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I. INTRODUCTION

This report discusses progress on Resonant Region NCTR research

being conducted at The Ohio State University under sponsorship of the

Office of Naval Research (contract no. N00014-86-K-0202). This project

builds upon past research in which an advanced far-field microwave

measurement range (The Ohio State University Compact Range) was

developed for the experimental measurement of the resonant region

scattering signatures of modern ships, aircraft and ground vehicles

[I-11].

The development of this scattering measurement range and the

systems and subsystems required for the operation of such a range was

followed by an extensive measurement program. The RCS of a number of

modern ships, aircraft, and ground vehicles as a function of frequency,

polarization, elevation angle, and azimuth angle was measured. The data

gathered was organized into a file-oriented data base with cross

referenced header systems and a data base management system. The radar

targets included in this data base and the frequency bands utilized are

tabulated in Table 1.1.

This data base is recognized as one of the most comprehensive and

accurate RCS data bases in the world today. Other organizations have

been interested ir, using these data for research into radar target

identification. It has been shared with a number of laboratories in the

United States. Below is a list of the other users of these data.



TABLE 1.1

1993-1985 ELECTROSCIENCE LABORATORY

RESONANCE REGION DATA BASE - ONR No. NO0014-82-K-0037

Target Scale Frequeecy

Boeing 747 200 5-60 MHz

Boeing 707 150 6.7-80 MHz

Boeing 727 200 5-60 MHz

DC-IO 200 5-60 MHz

Concorde 130 7.7-92 MHz

USS Long Beach 500 4-36

Cimarron Class 500 4-36
Fleet Oiler

Trinidad Cargo Ship 450 4.4-50 MHz

Ship Set (6)
Small scale 2400 0.8-7.5 MHz
Larger scale 1200 0.8-15 MHz

Ground Vehicle (5) 87 23-207 MHz
3 tanks, 1 truck,
1 jeep

Note: some data available for the aircraft in higher frequency bands.
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TABLE 1.2

OTHER USERS OF THE OSU RESONANT REGION RCS DATA BASE

Dr. Robert Dinger Naval Weapons Center, China Lake, CA

Dr. V.K. Jain University of S. Florida, Tampa, FL

Prof. Wolfgang Boerner Dept. of Electrical Engineering,
University of Illinois,
Chicago, IL

Note that in the tapes sent to these users, the names of the

targets are designated by sequence numbers, and the users of these data

do not have access to those names without the express release of such

names by the ONR.

ihe Onio State University will continue to provide copies of the

data base to other institutions as directed by the ONR.

In previous years, the OSU ElectroScience Laboratory has had

considerable success in the development and testing of concepts and

algorithms for radar target classification and identification using this

data base. Details of these developments can be found in the many

reports, M.Sc. theses and Ph.D. dissertations produced under sponsorship

of these programs [3, 4, 6, 8, 10, 11].

This research is divided into a number of specific tasks as listed

below.

3



1. Target recognition algorithm development

a. Complex natural resonance studies
b. Decision theoretic classification

2. Testing against real world targets

3. Propagation characteristic model testii,g

4. Extension of the previously developed techniques to target
substructures.

Each of these areas are discussed below.

4



I1. TARGET RECOGNITION ALGORITHM DEVELOPMENT

A. Target Identification using Complex Natural Resonances

The purpose of this section of the report is to detail the progress

which has been made in the development of methods for the identification

of targets from radar signals using the complex natural resonances

(CNR's) of the targets. Two major problem areas are covered, extraction

of CNR's from measured scattering data for a target and application of

these CNR's in prediction-correlation and other procedures for target

identification.

CNR Extraction

Every finite object can be characterized electromagnetically by an

infinite set of singularities which are poles of some finite order [12].

This has only been proven for finite conducting objects, but the

extension to dielectric and composite bodies would seem a reasonable

assumption. In practice, the assumption of simple poles and a finite

number of singularities is usually made. When the vector wave equation

is separable, transcendental equations for the CNR's can be derived.

This has been done for spherical objects (conducting and dielectric) but

not for the conducting disc. For electrically small objects, the CNR's

can be obtained from an integral equation formulaw:.ion and numerical

search. For the geometr 4cally complicated object of more than very

modest electrical size the only recourse is extraction of the CNR's from

either measured scattering data or from measured surface current

densities.

5



When an aperiodic excitation illuminates a body, the far zone

response is characterized by first a forced response as the wavefront

moves over the body and then a free or natural response as the wavefront

moves beyond the body. If a time domain model is to he used for CNR

extraction then it is necessary to delay in time until the response is a

free response. One might postulate time-dependent residues and apply

the model to the entire waveform but, as pointed out by Felson [13],

this would require very great numerical precision.

In the frequency domain (complex) the early time problem is

manifested by the presence of an entire function. Therefore in the

frequency domain a model for extracting CNR's must at least partially

take into account the presence of an entire function contribution to the

data. We favor a frequency domain approach to CNR extraction because

for a complicated (geometrically) target many substructures may resonate

and decay long before the wavefront moves beyond the target. Therefore

there would be no chance of extracting these CNR's. For uncomplicated

structures one can clearly separate forced response and free response.

For complicated structures; however, beyond very short times the

response is a very complicated combination of forced response and free

response and a clear time separation is not possible.

In a recent dissertation by Lai [14], an approximate frequency

domain model with a first order estimate to include the entire function

was tested. By using a rational function model with a numerator

polynomial of order one greater than the denominator polynomial it is

possible to include a constant term and a term linear with frequency

6
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both of which have unknown coefficients. This is the same as adding an

impulse and doublet with unknown weights at the time origin of a time

domain model. Actually a more general model was postulated which

included phase shifts (time delays) but to use this model and still

generate linear equations for the coefficients the time delays would

have to be estimated from a measured band-limited impulse repsonse. The

coefficients are, of course, orientation and frequency dependent. A

summary of this work was published [151, and it will also be included in

a report in preparation which will summarize all of our CNR extraction

and target identification results [16].

Certain results obtained using the Lai model [14] are shown in

Tables 2.1, 2.2, and 2.3. Tables 2.1 and 2.2 show the extracted poles

(oscillatory part only) of two commercial aircraft. The aircraft were

good electroplated models and the measured scattering data spanned the

model frequency range 1.0 t0 6.0 GHz. The models were physically about

the same size but have different scale factors. Table 2.3 shows the

complex poles of both aircraft after averaging over the measured angles.

Vertical pclarization was used for these measurements with the wings of

the aircraft in a horizortal plane. An angle of zero degrees

corresponds to nose-on incidence. As seen in the tables, a crude

estinate of the entire function does permit excitation invariant

oscillatory parts of poles to be extracted from meaningful measured data

on realistic aircraft models. Unfortunately, the real parts of the

complex poles shown in Table 2.3 are not meaningful in the sense of

target identification. That is, poor correlation ensues if the poles

7



TABLE 2.1

IMAGINARY PART OF POLES

OF AIRCRAFT A AT VARIOUS ANGLES

00 100 200 300 60 90w 1200 1500 1800 Ave.

(1) 1.181 1.171 1.134 1.204 1.103 1.143 1.125 1.121 1.096 1.142

(2) 1.280 1.299 1.309 1.352 1.270 1.372 1.475 1.292 1.423 1.341
(3) 1.589 1.622 1.560 1.608 1.572 1.602 1.798 1.560 1.650 1.618

(4) 2.002 1.9R5 1.945 1.946 1.990 1.911 2.067 1.942 1.893 1.965

(5) ----------- 2.386 2.405 2.256 2.205 2.267 2.326 2.217 2.295

(6) 2.527 2.501 2.634 -----.----- 2.491 2.576 2.593 2.493 2.545

(7) 2.777 2.792 2.859 2.861 2.838 2.739 2.791 2.790 2.750 2.800

(8) 3.190 3.137 3.177 3.076 3.272 3.262 3.023 3.159 3.235 3.170
(9) 3.532 3.375 3.417 3.481 3.466 3.446 ..... - 3.453

(10) 3.843 3.632 3.666 3.797 3.851 3.821 3.619 3.733 3.745

(ill) 4.183 4.222 4.167 4.210 4.224 4.329 4.272 4.186 4.224

(12) 4.472 4.737 4.431 4.510 4.615 4.659 4.500 4.632 4.570

8



TABLE 2.2

IMAGINARY PART OF POLES

OF AIRCRAFT B AT VARIOUS ANGLES

00 150 300 600 900 1200 1500 1800 Ave.

(1) 1.051 1.047 1.034 ----- 1.070 1.098 1.060

(2) 1.345 1.311 1.348 1.321 1.354 1.381 1.373 1.365 1.350

(3) 1.611 1.747 1.635 1.536 1.575 1.663 1.620 1.627 1.627

(4) 1.995 2.039 1.920 1.944 2.028 2.055 1.994 2.017 1.999

(5) 2.293 2.160 2.332 2.253 2.257 2.375 2.344 2.402 2.302

(6) 2.663 2.635 2.503 2.647 2.615 2.578 2.666 2.549 2.607

(7) 2.995 3.005 2.841 3.073 3.021 2.958 2.893 2.972 2.970

(8) 3.320 3.345 3.321 3.384 3.320 3.238 3.231 3.308

(9) 3.732 3.691 3.738 ----- 3------ 3.639 3.507 3.661

(10) 4.036 4.182 3.955 4.151 3.995 ------ 4.064

(11) 4.663 ------ 4.394 4.739 4.482 4.510 4.551 4.549 4.555

9



TABLE 2.3

POLES OF AIRCRAFTS A AND B

AVERAGED OVER THE MEASURED ANGLES

A B

(1) -. 121 + j 1.142 (1) -. 151 + j 1.060

(2) -. 214 + j 1.341 (2) -. I1O + j 1.350

(3) -. 216 + j 1.965 (3) -. 215 + j 1.627

(4) -. 157 + j 1.965 (4) -. 175 + j 1.999

(5) -. 162 + j 2.295 (5) -. 144 + j 2.302

(6) -. 137 + j 2.545 (6) -. 174 + j 2.607

(7) -. 098 + j 2.800 (7) -. 193 + j 2.970

(8) -. 154 + j 3.170 (8) -. 217 + j 3.308

(9) -. 157 + j 3.453 (9) -. 184 + j 3.661

(10) -. 235 + j 3.745 (10) -. 160 + j 4.064

(11) -. 205 + j 4.224 (11) -. 170 + J 4.555

(12) -. 180 + j 4.570

10



in Table 2.3 are applied to the actual measured data. It would be

possible of course to use the poles in Table 2.3 to obtain an

approximate scattering model by solving for the residues at each

measured angle. Prediction-correlation applied to the approximate

scattering model would then yield excellent identification results and

would be excitation invariant. In our opinion, this type of procedure

would yield unrealistic conclusions with regard to predition-correlation

target identification. The variance of the real part of the poles

dictates that either the target orientation must be known or that each

target must be treated as several targets as discussed in the section on

target identification using CNR's.

The Lai dissertation [14,171 also demonstrated that when the

scattering data are dominated by specular-type contributions then there

is real merit in the use of cross-polarized scattering data even though

the cross-polarized response may be 10 to 15 dR down from the

co-polarized retirns. This work was partially supported on a companion

contract N00014-84-K-0705. CNR's were extracted for four incidence

angles (the aircraft orientation is as described above) using three

polarizations, vertical-vertical, horizontal-horizontal, and vertical-

horizontal. The extracted CNR's (oscillatory parts only) are shown in

Table 2.4. Table 2.4 shows that while no incidence angle yields all of

the CNR's, the cross-polarized results have a lower rate of absenteeism

than the co-polarized results. In the region near broadside (ninety

degrees) a great deal of processing was required to extract the

co-polarized CNR's but very little was needed with the cross-polarized

11



returns. There is little specular-type returns in the cross-polarized

data. This fact makes the cross-polarized returns much easier to

process for CNR extraction.

We have concluded that the measured data for CNR extraction must

come from controlled measurements, i.e., from measurements on a good

compact range such as the one at the ElectroScience Laboratory. It is

not feasible at this stage to consider CNR extraction from noisy full

scale scattering data. Our approach to target identification then

requires an a priori library of CNR's for the targets of interest.

These CNR's need not necessarily be the dominant CNR's of the structure

(CNR's with smallest osrillatory parts) but will generally be at lower

frequencies since as more and more substructures on the structure

resonate the density of pole locations will become prohibitive for

target identification purposes. Lai [14,17] also demonstrated this by

extracting CNR's from measured data taken over a model frequency span of

6.0 to 12.0 GHz. The CNR's remained orderly, i.e., an excitation

invariance was obtained for the oscillatory part of the poles. These

results illustrate that it is feasible to consider target identification

using CNR's of particular substructures rather than the dominant CNR's.

Target Identification

The prediction-correlation algorithm for target identification uses

a priori CNR's of the target from a library and samples of a measured

unknown target spectrum to obtain a calculated spectrum which is then

compared (correlation) to the unknown target spectrum. The method is

roughly the same as that given in r181, with a change in normalization

12
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TABLE 2.4

OSCILLATORY PARTS OF CNR'S
EXTRACTED FRON BACKSCATTER RESPONSES

OF DIFFERENT POLARIZATIONS AND ANGLES FOR AIRCRAFT C

00 450 900 1800

VV VH HH VV VH HH VV VH HH VV VH HH

----- 1.143 1.017 1.215 1.134 1.106 1.259 1.050 1.090 1.208 1.198 1.100

1.408 1.470 1.474 1.494 1.574 1.626 1.427 1.490 1.473 1.488 1.439

1.642 1.682 1.770 1.765 1.797 1.714 1.821 1.742

. 1.956 1.958 1.919 ----- 2.097 2.015 2.128 2.097 2.038 1.926

2.330 2.195 2.280 2.210 2.247 2.418 2.420 -----.----- 2.298 2.341 2.233

2.720 2.512 2.592 2.657 2.656 2.717 2.647 2.643 2.657 ----- 2.597

----- 2.905 3.073 2.965 2.871 .....- 2.947 3.065 ----- 3.047 2.870 -----

3.310 3.287 3.298 3.271 3.27b 3.349 ----------------- 3.321 3.219

3.586 3.747 3.654 ..... 3.707 3.675 3.639 3.781 3.645 3.572 -----

4.026 4.059 4.159 3.893 4.067 3.971 4.103 4.113 4.100 4.021 4.145

4.192 4.239 ----------.----- 4.208 ----------- ------ 4.226 4.241 -----

. 4.718 4.543 4.627 4.727 4.684 4.717 4.671 4.596 ----- 4.510

-----.----- 5.056 5.024 5,136 ----------.------ ------ 4.924 4.796

5.442 5.505 5.533 ----------------- 5.51 5.547 5.511 5.677 5.622

13



and other changes dictated by the nature of the extracted CNR's. Both

CNR extraction and the identification algorithm are evolving processes

and therefore the identification results are not exhaustive, i.e., not

all targets and not all available measured scattering data have been

tested.

Prediction-correlation identification results for two naval vessels

were reported in a thesis by Jalloul [19]. Jalloul's results did not

have the first order estimate of the entire function and the extracted

CNR's show more variation in their oscillatory parts than would now be

the case. A summary of the results obtained by Jalloul is shown in

Figures 1 and 2. These figures give the probability of classification

of each ship as a function of aspect (bow-on is zero degrees) with the

noise to signal ratio as a parameter. The measurements were made at an

elevation angle of 30 degrees with the ships on a ground plane. Both

figures show that in the vicinity of 20 degrees from bow-on

classification probability is rather poor. For one ship (the OL)

classification was also poor for stern-on. The results shown in Figures

1 and 2 were obtained using aspect-varying optimization parameters.

That is, the actual spectral range and pole locations were chosen to

optimize the correlation between calculated and measured spectrums for

the noise free case. Therefore to use the library, either the ship

orientation would have to be known or the ship treated as some 9

different targets. It is interesting to observe that the ship's

orientation could be estimated using this approach. This research

revealed one weakness of the prediction-correlation algorithm which was

14
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Figure 1. Classification probability curves versus aspect angle for the
indicated noise-to-signal ratios. These plots show the
probability of classification of target "OL" when the
spectrum of "OL" is measured given two possible targets IIOLB
and "LB".
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Indicated noise-to-signal ratios. These plots show the
probability of classification of target "LB" when the
spectrum of "LB" is measured given two possible targets "OL"
and "LB". (The horizontal axis has two different scales as
indicated.)
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later reinforced by identification tests with other targets. The

predicted waveform is really a residue series and if too many poles are

used then the residues can adjust to match almost any spectrum.

Therefore in practice, no more than 10 to 12 pole pairs can be used.

The prediction-correlation algorithm was applied to three

commercial aircraft targets by Moffatt and Barkeshli [201. This paper

was prepared for a NATO/AGARD Target Signature Symposium but was

withdrawn at the request of the sponsoring agency for cldssification

reasons. It also did not appear in the classified Conference

Proceedings. These initial results did not utilize the entire function

estimate and the frequency span used was not optimized with respect to

aspect. The orientation of the aircraft and the angle interpretation

are as described previously. Because the scale factors for the aircraft

targets were not the same, it was necessary to scale to the full scale

frequencies (10.0 to 30.0 MHz) which were used for all tests. It was

found that for aspects near nose-on, good classification results could

be obtained but the results were erratic. These results dictated the

need for improvements in the model (entire function) and in optimization

as a function of aspect.

The predictor-correlator algorithm was also tested on a set (3) of

land vehicles. The scattering measurements were made at an elevation

angle of 30 degrees with the targets on a ground plane. The model

frequencies were 2.0 to 18.0 GHz. In this case the model used to

extract CNR's included the estimate of the entire function and the

parameters were optimized with respect to aspect. Typical

17



classification probabilities are shown in Figure 3. A 90 degree aspect

in this case corresponds to broadside incidence. These results and

others were given in a thesis by Bohley [21].

The entire function estimation procedure introduced by Lai [14],

can also be used as a different target identification algorithm. In

this approach, the CNR's and entire function parameters are first

obtained as described before. Next a prescribed amount of pseudo-random

noise is added to the scattering data and the entire function parameters

carefully obtained. For modest amounts of noise (S/N of 15 dR at the

moment) these parameters are sufficiently stable to permit target

identification. Figure 4 shows the results of this approach for the

identification of three commercial aircraft. The aircraft orientation

is as previously described, wings of the aircraft are in a horizontal

plane and zero degrees corresponds to nose-on incidence, and vertical

polarization was used for the results in Figure 4. This algorithm has

the disadvantage that noise must be added to the data to estimate the

parameters. Also, stabilization of the parameters for lower signal to

noise ratios is not a simple problem.

Recent developments on a companion program (Contract No.

N00014-78-C-0049) described in a dissertation by Fok [22] dictate that

the K-pulse target identification algorithm be briefly described. The

K-pulse is a unique interrogating waveform of minimal duration which

elicits time-limited response waveforms from a target for all aspects

and polarizations. The K-pulse is excitation invariant but the response

waveforms are dspect and polarization deper'"nt. Previous utethods for
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classifying target Al, for the indicated noise-to-signal
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obtaining the K-pulse required knowledge of at least some of the CNR's

of the target. Given the non-stability of the real part of the CNR's

extracted from scattering data on realistic targets, the K-pulse would

be aspect-dependent. Now however the technique described by Fok

generates a K-pulse estimate without knowledge of the target's CNR's.

Therefore a scheme whereby a measured broadband scattered signal is

passed in parallel through a bank of K-pulse filters corresponding to

the targets of interest is indeed feasible. The measured targets

scattering data must first be processed to dilute the effect of both

high and low frequencies. Efforts in this direction are in progress.

K-pulses have been generated for a grounded dielectric slab, a wire, a

loop, a disc, a sphere and a finite length circular waveguide. For

complicated targets such as those of interest on this program, K-pulses

for particular substructures of the target may be more desirable.



I1. DEVELOPMENT AND EVALUATION OF SYNTACTIC-CLASSIFIER-RASED RADAR

TARGET IDENTIFICATION SYSTEMS

A. Introduction

As a part of the present research program, we have been

investigating the applicability of syntax-based pattern recognition to

radar target identification. In particular, we have been developing and

testing computer simulation packages that can be used to determine the

feasibility and evaluate the performance of syntactic pattern

recognition radar target identification systems.

Traditionally, classification methods based upon decision-theoretic

concepts have been applied to the radar target identification problem.

The historic popularity of decision theoretic applications is primarily

due to the well-defined sense of optimality for these schemes. Our own

research concerning decision-theoretic techniques indicates that these

schemes are especially appropriate when target measurements are

represented as elements in a vector space.

The syntactic approach to pattern recognition classifies a pattern

representation of a radar target measurement by means of a structural

description of the pattern [23, Chapter 1]. This is in sharp contrast

to the parametric, feature-based description of target measurements

employed by decisiori-theoretic methods. In syntactic pattern

recognition systems, an analogy is drawn between the structure of the

symbolic target description (discussed below) and the syntax of an

inferred grammatical system. The capability of providing a structural

description of the measurement pattern may prove to be of significant

utility for the radar target identification problem. This is especially
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significant when the number of classes is large, or when the number of

target and catalog measurements is such that the classification task

becomes impractical to implement. In addition, it is felt that a

structural description may provide useful information about the target;

even in cases when the system is unable to classify the target as a

member of the available catalog.

B. Classifier Formulation

A syntactic radar target identification system may be viewed as

consisting of a pattern representation section, which processes the

return signal measurements into *a symbolic description of the target,

and a syntax analysis section which uses the symbolic description to

deduce the identity of the unknown target. The first step in developing

a syntactic radar target identification strategy is to formulate a

pattern representation scheme appropriate for both the target set of

interest as well as the envisioned radar system. The pattern

representation scheme should be designed so as to correspond to the

geometrical characteristics of the target. The process of generating

such a representation primarily consists of converting a radar cross-

section measurement waveform (pattern) to a string of symbols called

primitives. The resulting primitives characterize local portions of the

cross-section waveform (or target); the complete string of symbols thus

represents the entire wavefarm ktarget).

The discrete nature of the pattern representation symbols is

required for the operation of the syntax analysis section of the radar

target identification system. The organization of these symbols into
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symbol strings, on the other hand, is not necessary for implementation

of a syntactic classifier. Indeed, previous investigations of symbol

assignments for measurement waveforms indicate that higher dimensional

pattern representations would allow more reliable classification [241.

Notwithstanding, this method of organization of pattern representation

symbols is carried out in order to simplify the resulting algorithm for

this preliminary study.

It is clear, from an information-theoretic standpoint, that the

development of a pattern representation scheme is the most crucial part

of the specification of a syntactic radar target identification system.

The representation scheme must preserve information that is sufficient

for identification. That is, the statistic formed by the pattern

representation must be sufficient to identify the target.

Theoretically, it is always possible to find a pattern

representation that is sufficient static. Indeed, such a system could

be implemented by combining a pattern representation scheme that is an

analog of a decision-theoretic classification system with a syntactic

classifier that is merely an identity mapping (i.e., simply announce the

representation symbol). However, prior to this investigation, there

existed considerable doubt that a practical pattern representation

scheme could be developed that contained statistics sufficient for

reliable identification of radar targets: the sufficiency of practical

symbolic pattern representations for the identification of aircraft

radar targets is the primary focus of this study.
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As is the case for the evaluation of other key performance

parameters of practical target identification systems, the analytical

evaluation of the sufficiency of the various pattern representation

schemes, and hence the performance of the target classification system,

is extremely difficult and cumbersome. This, the sufficiency of the

statistic formed by a pattern representation scheme is implicitly

evaluated by means of a Monte-Carlo simulation, which compiles results

on the performance of the syntactic target identification system when

applied to simulated radar returns in additive noise.

The primary function of the syntax analysis section of the system

is to identify the target. This task is implemented as likelihood-ratio

tests using likelihood functions or approximations of likelihood

functions. The formulation of each likelihood function is, in general,

dependent on the characteristics of the noise. Hence, the decision rule

formed by these likelihood functions is optimal (given the pattern

representation), only for the noise level for which the functions are

obtained. However, it is believed that the ordering induced on the

pattern representations by the likelihood functions remains unchanged

for different noise levels so that likelihood ratio test should exhibit

some robustness in performance with respect to changes in the power

level of the noise.

Since, In practice, likelihood functions are difficult to fully

characterize, they are approximated, in our study, by computing relative

frequency densities for the symbol patterns. The approximate densities

are formed by generating a fixed number (50 in the examples discussed
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i
below) of simulated noisy radar returns for a particular target,

processing these waveforms into pattern representations, and computing

the relative frequency of appearance for each observed pattern. A I

second set of relative frequencies is then generated by repeating the

process, and the two estimates of the densities are compared. If the

two density estimates are similar, the estimate is used, otherwise, the

process continues until a suitable estimate for the true density is

found.

1. Pattern Representation Schemes

In order to gain insight into the effects of the pattern

representation on the performance of syntactic target identification, we

have evaluated the performance of systems using three different pattern

representation schemes. Each of these represents a radar return

measurement in terms of "level crossings." This type of representation

was, in part, suggested by the results as reported [251 and [261 which 1
indicated that much of the information contained in a waveform is also

contained in its zero crossings. Moreover, pattern representations of

the level-crossing type realize other properties that are intuitively

desirable. For example, in order to reduce the complexity of the syntax

analysis section of the classifier, the set of primitives (or symbols)

necessary to represent a given pattern should be as small as possible.

In addition, the pattern representation processing subsystem should be

easy to implement, and the resulting representations should be

relatively immune to the effects of noise. Each of the pattern

representation schemes discussed below exhibit one or more of these

desired characteristics.
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Single Level Crossing

The single level crossing pattern representation is based on the

formulation of primitives that correspond to the number of consecutive

(in frequency) radar return measurements that lie above or below a

pre-determined threshold. The first of these primitives is the number

of consecutive measurements, of the initial set of measurements, having

magnitude below the threshold. In case the first measurement lies above

the threshold, the first primitive is taken to be zero. The second

primitive is the number of consecutive measurements, subsequent to the

intial set, that have magnitude above the threshold; and so on until all

the measurements in the set have been accounted for. Note that the only

place a zero can occur is in the first position of the string of

primitives.

The pre-determined threshold for this scheme is taken to be the

average value of the magnitude of the measurement data. Thus, the

threshold must be between the minimum and maximum values of magnitudes

of the measurement waveforms. Also notice that the size of the set of

primitives for this scheme is not fixed and varies with the number of

measurements taken by the system. An example of the single level

crossing processing technique is shown in Figure 5.

Octant Crossing with Redundancy Removal

The octant crossing method of pattern representation incorporates

the simplicity of level crossing determination into a scheme that also

employs partial phase information. The representation algorithm begins

by calculating the average value of the magnitude of the measurement
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RESULTING STRING: '04756

00

AVERAGE MAGNITUDE

00 0

Figure 5. Single level crossing representation example.

data to determine the threshold level. furing operation, the radar

receiver decides whether the measurement has magnitude above or below

this threshold, and, in addition, the "quadrant" in which the

measurement lies is calculated. The resulting octant of a radar

measurement for each combination of level and quadrant is defined by the

following table. The categories "above" and "below" refer only to the

magnitude of the measurement while the phase ranges refer only to the

angle. As in the double level crossing case discussed below, the

redundant (repeated) primitive appearing in a representation string are

removed.

In the octant representation scheme, the number of primitives is

eight so that the syntax analysis section of the classifier is easy to

Implement. Moreover, the implementation of this processing technique is

a straightferward extension of the single level crossing algorithm.
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Table 3.1

OCTANT PRIMITIVE ASSIGNMENTS

Octant Phase Magnitude

a 0-90 below
b 90-180 below
c 180-270 below
d 270-360 below
e 0-90 above
f 90-180 above C d
g 180-270 above
h 270-360 above h

AVERAGE MAGNITUDE

Table 3.2

DOUBLE LEVEL CROSSING PRIMITIVE ASSIGNMENTS

Level Magnitude

a below lower threshold
b above lower threshold, below upper threshold
c above upper threshold

Double Level Crossing with Redundancy Removal

The double level crossing method of pattern representation begins

by determining the maximum and minimum magnitudes of the radar

measurements of interest. tipper and lower thresholds are then chosen so

as to divide the measurement range into thirds. During operation,

primitives are assigned to the observed measurements according to their

position relative to these two thresholds as shown in Table 3.2.

Finally, redundant symbols are removed from the pattern representation

string by deleting primitives that repeat.
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Since the number of primitives for the double level crossing

representation scheme is smaller than either of the other schemes, it is

expected that this latter scheme may be least affected by noise and

interference. Actual implementation of this technique requires little

more complexity than the single level crossing scheme.

RESULTING STRING c baboa'

UPPER THRESHOLD

000

0 0 e
0e

S.. .. .LOWER THRESHOLD

Figure 6. Double level crossing representation example.
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C. Results

The following tables contain the results of simulation experiments

performed on the syntactic radar target identification systems discussed

above applied to a catalog consisting of the radar cross section

measurements of 5 aircraft targets, each measured at 0° azimuth and 0'

elevation, for 11 equally spaced frequencies in the range from 8 MHz to

58 MHz, at HH polarization. The results were compiled for 500

Monte-Carlo experiments for each aircraft.

Table 3.3

AVERAGE NISCLASSIFICATION PERCENTAGES VS. NOISE LEVEL:

DOUBLE LEVEL CROSSING REPRESENTATION

Noise
Level Test Noise Level
d) 2.00 5.00 10.00 11.00 12.00 13.00 14.00 15.00 20.00 25.00

5 0.20 1.16 11.44 14.48 18.92 24.56 31.60 38.16 71.40 92.04

10 0.20 1.04 6.80 13.92 13.92 18.16 21.20 28.36 63.76 86.20

15 0.12 1.20 7.28 10.48 12.44 12.44 14.96 18.60 45.32 73.56
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Table 3.4

AVERAGE MISCLASSIFICATION PERCENTAGE VS. NOISE LEVEL:

OCTANT CROSSING REPRESENTATION

Design
Noise
Level Test Noise Level

(dBm2 ) 2.00 5.00 10.00 11.00 12.00 13.00 14.00 15.00 20.00 25.00

5 0.04 1.72 23.16 32.32 41.52 50.84 62.44 70.64 96.36 99.88

10 0.00 0.00 4.80 10.12 16.72 25.36 38.28 47.80 90.96 99.56

Table 3.5

AVERAGE MISCLASSIFICATION PERCENTAGES VS. NOISE LEVEL:

SINGLE LEVEL CROSSING REPRESENTATION

Design

Noise
Level Test Noise Level

(dBm 2z) 2.00 5.00 10.00 11.00 12.00 13.00 14.00 15.00 20.00 25.00

5 2.84 5.32 19.68 24.16 30.32 35.12 44.12 50.00 77.92 94.60

10 8.36 6.40 6.60 8.20 9.84 12.72 16.68 21.08 57.20 84.96

15 8.36 6.60 5.80 6.08 6.48 8.16 9.36 11.84 37.28 69.80
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Tabie 3.6

AVERAGE HISCLASSIFICATION PERCENTAGES VS. NOISE LEVEL

FOR VARIOUS PATTERN REPRESENTATION SCHEKES

(DESIGN NOISE LEVEL = 10 dBsu2 )

"Test No-ise Level

Scheme 2.00 5.00 10.00 11.00 12.00 13.00 14.00 15.00 20.CO 25.00

Double 0.20 1.04 6.80 9.72 13.92 18.16 21.20 28.36 63.76 86.20

Octant 0.00 0.00 4.80 10.12 16.72 25.36 38.28 47.80 90.96 99.56

Single 8.36 6.40 6.60 8.20 9.84 12.72 16.68 21.08 57.20 84.96

D. Conclusions

These results show that the pattern representation schemes

described in this report preserve sufficient information to reliably

identify each of the radar targets in the catalog tested. Future

investigations in this area will focus on the implementation of the

syntax analysis section of the identification system as well as the

development of more general pattern representation schemes. Particular

emphasis will be placed on the identification of pattern representation

schemes that explicitly correspond to target superstructures and

substructures so that the role of syntax analysis may be expanded to

include a target description in addition to target identification.
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IV. RECENT RESULTS ON THE SELECTION AND EXTRACTION OF FEATURES FOR

RADAR TARGET IDENTIFICATION

A. Introduction

In this report, we briefly describe some of the recent work

conducted in the ElectroScience Laboratory at The Ohio State University

that is focused on the extraction and selection of features from a

large, multi-dimensional data set. The feature extraction process

typically involves the formulation of an optimal linear transformation

from the original n-dimensional measurement space to an orthogonal

k-dimensional feature space, where k < n. Each element (or feature) in

the transformed space is thus a linear combination of elements

(measurements) in the measurement space. It is desirable that the

linear transformation is chosen to minimize a cost function that is

closely related to the average probability of classification error,

though, in practice, such a cost function may be difficult to

formulate.

In feature selection, the objective is to identify a set of k

features that minimize a cost function, just as for feature extraction.

However, in this case, the chosen features are in one-to-one

correspondence with the measurements. Thus, while the feature

extraction process produces a set of k features, each of these may be a

combination of possibly many measurements. The goal of feature

selection is to obtain performance as reliable as with feature

extraction; while requiring only a fixed, modest number of

measurements.
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As a part of this investigation, the resulting performance of both

methods is evaluated by means of Monte-Carlo simulation using the data

base and simulation software described in [27].

B. Transformation and Cost Criteria

During the initial phase of this study, an optimized linear

transformation based on an algorithm discussed in [281, was chosen and a

criteria function described in [291 was employed. This transformation

maps the measurement space into an orthogonal feature space in which the

extracted features are uncorrelated.

The first step in formulating this transformation is to compute the

intra-class covariance matrix for each class of targets. The

inter-class covariance matrix is then computed for this same collection

of classes. The transformation discussed above is chosen such that the

average intra-class covariance matrix becomes the identity matrix in the

orthogonal feature space; and the inter-class covariance matrix is a

diagonal matrix. That is, in the feature (range) space, the average

intra-class covariance is the same in any direction and the features are

uncorrel ated.

The eigenvalues and the eigenvectors of the intra-class and the

inter-class co-variance matrices have a direct bearing on the obtainable

system performance. In particular, the eigenvalues of the inter-class

covariance matrix (under the constraint that the average intra-class

covariance matrix is identity), gives in indication of how well the

classes separate in the direction of the corresponding eigenvectors.

The larger these eigenvalues are, the better the classes separate in
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that direction. As an example, assume we found that the sum of the

largest k eigenvalues is nearly equal to the sum of the remaining n-k

elgenvalues. This would imply that the target classes have significant

separation only in the direction of the k corresponding eigenvectors but

do not show significant separation in the direction of any of the other

n-k eigenvectors. This, In turn, would imply that little could be

gained by attempting to classify this set of targets in any space with

more than k dimensions.

As stated before, the disadvantage of optimal feature extraction is

that the extracted features are linear combinations of possibly many

measurements in the original space. In order to overcome the inherent

disadvantage of feature extraction discussed above, we have examined

procedures by which exhaustive searches for the optimal set of k

measurements can be implemented, where optimality is based on the same

cost criterion discussed above.

C. Initial Results

Feature extraction and feature selection based on the methods

described above were applied to sets of data (HHP) for 5 commercial

aircraft at 0Q elevation. The radar cross section for each aircraft was

measured at 19 different azimuth angles (from 00 to 1800), in 1 MHz

steps in the 8 MHz to 58 MHz range. Thus, in this case, the dimension

of the measurement space is 51, the number of prototypes for each class

is 19 and the number of classes is 5.

After applying the feature extraction criteria, it was observed

that only 4 eigenvalues of the inter-class covariance matrix were of
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significant value so that the transformation matrix to the orthogonal

feature space consisted of the 4 corresponding elgenvectors; reducing

the dimension of the classification problem from 51 to only 4. The

resulting classification error was less than 20 (magnitude-only)

measurements.

By applying feature selection criteria to obtain an optimum set of

frequencies, it was observed that the optimum 3, the optimum 5, and the

optimum 8 frequencies, etc., do not provide as reliable classification

as if all 51 frequency measurements are used. On the other hand, it was

observed that the performance advantage available with increasing the

number of measurements in this frequency band quickly becomes less

significant.

D. Modified Cost Criteria Functonals

While the initial performance results for the feature extraction

and feature selection techniques discussed above exhibited substantial

performance gains for the HHP data catalog set, the corresponding

results for the VHP catalog set were not as encouraging. Indeed, for

certain tests employing the VHP catalog data, the feature selection

algorithm identified a set of frequency measurements that produced worse

results than an arbitrary choice of equally spaced frequencies.

The primary reason for this initial disappointment is the fact that

the feature selection technique discussed above does not exhibit a

direct relationship to the resulting probability of classification

error. Rather, the motivation for this technique is based on the

concept of "distance" in the feature space; a parameter that influences,
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but does not determine the error probability for multiple, composite

hypothesis testing problems such as the one considered in the present

study.

A number of alternatives to the "maximum-distance" feature

extraction and selection criteria are currently under investigation.

The first of these, which places more significance on prototypes (target

catalog entries) most likely to be confused, and less significance on

prototypes that are unlikely to be misclassified, is based on the weight

function

N1 k 2 R
w(ij 22 } (1)

where Kj(m) is the ith prototype of class 1 measured at frequency m.

The feature selection criteria is then formed for any desired number of

measurements M as

M I k 2
L-1 L ni nj __ml_(m)-_(m))

SI Xp[ 202
1=1 k=l+l i=I j=1

L-1 L nj nj 1 k(

1=1 k=l+1 1=1 j=1

Notice that this feature selection criteria function is an

exponentially-weighted sum of the more commonly employed Euclidean

distance metric between prototypes belonging to distinct classes. Thus,

if two prototypes are dissimilar, they are assigned a weight - 1,

indicating a high probability of the two targets being confused.
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Alternatively, if two prototypes from distinct classes are not similar,

they are assigned a weight - 0 corresponding to a low probability of

misclassification for this pair. The feature selection process then

procedes by identifying a set of M measurements that minimize the

criterion in (2), i.e.,

o = min Jopt M

The factor, a2, appearing in (1) is used as a normalization to match the

noise power level likely to he encountered. This factor affects the

resulting weight function by adjusting the measure of similarity of

prototypes according to the magnitude of the expected measurement errors

due to noise.

The results of simulation studies of the performance of radar

target identification systems based on this feature selection criterion

are shown in Table 4.1 for HHP catalog data, and in Table 4.2 for VHP

catalog data. Graphical displays of these results appear in Figure 7

for the HHP catalog data and in Figure 8 for the VHP catalog data.

These results indicate that the modified feature selection criterion is

successful in achieving more reliable classification performance than

the Euclidean distance discriminant criteria function (or arbitrary,

equally spaced frequency selection), especially for noise levels near

the design noise power level.
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Table 4.1

SIMULATED CLASSIFICATION RESULT OF THE OPTIMUM SET

OF 4 FREQUENCIES FOR VARIOUS FEATURE SELECTION ALGORITHMS

USING THE HHP DATA

The first column contains the noise level, but the others the
misclassification percentage at the given noise level. The average
power at the features selected in each case is given above the
corresponding column.

For:
Pave = 26.02 dBsm discriminant criteria function
Pave = 26.30 dfsm equally spaced frequencies (1,17,34,51)
Pave = 26.59 dBsm exponential weighting function at 10 dBsm
Pave = 26.49 dBsm exponential weighting function at 20 dBsm
Pave = 27.18 dBsm exponential weighting function at 30 dBsm

dBsm 26.02 26.30 26.59 26.49 27.18

0.00 0.00 0.00 0.00 0.00 0.00
2.00 0.00 0.00 0.00 0.00 0.00
4.00 0.00 0.00 0.00 P.00 0.00

6.00 0.00 0.00 0.00 0.00 0.00
8.00 0.00 0.11 0.00 0.00 0.00

10.00 0.42 0.53 0.00 0.00 0.11
12.00 0.63 1.58 0.21 0.21 0.32
14.00 2.74 2.63 0.42 0.74 0.95
16.00 4.32 7.79 1.89 1.37 3.37
18.00 11.58 16.11 6.42 6.32 9.47
20.00 20.74 24.53 14.95 14.11 15.37
22.00 31.16 35.47 24.00 22.95 27.79
24.00 40.74 46.42 37.79 36.32 38.21
26.00 47.79 54.63 49.89 47.58 48.00
28.00 57.58 60.11 56.74 55.37 55.26
30.00 63.89 66.42 64.32 63.68 59.68
32.00 68.63 70.53 68.74 69.58 67.58
34.00 73.37 72.74 71.47 71.47 72.53
36.00 72.95 73.68 74.63 76.21 76.53
38.00 74.21 76.21 74.21 75.89 77.58
40.00 79.26 77.47 76.74 77.68 76.74
42.00 74.63 78.21 78.95 79.37 77.58
44.00 78.32 79.47 78.42 79.26 78.53
46.00 79.16 77.37 80.74 78.32 77.7q
48.00 79.47 79.26 80.00 80.53 77.47
50.00 77.37 80.42 80M63 81.47 80.42
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Table 4.2

SIMULATED CLASSIFICATION RESULT OF THE OPTIMUM SET

OF 4 FREQUENCIES FOR VARIOUS FEATURE SELECTION ALGORITHMS

USING THE VHP DATA

The first column contains the noise level, but the others the
misclassification percentage at the given noise level. The average
power at the features selected in each case is given above the
corresponding column.

For: F Pave = 20.74 dBsm discriminant criteria function
Pave = 18.53 dBsm equally spaced frequencies (1,17,34,51)
Pave = 19.07 dBsm equally spaced frequencies (4,19,33,48)
Pave = 14.97 d8sm exponential weighting function at 0 dBsm
Pave = 20.63 dBsm exponential weighting function at 10 dBsm
Pave = 21.03 dBsm exponential weighting function at 20 dBsm

dBsm 20.74 18.53 19.07 14.97 20.63 21.03

-10.00 0.00 0ýO0 0.00 0.00 0.00 0.00
- 8.00 0.00 0.11 0.11 0.00 0.00 0.11
- 6.00 0.53 0.21 0.21 0.00 0.11 0.42
- 4.00 0.53 0.21 0.53 0.00 0.11 0.63
- 2.00 0.63 0.53 1.05 0.00 0.42 1.68

0.00 1.79 0.95 1.79 0.42 0.53 2.32
2.00 2.95 1.47 2.74 1.16 2.00 3.68
4.00 4.84 3.37 4.21 3.26 2.95 5.05
6.00 8.00 4.21 6.53 6.74 3.58 5.68
8.00 14.11 8.42 10.00 12.53 6.11 8.32

10.00 18.95 13.26 12.74 20.95 8.74 9.68
12.00 24.84 20.95 21.26 34.95 15.37 14.32
14.00 33.05 28.32 24.11 42.63 21.16 19.47
16.00 38.74 34.42 35.89 50.11 28.63 27.68
18.00 48.42 47.47 46.11 60.42 38.74 34.63
20.00 52.74 55.68 52.47 68.32 45.89 42.53
22.00 58.84 58.42 57.79 69.05 54.32 52.42
24.00 64.21 68.63 65.68 72.42 60.21 60.74
26.00 66.84 71.47 69.26 76.84 65.58 68.21
28.00 70.63 73.89 74.84 75.58 69.58 69.37
30.00 70.84 74.74 71.37 77.58 74.11 73.26
32.00 75.47 76.32 74.74 78.84 74.21 76.42
34.00 75.58 78.53 76.00 79.58 76.42 74.84
36.00 77.68 79.89 77.26 78.95 76.74 77.16
38.00 76.95 79.79 78.00 77.68 76.32 75.37
40.00 77.89 79.79 78.00 77.05 78.74 76.42
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. HHP 4 equally spaced fequecties Pave - 28.30
0 14P opt. Bow 4 freq. coherent Pav, - 2M. 02
a £ HHP exp opt. 4 freq. 20 dBSM Pave - 26 49

d,

bd-

i ii

- I~//

/1.

0-4 / .

d"

.& t;.s i.u 2V.W iM3 •. 4&. 47.3M
NOISE LEVEL DBSN

Figure 7. Misclassification error as a function of noise level (HHP

catalog data).
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Figure 8. Misclassification error as a function of noise level (VHP

catalog data).
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V. TARGET SUBSTRUCTURE STUDIES

The goals of the study of scattering phenomena on this program

are:

1. To identify typical scattering centers and scattering
phenomena for classes of targets to be studied/identified.

2. To relate the "features" being used in the target recognition
algorithms to the scattering phenomena.

3. To infer the reliability and robustness of the identification
algorithm based on the behavior of the features vs. scattering
phenomena as the target is moved, as clutter and noise are
introduced, as target shapes are varied, and as propagation
distortion is introduced.

The principal tool for the scattering phenomena study are radar

target images derived from the measured transient radar target

signatures at varous target orientations. It should be remembered that

the signature data are significantly different than those normally used

for high resolution target radar imaging.

1. The frequency bandwidth is at least a decade (10:1)

a. Frequency dispersion of individual scattering centers is
evident.

b. The relative strength of the scattering centers changes as
a function of frequency.

2. The lowest frequency extends down into the resonance region of

the target signature.

3. The angular resolution of the signatures is less than normally

used for high resolution images.

a. This is partially compensated by the extremely fine
down-range resolution.
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4. The system Is coherent, giving polarity and polarization

information as well as envelope amplitude.

a. Thus, several extra parameters may be encoded by the
Image.

5. Higher order scattering mechanisms have been identified in

related studies, which complicate the image. Since these may

be quite characteristic of the target, these are still being

studied carefully.

During this research period, we have been refining the imaging

tool, and using the imaging process to look at and interpret images of

several targets.

A. Image Process Improvements

The biggest change was the incorporation of a Tektronix 4129 color

CRT display and color hard copy unit into the (VAX) imaging system.

Compared to the DEC GIGI used previously, resolution and color control

are both significantly improved. Figure 9 shows the image of a

conducting sphere on the new display vs. the image formally produced as

shown in Figure 10.

We are still working on a variety of modes for the use of color in

the Images. A traditional way has been to use color to encode

amplitude, as is demonstrated in Figure 9. However, the previous scheme

shown in Figure 10 used color intensity to encode amplitude, and

different colors (spaced approximately around the color wheel) to

represent the image information for different polarizations and

polarities. The thought behind this scheme is that if a scattering
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center has a particular polarization response, this would produce a

unique color on the image. Other possible uses of color may relate to

the frequency dispersion and or polarity of the sca~tering centers.

The study of transient waveforms and polarimetric color images

during the past research period has produced the following general

conclusions regarding target identification:

1. The concept of a scattering center can be extended downward in

the frequency domain to the Rayleigh region. It is proper to

talk about the scattering centers in explaining the resonance

region response of an object.

2. The strongest "resonance" effects on normal targets are a

result of the downrange time sequence of scattering from the

scattering centers of the target. Next most important are the

orientation-dependent interactions between scattering centers

(edge waves, creeping waves, etc.). Finally, resonances which

are independent of target orientations are in general weakest.

Only on very high Q (long, thin, wire-like) targets are the

orientation-independent resonances strongly received.

3. For long thin targets such as ships, the time or frequency

signature processing is most effective for look angles near

nose-on or tail-on. Spatial image processing is most

effective for near-broadside angles.

4. The scattering centers have slow, smooth variation vs.

frequency, angle, and polarization. Thus, their relative

importance changes for different radar sensing conditions,
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leading to aspect-dependent identification processing

strategies. On the other hand, the scattering centers

maintain their identifying characteristics over the whole

range where they are visible.
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-5 dB - 40d8 - 3 0 dB -2 d2 - 10d8 0.1.H

Figure 9. Conducting sphere color image on new Tektronic 4129 color
display*.

*Color copies available on request

48



Figure 10. Conducting sphere mage on old DEC GIGI color display*.

*Color copies available on request
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