurations for which

the spatial scaling of the correlation function can be varied and for which

the time compression factor can be controlled. The first objective is

gained by changing the angle between the two cells. For example, when the

angle is 60"degrees, the spatial scale factor is unity so that no

magnification changes are needed when further processing operations are

done. An arbitrary time compression factor can be achieved if the stored

reference signal is clocked at a rate different from that of the received

signal. As a result, signal acquisition can be achieved without the need

to time-reverse one of the signals (a significant advantage), the

correlation function is displayed in space, and the time compression factor

can be made to be unity. More detailed results of this analysis are given

in Reference 2; a reprint is included in Appendix A.

The stability of optical systems using feedback is a critical issue

that must be resolved. The application we studied is adaptive notch

filtering for use in signal excision. To date there have been no published

results showing high performance levels; the problem is that the systems

are very difficult to stablize. We attacked this problem by developing new

analytical models that more accurately account for the analog nature of the

processing operation. We first developed diagnostic tools to measure the ,

state of the system. Since measurements in the closed loop mode perturb

the system response, we probed the system response in the open loop mode;

in effect, we measured the envelope of the impulse response of the system

directly. We also developed a novel diagnostic tool to measure complex
valued frequency response of the system. In most physical systems the

impulse response is, of course, real valued; in optical systems, however,

aberrations can contribute a phase term to the impulse response. From

these measurements, then, we identified and corrected a serious phase

aberration in the impulse response of one of the Bragg cells.

The key analytical tools are new models that more accurately predict

the system transient response as well as the notch depth. We developed

several computer simulations, taking great care to account for anomalies

o. %
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* introduced by discrete sampling, to numerically calculate the optimum

impulse response for a given level of phase or gain margin desired for

system stability. An interesting and important result is that the optimum

* * impulse response under a strong stability constraint is a linear taper from

, t = 0 to t = T, where T is reciprocally related to the required notch

p Ibandwidth. We then found a closed form analytical solution that confirmed

• the validity of the simulations and showed that a phase stability margin of

900 could be obtained, with no loss in notch depth; this allows the system

to operate with realistic error budgets.

As a result of the interaction between the analytical and experimental

results, we increased the notch depth to 32 dB where it is presently

limited by a combination of insufficient laser power and photodetector

sensitivity. The system as configured has a bandwidth of 50 MHz and a

notch bandwidth of the order of 200 KHz so that the system has the

. - .equivalent of 500 tap weights. This combination of a large number of taps

and a wide bandwidth is the chief advantage of the optical approach.

Details of this work are given in References 3, 4, and 5; reprints of these

papers are included as Appendices B, C and D.

3.0 Reference Waveforms for Heterodyne Spectrum Analyzers

K We previously developed the use of a distributed local oscillator,

generated by a reference wavefront, that provides for heterodyne detection

of spatial frequencies. We further analyzed the necessary properties of

• . the reference waveforms. The motivation for this study was that unwanted

energy from the reference beam bias term may be present in the bandpass of

the filter, along with the desired signal. We studied the case of a

generalized periodic reference waveform having equal Fourier coefficients

within the band limit of the Bragg cell. Since the spatial frequency

output of the spectrum analyzer is subjected to further processing, we

defined a mixed transform of the reference signal that characterizes it in

terms of both spatial and temporal frequencies. The first key result is

that the magnitude of the mixed transform is completely independent of the

. specific waveform of a repetitive reference signal. This means that

-% impulse trains, pseudorandom sequences, and chirp waveforms all have the

L Fsame mixed transform. A direct consequence of this result is that the duty

:- cycle of, for example, a chirp waveform has no effect on the form of the

dA
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mixed transform; a high duty cycle chip is preferred to efficiently use the

available laser power.
A second important result is that the aperture weighting function,

which includes the amplitude profile of the illuminating beam, the acoustic

attenuation and the size limitations of the Bragg cell, can be used to

control spurious modulation introduced by the reference bias term. The

spurious modulation is caused by higher order harmonics of the periodic

reference waveform that are in the passband of the filter. If we cause one

of the harmonics to be coincident with the center frequency of the filter

and simultaneously use the aperture weighting function to create a null at

this temporal frequency, the spurious modulation can be reduced

significantly. Although it may seem strange that spatial frequency nulls

correspond directly to temporal frequency nulls, this result is also

predicted by the analysis. In particular, we showed that the spatial

aperture weighting function is, for certain periodic signals, also imposed

on the output signal as a temporal modulation. This conversion of spatial

to temporal modulation can be easily visualized for a chirp waveform

because each spatial frequency component travels underneath the aperture

weighting function.

We also analyzed spurious modulation for a chirp waveform that has a

fixed phase increment from pulse-to-pulse. This waveform leads to a mixed

transform in which the harmonics, in both space and time, are not integer

multiples of the fundamental repetition frequency. The improved

performance obtainable as a result of this analysis, as well as other

details of the study, have been published in Reference 6 and is included as

Appendix E.

A related activity was the start of a study of a class of

architectures, used for heterodyne spectrum analysis, that require fewer

photodetector array elements. In such systems the high performance is

obtained by using an array of discrete elements; each element is followed

by a preamp, a bandpass filter, a nonlinear device, a rectifier and a low

pass filter. As a result of this complexity, arrays having large numbers

of elements (more than 100) are unattractive. We can trade some system

performance by decimating the array and scanning the spectrum across the

remaining elements. We thereby time-multiplex the spatial frequency

_.. .... ... .-. . .. . . . . . . . . . -... -. .. .- - -. .. .. . .. .. - - -. . - .- - . - .
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information onto the detector elements. The basic tradeoffs are in terms

of laser power and dynamic range.

4.0 Fresnel Transforms for Signal Scrambling and Optical Switching

The analysis of signal processing systems is generally performed using

either time or frequency domain concepts. In optical systems the Fourier

*transform plane physically exists, so that operations such as spectrum

analysis or correlation can be performed by placing photodetectors in the

Fourier domain. Between the time (or space) plane and the Fourier plane

-* there are a continum of Fresnel transform planes. Detailed analyses of

systems using Fresnel transforms are not usually made since these systems

are space- or time-variant. It is often difficult, therefore, to obtain

*results that are as generally applicable as those obtained from Fourier

transform theory.

We performed an analysis of the use of Fresnel transforms and their

application to processing real-time signals in a Bragg cell processor. The

initial motivation for this study was the question of how to scramble or

protect wideband analog signals without bandwidth expansion. The normal

technique of digitizing and coding the signal results in significant

transmission channel bandwidth expansion. Scramblers that segment the

signal into frequency bins and rearrange the frequency components have been

shown, at least in the audio range, to be relatively ineffective.

Rearranging the time samples seems to be more effective, but requires a

storage device so that a frame of information can be processed without

losing information.

Since the Fresnel transform plane in an optical system lies between

the equivalent time plane and other frequency plane, the question arises
whether techniques can be developed for analog signal protection that share

some of the features of time and frequency scrambling. We find that, given

the constraint of real-time processing, we can obtain a signal that is

dependent on both the time and frequency structure of the signal. The

major phenomena induced by the Fresnel transform is a dispersion of the

elements of the signal; the space-variance of the system can then be used

to introduce some random coding schemes such as time perturbations that are

frequency dependent. Additional scrambling techniques are available if

some bandwidth expansion is allowed; considerable bandwidth expansion can,

of course, be tolerated before we reach that required for full digitization.

.."
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It is also possible to perform arbitrary permutations on blocks of

information, including the so-called perfect shuffle. Details of this work

were published in Reference 7 and a reprint is included in Appendix F.

The fact that permutation can be achieved suggest ways that the

Fresnel transform can be applied to optical computing. Since the Fresnel

transform is a space/time variant transform, the response to a short pulse

is a function of both its time-of-arrival and its frequency. One way to

take advantage of this property is to permute a data sequence to implement

operations such as shuffles, exchanges and bypasses. A wide range of

algorithms can be implemented by these operations.

Another possibility is to use the Fresnel transform to implement a NXN

non-blocking crossbar switch. Such a switch might have, as its input, an

N-element fiber optic array representing the communication links to N

processors, for example. By using the Fresnel transform in conjunction

with Bragg cell processor, we can connect these N input ports to N output

in a completely arbitrary fashion. Furthermore, we can accomplish the

interconnection very rapidly and without the need for multiple passes

through replicated switches, as is often needed in electronic switches. >4
Multiple connections from one input port to many output ports (fan out) can

be made, as well as the complementary connection (fan in). Details of this

work are given in Reference 8 and a preprint is given in Appendix G.

5.0 Miscellany

A paper entitled "Acoustic Spreading in Multichannel Bragg cells was

presented at an SPIE Conference on Spatial Light Modulators and

Applications. This work was based on work already reported in Reference 1;

we include a reprint of the paper in Appendix H and it is listed as

Reference 9.

During the week of 4 November 1985, A. VanderLugt, along with Dr. B.

D. Guenther of the U. S. Army Research Office, co-chaired a Palantir Study

on the Role of Photodetectors in Optical Signal Processing. Other panel

members were Dr. G. W. Anderson from NRL, Dr. J. Hynecek from Texas

Instruments, and Dr. R. J. Keys from Lincoln Laboratories. Photodetectors

have historically been developed for image sensing applications. We

focused on two key needs for optical processing: more dynamic range and

on-chip processing to reduce the output transfer rate. The committee has

started to prepare a paper based on the results of this study.
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During this contract, A. VanderLugt visited Dr. Graeme Duthie and Dr.

Jay Loomis at MICOM to discuss potential applications of optical processing

to phased array antenna systems.

6.0 Scientific Personnel

The principal investigator on this contract was A. VanderLugt. A. M.

Bardos, Senior Scientist, and W. R. 3eaudet, Associate Principal Engineer,

assisted in some portions of tne worK and were partially supported by this

contract.
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RCrossed Bragg cell processors

A. Vander ugt

In optical signal processing applications, two Bragg cells are sometimes crossed at an angle to display a corre-
lation function in space. In this paper we show how the angle can be adjusted to control the scale of the cor-
relation function. For signal acquisition, the received signal and the reference signal must be synchronized
electronically. If the reference signal is time-reversed, the crossed cell geometry displays the correlation
function in both space and time so that the optical system indicates the time at which the signals are syn-
chronized. If the reference signal has a clock rate difference relative to the received signal, the correlation
function still exists in both space and time but with the additional advantage that acquisition can be ob-
tained without the need to time-reverse the reference signal.

I. Introduction urations, the scale of the correlation function is de-
Bragg cells can be used in many different configura- pendent on 0, and the tolerance on having the signals

tion to implement various signal processing operations. precisely synchronized is somewhat relaxed. Never-
The most common way to use two Bragg cells for theless, the time delay between the two signals cannot
implementing correlation is to orient them so that the exceed certain bounds established by the angle 0. We
acoustic waves propagate in either the same or opposite will examine further these relationships and other im-
directions."M  If the waves propagate in the same di- plications of the crossed cell geometry in detail.
rection, only a single value of the correlation function An alternative method to achieve signal acquisition
c(r) is obtained. Furthermore, the peak value of the is to time-reverse the reference signal and orient the
correlation function is obtained only if the two signals Bragg cells so that the signals counterpropagate. The
arrive at the Bragg cell transducers at the same time. In full range of possible time delays is thereby displayed
a signal acquisition application, a received signal must sequentially so that, at some instant in time, the cor-
be synchronized with a reference code signal. The ac- relation peak is detected. The correlation function is
quisition process may require a significant amount of compressed in time by a factor of 2 when using this ge-
time as the reference code is stepped through all pos- ometry, which may place severe bandwidth require-
sible values in the search for c(0). The search can also ments on the photodetectors when the signals are
be done in a continuous fashion by increasing the rate wideband. When the two Bragg cells are oriented at an
of the reference signal slightly; the process is still slow, arbitrary angle for the counterpropagating geometry,
however, since the time scale also changes, and the rate the correlation function is also displayed in both space
difference must be kept well under 1% to maintain the and time. The correlation function propagates at a rate
correlation peak value for highly structured codes. that always maintains the time compression factor of

When the two Bragg cells are oriented at some arbi- 2, however.
trary angle 0, the correlation function is displayed in A third method for achieving signal acquisition that
space instead of time. Said and Cooper5 described a combines several advantages of the first two is a crossed
cross-path optical correlator wherein the Bragg cells cell geometry wherein the reference code is generated
were oriented at 450 . A more common method is to at a clock rate different from that of the received signal.
orient the Bragg cells orthogonally to achieve correlation There is no need to time-reverse the reference signal.
or ambiguity function generation.r 9  In these config- The correlation function is displayed in space with a

scale that is dependent on both the angle 0 and the rate
difference. The correlation function flows through the
system at a rate that can be controlled by the reference

_____code clock.
The author is with Harris Government Systems Sector, Advanced In this paper we first consider the results obtained for

Technology Department, P.O. Box 37. Melbourne, Florida 32902. Bragg cells oriented at an arbitrary angle. The acoustic
Received 27 December 1983. waves initially propagate in the same direction, but if
0003-6935/84/142275-07$02.00/0. the angle is >900, a counterpropagating component is

C 1984 Optical Society of America. introduced. We then consider the general case for

15 July 1984 / Vol. 23. No. 14 / APPLIED OPTICS 2275
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Fig. 2. Fourier transform of crossed cells.Fig. 1. General crossed-cell geometry.

illuminates the two cells, and, given the assumptions ,-

* counterpropagating signals with the reference signal listed above, the Fourier transform A (p ,q ,t) is centered
*being time-reversed. The final topic is that of driving on the optical axis:

the reference code signal at a different rate from that ,."

of the received signal. A(p,q.t) i JJe f(t - T/2 - x/v)g(t - T"/2 - /u

II. General Crossed Cell Geometry x ezplj(pz + qy)ldxdy. (3)
; The correlation function for two signals f(t) and g(t) The variables p and q in plane P3 are radian spatial A

plays a central role in signal acquisition and other pro- frequencies, and the region of integration is over the "
". cessing applications; it is defined as overlapping area of the Bragg cells in plane P,. We now

u',..,- want to show that, for some region in plane P3, we ob- ,.
-= c rftgt+T~t 1 ain the result that A(p,q,t) F(-.)G(.). We use a

-"coordinate transformation in plane P1 for which Kand its Fourier transform is(

-a ~), F(- w)G(w). (2) y- x sin0 + y co8, 4 ".

-. Both signals must have finite durations for Eq. (2) to be and a similar coordinate transformation in plane P3 for
*defined, which"FThe general geometry for the crossed Bragg cells is cells.

shown in Fig. 1. We make several assumptions to (5"
isimplify the geometry and analysis. First, we show the q = pt s o + q cois.

Bragg cells as though they are in contact; generally one In plane P1 , 0 is the angle from the x' axis to the x axis,

e. Bragg cell ,II be imaged onto the other with suitable whereas in plane P3, is the angle from the p axis to the .
intervening optics. Second, we show the cells with the p' axis. If we substitute Eqs. (4) and (5) into Eq. (3), ,eitransducer height equal to the length of the cell. Thisa

is normally not done in practice, but the same effect can
often be achieved by the intervening optics. Third, we A(p',q'.t) I f(t - /2 -- x/v)

will not consider how the Bragg illumination angles are X T+ (3)

influenced by the use of a carrier frequency. We will x gt-7/ x cos# i8" drop the carrier frequency from the analysis and assume Th v p i

that the signals are at baseband. The most important x explilx(P' cost - q' sin*) .
results of the analysis are thereby preserved. + y(P' sunns + Q' corldidy. (6) oe.
eSuppose thati (t) is applied to the first Bragg cell so We can separate Eq. (6) into the product of two integrals

~~that the acoustic wave propagates in the positive x di- by first integrating on y and then on x to get A (p',q',t) "
rection. In the w direction the acoustic wave has a to B s(p',q',t)Bt(p',q',t). The integrals are
constant value. The signal g(t) is applied to the second "c

,.Bragg cell oriented at an angle 0 with respect to the first B,(p'.q'.rl =f u expf--ja t - T/2)J f q(u) expuau ldu, i(.cell; g(t) propagates in the x' direction. Within the

boundary defined by the overlapping area of the two BCp.'t t x~bt-T2If(Iep-b~r 8 %cells, the diffracted amplitude transmittance function -

is given by f(t - T/2 - x/L)g(t - T/2 - x'/LI, where T where
* is the time delay associated with the Bragg cell and v is ..

the velocity of the acoustic wave,. a Y' -p sin O + cosO
".We can obtain the function C(w) by producing the
2-D Fourier transform of the amplitude transmittance I p lc,,so - q'sino, -a•#
along with an equivalent integration operation. Figure #i -l
2 shows a Fourier transform system for the crossed We note at this point that the integrals in Eqs. (7) and

Bragg cells. Collimated light from a coherent source w are the Fourier transforms ofglt) andfo t with the
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product being of the form F(+b)G(-a); the variables I
a and b are functions of p', q', and 0 and o. One con-
dition that we impose is that both transforms must have
the same frequency scale. This means that I a I= bi
for all values of p' and q' as well as for all values of 0,
given the value of 0. If we equate the coefficients of p' ""So --- 7
and q' from Eqs. (9), we find that the frequency scale
is equal in magnitude when 0 = -0/2. A second con-
dition is that the Fourier transform must be a function
of either p' or q'; if we evaluate the integrals along the
line p' = 0, we obtain the result that a = b = -vq'/2
sino. When this value is used in Eqs. (7) and (8), and '-

we form the product of the two integrals, we have

A (q')- fgu) exp(-jq'vu/2 sino ldu -% sin#/-

X J f(r) exp(jquvrI2 sinoldr; 00$0. (10) /I.,'"

If ( - 0, the value of A (p',q',t) can be obtained from Eq. Fig. 3. Cells crossed at 45*.

P., (6) directly. The form of Eq. (10) shows that the scale,
or measure, of the frequency variable is a function of the relative time delay always passes through the origin
angle 0. Furthermore, since the product q'v is equiv- about which the Bragg cell is rotated. As a result, in one

6 alent to a temporal frequency variable, we define w ff sense it is appropriate to represent the time delays along
q'v/2 sino. We then find that A(w) c F(-w)G(w), a space-displacement axis as shown in Fig. 3. However,
which is what we wished to show. I prefer to retain an explicit time domain notation and

The result given by Eq. (10) reveals a number of in- will generally refer to the space-displacement axis as the
teresting features. First, the relationship of A(w) to time delay or r axis.
C(w), as given by Eq. (2), is clear. Second, the fre- The physical spacing of the r values can be related to
quency scaling is a function of the angle 0. Third, To through the observation that if g(t) is delayed by one
evaluating Eq. (6) along the line p' - 0 is equivalent to time sample To relative to f(t), the shaded area repre-
integrating the space function in plane PI along lines senting the correlation peak line is shifted upward so
parallel to the bisector of the angle 0. Fourth, since Eq. that the intersection with the r axis now occurs at
(10) does not contain any time factors, the correlation 7d = To/2 sino: 0 < 4 _ 900. U1)
function is fixed in space at plane Pi. Some of these
features become more apparent if we examine the This relationship is consistent with the formulation
equivalent operations in the space plane. given by Eq. (10); if the frequencies are compressed or

Figure 3 shows the Bragg cells crossed at 0 = 45*. We expanded by a scale factor of 2 sino, the scale of the r
represent the duration of the independent time samples axis must be expanded or compressed by the same

3along the Bragg cells by To. As we noted above, eval- factor.
uating Eq. (6) along the frequency axis p' = 0 is equiv- We note that, if r = 0, the number of samples that
alent to integrating the cross product of f(t) and g(t) contribute to c(r) changes. The integration is over the
along lines parallel to the bisector of 0. The intersection octogonal boundary defining the region of overlap. The
of the time samples are parallelograms; the appropriate effect of this integration is the same as that of a
samples corresponding to no relative time delay be- weighting function whose general normalized form,
tween the two signals are shown as shaded areas. We given in terms of r, is
can represent a time delay axis by extending the line of 2 T
integration to some convenient point outside the over- T 2 coso I + tan I
lapping region and by drawing a line perpendicular to 21r I cow T T
the line of integration. We note that these two lines =T1 -

-

form an angle 0 with respect to the original x and y axes. -"
The intersection of these two constructed lines repre- . Irl > -T.12
sents the point at which the value c(0) occurs. coso

The basic reason for using a crossed-cell geometry is where T is the total time duration of the Bragg cell.
to display the correlation function in space instead of The weighting function is shown in Fig. 4 for several
time. We must be careful, therefore, to establish a values of 0. For o = 0 the boundary becomes a square.
notation that connects space coordinates with time- and the weighting function is rectangular over the in-
delay coordinates. For example, as the signals propa- terval from -T/2 to T/2. For o = 450, the boundary is

e,: gate through the Bragg cells, the amplitudes at each a diamond, and the weighting function is triangular over
sample position along the Bragg cells change. The the interval -T/.) to T-, 2. At all other values of
correlation function, however, does not propagate as a 0 < 0 < 450 . the weighting function consists of two
function of time; the line of integration representing no straight line segments as indicated by Eq. (12). If H

15 July 1984 / Vol. 23. No 14 APPLIED OPTICS 2277

r



~ If we now allow 0 to increase, we find that more time
-delay values become available. To help visualize how

the correlation function develops, it is useful to make
transparencies of the signal histories and to overlay
them at various angles as illustrated in Fig. 3. For ex-
ample, when 0 - 60" we find that the scales of the 7 axis
is exactly the same as the time scale as indicated by Eqs. ,
(10) and (11). This may be a useful feature in some

* applications where we wish to perform a double corre-
Fig. 4. Weighting function due to region of integration. lation directly by the use of a third Bragg cell. Since thetime scales are the same, no change in magnification is

exceeds 900 so that 4) > 450, Eq. (12) is no longer valid, needed. Unfortunately, implementing a geometry in
The weighting function can be readily found, however, which 6 = 600 is generally not feasible in systems that
by substituting (900 - 0) for 4) in Eq. (12) when o > use 1-D Bragg cells.
450. It is feasible to orient the two Bragg cells at 0 = 900

The weighting function is related to the physical so that f450. We then find that the full range of r
boundaries of the Bragg cells. We must use Eq. (11) to values is available as shown by Eq. (13). The correla-
determine how many values of r occur within the tion function c(r) occurs (after integration) along a line
weighting function as given by Eq. (12). For example, inclined at 450 to the vertical axis, and, in the frequency
if o = 0, Eq. (11) shows that Td is infinity. Therefore, plane, C(w) lies along the q' axis, which is at 450 to the
within the weighting function given in Fig. 4, there is vertical axis. The scaling of the r axis is compressed by
only one time delay value available so that the correla- a factor of \/ relative to the real-time scale; the Fourier
tion peak occurs only when the signals are synchronized transform, in turn, is expanded by the same factor. As
electronically, a result, further processing involving c(T) or C (w) may

We can find the number of r samples for any other require some magnification changes.8 .9

value of (b by noting that the zero values of the weighting If we let 9 > 900, we begin to note some interesting
function occur at T/2 coso for 0 < < 450 and at T/2 features. First, the scale of the r axis continues to
cos(90 -)) for450 < ) _< 90g. Since T = 2NTo, where compress according to Eq. (11). Second, the weighting
N is the time-bandwidth product, we can use Eq. Q11) function is similar to those shown in Fig. 4; if 0 = 1200,
to find that the number of r increments is the appropriate w(r) is that for o - 300. Third, the full

range of T values is displayed as indicated by Eq. (13). '74
S tan1; 0 0 45.though the two acoustic waves now have a counter-
- 2N. 450 $ 0 -900. propagating component, a correlation function can still

This result shows that for values of 0 < 450 we do not be obtained, anl it is stable in space. The peak value
generate all possible r values. In some applications decreases, however, as H increases because fewer cross-
involving the correlation of wideband signals, only a few product terms contribute to the correlation. From
values near r 0 may be necessary to achieve the de- geometric considerations we find that the number of
sired results, cross products contributing to the correlation peak at

Some examples of special interest will now be exam- r - 0 is
ined. The first case is when there is no rotation of the M - 2N. 5 45
Bragg cells so that 6 f =0. We return to Eq. (6) and = -N". 0505900. 15)
find, after a change of variables, that - 2N/tano. 45° -< 0 < 90-

We could incorporate the reduction in the correlation
AsO.q'.t) - c sinclq'L.T/2)j'f(ulg ldu. 114) peak by dividing the weighting function w(r) by tan"

where c is a constant. In terms of Fig. 3, the integration for 45 < o < 900. In terms of the functions shown in
is along lines parallel to the direction of propagation, Fig. 4, the amplitudes would then be scaled by 1/tano
and the weighting function, as shown in Fig. 4, is con- when 0 exceeds 90".

stant over the extent of the Bragg cells. The integration Figure 5 summarizes how some of the key parameters
in the vertical direction produces the sinc-function. so vary as a function of the rotation angle. The number
that Eq. (14) has the form of c(-r) if the photodetector of 7 values increases from 0 to 2V as the angle increases
in plane P., is located at p' = q' = 0. Only a single value from 0 to 90 ; the number remains constant thereafter.
of r is thereby obtained; if the two signals are synchro- The number of cross products is fixed at 2N until 0
nized, the value is that corresponding to 7 = 0. If the reaches 900; the number then decreases to zero as 0
signals are not synchronized, the light amplitude at p' reaches 1800. The reciprocal of the ratio of the r
=q 0 is proportional to c(T), where 7 now represents sample spacing to the time-delay spacing increases from
the time delay between the two signals. If the received 0I to 2 (right-hand scalei as H increases from 0 to 1800.
signal is Doppler shifted and the signals are not at In all cases the correlation function is a pure space
baseband, the correlation value will occur at some other function even though the two waves may have a coun-
value of p'. Thus all the information concerning two terpropagating component; it is a function of time only
Bragg cells having signals propagating in the same di- to the extent that the signal statistics are not sta-
rection can be derived from the gem -al case. tionary.
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This result is similar to that given by Eq. (10). The
exponential factor, however, is now a function of the

"Man 0o 1 present time t, the time delay T, of the signal g(t), and
T At IIthe Bragg cell processing time T. This term consider-

ably alters the nature of the temporal display of the
OF, IACING 1A1 correlation function c (r) as we shall see later.
OF? ,1, ,,AT T When the two acoustic waves are counterpropagating

and time-reversed, the basic geometry is similar to that
a 7. \C \\_\ * shown in Fig. 3 except that the transducer to which g(t)

o .shuts is applied is on the opposite side of the Bragg cell.
-Fig. 5. Key performance parameters asa function of angle. Many of the same results apply; for example, the

Kweighting function which is based on geometric
*boundary considerations and given by Eq. (12) is still

Ill. Time-Reversed Signals valid. The key difference is that the entire spatial
* . correlation function now propagates along the r axis,

When t0 exceeds 90", we found that the number of whereas it is stationary when the signals are not time-
S .cross-product terms decreases so that, at some angle, reversed.

the cross-correlation function may no longer be useful. The rate at which the correlation function moves
To achieve a full strength correlation function, a pos- relative to the time delay interval rd can be found by
sible option is to time-reverse one of the signals. We noting that, during a time interval To, the correlation

, i.-, have noted that the correlation function has a r scaling function moves an amount given by To/sino. From Eq.
that depends on 0 and that there is a specific value of 0 (11) we find that, when the signals propagate one time
for which the r scale and the time scale are the same. resolution element, the correlation function propagates
We now examine the situation for time-reversed signals two time-delay resolution elements. Since this factor
to see if a similar r scaling in both space and time exists of 2 is independent of 0, it is always present when one
as a function of 0. signal is time-reversed.

We return to the crossed-cell geometry of Fig. 1 but It is, therefore, interesting that we could find an angle
with the transducer of one of the cells placed at the. for which the spatial r scale and the time scale are equal

r opposite end. As a result, the two acoustic waves are when one signal is not time-reversed but that such a
S,'. both counterpropagating and time-reversed. To condition does not exist for the temporal r scale when

achieve correlation, the reference signal must be time one signal is time-reversed. In the first case, we used
delayed by an amount TI, which, for example, might the crossed-cell geometry to display the r values as a
represent one or more frames-of a signal that is periodic function of space. Since the correlation function does
or changes in a known way from frame to frame. The not move, independently of whether the signals are
product of the two waves leaving the crossed Bragg cells copropagating or counterpropagating, the angle be-
can be written as f(t - T/2 - x/v)g[TI - (t - T/2 + tween the Bragg cells can be used to change the spatial
x'l)I. The Fourier transform of this product, given scaling. When one signal is time-reversed, the corre-

- that the cell containing g(t) is at an angle 0 with respect lation function has similar spatial characteristics so that
to the horizontal axis, is the Fourier transforms as given by Eq. (19) are the same

m - as those given by Eq. (11) but only at a particular instant
A~p.qJt = ff(t - T/2 X/L) in time. At any other time, the Fourier transform is

-' '" T -that of some asymmetric segment of c(r). When the
-, gTi - t + T/2 - x'/i expljpx + qy)Idxdy 116) correlation peak occurs at the r = 0 spatial position at

We follow the same procedure as before using Eqs. (4) time t = (T - 2TI)/4, the signals are said to be matched.
and (5) to obtain In the communication theory literature the time-re-

versed counterpropagating mode of correlation is re-
11,(p'.q'.t, ff= - expja(t - T, - T)l fg(u expujau)du, ferred to as matched filtering because the presence of

117) the reference signal in the received signal can. in prin-
" : ciple, be found for any time delay. Furthermore, the

-.'. fi eprocessing operation is continuous, subject to some
S,, I constraints on the ability to properly time-reverse the

, -" where a and b have the same values as given in Eq. (8). reference signal.
We see that Eqs. (17) and (18) have the same form as We would like to develop a technique wherein a true

Eqs. (7) and (8) except for slightly different exponential matched filtering operation can be performed without
multipliers. By equating a and b and evaluating the time-reversing the reference signal. Another desired
function A (p',q',t) along the line p' = 0, we get feature would be to control the compression factor for

. a ethe temporal scale of the correlation function. Finally.
I - expUjw21 + T - we would like to display the entire correlation function

i t, c() in space, possibly with the same scale as the time-
-expij)dr 19 received signal. In the next section. we show how these

•f u exp(-Jwu dujre r features can be obtained.
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IV. Differential Rate Correlation , .',

Let us return to the geometric configuration given in
Fig. 3. Suppose that we drive the reference code signal w'
f (t) at a higher rate than that of the received signal. We ' _

assume here that the reference signal is controlled by 1A
a clock whose rate can be varied. If f(t) is an analog '-\-
signal, similar results can be obtained by using a Bragg
cells having different velocities of acoustic propagation. ' \..\

We let k be the ratio of the time base of the reference\ \ .
signal to that of the received signal. PAU~ ~;II.~**

We could analyze this case for an arbitrary angle 0 as
before, but the results are somewhat cumbersome. In
general, the same results apply in a qualitative sense.
One note of caution, however, is that 6 must reach some -A ",

minimum value, depending on the parameter k before
correlation occurs at all. Two useful results from the
detailed analysis will be given here. The first relates F f t
the angle 0 of the line of integration to the rotation angle Fig. 6. Differential rate geometry.
6 and the rate parameter k:

rnarcsin :S . 90°. (20) function is still displayed in space so that all T values are
available, and, by changing k, we can vary the time

The second relationship is that the r values are sepa- compression factor to fill in the range between the two
rated by discrete values (0 or 2) that are produced by the other

configurations. As k is changed, both o and Td change
= -kT0 cos(o - 6)/sin6 (21) so that an array of photodetectors may be required if we

The specific case that we will describe is that for 0 = 900 wish to operate at variable rates. We note that, for this
and k = 1/2 as shown in Fig. 6. The received signal g(t) processing configuration, the peak value of the corre-
propagates downward with time resolution elements of lation function is less sensitive to Doppler effects on the
duration To. The reference signal propagates to the received signal since the system is much more forgiving
right with elemental time resolution kT 0. From Eq. of small changes in the signal time base.
(20) we find that 0 = 63.40 when k /2, and from Eq.
(22) we find that Td = 0.45To. The cross-product terms V. Summary and.Conclusion --

that contribute to the valus of c(i) at the origin of the The use of two Bragg cells crossed at an arbitrary
T axis are shown shaded, and the region of integration angle 6 serves to display the correlation function in
is a rectangle, which in turn produces a triangular space as well as in time. We showed that when the two
weighting function identical to that shown in Fig. 4. waves propagate in the same direction only one relative
The full range of possible r values is displayed in space time-delay value is available. As the angle between the
as before. cells increases, the number of time delays displayed in

The major difference in the performance of the space increases because the spacing between adjacent .. .
crossed-cell configuration using a different rate for the delay values decreases. A particularly interesting
reference signal is that the correlation function now condition arises when 6 - 600, because the scaling factor
moves at a rate determined by k. During a time inter- for the r axis is the same as that for the time axis. As
val of To sec, both signals move the same physical dis- a result, some triple-product operations can be achieved
tance; this distance, however, represents one time directly without the need to change the magnifica-
sample for the received signal but 1/k samples for the tion.
reference signal. As a result, the correlation function The most often used configuration is that for which
will drift through the system, assuming that the refer- the two cells are orthogonally oriented (0 - 900). In this
ence code starts ahead of the received signal code, so case, the maximum number of time-delay values are
that the correlation peak will eventually pass through produced, and the correlation peak is still at full
the origin of the time-delay axis. strength. The scale of the time-delay axis is now -

One other special case of some interest is that when compressed by a factor of -/ 2 relative to the time axis.
0 - 450 and k = v/-2/2, we find that 0 is also equal to 450 When 6 exceeds 900, the two acoustic waves have a
and that d - To. This set of conditions states that the counterpropagating component, but the correlation -.-

spatial scaling of the r axis is identical to that of the function remains stationary. The number of cross ,-"
received signal so that further processing involving c (7) products that contribute to the correlation peak begins
and the time signals will not require a change in mag- to decrease, however, leading to a reduction in the per-

We have developed, therefore, a useful technique We investigated the crossed-cell geometry when the

whereby matched filtering can be achieved without a signals are time-reversed and counterpropagating. We
time-reversal of the reference signal. The correlation found that the correlation function always propagates.
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for any value of 0, with a compression factor of 2. Aside to the direction of propagation. A combination of two
from being able to display a large range of r values in such modulators or one 2-D light modulator and a Bragg
space, there is little advantage to any geometry other cell may be useful for achieving the most general
than that of 8 - 0, for which the two signals propagate geometries described in this paper.
in opposite directions.

SO We developed a variation of the first geometry This work was supported by the U.S. Army Research
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Stability considerations for adaptive optical filtering

A. M. Bardos, W. R. Beaudet, and A. VanderLugt

We report snalytical and experimental results from an interferometric optical system configured to imple-
ment a least mean square error filtering operation with an adaptive filtering loop. We describe the basic
operation, experimental optical system, and simulation model; we then compare the results of the model and
hardware. We find that the time delay must be minimized in the closed loop signal path to achieve good
performance. Optical aberrations must also be controlled depending on the degree of phase margin required
to maintain stability. We show that 30-35 dB of stable gain can be achieved with reasonable hardware and
system tolerace requirements.

I. h*oductlon We begin with a brief review of adaptive filtering
In this paper we give the results of experiments based on some earlier analysew, We simplify the de-

conducted with an interferometric system which al- velopment somewhat and view the basic operation
lows for adaptive processing of wideband signals. We from a different vantage point to set the stage for some
designed, built, and tested an op tical transversal filter- new system modeling. In Sec. III we describe the hard-
ing system with feedback, yielding a flexible architec- ware that we constructed in support of the experimen-

S'ture for various applications. The system can be con- tation and describe some new diagnostic techniques
figured, for example, to remove agile jammers in a for aligning the system and monitoring its perfor-
wideband spread spectrum system performing an op- mance. The model development is given in Sec. IV in
eration which requires a filter'having many taps and a which we established criteria by which optimally sta-
wide bandwidth. Other applications are channel ble systems can be designed. In Sec. V we give the
equalization for wideband communication systems major experimental results and show how they relate
and the processing of signals from phased array radar to the modeling results.
systems for null steering or beam forming applications.
These applications often require computational rates 1I. Background
that cannot be met by current digital technology; even In earlier analyses of adaptive filtering,".2 we de-
future developments such as VHSIC are likely to fall scribed the basic operation of a frequency domain
short of meeting the current and projected needs be-caus comncainad olcto euieet processor in terms of an analogy to a discrete transver-

- cause communication and collection requirements sal filter. Related work on adaptive filtering has beencontinue to expand.

In adaptive filtering the system response function reported by Rhodes and Brown, 3 Rhodes,4 and Psaltis
changes according to some measure of the characteris- and Hong. The transversal filter includes a tapped

* .delay line that contains the discrete time samples of
tics of the received signal. In the application we chose the received signal. The output of each tap is weight-
to study, a wideband signal is corrupted by narrow- ed, as determined by the processing operation, and
band interference; the frequency, amplitude, and summed to provide an estimate of a signal. These
phase of the interferer are unknown. The task of the operations are called linear predictor or estimator op-
optical system is to measure these unknown parame- erations. If the estimated signal is subtracted from
ters and to construct a notch filter to eliminate the the received signal to provide a residual signal which
unwanted signal. The desired wideband signal there- controls the tap weights, the system is called an adap-
fore has an improved SNR. tive linear predictive system.

For this analogy, we note that Bragg cells accept
. wideband signals and behave as a continuous delay line

___"_that can be tapped optically. The basic adaptive oper-

The authors are with Harris Corporation, Government Systems ations can be described mathematically as a combina-
Sector. P.O. Box 37. Melbourne. Florida 32901. tion of convolution and correlation. The optimum

r Received 23 December 1985. weights are obtained by correlating the residual signal
0003-6935/86/142314-12$02.0/0. z(t) with the received signal s(t); the received signal is
0 1986 Optical Society of America. for this application assumed to consist of a wideband
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signal g(t) and a narrowband interference signal or it)
jammer. The continuous tap weights c(r) are then
given by'

c(7) N G z(u)s(u - r)du, (1)

where G is the gain in the feedback loop, T, is the "S
integration time of the correlation loop, and r is the
continuous-time equivalent of the discrete delay time D

between samples of a digital system. The estimate is F-.T,, ELL 0

then given by convolution of the tap weights and the IIRNH CL.L01
received signal: L CELL 00- -

0(t) ," c(r)s(t - rldr, (2) Fig. 1. Simplified system schematic.

where T is the total delay time of the Bragg cell. The
estimate s(t) is subtracted from s(t) to form the residu- DCNCliO
al signal z(t). At steady state, the strongly correlating "Go CELL 0,

jammer signal has been removed from the received SRM
signal, and the residual signal is the best approxima- ::O
tion of the signal g(t) in a least mean square error sense. , CE o,

When we substitute Eq. (1) into Eq. (2), we obtain a
time domain representation: 2"I am of

s(t) = G z(U)s(U - 7)s(t - r)dudv. (3) ' -
*. .

By means of the convolution theorem, we can also OF,
express s(t) as an integral in the frequency domain: Fig. 2. Signal geometry: (a) tap weight plane; (b) spectrai plane.

S() N G J Z7'4wt) lSr(,t) I' exp(jwt)dw, (4)

where ZT and ST are the instantaneous Fourier trans- the third Bragg cell is to convolve s(t) with the station-
forms of those portions of z(t) and s(t) within the ary 2-D cross products in the overlap region illustrated
Bragg cells of duration T. We can easily see from the in Fig. 2(a) to provide the estimate i(t) as given by Eq.
frequency domain representation how the estimate is (2). The required integration is effectively performed
developed. The I Sr(w,t) 12 factor puts a strong weight by the photodetector because it detects light only in
on the spectrum at those dominant spectral terms that the overlapping region.
represent the jammer. In effect, the instantaneous The second way to drive the cells is to drive both
power spectrum of s(t) is used as a template to separate orthogonal cells with s(t) as we show in Fig. 1. This
the jammer from the signal so that it can be used in the connection tends to emphasize the frequency domain
feedback loop. representation as given by Eq. (4); in this case we focus

Figure 1 shows only the key elements of the interfer- our attention on the Fourier plane where the photode-
ometric optical system and suggests how we plan to tector is located. The orthogonal Bragg cells of the S-
model its system response in a feedback loop. We branch produce ISr(w,t) 2, which selects the strong
represent all three Bragg cells with idealized transduc- periodic signals from Zr(,.,t), produced by the Z-
er heights that render the region of interaction be- branch, for use as feedback signals.
tween light and acoustic waves into a square format. Figure 2(b) shows the equivalence of these two con-
The idealization shown generates the same results as nection schemes. Suppose that s(t) consists of two cw
obtained by using Bragg cells with suitable anamor- signals which appear at both positive and negative
phic optical systems described in Sec. III. The Bragg frequencies along the two spatial frequency axes; we
cells, with respect to an observation plane external to assume Raman-Nath operation for the sake of this
the interferometer, appear to overlap as shown in Fig. illustration. The signals interact to also provide a set
2(a). We refer to this plane as the tap weight plane. of four spectral components in each frequency quad-
The transducer of the Bragg cell that is disposed at 450 rant; these components are shown as filled circles.
to the first two must lie on the bisector established by The upper right quadrant is marked (++) to indicate
the other two transducers. that both cells 1 and 2 produce a frequency upshift. In

We have two ways in which the Bragg cells can be our model the upper left quadrant is used; in this
driven. If we drive the two orthogonal Bragg cells with quadrant the frequencies have a downshift/upshift
s(t) and z(t), all the cross-product terms required to structure. The region in the upper left quadrant occu-
establish c(r) as given by Eq. (1) are formed at the tap pied by the photodetector covers the domain of over-
weight plane. In principle, we must integrate the light lapping frequencies.
along lines parallel to the bisector to obtain c(r).6 For Suppose that the third cell is driven by z(t). which
the moment, if suffices to visualize that the action of also consists of two frequencies shown as open circles;
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Fig. 3. Optical subsystem layout.
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Fig. 4. Experimental hardware.
these signals are shown with a slightly lower frequency

-. so that we can visualize some important relationships.
It is easy to see that these frequency components over- vertical direction to illuminate the second cell at the
lap on the diagonal provided that the frequencies of Bragg angle. This second cell may be driven by s(t) or
z(t) equal those of s(t) and that the optical system z(t), yielding equivalent results.
magnifies the spectrum of cell 3 by 4. We cannot Cylindrical lenses C2 through C6 serve to mutually
then distinguish the two alternative Bragg cell drive image the two Bragg cells into a square format at the
configurations, and we are free to select the signal tap weight plane. It is not necessary that this plane be
connection scheme that optimizes system perfor- displayed explicitly; doing so, however, provides a con-
mance. For the purpose of model development, we venient reference plane that can be used for diagnostic
prefer the connection scheme shown in Fig. 1. We now purposes. For example, if both Bragg cells are driven
describe the experimental hardware and discuss some by a square wave test signal, a triangular shaped peri-
preliminary results that set the stage for discussion of odic autocorrelation function appears at the tap
the enhanced model. weight plane. If the test signal is a pseudorandom

sequence, the autocorrelation peak defines the r - 0
Ill. Hardware line; this information is useful for properly positioning

Figure 3 is a schematic of the optical system as the third Bragg cell. It is also convenient to reference
implemented, and Fig. 4 shows the associated hard- all amplitude weighting functions and phase aberra-
ware. The basic configuration is that of a Macho tions to this plane. We note in passing that the auto-
Zehnder interferometer. Other interferometer archi- correlation functions are oriented at 450 to the trans-
tectures, such as a more nearly common path interfer- ducer faces of the cells.

U ometer,7 may be less sensitive to vibrations, thermal The hardware causes the correlation, as described by
gradients, air currents, or acoustic coupling. As a Eq. (1), to take place through a multiplication of the
preliminary experimental system, however, the Mach- Fourier transforms of two signals, as described by Eq.
Zehnder configuration is convenient to use and easy to (4). Lens Ls serves to create the Fourier transform of
modify as needed. The light source is a 15-mW He-Ne the tap weight plane at the spectral plane just beyond
laser, whose output beam is expanded by lenses L1 and beam combiner BS 2. A relay lens L 9, operating at a
L2 and divided into two beams by beam splitter BS1 . demagnification of two, images the spectral plane onto
Cylindrical lens CI focuses the light into a horizontal a single-element high-speed photodetector. In the
line to illuminate efficiently the first Bragg cell driven second branch of the interferometer, a telescope con-
by s(t). The Bragg cells are constructed from TeO2  sisting of lenses L6 and L- and a cylindrical lens C-
material which is oriented to operate in the slow shear shape the Bragg cell illuminating beam. This cell is
mode. The bandwidth of each cell is 50 MHz, cen- disposed at 450 relative to the other two so that the
tered At 90 MHz, and the cell fill time is 40 js. A signal travels in a direction parallel to that of the
quarterwave plate, not shown in Fig. 3, produces circu- correlation function established at the tap weight
larly polarized light at the entrance to the Bragg cell to plane in the first branch. Lenses C8 and L8 create the
improve diffraction efficiency and spectral band uni- Fourier transform just beyond the beam combiner at
formity. the spectral plane where the two Fourier transforms

Lens L3 produces a 2-D Fourier transform of the first are joined to make heterodyne detection possible.
cell at the entrance to the second Bragg cell. This cell One Bragg cell in the S-branch is operated in the
is similar to the first, except that its tranducer is made downshift mode, while the second one is operated in
larger to accommodate the Fourier transform from the the upshift mode; as a result, there is no net frequency
first Bragg cell. Lens L., collimates the light in the shift of the light in this branch. The cell in the Z
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branch is operated in the upshift mode so that the PITUDE
heterodyne action is centered at 90 MHz. It is rela- Urww'."
tively easy, therefore, to subtract the estimated signal l
from the received signal at rf; there is no need to
demodulate the signal to baseband. -

Figure 4 shows the hardware as implemented. Most PH-S

of the components and their positions can be readily
identified by comparing Fig. 4 with Fig. 3. Weidentify 5o°/Dv, 2.5 dS/DIV. 10 kIz/DIV 90'/DIV. 2.5 dB/DIV. I MHZ/DIV

the tap weight plane in the S-branch by dotted lines.
The Bragg cell assembly in the Z-branch, consisting of
C7, the Bragg cell, C8, and Ls, is mounted so that the .~AMPLITUDE

assembly can be adjusted in angle and position relative AMPLITU

to the components in the S-branch. The effective (dl U
focal length of the pair of lenses, denoted L5 in Fig. 3, PHASE
can be adjusted to equalize the scale of the transforms.
We use prisms after each Bragg cell to bring the dif-
fracted beam to the original axis, thereby keeping the 01oDV. 10 ds/DIV. s MHz/DIV 904 '0V. 10 iS/DIV. S MHz/DIVsystem collinear.The electronic part of the system consists of f driv- Fig. 5. Network analyzer traces for sysim alignment: (a) initial

amplitude and phase; (b) response with linear error removed; (cl full
ers for the Bragg cells, a specially designed preprocess- bandwidth view with residual quadratic phase errors: (d) response

ing and postprocessing electronic system, and various after alignment.
test electronics such as signal sources, oscilloscopes, rf
network analyzers, and spectrum analyzers. The sig-
nal source module provides a 90-MHz carrier that can
be modulated in either a BPSK or QPSK format by an tude of the output is not a sufficiently sensitive mea-
external signal source such as a pseudorandom se- sure of the phase response of the system. We there-
quence generator. This wideband signal is combined fore developed a technique in which we used an rf
with one or more jammers from another external network analyzer to help improve system alignment.
source to represent the received signal. We repeated the tests with the cw signal using the open

The photodetector subsystem detects the light and loop mode. As a single frequency is swept over the
amplifies the signal through several stages of amplifi- passband, the network analyzer displays the ampli- -.

cation; the output signal is then brought to the signal tude and phase of the resultant heterodyned light out-
processing electronics where it is subtracted from the put. Figure 5(a) shows the amplitude and phase re-
received signal toyield the residual signal. This signal sponse as displayed by the network analyzer at the
is fed to the third Bragg cell to close the loop. The initial state of alignment. The linear phase is shown
residual signal can also be fed to a demodulation mod- by the sawtooth waveform; one vertical division repre-
ule which then recovers the pseudorandom sequence sents 900 of phase, and the horizontal scale is 100 kHz/
and provides a means for making SNR measurements division. As we see, the phase changes by 3600 at
at the output. The signal processing electronics also -100-kHz intervals for this stage of alignment.
include the necessary rf level adjusting pads, bandpass The principal cause of the linear phase across the
filters, mixers, and amplifiers, spectral band is the time delay differences between the

We developed several open loop diagnostic proce- two branches caused by the relative displacement of
dures for the precision alignment needed to obtain the three Bragg cells along the acoustic propagation
proper system performance. Initial alignment to ob- direction. By adjusting the positions of the Bragg
tain a heterodyne signal output requires that the two cells, we removed the linear component of the phase
branches of the interferometer be coincident and col- change to the degree shown in Fig. 5(b). Here we see
linear. To equalize the scale of the Fourier transforms that the phase is nearly flat over -10 MHz of the
in the two branches, we drive all Bragg cells with two passband. A slightly curved residual phase change is ...

frequencies. The Fourier plane contains two spots of now evident; this is indicative of a difference in the
light from each branch; we adjust the spacing of lens wave-front curvatures from the two branches of the
combination L5 to achieve overlap, thus equalizing the system.
scale. The single Bragg cell branch has a rotational The curvature is a second-order effect that is not
provision so that we can match the angle of the sepa- easy to detect until the linear phase has been nearly
rate Fourier transforms. Finer adjustments are then compensated; it represents several wavelengths of de-
obtained by maximizing the photodetector current as parture from the ideal telecentric Fourier transform
the parameters are varied. At some point in the ad- and has no impact on the light intensities in the sys-
justment, further increases in the output signal could tern. The phase curvature is more readily observed in
not be made, and we attempted closed loop operation. Fig. 5(c) where we extend the bandwidth to display the

We found the system to be stable over only a small response in the passband from 70 to 110 MHz. The
frequency range even though the alignment seemed phase varies slowly near 90 MHz and then with in-
adequate. The problem is that maximizing the ampli- creasing rapidity near the band edges as is characteris-

15 July 1986 / Vol 25. No. 14 / APPLIED OPTICS 2317

"" ... . ... '"""".. . 4-" ......... 4 """""..... .. "" "" "" ".4'-4 .* ~ -... X ...... - ...-,.....- ,-..- "- -. .. 



". o~ .

I.

tic of a quadratic function. Figure 5(d) shows the next independent functions even though the same signal
stage of correction where most of the quadratic phase might be driving two of those cells.
curvature has been removed by moving the Bragg cell The signal estimate s(t), the output of the detection
of the Z-branch along the optical path. After this subsystem (detector, filter, amplifier, etc.), can be ex-
adjustment, there is still a 900 phase shift over the pressed as a function of the signal input s(t) which
bandpass a significant change in the amplitude drives the two orthogonal cells, the residual function2 ~ age and oaiainofteilmntinrlhuh ivete resil~zt~lltttld'daftion
response. We found the amplitude response to be a z(t) which drives the third cell, and the transfer func-
strong function of the interaction between the Bragg tion G:.-. angle and polarization of the illumination. Although

we could have adjusted the Bragg angle to make the st f ff(
response more uniform, we decided to optimize the
response at midband to get the highest possible SNR. The system kernel function G describes all the physi-

At this stage of system alignment we obtained -12 dB cal properties of the optical system, that is, all the
of jammer suppression; to obtain more suppression we phase and amplitude effects as well as the convolution
needed to analyze further the basic causes of system and correlation nature of the architecture. Even cau-
instability and find ways to modify further the hard- sality is embedded in the kernel; instead of using finite
ware based on the analytical results. limits of integration, we require that G vanish for

-. ,'noncausal combinations of the four arguments to pre-
IV. Model Development vent the future from influencing the present. The

The experimental results clearly indicated the need kernel function G is the transfer function of the optical
for an enhanced model that describes the hardware subsystem shown enclosed by dashed lines in Fig. 1.
more precisely, especially phase effects unique to the The advantage of the linear transfer function formu-
coherent optical implementation. A half-wavelength lation, in spite of its apparent complexity, is that the
change in the length of one branch of the interferome- transfer functions of the various subsystems can be
ter, for example, will change the sign of the detected chained, or cascaded, to yield a linear transfer function
signal, thus converting the loop from a negative to a for the overall system. Let us first consider a Bragg
positive feedback system and creating a runaway con- cell whose inputs are the amplitude a(x,y,t) of the

* dition. We have found that it is the phase of the open illuminating beam and the rf drive signal r(t); its out-
" -loop response that is the most useful predictor of sys- put al(x,y,t) is the amplitude of the diffracted light.

tem stability. In its most general form, the linear transfer function
We developed a linear model that describes the opti- model would permit all combinations of spatial and

cal system in terms of real-valued transfer function G, temporal values of the two input functions to contrib-
referred to as the grand system kernel. The electrical ute to all values of the output function. To express the
system model represents the optical system as a time- output light amplitude as a function of three variables,
dependent (adaptive) frequency response in a feed- we would need to use a kernel function of seven vari-
back system which subtracts the signal estimate s(t) ables and fourfold integration over the four space-time
from the signal input s(t), generating the error func- inputvariables. The integrals over three variables can
tion z(t) as shown in Fig. 6(a). To make a linear model be completed, however, by using a simplified model, in
possible, we treat the inputs to the three Bragg cells as which the Bragg cell is treated as a planar time-varying

phase mask, so that the illumination wave-front and
the output light amplitude interact only at a single
space-time point. Therefore, we seek a Bragg cell

,transfer function P of the following form:
'it')

fill al .1 _ a(x. .t)ri i t t.x.Y)dt'. (61
(a I

This formalism has sufficient power to express the
relevant performance characteristics of a Bragg cell

C-S which performs five key functions: (1) it bandlimits
the electrical signal; (2) it generates a propagating

G..il acoustic wave; (3) it performs a spatial aperture
weighting operation due to acoustic attenuation and
the finite length of the cell; (4) it converts acoustic
pressure waves into multiplicative perturbations of the

•________...._ _,_ .... input optical wave, thus generating the diffracted out-
put light; and (5) it selects either the negative or posi-
tive spatial frequencies depending on the illumination
geometry.

We shall combine the effects of temporal band limi-
Fig. 6. System response models: ii lull model: bi pure Jammer tation and Bragg selectivity into a single composite

model. ici impulse response model, transfer function that converts the input rf drive func-
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tion into an effective complex drive signal containing By cascading Eq. (11) through two crossed Bragg cells,
only positive temporal frequencies for an upshift con- we have
figuration or negative ones for a downshift geometry. al2(Xlylt) - _(2wI(x,y)w (zy)r;(xt)r;yt)a(xy,t). (13a)
This band limitation can be expressed as a multiplica- (xx

tion by the frequency response in the frequency do- By using Eq. (10), we obtain an expression in terms of
main or as a convolution with the impulse response in the two drive signals r1 (t) and r2 (t) using the linear
the time domain. The effective complex drive signal transfer function formalism for this subsystem:
r'(t) thus becomes -.

r(t) = F-IB(f)Fr(t)I a%(xlyt) 
ffJ k 1 (x,y,t~t',t')r1 (t')r.(t")dt'dt", (13b)

= J f B(f)r(t') expj2rf(t - t')]dfdt' where _-

fk 12(x,y,t,t',t") - 2w (x )w ( x')b-( - x/v - t'),
I(,'"( 1N) XI

° 
tl'))

S r(t')b(t - t')dt', (7) X b (t - y/r - t 2 - t')a(x.v,t). (13c)

In the Z-branch of the interferometer we have a
where B(f) is the composite frequency response, b(t) is single Bragg cell that is rotated 45' with respect to

. the corresponding complex impulse response given by those in the S-branch and is scaled optically so that its

b(t) ' B(f) exp(j2rft)df. (8) spectrum matches the scale of the cross-spectral terms
of the S-branch. The propagation is along the diago-

Fawith bandwidth bf nal of the second quadrant with an effective acoustic
For an upshift Bragg cell geometry wvelocity of v/2 to properly stretch the spectrum; the
centered at f , and uniform frequency response, we distance from the transducer of an arbitrary point withhave..,have coordinates x,y is (y - x)/.2. The acoustic propaga-

B*(f) - rectl(f - f,)/6fj, tion time, the ratio of distance and effective velocity,
b*(t) - F-11B(fI =f exp(j~r t) sinc([t). (9) is therefore (y - x)/v for this Bragg cell. The optical

( FB.e fs foutput of cell 3, referenced to the tap weight plane, can

For a downshift configuration we need only to use a be written as

negative carrier frequency in these equations to obtain a30xYt) -jfu 3(x~v)r3 (x, .ta'(xv,t) (14a)• "B-0f or b-(t). (' taXIt)

The propagation of the signal in the x direction with or, in kernel form, as
acoustic velocity v and temporal offset t1 can he de- r-

, scribed by replacing the time variable t with t - x/v -aj(xjyt) -i kjx,y t tr3(t')Ct'
,  

(14b)

to. However, in keeping with the cascaded linear mod-
el, we perform this operation using the sifting property where 46.
of the delta function. The effective signal r'(x,t) trav- ."
eling in the Bragg cell can be expressed in terms of the kl(x,..t.t) jw(x.,%)

bandlimited signal r'(t), and, by using Eq. (7), we can x b*(t - .*v + xit - t3 - t")x,.,tfl (14c
show its relationship to the drive signal r(t):

The light amplitudes a,. and as of the respective tap
r"(z.t) - r(t)bjt - (t - xv - to)ldt" weight planes are Fourier transformed in the variables

x and y to obtain the spectral plane amplitudes A 12 and
A3 as functions of the spatial radian frequencies a and

rlt')b(t - x/v - to - t'idt'. (10) . We need only to Fourier transform the kernels in
Eqs. (13b) and (14b) because the time-dependent

We shall model the conversion of the traveling acoustic terms are unaffected by the spatial transforms. The
pressure waves into light amplitude by assuming that spectral plane amplitudes are
the input light is retarded by the index waves as ex-
pressed by an exponential multiplier expcr'(x,t)j. If Ajo.w.t) =. - K.t.tr 1 (tir 2 (t'dtdt. ,5al
the argument is small, this multiplier is approximated
by 1 + jer"(x,t). We drop the unity term which repre- where -
sents the undiffracted light normally blocked in the
optical system. We define the amplitude weighting K f k,.v.t.t'.t)
aperture function as w(x,y); the output light amplitude
is therefore given as x expj(ax + jYIdxd"

at(x.-.t i = jtuix,Y)r"(x,t)a(xv,t) ( and

We combine Eqs. (10) and (11) to obtain the complete Asl,..t) = K 1 a..t.,:'rt'dtl~bi
Bragg cell transfer function P postulated in Eq. (6): - .

P(t'.t.x.yI + j (wx.y(bit - x/t - to - t'). (12) where
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K 3 (a,3.t,t-) = [l k3(xY.,t,t0) terms may begin to beat with the diagonal spectralIf-- terms as the two jammer frequencies come within few
x expUj(ax + $3y)]dxdy.. resolution elements of one another. Additional differ-

ences may exist in the analysis of transient phenomena
The two branches are combined by a beam splitter so which cause momentary spreading of the spectral

that the light intensity at the spectral plane is spots. We further conjecture that similar subtle dif-
A(a,0.t)- I A1 2j

2 + I A31
2 + 2 ReA, 2A;I. ferences can be observed between the performance of

the two alternative signal connection schemes.
The first two terms are baseband signals whose possi- We obtain the system kernel function and the signal
ble effects in generating spurious in-band frequency estimate for the open detector case by substituting
terms we ignore in this analysis. The cross term pro- D(a,O) = 1 into (17), and we express it in terms of the
vides the in-band signal term that is integrated by the tap weight plane variables by using Eq. (15):
detector whose aperture function is D(a,o). The sig- -
nal estimate generated by the detector is G(t',t",t".t) = Reif k12 x1,t.tt'1t (18

St) J D(a,)2 Re$A12(a.13,t)A;(a,4,t)Idad. (16) x k;1xv.t.t-)dxdy}.

By using Eq. (15) and collecting terms, we obtain the
grand system kernel formulation of Eq. (5) with s(t) 2 Reiffo a,1.x.y.ta;x.y.tdxdy}.

f E . eFor the open detector case, therefore, detection could
1(*3(a, t,t")Idad,3. (17) have been performed in the tap weight plane without

performance differences. For this case, then, we see

The detector collection aperture needs to be small the significance of the triangular overlap region of Fig.
enough to reject spurious terms yet large enough to 2(a), since the integral of Eq. (18) has nonzero terms
gather the desired signal located around the diagonal only in that domain. As one would expect, the kernel
of the second quadrant. While the illustration in Fig. is time stationary in the sense that it depends on time
2(b) shows all the spectral terms that acoustic ceils only through the differences t - t', t - t', and t - t
operating in the Raman-Nath regime would generate, We shall now examine a very important special case
our model of the Bragg selective devices has already where the time dependence can be reduced to a single
rejected most of the undesirable terms. Only the off- variable -r - t - t- , simplifying the system kernel
diagonal cross-spectral terms of the S-branch survive, model to a convolution with an impulse response.
It is important to observe that these terms do not
contribute to the signal estimate if they are sufficiently
far off-axis, since the spectrum due to the Z-branch, A. Impulse Response Model
and hence the product terms in Eq. (16), are zero at Let us examine the case of a pure jammer input to
those locations. We conclude, therefore, that an open the system without a wideband signal term present, as
detector aperture, i.e. integration over the complete shown in Fig. 6(b). For a sinusoidal input of frequency
spectral plane, leads to a good representation for most fo in the two orthogonal cells, the effective drive de-
cases. fined in Eq. (7) becomes a complex exponential. By

This model does not preclude, however, perfor- using Eq. (10), we write the effective signal traveling in
mance differences between this open detector configu- the x direction in the downshifted first cell and in the N
ration and one with a narrow slit on the diagonal. For direction in the upshifted second cell in the following
the case of two jammers, for example, the off-diagonal form:

r,(x,,.t) - exp[-2rf(t - xc - til;

r,(x., .tl - explU2rfot - y/t - t. 19

pFEUENCY If we use plane wave illumination in both branches.
with a phase difference of o, define a joint window
function w(xy), and collect all phase terms into 6, we

3 have
PHASE atx..t) = exp1Jwt.

L a'(x,.,t) = exptj.;1t - jo).

FACQUINCYrI UIC u'1xy = 4
3
u'(,IXy l&.XU.,t' X.

CRITICAL STAIILI POINT =o + 2rfo(t, -t0 --? '2.

21 2 t1 0 1 2 2 4 S 6 7

stAt IsPO,,E Substitution of Eqs. (13a), (14a). and (20) into Eq. (1Si
Fig. 7. Complex frequency response. yields
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i~t) =2 wtxy~ 6)We found the Fourier transform techniques easy to
.-j'J(21) use both experimentally and analytically; fast Fourier

algorithms and network analyzers provide the neces-
X exp(-j2rf0(y - x)/u~r3*(xy,t)dxdy , sary tools. Figure 7 illustrates a frequency response

that is stable because it does not circle the -1 point of
Let the input to the third cell be z(t) so that the the complex plane. The system response has a posi-
effective signal propagating along the y - x direction is tive real value at the jammer frequency; as the frequen-

cy increases, the response becomes complex valued
r'(x.y,t) z(t')b(t - y, + x/t - t3 - t')dt'. (22) and its magnitude decreases. The phase of the open

loop frequency response H() along with that of the
The detected signal given by Eq. (16) can be formu- closed loop response 1/[1 + H(w)] are shown for a

lated as a convolution: particular frequency. As the open loop phase angle -

reaches ir, H(w) crosses the negative real axis. Since
st) -J z(t')h(t - t')dt', the negative crossings cannot go past the -1 point, the

maximum achievable gain can be determined from the
ratio of the maximum and minimum values on the real

hi= 2 Relw(x~y) expU2rcv - x)fIlv + jilj (23)
faxis.

X b*(r - y/v + XL - t3)idxdy. C. Optimization Criteria

The complete optical system and the two input signals While exercising the model, we generally sought con-
r, and r2 are combined into this real-valued impulse ditions for which we can obtain the deepest jammer
responseh(T). This unique case, in spite of its simplic- suppression notch. To determine the closed loop sta-
ity, yields powerful analytical and experimental re- bility of the single-jammer situation using the Fourier
suits that helped to control instabilities. The expo- transform criterion, we write the open loop impulse
nential term shows that the phase shifts by 1800 for a response h(t) in the following form:
halfwave change in the optical path difference between =I(t cos(w0T), eT <, < T;
the two interferometer branches; time varying phase h(t) =0. elsewhere. (24)

changes must, therefore, be well controlled to preserve
the phase of the feedback signal. The window func- Here wo represents the jammer frequency we desire to
tion w(x,y) must also have constant phase. Otherwise suppress, OT is a delay generated by hardware limita-
contributions from various locations will cancel on tions, T is the Bragg cell fill time, and w(t) is a window
integration; optical aberrations, therefore, need to be function describing the amplitude profile of the im- .
controlled in both interferometer branches. pulse response produced by the geometry and illumi-

nation of the optical system. The closed loop frequen-
B. Stability Criteria cy response F(w) can be expressed as

Let us consider a negative feedback system having a F(w( = 1/11 + H()). 25)
filter in the return path with impulse response h(r), as
shown in Fig. 6(c). The condition for stability can be The stability criterion, expressed in terms of F(w), is
stated in terms of the Laplace transform L(s) of the that the closed loop frequency response phase never
impulse response of the feedback path. We require reaches 180 ° regardless of gain.
that all zeros of 1 + L(s) be in the left half-plane of s. We generated computer optimized window func-
For the feedback system analyzed, we may paraphrase tions over various blocking ratio values 3, which ex-
the stability condition: the poles of the system trans- presses the inaccessible fraction of the aperture time
fer function 1/11 + L(s)] must all fall in the left half- T. We use the stability criterion that the open loop
plane. frequency response H(w) must have less than unity

Our attempts to use the root method as a diagnostic gain at any frequency where its phase equals 1800.
and predictive tool ran into practical difficulties; our Slowly varying functions (Gaussian, linear, cosine) and
computer program, capable of finding the complex their sums were used to shape the impulse response.
roots of real polynomials, often reported numerical Figures 8(a) and (b) show the results of this optimiza-
overflow with sixty-fourth-order polynomials. To tion for a delay equal to 1.5% of the length of the
overcome these limitations, we seek alternative formu- impulse response 03 = 0.015). From Fig. 8(b), we note
lations for the stability condition. that a stable gain of 45 dB is theoretically predicted for

We express stability in terms of the complex fre- the window function shown in Fig. 8(a). This stable
quency response of the feedback path: the transform gain is obtained by measuring the amplitude at the r
H w must not circle -1. the critical stability point in crossings relative to the peak amplitude. However,
the complex plane. A sufficient condition of stability even the slightest phase error in the system will sud-
may be stated as requiring that the Fourier transform denly create instabilities at the point where the phase
of the impulse response must not have any negative nearly reaches 1800 inside the central lobe, limiting its
real values left of the - 1 point on the real axis, i.e., the stable performance to only 28 dB of suppression. This
system should have less than unity gain at any fre- optimization criterion, therefore, leads to systems that

- quency with a 1800 phase shift. are intolerant of small phase errors.
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"'" Fig. 8. Optimized system responses: (a) Gaussian impulse response; (b) frequency response for Gaussian model (5 dB/div); (c) linearly
apodized impulse response; (d) frequency response of linear model (5 dB/div).

We therefore recast the question into the following mum to zero at t - T + OT. Coincidentally, the
:.. form: "What is the maximum suppression that can be triangular geometry of the tap weight plane would
o..achieved for a given irreducible time delay with a given generate just such a sawtooth weighting for uniform

system phase error margin, and what is the optimum optical illumination, as suggested by the shaded region
impulse response shape?" We first defined a more shown in Fig. 2. Let us analyze the stability of a
stringent stability criterion that requires that the linearly tapered impulse response at baseband. We
phase of the closed loop frequency response remain introduce the parameter B to define the impulse re-
between -90 and 90*. Stated in terms of the open sponse and note the relationship that 8 = (1 - B)/{1 +
loop frequency response, we require that the real part B). We then have

. of H ( ) be greater than - 1 at all values of . W e refer1 2 - ) B, Q - )< r< Q +B ;.'. to this condition as the strong stability criterion; it h(r) -{2-r/B I-B I+B; t6

ensures a softer, more nearly monotonic frequency0. eswr.
response, which in turn guarantees a more gradual The real part of the frequency response is~performance degradation as phase errors are intro-

.. duced. Whereas the frequency response shown in Fig. G I e:~p] - } ~)epjrr t7
7 is stable, it does not meet the strong stability criteri- Gelf e[ip]- I-~)extp dr. ,

. on because the locus of H(w) crosses into the region left
",of the line where the real part of the response is equal to By using the coordinate transformation x = r - Iwe-1. In that region, the closed loop phase exceeds 90* ,  obtain

thereby violating our strong stability criterion. G B )r lQ+xll x. ~For a blocking ratio of =0.015, we can achieve a TB= I x o[l ~lz
. strongly stable suppression of 32 dB with the optimum
"impulse function as shown in Fig. 8(c). From Fig. 8(d) =sinp sinBp + sinB op sinp o p. 18

we see that the phase response approaches 180* much -P- Ep B p -- osP
~more gently than in Fig. 8(b), and therefore it offers a

more graceful degradation of performance with the The derivative of G(p) in integral form is
introduction of phase errors. This concept of strongB
stability and the demonstrated experimental results G'(p) sn 2B,- (I - X2

) 
cospxdx. 1'291

,'...can be used to design a rugged realizable system that
...- has maximal tolerance to phase errors induced by envi- To find the maximum and minimum values of G (p), we
""ronmental conditions such as vibration and tempera- observe that the derivative is zero at p = nr for all

ture changes. integer n with additional roots at p values where the
:'Computer optimizations based on the strong stabil- integral vanishes. The maximum of the function can

icriterion yil nitrsigresult: teoimm be found at and the firstminimum at .This
window function is a linear taper from the initial maxi- minimum was shown by computer analysis to be the
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4. largest minimum value of G(p). The values of G(p) at if the Bragg cell has a time-bandwidth product of 1000,
these two extremes are the blockage cannot exceed one-half of a resolution

element.
1. at p = 0 (maximum): (30) A comparison of modeling results using continuous

Gip) - sinwB 30 and sampled digital techniques gives us a simple tech-
- atp - (minimum). nique for estimating the accuracy of the discrete pre-

The greatest strongly stable amplitude gain, the sentation. The sampling of the impulse response at

negative of the ratio of the maximum and minimum Ar intervals can be interpreted in the following way.
The first sample, which is located at Ar, represents the

values of G(p), is 1/sincB. We can express the gain in impulse response in the adjacent region from time Ar/2
decibels as to 3Ar/2, omitting the time interval from zero to A1/2•

,ai -sin[( - 30)1( + )]1 (31) Therefore, sampling introduces an effective half-sam-
g B og - -- I 3 1) ple time delay into the system. Differences in the

Let us compare the stable gain result with that pro- stability values obtained by discrete and continuous

duced by an impulse response of uniform amplitude models can be reconciled with remarkable accuracy by

over the same time interval of length B: noting that sampling effectively nulls the first .1r12
interval of the continuous impulse response. Using

'[1/2B. (1 - B) < <(1 + B): (32) the previous numerical example, we conclude that at
10, elsewhere, least 1000 impulse samples must be used in a digital

The frequency response is model if gains as large as 60 dB are to be modeled
accurately.

HIP -f"_t.,)exwiPU-,a - sB ep~jp). (33)
Bp V. Experimental Results

The maximum response is at p = 0, and, if we confine The impulse response model allows us to relate the
our attention to the real axis, the largest minimum closed loop system performance to the open loop re-
occurs at p = 7r. The associated values of H(p) are sponse. As noted before, attempts to observe or mea-

sure light amplitudes at various planes in the system
. at p 0 (maximum magnitude) 34) operating in the closed loop mode influence system

Hp = sinB p - r (minimum on real axis) performance. We can measure the impulse response
I rB directly without perturbing the system and compare it

The maximum stable amplitude gain is, therefore, with the model description to estimate the closed loop
the same 1/sincB function we derived for the linearly system performance. We measured the open loop re-

apodized impulse response under stricter stability sponse in a manner similar to that discussed in Sec. III

constraints. The apodization for this case did not, in connection with Fig. 5 with a pure cw tone driving

therefore, affect the amount of stable gain available the two orthogonal Bragg cells.

Rather, it improved the quality of that gain. The A time domain representation of the impulse re-
apodization provides a 900 closed loop phase margin sponse can be obtained by using a short rf burst in the

allowing the system to operate with realistic error bud- Z-branch as the probe signal. The detector output is

gets. displayed on an oscilloscope as shown in Fig. 9(a); the

In Table I we show the amount of stable gain avail- horizontal axis is 1 As/div, and the vertical axis is a

able, indicative of the achievable notch depth, for vari- linear scale. The upper trace shows the 1-as envelope

ous blocking ratios at the transducer end of the Bragg of the rf burst signal that drives the third Bragg cell.

cell. The blockage must be carefully controlled to The spectral characteristics of the impulse response

achieve a large stable gain. For example, to achieve a can be measured as the frequency of the input signal to

60-dB notch depth,the blocking ratio must be <0.0005: the Z-branch is swept past the cw reference tone. The
use of a network analyzer allows us to measure both the
amplitude and phase response as shown in Fig. 9(b)l.
The network analyzer receives two inputs known as

Table I. Stable Gain as a Fnction ofthe BlockIn Ratio M Me reference and test channels. The reference channel is
Transducer End of the Bragg "l the probe frequency input to Bragg cell in the Z-

Stable gain branch of the interferometer, and the test channel is
Blocking ratio (dB) the detector output. .9

00001 73.9 The vertical scaling in Fig. 9(b) is ir/4 rad/div for the
0.0002 67.9 phase response; 7r crossings therefore occur at the up-
o0005 60.0 per and lower extremes of the display. The measured
0.001 54.0 stability is evaluated by subtracting the log amplitude
0.002 47.9 response at the 7r phase crossings from the response0.005 40.0

0.01 33.9 where the phase is zero. Due to the asymmetry, the
0.02 27.8 higher of the two amplitude readings at the r crossings
0.05 19.7 occurs below the central frequency and limits the sta-
0.10 13.5 ble gain to 18 dB.
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Fig. 9. System response for 5% time delay: (a) measured impulse
response; (b) measured frequency response; (c) Gaussian impulse

response model: (d) frequency response of Gaussian model.

--. :, atI 450 /DIV, 10 dB/DIV. 300 kHz/OIV

FUSE Fig. 11. Improved system response with reduced time delay: (a)
measured impulse response; (b) measured frequency response.

SPECTRUM

vIdt' JNOTCH
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a-. Fig. 10. Inverse transform of measured frequency response: (a
initial performances; b. improved cell response.

We used the measured experimental results from (b)
Fig. 9(a) in our model and calculated the frequency
response shown in Fig. 9(d); we predict a stable gain of
-20 dB. We note that the response is symmetric in
amplitude because we assumed that the impulse re-

4:sponse is real. The measured asymmetric frequency Fig. 12. Experimental results: (a) input spectrum and adaptive
response shows that the time domain response must system response with a 32-dB notch; (b) two-jammer input spectrum

%have some phase errors which cannot be deduced from and system response.
the measured data shown in Fig. 9(a). To illustrate
this phenomenon, Fig. 10(a) shows the results ob-'.
ta.ied by inverse transforming the measured frequen- main. The leading edge of the impulse response has
cy response seen in Fig. 9(b); this result reveals the the most prominent phase errors. Whenweexamined
location of phase response problems in the time do- the Bragg cell in an optical interferometer, we found a
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" two wavelength roll-off in the optical figure caused by performance levels. The key diagnostic tool is a net-
rounding of the cell at the tranducer edge. When the work analyzer that allows us to measure accurately
cell was repolished, the phase errors were significantly both the amplitude and phase of the frequency re-
reduced, as shown in Fig. 10(b). sponse of the system. By using this tool we could

To significantly increase the stable gain we must rapidly align the system, in an open loop mode and
decrease the relative time delay between the two estimate the performance in the closed loop mode.
branches of the interferometer. The time delay ob- The key analytic tool is an improved method for
served in the impulse response of Fig. 9(a), -500 ns, is modeling system performance. In this model, the en-
an accumulation of electrical and acoustical delays in tire optical system is represented by an linear transfer "J
obtaining an optical response from an electrical input, function that includes all known features of the sys-
We found that the total electrical delay due to cables tem. This model provides a methodology for analyz-
and amplifiers was <50 ns; most of the delay is there- ing the impact of hardware imperfections, such as fi-
fore attributed to the Bragg cell driven by the residual nite optical apertures and wave-front aberrations, on
signal. the transient and steady-state system response for any

Isotropic Bragg cells redirect diffracted light by generalized signal inputs.
twice the Bragg angle; in such a cell we can illuminate To analyze system stability, we focused on the pure
the transducer at the positive Bragg angle using the jammer case where the transfer function can be re-
upshifted diffraction mode to minimize the acoustic duced to an impulse response placed in the feedback
delay. However, the cells used in our experiments are loop, allowing control theory concepts to be applied.
birefringent, and the geometry is such that the dif- After overcoming some anomalies that tend to plague
fracted light is parallel to the transducer for the center digital simulations of analog systems, we found that
frequency. An examination of the Bragg cell driven by the most important criterion for stable performance is
z(t) showed that beveled transducer edges were re- to reduce the relative time delays to a minimum and to
sponsible for a large portion of the time delay. Our weight properly the impulse response. We have devel-
standard procedure in fabricating Bragg cells is to oped a strong stability criterion in which we can calcu-
bevel the edges to minimize chipping during the reduc- late the expected level of performance for a given de-
tion of the piezoelectric platelet to the final transducer gree of phase or gain margin.
thickness. For the acoustic velocity of these cells, a The experimental results confirmed in an iterative
0.3-mm bevel results in 485-ns acoustic transit from and interactive way the usefulness of these tools. We
the transducer to the unshadowed edge of the light, demonstrated more than 30-dB notch depths for a
When this cell was repolished to reduce the phase roll- system having a 50-MHz bandwidth and a time-band- ,
off at the transducer end, we made a special effort to width product of 200. We also demonstrated that
also remove the bevel. The resultant impulse re- notches are adaptively established for two jammers of
sponse is shown in Fig. 11(a); the time delay was de- unknown amplitudes, frequencies, and phases.
creased from 485 to <150ns. By examining the ir
crossings located at the vertical extremes of the phase
response in Fig. 11 (b), we conclude that the system can
now operate with more than 30-dB stable gain. We are pleased to acknowledge the contributions of

An example of stable performance is shown in Fig. G. S. Moore, C. D. Rosier, and E. H. Tegge to the design
12(a). The lower trace shows the spectrum of the and fabrication of the electronic hardware and those of

• received signal which consisted of a 50-MHz wideband M. D. Koontz to the design and fabrication of the
signal and a narrowband jammer at 90 MHz. The optical system. This work was supported in part by
horizontal scale is 1 MHz/div, whereas the vertical the U.S. Army Research Office.
scale is 10 dB/div. The upper trace shows the notch
formed adaptively by the system; this trace was ob-
tained by subtracting the logarithm of the output sig- Reens
nal from that of the input signal. It is, then, a measure 1. A. VanderLugt. "Adaptive Optical Processor." Appl. Opt 21,
of the frequency response of the system at steady state 4005 1982).
and shows a notch depth of -32 dB. We also tested 2. A. VanderLugt. "Optical Transversal Processor for Notch Filter-
the system using multiple jammers over various parts ing.' Opt. Eng. 23. 312 (1984).
of the frequency band. Figure 12(b) shows the results 3. J. F. Rhodes and D. E. Brown, "Adaptive Filtering with Correla-

for the case of two equal jammers, each 20 dB above the tion Cancellation Loop." Proc. Soc. Photo-Opt. Instrum. Eng.
signal; the jammers are -4 MHz apart and both are 341,140 (1983).
approximately at xidband. We see that the notch 4. J.- F. Rhodes,'"Adaptive Filter with aTime-Domain Impleflefta
depths are of the order of 20-25 dB. tion using Correlation Cancellation Loops." Appl. Opt. 22. 282

(1983).

VI. Sufmary and Co'.,usion 5. D Psaltis and J Hong. "Adaptive Acoustooptic Filter" ApplWe avecontrutedandtesed n oticl bead 6.Opt. 23. 3475 1984).
We have constructed and tested an optical bread- 6. A. VanderLugt. "Crossed Bragg Cell Processors," Appl Opt 23.

board system for adaptive filtering applications. We 2275 (1984).
developed several diagnostic and analytical tools for 7. M. A. Krainak and D. E. Brown, "Interferometric Triple Product

relating the open loop response to the closed loop Processor (Almost Common Path " Appl. Opt. 24, 1385 (1985)
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Optical Adaptive Filter; Analytical Model

A. M. Bardos

Harris Corporation, Government Information Systems Division
Mail Stop 13-7741, P.O. Box 98000, Melbourne, Florida 32902

Abstract

A general analytical model is developed for an adaptive optical filter. This model is
used to explain system performance limitations and relate them to specific imperfections of
the hardware implementation. Optimization of the system transfer function shows that 30-
35 dB of stable gain can be achieved with reasonable hardware and system tolerances.

Introduction

In earlier analyses of adaptive filtering, VanderLugt 1 2 described the basic operation
of a frequency domain processor in terms of an analogy to a discrete transversal filter.
The transversal filter is implemented as an optically tapped Bragg cell delay line that
contains time samples of the received signal. The output of each tap is weighted, as de-
termined by the processing operation, and summed to provide an estimate of a signal. The
estimated signal T'(t) is subtracted from the received signal s(t) to provide a residual
signal z(t) which controls the tap weights to form an adaptive linear predictive system.

Experimental result by Beaudet3 and coworkers, reported in a companion paper in these
proceedings, however indicated a need for a more explicit model able to describe the effects
of hardware limitations on system performance.

System description

Figure I shows only the key elements of the interferometric optical system and sug-
gests how we plan to model its system response in a feedback loop. We represent all three
Bragg cells with idealized transducer heights that render the region of interaction between
light and acoustic waves into a square format. The idealization shown generates the same
results as obtained by using Bragg cells with suitable anamorphic optical systems describedin Reference 3. The Bragg cells, with respect to an observation plane external to the in-

S . terferometer, appear to overlap as shown in Figure 2a. We refer to this plane as the tap
weight plane. The transducer of the Bragg cell that is disposed at 450 to the first twomust lie on the bisector established by the other two transducers.

3The two orthogonal cells of the S-branch receive the signal s(t), and produce a lightI m amplitude profile on the diagonal that is proportional to the instantaneous power spectrum
of s(t). Upon interference with the properly scaled instantaneous spectrum of the residual
signal z(t), the strong spectral terms are enhanced, and thus can be subtracted by the
feedback loop.

Figure 2b shows the spectral plane of the Bragg cells. Suppose that s(t) consists of
two Cw signals which appear at both positive and negative frequencies along the two spatial
frequency axes; we assume Raman-Nath operation for sake of this illustration. The signals
interact to also provide a set of four spectral components in each frequency quadrant; these
components are shown as filled circles. The upper right quadrant is marked (++), to indi-
cate that both cell No. I and cell No. 2 produce a frequency upshift. In our model the
upper left quadrant is used; in this quadrant the frequencies have a downshift/upshift
structure. The region in the upper left quadrant occupied by the photodetector covers the
domain of overlapping frequencies.

Suppose that the third cell is driven by z(t) which also consists of two frequencies
shown as open circles; these signals are shown with a slightly lower frequency so that we

* can visualize some important relationships. It is easy to see that these frequency compo-
nents overlap on the diagonal, provided that the frequencies of z(t) equal those of s(t)
and that the optical system magnifies the spectrum of cell No. 3 by 12.

Model development

We developed a linear model that describes the optical system in terms of a real'salued
transfer function G, referred to as the grand system kernel. The electrical system model
represents the optical system as a time dependent (adaptive) frequency response in a feed-
back system which subtracts the signal estimate '(t) from the signal input s(t), generating
the error function z(t) as shown in Figure 3a. To make a linear model possible, we treat

rr
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the inputs to the three Bragg cells as independent functions even though the same signal
might be driving two of those cells. The signal estimate (t), the output of the detection "'
subsystem (detector, filter, amplifier, etc.), can be expressed as a function of the signal
input s(t) which drives the two orthogonal cells, the residual function z(t) which drives
the third cell, and the transfer function G: -

S(t) - f s(t')s '') z(t''') G(t',t'',t1'.0dt' Ut' dt'1

The system kernel function G describes all the physical properties of the optical system;
that is, all the phase and amplitude effects as well as the convolution and correlation
nature of the architecture. Even causality is embedded in the kernel; instead of using
finite limits of integration, we require that G vanish for non-causal combinations of the
four arguments to prevent the future from influencing the present. The kernel function G p'
is the transfer function of the optical subsystem shown enclosed by dashed lines in Figure
I.

Let us first consider a Bragg cell whose inputs are the amplitude a(x,y,t) of the il-
luminating beam and the RF drive signal s(t); its output a(x,y,t) is the amplitude of the
diffracted light. We use a simplified model, in which the Bragg cell is treated as a
planar time-varying phase mask, so that the illumination wavefront and the output lightamplitude interact only at a single space-time point. Therefore we seek a Bragg cell

transfer function P of the following form:

a,(x,yt) - a(x,y,t)s(t')P(t',t,x,y) dt' (2)

This formalism has sufficient power to express the relevant performance character-
istics of a Bragg cell which performs five key functions: (1) it band-limits the electrical
signal, (2) it generates a propagating acoustic wave, (3) it performs a spatial aperture
weighting operation due to acoustic attenuation and the finite length of the cell, (4) it
converts acoustic pressure waves into multiplicative perturbations of the input optical
wave, thus generating the diffracted output light, and (5) it selects either the negative
or the positive spatial frequencies depending on the illumination geometry.

We shall combine the effects of temporal band limitation and Bragg selectivity into a
single composite transfer function that converts the input RF drive function into an
effective complex drive signal containing only positive temporal frequencies for an upshift
configuration, or negative ones for a downshift geometry. This band limitation can be ex-
pressed as a multiplication by the frequency response B(f) in the frequency domain, or as a
convolution with the impulse response b(t) in the time domain. For an upshift Bragg cell
geometry with bandwidth 6f, centered at fc, and uniform frequency response, we have

B(f) - rect[(f-fc)/6f(
(3)

b (4 t) - f-'(B(f)j - 6f exp(j211fct) sine(6ft)

For a downshift configuration we need only to use a negative carrier frequency in these
equations to obtain B-(f) or b-(t).

I The propagation of the signal in the x direction with acoustic velocity v and a tem-
poral offset t. can be described by replacing the time variable t with t-x/v-t.. However,
in keeping with the cascaded linear model, we perform this operation using the sifting
property of the delta function. We shall model the conversion of the traveling acoustic
pressure waves into licht amplitude by assuminq that the input light is retarded by the
index waves as expressed by an exponential multiplier expljfO(x,t)), where O(x,t) is the

* effective signal traveling in the Bragg cell, and c is an efficiency term. If the arqument
is small, this multiplier is approximated by ]+j( C(x,t). We drop the unity term which V
represents the undiffracted light normally blocked in the optical system. We define the
amplitude weighting aperture function as w(x,y) ; the output light amplitude is therefore V
given by equation (2) with

% ,K.K.~~~ 0 ..~ . .-~ .: ..&a:J.A l. ~:~



P(t',t,xy) - jcw(x,y)b(t-x/v-t9-t') 
(4)

By cascading the transfer functions of two crossed Bragg cells we obtain the light
output of the S-branch as

a,2 (x,y,t) -ff k,,(x,yt~t',t ) s(t') s(t")dt'dt' (5a)

where

k1(xy tt' t' ')- - (w,(x,y)w,(x,y)bb(t-x/)-t,-t1) b+(t-y/v-t,-t")a~x,y,
)  (5b)

In the Z-brarich of the interferometer we have a single Bragg cell that is rotated 45 °

with respect to those in the S-branch, and is scaled optically so that its spectrum matches
the scale of the cross-spectral terms of the S-branch. The propagation is along the diag-
onal of the second quadrant with an effective acoustic velocity of v/F2 to properly stretch
the spectrum; the distance from the transducer of an arbitrary point with coordinates x,%
is (y-x)/(2. The acoustic propagation time, the ratio of distance and effective velocity,
is therefore (y-x)/v for this Bragg cell. The optical output of cell No. 3, referenced to

-. the tap weight plane, can be written as

a,(x,yt) - k,(x,y,t,t"f ') z(t"'1V) t'' (Ea)

where

k,(x,yt,t,') - jcw,(x,y)b+(t-y/v4x/v-t,-t,,,)a,(x,y,t) (6b)

The light amplitudes a,, and a, of the respective tap weight planes are Fourier transformed
in the variables x and y to obtain the spectral plane amplitudes A,, and A, as functions of
the spatial radian frequencies a and P. The two branches are combined by a beamsplitter so
that the light intensity at the spectral plane is

.(QB.t A, . A, ' 2RefA, 2 A',]. 7

K
The first two terms are baseband signals whose possible effects in generating spurious in-
band frequency terms we ignore in this analysis. The crossterm provides the in-band signal
term that is integrated by the detector whose aperture function is D(a,fl). The signal
estimate generated by the detector is

).: :'.. (t) of'/ D~a,E)2Re(A12 (.,6,t)AU €,(a.,t) Jdd.(8

Prom which we obtain the grand system kernel formulation of equation (1) with

!(
-* t',t"',t"''',t, - ffDae)2Re{K,,aBtt',t"K,(aBtt"'')fldodB

I(9)
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where
w)- ffk,2 (x.Y.tt,t',t,,)eJ(x+Y)dxdy

and - (10)

K,(Q,.t't''') f k (x,Y.t.t'')eJ(ax*8Y)dxdy

The detector collection aperture needs to be small enough to reject spurious spectral
terms yet large enough to gather the desired signal located around the diagonal of the sec-
cond quadrant. While the illustration in Figure 2b shows all the spectral terms that

'% acoustic cells operating in the Raman-Nath regime would generate, our model of the Bragg
selective devices has already rejected most of the undesirable terms. Only the off-diagonal
cross-spectral terms of the S-branch survive. It is important to observe that these terms
do not contribute to the signal estimate if they are sufficiently far off axis, since the
spectrum due to the Z-branch, and hence the product terms in (8), are zero at those loca-
tions. We conclude therefore, that an open detector aperture; i.e. integration over the
complete spectral plane leads to a good representation for most cases. As one would expect,
the kernel is time stationary in the sense that it depends on time only through the dif-
ferences t-t', t-t'', and t-t'''. We shall now examine a very important special case where
the lime dependence can be reduced to a single variable 7 = t-t''', simplifying the system
kernel model to a convolution with an impulse response.

Impulse response model

Let us examine the case of a pure jammer input to the system without a wideband signal
term present. For a sinusoidal input of frequency f. in the two orthogonal cells, using
planewave illumination in both branches with a phase difference of 4 , we obtain an impulse
response formulation for the signal estimate

(11a)

s(t)- z(t')h(t-ti)dt'

h(i) -ff 2 Re(w(x,y)eJ2(Y -X)fd/4J b'(T-y/v+x/v-t,)Idxdy (11b)

where w(x,y) is the joint window function for all three cells, and 0 collects all phase
terms.

w(x,y) - C'w&(x,y)w 2 (x,y)w,'(x,y) (llc)
o - * 2itf.(t1 -t 2 )-r/2.

The complete optical system and the input signals to the S-branch are combined into this
real-valued impulse response h(r). This unique case, in spite of its simplicity, yields
powerful analytical and experimental results that helped to control instabilities.

Stability criteria

Let us consider a negative feedback system having a filter in the return path with
impulse response h(r), as shown in Figure 3c. We determine stability in terms of the com-
plex frequency response of the feedback path: the transform H(w) must not circle -1, the
critical stability point in the complex plane. A sufficient condition of stability may be
stated as requiring that the Fourier transform of the impulse response must not have any
negative real values left of the -1 point on the real axis, i.e., the system should have
less than unity gain at any frequency with a 1800 phase shift. Since the negative cross-
ings cannot go past the -1 point, the maximum achievable gain can be determined from the
ratio of the maximum and minimum values on the real axis.

-'. < ... :t -. -.'"'V"-"".-'".-"'- .- v -' .- '"' .- ".".,v-,'-,-. .'..
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Optimization criteria

* '- While exercising the model, we generally sought conditions for which we can obtain the
deepest jammer suppression notch. To determine the closcd-loop stability of the single-
jammer situation using the Fourier transform criterion, we write the open-loop impulse res-U ponse h(t) in the following form:

( wCt) Cos(woi), ST T

h(t) - (12)I0, elsewhere

- Here w. represents the jammer frequency we desire to suppress, 3T is a delay generated by
hardware limitations, T is the Bragg cell fill time, and w(t) is a window function describ-
ing the amplitude profile of the impulse response produced by the geometry and illumination
of the optical system. The closed-loop frequency response F(w) can be expressed as

NO - 1[I * H(im). (13)

4-

*" The stability criterion, expressed in terms of F(w), is that the closed-loop frequency res-
" " ponse phase never reaches 1800, regardless of gain.

We generated computer optimized window functions for various blocking ratio values t,
which expresses the inaccessible fraction of the aperture time T. Figures 4a and 4b show

.- the results of this optimization for a delay equal to 1.5% of the length of the impulse
• . response (J6=0.015). From Figure 4b, we note that a stable gain of 45 dB is theoretically

predicted for the window function shown in Figure 4a. However, even the slightest phase
error in the system will suddenly create instabilities at the point where the phase nearly
reaches 1800 inside the central lobe, limiting its stable performance to only 28 dB of

* suppression. This kind of optimization therefore leads to systems that are intolerant to
snall phase errors. To develop more rugged system performance, we defined a more strinernt
stability criterion that requires that the phase of the closed-loop frequency response re-
main between -901 and 900. Stated in terms of the open loop frequency response, we require
that the real part of H((,) be greater than -1 at all values of w, not only on the real axis.
We refer to this condition as the strong stability criterion; it ensures a softer, more

* "" nearly monotonic frequency response which, in turn, guarantees a more gradual performance
degradation as phase errors are introduced.

For a blocking ratio of)3=0.015, we can achieve a strongly stable suppression of 32 dB
with the optimum impulse function as shown in Figure 4c. From Figure 4d we see that the

• .phase response approaches 1800 much more gently than in Figure 4b. This concept of strong
* - statility and the demonstrated experimental results can be used to design a rugged realiz-

able system that has maximal tolerance to phase errors induced by environ;,ental conditions
such as vibration and temperature changes.

Computer optimizations based on the strong stability criterion yield an interesting
result: the optimum window function is a linear taper from the initial maximum to zero at

* .. t=T+13T. Let us analyze the stability of a linearly tapered impulse response at baseband.
We introduce the parameter B to define the impulse response and note the rclationship that
• 3=(l-D)/(+B). We then have that

-4.

| (2-1)/2B, (I-B) < T < (1-B) (14t
h(i)-

0. elsewhere.

The real part of the frequency response is

C(p) - Re[H(p)) - Re{ J h(i)e jp' diJ

+ ~... . . . . ..... •...... .. ,........ .... .... •. . ..



Evaluating the integral, we obtain

31np ainBp sJnBp sinp
0(p) - . - * osp cosBp

Bpp Bp B

*h-.

The greatest strongly stable amplitude gain, the negative of the ratio of the maximum
and minimum values of G(p) is l/sincB. We can express the gain in decibels as

Gain - - 20 log(slncB)- - 20 log (16)(1)/(1')

In Table 1 we show the amount of stable gain available, indicative of the achievable
notch depth, for various blocking ratios at the transducer end of the Bragg cell. The
blockage must be carefully controlled to achieve a large stable gain. For example, to
achieve a 60 dB notch depth, the blocking ratio must be less than 0.0005; if the Bragg cell

*. has a time bandwidth product of 1000, the blockage cannot exceed one-half of a resolution
element. While this table is only valid for the linearly tapered, baseband impulse res-
ponse, it provides a strong indication of performance trends for the general case.

Table 1: Stable gain as a function of the blocking ratio at the
transducer end of the Bragg cell.

Blocking Ratio Stable Gain (dB)

0.0001 73.9
0.0002 67.9
0.0005 60.0
0.001 54.0
0.002 47.9
0.005 40,0
0.01 33.9
0.02 27.8
0.05 19.7
0.10 13.5

Summary

We have developed an improved method for modeling the system performance. In this
model, the entire optical system is represented by an linear transfer function that in-
cludes all known features of the system. This model provides a methodology for analyzing
the impact of hardware imperfections, such as finite optical apertures and wavefront aber-
rations, on the transient and steady state system response for any generalized signal in-
puts.

To analyze system stability, we focused on the pure jammer case where the transfer
function can be reduced to an impulse response placed in the feedback loop, allowing con-
trol theory concepts to be applied. We found that the most important criterion for stable
performance is to reduce the relative time delays to a minimum and to properly weight the
impulse response. We have developed a strong stability criterion in which we can calculate
the expected level of performance for a given degree of phase or gain margin.
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Optical Adaptive Filter; Experimental Results
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oatlAbstract

An interferometric optical system is configured with an active feedback loop as an
optical adaptive filter. The closed loop characteristics of the system are found to be
sensitive to alignment and aberrations. An open loop diagnostic procedure is applied to
the system to develop stability to a level supporting 30 db adaptively formed frequency re-
jection notches. The time delay in the closed loop signal path is found to be the limiting
factor in system performance.

Introduction

In this paper we discuss the experimental results associated with the development of
an interferometric system which allows for adaptive processing of wide band signals. This
system can be viewed as a transversal filter with feedbackl 2 for applications such as
channel equalization for wideband communication or adaptive temporal filtering. Similar
architectures can be configured for the processing of phased array radar signals for null

-. steering or beam forming 3 . Here we concentrate on this architecture as it applies to the
removal of an agile jammer in a wideband spread spectrum system. The frequency, amplitude
and phase of an interferor are unknown, for which a notch filter is constructed to elimi-
nate the unwanted signal and therefore improve the signal to noise ratio. We have found
the stability of the feedback system to be of paramount importance in achieving greater

I .V than 30 db notch depths such as those shown in Figure 1. One trace shows the spectrum of a
received signal which consisted of a 50 MHz wideband signal and a narrowband jammer at 90

9MHz. The horizontal scale is I MHz per division while the vertical scale is 10 db per
division. The second trace shows the notch formed adaptively by the system. This trace
was obtained by subtracting the logarithm of the output signal from that of the input sig-
nal. It is, then, a measure of the frequency response of the system at steady state, and
shows a notch depth of about 32 db.

System description

Figure 2a is a simplified schematic of the Mach-Zehnder interferometer chosen for our
4 experimental system. A received signal s(t) is input to both Bragg cells of the S Branch

leg. S(t) is also applied to a summing junction where z(t) is formed. This signal repre-
* sents the difference between s(t) and the signal estimate. Z(t) is the output signal with

. .slowly varying components, jammers, removed. Two states of this input to cell 3 will be
considered for discussion. In the closed loop state, the detector output will be fed back
through the summing junction to the input to cell 3. The gain will be referenced for our
discussion to 0 db when the magnitude of s(t) is equal to the signal estimate at the summ-

-.2 . ing junction. The amount of excess gain that can be tolerated while maintaining system
i .stability will be a measure of the system effectiveness in creating notch depths. That is,
* the notch depth attainable increases as more gain is available to the feedback loop. The

open loop state refers to the condition where the detector output is prevented from re-
entering the system by breaking the gain path to the summing junction.

Figure 2b is a schematic of the optical system implemented. This configuration allows
us access to intermediate processing planes useful for alignment and diagnostic purposes,

* 0.-* although at the expense of a more nearly common path implementation which would be less
* 'sensitive to vibration, thermal gradients, air currents and acoustic coupling. The light

source is a 15 mw Helium-Neon laser whose output beam is expanded by lenses Li and L2, and
divided into two beams by beamsplitter BS1. Cylindrical lenses surround the Bragg cells to
focus the light into a horizontal line for efficient illumination. The Bragg cells are
constructed from TeO2 material which is oriented to operate in the slow shear mode. The

'd ?bandwidth of each cell is 50 MHz, centered at 90 MHz, and the cell fill time is 40 usec.
Quarter-wave plates, not shown in Figure 2b, produce circularly polarized light at the
entrance to Bragg cells I and 3 to improve diffraction efficiency and spectral band uni-

' .. formity. Cylindrical lenses C2 through C6 serve to mutually image the two Bragg cells into
a square format at the tap weight plane. Lenses C8 and L8 create the Fourier transform
just beyond the beam combiner at the spectral plane where the two Fourier transforms are
joined to make heterodyne detection possible. Lens L9 serves to demagnify the transform

-. onto the photodetector.

%
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The feedback cancellation can be considered in the frequency plane as cells 1 and 2
forming a reference region containing the spectrum of signals present in the system. Cell
3 is then used to form the instantaneous power spectrum of s(t) which is used as a templateto separate slowly varying signals, such as a jammer, from the signal so that it can be
used in the feedback loop. As cell 3 forms the signal minus the signal estimate, a varyingsignal that contains information does not allow the feedback signal to null s(t). L

As in any interferometer, the interfering beams must overlap to produce an output at
the photodetector. Since the interference is coherent, the light beams must also be coli-
near or phase differences across the overlap will decrease the output. Preliminary align-
ments obtained by visual observation of the light beams produced a detector output over the
frequency band. The two legs were properly oriented and scaled such that any frequencies
in the Z branch leg would track the corresponding diagonal spot produced in the reference
leg. However, closed loop operation produced oscillations when the system gain was in-
creased beyond 0 db or that required to produce a photodetector output equivalent to the
input signal in the open loop mode. Here frequencies that were stable produced 3 to 6 db
of cancellation. The visual alignment done to this point was not phase competent to pre-
dict the phase relation of feedback signals across a band of interest.

Initial phase alignment

Analog electrical signal processing techniques are readily available to provide this
information but our optical system must provide electrical responses to utilize them. One
such way to accomplish this is to use the photodetector output and the drive signal input.
A network analyzer was used in this manner to produce the responses measured in Figure 3.
The phase and amplitude of the detector output were measured relative to the Bragg cell
input drives in the open loop response mode. The reference channel was driven with the
same signal as the three Bragg cells, and the channel under test received the photodetector
output. A necessary condition for closed loop stability is that the open loop system phase
response must not pass through 180 degrees at any point where the system gain is greater
than one. Figure 3a shows the amplitude anc phase from the network analyzer at the initial
state of alignment. The phase is shown by the sawtooth waveform, where one division re-
presents 90 degrees of phase and the horizontal scale is 100 KHz per divisison. As we see,
the phase changes by 360 degrees at approximately 100 KHz intervals for this early stage of
alignment. By adjusting the relative positions of the Bragg cells, we removed the linear
component of the phase change to the degree shown in Figure 3b. Here we see that the phase
is nearly flat over approximately 10 MHz of the passband. The residual phase change is
slightly curved; this is indicative of a difference in the wavefront curvatures from the
two branches of the system. The upper trace in Figure 3b showns that the amplitude re-
sponse has a 2.5 db variation over a 10 MHz frequency band centered at 90 MHz.

The curvature is a second order effect that is generally not noticed until the linear
phase has been fully compensated; it represents a few wavelengths of departure from tele-
centric operation and normally cannot be detected by visual alignment alone. The phase
curvature is more readily observed in Figure 3c where we display the response '.n the passband
from 70 to 110 MHz. We note that the phase varies slowly near 90 MHz and then with in-
creasing rapidity, as is characteristic of a quadratic function, near the band edges. Fig-
ure 3d shows the next stage of correction; there is still a 90 degree phase shift over the
bandpass and a significant change in the amplitude response. The amplitude response is a
strong function of the Bragg cell alignment. We could have adjusted the Bragg angle for
more uniform response but decided to optimize the response at midband to obtain the highest
possible signal to noise ratio (SNR). At this stage of system alignment we obtained about
12 db of jammer suppression; to obtain more suppression we needed to further analyze the
basic causes of system instability and find ways to further modify the hardware based on
the analytical results.

Impulse response considerations

To simplify examination of the system dynamics and to understand the criteria of sta-
bility, the system is reduced to a treatment of the Z branch leg as the feedback element
and the reference leg as an established reference pattern. This is valid for the case of a
CW jammer4 ,5, This impulse response model allows us to relate the closed loop system per-
formance to the open loop response. Attempts to observe or measure light amplitudes at
various planes in the system operating in the closed loop mode influence the system perfor-
mance. However, we can measure the open loop impulse response directly without perturbing
the system, and compare it with the model description to estimate the closed loop system
performance. We measured the open loop response in a manner similar to that in connection
with Figure 3, with a pure CW tone driving the two orthogonal Bragg cells.

A time domain representation of the impulse response can be obtained by using a short
RF burst in the Z branch as the probe signal. The detector output is displayed on an
oscilloscope as shown in Figure 4a; the horizontal axis is I us per division and the
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vertical axis is a linear scale. The upper trace shows the 1 us envelope of the RF burst
signal that drives the third Bragg cell. The spectral characteristics of the impulse re-
sponse can be measured as the frequency of the input signal to the Z branch is swept past
the CW reference tone. The use of a network analyzer allows us to measure both the ampli-
tude and phase response as shown in Figure 4b. For this measurement the reference channel
is the probe frequency input to the Bragg cell in the Z branch of the interferometer and
the test channel is the detector output.

The vertical scaling in Figure 4b is 90 degrees per division for the phase response;
* ~ 180 degree crossings therefore occur at the upper and lower extremes of the display. The

measured stability is evaluated by subtracting the log amplitude response at the 180 degree
phase crossings from the response where the phase is zero. Due to the asymmetry, the high-
er of the two amplitude readings at the 180 degree crossings occurs below the central fre-

-quency and limits the stable gain to 18 db which will adapt to produce approximately 18 db
*notches.

We used the measured experimental results from Figure 4a in our model and calculated
the frequency response shown in Figure 4d; we predict a stable gain of about 20 db. We
note that the response is symmetric in amplitude because we assumed that the impulse res-

., . ponse is real. The measured asymmetric frequency response shows that the time domain re-
sponse must have some phase errors which cannot be deduced from the measured data shown in
Figure 4a. To illustrate this phenomenon, Figure 5a shows the results obtained by inverse
transforming the measured frequency response seen in Figure 4b; this result reveals the

* location of phase response problems in the time domain. The leading edge of the impulse
response has the most prominent phase errors. When we examined the Bragg cell in an opti-
cal interferometer, we found a two wavelength roll-off in the optical figure caused by
rounding of the cell at the transducer edge. When the cell was repolished, the phase
errors were significantly reduced, as shown in Figure 5b.

To significantly increase the stable gain we must decrease the relative time delay
between the two branches of the interferometer. The time delay observed in the impulse
response of Figure 4a, approximately 500 ns, is an accumulation of electrical and acousti-

*. . cal delays in obtaining an optical response from an electrical input. We found that the
total electrical delay due to cables and amplifiers was less than 50 ns; most of the delay
is therefore attributed to the Bragg cell driven by the residual signal.

Isotropic Bragg cells redirect diffracted light by twice the Bragg angle; in such a
cell we can illuminate the transducer at the positive Bragg angle, using the upshifted dif-
fraction mode to minimize the acoustic delay. However, the cells used in our experiments

* are birefringent and the geometry is such that the diffracted light is parallel to the
* -." transducer for the center frequency. An examination of the Bragg cell driven by z(t) show-
* ed that beveled transducer edges were responsible for a large portion of the time delay.

Our standard procedure in fabricating Bragg cells is to bevel the edges to minimize chip-
*' ping during the reduction of the piezoelectric platelet to the final transducer thickness.

For the acoustic velocity of these cells, a 0.3 mm bevel results in 485 ns acoustic transit
from the transducer to the unshadowed edge of the light. When this cell was repolished to
reduce the phase roll-off at the transducer end we made a special effort to also remove the
bevel. The resultant impulse response is shown in Figure 6a; the time delay was decreased
from 485 ns to less than 150 ns. By examining the 180 degree crossings located at the
vertical extremes of the phase response in Figure 6b, we conclude that the system can now
operate with more than 30 db stable gain.

Summary

We have constructed and tested an optical breadboard system for adaptive filtering
applications. We developed several diagnostic and analytical tools for relating the open
loop response to the closed loop performance levels. The key diagnostic tool is a network

-. analyzer that allcws us to accurately measure both the amplitude and phase of the frequency
response of the system. By using this tool we could rapidly align the system in an open
loop mode and estimate the performance in the closed loop mode. The importance of time
delays became quantifiable. This approach was instrumental in achieving system stability
which supported 30 db adaptively formed notch depths.

We are pleased to acknowledge the contributions of G. S. Moore, C. D. Rosier, and E.
H. Tegge to the design and fabrication of the electronic hardware, and those of M. D. Koontz
to the design and fabrication of the optical system. This work as supported, in part, by
the U. S. Army Research Office.
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*Spatial and temporal spectra of periodic functions for
spectrum analysis

"a p*

S"" A. VanderLugt and A. M. Bardos

,

Both the spatial and the temporal spectra of reference signals used in interferometric spectrum analyzers
affect the system performance. We define a class of bandlimited reference signals that have N discrete fre-

." quency components of equal magnitude. We show that the system performance is primarily determined
by the aperture weighting function and is much less dependent on the specific signal waveform. The aper-
ture weighting function can he used to match the spectral shape to the photodetector size, which then opti-
mizes the dynamic range. Further. since the spatial aperture weighting is converted to an equivalent tempo-
ral weighting, this function can also be used to control spurious temporal modulation products. The analv-
sis is extended to include results for periodic chirp signals such as those produced by VCO or SAW devices
and shows that the results are not affected by using a reduced duty cycle. We also find that the effect of
using finite as opposed to point photodetectors is to introduce an additional factor to the aperture weighting
function. Control of both the spatial and temporal modulation products introduced by the periodic refer-
ence is necessary to achieve the expected dynamic range.

I. Introduction Gaussian noise. We then show that, by selecting the
SIn a previous paper we described an approach to in- appropriate apodization and aperture conditions for the

terferometric spectrum analysis that provides a sig- reference beam, spurious modulation can be made
nificant increase in the dynamic range.' The system vanishingly small. Experimental results that confirm
uses two Braga cells in an interferometric arrangement. these analyses are given in Ref. 2.
The signal to be analyzed is fed to one Bragg cell to . Background

"." provide the instantaneous spectrum, while a reference
signal is fed to the second Bragg cell to provide a dis- The basic operation of the interferometric spectrum
tributed local oscillator at the Fourier transform plane. analyzer can be explained with the aid of Fig. 1. The
As a result, a fixed temporal offset frequency is gener- signal f(t) drives a Bragg cell in the lower leg of the
ated at each photodetector position. This fixed fre- Mach-Zehnder interferometer. The instantaneous
quency offset permits a narrowband postdetection filter spectrum is
to separate the signal term from the bias terms at the L
output. Since this signal term contains the amplitude Frlp.t I f= (t - x/vcf expjpx Idx. (1

components of the spectrum, the dynamic range ex- where L is the length of the Bragg cell. v is the acoustic
% pressed in decibels is nearly doubled compared with vei p is the rn sptia requency, an t a ic" "'"that of a power spectrum analyzer. Other advantages velocity, p is the radian spatial frequency, and T -- L/.

tha o apoerspetrm naze. Ohe avataes A refe eesgal r(t) drives a Bragg cell located in theof the interferometric approach are improved short uference sign terfereter. I t in te
pulse detectability and immunity to scattered light upper leg of the interferometer. Its instantaneous

a" Analytical and experimental investigations show that Fourier transform R-(p.t also occurs at plane P.,,Anal tica nd eer imental inve a s tigcatim t s ow that where it is combined with F -r p.t). Before beingthe reference waveform has a significant impact on the combined, however. one of the two spectra are geo-

sstem dynamic range by being the prime source metrically shift
spurious modulation. In this paper we give a brief re- m ed in the p direction to generate the
view of the operation of the interferometric spectrum offset frequency fd.

S"analvzer. We analyze the spatial and temporal char- The intensity at the Fourier plane is the square of the
acteristics of a generalized reference waveform which sum of the amplitudes produced by the signal and ref-* cn erssoen rlzdrfrnewvfr hc rnefntoscan represent signals such as an impulse train, chirp erence functios:
waveforms, pseudorandom sequences, and white .t) = IFp.tni-'+ IRIp.tij-

The authors are with Harris Government Systems Sector. P.O. Box + 2FiRp.t i Rp.t il cos'27rfdt + 01p I.

37, Melbourne. Florida 32902. = JI(p.t) + I..pp.tI + lI(p.t . i2
Received 7 July 1984.
0003-6935/84/234269-11$02.00/0. where we have dropped the subscript T: we shall assume
,1c 1984 Optical Society of America. that all time signals are truncated by the finite lengths
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MUMERU m MRON spectrum analyzer are useful tools to assess the per-

formance of the system at various test points. It is
sou~el , important, therefore, to examine the temporal spectrum

of the signals as well as the spatial spectrum to accu-
....* , ' rately interpret the results and to indicate how we can

improve the performance of the system. We call the
spatial/temporal Fourier transform the mixed trans-

.f orm because, when displayed as a 2-D function, the

independent variables represent spatial and temporal
frequencies.

.. FFrom Eq. (2) it is clear that the reference waveform
Fig. 1. Interferometric spectrum analyzer. R(p.t) plays an important role in the performance of the

system. The desired characteristics are that (1) the
magnitude should be nearly equal at all photodetector

W-s *sites, 12) the spatial and temporal frequencies should
.... .be coupled so that, with a relative geometric displace-

ment between the reference waveform and the signal
spectrum, equal temporal offset frequencies are pro-
duced at all photodetector locations, (3) the amplitude
should not be a function of time, and (4) the duty cycle

...... of the drive signal must be high so that the light is effi-
Fig. 2. Block diagram of the postletection electronics. ciently used.

In Ref. 1 we showed that, for a given bandpass filter
shape, the number of photodetectors N is 2.5 times the
desired number of resolvable frequencies in the received

of the Bragg cells. This result shows that the intensity signal. The reference signal must, therefore, contain
function contains two bias terms, which we denote by at least N frequency components. Let r(t) denote a
It(p,t) and 12(p,t), that have temporal frequency signal generated by summing N frequencies produced
components centered at baseband. The third term by equal amplitude, sinusoidal oscillators of phases o,.
13(p,t), is the spectral cross product of the signal and The resulting reference signal can then be represented
reference waveforms that, by virtue of the geometric by
shift, has been offset to frequency fd. This term can be N2

separated from the bias terms if, for each photodetector rit I _ cos2Mnf - 13)
output, we use a narrowband filter that passes only N anN a

those temporal frequency components close to fd. The where f1 = Nlfo and f2 = NJo are the lowest and highest

phase 0(p) is the difference between of the phases of frequencies in the signal; this representation is used
F(p,t) and R(p,t ). because Bragg cells are bandpass devices. The valueTmodl and test th eof fA,, the frequency difference between adjacent oscil-

To model and test the performance of the system we lators, is chosen so that there is one photodetector forineed to consider several other elem ents of the system . e c s il t ri h o r e l n f t e s e t u
Figure 2 shows the interferometer with its input signals each oscillator in the Fourier plane of the spectrum
f(t) and r(t). The output of the optical system consists analyzer.

of individual temporal signals produced by discrete Since r(t) contains N discrete frequencies, each a

photodetectors. These signals are amplified-and passed harmonic of the basic. frequency fo, it must also be a

through a narrowband filter centered atfd. A nonlinear repetitive signal with repetition period T, = 1/fo. We
device compresses the range of amplitudes to facilitate can generate a surprising variety of waveforms by

rectification and to display the wide dynamic range of specifying the phases appropriately For example. if
the signal. The outputs from the rectifiers are then we choose the p,, to be equal to zero. r(t) is an impulse

low-pass filtered and fed to a multiplexer so that the train 3:
frequency components can be polled to satisfy opera- r I - c sinN +rift
tional needs. I

Il. Mixed Transform Concept If we choose the d), to be a linear function of n (e.g.. o,
= n¢o), the impulse train is advanced or delayed ac-

The operation of any spectrum analyzer is basically cording to the sign and magnitude of 0o. If the phases
determined by the spatial Fourier transform of the time are quadratic in n so that
signal that flows through the Bragg cell. In a pouer

% spectrum analyzer, the spatial transform of the signal ,rn-

is sufficient to fully describe the behavior of the system. Nf,4

To obtain better dynamic range, however, the inter- r(t) is a repetitive chirp function whose period is T_,
ferometric spectrum analyzer produces a temporal whose duty cycle is d, and whose frequency range is
signal that is subjected to further processing to extract from f to ?2.
the information. Test equipments such as an electronic An interesting example of the behavior of rFt). which
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.N2

rix~t) Max) 1 expf-j2rni,1, - x1L + jo,

i1 ~ We now calculate the mixed transform of r( x,t ),which
is defined as

=~t,3 .Y .rxt) expDj2-riax - 3t 11dxdt. (6)

where we now use a to denote a spatial frequency and
03 to denote a temporal frequency. Throughout the
analyses that follo%, we drop all scaling factors and

, ,, ] unimportant phase factors. It is advantageous to cal-
culate the spatial transform first; we do so by using Eq.
(5) in Eq. (6) to get

VAUc 04 T~ R(cat) = ax) 1:expI-j2rnoh(t - x/vi + j

Fig. 3. Chirp function with duty cycles of zero, one-half. and one. X exp(j27rax )dx. (7)

By separating the time and space dependent terms and

shows the transition from an impulse train to a chirp by performing the integration over space, we find

train, is given in Fig. 3. The upper trace shows two that
• . periods of r(t) when the phase is zero for all n. The R(a I) = E Alo + nfn~u exp(-j2rnfot +j), 8)

middle trace is that for a quadratic phase function ac-
cording to Eq. (4), but with d = 'L/2; we note that the re- where A(a) is the Fourier transform of the aperture
petitive chirp function now has a duty cycle of 50%. weighting function a(x). To illustrate more clearlyThe lower trace shows the chirp function when d = 1; some of the features of R(a,t), we let a(x) = rect(x!L)

chirp fucto has dutyr cycl ofat) welt50%= et~/
the chirp now has a 100% duty cycle. Thus we find a so that Eq. (8) becomes
smooth progression from an impulse train to a full duty
cycle chirp as d is changed from 0 to 1. In all three cases R(o.t) = Z sinc[L(a + nfo/u)] exp(-j2rnf t + jo, . (9)

we translated r(t) to a center frequency which shows n

how the reference signal will look when it drives the We see that the reference signal in the Fourier plane
Bragg cell. The center frequency in this case is three consists of a set of sinc functions, sometimes referred
times the highest frequency of the baseband signal. We to as beads, that are centered at each of the N photo-
also normalized each waveform to reflect the fact that detector positions. Each bead has an associated pure
the Bragg cell diffraction efficiency is constrained to a frequency that is a harmonic offo. We now examine the
value less than one. Each of these signals is a suitable relationship of the length L of the Bragg cell to that of

, " reference signal: the choice tends to be with a high duty the repetition period L, = LT. If L >> L, the Bragg
cycle chirp so that the light power is efficiently used. cell contains many periods of the reference signal. The

Other useful reference waveforms can be generated beads then become very narrow relative to their spac-
by a proper choice of the phases. A repetitive pseudo- ings; these beads are centered at a = -nfo/l = -n/vT,
random sequence of length N = 2r - 1, where r is an = -n/Lr. This condition is useful when the photode-
integer, can be produced if the phases for the various tector spatial duty cycle is small because the available
frequencies are suitably chosen.4 If the o, are random, light is then concentrated onto the detectors. However.
the resulting signal simulates a bandlimited noise source the reference beam Bragg cell, whose bandwidth is equal
that, nevertheless, retains a repetitive feature. to the signal analysis bandwidth, must then have a very

The Bragg cell presents the drive signal r(t) to the large time-bandwidth product to handle several periods
illuminating reference beam and to the subsequent of the reference signal.
optics for Fourier transformation in the form of index Although it may be impractical to use several periods
of refraction waves propagating at the acoustic velocity, of the reference signal. it is worthwhile to consider the
The amplitude profile of the illuminating beam, the use of a smaller number as a means to shape the spatial
acoustic attenuation, the size limitations of the cell, and frequency amplitudes to better match the size of the
any other weighting factors combine to form a multi- photodetectors. As noted before, the photodetectors
plicative aperture weighting function a(x). These spacing must be equal to 11L, and we let h denote the
features of the interaction can be expressed in the form spatial duty cycle. It is easy to show that the SNR and
a(x)r(t - x/v). Bragg selectivity and the finite aper- dynamic range are maximized when the duty cycle is
tures of the optical configuration will allow only the equal to one. It can also be shown that, if h _< 1, the
positive or negative spatial frequency terms to propa- dynamic range is maximized when hL = 1.37L, under
gate. Thus we shall replace each cosine by the down- the assumption that the Bragg cell is uniformly illumi-
shifted temporal and spatial frequency terms and omit nated. In general, the aperture weighting function a(x I
the complex conjugate terms; the optical reference input will cause further spreading in the Fourier plane. so that
function is then defined as L will need to be increased somewhat to achieve opti-
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time-shifted versions of the reference signal as it passes
through the Bragg cell. .

We illustrate this concept by showing in Fig. 5 a ref-
erence signal that is shifted progressively in time in the
vertical direction. For any given spatial position xo we
find the temporal function by reading the values along
a vertical line positioned at xo. At any given time to we

B _________ __8 d, find the spatial function resident within the Bragg cell
Il_. \ by reading the values along a horizontal line through to.

From the 2-D space/time representation shown in Fig.
5, we can also obtain the mixed transform shown in Fig.
4 if the optical aperture of a Fourier transform system
is limited to ±L/2 in the space dimension and is infinite P

______in the time dimension.
SPATL So far we have examined the characteristics of the

reference waveform as it affects the cross-product term
in Eq. (2). We now consider the bias term that is due
solely to the reference beam. From Eq. (8) we find that -

I the intensity 12(a,t) is
N2 N 2

Fig. 4. Magnitudeofthemixedtransformforanarbitrarysignaland 12(a,t) I JR(a,t)12 -E exp[-j2r(n - m )fotj
uniform illumination. n-N, ,nN

X exp1,(0. - o.)] A(a + nfo/v)A*(a + mfo/ve. (13)

The mixed transform for the bias term can be readily
mum performance. We return to the subject of aper- obtained by finding the temporal transform of Eq.
ture weighting in a later section. (13):

We now complete the mixed transform by calculating
the temporal frequency content. We have that I2(a,O) = F_ 1 expU(O. - o )]A(a + nfo/lv)

R(a d) - Ra,t) exp(-j2rlJt)dt. (10) X A*(a + mfo/tl[I3 + in - m)fo]. (14)

The conclusion that we reach from Eq. (14) is that the
bias term, in general, contributes energy at all integer

R(cd) = Z expGO,.)A(a + nfo/v)6(0 + nfo). (11) multiples of fo. There is a special set of conditions,
however, for which I2(a,) has energy only at = 0.

This relationship can also be written in an equivalent This set of conditions is that a (x) = rect(x/L), that L
form as is equal to some integer multiple of L,, and that point

photodetectors are placed at integer multiples of fo/v.
R(a .1 ) - A(a - 13/) exp(J.)60( + nfo). (12) In this special case we find that the sums in Eqs. (13)

7 and (14) can be performed for n = m, and the result is
We see that R(a,) consists of a two-dimensionally that the power spectrum of r(x,t) is constant in time and
coupled skew function that is sampled by a set of phase at all photodetector positions.
weighted delta functions creating N discrete terms, or

% beads. There is one bead at each photodetector posi-
tion, shifted by the desired frequency nto and distance j,__hv_&_.JJu . i
n/o/v, with a shape described by A(a). Due to the na- -r._,J,__.. iL0 AU J, A INA
ture of the sampled skew function, we find that the
magnitude of the mixed transform is independent of the .

specific repetitive reference signal r(t). W_ WAAM
To more clearly visualize this conclusion, we note A LA

from Eq. (12) that a set of delta functions sample the i "j A
function A((t - 3v ) in the temporal frequency domain. . A
Figure 4 shows the magnitude of R(a, ) when a(x)
rect(x/L). For any value n, the spatial frequency re- Kv

sponse is a sinc function centered ata = -nfo/v. In this __ WN VaJ
mixed transform concept, however, the sinc function is A A 'JAL' J11L_

displayed at 3 = rfo so that, as n increases from NI to , , _.
N 2 , we find that the sinc functions occur along a skew i .V ".JJ A
line in the a,3 plane. This is the 2-D display that we SPA,

would expect if we were to use the y-axis of a conven- Fig. 5. Reference signal envelope expressed as a function of space
tional Fourier transforming system to display the and time.
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I1
The mixed transform concept and the generalized . ,G low

repetitive signal function as given by Eq. (3) have il--
lustrated the importance of the reference beam aperture
weighting a(x) and the truncation positions. We have
also shown that the mixed transform of such a repetitive -.
signal is independent of the specific signal waveform. I

We now use these concepts to study in some detail how
they apply to a specific hardware implementation that ., -
uses a chirp signal generated by a voltage-controlled
oscillator. We develop additional analytic tools for Fig. 6. Fourier transform arrangement for an isolated chirp pulse.

handling some special chirp functions and their trans-
forms. We further explore how the aperture weighting
function and finite photodetectors affect the basic re-
sults. that the starting phase of each successive pulse may not

be the same. Suppose that the phase has advanced by
IV. Cross-Product Term for a Chirp Reference Beam 0, at the end of the repetition period. Since this phase

Repetitive chirp signals can be obtained from volt- carries over to the start of the next pulse, we find that
age-controlled oscillators (VCO) or from surface Eq. (16) must be modified by a multiplicative factor
acoustic wave (SAW) devices. We generally require exp(jno.) to accurately represent the chirp train:
that the device produce a waveform that linearly sweeps
the frequency over a range of several hundred mega- r(xt F_ a(x)lexp -j[g(t - nT, - x/0i2/2 - noll. (17)
hertz centered at the midband of the frequency response
of the Bragg cell. The sweep period is generally in the The reference signal is therefore not, strickly speaking,
microsecond range for wideband spectrum analysis. a repetitive signal in the sense that it contains only

Although the mathematics ir, this section are some- harmonics of Jo. We shall show later how this phase
what cumbersome, much can be learned from a detailed term influences our results.
analysis of the process. We derive an approximate so- We can find the mixed transform of r(x,t) in one of
lution which can be used as a powerful intuitive and several ways. A particularly simple way is to first ob-
analytical tool for understanding the nature of the in- tain the transform for p (t) and arrive at the final result
terferometric architecture using chirped reference through a multiplication by the Fourier transform of the
functions. These detailed results can then be related sampling function. Consider the reference leg of the
to the experimental results and are useful in other interferometer as shown unfolded in Fig. 6. The rep-
studies as well. We define a chirp signal as resentation of the chirp pulse will be described in twodifferent ways to con'nect the mathematical formalism

p(t) - cosgt 2/2). (15) with a physically realizable situation. As a mathe-

where we will not, for the moment, bound the chirp matical function represented by Eq. (15), we can think
"" signal in time; as a result, we see that all temporal of p(t) as extending over all time (i.e., not bounded in

frequencies are generated. We define the sweep rate the vertical direction). The condition shown, then, is
asg = 27r W/T., where W = fo - f is the useful band- one in which the useful frequency range from fI to f 2 is
width of the Bragg cell, and T is the time required to just about to enter the Bragg cell. At a time Tp seconds" " wee frm f tof2.We an nw dfin th reetiive later, the last useful frequency enters the Bragg cell, and
reference signal r(t) as all others can be ignored. As a physically realizable

function, the pulse representation satisfies the de-
rit) = pt * t - nT,) = Z p(t - nT,). scription given before, wherein the VCO has just been

weedntcov o an activated by the voltage ramp. At time Tp the blanking
where * denotes convolution, and we retain the notation circuit is turned on, and at time T , a new pulse is ini-
that T, is the repetition period. Following the proce- tiated.
dure used in Sec. III, we can represent the signal resi- We now calculate the spatial Fourier transform of
dentin the Bragg cell by a(x)r(t - x/v) and retain only r(x,t) as given by Eq. (17) with n = 0: we then account
the negative spatial frequencies: for the summation over all n. We have for the central

pulse that
r(x,t) - E aix) expf-jg(t - nT, - x/u 2/21. (16)

We can now relate r(x,t) to the repetitive chirp signal Pttot) exp[-j(g/2)(t - X/,1
2

1 expU2,rax Idx. (18)

produced by a physical device such as a VCO that is To simplify the analysis, we have ignored the carrier
driven by a repetitive ramp waveform. Since the Bragg frequency that translates p(t) into the passband of the
cell and the photodetector array process only those Bragg cell as well as the aperture weighting function
frequencies from fI to f2, the results will be equivalent a (x). We complete the square in x to find that
to those that would be obtained if we were to view r(x,t)
as a bandlimited function consisting of a train of chirp Pit I expLjgir + 2iaL"/g i

2
!2

] expl-j(g/2it ']
pulses with duration Tp and a repetition period T,. In X f L -L ' / d
the physical implementation, it is important to realize 0x-// 1
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We can put this integral into the standard form of a phase-incremented repetitive chirp function generated
Fresnel integral to obtain by an analog circuit such as a VCO device contains N

discrete frequencies both spatially and temporally.
P(a.) - exp[j(22ravtl E' exp[-J(ir/2)z 2Jdz. The phase increment 0c, however, will shift the fre-quency sampling delta functions from integer har-

where monics nfo to a fractional offset position (n + 0,/27r)0fo.
In the spatial frequency domain this means that, while

b = .'7 -- vt - 2TaL, 2/g], their spacings remain the same, the bead center loca-
-. C = v7g--vIL - ut - 2raV2/g]. (20 tions will shift.

The method of analysis given here is equivalent to our
We now examine the important properties of the Fres- having used a more general model for the periodic sig-
nel integral for our application. One way to represent nal, in which
the integral is by using the Cornu spiral.5  The arc
length along the spiral is given by the difference be- r(t) = cos[2T(n + +/2r1f0- o.],
tween the upper and lower limits: which accounts for 0, as well as for allowing all

c - b - '/-L/v. (21) frequencies to be present in the drive signal.
We now calculate the Fourier transform from the

By recognizing that Liv T is the time duration of the signal beam leg of the interferometer. Consider a cw
Bragg cell, and by using the relationship that g = signal s(t) that has a single frequency f, and a Fourier
2irW/T,, we find that the arc length is equal to transform arrangement as shown in Fig. 6. Let b(x)
v/2WT2/Tp. Since the arc length is greater than the represent the signal beam aperture function combining
square root of the time-bandwidth product of the Bragg all apodization and truncation effects, and let a linear
cell, which is typically of the order of several hundred, phase ramp express the geometric offset of the signal
the arc length is of the order of 10-20. As a result, the spectrum. The optical signal input function is then
Fresnel integral has a nearly constant value, except given as
when the upper and lower limits are equal to zero. At
these points, the Fresnel integral makes a rapid tran- s(x.t) - b(x) expl-j2rf.(t - x/v)] exp(j2-radx).
sition through its half-amplitude values so that the At the detector plane the signal is represented by
limits tell us when the shadow regions for each edge
occur as a function of the spatial frequency. s(at) -S s(x,t 1exp(j21rax)dx

From the limits in Eq. (20), we note that each spatial
frequency a receives light starting at t = -avTp/W and - B(a + ad + ,/u exp(-j2rft),
ending T seconds later (recall tha. a is always negative), where B(a) is the spatial Fourier transform of bx). For
Although there are ripples associated with the leading a rectangular aperture function we find that
and trailing edges of the Fresnel integral function, we
can approximate the value of the integral by rect(t/T S(a.t) - sincl(a + ad + a,IL,I exp(-j2rft). (25)
- 1/2 - avTp/WT) to obtain some useful results. The where a, fl, and a is the geometric offset in spatial
spatial transform then becomes frequency needed to produce the temporal carrier fre-

Pla,t) - rectlt/T - /2 + vT/WT) exp(j2ravt . (22) quency in Eq. (2).
From Eq. (22) we see that, at a particular value of a, the The product of the signal and reference term is I 3(a,t)firs facor idictes he tme draton wen te liht i 2 Re[R(a,t )S*(a,t)I; this term produces the signal
first factor indicates the time duration when the light that we observe at a test point located just after theis on, and the second factor gives the associated tem-
poral frequency. We now take care of the summation; bandpass filter. For a high dynamic range system such

Eqs. (22) and (17), we find that the spatial as this interferometric spectrum analyzer, it is oftenby using of the repetitiv e ind ign al useful to display a signal that is proportional to I 3(at)
on a conventional time spectrum analyzer. We there-

R(a - exp(j2wavt) -rect(t/T - nT,/T - /, + /W fore want to find the mixed transform 13(a.3 ) through
T the temporal transform

X exp(-j2ravnT,) exp(ino,) (23)
13((a,d) - ./(aj,

) 
expi-j2rdt 1dr (26)The mixed transform R(a,3) of the reference waveform E .

can now be obtained by substituting Eq. (23) into Eq. By using Eqs. (23) and (25) in Eq. (26), we find that
(10):

13 (a,011 - sinc(Ia + ad + a.L,
R( .) - sincIT(tv - 3) 1 Y 6(d + nf,, - ocfo/2r(. (24)

X sincl(av - Js + f, TI -bd + /, - oo/2r + nfol.

When we compare Eq. (24) with Eq. (12), we see that,
if (b = 0, the results are similar even though they were
obtained by quite different methods. Here we have a This result reveals that I.(a4) has its maximum value
skewed sinc function in Y and 3 which is sampled by a when a photodetector is positioned so that v a -lt +

* set of delta functions in d. This result shows that a a.) because the spatial sinc function then has its max-
,
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=, mpeas sampling function as given by Eq. (28) has shifted un-

derneath the fixed sinc[(fl + fd)T] envelope in such a
• .' ^ ^ way that, when the phase increment is equal to r, the-Vsinc function is sampled symmetrically; the corre-

V/ sponding time function shows a phase reversal at theV f WW ends of the repetition period.
V - At this point we can draw an interesting analogy be-

tween the behavior of an echelon and the result pro-
" -- ",lduced by a repetitive chirp as given by Eq. (28). We

[N:W \ -^ , v recall from Eq. (17) that each pulse in the chirp train is
modified by a phase factor that is fixed for the duration

,/ of the pulse. These phase increments can be related to
.i those of an echelon wherein the phases between suc-

cessive steps change by a fixed amount.6 The situation
K "shown in Fig. 7(a) is equivalent to the single-order po-

* .J 2 .3 4 9 6 1 1 sition for an echelon. We note from Eq. (28) that there
L : ", is room for only two samples in the central lobe of the

- -.. Fig. 7. Temporal and temporal frequency signal representations as envelope of I3(3). If the phase increment is adjusted
a function of the phase increment, so that c = ir, the samples are shifted as shown in Fig.

7(d); this situation is called the symmetric position
. le lu tsnf uwhich produces two equal amplitude outputs. In a

0 "< imum value. Although the signal frequency aw is un- transmission echelon one can change from the single-

known and must be estimated, the photodetector order to the symmetrical position by rotating the ech-
1spacing was chosen to be fo/v so that at least one pho- elon. In our interferometric spectrum analyzer, one can

todetector in the array will be near the peak of the change positions by changing €. In both cases, the
j - spatial sinc function.' We find that the time-domain sampling delta functions move, but the envelope does

spectrum at the optimum detector location is not.
From the relationship of the sampling function to the

13(d) - sincl(d + fd)TI E 63 + f, - 0cfo/21r + n'o). 128) envelope as shown in Fig. 7, we conclude that the tem-
poral output may contain frequency components other

We now illustrate the results of our analysis for the than fd if the phase increment induced by the VCO is
cross-product term which, after bandpass filtering, is not a multiple of 2r. The worst-case condition is that
the desired output. We shall consider both the form shown in Fig. 7(d); the two components within the main
of I 3(t), which is the temporal signal displayed on an lobe of the sinc function are then just at the band edges
oscilloscope, and the form of I,(3), which is the signal of the bandpass filter. It is therefore desirable to con-
displayed on a temporal spectrum analyzer for a given trol the phase of the chirp generator so that the detec-
photodetector element. In both cases, the phase in- tors can be located at the reference bead centers to ob-

, crement for each pulse given by exp(jno,) will affect the tain the condition shown in Fig. 7(a).
results.

In Fig. 7(a), we show the form of 13(t) for four periods
of the repetitive chirp waveform when o, = 0. The V. Bias Terms for a Chirp Reference Beam
output, as expected, consists of a pure cosine whose It is possible for the reference beam bias term to

[ amplitude is proportional to that of the CW signal at f.. contribute energy at frequencies within the bandpass

1 -4% The cosine is continuous, without any change in phase filter. We now consider the origin of this unwanted
F over all time, independently of the duty cycle of the energy and methods for eliminating it. The suppres-

chirp. We also show in Fig. 7(a) the value of 3(O), sion of these spurious modulation terms is a key design
which is a sinc function centered at3 ff= -fd with the objective in any hardware implementation of this ar-

7 first nulls at ±I I/T from the center as given by Eq. (28). chitecture.
* .. The sampling function has value when The bias term for the chirp reference beam is, from

3 .- o.,fo/27r + nfc, (29) Eq. (2), given byI,(a,t) = I R(a t)12, From Eq. (23) we
find that the mixed transform, using the same approx-

so that the sampling function is a set of delta functions imation for the Fresnel integral, is
spaced at intervals in frequency offo. Suppose that Eq.
(29) is satisfied so that one of the samples falls at 3 = 12(a43) = T Z expi27rat,(n - mT,] expli(n - m )o]

" -fd. Then, if T = T,, we find that all the other samples n

" fall at the nulls of sinci(0 + fd)T,, x rect(u. I rectlu.) exp(-j2v3tIdt, (301
In Figs. 7(b)-7(d) we show the corresponding results

when the phase increment between pulses is ir/4, ir/2, where u, and ur, the arguments of the rect functions,
% and 7r. We now note that there is a discontinuity in are taken from Eq. (23) with the corresponding indices

N 13 (t) at the beginning and end of each repetition period n and m. The integral can be evaluated by a change of
T,. The corresponding sketches of 13(3) show that the variables wherein we let
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U - U, - t/T - nT,/T - 1/2 + avTIWT

so that the integral becomes ILT'E

exp(-j21r~nT,) rect(u rectlu + In - mrTITl t l , ,

X exp(-j2r0Tu)du (31) FUNCTIONOU SaUNCTIM Of
REEENE CROSS PRODUCT

The first rect function has value only for I u 1 1 '/2. The
second rect function determines how many terms for the
summation on m are important. We see that if the time
duration of the Bragg cell T is equal to the repetition • -' - -

period Tr, the only terms of interest are those for n fi, / ,.,.*
m because otherwise the two rect functions do not YIMM UOM ,ROl,"
overlap, and the integral is zero. In this special case the Fig. 8. Temporal frequency content of cross-product and reference
integral reduces to sinc(3Tr), and we find that beam bias terms.

12(a,) = ainc(OT,) F- 6(0 - - ojo/2r + nfo). (32)

VI. Aperture Weighting Function
The magnitude of 12(aO) is clearly a function of 0, A As a preliminary to a study of the aperture function,

physical interpretation of the effect of the phase in- we show the magnitudes of 12(0) and I30) in Fig. 8,
crement is that the spectrum from the reference beam along with the photodetector bandpass filter response.
has shifted by a fraction 0/ 2 7r of the photodetector In this illustration, G(13) is the transform of a truncated
spacing. If the photodetector array is moved to restore Gaussian illumination function. The bandpass filter
the condition that each element is centered under a shape is approximated by a trapezoid which is constant
bead, the delta function in Eq. (32) reduces to 6(0 - for 0 = -fd ± fo/2 and falls to zero at 3 = -fd ± fo; this
nfo), and we find that all the sampling functions are at shape is required to keep the photodetector response
the nulls of the sinc function. It is only under these to nearly signal frequencies under control.'
special conditions that 12(a,3) has no content at any The most critical sampling function is that associated
temporal frequency other than at 3 = 0. with the bias term. These samples start at ff= 0 and

The results obtained in this section are based on the are placed at integer multiples of fo. In this example,
approximation that the Fresnel integral can be ap- we see that the samples at n = 4 and n = 5 are at local
proximated by a rect function. In addition, we have maxima of G(O), so that a significant amount of spuri-
ignored the aperture function a (x) which plays an im- ous modulation is within the passband of the filter.
portant role in determining the form of 12(J3). In effect, The relative magnitude of the spurious modulation can
the spatial aperture weighting is converted to a temporal be seen by applying the output signal from the bandpass
weighting; this can be seen by noting that each fre- filter to a conventional spectrum analyzer, with the
quency component of the chirp travels underneath the signal set at zero amplitude. As the chirp period T, is
aperture function a(x). In the appendix we derive the varied, the sample functions move within the envelope
exact results that remove the approximation and in- of the bandpass filter, and the relative magnitudes of
clude the effects of the aperture function. In particular, the sampled frequencies will vary according to the shape
we find that the temporal frequency content of the of G(3) provided the Bragg cell aperture is not changed.
reference beam bias term can be represented by a Alternatively, we can see the spurious modulation
function G(3) that is sampled at the frequencies 13= change if the aperture L is changed while the repetition
nfo. In general, G(3) will have a set of nulls, but they rate T, is fixed.
may not fall at integer multiples offo. For the case of a(x) = rect(x/L). it is possible to

If we do not take action to keep 1_(O3) small in the eliminate the bias term by adjusting the spatial trun-
bandpass of the filter, we find that the SNR and, cation and the repetition rate so that the sampling
therefore, the dynamic range are less than expected. functions fall exactly at the nulls of G(3). In practice
Even if fd is fairly large so that the energy in the band- this is difficult to do for several reasons. The acoustic
pass filter arises from distant sidelobes of G3), the wave within the Bragg cell is attenuated as it propagates
energy in this bias term may be significant relative to through the cell, and it experiences acoustic spreading
that of the cross-product term for low signal levels. We as well. The effects of other apertures in the illumi-
now examine ways to control the in-band magnitude of nation beam may introduce small ripples in the illu-
the reference bias term, which we call spurious modu- mination. Although the asymmetry induced by

- lation, through appropriate aperture weighting. We acoustic attenuation can be compensated by a spatial
note, in passing, that the signal beam bias term as given shift in the Gaussian illumination, the combination of
by IS(a,t)1 2 leads to a pure frequency at 3 = 0 and, these factors may still produce an asymmetric and, in
therefore, need not concern us further. general, an inaccurately known weighting function.
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Another source of aperture weighting is introduced
IN eby the finite sizes of the photodetectors. One way to
% determine the effects of finite photodetectors is to in-

* tegrate I3(a,3) as given by Eq. (27) over the appropriate
range on a. An interesting alternative, and one that i

leads to a somewhat more general result, is to recognize '
that the results for a finite detector can be derived from

. those obtained from point detectors through a convo-

lution operation. The convolution involves only the size , .
of the detector if its sensitivity is uniform over its sur- ,@4
face. We can then replace the convolution operation
in the detector plane by a multiplication operation in
the input plane, where the multiplication function d(x)

IP is the Fourier transform of the detector aperture. For
example, if the photodetector aperture ha in extent of '04 - -

h/L,, where h is the duty cycle, we have that d(x) = - , ,W9,SMRU,
sinc(hx/L, ). If we invoke the relationship that hL = Fig. 9. The temporal spectral envelope of the reference beam bias
1.37 Lr to maximize the dynamic range, we find that term for various aperture weighting functions.
d(x) has its maximum value at x = 0 and drops to
sinc(0.685) at the edges of the aperture. Since d(x)
applies to both the signal and the reference beam Bragg
cells, and since L, < L,, we find that the contribution it must now respond to much higher temporal
of d(x) to the signal beam weighting function b(x) is less frequencies. Another possibility is to use a weighting
than that to the reference beam weighting function function so that G(0) rolls off more rapidly than those
a (x). functions shown in Fig. 9. For example, ifa(x) is a sinc

_ An illustration of how the total aperture weighting function, G() falls to zero within the bandpass.
function influences the shape of G($3) is shown in Fig. However, the sinc function must also be truncated at
9. For comparison purposes we show G(O) for a (x) = some point; if it is truncated at the fifth sidelobe, G($)
rect(x/L) as curve A. When we use a symmetric is no more than 50 dB down in the passband. Fur-

- Gaussian illumination for which the intensity is i/e2 at thermore, the Bragg cell must be five times its nominal
the truncation points, we have the response shown in length for us to use this type of illumination.

' curve B. We note that the Gaussian illumination The best overall solution is to require that fd be a
broadens the central lobe and that the maximum side- harmonic of Jo, which would place just one sample ex-
lobe levels are significantly lower. We also note that actly at the midband *of the bandpass filter. We would
the first few nulls are irregularly spaced and that, even then be faced with a much simpler task of requiring that
for the higher orders, the nulls do not occur at the same only one null of G(O), suitably deep, coincide with fd.
positions as those of the sinc function. Curve C shows A truncated Gaussian illumination such as the one that
the shape of G() for the same Gaussian illumination produced curve B from Fig. 9 would be acceptable.
but with its center displaced by 6% of the aperture Even though the exact form of G(O3) may not be known
width. We now note that the nulls are not as deep, al- due to implementation uncertainties, a slight change inI though the amount of induced asymmetry is small, the truncation points at the Bragg cell should be suffi-Finally, curve D shows the Gaussian illumination dis- cient to bring one of the nulls of G() to the offset fre-
placed by 12% of the aperture width. The overall quency position. Some care is needed to ensure that

,-." sidelobe level is higher than with curves B and C, and the combined aperture effects are not too asymmetric
the nulls are even less well formed. We note here that so that sufficiently deep nulls are achieved. The re-
symmetric functions produce real-valued transforms quired depth of the null is quite large because we want
so that perfect nulls are generated between positive and the bias term to be well below the magnitude of the
negative sidelobes. Asymmetric functions produce cross-product term. If the system has a design goal of
complex-valued transforms and, in general, less well- a 60-dB dynamic range. the null must be of the order of
formed nulls between local maxima. 65-70 dB since the bias term is generally somewhat

This example shows that attempts to place the sam- stronger than the cross-product term.
.4 pie functions at the nulls of G(3) will be difficult to We note that the signal beam aperture weighting

control, and for the case of asymmetric illumination, the function b(x) plays no role in our efforts to control the
resulting spurious modulation may be higher than de- bias term. It can, in principle, be chosen independently
sired. A second way to reduce the effects of the bias of a(x) to satisfy other system requirements such as

" term is to increase the offset frequency fd so that we controlling cross-talk levels.
encounter the higher-order sidelobes of G(6). But since
the illumination is generally sharply truncated, the Vii. Summary and Conclusions

* . sidelobe level does not roll off rapidly as a function of We have analyzed the role that a repetitive reference
frequency. Furthermore, a high value for fd has an beam has on the performance of an interferometric
adverse effect on the photodetector performance since spectrum analyzer. We defined a class of bandlimited
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signals that have N discrete frequency components of 13(a. - - aix) sincf (, + ,, + it. iL0
equal amplitude but arbitrary phases. We have shown , --

that the mixed transform is a useful concept for s:ob-it /' 2 21~epn~( ~)
taining a joint spatial and temporal transform of the X exp(-igit - X/t,)2/21 - 1 expLino bit - nTr)

output of the system. Based on this mixed transform, x exp[-12r(0 - tot expJ2rax Idtdx. (35)
we showed that the performance of the system is not
dependent on the specific repetitive waveform since the We recognize that the integral over time is the Fourier

9 distributed local oscillator function in the Fourier plane transform of the convolution of two functions, so that
is identical for all such functions. the result is the product of the transform of the two

We also showed that the reference beam aperture functions. The first transform is
function plays a critical role in the performance of the '"
system. Since the spatial aperture weighting function fE expJ-g(t - x/()

2/2) expf-2r(d - )tjdt.
is converted to an equivalent temporal weighting, this
function can be used to control spurious modulation This integral is similar to that given by Eq. (18), except
arising from the reference beam bias term. When the that we now integrate over infinite limits. The result
spurious modulation is controlled, the expected dy- of the integration is,
namic range is achieved.

We showed that all the results predicted by the gen- v /g expi-jr/4) ep(-12r(3 - f,)x/v + j21r2(3 
- f) 2Igj. (36)

eralized analysis also hold for implementation schemes The second transform is
wherein a VCO device is used to generate a repetitive
chirp waveform. We found that the duty cycle of the c-
chirp has no influence on the results, but that a phase _ exp~nzo}6t - nTr(expf-J2Tr3 -f,(tjdt

increment from pulse to pulse may influence the output
if the bandwidth of the postdetection filter is not set F_ 6(d - f, - ocfo/2r + no) (37)

properly and the detectors are not located at the bead

centers. We also determined that the use of finite-sized We now substitute the results given in Eqs. (36) and (37)
photodetectors do not seriously affect the results other into Eq. (35) to obtain, after dropping the scaling
than to impart some additional weighting to the aper- terms,
ture function. Experimental results confirm the
analysis given here. 1a(a•0) = sinc((a + ad + a. ILj Z IL8 - of - ofo/2,r + n'o)"

This work was supported in part by the U.S. Army x I" a(x) exp[j2irax -j2r(1 - f,)x/vldx. (38)
Research Office."- The remaining integral is easily evaluated to get the
Appendix result that

We derive an exact solution for the mixed transforms I(a,0) - sincl(a + ad + a,)L.]

12(a43) and I3(aj) for the chirp waveform produced by
a VCO. In the text we produced the intermediate re- + A(a - / + /1) 7_- b(( - f. - ocfo/2 r + nfo). (391
suits as given by 12(a,t) and 13(a,t) so that the spatial
Fourier transform could be characterized explicitly as When we compare this result with Eq. (27), we see that
a function of time. We did so by first performing the it is indeed appropriate to replace the sinc function by
spatial transform, followed by a temporal transform. the Fourier transform of the aperture weighting func-

Here we will reverse the order of integration and ob- tion as we did in the text. This result, which is an exact
tain the temporal transform first. We use Eq. (17) as solution, substantiates the validity of the approxima-
our point of departure, but write it in the time convo- tion.
lutional form The mixed transform of the reference bias term is

given by
r(xtI = a~z) exp(-jg(t - x/u) 2 /21 . expjno,)6(t - nTI.

.2(03.. IR(a.t Ih expi-;2r3t~dt.
(33)

which can also be expressed as a convolution in (3:
We first treat the mixed transform of the cross-product
term I 3(a,): 12(a,1) - Ra.3) 140)

By a line of analysis similar to that used above, we find
13(aj3) - r~[,f exp(j27rax)dxJS*(a~t)j that

X ep)-j21tdt i4 R(a) = exp(j2r'i3-/g)A(a - 3/ 1" 6(d - 0ja,'2r + nfo).

We recognize the term within the braces as Il(a,t). We
use the result for S*(a,t) as given by Eq. (25) and
rearrange the terms to get and we obtain 1,(a.3) by using Eq. (41) in Eq. (40).
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Fresnel transforms and Brigg cell processors

A. VanderLugt

In the analysis of coherently lluminated optical systems we distinguish between space planes and spatial
frequency or Fourier planes. 'etween these two planes exists a continuum of Fresnel transform planes; the
Fresnel domain therefore shar i, more or less equally according to its position, the properties of the space and
frequency domains. Since Fre-nel transforms are space-variant operations, generalized results are difficult
to obtain. When implemented by Bragg cell processors, however, Fresnel transforms have some interesting
and useful spatial/temporal pr, )erties. We examine the application of Fresnel transforms to analog signal

i' scrambling techniques. We devve the optimum geometry for obtaining the maximum time spreading for a
given signal bandwidth. We de -ive the system response to impulse, short pulse, and cw signals. We show

[, how a permutation of time saz iples can be achieved and illustrate some of the key features through
simulations.

1. Introductian been reported on analog privacy techniques. Scram-
Fresnel transforms arise naturally in optics for relat- bling is most often implemented in the time domain by

ing the complex-valued light distribution between two sampling, digitizing, and encoding the analog signal;
planes separated by free space. They are used to this process generally requires that the transmission
illustrate the basic nature of holography .2 in which the channel have a wider bandwidth than the signal itself.
Fresnel transform of an object is recorded for subse- Scrambling can also be implemented in the frequency
quent reconstruction. In these cases we generally do domain by splitting the signal spectrum into several
not evaluate the Fresnel transform explicitly; rather, frequency bands and rearranging them before trans-
we use their properties to understand, at an intuitive mission. Two or more techniques are sometimes com-

e level, the structure of light patterns produced by the bined to provide higher levels of privacy, as suggested
0 object. Fresnel transforms are also used in synthetic in a review of the early work on scrambling.6 In a more

aperture radar processing3,4 ; in this case, the explicit recent collection of papers 7 scrambling schemes are
form of scattering by point objects is used to determine described that use an intermediate storage device so
the appropriate range and azimuth processing opera- that discrete samples can be transmitted using time
tions. )ermutation schemes.

Fresnel transforms are not used extensively in real- A communication system consists of a transmitter, a
time signal processing applications because the re- Ciannel, and a receiver. The transmitter accepts the
sponse in the Fresnel plane is dependent on the input s; nal to be sent, scrambles it to provide privacy, and
signal position and frequency. As a result, operations p-epares it for transmission over the channel. We
such as matched filtering can be implemented only by w ,nt to conserve channel bandwidth, in general, con-
scanning methods. In this paper, however, we exploit sis ent with the degree of privacy required. The pur-
the time-variant and frequency-variant properties of po e of the receiver is to unscramble the transmitted
Fresnel transforms to scramble wideband signals, in wa, eform and to recover the original message. In-
real time, to obtain privacy in a communication sys- creised privacy can be achieved at the cost of band-

W. tern. wid'h expansion; even more sophisticated techniques
. Until 1979, when Wyner described a scrambling are required to achieve encryption of analog signals.-

technique for analog signals,5 relatively little work had F, r wideband signals such as TV, the application of
classical techniques becomes more difficult because

__ __high ;peed A-D converters with high precision are
needed, and the resulting bandwidth expansion may

The author is with Harris Corporation, Government Systems needediandathe.resultingmbandwidthcexpansignwmae
Sector. Advanced Technology Department, P.O. Box 37, Melbourne. be considerable. A direct method of scrambling wide-

' Florida 32901. band analog signals with little or no bandwidth expan-
Received 20May 1985. sion is therefore desirable. In this paper we examine
0003.6. .:5/.S/'22846-1 i1$02.00i,. the possibility for scrambling analog signals both with
c' 1985 Optical Soviety of America. and without bandwidth expansion, using certain prop-
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.-. 7II
erties of Fresnel transforms. The Fresnel transform signal now propagates through free space a distance D
anal 'sis developed here provides considerable insight to plane P.,. The free space operator produces a Fres-
into the basic scrambling scheme and suggests other nel transform as given by
optical processing applications For background in- I-
formation, we cite the pioneering work of Whitman et gl.,7 = P7., exp)-.r AI)(1 - 77jU.d. (2}
al., involving Bragg diffraction and optical heterodyn-
ing techniques. Other interesting techniques, using where the exponential function represents the free 12V
Fourier analyses, are those given by Korpel et at.,9 by space response to an impulse. This definition of the
Rhodes and Florence," and by Florence. 1 In Sec. I Fresnel transform varies slightly from others in the
we present the basic system concepts in terms of geo- literature (see, for example, Ref. 12). Thedifferenceis -

metric and heuristic arguments; the more rigorous dif- primarily in the point of emphasis; I prefer the form
fraction analysis given in Sec. IV, after we give a brief given here because it (1) explicitly displays the impulse
review of the properties of Fresnel transforms and response of free space, (2) shows the convolutional
integrals in Sec. Ill. In Sec. V we give the results of process between the free space operator and the input
some simulations that illustrate the concepts and pro- signal, (3) produces a continuous transition from the
vide some additional results. Fresnel to the Fraunhofer transform as a function of

the distance D between the input and output planes,
II. System Description and Geometric Representation and (4) retains the necessary phase factors to facilitate

The system shown in Fig. 1 contains a Bragg cell in the analysis of optical systems that use additional
plane PI, driven by a signal s(t). For generality, we let lenses and free space intervals to achieve other pro-
s(t) be a real-valued bandpass signal with bandwidth cessing operations. 3 Throughout this analysis we ig-
W centered at frequency f,. The illumination is colli- nore scaling factors and nonessential phase terms. We

' mated light at the Bragg angle OB, where 01i = arc- retain, however, phase terms that are functions of time
sin(X/2A,), X is the wavelength of light, and A, is the or space because they indicate the temporal or spatial
acoustic wavelength associated with f,. Since A, - frequency variations of the light distributions.v/f,, where ' is the acoustic v'elocity, we have that , We can detect the complex-valued function g(t,n) if !V

Xf,./2v. The chief ray of the undiffracted beam there- we provide a coherent reference function R(7) for pur-
fore intercepts plane P 2 at 17, = OBD = XDf. /2c, where D poses of heterodyne detection. We use a lens to image
is the distance between planes PI and P2; the spatial a point source from plane P( to the point -17, in plane
coordinates in planes PI and P2 are x and 7. In a P2 . The reference beam is aperture weighted by r(x)
similar fashion, the chief ray of the diffracted light in plane PI to shape R(0) as desired. A photodetector
intercepts plane P2 at -n. An aperture weighting integrates the intensity produced by the sum of R(1)
function a (x accounts for the amplitude variations in and g(t,)) over all T,; the size of the photodetector is not
the illuminating beam, attenuation effects induced by important, provided that it captures nearly all the light
the Bragg cell, and limiting apertures caused by the in R(77). Since the reference beam is not frequency
Bragg cell or other optical elements. Since we are shifted, the output signal from the photodetector also
operating in the downshifted Bragg mode, we retain has bandwidth W centered at f,; this signal is sent over
only the negative frequencies associated with the sig- some communication channel to a receiver. The re-
nal. The signal produced by the Bragg cell can then be ceiver is a conjugate form of the transmitter; that is,
represented by the receiver layout is essentially the same as that it

shown in Fig. 1, except that the Bragg cell is driven
fUt.x) = a(t) exp(-j2,rxO5,/ls~t - T/2 - x/t, () from the opposite end. The output of the receiver, as

where the exponential function represents the Bragg we shall show later, is a delayed version of the desired
angle illumination and T/2 is the time delay associated signal s(t).
with one-half of the Bragg cell length. This diffracted Before continuing with the diffraction analysis, we

present some of the basic scrambling concepts by using
geometric and heuristic arguments. These results are
useful for interpreting those obtained from the diffrac-
tion theory analysis in Sec. IV. To simplify this analy-
sis, we would like to characterize the Fresnel diffrac-
tion as though it propagates along the optical axis,

.. instead of at the angle 0,B as shown in Fig. 1. We also A

souu,, wish to retain the notion that s(t) contains single side-
,, ,band frequencies from f, - W/2 to f, + 14/2. We can

e ' " achieve both objectives by translating the origin ofplane P2 a distance i,; the jusification for the use of this

£S - - temporary construct will become clear as the descrip-

BG ,AU, tion unfolds.
4 ~" ~--*" A In Fig. 2, then, we show the Bragg cell of length L and

transit time T = L/v. Although the Bragg cell should
Fig 1. Baw system geometry transmitter, be shown tilted with respect to the optical axis, the
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quency range W, as the impulse moves through the
-- - cell. If D = D,,, the photodetector receives light as

< I ,,0soon as the impulse enters the Bragg cell and continues
I IM miTRANSFORM to receive light until the impulse leaves the Bragg cell;

son |"we conclude that the impulse is spread or dispersed4 )into a chirp signal of duration T. If the distance
between planes P, and P, exceeds Din, there is no

-t ' -- :-- BG! AVtS FORl... -sI.., increase in the time spreading of the impulse. The

J RIQIC I. maximum distance between planes P1 and P2 is there-
fore the value that satisfies Eq. (4); this ensures that no
frequencies are missed and provides for maximum

Fig 2. Geometrical representation of the Fresnel transforms of a time spreading.
cw signal and a bandlimited impulse function. Other scrambling techniques become available if we

place the photodetector in a plane for which D < D.
Figure 2 also shows plane P3 , which is a distance cD,

geometric results are not affected by its position as from planeP, where 0 = c 5 1. Although the response
shown. When s(t) is a cw frequency at /,, the light to a cw signal is not a function of the value of c, the
travels from plane P to plane P 2 as a plane wave response to an impulse is such that a photodetector
parallel to the optical axis; the chief ray therefore placed at 1 = 0 does not receive light at t = 0 when c < 1.
intercepts plane P 2 at 1 = 0. A cw frequency at the From straightforward geometrical considerations, we
maximum frequencyfm fh + W/2 will propagate as a find that the chirp now arrives at t, ( T12 and

- - plane wave at the angle 0 =m arcsin(WX/2v) WX/2v. that the chirp duration is Tp = cT. Therefore, as c
The edge ray of this bundle intercepts the optical axis ranges from zero to one, the delay in the onset of the
at a distance D: chirp response ranges from T/2 to zero. The instanta-

neous frequency always spans the range W so that theD ,- Lv/XW. (3) channel bandwidth is not affected by which Fresnel
In a similar fashion, the opposite edge ray from a plane is selected. What does change is the chirp rate;
frequency fc - W/2 will also intercept the optical axis a it now becomes WITp = W/cT. As we shall see later,
distance D from plane P. If the distance between this increase in chirp rate is exactly that required to
planes P and P 2 is greater than Din, the higher fre- make the receiver operate properly.
quencies in the band Wcannotbe detected at the point Suppose that the point of observation is now
1 = 0. On the other hand, a decrease in this distance is changed to some position 17 * 0 in plane P 3. The time-
acceptable because light from all cw frequency compo- of-arrival td of the chirp response to an impulse occur-
nents in s(t) will then reach the photodetector. Since ring at t = 0 is now given by
L = vT, we can derive an important relationship con-
necting the physical parameters of the optical system = + TlL' (1 - c)T/2 + lt, (5)
with the key parameters of the signal: so that it is possible to obtain additional time delays

w through a choice of 17. If 17 is too large, however, the
=T (4) photodetector will miss some of the light from cw

signals. The constraint on 77 is that
An alternative form of Eq. (4) is that L 2/XDrm = WT;
this relationship is also valid for stationary spatial
signals and connects the dimensions of the Fresnel so that the range of available time delays is 0 :s td <-_ (1
transform system to the time-bandwidth product of - c)T. Equation (6) defines a cone that intercepts
the signal. Both forms of Eq. (4) state that the system plane P at x = ±L/2 and whose apex is at 1 = 0 in plane
is just capable of processing the information when D = P 2; the photodetector must be placed within this cone
Din; if the distance between planes P and P 2 is less to satisfy all the constraints.
than Din, the system has excess capacity, whereas if the A third type of envelope function that produces
distance is greater than D, the system has insufficient some interesting results is a short pulse of duration To.
capacity. Such a pulse will behave as an impulse function when

Next, consider the system response to an impulse To << T and as a cw signal whenever To approaches or
£ function. A true impulse function will produce a cy- exceeds T. Consider a pulse whose duration is of the

lindrical wave propagating into free space at all angles. order of T/8 as shown in Fig. 3 and let the observation
But since the input signal is bandlimited, the shortest point be at 77 = 0 in plane P2 . Further, suppose that
pulse that the system can support will generate rays this pulse contains frequency components at fi, f2, and
confined to the range of angles 101 < 0 ,. The marginal f3 such that f, < f2 < f3. The photodetector receives
rays for such an impulse function that has just entered energy at time intervals related to the frequency con-
the Bragg cell are shown by dotted lines in Fig. 2. tent of the pulse. If we think of the pulse as a musical
Since the instantaneous frequency at plane P 2 is pro- chord, we find that the time difference t, between the
portional to the slope of the cylindrical wave, the trans- first two notes is given by t, = (n, - n72)v, where 77, - 172
mitter produces a chirp function, spanning the fre- is the distance between the leading edges of the pulses
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, - -------- ~between the space plane and the Fourier plane, we can
*.1,choose the one that best suits our purposes.

l , AM[I These discussions, based on ray traces, show how the
SSPAr, FA" basic scrambling phenomena occur. We return to

AW ' -"= them in Sec. IV, using a more rigorous diffraction

theory analysis. First, we provide a brief review of
S- - some basic properties of the Fresnel integral used to

Tevaluate certain Fresnel transforms.

Il. Fresnel Transform
The Fresnel transform that we need to evaluate is

Fig. 3. Geometrical represenlation of the Fresnel transform of a given by Eq. (2). Through a change of variables, we
0muhitone short pulse, obtain the standard form of the transform which can

be expressed as
9(.7 f(t,77,z) exp[-j(r/2):2Jdz. (91

in plane F 2. By using the basic rules of diffraction glt. ) =
theory, we find that where t, r7, and z are real-valued parameters. Here t

t = (,L' .= (f - f0 )xD/4,2, (7) and 17 represent the temporal and spatial variables of
the transformation, and z is a normalized variable of

which, through the use of Eq. (4), can be reduced to integration. Based on the discussions in Sec. II, we
want to evaluate g(t,7) for signals such as impulse

t, = U - f2)T/ W. (8) functions, short pulses, or cw waveforms. The spatial
Tadlimitations imposed by the Bragg cell or by the signal

of itself will often allow us to express /(t,z) in the form of
pure tones, each of duration To. In the sense of this a rectangular function so that the Fresnel transform
analog), the transmitter arpeggiates the chord. At reduces to the generalized complex form of the Fresnel
any other Fresnel plane for which D < D, we have that integral:
t= (I - f 2)cT/W. Therefore, as c tends toward zero,
the time difference between successive tones also gt,,,) = expl-j(7r/2)z2ld:, (10
tends toward zero and the chord appears simulta- ";
neously at the photodetector. Different time delays where z1 = a(t,7) and z2 = b(t,77) define the end points
prior to the onset of the first tone can be obtained, as of the rect function. Although the Fresnel integral
discussed before, if c < 1 or if the photodetector is cannot be expressed in closed form in terms of elemen-
displaced from the optical axes, subject to the con- tary functions, we can summarize some of its features.
straints of Eqs. (5) and (6). We see that the integrand is oscillatory, so that we

A signal s(t) may contain impulses, pulses of various expect g(t,77) to be oscillatory for some values of t and 1.
frequencies and durations, and cw compounds. It is The integrand oscillates most slowly at z = 0 so that the
clear from these arguments that the response from a integral then has its largest value, provided that z = 0
pulse at frequency /, may occur before that of a previ- lies within the range of integration.
ous pulse of frequency f2, if f, < f2. Similarly, an One way to understand the Fresnel integral in a
impulse that trails a short pulse may produce an out- qualitative sense is through the use of the Cornu spi-
put before the photodetector receives light from the ral.' 5 The parameters z1 and z 2 represent points on
short pulse. As a result, the transmitted signal is the Cornu spiral, and Z1 =Z2 - z, is a measure along
scrambled according to both the time structure and the the arc of the spiral. When z = - and z, = -- , the
temporal frequency structure of s(t). value of the integral is v If we keep z 2 fixed and

For some signals the parameters W and T may be allow z, to increase, g(t,7) begins to oscillate with grad-
such that Dm is an inconveniently large distance. In ually increasing amplitudes about a mean of \/. As z,
this case, we can place a lens of focal length F at plane passes through zero, g(t,?) decreases rapidly, reaches
PI to bring the chosen Fresnel transform plane to a its half-amplitude value at z, = 0, and continues to
convenient distance. The developments given above, decay toward zero as z1 proceeds toward .22.

as well as those to follow, are still valid, provided that This general behavior can be used to explain the
we replace D by DF/(F - D), where D is the distance response to the short pulse illustrated in Fig. 3. Con-
from the lens to the Fresnel plane. If the focal length sider the ray bundle for the pulse at frequency /2; when
is chosen so that the Fourier plane has the same spatial the pulse has just entered the Bragg cell, both z, and Z2
extent as the space plane, the capacity of the optical have large negative values so that light reaching a
system is maximized. 4 The maximum distance that photodetector at 77 = 0 has a small amplitude. As the
the Fresnel plane can be from the lens and still satisfy pulse moves through the system, both z and z2 in-
the constraints given is D,, - F/2. Thus, the Fresnel crease in value, with Z22 remaining constant. The
transform shares, more or less equally, the characteris- physical meaning of z2 and zI is that they represent the
tics of a space function and its Fourier transform. normalized distance, in plane Pl, from the optical axis
Since there is a continuum of Fresnel transform planes to the leading and trailing edges of the pulse. When z2
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= 0, the leading edge of the pulse causes the photode- temporal bandwidth W, centered at f = 0. The third
tector response to increase rapidly as the transition signal has bandwidth 14', is centered at f,, and can be
from the geometric shadow region to the fully illumi- separated from the first two by a bandpass filter. The
nated region occurs. As the pulse continues to move desired signal is then
through the Bragg cell, the amplitude oscillates as the
internalfringes pass by the photodetector. Whenzl= V,() = J R(g(t,)d + (.c (14)

0, the amplitude decreases rapidly as the transition -,

into the shadow region occurs. We evaluate one term of Eq. (14) and take the real part
The key information regarding the behavior of Fres- of the result at the end of the analysis. We substitute

nel integral, then, are the limits of integration since Eqs. (2) and (11) into Eq. (14) to find that
they characterize the transitions into and out of the "
shadow regions. When z1 2 is large, the contributions E:r) = r(x)f(t.y) exp(-J2rx lD)
to the Fresnel integral from the pulse edges are nearly
independent and the distance between the half-ampli- X expJ-j(r/XD)x'J
tude points is the same as the pulse width. But ifz12 is X expi(r/X/)[(I - 77)

2 
- ' - l 2 dxdxdim. (15)

small, so that the pulse is very narrow, the contribu- We integrate first on 77, noting that the factors in 72
tions from the two edges interfere; the Fresnel integral cancel; the 77-dependent terms yield
then produces a Fraunhofer pattern at the detector
plane. For z1 2 smaller still, the Fraunhofer pattern expl-j(2r/XD)(x - y)njd,7 = b(1 -3). (16)
spreads over larger distances in plane P2; it is this
pattern that produces the chirp response to an impulse We use the sifting property of the delta function to find
function. that the output of the transmitter is

IV. Diffraction Representation L3(t) J r(x)f(tx) exp(-j2rx77,/XD) exp[-j(r/XD)x 2]dx. (17)
We now support, by diffraction theory analyses, the

conclusions from Sec. II based on goemetrical consid- Let us now consider the structure of the receiver.
erations. A detailed picture of how the transmitter The receiver must first convert the temporal signal
and receiver operate will emerge from this analysis and v3(t) to a time-space representation through the use of
additional results will be obtained. We proceed by a Bragg cell. The receiver must then produce an in-
using the basic setup shown in Fig. 1; the signal pro- verse Fresnel transform of the diffracted light so that
duced by the Bragg cell f(t,x) and its Fresnel transform s(t) can be recovered from the output of a photodetec-
g(t,77) are given by Eqs. (1) and (2). As noted before, a tor by heterodyne detection. We conclude that the
reference function R(?) is added to g(t,77) to facilitate receiver must be a conjugated form of the transmitter.
heterodyne detection. From Fig. 1 we see that the For example, since the transmitter produces a cylin-
reference function is provided by a point source in drically diverging wave front from an impulse, the
plane P0 that is imaged by a lens at the point 7 = -7 in receiver must produce a cylindrically converging wave
plane P2. We express R(7) as the Fresnel integral of a front to reproduce the impulse. This concept is the
wave front crossing plane PI: temporal equivalent of the spatial concepts used in

.0 holography to create and reconstruct wave fronts from
R(77) r(x) expUi(w/XD)x' J  2-D or 3-D objects.' 2

The receiver geometry is therefore the same as that
X exp(j2;rxY?/D) expJ-j(r/AD)(x - )2]dx, (11) shown in Fig. 1, except that the received signal enters

where r(x) is the aperture weighting function for the from the opposite of the Bragg cell. The acousticreference beam, the firt eoetial isthe equivalent signal propagates with a negative velocity componentrensefunctioneatpae Pir ndsthtse exponential stheeqrelative to that of the illumination so that the diffract-lens function at plane P1, and the second exponential ed beam is upshifted. We again apply the Fresnel
represents the tilt necessary to focus the light at 1 = transform relationship to find that the light distribu-
-1, in plane P2. We add R(7) to g(t,i7) to obtain the tio apla Po is

intensity at plane P2: tion at plane P2 is

1(t,7) = JR()) + f(t,,)1
2  h(t,4) = J b(yh,(t - T/2 + /0 exp(-j2?y0h/X)

= IR n)V2 + 1g(t.n)l 2 + 2RelR'(,)g(t,,). (12)
X expl-j(,/XDlcv - ) ld3', (i8)

The output voltage from the photodetector can be

obtained by integrating I(t,77) over the photodetector where y and are now the coordinates of planes P, and
surface: P2, and b(y) is the aperture weighting function for the

receiver.
I'M =- l(t,)di7. (13) As in the transmitter, we add a reference beam R()

to h(t, ) at -,, square-law detect the sum, filter out
When we substitute Eq. (12) into Eq. (13), we obtain the baseband terms L,4(t) and v5(t), and integrate the
three signals which we denote by vi(t), v 2(t), and v3(t). cross product term over the photodetector surface:
The first signal is a constant so that its temporal fre-
quency is concentrated at/= 0. The second signal has I R*)httidL (191
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We now use Eqs. (1), (2), (14), and (18) to find that on the distance between planes P, and P2 or the posi-

= Jab~v~R*(s~t- T-/t+/t) tion of the photodetector in plane P2 , other than the
0," a*(x)b(%)Ro)R ° (s(t - T - x/v + y/) constraints given by Eqs. (4) and (6). We have shown, "4

X e - therefore, that the signal s(t) can be recovered from the
)x expLi2,r%(x - y)/Xl output of the receiver for any sy stem geometry, provid-
x expLj(/XD)J(x - P)2 - (y - k)2J]dxdyd,?dk. (20) ed that the transmitter and receiver have conjugate

structures. This important result shows that time
We first integrate on 1 and find that delays induced by the transmitter geometry are com-

f i) expL,(,/XD)(x - 1)2I- r(x) pensated exactly in the receiver. This feature will
become clearer as we examine the response to some

X expi,(:/XD)x1] (21) specific signal waveforms.

by virtue of the relationship given in Eq. (11). A A. Impulse Response

similar result applies to the integration on t. We We now derive the response of the system to an
combine Eq. (21) with Eq. (20) to obtain impulse. We let s(t) be an impulse function 6(t) in Eq.

(1) and solve Eq. (17) for the output of the transmitter:
Vr(t) I a*(x)b(.v)r(x)r'(y)s(t - T - x/v + y/v)

V3(t) - r'(vt - L/2)a(vt - L/2) expJ-j2r./rt - T/2))

X exp[j27OB(x - y)/X] expDj(2r/XD)(x, - y)] <X exp[-j(Tru2/XD)(t - T/2)21, (271

X expLi(r/XD)(x2 - y
2
)ldxdyv. (22) where the aperture function o(vt - L/2) determines

To match the structure of the transmitter and receiver, the time interval for which the impulse is in the cell; if
we set r - so that Eq. (22) reduces to a(x) = 0 for IxJ > L/2, the impulse is in the system for 0

< t < T. We see that V3(t) is a chirp function on an
v6(t) f a'(x)b(y)r(x)r*(y)s*(t - T - x/v + y/v) offset frequency, with its amplitude modified by the

aperture functions. If the aperture functions are real

)( explj2wf (x - y)/v] exp[jer./D)(x
2 

- y
2 lldxdy. (23) valued and slowly varying, the instantaneous frequen-cy of v 3(t) is given simply by the time derivative of the

We change variables through a scaling operation and a phase:
rotation of the axes by 450 to arrive at the result that

( = f, + (v21D)tt - T/2), (28)

f- s(t - T- q) exp(j2rfq)m(q)dq, (24) which is valid for all D __ D. If the Fresnel plane is

located so thatD = Dm, we can use Eq. (4) in Eq. (28) to
show that the frequenby is f - W/2 at t = 0 and

m(q) F a*[(r + q)vl/2bf(r - q)v/2] increases with time until t = T, when the frequency is f,
+ W/2. Thus, the chirp function has bandwidth W,

X rl(T + q)v/2]r*I(T - qh12 p (25) centered at f,. Since the instantaneous frequency of
Ithe chirp is a linear function of time, we see that theThe aperture functions thus combine to play a dual aperture functions in Eq. (27) determine the frequency

role in determining the performance of the system. response of the system. That is, the envelope of the
On the one hand, o(x) and b(y) are equivalent to time chirp function is a direct measure of the MTF of the
windows that determine the signal history resident transmitter.
within the Bragg cells; r(x) and r(y) may further re- In Sec. II we argued that the onset of the chirp
strict the time interval for which v3(t) and v6(t) are response occurs at t1 and that the chirp response ends
valid. On the other hand, Eq. (24) shows that the at t 2 = tl + Tp. These arguments were predicated on
recovered signal is the convolution of the input signal the concept of a bandlimited impulse function, a func-
and a system impulse response, The impulse response tion that has no meaning in geometrical representa-
is proportional to the Fourier transform of the overlap- tions of signals. We now show that those concepts are
ping product of the aperture functions. As such, the consistent with diffraction theory. We let D cDm, so
aperture functions determine the frequency response that Eq. (28) becomes
of the system and they play the role of bandlimiting
modulation transfer functions. This dual role will be f = f , + (WIcT(t - T/2). (29 1

further illustrated in subsequent paragraphs where we Suppose that the chirp response starts at some arbi-
evaluate Eq. (25) in detail; for the moment, we assume trary time tI to produce frequency f1 and ends at t2 to I
that m(q) is approximated by an impulse function. produce frequency /2. We substitute these values into
We can then perform the convolution indicated by Eq. Eq. (29) to find that
(24) to find that - = (W/cT)T, (30)

f,(t (T/ (t T, (30)26
(26) and, sincef 2 - f must equal to W, we find that T. must

which is, apart from an unavoidable time delay, exactly be equal to c T. Conversely, if we set (f2 +/'] )/2 - f,,we
the signal that was fed to the transmitter. find that ti = (I - c)T/2. Thus, the output of the

In this analysis we have not placed any constraints transmitter has bandwidth W and a center frequency
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[, for any system geometry. These results confirm This light is therefore far away from the reference

those developed in Sec. I. beam position and its amplitude is small because the
Additional time delays can be obtained if the refer- packet length, proportional to vt, is small. As time

ence beam is directed to other points in the Fresnel increases. the packet size increases, and the scale of the
plane. In this case, Eq. (17) has a slightly altered form, sinc function contracts as its centroid moves at velocity
but it is easy to show that the spectral content of v3(t) is v through plane P2.
not affected by the change in geometry. A key result, We see, then, that a well-formed spatial sinc func-
then, is that we can alter the impulse response in terms tion is always produced by v,,(t). As time increases,

, of time delays or chirp durations, without increasing the scale of the function decreases so that, when v 3(t)
the necessary channel bandwidth. fills the Bragg cell, the most compact spatial sinc func-

We now feed v 3(t) to the receiver and show how the tion travels past the fixed reference spot R(). The
chirp function is converted to a bandlimited impulse. time convolution of the moving diffraction pattern and
We can either substitute v.(t),as given byEq. (27),into the fixed reference beam produces Eq. (33). The rea-
Eq. (19) by way of Eq. (18), or we can set s(t) equal to a son for the quadratic argument of the sinc function
delta function in Eq. (23); in either case, we remove the now becomes clear: the factor (t - T) provides infor-
baseband signals V4(t) and L'5(t) with a filter to obtain mation about the distance from the centroid to the

2] -reference beam, while the factor t provides informa-"'.i 0) expU'2rf(t - T)] exp[i(r 2/D)(t - T) 
'  tion about the spread of the sinc function as well as its

S+N-)magnitude. As the chirp function leaves the Bragg
-t (31) cell, the sinc function vanishes in a fashion opposite to

x expU{2ry,/XD)(t - T)]dy. that in which it evolved.
In Fig. 4 we plot the envelope of V 6 (t), as given by Eq.

The integral is the Fourier transform of the product of (33), for the cases where T = 10 psec and W = 50 MHz
four aperture functions, similar to that for m(q) from (WT = 500). and where T = 10 psec and W = 100 MHz
Eq. (25). Suppose, for sake of convenience, that all (WT = 1000). Note that the envelope has significant
aperture functions are rectangular functions. We amplitude only near t = T and its shape is essentiallycombine the functions so that the integral becomes the same as that for a sinc function whose argument is

linear in time. The result for WT = 1000 is shown as a
expLi(2ryv/XD)(t - T)ld. = t expl- j(r']

2
/XD)(t - T) 2]  solid line; we see that the first zero occurs a time 11W

--- before the central value. The result for WT = 500 is
X" × sinci@D)t(t - n")]; shown as a dashed line; the central lobe is broader by a

0 t _ T.32 factor of 2, as expected, because the frequency content

If the aperture functions are not uniform, we conclude for the lower time-bandwidth product signal is less.
that the impulse response is broadened somewhat, but The sinc functions shown in Fig. 4 also specify the

its basic nature is not significantly changed. We use required reference beam spot sizes; the conversion
Eq. (4) in Eq. (32) and combine Eq. (32) with the from time to space is obtained by using the acoustic
remaining terms of Eq. (31). The real part of the velocity.

" result is The scale of the impulse response derived here gives
the performance of the system for all geometries, a

Vft) = t sinc(W/rIt(t - T)j cos[27rf,(t - TiJ; 0 = t 1 T. (33) result that seems strange at first. Suppose that the

- This result shows that v 6(t) consists of a carrier fre- distance from the imput plane to the Fresnel plane

quency f, modulated by a curious form of a sinc func- decreases in the transmitter. The chirp duration then
tion envelope. The argument o sinc function is decreases to cT and, since the bandwidth is constant,

quadratic in time and its amplitude is linearly propor-
tional to time. The time interval between successive 1SO
nulls is small when t = 0, increases to a maximum value
when t = T/2, and becomes small again when t = T.
The first zeros of the sinc function occur at time inter- "
vals of 11W before and after the central value; this
satisfies our notion that a bandlimited impulse re- .
sponse must be reconstructed at the output of the .:"receiver. '

The interesting result given in Eq. (33) tends to
disguise the spatial/temporal evolution of the receiver .

response. When v 3(t) first enters the receiver, light is .
diffracted from only a small signal packet near x = L/2,
which is the position of the transducer in the receiver. °2,1.
The resultant sinc function is spread over a large re- 17$ I " M , I 'M o

gion in plane P3j, but since the instantaneous frequency lo W 01"°sl....

of this packet is [r - W/2, the centroid of the sinc Fig. 4. Impul.e response of a transmiuter/receiver systern for two
function is directed toward less negative values of 4. different time-bandwidth product-q.
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we find that the chirp rate must increase to W/cT. In perform the algebraic manipulations needed to obtain
the receiver, this function produces a traveling focused the standard form of the Fresnel integral:
spot that has its maximum amplitude at a distance v,(t) - expl-j27(/, + [)(t - Til
corresponding to a focal length of cD,,. Thus, the
f/No. of the chirp is independent of the geometry, as is X f o(, -T2 +fLl/4')r(,JT z fL/4')
the size of the reconstructed impulse; these results are
a direct consequence of the bandlimited nature of the X rect(xD-2 z + fL/14' - vt + L/2 + uTo)/rT]
system. A further conclusion is that the required ref-
erence beam spot size is determined solely by the X exp-jir/2),'idz. (35)

bandwidth of the signal. As shown in Fig. 1, the refer- We shall numerically compute Eq. (35) later and quan-
ence beam can be focused at any plane P3 for which D < tify the constraint on To. For the moment we can say
D,,, provided that the imaging condition between that the Fresnel transform has value only in the vicini-
planes P, and P3 are satisfied. In the limit as c - 0, the ty of z = 0, provided that T is not too small and that the
reference beam will be focused at plane P and the aperture functions are slowly varying; Eq. (35) then
transmitter output will be a time delayed version of becomes
s(Et), without any time spreading. Thus, even though
the chirp rate may become very high as c - 0, a fixed V3(t) J a(fL/lr6(fL/W) expj-j2w(f, + f(yrt - 7 ), (361
reference spot size will always resolve the information where the aperture functions are evaluated at the mid-
content of s(t). point of the short pulse. The time interval for which

B. Short Pulse v3 (t) has value is derived from the argument of the rectfunction in Eq. (35):
We now examine the response of the transmitter to a

short pulse of frequency f, and duration To, where 11W (,L/W - vt - L/2 + vT o - ±'T0,!2. (37)
<< To < T. It is convenient to denote the frequency The time at which the leading edge of the output d

associated with this tone burst by fj = ff - fc and to arrives is determined by using the positive sign on the ilk
confine f/ so that lfb I :s W/2. We represent the signal right-hand side of Eq. (37):
within the Bragg cell of the transmitter as -

I,-T/2 +fT% (38)
f(t x) = (x) recl[(x - Ut + L 2 + t'T )/I'T o] exp(-j2w rx /X ) tf fi T/2 + fTW ,(3 :

X exp) = o xx f - T + L/2 u)Iol, (34(\) which reveals the relationship between the time of
X exp-j2r(f, + f,)(t - T/2- x/0], (34) arrival and the frequency content of a short pulse.

where the rect function controls the duration of the When fj = W/2, light is diffracted at maximum nega-
tone burst. We substitute Eq. (34) into Eq. (17) and tive angle relative to 0B and the leading edge arrives

TRANSMTTERIP2

RECEIVER

P I.L __J
Fig 5. Transmitter and receiver geometry for a multitone short pulse.
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with the maximum possible delay. Similarly, the 2'

Rd .pulse arrives at t = 0 when [, -1WI2. The trailing
edge of the response always occurs an interval To later ,. 06 ,
than the arrival of the leading edge. As suggested by 16

Eq. (36), the aperture functions behave as modulation
transfer functions. For example, the values of the
aperture functions are a(L/2) and r*(L/2) when fj = I- -

0!,A W/2. These values are consistent with the fact that 9

the response to a short pulse with this frequency occurs
when t = T.

It is apparent, then, that the transmitter response is
a function of the duration and frequency of the short -

pulse. Further, if the pulse contains several frequen- 0.
cies, the output consists of a sequence of responses 02 ,, as at
spaced in time according to the difference between , #11,11.PLN

6t: ~ ,.adjacent frequencies. The time difference between fj
and f, is, from Eq. (38), simply (fj - f,)T/W, which Fig. 6. Fresnel transforms of pulses with normalized widths rang-

confirms Eq. (8). In Fig. 5 we illustrate how the multi- ing from 0.01 5 k 5 0.45 in steps of 0.05.

ple tones are generated and reconstructed with the
appropriate transmitter and receiver configuration.
In the transmitter section, a short pulse with frequen-
cies fi, f 2, and f3 is just about to leave the Bragg cell.
The photodetector in plane P 2 has, therefore, just fin- ,A " .,,, o ow l,
ished forming v3(t) for this pulse. When the part of
V3(t) due to f[ enters the receiver, light is directed
toward the positive values of . As successive frequen- 1 a,

cy components of v3(t) enter the receiver, their Fresnel
_ transforms combine as they move toward the photode-

tector. As depicted in Fig. 5, the pulses in the receiver ,,
are positioned so that the original multitone signal is
well formed, both spatially and temporally, at plane
P2. In this fashion, all the components of the arpeg-
giated chord join to reconstruct the chord as the output P - N I DIS.ANC
signal v 6(t). We note in passing that the arpeggiating a ,RSS PLANE
rate is the same as the chirp rate for any given geome-
t h c e h i a mFig. 7. Fresnel transforms of pulses with normalized widths rang-. try; this is consistent with the idea that an im pulse i gfo .0 5k: .1i tp f00 1
function, which is the limiting form of a short pulse, ing from 0.001 < < 0.01 in steps of 0.001.
contains all frequencies and the arpeggio becomes a

[ glissando. 0.001. Since these results were computed for a
To more fully explore the system response to short system having a time-bandwidth product of 2000, we

pulses, we wrote a program to compute Eq.(35) for find that a pulse containing just two resolution ele-
pulses having a normalized width k = To/T = Lo/L. ments spreads light over a region lit s L/2 in theI" i :For convenience, we removed the time dependence Fresnel plane.
and normalized the coordinate in the Fresnel plane so In Fig. 8 we plot the value of p at which the response

that p = 2n/L. In Fig. 6 we show the magnitude of the to a pulse has its half-amplitude value. As expected, p
response as a function of p for various values of k. If a k for the longer pulses and, in the absence of diffrac-
the pulse is fairly wide, the diffraction pattern resem- tion, the nearly straight line relationship would extend
bles the pulse itself, except for some internal fringes, to the origin. For small values of k, however, we find
The width of the diffracted pulse, taken as the distance that p a 1/h. The transition between these two regions
between the half-amplitude response points, is essen- occurs at k0 - 0.025 when WT = 2000 and represents
tially unchanged. Thus, we can say that the Fresnel the transition from Fresnel diffraction to Fraunhofer
transform of a long pulse is, aside from the internal diffraction. From the computer solutions we obtain
fringes, similar to the pulse itself. In all cases, the the general relationship that

*"'. Fresnel pattern is symmetrical about p = 0.
. When k = 0.01, we find that the Fresnel transform ko - F2 (39)

has a smaller central magnitude and begins to take on
the form of a sinc function. In Fig. 7 we show the at the transition point. We use Eq. (4) in Eq. (39) to
Fresnel transforms for shorter pulses, and we see that find that the transition from Fresnel to Fraunhofer
they more accurately represent the far-field patterns diffraction occurs when L 0 - ,/ D which is close
of pulses as the pulse duration decreases. The central to the approximation usually stated in optics texts.
lobe of the pattern just covers the region II :s I when k We claimed earlier that Eq. (36) is a valid approxi-
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Suppose that the Bragg cell contains N samples of
the signal as shown in Fig. 9. Again, we appeal to the
geometric representation used in Sec. II to illustrate

- the idea. We let N = 8 and show the situation at the
14 "point in time when the first frame of information has

entered the Bragg cell. Each time sample has an asso-
% ciated frequency which we now denote as mA , I ml s N.

For example, the fifth sample (n = 5) has an associated
frequency -3/0 which is just sufficient to move this
time sample to the second time slot in plane P3 . Sam-
ple n = 3 in plane P has an associated frequency +2fh
which moves it to the fifth time slot in plane P3. Since

S_ ,_°_______ ,_the sample positions in plane P3 are a permutation of
a. ip uei. As sdLSI I the sample positions in plane Pl, there are A! ways in

Fig.8. Plot of half-amplitude response width in a Fresnel plane as a which the frame of N samples can be transmitted.
:function of input pulse width. As shown in Fig. 9, the photodetector placed at r7 = 0

is just ready to receive light from the frame of data. As
the data flow through the Bragg cell in a continuous
fashion, the samples are permuted in time. The sam-

04"P ples from the next frame are frequency encoded, ap-U;LL !flitsini k
W PLApropriate to the new permutation, while the previous

frame is being transmitted. The Bragg cell must be
2N samples long to accommodate the maximum time
delay required when the first sample in a frame must

psosogmclom be moved to the end of the frame. As shown, the
frequencies have been chosen to perform a particular

r.of 1 -0 permutation called a perfect shuffle.' 6 When the con-
So S. -he jugate receiver is used, we perform the inverse permu-

tation or unshuffle automatically to reconstruct the
:- n ', proper sample sequence.
1 4-31,

_I I C. Continuous-Wave Signal
When the input signal is a cw signal represented by 1

Fig. 9. Configuration for permutation of time samples. : f -, the rect function in Eq. (35) is valid for all
time and can be removed from the integrand. We then
have that

mation to Eq. (35) provided that To is not too small. i. 1it) = exp[-j-r(f 5 + - T)] o(('272 + +/Liw)
We can use the results from Figs. 6-8 to gain further - -

insight to this qualitative claim. When To > k0 T, the x ro(,r7XD z + fL/') expI-j(r/2z2
Jdz. 40)

effect of diffraction from one edge of the pulse is nearly
independent, at plane P2, from that of the other edge. From Eq. (40) we conclude that the integral gives the
When To < h0 T, the diffraction from the edges com- modulation transfer function of the system. When
bines to produce the far-field patterns. Stated anoth- the aperture functions are slowly varying, the integral
er way, when To < h0T, the argument of the Fresnel has significant value only when z = 0, and the MTF can
integral of Eq. (35) is not slowly varying with respect to be approximated by a(fjL/W)r*(fJL/W).
the kernel so that the integral cannot be evaluated This result suggests that frequency excision can be
through the principle of stationary phase simply by performed for a cw frequency by stopping a region of
setting z = 0. either the signal or reference aperture function. Since

We are now in a position to show how to implement, there is a one-to-one correspondence of spatial posi-
for certain signal formats, the time sample permuta- tions to spatial frequencies, a stop at x = fjL/W in the
tion method described by Wyner.5 Suppose that an reference beam aperture will create a notch to excise
analog signal is sampled at time intervals of T' seconds the frequency f even though the system does not con-
by a gating function to produce a frame of N samples tain a frequency plane. Frequencies cannot be excised
that are To seconds in duration, where To satisfies the as cleanly, however, as when a stop is placed in a
criterion for a short pulse. Each of the N samples is Fourier plane, because the Fresnel integral in Ei. (40)

. multiplied by cos[2r(f, + fj)t1 where fA is a frequency can be evaluated at z = 0 only if the integrands are
drawn from a set of N frequencies in the band -h W/2. slowly varying. As the stop becomes very narrow, this
We have thus converted the analog signal to a pulse stationary phase approximation does not describe the
amplitude modulated signal; the associated frequen- physical situation accurately. IfL(, > k,L, the spectral

• cies f, will determine how the time permutation notch is reasonably well formed. But as L' -- 0, the
evolves. notch actually broadens and the performance of the
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excisor degrades. A stop produces a result similar to achieve time delays here, but it is apparent from Eq.
that of a short pulse; we can represent a stop at fre- (36) that, if no further steps are taken, the channel
quency f, as bandwidths must be equal to W + 3'h, centered at [.

- r(,111) - (411 However, if we also modulate the reh-rence beam with
r r - irect(-L!)/L,. (1 cos(27rfht), we find that a channel bai'dwidth of Wwill

where L, is the width of the notch. As shown by accommodate the transmitted sigm without losing
numerical computation, the second term in Eq. (41) the random delay feature. The reference beam can be
produces a response similar to that shown in Fig. 6. modulated without changing its positi. n in plane P2 by
Since k0 = 0.025 at the transition region for a system using an acoustooptic modulator in pl; ne PI of Fig. 1.
with a time-bandwidth product of 2000, this method At the receiver, the signal v.a(t) is d.iopped by the
for frequency excision can be used only if we wish to same frequency fs to remove the effe( s of the time
remove at least 2.5% of the total frequency band. Fin- delays, and the reference beam is shiftL* by fj, so that
er frequency excision can be made by placing rj(x) in the output of the receiver v6(t) always h, s bandwidth

- the front focal plane of the lens that creates the refer- W centered at f[.
ence beam (see Fig. 1). In this case, any one of WT Although the channel bandwidth is not, xpanded by
frequencies can be cleanly excised, because the stop is using this technique, we have placed the b rden on the
placed in the equivalent Fourier transform plane of the Bragg cells which must be designed to op rate over a
system. bandwidth W + Wh. The time delay in the esponse to

D. Alternative Methods for Time Delays an impulse is now

In Sec. II we showed that time delays can be t = (1 - c)T12 + (cT/Wfh, (431

achieved when the Fresnel plane is located at D < cD,. with the side constraint that
e Additional delays can be achieved by changing the 1 (s - c)W/2c. (44)

point at which the Fresnel transform is detected. One
possibility, then, for scrambling the data is to provide a We note that fh is not constrained by geometri consid-
broad reference beam at the Fresnel plane and to use a erations; rather, it is limited by the degree toK iich we

S'sequence of discrete photodetectors to provide the are willing to expand the signal Bragg cell ban. width.
. time delays. If these photodetector positions are a Suppose that Wh = hW so that the bandwidth xpan-

distance 11,12, .... .,j away from the point i? = 17,, the sion is a factor 1 + h. We then find that c :s I/(' + 2h)
, time delay is so that the range of time delays is 0 :_ th _- 2h'l /(1+

(( 2h). Time delays play a significant role in prev -iting
the fine detail from being reconstructed in the p oper

The advantage of this approach is that the channel position unless the hopping code is known. A ime
3bandwidth remains fixed for any selected photodetec- delay range of T/3 would probably be adequate: this

tor. The disadvantages are that the reference beam implies that h = 1/4 so that the Bragg cells would i eed
power is not used efficiently, a large number of photo- 25% more bandwidth to handle the hop frequenci.F: ,- detectors are required, and the minimum time delay
increment is determined by the finite size and spacings V. Simulations
of the photodetector elements. We illustrate some of the scrambling techniqi 3s

As we showed in Sec. IV.A, the focused reference described so far by their effects on images. Sin e
beam provides the required sampling of the Fresnel images are often transmitted in a raster scanned fc -
transform so that a large area photodetector can be mat, the random time delay features can be readi."

used. We can take advantage of this fact by switching visualized and simulated. We wrote a program t
the reference beam to various positions i) to obtain the compute the spatial version of Eq. (2) for each scannec
time delays. Alternatively, we can keep the reference line of the image; the results were then displayed on
beam fixed and cause the Fresnel transform to switch video monitor. Since the transmitter output is rea'
to different positions. Any relative displacement of valued, we added a bias term to the output to avoid

K.' the Fresnel transform with respect to the reference distortion due to rectification of the negative values.
beam position will do. In the first example, we illustrate the Fresnel trans-

If the angular displacement of either the Fresnel forms for rectangular pulses that vary in width from
transform or the reference beam is achieved by means 128 pixels at the top of 2 pixels at the bottom [see Fig.
of a Bragg cell, however, the required channel band- 10(a)]. The ends ofthe pulses forma staircase pattern
width will increase. Suppose, for example, that the and the Fresnel transform for each scan line is comput-
input signal is of the form m(t) cos[27r(f, + fh)tl, where ed in the horizontal direction only. Figure 10(b)
m(t) is a baseband signal and fh is randomly selected shows the Fresnel transform; these patterns differ
from the frequency range jfhj S Wh/2. From Fig. 1 we somewhat from those we normally observe because
see that the effect of introducing the frequency hop is here we display the biased magnitude, not the more

- to deflect the entire diffraction pattern of m(t) by an familiar intensity, of the Fresnel transform. The
, .. angle +6h about the Bragg angle 0,H, according to width of the Fresnel transform is equal to that of the

whether fh is greater than or less than zero. We do not pulse, when the pulse width is large, as seen near the
give the detailed analysis of this alternative method to top of Fig. 10(b); evidence of internal fringes is lacking
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due to the exposure required to capture the response normally be scrambled so that the image would be
from the shorter pulses. When the pulse width be- more difficuil to reconstruct.
comes very small, as near the bottom of Fig. 10(a), the So far we have described scrambling techniques in
Fresnel transform broadens into the far-field pattern which we have generally preserved the channel band-
as shown in Fig. 10(b); the peak amplitude also de- width. lfwewishtoimplement the random time delay
creases as the sinc function becomes broader. These technique, however, we must have sufficient time be-
results parallel those shown in Figs. 6-8. tween raster scan lines to accommodate the desired

Figure 11 (a) shows a scene that has regions of high range of delays. If this time interval is not available,
contrast. low contrast, fine detail, and coarse detail. the channel bardwidth must be increased. As noted
The Fresnel transform of this scene is shown in Fig. before, a mode.4 increase in channel bandwidth may
11(b). Note that the fine detail associated'with verti- be an acceptable trade-off relative to the large increase
cal edges is spread over a large region in the horizontal required when di'itizing and encoding the wideband
direction. The clearest examples of this spreading are signal. We now riefly consider generalizations of the
in the upper left-hand corner and in the left central scrambling technique that do not preserve bandwidth.
part of the scene. Detail in the parking lots is scram- As can be seen from Fig. 1, we have the option of (1)
bled; the two rows of vehicles in the central part of the using a signal r, (t) ".o modulate the reference source at
scene are nearly blended together in the transformed plane Po in time only, (2) using a signal r2(t,x) to
output. Long horizontal lines are not, of course, al- modulate the reference beam at plane P , in space and
tered appreciably in the vertical direction because the time, or (3) using a signal rq(t) to phase or frequency
Fresnel transform is 1-D in this case. modulate the input5ignal. We can also, of course, use

Figure 11(c) shows the Fresnel transform for the combinations of these modulation schemes.
same scene but with a random time delay imparted to Consider, for exam ple, a modulating signal r, (t) that
each scan line which simulates a random frequency has constant amplitude but a slowly varying frequen-
hop of the signal. The delays were selected from the cy. Its effect on the output of the transmitter, when
uniformly distributed 16-pixel interval at the nominal the input is an impulse function, is to produce a chirp
start of scan. The contribution to the scrambling from function that is aberrai :d in the sense that its temporal
the time delays is not a large as initially expected, frequency is not a linesr function of time. Without
because the random delays produce a result which, compensation, this sign il cannot be compressed in the
viewed macroscopically, is similar to a low pass filter- receiver to provide good resolution. If, however, the
ing operation. Since the Fresnel transform is also a signal r *(t) is applied t( the received signal, the conju-
low pass operation (see Fig. 10), the time delays do not gate of the aberration is provided so that the original
seem to add significantly to the scrambling. They do, signal can be recovered. By combining the types ofhowever, play a significant role in reconstructing the modulation cited, several interesting effecs can be pro-

original signal at the output of the receiver. From Sec. duced. We shall defer a discussion of them to a subse-
IV.D, we find that this range of delays requires 7% quent paper.
more bandwidth from the Bragg cells but no additional
channel bandwidth.

The scene is now reasonably well scrambled except VI. Summary and Conclusions
for the lowest possible frequencies. These can be fur- The Fresnel transform, not frequently used in signal
ther scrambled by randomly altering the polarity of processing, has some interesting and useful properties
the Fresnel transform on each scan line as shown in when applied to Bragg cell processors for purposes of
Fig. 11(d). In this example we simply multiplied the signal scrambling. We have derived the optimum op-
Fresnel transform for each scan line by :1 before tical geometry, given the key ,arameters of a wideband
adding the bias level. As a result, the effects of polari- time signal. We showed that a photodetector can be
ty reversals are most evident in the bright regions of placed anywhere within a corse defined by the ends of
the scene. A more effective scheme would be to the Bragg cell and a point on the optical axis located a
change the polarity about the mean value of the entire distance Dm from the Bragg ce'l. A wide range of time
scene. The random polarity is relatively more useful spreading and time delays cai: be obtained thereby,
than the random time delays in this example. depending on the position of the photodetector within

These examples do not illustrate all the phenomena the cone.
or exhaust the possible variations on the scrambling The time of arrival of the leading edge of a pulse is
techniques available. For example, because we have dependent on its frequency; mu)titone short pulses caj
computed the Fresnel transform of spatial signals, the be divided into separate pulses N "ith most geometries.
temporal frequency characteristics of the transmitted For some signals it may be usel l to time permute a
signal are not evident. Nor do they illustrate the sequence of sample pulses by con- -olling the frequency
interesting frequency-dependent time-of-arrival ef- of the pulse. As an example, a squence of N pulses
fects for tone bursts or multitone short pulses. We with different amplitudes can be rearranged in any
must also keep in mind that the results shown in Fig. II order by using a Bragg cell whose iength is equivalent
could be obtained from the transmitted signal because to 2N pulses. A perfect shuffle of the N pulses can
wedid not introduce orscramble the sync pulsesneces- thus be performed, as can exchangsand bypass func-
sary to define the start of scan. These pulses would tions. Thus, there may also be some useful applica-
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tions of Fresnel transforms in optical numeric comput-
ing.

4 Simulations illustrate some of the basic concepts for
scrambling analog signals in a raster format. If we
allow for some bandwidth expansion of the transmis-
sion channel, a much broader range of scrambling op-
erations becomes available by virtue of modulating the
reference source in time or space or both.
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Abstract

The Fresnel transform provides a means to implement circuit switching networks by using optical
techniques. Since photons can cross paths without interaction, non-blocking configurations are easy to
achieve. Furthermore, any arbitrary interconnections between two 14-port systems can be configured; the
network can be rapidly reconfigured as needed due tb the dynamic nature of acou-to-optic cells.

Introduction

Fresnel transforms have some useful spatial/temporal properties when used Jn conjunction with
acousto-optic cells. A Fresnel transform having a low dispersion coefficient, as determined by the a
propagation distance D, will closely resemble the signal. As the dispersion coefficient increases, the
Fresnel transform begins to sort the information according to its spatial position, corresponding to the
time coordinate, and according to its angular spread, corresponding to its frequency content. For a very
large dispersion coefficient, the Fresnel transform is equivalent to the Fourier transform; it then most
accurately represents the frequency content of the signal. Between the space and the Fourier domains,
then, there exists a continuum of Fresnel transform planes that have a mixture of the dominant properties
of the time and frequency planes.

These properties of Fresnel transforms have been applied to scrambling analog signals.' Analyses of
the Fresnel transforms of CW, impulse, and short pulse signals were developed in terms of spatial/temporai
content. Some scrambling schemes were then introduced, including one in which the time samples are
permuted. It is the permulation idea that suggested the application of Fresnel transforms to optical

.N. computing.
In this paper we review the basic results from Reference 1. We then consider some ways that this

scheme can be used for interconnection schemes in computers.2  The Fresnel transform provides for both
local and global interconnects on a dynamic basis, as we shall see.

The Fresnel Transform

Consider a Bragg cell located at plane P, in Figure 1. Suppose that the cell is constructed of a
% material that allows operation in the tangential mode. As a resilt, when the applied signal is

s(t) - cos(2?fct), where fe is the center frequency of the cell, the diffracted light is normal to the exit
face of the cell. As the frequency varies from fe-W/2 to fc-W/2, the light is deflected over the angular
range 1-3 16m. At any plane, located a distance D from the Bragg cell, we can represent the Fresnel
transform of a signal s(t) as

g(t,n) s(t x) exp[-j(ii/D)(x-n)']dx, (1)

where the exponential function represents the free space response to an impulse; x is the spatial
coordinate at plane P, and n is the spatial coordinate at the Fresnel transform plane P,. The cell serves
to convert the temporal signal s(t) into a space/time signal s(x,t) by the relationship that

s(x.t) - a(x)s(t-T/2-x/v), (2)

where a(x) is an aperture weighting function that includes the truncation points at x - * L/2, v is the
acoustic velocity, and T - L/v is the fill time of the cell. A CW drive signal at the minimum frequency
fm . fc- W/2 produces a light wave that propagates as a plane wave at the angle em - arcsln(W^2v). The
edge ray of this bundle intercepts the optical axis at a distance Dm:

Dm - Lv/XW. (3)

In a similar fashion, the opposite edge ray from a frequency fe* W/2 will also intercept the optical
axis a distance Dm from plane P,. If the distance between planes P, and P. is greater than Dm , the higher
frequencies In the band W cannot be detected at the point n - 0. Since L - vT, we can derive an important
relationship connecting the physical parameters of the optical system with the key parameters of the
signal:

% N N'
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Next, consider the system response to an Impulse function. Since the input signal is banrlirmltec, trc ..L

shortest pulse that the system can support will generate rays confined to the range of angles b 2b m . T:. "
margir.al rays for such an impulse function that has just entered the Bragg cell are bhow. by dotted llrs
in Figure 1. If D - Dm , the photodetector receives light as soon as the impulse enters the Bragg cell at,-
continues to receives light until the impulse leaves the Bragg cell; we conclude that the impulse is spread
or dispersed into a chirp signal of duration T. The temporal frequency of the chirp varies linearly in
time from fc - W/2 to fo - W/2. If the distance between planes P, and P2 exceeds Dm , there is no increa5e
in the time spreading of the impulse. The maximum distance between planes P, and P. is therefore the valuc
that satisfies (4); this ensures that no frequencies are missed and provides for maximur. time spreading.

A third type of signal envelope is a short pulse of duration T,; such pulses are of greatest interest
to us here. Consider a pulse whose duration is of the order of T/6 as shown in Figure 2, and let the
observation point be at n - 0 in plane P2 . Further, suppose that this pulse contains frequency cor..pone.ts
at f,, f2 , and f. such that f,>f,>f,. The photodetector then receives energy at time intervals relate€ to
the frequency content of the pulse. If we think of the pulse as a musical chord, we find that the time
difference tn between the first two notes is given by tn ( - r)/v, where r, - n2 is the distance
between the leading edges of the pulses in plane P2 . By using the basic rules of diffraction theory, we
find th~at

t n  - ( 1 , - n ) / v - ( f , - f ) A D m / v2 , 
S I

*" which, through the use of (4), can be reduced to

tn  - (f, - f,)T/W. ( )-

Thus, we see that a chord is encoded as a succession of pure tones, each of duration T. The behavior
of tnese short pulses provide interesting possibilities for optical computing.

The discussions so far are based on geometrical optics; we need to consider diffraction effects to
better understand the response in the Fresnel plane. To more fully explore the system response to short
pulses, we wrote a program to compute the Fresnel transform for pulses having a normalized length
k-TG/T-L,/L (See Reference I for details), For convenience we removed the time dependence and normalized
the coordinate in the Fresnel plane so that p-2n/L. In Figure 3, we show the magnitude of the response as
a function of p for various values of k. If the pulse is fairly wide, the diffraction pattern resembles A4
the pulse itself, except for some internal fringes. The width of the dif-fracted pulse, taken as the
distance between the half-amplitude response points, is essentially unchanged. Thus, we can say that the
Fresnel transform of a long pulse is, aside from the internal fringes, similar to the pulse itself for all
values of %

k - . (7)

The numrber of pulses that can be stored in the cell is, to a first order approximation, proportional to 1/k
so that

N /0.811,1. (8)
k

We can therefore store up to 40 such pulses in the cell if the time-bandwidth product of the cell is
TW - 2000, and still retain spatial resolution at the Fresnel plane. We may need to reduce this number
somewhat, in some applications, to reduce cross-talk between adjacent pulses.

Application to Computing

We have illustrated the properties of the Fresnel transforms of CW, impulse, and short pulse signals.
We now concentrate on how we might use these properties in optical computing. We first review a metriod for
permuting time samples as an analog scrambling technique.'-' Suppose that an analog signal is sampled at
time intervals of T' seconds by a gating function to produce a frame of N samples that are T . seconds in
duration, where T. satisfies the criterion for a short pulse. Each of the N samples is multiplied ty
cos[2nfit], where fo is a frequency drawn from a set of N frequencies in the band fe±W/2. We have thus
converted the analog signal to a pulse amplitude modulated signal. The associated frequencies fj will
determine how the time permutation evolves.

Suppose that the Bragg cell contains N samples of the signal as shown in Figure 4. We let N - 8 and
show the situation at that point In time when the first frame of information has just entered th@ Bragg
cell. Each time sample has an associated frequency which we now denote as mf0, H . N; these frequencies

are measured from fe For example, the fifth sample (n - 5) has an associated frequency -3f 0 which is just

sufficient to move this time sample to the second time slot in the Fresnel plane. Sample n - 3 in tne

Bragg cell has an associated frequency * 2f, which moves it to the fifth time slot In the Fresmel plane.

"9
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4Since the samTle positions In plane P . are a permutation of the sample positions in the input plane, there

are IN ways it. which the frame of N samples can be transmitted.
As shown in Figure 4, the photodetector placed at tI - 0 is just ready to receive light from the frame

of cata. As the data flows through the Bragg cell in a continuous fashion, the samples are permuted in
time. Tne samples from the next frame are frequency encoded, appropriate to the new permutation, wnile the
previous frame is being transmitted. The data flow is continuous in time, provided that the cell has been
fully loaded and matched in length to the frame length. The Bragg cell must be 2N samples long to

acco=%.Ddate the time delay required when the first sample in a frame must be moved to the end of the frame.
As sho.n, the frtquencies have been chosen to perform a particular permutation called a perfect shuffle.5

Shuffles and exchanges are used extensively in computer architectures for parallel processing, ,'
such as the FFT, and circuit switching networks,'',

' 
such as concentrators, expanders, partitioners, and

sorters. We could also view the permutation scheme of Figure 4 as a means for interconnecting one set of
N computers or processors with another set of size N, including some or all of Its own members. In this
fasrion it is possible to implement operations requiring feedback. In the case snown, the first bits from
each data word could be interleaved to produce a serial bit stream that modulates those frequencies
synthesized under the control of the processor that determines the desired interconrection. The
photooetector circuitry then deinterleaves the data and puts the bits onto the appropriate bus associated
with each processor. The same permutation pattern is retained until all the bits in a word or a sequence
of words have been transmitted.

The interconnection scheme can be changed at any time without interrupting the flow of data into the
Bragg cell. There will be, however, variable gaps between the last bit of a word transmitted with the old
setup to the first bit of a word with the new setup. Another disadvantage of this scheme is that the
required electronics at the input/output are complicated. The bit rate in the Bragg cell, and therefore
trie banowioth of the photodetector, is N times the bit rate of the individual processors. Finally, the
light is not as efficiently used as we would like. Clearly, this scheme is more useful as a scrambler than

p as a crossbar switch.
We can relieve some of these problems by adding more sources and photodetectors to introduce more

parallelism. Figure 5 shows a similar Bragg cell configuration, but one with a set of N light sources such
as injection laser diodes which illuminate the Bragg cells via collimating lenslets; the cell is also only
half as long as the one used for data permutation. We associate each source with one of tne transmitting
processors. Tnese sources may be modulated with data or, in some applications, they may simply be operated
in a pulsed mode upon command. We associate each photodetector with one of the receiving processors. If
the subsequent processing is to be all optical in nature, the photodetectors can be replaced by optical
fibers; this may be an attractive alternative anyway because the detection process can then be physically
performed near the processor electronics.

The basic mode of operation is that the network controller selects the frequencies necessary to
establish the desired interconnection scheme. Each of the N' interconnections car be set by an N-bit word
from the controller. The binary data from the transmitting processors modulate the sources which produce a
very short pulse with high peak power once per bit interval. We see that the frame rate for the bragg ceil
must be equal to the bit rate from the processors.

Tne cystem shown in Figure 5 has several advantages relative to that shown in Figure 4: (1) the
photocetectors bandwidth is the same as the bit rate for any particular processor instead of N times that
rate (altnouCh the sources may be on for only a short period of time, the associated pnotooetector

circuitry can be designed to be consistent with the bit time, thus reducing the noise bandwicth andSimrrovi.,. the system performance), (2) the available light power can be used more efficiently because there
are N sources and each can be operated at rated average power, (3) there is no need to interleave or
deinterleave the information at the input or output, and (4) there are no gaps in the data flow when tne
interconnection scheme is changed.

An important feature of a switching network is the ability to implement expanders that fanout data
" from one processor to several processors. Such systems are more powerful because they can implement more

tran N! interconnections. A basic fanout is shown in Figure 6, where we see that transmitting processor T4
is connected to receiving processors R2, R4, and R6; when we fanout, we address two or more frequency
synthesizers at the same time. The connection can be made without Interference because optical switches
are non-blocking. To avoid contention at the receiving processors, the number of transmitting processors

' must be less than the number of receiving processors and the controller must ensure that no receiving
processor gets concurrent data. If a single transmitter is set to fanout to M receiving processors, the
number of interconnect schemes is

N2[(N-i)!]'
M[(MI)!] (N_M)! M> . (9)

Ouviously, more than one transmitting processor can operate in the fanout mode, provided that contentions
r are reolvcd.

Tnere are other possible uses for the Fresnel transform. To illustrate these, we must first
distinguish between direct and heterodyne detection. In direct detection we measure the intensity of the
lignit; the high frequency and phase information is lost in the process. In heterodyne detectioAnwe

measure the amplitude of the light, with the phase information encodud on a high frequency temporal
wa/efori. Thus, all three Important parameters of the sIgnal are retained.

The advantage of direct detection is system simplicity, and our discussions so far are based or, using
this detection scheme. If, for example, we were to use heterodyne detection, we could resolve contentior,
in the fanout mode of operation. Suppose that d,ta from T1 arid T3 in Figure 6 are required concurrently at

1,'4



h. Since the required frequencies are f2 and f4, we can retair, the identity of the transmi tting processor
by measuring the frequency content of the received signal. Such a feature also require,, of cOUrse, more
complex detection circuitry. If we use direct detection, the magnitude at R8 is the su. of the intensities
that are generated by T2 and T3 operating independently; we then lose the icentity of the transmitting
processor.

in some switching applications It may be useful to complete a connection only when several independent .

events occur concurrently. In this case we could use direct detection and comparators to set the criterion
for interconnection based on magnitude only. Figure 7 snows a case where T3, T6, and TB (which may
represent one set of parts) activate R5 at some instant in time. If the port opening activity takes place
during a special setup time, several ports miy be opened by a combination of frequency selection and laser
source selection as tne signal travels through the cell.

One disadvantage of' this scheme is that the bit rate, on a per channel basis, is the samr'e as the frame
rate for the Bragg cell. In Table 1 we give the relevant figure for two quite different, yet typical,
b'ag8 cell configurations. The key parameter is the frame rate which, in both cases is much too low. The

Parameter Case 1 Case 2

T Ips 40 ps
W 500MHz 50MHz

TW 506 2000
N - . 1 20 ,0
Frame Rate 1MF/S 25KF/S

Table 1: Comparison of two Bragg Cells

frame rate improves as N decreases, but such concessions tend to defeat the purpose of tne switch. We can
increase the bit rate by introducing more channels as shown in Figure 8. Suppose that we let each channel
represent one element of an M-it word. We can now transmit one M-bit word in a frame period. To do sc
requires an N x M element photodetector array.

Another possible way to increase the bit rate is shown in Figure 9. A linear array of N sources (not
shown) illuminate an 1 channel Bragg cell. The spheical/cylindrical lens creates a Fourier transform in
the vertical direction while maintaining the Fresnel transform in tne horizontal direction. Tne proper set
of frequencies are applied to the Bragg cell to establish the desired interconnection. The bit rate is now
determined by how fast the sources can be modulated.

Comparison to the Fourier Transform

Fresnel transformo, as applied to short temporal pulses, sort information according to the angular
diffraction caused by the spatial frequency content of the data. The information can be spatially resolved
if tne propagation distance from the signal to the Fresnel plane is sufficiently large; this distance is
dependent on the pulse length. A Fourier transform also has these properties and, since it is the
far-field limiting version of a Fresnel transform, provides the maximum spatial separation of the angular
componets of the signal. How, then, do these two transforms compare?

The key difference between these transforms is that the Fresnel transform retains a direct
space-to-time cependence; that is, the time at which data arrives at a detector is a function of both its
frequency and position. It is therefore possible to reorder data in a sequence as we showed in Figure 4.
Such an arbitrary permutation cannot be done using the Fourier transform arid a single detector.

The interconnection schemes shown in Figure 5 and 6 can be achieved with the Fourier transform except
that the frequency encoding scheme is different. The applied frequency is a function of onl) the
destination in the Fourier transform mode whereas it is a function of both the source and the oestination
in tne Fresnel transform mode. It is not, therefore, possible to identify the source processors w.1,e usng
either direct or heterudyne detection. There are, therefore, some similarities and differvnces between the
Freone and Fourier transforms. Which is more useful requires more detailed analysis for a given
appl ication.

Susrary

Fresnel transforms, coupled with the use of Bragg cells, can implement dynamic interconnection schemes
that may be useful In computer architectures. The fact that they are one-dimensional devices may not pose
a problem since optical fibers can be used to distribute information from the switch pc.nt to the.
destination. Two-dimensional extensions of these schemes are obvious, with a multi-channel configuration
being most useful. All possible permutations car be implemented, avoiding some of the limitations
associated with repeated use of algori thms such ao the perfect shuffle.

Tnis work was supported by the U. S. Army Re,u,irch Office.
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Acoustic spreading in multichannel Bragg cells

A. VanderLugt, G.S. Moore, and S.S. Mathe
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Abstract

In some applications,the performance of multichannel Bragg cells is compromised by the
spreading of the acoustic waves as they propagate; the spreading causes the signals in the
channels to overlap. The overlapping can be significantly reduced by a spatial filter in a
Fourier/image plane; the spatial filter is shown to be equivalent to a cylindrical lens
whose power is a function of the distance from the transducer.

Introduction

In some signal processing applications, multichannel Bragg cells are required to handle
wideband parallel signals. One example is that of processing signals from a phased array[' '" antenna wherein we associate each channel of the Bragg cell with an antenna elemen. Mti

channel Bra,;g cells were developed in the early 1960's by Lambert and his associates ,2 and
cells with as many as 128 channels have been described . As the channels become more
densely packed, the transducer heights are reduced causing the acoustic energy to spread over
larger angles as it propagates through the interaction material. The acoustic waves from
adjacent channels therefore overlap after a short propagation distance; if the overlapping
could be compensated so that the diffracted light from each channel is confined to that
channel, a more widely useful multichannel Bragg cell would result. We show how this can be
achieved with a holographic element.

Theory

The model that we use for analyzing the acoustic spreading is the same as that used
before 4 and is shown in Figure 1. An electrical signal drives a piezoelectric transducer
having height H and an interaction width W. The transducer launches an acoustic wave within
the Bragg cell which changes the index of refraction; this, in turn, causes the phase of

* ,light from a coherent source to be modulated in space and time. If the drive signal is
an RF signal at frequency fc, the acoustic wavelength is Ac = V/fc, where V is the velocity
of sound in the medium.

The acoustic wavefronts propagate in a fashion similar to optical wavefronts derived
from a line source (H - 0). If W - H, we can model the wavefronts as cylindrical sheets
which, for an isotropic medium, spread at an angle ±¢ with respect to the x-axis. The
degree to which acoustic spreading occurs is a function of the anisotropy of the medium, the
acoustic wavelength, and the transducer height.

* .The first step is to calculate the Fourier transform of a single channel Bragg cell
~. driven as shown in Figure 1. We wish to derive the transform in the y-direction only, while

we image the Bragg cell in the x-direction. we begin by considering the transducer to be an
infinitesimal line source and account for its finite height by multiplying the Fourier
transform by a sinc-function. The Fourier integral to be solved is 4

G(x,2) = xf exp[-2-y/2x(l-2slexp(-j2-:y/X)dy. (1)

where L is the angular spatial frequency, s is a parameter that characterizes the degree of
anisotropy as given by the elastic constants, 4 , 5 . is the wavelength of the acoustic wave
within the medium, and • is the wavelength of light. The region of integration is over a
wedge whose apex is at x = 0 and *, is the angle at which the acoustic beam has its first
nulls. The far field value of T is6

= (1-2s)/H (2)

In reference 4, we solved (1) in terms of error functions having complex valued arguments.

An equivalent result that is somewhat simpler to derive and provides more physical insight
can be obtained through the use of Fresnel integrals. We let
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c n r/Ax(1-2s)
(3)

d =~

so that

0x

G(x, 6) = 1 exp [j(cy2+2dy)]dy (4)

By completing the square of the exponential and by changing variables, we obtain
b

G(x,1) exp(jd 2/c) sinc(SH/l) exp(-ju 2)du, (5)

a

where a = -T-xvZ + d/,E, b = € xZ + d/vE, and sinc(2H/X) is the multiplicative factor
needed to account for the finiie height of the transducer. The integral is a Fresnel
integral that further modifies the amplitude of G(x,S). Depending on the values of the
limits, this function may be nearly rectangular (similar to the near field diffraction 4

pattern of a slit).

If we denote the total amplitude weighting of G(x,B) by f(x,8), we have that

G(x,B) = f(x,6)exp[jnxA(l-2s)B2/X 2]. (6)

We now concentrate on the phase part of G(x,a). The key point is that the phase factor is
quadratic in 6 and linear in x. At the transducer, where x = 0, there is no optical power,
whereas the optical power is greatest at x = L. If the optical power could be canceled, the
inverse Fourier transform would confine the light to rectangular channels with no spreading
into adjacent cannels. In principle, the optical power can be compensated by a section of
a conical lens whose power varies linearly from zero, at x = 0, to a value of LA(I-2s)/XF2

at x = L. An alternative method is to construct a holographic correcting element from one
channel of the Bragg cell; such an element will then correct the acoustic spreading for all
channels simultaneously in the same fashion as would a matched filter (See Figure 2).

The use of a holographic element for comensating the acoustic spreading has been

reported by Vodovatov, et a17. The derivation given there for the value of G(x,3) does not
agree with (6), particularly with respect to the phase factor having quadratic dependence
on 6 and linear dependence on x. The result from (6) however, is consistent with the
observation that the channels can be separated by focusing at a different plane using
auxiliary optics.

Experiments

we constructed a holographic element from one channel of a 32-channel Bragg cell. This
cell has a nominal bandwidth &f = 80 MHz at a center frequency fc = 135 MHz. The cell is
fabricated from telurium dioxide material having a longitudinal velocity of 4.2 Km/sec. The
active length of the crystal is L = 6 mm so that the time delay is 'l.5usec and the time-
bandwidth product is 120. The transducers have heights equal to 100 wm and they are placed
on 250 Wm center spacings. The acoustic wavelength at the center frequency is 31 wm. The
light source is a 10 mW He-Ne laser for which = 632.8 nm. The holographic element was
constructed on a SO-120 glass plate with a reference-to-signal beam ratio of unity near -= 0.

Figure 3 shows the uncorrected and the corrected output when channels are driven at the
frequency corresponding to A . Figure 3a shows the degree of acoustic spreading for the
uncorrected case. Of the twelve channels available, we drove the top channel to illustrate
how rapidly the acoustic energy spreads and the bottom four channels to illustrate how the
beams overlap and add coherently. We see that the beams are well separated only in the
region near the transducer as noted earlier. if we wish to process a significant amount of
time history, we find that the beams begin to overlap at a position that is only 10% of the
available aperture. Figure 3b show the corrected output; we see that there is very little
evidence of beam spreading and that the light has been confined to within channel heights as
det.3rmined by the transducers. The amount of beam spreading is a function of the drive
frequency; it is greatest at the low frequency band edge (due to a large '.) and least at the
high frequency band edge (where % is small).

Summary and Conclusions

We have shown that the effects of acoustic spreading within the Bragg cell can be compen-
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sated in the sense that the diffracted light can be more nearly contained within channels as
defined by the transducers. The results show that the best performance, in terms of

correcting for the acoustic spreading is obtained when we use a Bragg cell interaction
medium that has a large value of s. The correction for acoustic spreading can also be
improved by a factor of two if the correction is optimized at the midpoint of the cell.

The use of a holographic corrector plate for the acoustic spreading, as well as a
broader understanding of the basic diffraction patterns, opens the way for new application
of multichannel Bragg cells. As the bandwidths of communication and collection systems
increase, the need for such devices will expand because they help utilize the full parallel
processing capabilities of optical systems. Multichannel cells may also find application
in matrix/vector and matrix/matrix computing systems. A more complete discussion of this
method for compensating for acoustic spreading is given in reference 9.
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Figure 1. Model for Acoustic Spreading Figure 2. Optical System for Constructing
in a Bragg Cell the Holographic Element and Correcting

the Acoustic Spreading
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Uncorrected Case Showing Corrected Beams at Optimum
Beam Overlap Acoustic Wavelength (123 MHz)

Figure 3. Multichannel Bragg Cell Diffraction Beams
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