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ABSTRAC

The development of novel devices using subicron technologies is

dependent upon a detailed understanding of the electronic properties at a

quantum mechanical level. This report describes two related

investigations into electron states and plasmons In heterojunction based

quasi two dimensional systems formed from alternating layers of
semiconductor material. It is found that the electron dynamics are no

longer described by effective mass theory. Intervalley scattering, the

excitation of localised states at the interfaces and the details of the

electronic bandstructure are all important. Results are presented for
electron scattering in the GaAs-GaAlAs system and resonant tunnelling
through multiple bairiers investigated. The plasmon modes are calculated
by a new method which includes well widths, subband structure and multiple
layers. This method allows the electron electron interaction in such a
system to be calculated directly.

The consequences of this program for submicron device design are "'
described and further work suggested.

IcEYWCRDs '~-C -.J.

1 Semiconductors,
2 Devices,
3 Heterojunctions,
4 Superlattices, N
5 Quantum Wells %
6 Interfaces
7 Submicron Structures
8 Tunnelling
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INTwRDUCTION4

Any understanding of the operation of a semiconductor device must be
based upon a realistic microscopic model. The dimensions and growth
techniques used since the 1960's have meant that a quasi classical
treatment based upon effective mass theory and the Boltzmann equation
have, with few exceptions, proved sufficient. The advent of

-'*. heterojunction based sukmicron structure fabricated by IME MOCVD or other
related technology, however, has produced a whole range of devices both

.*- realised and proposed (1) whose atomic scale negates the basic assumptions ,".

of semi classical device design and quantum effects become predominant
(1,2). In spite of this, standard theory has continued to be used for
both device design and interpretation of experimental data with some
success (1,2).

The purpose of the project was twofold:

(A) to develop a basis for device design from a microscopic approach so
that quantum transport could be considered in a realistic manner.

(B) To look at quantum effects, in particular the plasmon modes in single
and multiple quantum well systems.

Zdr The overall framework was the development of millimetre wave sources,
such as the orotron (free electron laser), in which fast electrons could
interact with the space charge produced by plasmon excitation to form a
distributed source free from the normal transit time-size limitations '

(3). P

law Because these two areas are disparate, in that the techniques required
are quite different, we have split the technical report into two sections,
A and B. These describe the work in the electron states and plasmons
respectively. They can largely be read independently.

The summary, Section 1i, relates the two areas together and draws

some conclusions and suggestions for further work.

%, .:
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II TECHNICAL REPORT

A ELECTRON STATES

Al Introduction 9.

When a device becomes so small as to be of atomic dimensions one

cannot expect either the effective mass approximation or the Boltzmann ,
transport equation to hold, but in the absence of anything better both
have been used extensively for the whole range of heterojunction based -. ,."

sub icron device studies (1,2). In the last two years we have pursued a

vigorous programe of work designed to put the calculations of electron

states and transport porperties on a firm microscopic footing (4,5,6,7,8).

The basis of our calculations has been a careful study of the

scattering of electron states from a single heterojunction interface (4).

We have used an empirical pseudopotential description of the two

semiconducting materials, which gives good electron states and
bandstructures, and then used the resulting states in a matching routine
which produces all of the possible excitations at the interface as well as
the reflection and transmission coefficients of the carriers as a function
of energy and internal momentum (4,5,9). The related tight binding -

methods (11,12) suffer from an inherent limitation as to accuracy of band
gaps and effective mass.

This approach, although not as direct as say a supercell calculation
for obtaining electron states in a quantum well (9,10), is extremely
flexible. We have used it to obtain not only quantum well states (6,9) "
but also barrier tunnelling probabilities (7), resonant tunelling through
double barriers (7) and we are now in the position to calculate the effect
of any combination of wells, barrier thicknesses and alloy compositions
(7). In all of these calculations the effect of alloy concentration,
higher minima, non paraboliclty and the relationship to effective mass
theory have all been considered. What we have now Is probably the most
flexible and powerful technique for considering electron states in
heterojunction based systems.

A2 The Method .

Consider first of all the simplest situation conceivable: a single . .
GaAs/AlGaAs junction, and let the electron, in state 1k), be incident
normal to the interface from the GaAs side. In the ENT representation we
have an incident wave, the reflected wave and one tunnelling (or '
evanescent) state of wavevector -iy (fig l( a)]. We may express this
mathematically as ,

.R + -tk.R -y.R1
e +Re-.-°e

where R and T are the reflection and transmission coefficients,
respectively. It is illuminating to look at the problem in a different
way. By considering real energies below the bottom of the conduction
minima, we obtain complex values of k, (13,14). Consider the ENT'
approximation of a semiconductor bandstructure (fig Ib). Here, the full
lines represent the real bandstructure (assumed to be parabolic) and the
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broken lines represent the complex bandstructure. Bence, at any
particular energy below the top of the well, the electron can connect or

* excite only one evanescent state. The other evanescent state (+iy)
corresponds to a wave growing exponentially away from the interface, which

4 Is unphysical in this particular case.

Above the well the evanescent state becomes the transmitted state
carrying the electron current above the barrier. In a real semiconducter
there are many possible states at a given energy with complex wavevectors,

• -which can be excited at the interface by the Incident electron state,
coming off the higher conduction bands in the system. These may all
contribute to the reflection and tranmsission process at the interfaces.

, \. The basis of the calculation is, therefore, the matching, for a given
energy and momentum parallel to the interface, of the set %f eigenstates

*.. of the two semiconductors for a given incoming electron state. The
eigenstates include not only the Bloch states of the bulk materials but
also the evanescent states available through the removal of the
translational symmetry perpendicular to the surface. The methods used to

" V calculate the bulk eigenstates have been previously described in detail
elsewhere (15). Basically a layer method (16) is used, employing

le empirical pseudopotentials (17,1B). A virtual-crystal approximation is
used for the alloy system and, in order to avoid lattice mismatch, the
GaAs interatomic distance always taken. This will not introduce any
appreciable error since the maximum lattice mismatch is always c 0.4 .

4 .

Figures (2a) and (2b) show the k, - 0 bandstructure for a
(00 )GaA-A3A8 Interface as an example of the heterostructure

-L calculations. The complex bands N13,14) derive not only from the r
minimum but also from all of the higher real bands. One should note for
later reference that the complex bands are highly non-parabolic. For
instance, the band originating from the bottom of the AlAs conduction band".5
state gives a complex wavevector that is almost independent of energy over
an energy range of -1.2eV, i.e. covering a good proportion of the bandgap. V

Given the eigenstates at a particular energy and parallel momentum,
one sets up the matching condition at the interfaces which may be

--expressed schematically as:

Iincident> + Eft I (reflected)) j, + raj I (evanescent: 1)>j
(-i))•TL (transMitted))L + Ebm I (evanescent: 2)>m 2

where the Rt, TL are the reflection and transmission coefficients for the
Bloch states while the aj, bm are those of the evanescent waves excited in

' the two media at the interface. The magnitude of a, bm represent how
strongly the incident Bloch wave is coupling to the available evanescent
statee. (Some of the a,, bm must be set to zero since they represent
waves which grow exponentially away from the interface and are therefore

1, ,unphysical.)

Equation (2) is set up as a series of simultaneous linear equations
-* - expressing continuity of the wavefunction and its derivative for each of
, the lattice vectors of the interface reciprocal lattice. The matrix

equati.on represented by this set is then solved to give the coefficients
-* R, T, a, b. Obviously, the number of surface reciprocal lattice vectors

.- ,
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(equivalent to the number of states involved) needs to be restricted to a
finite number at some point. We have taken up to 13 surface reciprocal
lattice vectors but find that 7 gives less than 5% changes in the results
between the two cases.

There are a number of checks that can be made on the calculation of
which the most important is the current conservation across the boundary.
In all cases we have obtained current conservation within I x ]0-4%. "
Another useful check is the symmetry of the wavefunction. At km - 0 the
bands in figures (2a) and (2b) have differing symmetries with regard to
the 2D interface lattice. This means that some will not take part in the

scattering process. We did not perform a symmetry separation of the
matching matrix equation on the basis that for kg P 0 the symmetry Is
broken down anyway, but even so the coefficients for the 'forbidden,
symmetry states were down by four orders of magnitude relative to the
allowed states. We thus have confidence in the results of our program.

For a multiple interface, as in a quantum well or multiple barrier
system, one can extend the analysis by allowing for more than one incident
state. If we consider 2N eigenstates in each region (corresponding to N
propagating or decaying in either direction) then the situation is as
follows (fig 3).

The calculation proceeds by first selecting a state, with wavevector 4,
k = (ki,ki) and energy E, from the (calculated) bulk band structure. The .
selected state is then designated as the incident wave and may be viewed
as propagating towards the first interface, of an rn-interface device, with
a group velocity determined from the curvature of the band structure.
Upon reaching the first interface it will excite 3N evanescent and
(possible) continuum states. N of the states will exist in region 1 and
consist of waves decaying or propagating to the left. The second region 4.

accommodates the remaining 2N states which comprise waves propagating and
decaying to the left and the right (fig 3). Thus for a structure of m
interfaces a total of 2NM states will be excited by the incident wave.
The case of N=I, which corresponds to the effective-mass approximation,
has been considered previously by Tsu and Esaki (19).

At each interface the wavefunction and its derivative are matched
smoothly. This gives a matrix equation relating the amplitudes of the *

coefficients of the wavefunction on one side of the junction to those of
the other side. We write the wavefunction in the nth region as:

2N
,n an Wn3

4, V au .. .
nwith i < nm and tiI the known bulk eigenstates.

Constructing a matrix equation relating the set of coefficients an.

on the nth side of the junction to those on the (n + l)th side a +l

gives
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n ° n
* I '

... 
.. Ja

n+l n+l n+l -
12N I

"  l. +l 'nJ1

2-N a 2N

. n,n+1"i I
ja 2.Ia Z

Here Sn,n+I , the S-matrx for the nth interface, is a function of the
* barrier height, position of the junction and electron energy. For

" " adjacent junctions we similarly calculate SnI, n and Sn+l,n+ 2 . We may
-* then relate the incident and output states by the equation:

"n+l

Il= s 1 2 S2 3 s 3 4 ... sm-6,m )  6
"n+l

vhere the development of the states between junctions is found by
. ".*. application of the Bloch relation for the bulk states.

Thus at each junction we have to calculate an S-matrix which relates
* the 2N coefficients on each side of the junction to each other. The total

-" scattering matrix S, which relates the set of coefficients (al) of the
incident state to the set (df) of the output state is given by:

S - S12S23S34 ... n-,m. 7

The power of the S-matrix approach is the way in which it reduces the
*. original problem from the diagonalisation of a 2Nm x 2NM matrix to the

calculation of m 2N x 2N matrices.

To obtain physical solutions for a finite structure we also need to
..* . set the coefficients of the waves which grow exponentially away from the

l st and mth interfaces equal to zero. In the case of a superlattice,
periodicity makes all of the matrices equivalent (apart from a phase
factor) and the problem reduces to the calculation of a single 2N x 2N

*..- complex matrix.

Having obtained the coefficients a and a we need to calculate

J C. som quantity of interest. One such quantity is the current transmission

' u~m



-7

probability (T) through the device (20). This may be defined by:

iN _1 a /az)*1 ] I
4 14

2Re 14I*m 4

Re[*kl[I(t'/So).*
I J]

where the subscript i refers to the state chosen as the incident wave. For
an incident energy above the GaAs X1 minima, part of the transmitted flux

will be carried by the X3 continuum state of the GaAs. It has been shown
by Marsh (20) that it is possible to subdivide the transmitted flux into ". *

the contributions from the rl and X1 states. This allows one to define
further current transmission coefficients Tx and Tr, the sum of which
gives T. Conversely, the reflected flux can similarly be divided, giving
reflection coefficients Rx and Rr.

A3 Results

The first set of results refer to the single interface. We have
calculated the reflection and transmission coefficients for a whole range %

of alloy compositions for the GaAs-GaAlAs system for the three surfaces
(1,1,1) (1,1,0) and (1,0,0) (4,5,6). We will concentrate only upon the I -_q-
(1,0,0) results. The bandstructures of the two media are shown in figures
(2a) and-(2b) and one sees that for a state in the conduction band the
states of prime interest are the r and X states. There are two X states %' %

of importance which we have labelled X 1 and X3. These X states are ,.
essentially identical below the X minimum being the two states which come
off the * kmin points in the upper band but above the minimum the k values
split, one going towards the zone centre (X1 ) and the other to the zone
edge and then on up through the X3 point into the higher A.1 band (X3). We - "
obtain the band mismatch simply from the Juxtoposition of the two
calculated bandstructures. In essence this amounts to ignoring any charge -

transfer effects. For the GaAlAs system this is a good approximation (9).
This gives results (fig 4) within the experimental range but if necessary
the mismatch can be altered by simply incorporating a constant potential
to rigidly move the bands relative to one another.

Figures (5) and (6) show the excitation levels of states produced by
an electron in a r state incident in the GaAs on an alloy of GaAs-AlAs as
a function of incident energy. (All of the other states involved are four
orders of magnitude down in amplitude.) The points to note are that

i The higher X states are not negligible and a very strong
resonance occurs in their excitation around the X minimum energy
in the GaAs.

ii The transmission and reflection coefficients for the r states
have a magnitude which is not too different from that which may ,..
be expected in the effective mass limit.

%b %

iii As the energy of the incident states increases some of the states %-P

change from evanescent to propagating states and the amplitudes .
are then related to the transmission probabilities, ie figures
(5) and (6) show strong intervalley transfer in both reflection
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and transmission.

The application of these scattering amplitudes to quantum wells may be
-=$. performed in two ways. Firstly, consider an electron of energy B incident .

on the interface in the r1 minimum of the GaAs with wavevector (k1 ,k,). ,

Provided the energy is below that of any higher minima in either material
then electrons will simply be scattered back into the (-k1 ,k,) state in
the r. minima. (There will also be excitation of the evanescent states
but this is the only propagating solution present.) It follows that we
can express the reflection coefficient as:

C R exp(i0®(E, k)) 9

where @ is the phase shift of the incident electron upon reflection at the
heterojunction interface and wil be a function of the energy and

""- momentum. The evanescent waves are localised at the interface, so
provided one is interested in the 'long distance' behaviour they may be
ignored, apart from their implicit effect on the values of 0. (This is
entirely analogous to the standard problem of reflection from .
discontinuities in waveguide systems.) Fig 7 shows a typical curve for 0
for an alloy concentration of x = 0.25.

Consider now the distance scales involved. In a typical
GaAs-GaL-XAlXAS quantum well we are concerned with widths of the order of -.

50 A and above. However, the evanescent states on the GaAs side are
confined, typically, to within -10 A of the interface since they originate
from the L, X or higher minima. Thus, if we wish to calculate the
eigenstates of quantum wells we may do so on the basis of a standard
single-minimum model provtded we take account of the real reflection phase
rather than the simplistic effective-mass value.

Consider for instance a square quantum well. Remembering that the
equations are linear the wavefunction at the centre of the well is given

- by the combination of incident and reflected states, so for a well of
width 2L and centre at -L we have:, -. 4

- . WF(-L) = (Constant/V2)( Ik,kl, -L + e41 l - kl,k n, - L>) 10

provided, as we have said, that the well width is much larger than the
'-" evanescent decay length. For eigenstates of the well we require either:

4(-L) 9 0 ; = 0 symmetric state lla

or

(-L) (z) 0 antisymmetric state lib

Taking only the envelope part of the wavefunction (the cell periodic

part for practical wells will produce only relatively small shifts in the
answer) this gives

2 kIL + O(E,kl) , (2n + 1)n symmetric state 12a

or
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2k1 L + *E,ki) - 2niT antisymmetric state 12b

which can be compared directly with the effective-mazs result by using the
effective-mass values for 0. This can obviously be extended for both
space-charge-dominated (eg heavily doped superlattices) and the case where ',"

more than one propagating wave is produced. The essence of the
approximation is the existence of the two scale lengths - one for the
evanescent waves which are localised at the interface and one for the

*. quantum well width. The effect of the interface is only felt by the
• -. reflection coefficient 4. Obviously if we consider very small well widths

(6 30 1) we will have to be more careful. P

This formalism has the advantage that we only have to work out the
phase shift once for any given alloy concentration. A graphical solution

' of (12) is shown in fig (7). This figure also illustrates the effective
mass phase shifts using two different boundary conditions. The first,
EMIT(l), involves the matching of wavefunction and derivative at the .. _
interface

64; (z) IGaAs(z) 13'
8z LI z- 8z Iz-o

This has the problem that in order to conserve current it is necessary
to renormalize the wavefunction. The second method [ENT( 2)] is to equate
the wavefunction and its derivative divided by the appropriate effective
mass

GaAs AlGaAs
1 ~, (Z) _ W (Z) 14

M, z z-O Bz Z-O

This allows current conservation to be maintained without the
renormalization of the wavefunction. The difference is the intersect in
figure (7) gives an estimate of the errors involved typically a 10 % for
ENT2. We would expect this deviation from ENT to become more pronounced
for well widths below 50 X. In this instance, a significant coupling
between the evanescent states at the quantum well interfaces will start to
occur. -" '

A purely numerical evaluation of the quantum well states is possible
by using the multiple interface scattering matrix techniques by looking at
the reflectivity of an "incident" growing exponential on the well. My
colleague A C Marsh has recently been working on this approach (21) and
figure (8) shows the results for a range of quantum well widths. It is
noticeable that the errors in effective mass theory do grow as we would
expect for narrow wells but the lowest state remains remarkably accurate
and, provided nonparabolicity is taken into account, the higher bands are
quite well described (22). However, this does not imply that the EIT
approximation is in any way valid, since the associated egenfunctions are .
liable to be different from their true counterparts (23). This will, for
instance, lead to reduced electron-phonon or electron- plasmon scattering,
since the contributions of the wavefunction from the X1 and X3 will have
been neglected in the matrix elements.
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To illustrate the S-matrix technique we have applied it to the
relatively simple example of a (100) double barrier (m-2) and modelled
each bulk semiconductor with 13 surface reciprocal lattice vectors
(N-13). This particular geometry is especially interesting in the case of
a device based upon GaAs and AlAs. In this instance the positions of the
X minima form two potential wells for the electrons, fig (9).

Firstly, consider what would be expected from an effective mass
description. With infinite confining barriers we have an isolated well
and a series of bound states. If the confining barriers are of a finite
width, the electron in the well has a finite probability of tunnelling

4through the confining barriers and so the bound states would become
resonances in the current transmission coefficient. The widths of these
transmission resonances would broaden out as the widths of the confining
barriers were reduced, reflecting the increasing probability of tunnelling
through the confining layers. Since this depends upon general quantum ..

mechanical principals we would not expect any qualitative change in the
picture of a series of resonances in the transmitted electron current.
Using the more sophisticated pseudopotential description, we would also

" expect elastic Intervalley transfer between the r and X valleys to be
significant if the energy of the incident electron is greater than
- 0.3 eV. This effect would be especially Important in wide barriers with
compositions greater than - 0.45 where the magnitude of the current

:0 associated with the propagating X state may be many orders of magnitude
higher than that of the r tunnelling current (20). Secondly, there may
also be resonances in the transmission coefficient associated with the

- interaction of the electron with the X valleys. Such effects were clearly
visible in the calculations of a single interface (fig 6), (4,5,6).
Thirdly, given the geometry considered, the X, states of the system form
two wells, which are separated by a barrier of GaAs, and so effects
associated with the interaction of these X-like wells may also be seen,

"* possibly as structure in the transmission coefficient.

We have calculated the current transmission coefficient (T) as a
function of incident electron energy for a series of well widths from - 31

4. "to - 71 X. Two typical results are shown in figures (10) and (11). We
have purposely kept the widths of the confining barriers constant to
concentrate on the properties of the central GaAs region. The figures

.: also show the equivalent EM result, using the effective masses and
barrier heights calculated from the pseudopotential model. The most

* prominent features of all the results are the resonances in the
transmission probability. These relate closely to the expected energies
of the middle well resonant states. Although these are also seen in the
effective mass results, there are considerable quantitative differences
between the two approaches. Note that the influence of the X-valleys can
also be seen as two resonances in the transmission coefficient at EBI and .'

42. These were also seen in the calculation of a single tunnel junction
(20). The positions of the "X" resonances remain fixed at all well widths
considered, confirming their origin as the influence of the X1 GaAs and X1
Als valleys.

In order to assimilate the data more readily we have plotted the

positions of the numerical and effective mass (17) resonance positions as
a function of energy and central GaAs layer width, (fig 12). only the

* .. lowest (n-l) resonance is reasonably well represented by the effective
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mass model, a maximum deviation of - 10 %between the ENT and numerical
results being apparent. The higher (n-2 and n-3) energy resonances show a .
larger (- 30 %) discrepancy with those predicted by Mrf.

Note that the position of some resonances, with energies close to the

top of the well, are not predicted by the effective mass model.

It is interesting to explore further the nature of the resonances at %
Ef1 and 42 by calculating Tx and Tr. These are plotted in figure (13)
for a well width of - 11 A. Here, the two resonances are clearly

visible. The first of these at EI is associated with a corresponding ,4
resonance in the coefficients of the wavefunction in the AlAs region, L..
whilst the second is due to the sudden increase in the X reflected current
as the X1 GaAs minimum is approached. This is exactly what was found in '
the case of a single tunnel junction (21). The diagram also illustrates
that at EE2 the X transmitted flux at 0.4 eV is higher than the r
current. Thus in this particular energy range more current is being
transported by the X GaAs state than by the r state. An interesting
aspect of figure (13) is that the transmission coefficient (T) is not
equal to unity at the resonance energy. At the F resonance - 20 % of the
transmitted flux is reflected back into the GaAs X3 valley, whereas the
effective mass model would predict unity transmission.

These results in particular emphasise the power of the method. The
transmitted current calculations are closely related to the 1-V
characteristics one might expect in a device (19,24) (we are at present
developing the formalism to take into account directly the effect of an
electric field). This means that we are close to a microscopic evolution
of non periodic structures such as the CHIRP (25,26) and "Staircase" (27)
devices, neither of which are amenable to supercell type calculations.

A4 Sumary

The ability to evaluate the electron states on a microscopic basis has-.
been shown to be possible for the quantum single and multiple well systems
without the necessity of periodicity. This is of immense importance
because practical devices will of necessity use the power of MBE and MDCVD
fabrication techniques to produce a whole range of structures. Any method
which is based upon periodicity therefore will have only limited
application. The "dynamic" nature of our calculations should be
stressed. Whereas the supercell type of calculation gives as a result the
eigenstates and eigenenergies our method connects directly to the concepts
of electron transport and flux. This is especially important in any
attempt at device modelling. -

Our results show that the effects of nonparabolicity, and the higher

minima cannot be neglected in any discussion of electron transport in
these systems.

?,4.'-

. -
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B PIASN O (DES.

BI Introduction

The plasmon modes, due to the oscillation of electrons in a quantum
well system, form a mechanism for either energy loss or energy gain
depending upon the precise conditions prevailing in the device. That is
they may be important In both normal electron transport and in active
power generation devices. The interaction of electrons with the plasmon

modes will depend upon the properties of these modes and, since we are
working on a microscopic scale, it is important that any theory of the
properties of the plasmons be compatible with the electron states of the
system. In other words it Is no use developing a microscopic theory for
the electron states and then using a continuum model for the plasmons. .1.

Over the last two years in parallel with our work on the electron
states we have developed a microscopic theory for the plasmon modes *_1

(28,29) which

(a) is dependent upon the details of the electron states in the
system, incorporating the possibility of both multiple subbands ..,

and varying numbers of wells. That is it avoids the common
J# %

assumptions of simplified model systems (30,31,32,33).

(b) gives a realistic evaluation of the energies of all the possible
modes. .-,

(c) allows the calculation of the matrix elements necessary in any
,* transport equations.

Recently there has been much interest in the theoretical calculation
S "of the plasmon dispersion relationship of a superlattice (Bloss (30),

Sarma and Quinn (31), Giuliani, Qin, and Quinn (32), and Tselis and Quinn
(33)). Much of the work has approached this problem using expressions for
the dielectric-response function in reciprocal space. The plasmons are
then given by the frequencies for which the determinant of the infinite

, ,dielectric matrix goes to zero. In this pAper we take the alternative
approach of calculating the inverse response function using a real-space

S_[. formalism which gives the plasmon modes as its poles. The advantage of
* this technique is that the resulting expressions are in the form required

to calculate interaction effects so that the contribution of the plasmon
poles can be seen directly in, for example, the self-energy and inelastic
processes.

-. It is important to realize that for many applications the knowledge of
* the plasmon poles themselves is insufficient. One must also have the

screened interaction. This is given by the expression (34)

;.. . ,,J(r,r",w)V( r"-r' )dr" "

and so involves an accurate knowledge of the inverse response function and
its spatial variation. This in turn requires that the model used for e

* and hence e 1 includes realistic eigenstates.

" .'qV
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It is the screened interaction which gives information about the
matrix elements whilst the use of real space techniques makes sure that 4'
the non periodic systems such as a single or even a small number of
coupled wells can be treated within this formulation.

B2 Method

The dielectric response function in the random-phase approximation is

*(r,r',w) ( - P(r",r',A.r" 15

where . %

2[nk -n. * * ,.

k E E -k-i E -r" ),(r" ) k( "' )%p k_,( 16.
k kc'- -

where all the symbols have their usual meanings. ,' !

To model the superlattice we take it to be a series of equally spaced
quantum wells with centres separated by a distance a. Along the wells we
assme that the motion is unrestricted whilst in the perpendicular (
direction we have localised quantum well wavefunctions forming a series of
tight-binding-like subbands. The energies and number of these subbands are .-.
determined principally by the quantum well properties. In the usual
notation we have for such a system ".

go ) 1 1(x ma) 17
kI r t2j 0.12 J exp~i)*.p]exp~ik.ma]* - ) - V.

where (a) is a sub-band index.

The states oc(x) may be obtained either from a model calculation or 'C

through calculations such as those of Section A. In this calculation we
take it that there are two sub-bands, the Fermi level being such that only
the lower (a - L) is occupied, and ignore level broadening due to
tunnelling between the wells. The extension to more than two sub-bands is
straightforward.

Using the trans.ational invariance of the Hamiltonian parallel to the
planes a little algebra shows that we can write the Fourier transform of P
the polarisation propagator as

P(_qx,z',w) - PLL(_qmw)ALL(T - sa)ALL(X ' - so) .

+ PWt(-n.W)PLU(x - sa)ALU(x ' - so)

where -.. .:

ALL(z - so) - ,L(z - so),L(x - so) 19a

AWL(z - so) - *L(, - Sa)00( - so) 19b

'2 ' '
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2 nkm -n k1 + _g

nk * _ 6km ki+, .18 20

2 k 2 n km+ 4 3
-EU -6 -t - ii + %P

k, R*~ g kc*g k 6!+g
21.

Q* '.ll
2 22

ek, k I /2M. 2
F

Our calculations have shown that the subbands at least within in the
well would be expected to be fairly parallel as in the case of effective
mass theory so we take the energy gap between the lower and upper sub-band
as a constant. For simplicity we have assumed the (a )(xz) to be real
functions. The pLL and pLU are just the intra- and inter-band up

polarisation propagators for a two-dimensional electron gas (35). They
correspond to a metallic-like and semiconductor-like polarisation with the

4I9 polarisation along and across the wells respectively. The A are weighting
factors reflecting the three-dimensional character of superlattices and in .
particular the finite width of the quantum wells. It is the A's which
contain the wavefunction of the well and so better approximations for the
quantum well states are reflected directly in these terms.

The dielectric response function is now -I-.- ~ ~ l E 12ne 2 exflIT-z1I)P
Nor (x ) - j - I)(,w)A(x" - sa) 23

a -
i

-((X sa)) dx-

where v is an index denoting either LL or WU.

e is the dielectric response function, but it must be remembered that
all physical processes involve not e but e-3 (through the screened
electron-electron interaction). It is misleading therefore to consider e

"~in anything other than the uniform system where e- 3 is just I/e.

e is now separable in x and V and can be inverted using an identity
for the inverse of a separable matrix (36). Effectively this reduces the" problem from one of inverting a matrix over a continuous variable to
inverting a matrix with discrete labels.

e -] can be written as (36)

e ( , ., 1 w -) UB' :.,

+ s)) Q (A(x - to))V'dx" 24

where

.4 °°'
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f(-lVI'-

-5u jI(P(_q*,W4A(x so)) v(.qg,x,z-)A(x' ta))U dxdx'.
atS

25

The coulombic potential p(*,.,') falls off exponentially as
exp(-_ Iz 1- x') and causes the matrix Q- to have a tight binding
structure.

Since it-is a matrix in the subband and well position index the matrix ,-.
can be inverted for a finite number of wells directly. For instance a 5
well 2 subband system will require the inversion of a 10 x 10 matrix (see
also Jain and Allen (37)). For a superlattice, by imposing Born-Von "

Karman boundary conditions in the superlattice direction, Q-1 can be
diagonalised and inverted using a unitarity transformation. The algebra '"
3s somewhat lengthy but straightforward and we quote only the result:

LiP' e Isk 'U -ikta
Q = JrF-r (k,w)e 26 -

St ~N

where

[-lvv" zXv' + yVP' exp(-qla + ika) +vu exp(-qla - ika) 27
1 - exp(-qma + ika) I - exp(-qma - iko) 27

P 2we 2 ,a ja/2 0 _ .
x ' _ ( - /2_ 2 a (z)exp(-qglz - 'I)Au'(z')dxdx, 28

2' 1 2- J/2 /2 -a'/2 P,. r )e- dx'dx29

* V 21rea)- 21a/2 ja~/ A z ~ '

2 -a/ 2 a/ 2

Pu' V 211e 2[/ fa/ Q W
Z V  =P (q,W)--Ja/ 2 la/2A (z)e-A'(x')e dxdx' 30

k- 2nn/Na

where N = number of planes. n - integer, n a N and where (rPv'), (X v v ' ),
(Yv')and (Z" v ' ) are all two by two matrices reflecting the fact that we
are using a two subband model.

We write as our final expression of e-  ',"

r ~~iska -ikta .''%*

e-1 a(z - X) +, J ju( T,' ' ")(P(_q l 'w)A(x" -s))U /e r F u ' e 31

N 11- 1
e • p . -.

X (A(X' - ta)) &r""

The plasmon modes are easily found by noting that they are at the
frequency poles of e-I (30-33). These occur when

(r-1)1(r-1)22 - (F-1)12(F-1) 2 1 . 0. 32 -- ?:,, ,
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It must be noted that that plasmon dispersion curve depends implicitly
Zl on the microscopic form of the subband wavefunctions through equation

(32). Thus for any model of these states we will obtain the appropriate
plasmon modes.

The screened electron-electron interaction, just as in the bulk, can
be thought of in terms of containing a part due to plasmon exchange which
reduces the bare Coulomb (photon-exchange) term. Thus we write

L - ) 33

where Y-p and Dplaspon are the electron-plasmon coupling and the plasmon
propagator for the mode v. Looking at equation (31) we see this structure
very clearly, the modes being determined essentially by Pr while the
spatial parts give the electron-plasmon coupling. Ignoring the
off-diagonal terms in r the screened interaction splits Into the exchange
of two plasmons associated with inter- and intra-subband excitations. The
off-diagonal terms introduce mixing between the modes but because the two
plasmon bands generally have very different energies the couplings are
very small.

B3 Results

Using these expressions the plasmon dispersion relationship for a -.

a.typical superlattice is given in figure (14). These results have used a
single sine and cosine form for the well wavefunction so as to compare
with the expression of Bloss (30) and Tselis and Quinn (33) for the upper .-
band and Giuliani, Qin and Quinn (32) for the lower in the appropriate
limit. We also show the electron hole continuum inter- and intra-band
excitations. The two modes are basically a 'metallic'-like intra-subband "V
mode and a *semiconductor*-like inter-subband mode. The bands shown are
the range of plasmon energies for varying the momentum perpendicular to
the layers. For a finite series of wells we would get a finite set of
curves lying within the two bands.

The plasmons are quite clearly outside these regions and so will be
long lived modes. In particular the upper plasmon band is always found to -'
be above the interband excitation spectrum because of the effect of the
poles in the polarisation term pLU.

We find that the gross features of the plasmon spectrum are basically
independent of the well widths, occupation etc simply scaling as one would
expect with electron density, inter-subband separation etc. The results
for a superlattice give a band of plasmon energies each governed by the
perpendicular component of momentum. For a set of wells the result would
be a finite series of plasmon bands as seen for instance in the
experimental work of Fasol et al (38).

4N We have investigated the effect of finite transverse fields on the
plasmon modes since any surface oriented device would be expected to
utilise gate voltages to modify the electron density. Even without .
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changes in electron density however there are marked changes in the upper
"interband" plasmon properties. Figure (15) shows such a field dependence
for a single well. The main effect arises through the polrisation pLU
from the change in the interband energy as the transverse field increases
as can be seen from the single particle spectrum. But the wavefunctions
in the well are altering significantly as well as changing the
interplasmon coupling terms [(r-- )12, (r- 1)21] through the changes in A.

B4 Surmary

The above work represents a simple scheme for evaluating the plasmon
modes and matrix elements for electron plasmon coupling for any
combination of quantum well properties. The level of approximation being
simply set by the sophistication of the evaluation eigenstates (through
the A's) and subband energies (through the P's). There is no restriction
on quantum well or subband numbers other than the size of matrix
required. We believe this technique has significant advantages over the
others in the literature not least through its' direct connection to the
screened interaction in the quantum well system which enables direct
calculation of all electron-electron interaction based terms.

" '

"l

6.5

11l
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III SUMMARY

The possibilities for microscopic device design utilising the
submicron geometries possible with heterojunction technologies are almost . .-..

endless (1,2,25,26,27). It is important therefore to consider carefully -'.4
the consequences of our work in a device context.

, Effective Mass Theory: we have shown that for eigenvalues,
transmission and reflection coefficients, what we have described

as ENT2 (equation 14) does remarkably well with the following
provisos:

a the r to r band offset must be used;

b non parabolicities of the band structure both real and
complex need to be taken into account as in Bastards (22)
model;

c the energies considered must be well below any of the higher
minima.

This means that for low field devices the standard methods of ENT
can be used with some confidence.

ii Intervalley Transfer: Our calculations show strong intervalley F
transfer due to scattering at the interface once the electron
energy becomes high enough. Figures 10 and 11 show quite clearly
that in any hot electron quantum well based device, Intervalley
transfers will contribute substantially to any I-V
characteristic. The staircase (27) and CHIRP (25,26) structures
are obvious examples. It should also be noticed that the process
in any intervalley transfer based device (such as a GEM diode).-_'...
will be severely modified on going to a quantum well structure.
It is quite conceivable that the intervalley transfer rate due to ...
interface scattering could dominate over phonon Induced processes
in a narrow well. This would significantly alter peak to valley
ratio and frequency range.

iii Plasmons: our calculations have shown that it is possible to
calculate both the plasmons and the electron-electron interaction
for realistic well widths, subband structure and finite sized
systems. The calculation of the effect of electric field on the
plasmons is important because in any surface oriented device
significant transverse electric fields are expected. Although
the lower plasmons are fairly sensitive to such fields the upper
band plasmons vary very strongly.

iv Electron-Plasmon Interaction: the concentration to date has been
on the properties of plasmons, (30,31,32,33,37). However the
crucial aspect from a device standpoint is the interaction of
those plasmons with electron states. We have not yet performed
such calculations but the formulation is in place through a

* combination of equations (31) and (19). The important point to
realise is that the matrix elements for the excitation of the
lower plasmon are quite different from that of the upper one. In . ..
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essence the lower plasmon cannot cause inter-subband scattering
whilst the upper plasmon cannot cause intra-subband scattering. ".
This means that their effect on the dynamics of the electron
system is qualitatively different.

v Electron-Phonon Interaction: the standard calculations of .

conductivities, electron loss etc via phonon scattering are based
on effective mass considerations. In particular it is well known
that for electrons scattering within one minimum, only zone
centre optical phonons are really important. The calculations
presented in Section A show, however, that the scattering from an
interface excites large amplitude states characteristic of the A ".-

higher minima. If this is so then any state in a quantum well or
superlattice system will have a mixture of characteristics from a ,. "*
number of minima. This means that any electron phonon matrix
will couple not only the zone centre phonons but also zone edge "
phonons. For narrow well systems these could be a substantial ,
contribution to the scattering producing a marked decrease in the
mobility no matter how perfect the interface. .

vi Plasmon-Photon Interaction: The generation of radiation in any .

free electron laser type of device (3) must be through plasmon
photon coupling. The formulation of Section B can be modified to
treat the transverse response of a quantum well system which
describes such coupling. We are at present in the process of
doing just this and it will be complete within the next two
months. A copy of the resulting publication will be sent to ERD.

There are a large number of possibilities for further work, some of
which we have already started. -"

a The extension to other materials and strained lattices.
This requires little extra work since the pseudopotential .

coefficients are well-known as are the lattice parameters. - -.

The method is sufficiently flexible and accurate to give "
results for any of the practical material calculations.
There are many interesting possibilities in studying the -
more exotic materials combinations using our method, since -
the alternative tight binding based methods simply do not . - .T*.

have the accuracy required. The effect of strain on the .
higher minima or in Si and Ge the degenerate sets of .

conduction band minima will automatically be included.

b Valence Band Effects: We have deliberately concentrated upon .11
the conduction bands, the valence bands can, however, be
treated similarly in our method by simply moving to the
appropriate energy range of interest.

c Incorporation of electric fields in the electron scattering
matrix formulation. With this extension we will be able to
treat realistic device potential profiles resulting from .
space charge effects and also look at I-V characteristics. .

I .-.
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d Dynamics of plasmon hot electron systems: this is really the
application of Sections A and B to the free electron laser
system.

* .

e Plasmon Photon Coupling

In conclusion we have presented in this report an extensive volume of
*;. work of central interest to submicron device design. This is being

continued to understand the microscopic behaviour of a whole range of
*.. quantum well systems.
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V FIGJRE CAPTIONS

la A schematic illustration of the effective mass approximation
(EMT) in real space. In this approximation only one tunnelling (or
evanescent) state may exist in the AlGaAs.

lb The real and complex bandstructures of GaAs and AIGaAs in the ENT
approximation. The full lines represent the real bandstructure
(assumed parabolic) and the broken lines correspond to complex k.-
values. An eletron in state 1k> is considered to be Incident on the . -

AlGaAs.

2 The calculated (100) complex bandstructure for the heterojunction
interface. The diagram provides a convenient graphical illustration , .

of all the solutions to the three dimensional Schroedinger equation.

3 States in the scattering matrix formulation.

4 Illustration of valence band discontinuities for the
GaAs-Gal-XAlXAs hetero)unction. Theoretical curves: (1) Frensley and
Kroemer (39) (111) self-consistent pseudopotential; (2) Marsh and
Inkson (111) empirical pseudopotential; (3) Pickett et aL (9) (110)
self-consistent potential; (4) Harrison (40) (111) local combination
of atomic orbitals. Experimental points: Waldrop et oL (41) (110 ) ;"
Dingle et aL (42) (100). Note: Experimental and computational errors
are negligible apart from Pickett et aL (9) where it is estimated at ,
150 meV. Waldrop et al. (41) found a strong dependence on conditions
of MM growth.

5 The excitation amplitudes of the major evanescent states on the "
alloy side of the heterojunction. The result is for an alloy
concentration of x=l. Arrows indicate the positions of the various
energy minima.

6 Evanescent state contributions on the GaAs side of the junction.
Note the amplitude of the rl state is equal to unity for energies
below the top of the well.

7 A graphical solution of equation (12) for the lowest boundstate.
Here, the numerical phase shift together with ENT( 1) and EMT( 2) are
shown. The intersection of the curves yield the boundstate energies
in the three formalisms. The illustration is for a well width of

50 I and an alloy concentration of x-0.25.

S The eigenvalues of an isolated AlAs/GaAs/AlAs quantum well for
widths between - 5 and 50 A Results from the parabolic ( ..
non-parabolic (- - -) and peeudopotential (-) formalisms are
illustrated. '

9 The S-matrix formalism is applied to the geometry illustrated. A
novel feature of the device is the positions of the X1 minima which
form two potential wells for electrons. To concentrate attention on
the central region the widths of the confining barriers have been kept .*

constant and the width of the central region (W) has been varied
between - 6 and 71 .-

4Z
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10 The current transmission probability through the structure of
figure (9) for Wz - 11 1- The pseudopotential results are compared to
the estimates from a parabolic one-band effective-mass model. For r,.
convenience, the positions of the resonances have also been indicated.

11 As for Figure 10, except W - 45 A

, 12 The positions of the r resonances as a function of energy and
central well widths of - 11, 23, 34, 45, 56, 68 and 71 A- The %

- ositions of the r peaks have been compared to the EMT model. The
effective-mass result always gives the higher curve. Some resonances .
which are close to the top of the well re not predicted in MT.

- ,13 The transmission probabilities Tx, Tr for a well width - 11 A.
The resonances due to the influence of the X valleys can clearly be
seen. Note that at the r resonance energy unity transmission is not
predicted.

14 Theoretical calculation of the plasmon dispersion relation of a
superlattice. The frequency is expressed in units of classical plasma
frequency. The lowest band represents the region where it is possible
for an electron to undergo a real excitation process within the
conduction band. The next band shows the plasmon dispersion relation

- resulting from the lower subband. The third curve is for real -A

excitations across the gap, The final band shows the inter-subband
." plasmon dispersion relation.

15 Theoretical calculation of the intersubband plasmon dispersion
relation of a single quantum well as a function of applied electric
field. The parameters used for the illustration are: well
width = 50 *, - 1, electron density = 1016 electrons/n2.
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