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. VARIATION IN THE AMPLITUDE OF PERTURBATIONS ON THE INNER
» SURFACE OF AN IMPLODING SHELL DURING THE COASTING PHASE

b Introduction

In most inertial fusion target designs the pellet shell goes through three stages during the

o
N implosion: acceleration, coasting and deceleration. First the shell is accelerated inward,
N with Rayleigh-Taylor unstable growth at the outer ablation surface and at any layer in-
N terface where a lighter fluid is pushing on a heavier material. Then after the shell reaches
= nearly its final velocity, it coasts inward with little or no acceleration. With slight over-
. simplification we can view this phase as ballistic. And finally, the shell decelerates as it
> compresses the central gas ignitor. This third phase is also Rayleigh-Taylor unstable, on
. the inner surface of the shell. For a large high-gain pellet, the first phase reduces the pellet
k.. radius from about 3000 microns to about 1500 microns. The second phase reduces the
= radius further to about 150 microns. As the radius decreases tenfold, the mass density
' and the shell thickness each increase about tenfold. The third phase reduces the radius
; further to about 75 microns.
'\-.f During the first (acceleration) phase, Rayleigh-Taylor perturbations on the outer sur-
~ face drop off radially roughly as exp(—Ilz/R), where ! is the mode number of the perturba-
» tion, R is the shell radius, and z measures the distance inward from the unstable surface.
. For many mode numbers of interest, the shell is initially so thin that the inner and outer
N surfaces have about the same perturbation amplitude. These inner-surface pertubations
N can then serve as a finite-amplitude source for the Rayleigh-Taylor mode during the decel-
" eration phase. The purpose of the present note is to study the evolution of the inner-surface
X perturbations during the ballistic phase and to examine the role of convergence.
One possibility during the ballistic phase is that the perturbations evolve so that the
mass of any protuberance or bulge is conserved. After all, the Rayleigh-Taylor phenomenon
| moves mass from valleys into bulges. If the Rayleigh-Taylor growth is negligible, one might
P guess that the mass in a radial sector is conserved according to pR2?¢ = const, where ¢ is
: the amplitude of an inner-surface perturbation. We find that the perturbations actually
evolve quite differently. As the shell thickens and the inner and outer surfaces decouple,
- “waves” can propagate on the inner surface of the shell. We will show that the action
2 associated with these waves is an adiabatic invariant.
N A realistic analytic model would use compressible surface perturbations on a com-
. pressible imploding shell. H-~re, in order to obtain analytically tractable equations, we
- assume that the perturbations are irrotational and incompressible. This is a plausible
N assumption, based on other studies of Rayleigh-Taylor instability in compressible and in-
..: compressible media. For simplicity we will also assume that the zeroth-order fluid motion
:"_: is incompressible. This second assumption is not a good one in inertial confinement fusion,
E: W‘untlscr'ngl".;u—aru_\ cll September 24, 1986
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but with this model we can rigorously derive our adiabatic invariant from the fluid equa-
tions, study its properties, and gain some physical insight. We suggest that the adiabatic
invariant may be useful in the coasting phase even for compressible media.

In order to motivate this approach it is useful to illustrate the physical ideas by means
of the example of a pendulum whose length is slowly changing (the “Rayleigh pendulum”).
The total energy of a simple pendulum describing small oscillations of amplitude 4 in a
uniform gravitational field with acceleration g can be written as

H = zmI?(§? + 96%/L) = 3 (ps* /L + mgL#%) = zmgL0?, &)

where L is the length, m is the mass, the dot indicates a time derivative, and we have
introduced pg = mL20, the momentum canonically conjugate to §. When H is constant
the motion of the pendulum is given by § = @sinw(t —to), where O is the amplitude and
w = (g/L)*/? is the frequency of the oscillations.

If now the gravitational acceleration g, the mass m, or the length L is changed slowly,
i.e., over a time At such that wAt > 1, then H is no longer conserved but the motion is
still approximately harmonic. By a well-known theorem, we can invoke the constancy of
the action f po d8 = TmwL?0%, where the integral is carried out over a complete cycle of
the motion, to compute the change in ©. For example, if it is the length which is varied, ©
changes according to L3/202 = const. This result is of course identical with that obtained
by direct calculation of the work done on the pendulum by the time-averaged gravitational
and centrifugal forces.

On the basis of this example we anticipate that the action of a stable small-amplitude
oscillation on the surface of an imploding spherical shell will be a good adiabatic invariant
if the implosion time is long compared with the period of the oscillation. From dimensional
considerations, we expect the action to be proportional to the product of the square of the
perturbation amplitude ¢, the mode frequency w, and an effective mass. Because the inner
surface of a coasting shell accelerates inward on account of convergence effects, waves on
the inner surface are stable and satisfy the dispersion relation w ~ (—{R;/R,)Y/?, where l is
the mode number. If the eigenfunctions satisfy Poisson’s equation, they will decay toward
the interior of the shell over a characteristic distance of the order of the inverse wavenumber
Ry /1. The effective mass will thus be approximately (47 R,%)(R;/l)p = 47R;%p/l, and the
adiabatic invariant will be

47 R 3p¢®w/l ~ const. (2)

Consequently we expect that for a given !/ the amplitude of a surface perturbation will vary
approximately as (—R;°R;)~1/4.

We begin our investigation by analyzing the motion of a coasting spherical shell. To
determine in detail how a surface wave evolves, we then linearize the idcal equations of
motion for a shell of uniform density and solve them under the assumption that the flow
is incompressible and irrotational. In the following two sections we look at the thin-shell
and thick-shell limits. When the shell is thin the perturbations grow linearly in time. For
thick shells the perturbations localized on the inner surface decouple from those on the
outer. We show that for certain forms of the motion the linearized equations can be solved
exactly. In the limit of thick shells and large mode number | we carry out a WKB analysis
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: of the equation for perturbations on the inner surface and recover the adiabatic invariant R
(2). To check our analysis we then solve the exact linearized equations numerically. In the h
: last section we discuss these results and offer our conclusions. 3
Coasting Shell
o The total mass and total energy of the imploding shell are conserved. The mass is
" ¢
: Ra 2 Am 3 3 T _ 3 )
M=4r / p(R)R?dR = Y 5(R;3 - R®) = Y 5R,3, (3)
) R, 3 3
; :
':: where R; and R; are the inner and outer radii of the shell at time ¢, p(R) is the density L
K as a function of radius, g is the average density, and R, is the radius of the fully collapsed .
{ shell. Because the shell is assumed to be incompressible, the volume between R; and an .
' intermediate fluid element moving with time-dependent radius R is conserved and we can B
: differentiate to get the velocity V(R,t):
RV = R?R = R,*R,. (4) ;
Hence the total energy is
R, . ]
W =2x / p(R)R®>R%dR Ny
" . (5) |
_h2p 4 [ TdR
~ 27rpR1 Rl R2 = 27l'pR1 Rl (1 - Rl/Rz) i
Rl “ul
For a uniform shell, p(R) = p and Eq. (5) is exact. We assume this in what follows.
The characteristic time associated with the implosion is (M Ro?/2W)!/2, It is conve-
nient to choose the zero of time to correspond to R; = 0. By differentiating Eq. (5) and g
t: using Eq. (4) with R = R; we find the equation of motion of the unperturbed shell, y
- w R, (Ri\? :
R, = 3+2—+{— ; 6 W
E ' 4npR,* [ R, <R2> (6) .*
e
R; satisfies a similar equation. Both are easily solved numerically (Fig. 1). Note that o
. R, < 0 < Ry, so that perturbations on both surfaces are stable. The quantity in square '_'
brackets in Eq. {6) changes by only a factor of two as R;/ Rz varies between 0 and 1, so ‘
$)2/5 N
to a good approximation we have R, « R; %, whence R; o (—t)%/® and
Ri/Ry & Ry 75 o (—t)~2. (7) “
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Linearized Equations

For an incompressible fluid the linearized continuity equation can be written
V.v=0, (8)

where v is the first-order velocity. (Here and throughout this paper, upper-case variables
are associated with the unperturbed motion and lower-case variables with the perturbed

motion.) If the perturbations are assumed to be irrotational, we can introduce a scalar
potential by

v =V¢. (9)
This potential satisfies the Laplace equation,
V2 = 0. (10)
The solution of Eq. (10) can be written
$(R,1) =) [Riuy™(t)(Ri/R)™* + Rouy™(1)(R/R2)"] Yi,m (6, 0), (11)
I,m

where uj, 7 = 1, 2, plays the role of a time-dependent amplitude of the velocity pertur-
bation associated with R = Rj; Y}, is the spherical harmonic of order I, m; and the sum
is taken over all meridional and zonal mode numbers such that 0 < |m| <! < co. Since
the perturbed equations are linear, in what follows we specialize to a particular mode and
omit the superscripts [, m whenever doing so will cause no confusion.

The velocity associated with this mode is found by taking the gradient of Eq. (11):
= {u1(R1/R)"F?[-&,(1 + 1)Yi,m + RVY), ] (12)
+ uz(R/R2)' " [8,1Y,m + RVYm] },

where &, is the unit vector in the radial outward direction. The linearized momentum
equation can be written

[.‘;_‘t' + (V- v)} +Vp=o0. (13)

To find the first-order pressure p(R,t) we employ the Bernoulli form of Eq. (13), obtained
by combining Eq. (9) with Eq. (13) and integrating:

<%%+er> +p=1(t). (14)

The function of t on the right side can be made to vanish by proper choice of ¢. Substituting
Egs. (11) and (12) in Eq. (14), we obtain
P By J
l

T { [Rﬂ'ﬂ Hl DR - (4 ””“‘“(?L)z (15)

: : RN\ ( R ,
-+ |:R2‘l}.2 — (l — l)Iﬂz‘U,g -+ 1R21L2<"1'§> :| <?2—2> }}'l,m-




The boundary conditions needed to complete the specification of the problem are the

; 1'%
G = vpj + Eé 'S‘j (16)
7

kinematic

and dynamic

aP
pj + <8_R) G =0 (17)

7

conditions for j = 1, 2, where ¢; is the amplitude of the first-order displacement of the jth
surface. Equations (16) and (17) are valid regardless of the dynamics of the basic state;
i.e., they hold for any form of R,(t).

Using Eq. (4) and the unperturbed equation of motion in the form
pR = —VP, (18)
we can rewrite Egs. (16) and (17) as
vrj = & + 2R;j¢; [ Ry (19)
and

p; = P}"zj $is (20)

J =1, 2. Setting R = R; in the radial component of Eq. (12) and substituting the result
in (19) yields two linear ordinary differential equations relating ¢; and ¢; to u; and uo,
which can be written as

5‘1 + 2(R1/R1)§1 = —(l + 1)u1 + lAl_l’U,z (21)

and
§.2 + 2(R2/R2)§2 = —(1 + 1)A'+2u1 + luz, (22)
where A = R;/R;. Combining Eq. (15) with Eq. (20), we have

(Rlul) + {Rz‘llz + [IA—a -1 + 1] Rng} AI = —I;’.lg‘l (23)
{Rldl + [1 +2 - (l + 1)A3] Rlul} AH-l + (Rzuz). = —jé2§2. (24)
Equations (21)-(24) constitute a fourth-order system of linear ordinary differential

equations in ¢;, ¢2, u1, and u;. Before solving them numerically we analyze them in the
limits in which the shell is thin or thick compared with the radius.
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Thin-Shell Limit

When the shell thickness r = R; — R; is much less than either R; or Rz, we have to a
good approximation

r R3

r oo 25

R 3R3 (25)
where R = %(Rl + R3). Hence we can expand the perturbation amplitudes ¢; = g;-’ + §J-1
and the coefficients in the velocity potential u; = u? + u;-, 7 =1, 2, where

g}/gf ~u11-/-u?~r/R<< 1. (26)

By Eq. (6) and its analog for R, the accelerations Rj are first-order quantitities, so to
lowest order Egs. (23) and (24) both yield

[R(x§ +u9)] =0, (27)
whence we obtain
ul = —ul + C/R, (28)

where C is constant. Hence Egs. (21) and (22) in lowest order become

) R ic
&+ 2§gf = —(2l + 1)ul + 5 (29)

(+1)C

. R
¢ +2=¢0 = (20 + 1)ud - %

R
In first order Eqgs. (23) and (24) yield
1 oy 1 oy lT

[R(u} +ud)] = 3(rud) + S (rug) - = [(Ru$) - 3Ru§) =

(30)

3w ¢
2npR4
i Loy Lo ooy (H+Dr O _ 2,0
[R(u] +u3)] - E(ru ) + 5(ru2) -5 [(Rul) — 3Ru1] =
Subtracting Eq. (32) from Eq. (31), we obtain

3W¢P
2mpR4Y’

_ 3w BICRr
" mpRY  wpR?’

R
(2l +1) [rd? - 2—ru?]

! (33)

Differentiating Eq. (25) twice with respect to ¢, we find that 7 = ~2(R/R)r and
f = 6(R/R)?r. If we multiply Eq. (29) by r, differentiate, substitute Eq. (33) in the
right-hand side, and use the expressions for r and its derivatives, we find that ¢? satisfies

6R? ow

=0 0

= - =0, 34
‘1 ( R? 7rpR03R2> i (34)

where we have used the thin-shell limit of Eq. (5). Going through similar operations using
Eq. (30) instead of Eq. (29), we find that the second derivative of ¢J likewise vanishes. Thus
both ¢; and ¢; vary linearly with time. This simple result should come as no surprise: when
the unperturbed motion of the shell is uniform, so is that of the perturbations.
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Thick-Shell Limit
. Equations (21)-(24) also simplify considerably in the thick-shell limit. If A’ < 1, the

perturbations localized on the inner and outer surfaces decouple and satisfy
d{ 1 d .

. —l——(R*a)| =+ DR 35
X dt[Rldt( 1§1)] ((+1)Ri (35)
A
] and
g 4114 pre)| = ik (36)

dt | R, dt 2°62)| = 262,

-"‘f‘_'- respectively. We are particularly interested in the behavior of the former. Here we discuss
= several examples for which Eq. (35) can be solved exactly.

(1) Coasting shell. If we substitute Eq. (7) in Eq. (35), we find that ¢; oc (~¢)*, where

a= ok V25— 24l (37)
> 10
::: For | > 1, a is complex with real part equal to —1/10. Hence as t — 0, we have |¢;] ~
o (—t)~1/10 ~ R,"Y/4 by Eq. (7). This divergence is much weaker than that (~ R;™?)
predicted by the “constant-mass perturbation” model.

'_":: (1) Constant acceleration. The linearized equations derived above hold for any R;(t), even
:j' one which does not conserve the energy of the unperturbed state. If the shell undergoes
J constant acceleration G < 0 and reaches the origin at ¢ = 0 with velocity U < 0, then its
- radius as a function of time is given by
‘. Ry (t) = $Gt? + Ut. (38)
'_Eij Evidently V; vanishes and R; attains its maximum at to = —U/G. Equation (35) becomes
s (1Gt2 + Ut)é, + 3(Gt + U)ét — (I — 1)Gg1 = 0. (39)
N If we set z = —Gt/2U, then z = ¢; satisfies the hypergeometric equation!

‘ ’ z(l - z)2" +[c — (e + b+ 1)z]z — abz =0, (40)

; 0<z< %, where primes denote differentiation with respect to z and
o a=1(5+yITF8I); (41a)
o b= 1(5- V17 +8l); (41b)
I.

Ve c=3. (41¢)

( One solution of Eq. (40) is the hypergeometric function z, F(a b; c; ), which equals
::j unity at z = 0 and takes on the value 2y/7 [T'(3a + J)T(36+ 3) ] at £ = 1/2. Since z;

e is related to the associated Legendre functions by!

(1-a=b)

& Fla,b;i(a+ b+ 1);z] =T [}(a+b+1)] [z(1 — )]z (1-2- b)Pz( : 1)(1—2:1:) (42)
w3 ‘
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the series for z; reduces to a polynomial in z when (17 + 81)1/2 is an odd integer, i.e., for
I =1,4,8,13,.... The second solution 2, is finite at = = 1/2 but diverges at £ = 0 as
z2 ~ 7% ~ (—t)~%. This suggests that the growth of the inner surface perturbations is
more serious for an accelerated shell than for one which coasts.

(t1f) Simple harmonic motion. If the shell radius varies with time according to
Ri(t) = Ry sin(—Qot), (43)

where I~21 and o are constant, then we can set z = sin® (ot and again arrive at Eq. (40),
with

a= 13+ v5+4l); (44a)
b= 13— V5 +4l); (44b)
c=2. (44c)

The two solutions behave similarly to those found in case (it): z; is finitefor0 < z < 1
and reduces to a polynomial in z if (5 +4/)!/? is an odd integer, i.e., for { = 1,5,11,19,...;
29 diverges at t =0 as 1/z ~ (—t)72.

(tv) Mode number l = 1. For |l = 1 Eq. (35) becomes
Rié1 + 3R =0, (45)
which has two types of solutions, satis{ying
¢1 = const (46)

and
R3¢, = const, (47)

respectively. For a thick coasting shell, when R; <« Rz, Eq. (47) can be rewritten using
Eq. (5) as

R13/2d£}%1~ 2~ const, (48)
1
which implies

R11/%¢, ~ const. (19)

In general ¢;(t) is a superposition of these two solutions. The seccond one blows up as
R, — 0, however, and thercfore dominates for sufficiently small R,. Consequently we
expect ¢ to diverge as R;~'/% in this limit. However, as is well known, this apparent
divergence is merely a shift in the location of the origin.
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WKDB Analysis for Thick Shells
We look for a rapidly oscillating solution to Eq. (35) in the form

. 58
Y

.

¢1(t) = 2(t) exp [i /Otw(t’) dt'], (50)

P A

where the argument of the exponential is assumed large compared with unity (the WKB
or quasiclassical approximation). Substituting in Eq. (35), we obtain

[Ty

—w?Ryz +i(3wR 2z + 2wR1% + WRy2) + R12 4+ 3R12+ 2Rz = (1 + 1)R; . (51)
In lowest order we find an expression for the square of the mode frequency,
w?(t) = —(l + 1) R, /Ry.
Evidently the approximation is good when ! > 1. In next order we have
3wRiz + 2wR 2 + WRz =0,
whence
R32%w = const. (54)

This is nothing other than the adiabatic invariant (2). It is interesting to note that when
Ri o (—t)?/® (the form which holds for a coasting shell), Eq. (54) predicts that the
amplitude of the perturbation varies as (R;)~'/4, the exact answer found in example ()
above.

The result (54) can be reached by another, slightly different, approach. In the thick-
shell limit, the total kinetic energy associated with the part of the perturbation (11)
localized at the inner surface can be represented as

Wy = /// &R Lpv? = Wy,
I,m

R 21+4
MYy




where dQ is the differcntial of solid angle and we have used the fact that v is real; the aster-
isk (*) denotes complex conjugation. The effective gravitational energy of the perturbation
due to the inward acceleration of the shell can be expressed as

. $1
We = —pRi*R; // an dg¢
0
1 N
= —EPRIZRI // dfl §12
1 . ml|?
L R (7
l,m

i

. 1 1

= —27pRi%R, Z = Z wea™.
Im 2l+1 l,m

[In Egs. (56) and (57) we have restored the superscripts [, m labeling the coefficients ull’m
and 5‘;"" in the summations.] Combining these expressions, we see that the total energy
associated with the perturbation can be expressed as a sum over all mode numbers of the
energy Whm = W}lém + Wcl;’m associated with each (/,m) mode. Here

wim = PR L@ )l - 2t

20+1 R,
27pR,® 1 d i |2 U+ DRy, 2
N (l+1)(21+1){’R12_d_t(R12 |- R, [ (58)

. . (l + 1)}%1 .
=R A m9m — qu,mql,m ’

where p = 27p/(l + 1}(2! + DRy, ¢¢m = R 25‘{"‘, and we have used Eq. (21) in the
thick-shell limit A — O to replace ull’m with an expression involving gf’m

Equation (58) can be put in Hamiltonian form. The momenta canonically conjugate
to gi,m are defined by p,; ,, = ug;,, for all [,m. With this substitution, Eq. (58) becomes

Wh™ = 17 pp ] + WG ML s (59)

where w;? = —([+ 1)1.%1/}?1. Equation (35), Hamilton’s equation of motion for g; ,,, follows
directly from Eq. (59). The adiabatic invariant (54), which is essentially § p, ., dg, ,,,, also
follows from Eq. (59) by the same theorem used earlier to calculate the adiabatic invariant
for the simple pendulum. (In fact the two Hamiltonians are formally almost identical.)
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v, Numerical Solution

i Equations (21)-(24) can be solved numerically for arbitrary functions Ry(t), R2(t). For

A each choice of the basic state, each value of the mode number ! in general gives rise to
four independent solutions. An exhaustive survey of the behavior of surface perturbations

i' is thus clearly impractical. Instead, we limit ourselves to studying the evolution of a

¥ representative sample of the solutions corresponding to a single choice of basic state: the

- coasting shell which served as the original focus for this investigation.

: X We suppose that the shell enters the coasting phase with small imperfections, possibly

as a result of instabilities which developed during the ablative drive stage. Since the shell
is very thin, these irregularities are likely to take the form of “wrinkles,” i.e., ripples
-2 . which do not alter the shell thickness, so we set ¢; = ¢;. We can assume that they are
N initially quasistatic, so that u; = u2 = 0. Since the perturbed equations are linear, we can
Fourier-analyze and set the initial amplitudes of each mode equal to unity without loss of
generality. We follow the evolution of ten different harmonics, with mode numbers given
y by 1, 2, 5, 10, 20, 50, 100, 200, 500, and 1000. The initial velocity (or energy) of the shell
p determines the time scale of both perturbed and unperturbed equations; thus the only free
- parameter in the problem is the initial shell inner radius R;(to). By taking this to be very
':. large compared with Ry, the radius of the sphere which results when the shell collapses
- completely, we can ensure that the solutions depend on this choice only trivially.
Our numerical results were obtained on a VAX 11/780. The unperturbed and per-

: turbed equations were advanced simultaneously using a fourth-order Runge-Kutta-Gill
R scheme. In our numerical solution we retained the convention adopted in Fig. 1, according
'_: to which radial distances are measured in units of Ry and times in units of Ry divided by
- the initial shell speed. We took the initial value of the shell inner radius to be equal to
e 100, corresponding to an initial time to = —99.28. This means that, by Eq. (25), the ratio
:_‘ of the shell thickness to the radius is r/R ~ 3 x 10~7. This is the amount by which the
N ratio A of the shell surface radii differs from unity. Since the determinant of 4; and u; in

AT

Eqgs. (23)-(24) equals 1 — A?*+1 ] the equations are poorly conditioned initially, and it was
necessary to solve them in double precision (52-bit mantissas). The time step was chosen
to be 6t = 0.01R;/|R,]; with this choice R; decreased by a factor of 10° in 1140 timesteps.
By any realistic standard, five orders of magnitude is an enormous radial compression.
The reason for doing this was to include in the example both the thin- and the thick-shell
. regimes, and to make sure that the choice of initial radius did not play an excessively large
role. The accuracy of the calculation was monitored by checking conservation of mass and

a v «

»

energy and by comparing the numerical results with those obtained analytically. Refining

o 6t by a factor of 2 produced a negligible change in the results. Most of the variation in the

N solutions takes place where R, deviates significantly from linear dependence on ¢, between

N t = —1and t = 0 [Fig. 1(b)], so we plotted all results against log R, instead of t or R;.
; Figure 2 shows plots of (R;/R2)" as a function of log R; for the ten values of ! used.

= If the transition from “thin” to “thick” is defined to occur when (R;/R2)" = 0.5, then we

. can approximate the transition radius by

- RY ~0.41°4, (60)

. Figure 3 displays the linear growth (which appears curved because of the logarithmic scale

. of the abscissa) predicted by the thin-shell approximation. In Fig. 4 the amplitude of the

N
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perturbation on the inner surface obtained from the adiabatic invariant (54) is plotted,
also normalized to unity at B; = 100. Note that it describes amplification by slightly more
than a factor of twenty over the range of the calculation. As can be seen, the thin-shell
and the thick-shell approximations cross near R, = 1.25, i.e., in the middle of the range
of the transition radii defined by Eq. (60).

Figures 5(a) and 5(4), respectively, show ¢; and ¢; as functions of R for / = 1. Note
that the two amplitudes behave very differently: ¢; grows monotonically, while ¢ reaches
a maximum of 2.9, then approaches unity (the initial value) as R; — 0. The dashed curve
on Fig. 5(a) represents the approximation (49) with the constant set equal to 11.2. As can
be seen, it is reasonably close to the exact solution throughout the range 1072 < R, < 100.

Figure 6 displays the time dependence of the calculated values of the perturbation
amplitudes. Note that the amplitudes for the inner (solid trace) and outer (broken trace)
coincide and follow the thin-shell approximation shown in Fig. 3 until R, =~ R!". As
R; — 0 we see that ¢, diverges while oscillating as a function of log R; with a frequency
that scales roughly as [1/2; in contrast, ¢; approaches a finite value of order unity. Perhaps
the most significant fact that emerges from these results is that ¢, grows by a factor of
about twenty while R, is changing by five orders of magnitude.

To compare this behavior with the prediction obtained from the conservation of action,
which is expected to work best in this limit, we have replotted ¢; in Fig. 7, scaled by the
amplitude g{‘d shown in Fig. 4. It is clear that the adiabatic invariant does an extremely
good job of predicting the envelope of the oscillations for all/ > 1. Not only is the envelope
of the rescaled amplitude nearly constant through the last three decades of variation of R;,
but the constant value, which is approximately equal to unity, is almost independent of [.
Except for the I = 1 case (which corresponds merely to displacement of the shell center
without deformation), the thin-shell approximation and the adiabatic invariant between
them thus describe essentially the whole evolution of the linear perturbations.

Conclusions

The constant-mass perturbation model predicts that when R; decreases by a factor of 10%,
¢1 increases by ~ 10!°. This estimate, which is based on simple geometric considerations,
omits the dynamical effects in the problem. It is equivalent to setting the terms on the
right hand side of Eq. (21) to zero. Our model predicts amplification by a factor of
approximately 20. Evidently the terms on the right hand side of Eq. (21), though initially
small, play an important role in reducing the growth of the perturbations. In view of
the idealizations in our model and of the many assumptions it incorporates, the coasting
approximation is unlikely to be good over a time during which R; changes by more than
10 or 100 and the perturbation amplitude increases by a factor of two to three. Hence our
quantitative results should be regarded as being merely indicative.

The results of our numerical example suggest that conservation of action is an ex-
tremely reliable tool for predicting the evolution of surface waves on an imploding spherical
shell. Although these results are strictly applicable only to a model in which the shell is
uniform, incompressible, and coasting, the adiabatic invariant (54) can probably be used
to describe incompressible irrotational perturbations whenever R; < 0 and the shell is
“thick.” Note that even though the waves undergo amplification, we are not talking here
about an instability, such as the Rayleigh-Taylor instability. The imploding shell is stable
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against Rayleigh-Taylor modes; in fact, if the sign of R, were reversed, the present theory
would no longer hold.

The formalism which gave rise to Eqs. (21)-(24) can probably be generalized in a
number of ways. First, the shell could be made up of several uniform layers, or even vary
as exp [ﬂ(R3 - R13)] , where 8 = const, and still be consistent with Eq. (4). Second, the
requirement of irrotationality could be relaxed. Third, it is conceivable that additional
physical processes could be modeled, e.g., loss of material through ablation. The require-
ment that the basic state be incompressible is essential, however; otherwise the unper-
turbed motion of the shell would be much more complicated because the pressure buildup
associated with convergence would cause large-amplitude sound waves to propagate radi-
ally through it. In spite of this it is plausible that incompressible surface perturbations on
a compressible shell are accurately described by Eq. (54). This assertion is supported by
comparison of the behavior of the unstable case (the Rayleigh-Taylor instability) in com-
pressible and incompressible media. It has been shown?, e.g., that compressibility changes
growth rates by a less than a factor of two.

In summary:

(/) We have defined the “coasting state” of an imploding spherical shell and derived
an analytical description of its behavior.

(77) We have derived a formalism for describing the evolution of infinitesimal irrota-
tional perturbations of an incompressible uniform imploding spherical shell.

(177) We have obtained the limiting form of these equations for the cases of a thin shell
and a thick shell, and have exhibited several analytical solutions for the latter.

(1v) We have recovered the law of conservation of wave action from the equation for
the evolution of a surface wave on the inner surface of a thick shell.

(v) We have numerically solved the exact equations for the evolution of the coupled
inner and outer surface waves and shown that they are accurately approximated by the
solutions in the thin- and thick-shell limits.

(vt) We find that for realistic compression factors, perturbations of the inner surface
are amplified very little, by only a factor of order two or three. This shows the inadequacy

of the simple picture in which the mass of a bump or asymmetry per unit solid angle is
conserved.
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Fig. 1(a) Time histories of R, and Ry for a coasting shell. (The two traces atc
indistinguishable on this scale). The initial position and velocity of the shell are R, = 100.0
and V; = —1.0, respectively, and the zero of time is chosen at the point when R, = 0.0
and Rz = Ro (= 1.0 in these units).
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Fig. 3 Linearly increasing amplitude ¢; (or ¢z) of surface perturbations ¢;,¢; vs log R;
{ in the thin-shell approximation, assuming initial unit amplitudes and initially vanishing
velocity coefficients uy,us.
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Fig. 4 Amplitude of the inner surface oscillations vs log Ry, obtained from conserva-
tion of wave action. The curve has been normalized to have an initial value of unity.
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