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ﬁ 7 SUMMARY
| i‘ This is the second year report which is a part of a three-
Jﬁ year study on compliant robotic structures, Such structures are
b
SN constructed of continuously flexible elastomeric tubes that
AR
- C extend, bend or twist when pressurized. The motion of each tube
;' o element wunder pressure depends on its directional stiffness,
e
E~ e achieved through the orientation of wall corrugations and
SN
y reinforcement., Tube elements placed in series or parallel are
X :i being designed as robotic fingers and arms that are fast-acting
X . and have potential payload to self weight ratios as high as 10/1
AR for laboratory-scale models and up to 3/1 for full-scale
fi ;; prototype arms.
it N The first two years of this study have involved the
i i: formulation and solution of mathematical models for the
- mechanical behavior of single and multiple elastomeric
YR structures. The formulation of these models has been tempered by
-
L- the knowledge of the muscle morphology and function in animal
:E . hydrostats. In this regard, Chapter I describes fourteen soft
oo
b animal parts (worm bodies, cephalopod appendages, and vertebrate
2 tongues) and the mechanical principles operating in these
y
ﬁ h structures as they move during muscle contractions, Chapter II
}j ] presents a general, nonlinear mathematical model of orthotrophic
o] w cylindrical shells that undergo large rotations when pressurized.
VA The numerical solutions may be directly employed in the design of
<. y y ploy g
S %
:: rugged, lightweight actuators to achieve wrist action,
vy
A i
3
a
(3
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ii Chapter III deals with three topics: the detailed elastic
analysis of the load-deformation behavior of bellows; the use of

ES this general analysis in the design of strings of bending
elements suitable for use as robotic arms; and a general analysis

- of the elastica,or the finite deformation patterns achieved in

. cantilevered element strings (or arms) wunder internal pressure

N and end forces due to its payload. This report ends with a brief

description of a novel compliant, robotic arm based on satellite

bellows elements, analogous to the longitudinal muscles in the

w %o v
’

PN

appendages of animal hydrostats.
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Chapter I

MUSCLE MORPHOLOGY AND FUNCTION IN

ANIMAL HYDROSTATS
Lisa J. Croner

INTRODUCTION

This chapter is about muscle. In particular, it presents an overview
of a zoologist's understanding of how muscles work in a variety of
animals' soft parts, in the hope that animal structure can serve as a
source of ldeas for the design of flexible robotic manipulators. | have
been asked by the engineers involved in the design of flexible manipulators
to consider soft animal parts as muscular beams which undergo various
contortions when selected muscles contract. To this end, | devote the
first two parts of the chapter to a description of representative
cross-sections of fourteen soft, roughly cylindrical animal parts, and to a
discussion of the simple mechanical principles operating in these
structures when the muscles in them shorten.

In the third part of the chapter | present a brief discussion of
remaining questions which are likely to be relevant to animal-inspired
flexible robot design. | present these questions here to suggest subjects
ripe for analysts in future incarnations of this project.
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MECHANICS OF MUSCULAR HYDROSTATS
General/ Princrpl/es

Muscie is familiar to us as the tissue whose activity resuits in
animal motion. In simple terms, a muscle cell is an elongated body which
contains a constant volume of cytoplasm and which has the ability to
become shorter and fatter forcefully when stimulated electrically. This

< shape change of the individual muscle cell is converted into a shape change
of a body part when many muscle cells pull and push on the tissues
surrounding them. The stiffness, elasticity, and other material properties
of these tissues are thus extremely important in determining the body
changes resulting from a muscle contraction.

"Muscular hydrostats” are animal structures in which cell cytoplasm
and/or the constant volume of soft tissue act(s) as a hydrostatic skeleton
to transmit the work of contracting muscle (Kier, 1983). Worm bodies,
cephalopod appendages, and vertebrate tongues are examples of muscular
hydrostats. The tissues comprising them are deformable and make up a
constant volume of material. The contraction of muscles surrounding and
embedded in such tissue causes changes in the dimensions of the animal
structure; because the volume is constant, this results in changes in other
dimensions of the structure. This idea is now the basis for the standard
analysis of movement in soft-tissue, constant volume structures
(Chapman, 1958; Chapman, 1975; Clark, 1964; Kier, 1983; Kier and Smith,
1985; wWainwright, 1982).

Two generalizations can be made about the muscuiar hydrostats |
will describe. These generalizations facilitate the development of a
model which can be used to explain the movements of these structures.
First, they are all either roughly cylindrical in shape or consist of two
cylinders separated by a membrane. Second, the muscles in these
structures are found oriented in any of three directions (Figure 1).

Muscles may be oriented parailel to the long axis of the cylindrical '
structure; these are “longitudinal” muscies. Muscles may be oriented
perpendicular to the long axis of the structure in “circular”, "transverse” :
or “radial” arrays. Muscles may wrap around the periphery of the

structure at an obligue angle to the fong axis; these are "oblique” muscles

(Kier and Smith, 1985).

Muscular hydrostats are capable of making any of four basic
movements. They may extend, shorten, bend, and/or twist. The
arrangement of muscles within the structures determines the mechanical
principles utilized in producing these movements. These principles have
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Figure 1. Orientation of muscles found in cylindrical muscular hydrostats. a) Longitudinal
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been described by various researchers. Most recently, Kier and Smith
s (1985) have outlined the mechanics of muscular hydrostats, and the
: ﬂ following discussion refiects in large part their views.
: Flongation
P_;.
g

Elongation of a soft, constant volume cylinder occurs when its
cross-sectional area decreases. A decrease in cross-sectional area is
™ produced by the contraction of muscies perpendicular to the fong axis of
the cylinder. Hence, one would expect to find circular, radial, or
transverse muscles in soft, cylindrical animal parts which are known to
elongate.

The contraction of obligue muscles oriented at an anglie @ greater
than 54°44' to the long axis of the cylinder will also cause elongation.
Figure 2 demonstrates why this is so. A constant volume cylinder wrapped
for one turn by a single oblique fiber is slit longitudinally to display the

e

surface as a flat sheet, as shown in Figure 2B. The length, radius, and
volume of aright circular cylinder in relation to @ are respectively
L =D cosg
- r=Dsing/2m
B V=mrlL
\: where D Is the length of the oblique fiber. Substituting for randL, the
) volume is
|
& V = D3sin?a cose/4m.
The oblique fiber length 1S then
< D = (4nV/sin%e cosa)”3,
RS and
G p/v!/3 = (an/sin2acosa) /3.
= For a constant volume, D/ v1/3 yaries directly with D and thus serves as a
- “fiber length parameter”.
) The fiber length parameter can now be plotted against fiber angle g,
,"5 such a plot is shown in Figure 2C. The fiber is shortest when the fiber

angle is 54944, and increases in length as the angle approaches 0° or 90°.
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The shortening of a fiber oriented at less than 54%44' will increase the
fiber angle, and will thus result in a decrease in the length of the cylinder.
The shortening of a fiber oriented at greater than S4°44' will decrease the
fiber angle, thus resulting In an tncrease In the length of the cylinder.
Therefore, oblique musculature can contribute to elongation and shortening
of cylindrical muscular hydrostats.

The amount and speed of elongation produced by a given decrease In
diameter are affected by the ratio of the length to the width of the
cylinder. This 1s demonstrated as follows. Consider a right circular
cylinder of constant volume,

V=nd4L/4 = d 2L,/ 4

where d and L are the diameter and length respectively, and the subscript
zero denotes initial dimensions. The diameter-iength relationship is
therefore

d/d, = (Ly/L)/2

This relationship is plotted in Figure 3. Suppose that the initial state,
where d/do = L/L0 = 1, is designated as position A on the plot, and that

initially the diameter is one-half the length, or d, = L,/2, as shown by
cylinder A. Then, if the diameter is increased by a factor of two (d = 2d,),
the length must decrease by a factor of four (L = Ly/4), as shown by

cylinger B. However, if the diameter is decreased by a factor of two, the
length increases fourfold, as shown by cylinder C.

It 1s clear from Figure 3 that a given decrease in diameter produced
by action of radial, circular, or transverse muscles causes a greater
change 1n length in a cylinder with a relatively hich length/diameter ratio
than tn one with a lower ratio. The speed of elongation is similarly
greater in cylinders with high length/diameter ratios. Therefore, it takes
a smaller amount of radial, transverse, or circular muscle contraction to
elongate a relatively long and thin cylindrical muscular hydrostat than it
does to elongate a shorter and fatter one. One would expect, then, soft,
cylindrical animat parts which elongate a great deal to be long and thin.
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o Shortening
Shortening is produced by the contraction of longitudinal muscles or
u of oblique muscles oriented at less than 54°44' to the iong axis (Fig. 2).

The amount of extension determines the amount of longitudinal muscie

“ contraction necessary to shorten a muscular hydrostat. The longitudinal
‘- muscles of an extensible structure may have to operate over a range of
- JO0% extension and contraction. Obliquely striated muscle cells are

< thought to be capable of operating over this range (Lanzavecchia and

‘ Arcidiacono, 1981).

S The muscle cells of some long, thin, extensible structures,

;- however, are not obliquely striated, and cannot function beyond

— elongations of roughly 40% (Rice, 1973 ). The contribution of these

muscles to shortening an extensible structure can be increased if the

longitudinal muscles are longer than the structure itseif--in other words,

g if the longitudinal muscles running through an appendage insert more

(3 deeply in the body of the animal than does the appendage itself. For
example, a longitudinal muscle 1.4 times the length of the structure it
shortens will undergo a 40% elongation during an 80% elongation of the
structure.

,
l‘_

Bending

Bending of a cylindrical muscular hydrostat is produced by the
h simultaneous contraction of the longitudinal muscles on one side of the
cylinder and the circular, radial, or transverse muscles perpendicular to
the long axis. The material properties of tissues composing the muscular
hydrostats | will discuss are such that contraction of the longitudinat
F muscles alone would result in a shortening and widening of the cylinder.
Contraction of circular, radial, or transverse muscies prevents the

-
A diameter of the cylinder from increasing, and thus prevents shortening
. from occurring. In this case, contraction of longitudinal muscles can only
L shorten one side of the cylinder, and thus the cylinder bends. If
B longitudinal muscles are placed along the periphery of the cylinder, the
- bending moment exerted by a given contraction of these muscles is greater
N than it would be if they were placed closer to the center of the cylinder.
Animals that have soft cylindrical parts with both longitudinal muscles
-‘2 and circular, radial, or transverse muscles and with the longitudinal
‘ € muscles located just beneath the skin of the structure would probably,
~
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therefore, include forceful bending as part of the animais’ repertoire of
motions.

Longitudinal muscles located close to the axis or center of the
cylindrical structure can also contribute to bending. For a given amount of .
contraction, they will do so with a smailer mechanical advantage than 3
longitudinal muscies located more peripherally. They will also, however, ,
do so more quickly, and thus with a greater “speed advantage”. One would )
expect that longitudinal muscles in a structure that bends very quickly and
without need of great force would be found near the central axis of the
structure.

Twisting

Twisting is produced by the contraction of obliquely oriented
muscle fibers. The direction of twisting depends on the handedness of the
oblique muscles. If right- and left-handed oblique muscles contract
independently, both clockwise and counter-clockwise twisting is possible.
If they contract simuitaneously, the structure will resist twisting in both
directions.

As described above, obligue muscle contraction may aiso cause
elongation and shortening of a structure, depending on the longitudinal
angle of these muscles. At 54044‘, these muscles are at their minimum
length; contraction of muscles at this angle will not cause shortening or
elongation of the cylinder, but only twisting.

If oblique muscles are placed along the periphery of the cylinder, ,
the moment through which the torque is applied for a given contraction is
greater than if the oblique muscles are placed more centrally. Therefore,
one would expect oblique muscles used for twisting to be iocated close to
the skin of the structure.
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S WORM BODIES, CEPHALOPOD APPENDAGES, AND VERTEBRATE
v TONGUES

N

The discussion so far has focussed in a general way on the
mechanical principies operating in cylindrical muscular hydrostats. in

“ ;,' this section | will consider how these principles operate in fourteen
T flexible animal parts. These structures include some of the appendages of
' L cephalopods (the squid arm, the squid tentacle, the chambered Navt//us

NS cirrus, and the Octopusarm), some vertebrate tongues (those of
< < . : :
- pangolins, lizards, and cats), and the bodies of some worms (horsehair
';; \ worms, leeches, the nematode Ascar/s, earthworms, two genera of
b polychaetes, and the onychophoran Peripatus).
! - The muscle organization in each of these structures takes one of
s three forms. The structures contain 1)longitudinal muscles only, 2)
7;3 longitudinal muscles and transverse, radial, or circular muscles, or 3)
';C :;,‘; longitudinal muscles; transverse, radial, or circular muscles; and oblique
b muscles. This represents, in a sense, a progression of muscle
VR organization, in which versatility of motion increases with the addition of
.;3 ) each kind of muscie. This does not represent an evolutionary progression,
e but simply a useful organizing principle. The structures will be discussed
i with reference to this progression.
- Structures with Longitudinal Muscles Only
s, In the generalized muscular hydrostat discussed above, the
| & contraction of longitudinal muscies can cause shortening or can contribute
-

to bending. However, the absence of muscles whose contraction could
. exert transverse tension complicates matters in structures with only
. longitudinal muscles.

Shortening requires subsequent elongation to return contracted

. j." ai.a"gﬁlil.
h ]

. - longitudinal muscles to their resting lengths. Elongation results from a
RN decrease in diameter caused by the contraction of radial, circular, or
N transverse muscles. Elongation can also result from ejasticity of tissue
;{; i deformed by shortening. if these muscles are absent and tissue elasticity
is not significant, elongation cannot occur. Shortening would therefore be
y a devastating motion for such animals to make, and one would expect them
A to devise mechanisms, either neural or mechanical, to prevent this.
.- . Bending requires that some mechanism prevent an increase in
b {3 diameter while longitudinal muscles on one side of the hydrostat contract.
, The prevention of an increase in diameter need not be an active muscular
M process, but can result from mechanical properties of tissue surrounding
\:
"
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5;;' the hydrostat. By preventing an increase in diameter, tissue with
» appropriate properties would aiso prevent shortening.

. Thus one would expect that cylindrical muscular hydrostats with
j. longitudinal muscles only might be incapable of shortening, capable of

bending, and surrounded by material which wouid prevent increases in
oy diameter.
- Gordius (Figure 4) and Ascar/s (Figure S) represent two phyla of
" worms, Nematomorpha and Nematoda respectively, whose members
v function with muscles oriented only longitudinally. Ascar/smoves by
thrashing its way through viscous media (Sherman and Sherman, 1976).
) Gordius swims or crawls by means of whiplike motions (Barnes, 1980). A
- thick cuticle surrounds the bodies of these worms, and it is thought that
~ this cuticle causes the muscles on the dorsal and ventral sides of the
worms to act as antagonists (Sherman and Sherman, 1976). In Ascar/s,
the contraction of longitudinal muscles on one side of the worm does not

o cause shortening because the thick cuticle resists the increase in width
L. associated with shortening. The cuticle is composed of several layers of
inextensible fibers, presumably collagen, which wrap in right- and

.- left-handed helices around the worm. These fibers are wrapped at an

average angle of 75930 to the longitudinal axis (Harris and Crofton, 1957).
As described above (Figure 2), hydrostatic pressure pushing against fibers
wrapped around a cylinder at this angle will produce an “elongation force”.
This force is equivalent to that produced by the contraction of oblique
muscles wrapped at this angle. There will be no increase in diameter of
the cylinder, and the worm will bend, stretching the longitudinal muscles

'. F 3
i

r

N on the opposite side to that of the contracting longitudinal muscles.

" Eakin and Brandenburger (1974) investigated the fine structure of

- gordian worms and found that the cuticie surrounding the body consists of

> as many as 36 layers of helically wrapped fibers. Although the angles of
) these fibers have not been measured, they are probably greater than

‘-: 54944, since this 1s required to resist an increase In diameter when

hydrostatic pressure increases as a result of longitudinal muscle
- contraction. The sequence of events producing the whiplike motion of
: ;'j Gordius are likely the same as those producing Ascar/sthrashing.

Structures with Longitudinal and Transverse, Radial, or Circular
ruscles

Structures with longitudinal muscles and their antagonists, the
circular, radial, or transverse muscles, are capable of elongating,

..........
., B -
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Figure 4. The Nematomorph worm Gordius. a) External view of whole
enimal. Adapted from Bernes, 1980. b) Cross-section. Adapted
from Eakin and Brandenburger, 1974.
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o FigureS. The Nematode worm Ascar/s. a) External view of whole animal.
- Adapted from Riedl, 1983. b) Cross-section. Adspted from Freeman
and Bracegirdle, 1971.
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shortening, and bending. The structures | will discuss in relation to this
musculature are the tongues of pangolins (/an/s), lizards ( Varanus), and
domestic cats ( Fe//s), and the bodies of leeches ( #/ruvado), earthworms
(Lumbricus), and one polychaete (Nephtys).

Hirudo, Lumbricus, andNephtys are all segmented worms of the
phylum Annelida. Their bodies are divided into longitudinal sequences of
segments separated from each other by transverse septa. This
arrangement allows each segment to act as a little hydrostat independent
of other segments.

Clark and Clark (1960) investigated the musculature of Mephiys, a
worm which burrows and swims by means of undulatory waves of its body.
Figure 6 is a drawing of two cross-sections of Nep/tys Figure 6A shows
the musculature seen within a segment, and Figure 6B shows the
musculature seen in a septum. The longitudinal muscles are clearly
antagonized by the dorso-ventral transverse muscles within a segment;
these muscles prevent an increase in height of a segment when
longitudinal muscles contract to produce bending. it is less clear what
muscles or structures prevent an increase in segmental width, although
Clark and Clark found no increase in width during locomotion. NMephiys
does not shorten and elongate noticeably (personal observation). Certainly
there is not an abundance of transverse muscle to produce elongation.

Hirugo(Figure 7) and Lumbricus(Figure 8) are capable of bending,
shortening, and elongating to incredible extents. They can also move via
peristalsis. The longitudinal and circular muscles of their body walls are
sufficient to produce these movements, as described above. Segmentation
allows for the independent action of individual body segments, and this
allows for peristalsis.

Vertebrate tongues are generally capable of shortening, eiongating,
and bending. They are often, though not exclusively, used to gather food
and prey, and may sometimes be required to maneuver both quickly and
forcefully. Pangolins (Figure 9) and lizards (Figure 10) are examples of
vertebrates whose tongues have longitudinal muscles located both
centrally and peripherally. Centrally located longitudinal muscle may
function to increase the speed advantage of shortening, and peripherally
located longitudinal muscle may function to increase the mechanical
advantage of shortening.

Doran and Baggett (1971) classified mammalian tongues into two
types: intra-oral and extra-oral. Intra-oral tongues are used to
manipulate food inside the mouth, and are capable of less than S0%
extension. Extra-oral tongues are used in addition to gather food outside
of the mouth, and are capable of greater than 100% extension. Intra-oral
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Figure 7. The leech A/rudo. a) External view of whole animal. Adapted
from Barnes, 1980. b) Cross-section of oesophageal region.
¢) Cross-section of mid-gut region. b and c adapted from Freeman

and Bracegirdle, 1971.
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Figure 8. The Annelid earthworm Lumbricus a) External view of whole
animal. Adapted from Wainwright et al, 1976. b) Cross-section of
oesophageal region. ¢) Cross-section of intestinal region. d) Detail
of longitudinal muscle bundies. b, ¢, and d adapted from freeman
and Bracegirdle, 1971,
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Figure 9. The African pangolin /en/s 8) External view of whole animal.
From Kingdon, 1971. b) Cress-section of rostral part of tongue.
c) Cross-section of middie part of tonque. d) Cross-section of
caudal part of tongue. b, ¢, and d adepted from Doran and Allbrook,
1973.
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tongues have retatively low length/diameter ratios, while extra-oral
tongues have relatively high length/diameter ratios.

An example of an extra-oral tongue is that of the pangolin (Figure
9). Pangolins are African mammals that use their tongues to dig for ants
and then to manipulate ants into their mouths. A pangolin tongue has a
high length/diameter ratio and is very extensible. The longitudinal
muscles of the tongue originate far back in the body of the pangolin and
stretch into the tip of the tongue. This may be a mechanism for enabling
the Jongitudinal muscies to retract the tongue after extension, as
discussed in the subsection " Shortening” above.

Although Doran and Baggett's classification was meant to apply to
mammalian tongues, it can be extended to include many other vertebrates’
tongues. Lizards with tongues very similar to that of the monitor lizard
( Varanus) (Figure 10) have been shown to have extensible tongues with
high length/diameter ratios (Kier and Smith, 1985; Smith, 1984).

An example of @ mammaiian intra-oral tongue is that of the
domestic cat ( Fe//s) (Figure 11). Cat tongues have a low length/diameter
ratio and do not extend far out of the mouth.

Structures with Longitudinal Muscles, Transverse, Radial, or
Circular Muscles, and Oblique Muscles

Structures with longitudinal muscles, their antagonists, and oblique
muscies are the most versatile of the muscular hydrostats. They may be
capable of shortening, extending, bending, and twisting. Such structures
include the segmented polychaete worm Nere/s(Figure 12), the
Onychophoran worm Peripatus (Figure 13), the squid (Lo//go) arms
(Figure 14) and tentacles (Figure 15), the chambered Aaut//uscirri
(Figure 16), and the arms of Octopus (Figure 17).

The arrangement of muscles in these structures directly refiect the
mechanical principies operating in the generalized cylindrical muscular
hydrostat. Longitudinal and obiique muscies are located near the periphery
of the structures to increase the mechanical advantage during bending and
twisting. The cephalopod appendages aiso have fongitudinal musculature
located more centrally, implying that they are capable of bending and
twisting with an increased velocity advantage also.
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__ Figure 12. The polychaete worm Asrass 8) External view of whole
animal. Adapted from Morris, Abbot, and Haderlie, 1980.
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b) Cross-section. Adapted from Freeman and Bracegirdle, 1971,
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Figure 13. Cross-section of the onychophoran worm Peripalus Adapted

from Freeman and Bracegirdle, 1971.
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LEFT-HANDED OBLIQUE MUSCLE

Figure 14. The squid Zo//go. 8) External view of whole animal. Adapted
from Bernes, 1980. b) Cut-away view of arm, showing musculeture.
From Kier, 1983.
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Figure 16. The chambered Asv?//us 8) External view of whole animal.
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- CLOSING THOUGHTS -
. in the analysis presented above, muscle has been considered in the
B conceptually simpiest way possible--as tissue which shortens and thus
exerts tension. Cross-sections of fourteen different deformable animal
_:j bodies, appendages, and tongues have been discussed in terms of several
simple mechanical principles that must operate during motion of these
= structures.

Several questions about the mechanics of such structures remain

{ unanswered. |s there, for example, a functional difference between radial,
circular, and transverse muscle? In this chapter, these three types of
muscle have been lumped into one category--musculature which is
perpendicular to the longitudinal axis of a model cylinder. It is possible,

> however, that circular, radial, and transverse muscies differ in the amount
of work, perpendicular to the long axis, they produce for a given
o contraction, and that the directions in which each of these muscies pull is

t functionally important.
To answer this question, detailed anatomical data is needed; at

present, such data is lacking. For example, do single ceils in circular

muscle wrap all the way around a cylindrical muscular hydrostat in a

circle, or do cells overlap so that no one cell goes all the way around
| although the muscle as a whole does? If the former, then, since the
circumference varies directly with the radius of a circle, a 40%
contraction of circular muscle cells would result in a 40 % decrease in the
radius of the circle enclosed by the muscle; the area of the circle would
vary with the square of the radius. If the latter, a 40% contraction would
result in some smaller decrease in the circumference, the radius, and
hence the cross-sectional area of the circle enclosed by the muscles. The
same question arises when analysing the radial and transverse muscles,
and it is evident that detailed anatomical studies must be performed, and
generalizations and assumptions must be made.

To compare the radial and circular muscles of aright circular
cylindrical muscular hydrostat, assume that circular muscle cells wrap
completely around the circumference, radial muscle cells travel from the
center to the edge of the circular cross-section, and the same number of
cells of each type must contract to produce a given change in radius. Then,
since the circumference of a circle varies directly with its radius, there
is no difference between the decrease in cross-sectional area produced by
a given contraction of the circular or radial muscles.

in addition, the change in area produced by a given contraction of
radial or circular muscles will increase with the size of the circle
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encompassed by the muscles. Therefore, circular muscles will produce a
farger change in area if they are placed at the periphery of a cylindrical
muscular hydrostat than they will if nearer the center, and radial muscies
will produce a larger change in area if they stretch from the center to the
periphery of the hydrostat than they will if they stretch only part way
across the circular cross-section. in the animal structures presented in
this chapter, circular muscles are always found near the periphery of the
structures (Figures 7, 8,9, 12, 13, 15, 17), and radial muscles send
regular arrays of branches reaching as far to the periphery as possible
(Figure 16).

Transverse muscle is a bit more difficult to analyze. Transverse
muscie cells that pass near the center of the circular cross-section of a
cylindrical muscular hydrostat probably act similarly to radial muscles.
However, analysis of transverse muscle cells placed as chords across the
cross-section nearer the periphery requires knowledge of anatomical
detail which is not available. For example, the vertical and horizontal
muscle bundies might act in perpendicular pairs to exert a diagonal force
on the skin if both members of a pair are connected to the skin. It is
difficult to compare the change in cross-sectional area produced by
transverse muscles with that produced by radial and circular muscles
without detailed anatomical information.

Another question of interest is whether the shape and arrangement
of Jongitudinal muscle bundles is functionally significant. As shown in
Figure 8D, the longitudinal muscles of the earthworm are arranged as
many rows of oval bundles connected to connective tissue sheets which
run fongitudinally with the muscie. Many other animais have fongitudinal
muscle arranged seemingly randomly in dense arrays of parallel roughly
cylindrical bundles. The significance of these arrangements has not been
addressed in any literature of which | am aware.

How can the information presented in this chapter be used by
designers of flexible robotic manipulators? To date, engineers involved in
this project have designed inflatable plastic tubes whose walls are
constructed so that the tubes bend, twist, elongate, or shorten when they
are inflated. For example, an inextensible fiber oriented longitudinally in
the wall will cause the tube to bend when inflated. Such tubes are not
constant in volume, and they do not contain shortening eiements; in these
ways they are unlike muscular hydrostats. However, if one were to film a
partially transparent muscular hydrostat as an opaque muscie bundle
contracted, using @ zoom lens so that the length of the muscle remained a
constant in the field of view, the film would reveal something similar to
an inflating tube with an inextensible fiber element. The muscle, filmed
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so that it appears with a constant length, would play the part of the fiber
element, and the rest of the structure, growing larger as the camera
zooms to maintain the length of the muscle, would piay the part of the
inflating tube. In this way, inextensible fibers in the walls of inflatable
plastic tubes play a similar role in the tubes to that played by muscles in
muscular hydrostats. The orientation and placement of each determine the
motion of the structure when the tube inflates or the muscle contracts.

An insight to be gained from animal structure is that muscies (or
inextensible fibers) in particular places and in particular orientations can
result in particular motions when the structure (or tube) is activated. One
can conceive of fabulous flexible tubes with fiber elements not only in the
walls, but spanning the interior of the tubes, mimicking the muscular
arrays and actions of animal structures.

Muscle can serve as an even richer source of ideas if the variety of
muscle is considered. Although it is tempting to ignore this variety and
conduct analyses with a generalized view of muscie contraction, the truth
is that muscles are not the same from animal to animal and even from
place to place within the same animal. Muscle contracts because an
electrical impulse, usually via a nerve, sets into motion a sequence of
events which activates the contractile elements in muscle. There is an
infinite number of variations possible in this chain of events. Different
patterns of nervous stimulation can give rise to muscle contractions
which vary in strength and frequency. The manner in which an electrical
impulse is conducted through a muscie cell can determine the time-course
of a contraction. The arrangement of contractile elements in a muscle cetl
will determine the force and amount of contraction. The presence or
absence of mitochondria in a muscle cell determines the source of energy
for contraction, and thus affects characteristics of contraction. An
engineer attempting to understand animal muscle structure would be
weli-advised to become familiar with these variations. Since it would
require a small book to treat muscle variation even barely adequately, |
refer the interested reader to McMahon (1984), Wilkie (1976), and Hoyle
(1883). These authors treat the subject in detail, and their books may
serve as sources of other relevant references. Consideration of the
differences between muscles will lead to a more complete analysis of
animal structures, and may aid in the choice of materials and method of
control of robotic manipulators.
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Chapter II
_n FINITE DEFORMATIONS OF NONLINEAR,
ORTHOTROPIC CYLINDRICAL SHELLS E
% :
Gary Orgill and James F. Wilson .
!!
B INTRODUCTION
! The behavior of cylindrical shells under a variety of loading
-i combinations and boundary conditions has been the subject of intense study.
- The literature is replete with classical and numerical solutions involving
P stress, deformation and buckling mechanisms. Most of the work to date,
f; however, involves isotropic, linear, elastic materials where deformations are
assumed to be small. Wilson and Orgill (1985) presented numerical results for
i' small deformations of an orthotropic thin-wall right cylinder made of a
‘ linear, elastic material. Verma and Rana (1983) investigated displacements of
" a rotating concrete cylinder with steel reinforcing rods wound around the .
. cylinder as helices. Reissner (1970) calculated the general expressions for -
" stress and strain in anisotropic, thin walled cylinders and Lekhnitskii (1963)
’i solved several problems involving linear elastic orthotropic solids. However,
' the work involving finite deformations of cylindrical shells, even for linear
- elastic isotropic materials, is sparse. The classical text of Green and >
o Adkins (1870), discusses finite deformation analysis for shells from a general ;
* viewpoint. Leonard (1967) solved the particular problem of large deformations ?
resulting from inflating a flexible isotropic shell of revolution. Presently :
there are several commercial computer codes employing numerical techniques to ~
C solve finite deformation, cylindrical shell problems. .
:i As the use of rubber and other polymeric materials become increasingly
' popular in structural design, an analysis is needed that accounts for both ﬁ
f =)
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geometric nonlinearities arising from finite geformations and meterial
nonlinearities. In applications using such materizls, it may be desirable to
incorporate helical reinforcement in the cylindrical shell or to model helical
corrugations as orthotropy of a continuum. A procedure that accounts for such

material and geometric nonlinearities, as well as material orthotropy along

parallel helices oriented at a constant angle to the cylinder's longitudinal
axis, is developed herein. See Fig. 1. Parametric studies show how the

selection of the orthotropic properties will affect the deformation patterns

and how proper selection of such properties can result in an optimal
deformation or load-carrying capacity. First, the problem of axially
homogeneous stress and strain is considered. These results are then extended
to include non-axially homogeneous stress and strain that arise due to end
constraints. The assumption is made throughout this study that the stress and
strain in the circumferential direction are homogeneous and that the cylinder
maintains a circular cross-section as it deforms. 8Buckling loads and
post-bucklinyg benavior are not considered.

The loadings on the cylinder are internal pressure, an end load applied
a2long the ]ongitudina] axis of the cylinder, and a pure torque about the
1on§itud1na1 axis of the cylinder, applied separately or in combination. An
incremental analysis technique is used in which small increments of load are
applied to the cylinder at each step and the incremental strain is computed by
assuming linearity over that small range. The change in section properties
such as'wall thickness and radius are computed from the strain increments at
eacnh step, tnus accounting for the geometric nonlinearities. In addition the
material properties, assumed to be known functions of strain, are updated as
well. After each increment of load is applied, the section properties and
material properties are recomputed. The procedure continues in this fashion

until the desired load level is attained.
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PRINCIPAL LINE OF ORTHOTROPY
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PART 1 - AXTALLY HOMOGENEOUS STRESSES AND STRAINS

Incremental Stresses

The stresses and strains are assumed to be axially homogeneous, which is
possible if both ends of the cylinder are capped with flexible membranes. For
increments of internal pressure Ap, end load AP, and torque AT, the incre-

mental stresses at load step n are derived from elementary theory. These

are:
ap Ri
bogen = T ‘ (1)
Ap R,
j AP
Ao, = + (2)
zzn Zti FL Ri ti
boppn = 0 (3)
AT _ AT
dog, = —2— =51 (4)
2nRi t,i j

where n =3 +1=1, 2, 3,...
Here Zi is the polar section modulus, and Rj and t; are respectively the mean
radius and thickness of the cylinder at load step n. The radial stress Acpp

is vanishingly small, consistent with the thin wall assumption.

Constitutive Relationships and Strain Transformations

Consider the thin-walled right circular cylinder of Fig. 1, with the
orthotropy defined by the constant helix angle 6. The initial condition i =
0 is the no load condition. At load step n = i + 1, the incremental strain
vector Aep is related linearly to the incremental stress vector 40, through
the 4x4 coefficient matrix 51, assuming sufficiently small load increments.
That is:

beq = fi bop (i =n-1=0,1,2,...) (

o
—

________
----------------------------------------------
........................
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X2
-3 where
- T
‘ bg, = [Begg 8e), Ae . Avg, ] (6)
~ adl = [ae Ao 0 Ao, _] (7)
o ~n L) 22 6z-n
b
and T denotes transpose.
=
. The general classical constitutive equations for A; as discussed by
Lekhnitskii (1963) were reduced for the present problem by Wilson and Orgill
- (1985). The components of A; are as follows, where the subscripts denote,
l:lE respectively, the row position, the column position and the load step.
4

. cos 6, . 4
- j 1 2vy _. 2 2 sin
.c:, ani —-E-1—— + (z:—‘l' - E—;) sin Bi cos 91‘ +-ET e'i (8a)
-, . 4 4
sin 6, cos 8.
2 a = i 1 2v, _. 2 2 i

22, » + ‘T'i--?i-) sin“e, cos“e, +'_E';'— (8b)
| ol

33, B (8c)
A i i
= . JlL1 L2y 1 2, 2 _V
8
a = a a = 3 = - (8e)

231 321 13i 31] Ei

4 4 8v 4 4 2 1

a £ (= 4+ =T +7— - =) sin 6, cos 6, +=— (8fF)
o 44i Ei Ei E1 Gi i i Gi
N ) 2 2, .2 2 1 2v,, .2 . 2
314 =y = [-E-f-sm B, + g—cos"6, - (G—_- - -e-f)(cos 8, - sin ei)]'
“ i i i i i
A

. 5in®; cos®; (8g)

b i L2 2, .2 .2 12 2 2
. 8,4 = a42i [-Ewi-cos 8 +-E_'i sin"8; + (Ei— - -E-i-)(cos 8, - sin e].)].
< .
Y . 5in8; cos8; (8h)
834, " %3 =0 (81)
Ny 1
4
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In Equations (8), E; and E; are the tangent moduli measured in simple tensile

Iﬂ tests and correspond to the slopes of the stress-strain curves for principal
= strains €11 and €5 in the 1 and 2 directions, respectively. Similarly, G4
n
- is the tangent modulus for a simple shear test at the principal shear strain
g! Yi12i+ Poisson's ratio v is taken as invarient with respect to strain levels
;. €11j and €7 as observed experimentally for rubber by Goodyear (1949). As
33 shown later, the angle of orthotropy €{ changes with load increment.
= The uniaxial stress-strain behavior with respect to the principle
directions of orthotropy is assumed in the following form:
. 3 5
i o "B e tBeptlen (9)
agg = Ej €30 * B €35 + T £ (10)
and the behavior in simple shear with respect to these principal directions is
i of the same form, or
712 = 6 Yo * By Tig * Cg T (1)
9 g
|' where the coefficients of the strain are measured constants. The tangent
moduli with respect to the strains at level i in this 1-2 coordinate system,
ﬁz found by differentiating Equations (9)-(11), are:
b £ = o+ B <)+ 5C e, (12)
5 B = Ey ¢ B Gy 4 50 oy, (13)
&
6 = 6) + B Y, + 5 Yip: (14)
These tangent moduli are used to compute the elements of fi given by Equations
€~ (8) for orientation 6y.
.z The principal strains of Equations (12)-(14) are related to the strains
i; at load level i in the cylindrical system through the well-known
f:

.............
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J N transformation equations (Popov, 1981) given by:
5 Zeni = €ogi * €529 * (ceei - czzi)c°szai * Yoz sinzeé, (15a)
3 ‘\ 28925 = Coei * 221 * (721 " €g0i)C0S28; - Ygpy SINZ6, (150)
<.
ig > Y25 * (cZzi + eeei)sinZGi * Youi cos28, (15¢)
1 L
:f Geometric Nonlinearities
E If the initial wall thickness is ty, then after the first load increment
is applied there will be a corresponding incremental radial strain depprj. The
! ;E updated wall thickness after the first load increment
§ - t] = to(l + Aeppp) (16)
o :; Similarly, after the second load increment, the updated wall thickness is:
7 | t2 = t1(1 + berrp) (17)
- Between two siccessive load increments, it follows that the updated wall
‘ thickness is:
T ti = tj-1(1 + deppi) (18)
E :§~ In terms of the initial wall thickness ty, Equation (18) becomes:
N l i
v ti =tg I (1 + Beppk) = tg Fejy (19)
5 k=1
é i; Tne factor fyj represents the deviation of tj from ty after load step i. The
i - closer Fyj is to unity, the less the solution is affected by geometric
bi '?: nonlinearity.
s o A similar argument is made for changes in the mean radius. Equation
= (18), rewritten in terms of the mean radius and the incremental
2 ?& circumferential strain, is
; -« Ri = Rj-1(1 + 2eggi) (20)
) Eﬁ Likewise, Ri can be expressed in terms of Rg, the mean radius of the cylinder
: - under zero load, or
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- i
: I‘ Ri = Rg knl (1 + degpk) = Ry Frj (21)

Here, Frj represents the deviation of Rj from Ry after load step i.

o
‘-I
N Based on the cross-sectional area of a thin ring given by Aj = 2 R tj,
[ ] the updated expressions for the area become:
) Ai = Aj.1 (1 + degpi) (1 + Beppy) (22)
_C_;'. i
- Ai = Z“Roto b (1 + ACGek)(l + Aerrk) = 2"Rot0Fai (23)
~ k=1
Y
o Likewise, the updated values of the polar section modulus, initially
& yiven by 2o = 2mRy2t,, are:
b
Zi = Zi.1(1 + begei) (1 + derry) (24)
i
k=1
" The corresponding expressions for changes in length of the cylinder are:
& i = 21.1(1 + ezz4) (26)
r )
i
. £1' = "‘0 I (1 + Aczzi) = 10 FZ1 (27)
k=1
iy Computation of Strains
The total strains are needed in order to update values of the material

; Z£ properties Ej, Ey', and Gy and to compute cylinder displacements. Expressions
" for these strains are now deduced. Consider the relationship between the wall
)
- thicknesses t) and t, given in Equation (16). The total radial strain after
o the first load increment is:
o

- +
' - t1 to - 1"(3(1 Acrrl) = Ac (28)
EI: rrl T, T, rrl
and after tne second load increment is:

;"
'-
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t, -t t (1 +28e . )(1+a8e ,)-t

2 0 0 rrl rr2 0
€ = = '(1+A€ )(I*AE )-1
rr2 t, t, rrl rr2 (29)

After i increments of load it follows that
i

to kfl (1 + Aerrk) - to

“rri T t =Fey -1 (30)

0
The total strains in the circumferential and longitudinal directions, obtained
in a similar manner, are given by:
egai = Fpj - 1 (31)
€2zi = Fzi = 1 (32)
The total shearing strain vgzi is Simply the sum of the incremental shear
strains, as there are no length changes involved. After i increments of load,

this is
j
.= X Ay (33)

y

6zk

The end rotation ¢ of the cylinder may be expressed in terms of shear

strain. for tne first and second load increments, the respective rotations

are
zo
¢1 = A¢1 = 'Fr'o' AYBZI (34)
!
A¢2 -<§I AYBzZ (35)

The total rotation after two increments of load is the sum of Equations (34)

and (35), or

20 21 20 (1 + Aezzl)
b * T Moz * T Mez2 = B Moyt * T EeeT Mez2) (36)
2 Ro 8z1 R1 822 Ro 6z1 (1 + Aeeel 822

Extending Equation (36) to i increments of load leads to:
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L i i= 1 1 + Ac i
0 zzm 2(i-1
4 TR (kzl Moz (‘1—_+ Be "R, F"‘_')'h ) kzl Y2k (37)

Deformations for Single-Turn Orthotropy

Consider the segment of an unloaded cylinder with radius Ry and length
25'. The length is selected such that a line parallel with the principal
direction of orthotropy makes exactly one turn about the cylinder as shown in

Fig. 2. This condition is expressed as:
%5 = 2mRytan 8, (38)

After the first load increment, %5, R, and 8, change. The resulting

change in geometry is given by Equations (20), (26), (34) and (38), or

zl
11 = (27 + ¢1)R tan 61 = !. (1 + Aezzl) = (2n +WAY621)R (1 + Aeeel)t?w}
It follows that the length for steps i-1 and i are given as:
I ) = (27 + ¢;.1)Rj.1 tan 85, (40)
2} = (2n + 0,R, tan B = (2m+ ¢,y + ‘ T 8Y,,; )R, tan o, (41)
1-1

Using Equations (40) and (41), a recursion relationship to compute 6§ is
deduced as:

1 + Ace

-1
(1+Ae

6.
i = tan

zzi 1
. ) (42)
poi <Ot 81 T AYgyi

Increment Selection and Convergence

The selection of the appropriate load increment will depend on the

initial angle 8y, the ratio of the elastic moduli E;/E' and E;/G;, the
i

magnitude of the load, and the type of loading. As the load increment is
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Fig. 2 Cylinder with a single turn helix: before ioacing (a), and after

one load step (b)
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increased, the computational effort is decreased, but the solution error is
e increased. The solution error after loading Step i is defined as

- 100] | g5- £*]1,
W = 4
% Error IIE‘TIZ (43)

£ 0 0 4 8 0 " N

!’ where € is the total strain vector with components €ggi, €775, €prrj and Yozi.
The vector f* is tne exact total strain vector for the corresponding loading
- level containing tne four strain components. The percent error is the h
T Euclidean norm of the residual vector divided by the Euclidean norm of the .
exact solution. The exact éolution is obtained by choosing increasingly
N smaller loading increments until the solution converges.

Typical results of such studies are shown in Table 1 which gives values
of load increments that can be used over the range of angle 0 < 6, < 90 deg.

These load increments were selected so that the percent error as defined never Q

exceads 5% if tne values of the total nondimensional load parameters do not v

‘v

e I

exceed their listed values. The maximum internal pressure, 2pplied torgque and o

g

longitudinal load are p, T and P, respectively. The material is linear for e

i/

these cases, where the only nonzero constants of Equations (12)-(14) are Eq,

.
> "

E' and G'.
0 0

vy
vt

- PART I1 NON-AXIALLY HOMOGENEQUS STRESSES AND STRAINS f

v .

e’y
»

Certain edge constraints give rise to nonuniform stresses and strains in b

the loaded orthotropic cylinder. To account for such nonhomogenity along the

.
A
PR

lengtn, the cylinder is divided into J-1 segments each of length 4zy given by R

o
.

L

AZO = j?—l (44)

| etV K

The incremental and total stresses and strains are computed at each point

‘lll
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Maximum value of
Load Parameter
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Load Increments Required for a Solution Error of Less than 5%
(Linear Material)

Increment in
Load Parameter

10
50

0.001
0.001

10

S0

0.005

0.002

10
50

0.001
0.001
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j=1,2,...J as shown in Fig. 1. The boundary conditions are incorporated when
the strains are integrated numerically for the deformations. The
computational procedure follows closely that of the axially homogeneous case
of Part I. However, quantities such as Aeggij, Fyj, etc., are now_vector
quantities of dimension J with components Aeggjj» Ftij' etc. The added index

Jj denotes the length from the coordinate origin as shown in Fig. 1.

Incremental Stresses

The equation of equiliibrium for an element of a thin-wall shell of
revolution at location j and after loading step i, deduced by Timoshenko and
Woinowsky-Kreiger (1959), is
P;

i fij Yy (45)

%eeij , Jwwij .
R

Here oyyij is the meridional stress in the shell, pj; is the radius of
curvature in the meridional direction, oggjj is the circdmferentia] stress in
the shell, Rij is the shell radius, p; is the total internal pressure, and ti;
is the wall thickness. If the load increment is sufficiently small, Equation
(45) can be rewritten in terms of the section properties of the previous step,
or

R°eeij o _wwij P (46)
(i-1)j  °(i-1)j  F(i-1)]

The meridional stress (Timoshenko and Woinkowski-Kreiger, 1959) is

2
UL L5 VA Wl LS VT (7
Wi ARG taeng e

By combining Equations (46) and (47), the circumferential stress becomes

PRy Ris 1y«
%901j - g Eolflll ) (48)
i-1 (i-1)3
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-
. Expressions for the incremental stresses for load step i-1 follow from
| ‘ Equations (47) and (48), or
b Bp R . .
o b5 " oL (1 - pfEEALL &
2 (i-1)J (1-1)J
j ;',:j Equations (49) and (50) are similar to the internal pressure components of

8 stress given for the axially homogeneous case in Equations (1) and (2). Note
1:1: that for the homogeneous stress case, p(j-1)j * = and oyyjj = 95gij/2-
: - To compute strains and deformations in the cylindrical coordinate system,
( it is necessary to transform Tuvi j to that coordinate system. Using the
J_ , stress-transformation equations (Popov, 1981) yields
v i ‘221 * °wij[% L= 2: = (51)
N . where o(j.1)j, tne angle that the wall of the cylinder makes with the
\ :'.?_: longitudinal axis, is defined as the gradient of the radial deformation, or
o u_, . .
N E_ tan a1 =_r'_%_12-_1),1_ (52)
W
'.: g In employing the stress transformation of Equation (51), it is assumed that
i: 2lpha is sufficiently small so that the radial stresses in the cylindrical

F coordinate system are small, contributing a negligible amount to the cylinder
. deformation.
» While the discussion in this section has dealt only with stress and

. deformation due to internal pressure, results can be developed analogously for
w - end load and pure torque, as well as for various combinations of these three
R ;’ types of loads.
S
.
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Constitutive Relationships, Material and Geometric Nonlinearity

The incremental constitutive law given by Equations (5)-(8), along with
the material nonlinearity of Equations (12)-(14) and the transformations of
Equations (15), are assumed to be valid not only at each load step i but also

at each lengtnh location j. With this notation, Equations (5)-(8) become

B - = - F -1
4€96nj a11ij  a12§j  213ij  214ij 40ggn ]
Bezznj = 32114 j a22ij 3233 j 3241 j 80z2nj (53)
Aerpnj a31ij  232ij  @33ij  334ij 80rpnj
| 2E6znj L-a411j 3321 3434 j 8441 j b0gznj
s = - . -l

n=1i+1=1,23,...

J=1,2,3,...d

Note the components of the coefficient matrix-of Equation (53) are still given
by Equations (8) where each parameter with the subscript i now has the added
subscript j. In Equations (12)-(15), the single subscript i is also replaced
by ij.

Tne geometric properties, except for length change, are deauced from
Equations (19), (21), (23) and (25), i being replaced by ij. The change in
length along the longitudinal axis for a segment bounded by points j and j+l
is given by

824§ = Bzg * Uzi(j+1) - uzij = 829 Fazij (54)
where 8Zg is given by Equation (44) and where uzi(j+1) amd uzjj are the total
displacements measured relative to the initial points j and j+1 when the

cylinder is without load (i=0).
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Computation of Strain, Rotation and Orthotropy Angle

The total strains can be computed either from the incremental strains or

from the displacements. The radial, circumferential and shear strain at load

ES level i and position j, expressed as €prpjj» €pgjj» aNd Yozij respectively, are
» given explicitly by Equations (30), (31) and (33), where ij replaces i.

.
e

An efficient method for calculating €22ij» the longitudinal strain, is by

the finite difference method used by Utku (1981). If uzjj denotes a segment

»
PR

displacement, then

e mozi(itl) " Yzi4-1) (55)
z2z1j Azi(j-l) + Azij

f; The average longitudinal strain for the whole cylinder of initial length £, is
- 1

€22ij © T; (Uyig = Uzip)

(56)

where J-1 is the number of length segments.

.
.

Tne end rotation %3 of the cylinder segment between locations j and j+1
can be computed from Equation (37), after the subscript j is added where
appropriate; or from tne expression involving the incremental circumferential
displacement bugy j given by
e bug,

5 T s T 2
(i-1)]
The angle of orthotropy &;j in each of the J-1 longitudinal segments is

given by Equation (42) where each subscript i or (i-1) is replaced by ij or

a? (i-1)j, respectively.

Computation of Displacements and Curvature

The computation of displacements up, u, and ug in the case of axially
L nomogeneous strain is a straightforward application of the strain-displacement

equations (Wilson and OUrgill, 1985). However, when the strains are axially

,,,,,,

.........................
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nonhomoyeneous, displacements are more difficult to compute and in general
must be obtained numerically. The results that follow will be based on the
finite difference method discussed by Utku (1981) and Carnahan, et al (1964).
From the strain-displacement equations given by Sokolnikoff (1956), the
incremental radial displacement becomes
Burij = R(j-1)j Aceeij (58)
The incremental displacement is then added to the total displacement from the
previous load step to obtain the total radial displacement at step i for
segment j, or
Urij = up(i-1)j * Bupi; (59)
Computation of the incremental longitudinal displacement is obtained from
the strain-displacement equations by integrating the incremental longitudinal

strain given by

Buzi(j+1) = Buzi(j-1) = [A2(i-1)j *+ 82(4-1)(j-1)] Bezzij . (60)

As j varies from 1 to J in Equation (60), a tridiagonal system of linear
equations is found. These equations are solved simultaneously for the
incremental displacements fuzij. Tne total longitudinal displacement at step
i is once again computed by adding the incremental displacement to the total
longitudinal displacement at the previous step.
Uzij = uz(i-1)j * Buzij (61)

The computation of the circumferential displacement is obtained from the
strain-displacement equations by integrating the incremental shear strain.
The integration results in expressions similar to Equations (60) and (61) for
the longitudinal displacement. The incremental circumferential displacement

and total circumferential displacement are, respectively:
Bugi(j+1) = suei(j-1) = [8z(5-1)j + 82(§-1)(j-1)] Yezij

Ueij = ue(i-1)j * bueij
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With these displacements it is possible to compute ajj, the angle between
the meridional direction and the longitudinal axis of the cylinder; and Pij»
the radius of curvature in the meridional direction. The angle ajj is used in
transforming stress from the meridional direction to the longitudinal
direction as given in Equation (51). Equation (52) expresses aij in terms of
the derivative of upjj in the z-direction. In finite difference form, the

first and second derivatives of this displacement are as follows.

u_. . -u . + U .,
rij . ri(§=1)  ri(j*) | 4on .. (64)
" RE T Ba-nGen h
2 auri.
oy | Hoigen) * Veigge) T Beag T 02 - S (EIHEN
2 2 5
9z 2051y (51 Y G0

The radius of curvature is computed from the following familiar form,

together with Equations (64) and (65).

[1 + (22
p.. = oz (66)

i] 82u

rij
2

9z

A comprehensive treatment of the finite difference representation of
displacement boundary conditions that satisfy various end restraints at j=l
and J is given by Carnahan, et al (1964). A particular example is presented
below.

For suitable convergence, it is important to select a sufficient number
of cylindrical segments J-1 to accurately represent the cylinder's overall
shape. As Equations (60) and (61) are integrated to yield the displacement,

the error in the result will decrease as J is increased. However, if J is too

large, the accuracy of the derivatives computed by Equations (64) and (65) may
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It was found that the selection of the number J is

actually decrease.

tempered by the initial cylinder geometry, the orthotropy angle 6,, the

material constants, the type and magnitude of loading, and the computational

effort.

vy

PARAMETRIC STUDIES

A Fortran IV computer code was written to carry out the calculations for

the finite deformation behavior of both the homogeneous and nonhomogeneous

types of cylinders. Selected parametric studies for both types are now pre-

sented. For cases where the material is linear and only one of the three

loads is present (longitudinal load P, internal pressure p, or pure torque T),

the deformations depend on the following appropriate independent nondimen-

sional load parameters and three geometric parameters.

] R R [

: s P - P t T 0 0
Pegrqt sP=Fpt s T=—>— ;8 el (67)

i , F‘oRoto oto E Rt 0 to .R_o-

In the selected examples, the deformations were found to be very sensitive to

Thus B, was

the independent parameter €,, tne initial angle of orthotropy.

taken as the abscissa in the presentation of the graphical results. The last

two geometric parameters of (67) affect deformations only in axial

nonhomogeneous problems.

The first type of cylinder has axially homogeneous stresses and strains

and is made of an orthotropic, linear elastic material with the following

properties:

:_:- E-i/E]" = EO/EO' = 10 ; E'i/G'i = EO/GO = 3

sf: (68) ¢
= R' = = = (' = = . = s

B =B =Bg=C=C =Cy=0; v=05 :

The results for this cylinder are presented in Figs. 3-8.
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Figures 3, 4 and 5 show the behavior of the finite longitudinal strain
€,z with the loading P, p, and T respectively. For longitudinal loading, it
is deduced from Fig. 3 that for 65 = 27 deg and 8, > 60 deg, the curves
coalesce and €z is linear with P. qu 0 < 8y < 27 deg, however, the cylinder
acts as a “"soft" spring in the axial direction, since as P increases, €,;
becomes proportionally larger. For 27 < 8, < 60 deg, however, the reverse is
true but is less pronounced, where the cylinder behaves as a "hard” spring.
However, for internal pressure loading, Fig. 4, linear behavior is found for
8, = 52 deg, with soft spring behavior for smaller values and hard spring
behavior (but less pronounced) for larger values of 645. Except near the
extreme values of &,, the behavior of axial strain with pure torque is more
complex, as shown in Fig. 5. For 8y up to 3 deg, the behavior is linear; and
frcm that point to 30 deg the cylinder "winds together" where, as T increases,
changes in €;, are proportionally smaller. However, for 6, near 80 deg, as T
increases, €7, becomes proportionaliy larger, and the cylinder winas together
more and more easily, witnin small cnanges for 8. It is noted that €
decreases as the cylinder winds together.

Figures 6, 7 and 8 show tne behavior of ¢, the finite angle of rotation
about the longitudinal axis of the cylinder, with loading P, p, and T
respectively. The negative ordinate in Figs. 6 and 7 indicates that the
cylinder unwinds with the application of load. The change from a soft or
flexible configuration to a hard one at €, = 30 deg is apparent in Fig. 6; but
for pressure loading this change is less distinct and occurs when 8, is
between 50 and 60 deg, as shown in Fig. 7. The effect of pure torgque on ¢ for

8 up to about 30 deg is clear from Fig. 8: as T increases, ¢ becomes

proportionally larger, and the cylinder winds together and becomes shorter.
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Fig. 3 Effect of axial load and ortnotropy on axial strain (axially

homogeneous case)
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= The second type of cylinder selected for study has axially nonhomogeneous
IE stresses and strains, but has the same material constants as for the study

just completed. That is, the material is orthotropic, linear and elastic with
E; the properties defined by Equations (68). For axial nonhomogeneity, the
!' initial geometry (%o, Ry, tp) and number of points J along the length affect
= the deformation patterns. These particular quantities were chosen as
- follows:
A
25/Rp = 10§ Ro/ty =10 5 J =11 (69)
The boundary conditions for the second type of cylinder were chosen to
» simulate a fully clamped condition at one end, j=1, and zero radial
;' displacement at the other end, J = 11. However, the longitudinal displacement
and twisting angle were chosen to be unrestrained at J = 11. These conditions
are:
5 Uzl = sl = Upp = upy = 0 (70)
. The results for this second type of cylinder are presented in Figs. 9, 10
s and 11 in which the only loading is internal pressure. For the range of 5
!' that overlaps {0.001 < B < 0.02), it is observed that the curves of Fig. 9 for
the average longitudinal strain e;; are identical to those of Fig. 4 for tne
;} homogeneous strain e€z;. For this range, then, the end boundary constraints
- have a negligible effect on the total longitudinal deformation. However, for
B the range of 5 that overlaps (0.001 < E < 0.02), the total end rotations ¢ of
o Fig. 10 differ from the counterpart results of Fig. 7 (boundaries uncon-
= strained), where these rotations become more dissimilar as 8, is increased
beyond 15 deg. Compared to the constrained case, the geometric changes along
) the length of an unconstrained cylinder are always more pronounced. The last
bi study, Fig. 11, shows the nonlinear variation in midlength radius Ry, with
internal pressure. Such calculations are of particular importance for axially
]

S e . S0 . - L S P - T e o .
ST S T e N AT e LU AT A AT e et s e e et e e ot
S 2 SRSV N P P UNPNCON V. . PP PP S "A_{qu."’u‘.a.ﬂ.3.'._5'\:\.':\'.5.' PRI '--7‘.:'—»""- e e e

A



pwong
Text Box
preceding page blank not film


2P e et - e DI T . S Nt el it WAL S F "
- - - - . -t - - - - - - -
ES; '
u... C
- ‘.
Je
‘.
o
B [X - N
N S s . . . . ,
~
[ )
X = .0

:-‘ L — 3 -
) GO

{5002 P10 - 3

0.00f

] . .
s -

AVE. LONGITUDINAL STRAIN-INTERNAL PRESSURE PARAMETER,

. v —
) o L -4
. (4] 1 ! ' ) !
o+,

0 15 30 45 60 75 S0 -
- INITIAL HELIX ANGLE, 6, ageg -
N .
= -
L, .

~

ol Fig. 9 Effect of internal pressure and orthoiropy on 2xial strain (axially

- nonhomogeneous case)

. el . LR
NEEI N R T S L R e S T AL
SN N PP PN P PR T, TR WL R A RN Y '."k 'L'_.x’

A

N e
- -‘u.--'- '-‘
LIRSS LAY




e L Y e e TR T A T R AT AT N T N S DO, Ra A SN AL S Al Sl A gt dad Vol Aad e -0k Sd* Ao "t 8 0 ' ot ot g
-
.\
. v
e o
L

-
"‘ .A~
’
o~y g
'l. ,l
" °
d
-

. o
2
PE T
o

qs
Ro®
-
oP
|m
o
[ ]
w
ol
1 ]
[0
Q
~N
FoL s

P
Ve
Y

g 03
I..
- <
“-
-.' -..
1" “.
A -
- I
“w
& o
1._ .
- ‘J
.~_ ‘e
)
‘e

EMD ROTATION-INTERNAL PRESSURE PARAMETER, -~

- N
- >
I- - .
- ...
' . -
A'
)
K
. -
N N
O k.
. » , "
. ;.-
-
N

! | ! L

0 15 3C a5 €0 75 90
INITIAL HELIX ANGLE, € deg:

S

’
«
T s e e
LA
e *0 T

L4
‘ [l

.4

» 0 0

o
1

Wes

N

Fig. 10 Effect of internal pressure and orthotropy on end rctation {exialiy

nonhomogeneous case)

.'v"'.

MR A g 4
.

IR
.
F W v 3

R P A SN AT L AT N S T e e J“ N e e e el LN AR Y
O TR . U O R N i B N I T AL RO SR S S
£ R NS VPN SR AL Py U T T RS . TR S U A W W S R UL o, T T R A DR Y TV VRV R YA SR Y

- -




[ T N O R R T T O e T Yy Y O P W oy wrwe,y T T Y T T T ey e,

o .

P

s
LR NLA

2 ] I 1
, £
:"\ —° . |O
o, c’ .
LY 4
T = == - e s
n «® r &’.. 3 il _lfM [ iRe
B ~ GC : [} - ] - [
zz » 0S5 J: — - - v
. P ' \_i‘//';‘q’
. o 15 ° fo wantllf 1> | i
- 2
<o [
<
[+
- T
<. -
bt
-. i
u-. -J
.!" E
il =
:V 0_75 1 [ 1 t .
’ o] 15 30 45 {-Je] 78 =1e)

INITIAL HELIX ANGLE, 6, deg.

Fig. 11 Effect of internal pressure and orthotropy on midlength radial

- expansion (axjally nonhomogeneous case)

"> 7t

.
Lo’ o

-‘{;

.

e

ARRS

L]

o -
S

E o O
LA SRV PR O
-VJ J&MA’J"'{‘—(&\ Jt\

‘-




!

g

&,

A2

x
5 - 3

L 2
NN

..,‘.'.

64

nonhomogeneous deformations because they serve as a way to check the limits of
validity of the present analysis. That is, since out-of-plane stresses,
strains, and deformations were ignored, then the angle aj; needs to be
sufficiently small for the results of Figs. 9, 10 and 11 to be valid, or cos
ajj = 1, sin ajj = o5, For instance, if B = 0.02 and 8, = 75 deg, then Ry/R,

= 1.25 from Fig. 11. Let aij be approximated from Equation (52) as follows.

Ay R, =R
-1 ry . -1 M 0
oy = tan OK;—) tan 5T, )
1.25 R_ - R
= tan"! (———2—2) = 2.86 deg (71)
(¢

Thus, 9 j is sufficiently small to justify the present analysis of Part 2,
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ﬁ CHAPTER 111
) LARGE DEFLECTIONS OF CONTINUOUS ELASTIC STRUCTURES
E; Murugappan Palaniappan and James F. Wilson E
o
. .
. 1. INTRODUCTION N
- N
" A robot is a reprogrammable, multifunctional manipulator designed to 'f
fg perform a variety of tasks. Examples of robot functions are material E
. handling, spray painting and aligning of screws in assembly line operations .E
é; (Critchlow, 1985). The present state of robot technology is that the arm ;
53 moves around accurately but not efficiently. Most of the robotic arms in use g
’ today consist of rigid elements connected by hinged or pivoted joints. The 3
& movement of these arms is slow because of their high weight and inertia, and <
N the time needed to compute and control the coordinates of their elements or Y
E: arm segments. E
!l A different approach to arm design is based on the motion of a A
N flexible elephant trunk (Mahajan, 1985). The flexible arm is made of E
ii lightweight, polymeric material and may handle comparatively heavy payloads at 5
:‘ higher speeds than most rigid arm designs. These flexible arms are based on A
;ii the action of corrugated tube elements (Wilson, 1984-a) that bend when
- pressurized. :
= Three distinct aspects of flexible arm design are analyzed in this
:ﬁ thesis: the equivalent or reduced modulus E' for the corrugated portion of a
h bending element; the single, elastic bending element treated as a composite,
E% reinforced, elastic cantilevered beam; and the whole arm deflection analysis, i
treated as bending elements in series. In this analysis, self weight is j;
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neglected since the payloads are expected to be at least an order of magnitude
higher than the arm weight.

Section 2 deals with the computation of reduced modulus E' of a
rectangular corrugation in which the static load responses of bellows type
arms with Young's modulus E, using classical theory of plates and shells are
derived. In his classic paper, Donnell (1932) calculated the longitudinal
flexibility for several types of corrugations and derived a reduced modulus of
elasticity for these corrugated bellows as if they were smooth tubes.
Calladine (1974) used energy methods to compute the flexibility of an axially
symmetric elastic bellows subjected to axial loading. Haringx (1952) studied
the instability of rectangular corrugation bellows when loaded by internal
pressure. Wilson (1984-b) reviewed several mathematical models and the
assumptions used to compute E' and to compare calculated and experimental
values of E'. He also shows that the mean bellows radius is the appropriate
dimension needed to convert internal pressure to an external load.

Section 3 deals with the plane, finite deflection analysis of a
cantilever beam subjected to end loading. The exact differential equation is
solved in terms of the slope of the elastic curve. Related work is summarized
as follows: Scott, Carver (1953) presented an integral power series solution
of the nonlinear beam equation in which the moment is expressed as a function
of the distance x from the origin. Lewis, Monasa (1982) presented a large
deflection analysis of thin cantilever beams of nonlinear materials subjected
to a constant end moment. Theocaris, Panayotounakos (1982) solved the
nonlinear differential equation of an elastic cantilever subjected to coplanar
terminal loading, taking into account the influence of transverse shear

deformations. Bisshop, Drucker (1945) presented a solution for large

deflections of a cantilever beam subjected to a tip transverse load in terms
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of an elliptic integral.

The solutions given by ([Scott, Carver], [Lewis, Monasa], [Theocaris,
Panayotounakos]) are in terms of Cartesian coordinates. The solution
presented herein involves solving iteratively a complete elliptic integral of
the first kind for the maximum slope at the tip of an elastic cantilever
subjected to general plane loading at the tip. This solution is a
generalization of the elastica in which only longitudinal loads were
considered (Timoshenko and Gere, 1961).

Section 4 deals with the deflection of the flexible arm in two
dimensional space, where the arm is composed of end-to-end cantilevers. Each
element of the arm is analyzed as an elastic cantilever, starting from the
tip, with the fixed end at the tip of the previous element. Transformation
equations are used to relate the tip of each element to the global coordinate
system which is fixed at the root of the arm. Knowing the final destination
of the payload at the tip of the arm, an iterative procedure is used to vary
the pressure history in each corrugated tube element of the arm so that the
payload may reach its destination.

In Section 5, conclusions of this study and recommendations for
further research are presented. Different geometrical arrangement of the
bellows is discussed to achieve out-of-plane motion. A systematic procedure
is suggested to vary the pressure to achieve rapid convergence to the
destination coordinate. A data base approach is suggested to overcome the
numerous computation involved in the computation of the tip angle a.

A1l computer codes listed in the appendices were written by the
author. They are used to compute the reduced modulus E', the shape of the

elastic curve of the deformation behavior of a single cantilever and the

equiTibrium states of a manipulator arm.
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2. ANALYSIS OF BELLOWS ELEMENT

A. Mathematical Model

Bellows are thin walled corrugated tubes designed for high flexibility
when subjected to axial loads, internal pressure or bending moments. The
present study is of a bellows corrugation model consisting of cylindrical
shell sections connected by annular plates and subjected to axial load and
internal pressure. These bellows are to be used as the structural section of
the robotic manipulator. The desired motion of the bellows will be controlled
by microcomputer and monitored through pressure gages. Figure (2.1) shows a
longitudinal section through the bellows, which is subjected to internal
pressure p and axial force Fy, The shaded section is a typical half
corrugation used in the analysis.

Calculations for bellows extension, compression and transverse bending
are made as if the bellows were an equivalent cylinder of the same mean
radius, length and wall thickness. The equivalent cylinder has a reduced
Young's modulus E' which is used to compute static load responses of the
bellows with modulus E. Figure (2.2) shows the geometry of a half corrugation
of the bellows together with the coordinate system for the inner and outer

shells and plate. For a bellows of n corrugations of mean cross sectional
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Figure 2.1 Longitudinal bellows section subjected to internal pressure p
and axial force F, and a darkened typical half corrugation

used in analysis.
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o area 2wRt, the axial extension from strength of materials is .;
"2
| _.Pd4nb _P 2nb (2.1) o
‘ b T Ime T we y .
o
. where v
*.2' -
e P =Fqy + 'ltRzp .:'
. E' = modulus of equivalent cylinder
NG -
As the corrugation is symmetric transversely, we need to consider only .
N o
:3 one-half of the corrugation, of length 2b, to transform it into an equivalent }
. cylinder, as shown in Figure (2.3). The axial extension of the equivalent
N cylinder is "
”
&
. _ P2 P b
o R A E e A (2.2)
or N
N :.‘
b_ P s
Vo e [
. E - “Rt A) (2-23) ‘:.
' First, the axial extension A of the corrugation is predicted from the ’
T theory of plates and shells. Equation (2.2a) is then used to compute the <
7 =
) reduced modulus E' of the equivalent cylinder. Figure (2.4) shows a free body
!! sketch of the corrugation together with its slope and moment compatibility at
. the junctions. Figure (2.5) shows the corrugation subjected to internal
.ft
N pressure p and axial force Fg and its resulting deflected shape. Radial
= displacement of the plate is neglected. .
The assumptions of the mathematical model are summarized below: ﬁ
:5 1) The inner and outer cylindrical shells restrain the radial displacement R
o
of the annular plate at junctions 1 and 2.
-
2) Right angles are maintained at junctions 1 and 2. N
)
o 3) Axial forces in the cylindrical shells have negligible effect on the N

shell stiffnesses. b
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4) The cylindrical shells contribute a negligible amount to the axial
deflection under internal pressure p and axisymmetrical load Fg.

5) Plate bending accounts for all of the axial deflection under loads p and
Foe

6) In-plane (radial) loads on the plate have negligible effect on its
stiffness and axial deflection.

7) Effects of rigid end plates on symmetrical deformation of a typical
element are negligible.

8) Classical plate and shell theory govern the system behavior under loads p

and Fo.

B. Plate Analysis

The governing 4th order plate equation is

ot = - B (2.3)
p
where
3
Et
D =
P 121 - v9)
2
2 _d 1d
el
drz r dr

The pressure loading p is a non-negative quantity and the sign associated with
p is negative as the direction of p is opposite to the direction of lateral
deflection w. Here, r is the radial coordinate and Dp is the rigidity of the

plate.

A more convenient form of Equation (2.3) is
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1d d ld dw
S r S EF r N %; (2.4)
The moment and shear equations of a plate are
M_=-0D (d2"+_“2‘i) (2.5)
rp P g2 T :
s.p Lfld [ aw
Qrp B Dp dr [r dr (r dr)] (2.6)
Integrating Equation (2.4) directly, we obtain
r4 r 2 r r 2 r
W= - gl Gy ()% 0 () + Gy ()T 4 Oy (1) + (2.7)
p 1 1 1 1
where Co’ Cis Cz and C3 are arbitrary constants of integration.
These four constants are written in terms of the following edge
conditions.
w=0atr = ry (2.8)
d2w v dw
"lp p ;:? r dr
dzw v dw ( )
M =~D + = =) 2.10
Fop p ;:? r dr
_ d (1d dw
Qrz = - Dp i Far (rg)l (2.11)
p
Apply Equation (2.8) to (2.4).
4
. W 2.12
Co‘ﬁn‘p‘cz (2.12)

Substitute Cy in Equation (2.4).

we- (et e b EEW + C3(:—1-)Zzn (;_1.) +C, [(:—1)2 - 11+ C (:—1-) (2.13)

Use the derivatives of w in Equation (2.9) and evaluate the moment at

P=P1,

...................................

.......



2
ryp Cy Cp C

Mrl =0 - Tapm 3+ W) + =5 3+ ) + =521 +v) - =5 (1 - )} (2.18)
P P " M "

Use the derivatives of w in Equation (2.10) and evaluate the moment at

F=P2,

”zzp C3 ro
Mrz = - Dp { -~ 180 (3 + \)) + -7 [3 +r v+ 2 ¢n (r—')(l + \))]
P p " 1

c, c,
Sy 2l v) - =5 (1= W)
" 2

Equation (2.11) and evaluate the shear at r = Foe

raP 4
U,y =% (o0 - G377 )

r2p r T

2
r12'”22p 1y 2 Q’z

Noting that Qrz, the axial force in the outer cylinder, can be

evaluated from equilibrium, C3 becomes a known constant.

The problem is now reduced to two unknown constants C1 and C2 which
are given by Equations (2.14) - (2.15) in terms of the redundant moments Mr1
p

and M .
rzp

C. Shell Analysis

Both the inner and outer shells have an identical coordinate system,

pressure loading p, rigidity D¢ and modulus E. Hence, the governing equation

is developed for a typical shell with radius r.

NPT
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The governing 4th order cylindrical shell equation, giving radial
deflection z at axial position y is

4 Et 2z

9_%+_,°2._.=-6L (2.17)
dy r.°D o
c ¢
where
Etc3
D =
¢ 201 - V)
The moment and shear equations for a cylindrical shell are
dzz
M =-0D (2.18)
y ¢ gy°
3
d"2z
Q =-0 (2.19)
y ¢ 4y3
pr’cz 4 Etc
The particular solution to Equation (2.17) is z = - T Let 8 = 5
c 4r °D
c ¢
be a shell parameter. Then, Equation (2.17) reduces to
d4z 4 E—
+ 487z = - (2.17a)
ay” ¢

The solution to the homogeneous form of this equation is
= By : -8y - ;
2 =e (D1 cos gy + 02 sin gy) + e (D3 coS By + D4 sin gy)
where Dl’ 02, D3 and D, are arbitrary constants of integration.

Replacing the exponential functions with hyperbolic functions and

adding a particular solution, the solution to Equation (2.17a) becomes

2
pr
z = "EEE_ + D1 sin (By) sinh (gy) + D2 sin (By) cosh (gy)
c
+ D, cos (By) sinh (gy) + D, cos (By) cosh (gy) (2.20)
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By symmetry, if y is changed to (-y), the solution must remain
unchanged i.e. the odd functions of Equation (2.20) must vanish. Hence
D2 = D3 =0 (2.21)

Subscript 1 refers to the inner shell while subscript 2 refers to the
outer shell. The four constants, two from the inner and two from the outer
shell, are written in terms of the redundant moments Mrl and Mrz .

c o

Use the second derivative of z and evaluate moments Mrl at r = rl and
c

M at r=r_and at y = b,
F2c 2 y
2

- d z
Mric = Oc ;;?

= 28, °[A,cos (B b)cosh(8b) - B sin(gb)sinh(gb)]  (2.22)
Mroc = - 0c 3

= - 2D_8,°[A,cos(B,b)cosh(Bb) - Bysin(gyb)sinh(gb)]  (2.23)

D. Compatibility
Referring to the free body sketch of Figure (2.4), we can write the

compatibility conditions. The displacement compatibility is expressed as

) = 0 at ¥y = band r = ry (2.24)
z, = 0 at Yo =b and r = r, (2.25)
The slope compatibility is given by
eC]. = epl at r=r; (2.26)
ec2 = ep2 atr=r, (2.27)
The moment compatibility is given by
M =M atr=r (2.28)
Mec rlp 1
M =M atr=r (2.29)
rzc rzp 2




The displacement conditions have been evaluated using Equation (2.20)

and are explicitly shown as Equations (2.30) - (2.31).

----_.,-A---
- vl “l'
- 3 )
2,

2
X Pry . :
N 0= --Et—c— + Alsm(alb) sinh (Blb) + B, cos (Blb) cosh (glb) (2.30)
Q 2
A Pra )
i 0= -t Azsin(szb) sinh (azb) + 32 cos (82b) cosh (sz) (2.31)
o c
"t: Explicit results for slope compatibility are as follows. Using the

first derivative of Equations (2.13) and (2.20) evaluated at r = r and y = b,

along with Equation (2.26) yields

s A181[sin(Byb)cosh(gyb) + cos(Byb)sinh(Byb)] + Bypylcos(Byb)sinh(gb)

o - 3

- - sin (8.b)cosh(gb)] - €, (3 - ¢, (&) = - k" v, Ay (2.32)
1 1 2 ry 1 " IEUP 3 "y ¢

>

' Using the first derivative of Equations (2.13) and (2.20) evaluated at

r=r, and y = b in Equation (2.27) yields

. -AZBZ[sin( szb)cosh( sz) + cos( sz)sinh( sz)]-stz[cos( sz)sinh( sz)

2r‘2 1
.. - sin (sz)COSh(sz)] - Cz(—z) - Cl (r—z')
. r

1

- r23p ro ro
-1t c3 (—2)[1 + 22n (r—)] (2.33)
p " 1

Explicit results for moment compatibility are as follows. Equations

v

(2.14) and (2.22) evaluated at r = " using Equation (2.28) yields

A

2 2 . .
Al[ZDCBI cos(Byb)cosh(gb)] - By[2D.8; sin(gyb)sinh(gb)]

ooty
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Equations (2.15) and (2.23) evaluated at r = r, using Equation (2.29)
yields

Az[-ZDcszzcos(sz)cosh(szb)] + Bz[ZDcszzsin(szb)sinh(sz)]

2
2D D r, p

$C (v —B-c (1-v)E=Fc 3+
"1 2

.
- C3Dp[—1'2' 3+ v +Z o B+ V)] (2.35)
Y M 1

The six unknown constants of integration are Al’ Bl’ A2, 82, C1 and C2

which are calculated by solving Equations (2.30) - (2.35) simultaneously.

In summary, given the system parameters: Fo’ Ps Tys Tos tp, tc’ E and
v, we calculate
QU = (F + 7 r.2p) (2.36)
ro 2""2 o 2 P *
r 2r 2p r 2r Qr
3 D) I D .
p p
£t 3
D = A (2.38)
P12(1-v9)
E tc3
D = — (2.39)
¢ 12(1-v9)
Et
8 = ()t (2.40)
4r1 D
c
Et
- c ,1/4
82 = C;—-z——) (2.41)
F2 Dc

Solving the six simultaneous Equations (2.30) - (2.35) will yield the

unknown constants of integration. The deflection of the plate A at r = ro is

Bl
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‘
N
. then computed from Equation (2.13), or
& 4 4 r2.2 2

A‘Wls = - (r -ry) + Co(=—=)" an (=)
. r=r, 2 1 64Dp 3 1 "y
- rp.2

+C[( -11+¢ m( ) (2.42)

f " "1
For a unit axial load P, compute the deflection A using Equation

(2.42). Then, compute the effective modulus E' of the equivalent cylinder

- using Equation (2.2a).

E. Numerical Results

Define a nondimensional bellows parameter.

Rt

A = (2.43)
§ b’
Let
. $T iR (2.44)

be a measure of system response i.e. flexibility. The inverse of flexibility

ME

j.e. stiffness is

7
o _E'R
- S - ‘E—t (2.45)
i The FORTRAN program SHELL.FOR, whose listing is given in Appendix A,
computes the effective modulus E' for a given set of system parameters. A
;“ numerical example is shown below. Table (2.1) lists the numerical values
. chosen as input parameters.
" The results of the computation are as follows:
.::.
E
o
o
"‘:‘
e
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-y Input Numerical A
Parameter Value '.:‘

-~ "

n_'. p 15 pS1 .:

— Fo 0 1b u

hl
A,
.

E 2480 psi X
e v 0.5

it

b 0.1 in

'-‘_E‘. r 0.1 in .
- r2 0.5 in ;
. tp 0.09 in A
” te 0.09 in

b
! Table 2.1 Input parameters to the program SHELL.FOR for the L
' chosen numerical example. 2
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E' = 49,85 psi
E .

T = 49.75

A = 3.6

S = 0.0893

Design curves for stiffness S vs. nondimensional parameter X are
plotted in Figure (2.6) for different height to mean radius and height to
one-fourth length of corrugation ratio. These curves can be used to compute

the effective modulus E' for a given geometry of the bellows.
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3. ANALYSIS OF CANTILEVER BEAM ELEMENTS

A. Mathematical Model

A typical element of the manipulator arm has a bellows configuration
with the ends sealed and with reinforcement on the underside as shown in
Figure (3.1). To achieve the bending effect of the manipulator arm in either
direction, we use double sided elements placed back to back as shown in Figure
(3.2).

Each element of the arm consists of several corrugations, and the
exact number is determined by the length of the element and the maximum
desired transverse displacement or rotation at the tip of the cantilever.

The maximum tip rotation will typically be 90° or 180° depending on
the function of the element. Elements that are designed to coil around the
load need to rotate more than the elements that help in the lifting of the
load.

A relationship between the geometry, length, the degree of rotation
and the number of corrugations in the double sided element is derived as
follows. Assume that the corrugations on the convex surface just touch at the
maximum degree of bend. With reference to Figure (3.3), these two relations

are
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L = wa (3.1)
(RW - 2r2)w = (2b + t)n (3.2)

where
n is the number of corrugations
b is the one-fourth length of the corrugations
¥ is the maximum degree of bend of the element
t is the uniform thickness of the bellows
L is the length of the element
ry is the outer radius of the bellows

From Equations (3.1) - (3.2), it follows that

(L - 2r2)¢

g M (3.3)

The second constraint is that the number of corrugations and the
corrugation length should satisfy
(4b)n = L (3.4)
The two unknowns n, b are solved simultaneously using Equations (3.3)-

(3.4) yielding

L
-2r, ¥
ne 2 2 (3.5)
b =%? (3.6)

The elements of the manipulator arm will be analyzed as a cantilever
beam with an equivalent modulus E' (refer to Chapter II) and second area
moment f of the composite single or double sided finger element.

The composite double sided element is symmetric about its neutral
axis. Considering half of this section, we have the equivalent cylinder, slab

and reinforcement as shown in Figure (3.1). For analysis purpose, we

.............................
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consider only the equivale-* cylinder, a flat slab of modulus E and two
different types of reinforcement: n threads of modulus Ep and radius Rp, or
rectangular reinforcement of modulus E~, as shown in Figure (3.4).

For double sided finger elements with circular threads, the second

area moment is

3 FE 4

- 3 2 1
I = 2(sR7t, + 2L (R + h + H)* + 3 dH” + (E—r - 1)n(0.3927 R )} (3.7a)

For double sided finger elements with rectangular reinforcements

E
T 3 2 1 3 r 1 3
I = 2{=R te + ZuRte(R +h + H) t3 le + (E_" 1) -3--slh1 } (3.7b)
where the equivalent thickness of the corrugated tube is

ty =t F- (3.8)

B. Deflection Analysis

The manipulator arm is made up of a number of elements joined end to
end. The function of the arm determines the size and number of elements in
the arm. The cantilever beam analysis of a typical element with an equivalent
stiffness El is presented.

Large deflection is taken into account. Shear deformations are
neglected. The shape of the elastic curve is found from the exact
differential equation.

This cantilever is subjected to a coplanar terminal loading consisting
of an axial compressive force Py, a transverse force Pp and a bending moment
Mb. A floating coordinate system is chosen at the tip of the cantilever as
shown in Figure (3.5a). In previous analysis of the elastica (Timoshenko and

Gere, 1961), the only loading was an axial compressive force Pg,
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b The exact differential equation of the deflection curve is X
i M= - el $2 (3.9)
e where >
# X,
| 49 - |— 3
2,3/¢ 7]
.S ~
o s de _ -
. EI i sz - Pbx - Mb (3.10) I
b Differentiating Equation (3.10) with respect to s and using the :
g relations -
1\: ;‘.
dl = i d_x = :"
= ds = sin 8 ds - Cos 8 i
\ S
e we obtain s
= - 426 &
K El —5 =~ P_sin 6 -P_ cos 6 (3.11) by
d 2 2 b -
S -
>

o

Integrating Equation (3.11) with respect to %SE ds, we obtain

41
'
4

I' -.‘
> 1 .7 ,d8,2 . -
1 El (a-s- Pz cos 6 - Pb sin 6 + K1 (3.12) .

o~

. We solve for the constant K1 from the edge condition: At s =0, 8 = a o
- M :."
and gge_ = - —l;’- . Hence, Equation (3.12) reduces to -ﬁ_
-~ M 2 .
1 -7 ,d6,2 _ . e 1 b s -
i El (EE) = Pz(cos 8 - cos a) + Pb(sm a - sin 8) + > = (3.13) :
I:i -
R >
5 X
o

|"¢' ';::
K
-~ -E.;
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Since e is known to be negative, Equation (3.13) can be rearranged as
'l P 2P M
ds = - [Z-ﬁg(cos 8 - cos a) + -b (sin a - sin @) + (—3)2]'1/2de (3.13a)
F El El El
g
) Integrating, nondimensionalizing and simplifying Equation (3.13a), we
. obtain
-
a
3 1=] 49 72 (3.14)
- o (Acos 8 -8B sin 8 +c¢)
S where
. A =2 Eg
f-:-: B =2 lsb
L‘ - - -
] C = -2Pg cos a+ 2 Pp sin a+ Mp2
'J‘:
. Pl
2
- Pe =~
ii El
) - szz
X Py = —=
~ El
- M %
A M, o= ——
' b gl
ﬁ: Let A cos 6 - B sin 8 =D cos (8 + 8y), Rearranging Equation (3.14),
we obtain
.
- a
1= ds 7 (3.15)
N o [Dcos (8+ 8) +C]
where
r‘-
“ D = /A%, B2
-~ _ -1 8
Es; 60 = tan K
-
."
-
"M
[ § ¥
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Writing 6 + 8 = 2x and simplifying Equation (3.15) we obtain

a+ qa
) 2 —7 dx (3.16)
s v | [1 - K sin x]V/*
(C + D) eo
>
where
2 _ 2D
K=t

Equation (3.16) represents an indefinite elliptic integral of the
first kind. Note that K and &, depends on the angle a and the loads.
Solutions of this elliptical integral are available in tabulated form, given
a, for pure lateral, longitudinal or moment loading.

Figure (3.5b) shows an element subjected to a pressure loading p over
a uniform area A(= mR2) acting at a distance d and a dead weight W acting at
an angle 8.

Resolving these loads into its components, we obtain

Pg = -pA cos a+ W cos B (3.17a)
Pb = pA sin a - W sin B (3.17b)

An iterative procedure using the secant method and the IMSL subroutine
DCADRE was written to compute the unknown angle a which is involved in the
limits of Equation (3.16). A FORTRAN program CANT, whose listing is given in
Appendix B, was written to invoke this procedure and to compute the shape of
the elastic curve. The initial guess value of a is taken to be 0.

A numerical example for a typical element was computed. The length
and stiffness of the element were chosen as ¢ = 1 in and Ef =11b inz,

respectively. The pressure loading acts at an eccentricity of 0.1 times the

length. For increasing pressure loading, the corresponding values of the
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l;: eccentric end load P and the end moment Mp chosen are listed in Table (3.1).
i The calculated deflection curves at these loads are shown in Figure (3.6).
* The deflection pattern resembles that of the elastica. Table (3.1) shows the
'(;'.;-' tip angle a corresponding to each level of loading.
m
)
o
r:-u
3 Eccentric End Calculated
end load moment tip angle
o P 1b Mb 1b-in a deg.
. 0 0 0
i 2 0.2 16
o 4 0.4 ' 41
f‘
6 0.6 78
| . 8 0.8 124
- 10 1.0 173
& Table 3.1 End loads and the corresponding tip angle for
W=0, 2=11n, El = 1 1b-in2 and d/g = O.1.
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4, ELEMENT STRINGS

A. Transformation Equations

The manipulator arm is made up of a number of elements connected by
rigid links. One end of the arm is the supporting base of the cantilever beam
while the last few elements near the tip act as a gripper or end effector.
These tip elements grip the payload by coiling around it. The points of
contact between the element and the load are sufficient to prevent the load
from slipping. The rigid links do not bend. They merely translate and
rotate.

Let the number of elements in the "lifting" arm be n and the elements
numbered consecutively from the supporting base 1,2...n. Each element of the
arm is modeled as a cantilever beam starting from the base. The end of the
rigid link after element i is the fixed end of the cantilever beam for element
i + 1. Given a coplanar terminal loading, we can calculate the end
deflections of that element by the methods presented in the last chapter.
Hence, we have determined the end coordinates of the element with respect to
the local coordinate system.

Determining the position and orientation of any element in the arm

relative to its base coordinate requires the transformation of coordinates
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through all other elements and links between the base reference and the
element whose coordinates are being determined. Similarly, by carrying out
the transformation for each of the elements, we get the overall orientation of
the "lifting" arm in the global coordinate system. Figure (4.1) shows a
relation between the local and global coordinate system.

A transformation matrix relating the (i) frame to the (i+l) frame is

of the form:

. _ . -
Xi,pw X 01 | cos(ay,y)  sinloy,g) | X4,
= +
Yi,p Yisl L'Si"(°i+1) cos(aj4y) | |Yie1,p
where
%41 is the angle measured clockwise from frame (i) to
frame (i+l).
xi+1'Yi+1 are the coordinates of the origin of frame (i+l) in the

coordinate system of frame (i).

Xi+1,psYi+1,p are the coordinates of any point P in frame (i+l).

Y are the coordinates of the same point P in frame (i).

xi,p’ i,p
A FORTRAN program TRANS, whose listing is given in Appendix C, models

each lifting element as a cantilever beam in the local coordinate system. The
slope computed at the tip of element i is the angle % which is used to
transform the element (i+l) from its local coordinate system to that of
element i, The position of the tip of the element in the local caordinate
system is then computed. Provision is made for the transformation between an
element and the link before it. As the link is rigid, the angle % is zero
degrees. The transformation matrix relating the tip of element i and the base

reference is the product of all matrices relating the elements and the links
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between them. Hence, the program TRANS determines the position of the tip of

each lifting element of the arm in the global coordinate system.

B. Typical Design

Figure (4.2) shows the motion of a manipulator arm. Double or single
sided elements could be used as the structural section of the elements. The
stiffness of double sided elements were derived in part A of Chapter III. The
advantage of double sided elements is that they may bend the arm in either the
clockwise or counter clockwise direction. For instance, if the elements on
the left side are pressurized, the arm will bend in the counter clockwise
direction.

Given a destination coordinate in the feasible work space, we want to
know a pressure history in all the elements that will move the load from the
starting to the given destination coordinate. Note that there are many
possible solutions or different pressure histories that could achieve the same
result. The solution procedure described below picks a solution that may not
necessarily be the one where the payload tranverses the least path distance to
achieve its target point. Mahajan (1985) investigated the problem of optimal
paths.

The end effector is designed separately. The number of these elements
is determined by the length of the element and the size of the object to be
lifted. The end effector bends in the opposite direction to that of the
lifting arm. The angle 8] to which these end effector elements should coil
around the load to prevent it from slipping is determined by a simple

geometrical drawing. The slope a at the end of each of these elements is

! (4.1)
o= .1
N,
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Figure 4.2 One possible trajectory of a six SIMRIT finger arm consist-

ing of three different types of elements.
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where Ne is the number of end effector elements. Then, using the program
CANT, we make runs of varying pressure levels. Since we do not know the point
of contact between the load and the end effector elements, we assume the worst
case or the case of highest moment. That is

g =180° - a (4.2)

Mo = W(Rg + 2R +d + H) (4.3a)

Mo = W Ry (4.3b)
The moment expressions in Equations (4.3a) - (4.3b) are for the double and
single sided elements respectively. Hence, the pressure history in the end
effector elements is determined by that pressure level whose slope at the tip
of the element is closest to a.

The 1ifting elements are designed as an element string. Initially,
the moment due to the payload is assumed to be zero. Referring to Figure
(3.5b), the angle B at which the load acts is updated from the slopes of all
the previous elements. For the ith element, the angle 8 is given by

j-

1
Bi = 180° - ak i=2,3...n (4.4a)
k=1

B = 180° (4.4b)

Then, for a given set of internal pressures in each of the elements, we
compute the position of the tip of the element in the global coordinate system
using the transformation matrices developed in part A. Knowing the geometry
of the link joining the lifting elements to the end effector and the radius of
the load, we can compute the coordinates of the load. Referring to Figure
(4.3), we compute the coordinates of the load as follows.

RTpL = 2 Rg + H + RL (4.5)

1 X

¢ = tan~ 'R-L—I;Y: (4°6)
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n
x-coordinate of nth element + RTpL sin( | a + ¢) (4.7)

k=1

Gx

n
y-coordinate of nth element - RTp| cos( | a + ¢) (4.8)

k=1

Gy

Knowing the coordinates of the load, we can compute the moment due to the load
acting on each element. The entire procedure is repeated. The following
inequalities must be simultaneously satisfied for the specified tolerance
limit 6.

|Gxcurrent - Gxearlier| < & (4.9)

|Gycurrent - Gyearlier| < 6 (4.10)
The iteration stops when both the inequalities are satisfied. Hence, for a
given set of pressures, we can compute the global element deflections of the
manipulator arm.

A systematic procedure is adopted to vary the pressure in the elements
to move the load from the initial or present coordinates of the load (Xp, Yp)
to the destination coordinates (Xf, Y¢). The present position of the load can
be in any one of the four regions, as shown in Figure (4.4). With reference
to Figure (4.2).

i) The load is in the upper-right region, or
Xp < Xf
Yp > Y¢
Then decrease the pressure in all the elements.
ii) The load is in the upper-left region, or
Xp < Xf
Yp < Yf

Then decrease the pressure in the lower elements.

_________
......
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! PRESENT LOAD POSITION
X

Figure 4.4 The four possible regions in which the load could be

presently positioned.
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iii) The load is in the lower-right region, or

!i Xp > Xf

S’, Yp > Yf
o Then increase the pressure in the lower elements.
n iv) The load is in the lower-left region, or
A
N Xp > Xf
1"
:ﬁ: Yp < Yf
- Then increase the pressure in all the elements.
?$ The iteration procedure is repeated until the following conditions are
- satisfied:
(e
IXp - x¢| < &1 (4.11)

where €] and ep are specified tolerance limits.

C. Numerical Results

The manipulator arm shown in Figure (4.2) is composed of six single-
- sided SIMRIT finger elements connected by rigid links. The first four
elements are the 1ifting elements while the last two form the end effector.
There are three different types of elements A, B and C. Figure (4.5) shows a
cross section through the SIMRIT finger. Table (4.1) summarizes the geometry
for these elements. The object to be lifted is a cylinder of radius 1.25 in.
~ and weighing 0.5 1b. The stiffness El for these elements were derived by

Wilson (1986) and calculated by Walker (1986).

From a scale drawing, refer to Figure (4.3), we note that the tip

*l

EE angle relative to its own base for the last 2 elements (type C) is 206°., In
.. addition to the geometry of this element, the other input parameters to the
-\'

< program CANT are

.........
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A
b«- Dimension Size A Size B Size C

(unit)

o
A b (in) 0.1150 0.0828 0.0603
:4 d1 (in) 1.563 1.063 0.8000
| d2 (in) 0.7087 0.4930 0.3260
SE d3 (in) 0.2314 0.1882 0.1380
‘. dg (in) 0.0948 0.0694 0.0700
. h (in) 0.1745 0.1286 0.0960
2 L (in) 3.875 2.688 1.730
. R (in) 0.6875 0.4625 0.2550
t (in) 0.0943 0.0826 0.0700
o a (rad) 2.950 2.827 3.013
~ yp (in) 0.7156 0.4875 0.3133
' Ap (in2) 1.296 0.5366 0.2150
1 (in%) 0.3700 0.0730 0.0150
o E' (1b/in2) 137.2 189.7 240.9
o E (1b/in2) 2120, 2120. 2120.
w EI (1b-in2) 50.77 13.92 3,640

Table 4.1 Geometry for three different types of SIMRIT finger elements.
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77°
Mo = -0.656 1b-in
W 0.5 1b.
The pressure loading that corresponds to a maximum slope of 103° is 37.2 psi.
The lifting elements are analyzed using the program TRANS. The first

two elemerits are of type A while the other two are of type B, Initially, the
moment due to the load is assumed to be zero in all of the elements. Noting
that the rigid link does not bend (i.e. a = 0°), the transformation matrix is
given as input data. Each of the other elements is modeled as a cantilever
beam in its local axis and the corresponding transformation matrix is
computed. The subroutine TRANS is then invoked to obtain the coordinates of
the tip of each lifting element in the global coordinate system. Then, using
Equations (4.5) - (4.8), the coordinates of the center of gravity of the load
is computed. The moment due to the load is then updated. The iteration
continues till the conditions given in Equations (4.9) - (4.10) are satisfied.
In addition to the geometry of the two elements, the other input parameters to
the program TRANS are

RL = 1.25 in.

XL = 0.5 in.

Y. = 0.75 in,

H = 0.1 in.
The results of the computation is summarized in Table (4.2). The trajectories
corresponding to the pressure loading shown in Table (4.2) are plotted in
Figure (4.6).

The program TRANS can handle many different options. An element in

the arm may or may not be pressurized. The elements can be of varying

geometry. However, for large nondimensional pressure parameters (Py, Py > 10)

N
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the results of this program should be used cautiously as numerical instability
may occur. This needs further investigation.
e Using the systematic procedure described in part B, one possible

pressure loading to 1ift the load to a vertical position (-0.3, 7.2) is

-

e Element Pressure (psi)
A6 9.26
AS 9.26

:: B4 7.45
B3 7.45

W c2 37.20

C1 37.20
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5. CONCLUSIONS AND DISCUSSION

The design curves for stiffness vs. the nondimensional parameter A was
found to be within % 6% of that predicted by the Haringx model. In his paper,
Wilson (1984-b), has shown that the Haringx model correlates well with that of
the experimental data.

The elastic curve of the deflection pattern of the cantilever
subjected to an increasing pressure loading was found to resemble that of the
elastica. The elastica problem (Timoshenko and Gere, 1961), in which only the
longitudinal loads were considered, were verified using this model.

The calculated trajectories of a six SIMRIT finger arm subjected to
increasing pressure histories are shown. These trajectories represent
feasible equilibrium positions of the arm. The actual position of the arm in
the global coordinate system will be verified by experiment in due course.

There are several possible extensions of this research. The numerical
example shown in Chapter IV consists of single sided elements with the neutral
axis for all the lifting elements on the same side. 1In this configuration,
the arm can move only in the counter clockwise direction through 180° in the
same plane. To achieve reversal of curvature, we could either pressurize
douhle sided elements judiciously or have the neutral axis for part of the arm
on one side and for the remaining part of the arm on the opposite side. With
the reversal of curvature, the arm could move + 180° in the same plane. The
mathematical m~del for plane motion can be extended to include out-of-plane

motion. This can be achieved by arranging the bellows in a satellite
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Figure 5.1 Satellite arrangement of bellows in an element : an even

arrangement -eight (a); an odd arrangement -three (b).
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configuration as shown in Figure (5.1). In the case of an even number of the
ip bellows (Figure (5.1a)), we can pressurize the bellows (1,2,3,4) to achieve
- bending about the axis A-A. Hence, the flexible arm can have a work space
i+ consisting of volume of revolutions in each of the four quadrants.
!! Provision is made in the program TRANS to include the self weight of
~ the element. The self weight of the element is assumed to be a ccncentrated
g mass acting in the direction of gravity at the tip of the element.
. A 'Leafning Program' was developed by (Mahajan, 1985) to vary the
<7 pressure in a systematic way to achieve rapid convergence to the destination
“t coordinate. In his model, only the end moment was considered. Mahajan's pro-
v gram could be extended to include the mathematical model presented in Chapter
j: IV, a model that includes end moment, longitudinal and transverse loading.
. Computational efficiency could be improved. The numerical instability
2
. that occurs in the program TRANS for nondimensional pressure loading of'5z >
;& 10 or Sb > 10 could be overcome. In addition, the number of iterations
" required to compute the tip angle a in Equation (3.16) may be reduced. We
!! could form a data base for the three different nondimensional loading
. parameters 51, Sb and ﬁb. The angle a should lie between 0° and 180°. For a
i: particular combination of Ez, Eb and ﬁb, we can store that value of a which
. satisfies Equation (3.16). Hence, the program TRANS can pick the right angle
o a from this data base without having to perform the numerous iterations.
E; Another bending geometry that could be investigated is that of a
fJ tapered section, with the broader end at the supporting base. This could be
;2 an optimal bending geometry since the moment arm due to the load will be
- higher at the supporting base, decreasing towards the gripper. Such tapered
s configurations would have a much higher payload to self weight ratio than
- uniform configurations.
fi
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COMPUTER PROGRAM FOR THE COMPUTATION OF REDUCED MODULUS
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real a(xo.10).!(10).y(10>,Mu.ﬂrlc.ﬂrac.~*Ln.F"29
real :(10.10).f.-os.cmax.t-mn(10).u.lamaoa
integer s(10)

Input and cutput file ceclarations.

OPEN(7,FILE="SHE. DAT")
OPEN (8, FILE="SHE. OUT")

Read irn axial load and internal pressure on Dellows.

read(7,1)F0, D
write(8,3)F0,p

format (//' Axial load=',F10.4/"' Pressure=' F10,.4//)
Read in Young's Modulus and Poisson's ratio.

read(7,1)E,mu
write(8,21)E, mu
format (' Youngs Modulus='F10.4/" Poiss.ratio=',F10.4)

Read in number of intervals along plate, inner ant outer
cylinders at which geflections are cesirec.

read(7.22)int

write(8,23)int -
format (/' Interval at which cefln. is desired=',I14//)

Read in mean radius.

read (7, 1)Rm

write(8,43)Rm

format (/' Mean radius=' ,F10.4//)

Loop to control variations in depth of corrupation.
do 100 kk=1,2

Read in half depth of corrugation.

read(7,1)h

ri=Rm=h

re=Rm+h

write(8,4)rli,re
format (/' Irnner cyl. radius=',F10.4/' Outer cyl. radius=',F10.4)

Loop to control variations of corrupation lenpgpth.
do 101 33=1,5
Read in one-forth length of corrugation.

reacd (7,1)b
write(8,10)D
format (/' Half lenth of cyl.=' ,F10.4)

Thickress of plate and cylinogers is assumec to be the same.

Locop tc control variations 1in cylinder thickness.
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do 102 31i=1.7

Read in cylinder thickness. ,CIOPYI GVGﬂqb3. fO DTIC doe-

read(7,1)tc tion
tpste

write(8,20)tp.tc

formatt(s/’ Thick. or pliate=’,Fi10.4/’ Thick. or shell=’,Fl0.4)
format (2014)

rormat (6F10.4)

Number of unknown constants of integration 1is ©.

n=6
ratio=r2/ril
do 12 i=1,n
do 12 3=1,n
AC1,3)=0.0

Compute the known constant and other parameters to be used
in the formulation of the linear system.

Or2=(F0+3.14159«r2+r2«p)/(223.14159+*r2)
Dp=Estpetpetp/(12»(l-mu=mu)l)
Dc=Estcertente/(1Z=(l-muemu)l)
e33ylerler2/Dpr(r2=p/8-Qr2/4)
Bl=agrt(asgrt(Estc/(4=rlerieDc)))
B2=sqrt(agqrt(E«tc/(4=r2=r2=Dcl)))

Formulation of the 6 x 6 simultaneous linear system.

y(1)=perlerl/(E=~tc)

y(2)=per2«r2/(E=tc)

templ==-rlsrlsrlep/l6

y(3)=templ/Dp+c3/rl
y(4)=(3+*mu)=(templ/rl+Dp*c3/(rl=rl))
temp2=-r2«r2+r2=p/l6
y(S)=temp2/Dp+c3*r2/(rlerl)=(1+2+log(r2/ri1))
temp3=r2er2+p=*(3+mu) /16
temp4a=c3=Dp/(risrl)=((3+mu)<+2~(l+mud=logi(rz/rl))
y(6)=temp3-temp4

bbl=B1l«b

bb2=B2+b

a(l,1)=sin(bbl)=ainh(bbl)
a(l,2)=coa(cbl)=cosh(bbl) *
a(2,3)=ain(bb2)=ainh(bb2)
a(2,4)=coa(bb2)=cosh(bb2)
a(3,1)=Bl=(ai1n(bbl)*coah(bbl)+coa(bbl)=sinh(bbl))
a(3,2)=Bi=(cos(bbl)*sinh(bbl)-sin(bbl)~cosh(bbl))
a(3,5)=-1/r1

a(3,6)=-2/r1

a(s,1)=2=Dc*Bl=Bl=coas(bbl)=cosh(bbl)
a(4,2)==-2«Dc*Bl#*Bl=ain(bbl)=sinh(bbl)
at4,S)=Dp/(rlexrl)=(l-mu)
a(4,6)=-2«Dp/(rlerl)=(l+mu)
a(S,3)=-B2=(sintbb2)cosh(bb2)+cos(bb2)=sinh(bb2))
a(S,4)=-B2+»(coa(bb2)*sinh(bb2)-sin(bb2)=cosh(bb2))
a(5,5)=-1/r2

a(5,8)==-2«r2/(ri=rl)
a(6,3)=-2+DceB2+«B2rcoa(bb2)=cosh(bb2)
a(6,4)=2+Dc*B2=B2*a31n(bb2)*ainn(bb2)
a(6,5)==-Dp/(r2-r2)=(l1-mu)
a(6,6)=2+*Dp/(rlierl)=(l+mu)

do 40 i=1, Ane mnt
s(i)=} i Copy available to - ;
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Call subroutines lr and b to solve the 6 x & simultaneous ecuations.

call lr(c,n,s,eps,sucess)
call sbte,n.s,x)

Re-order sclution vector x.

do 47 1=1,n

temp(id=x(a(i))

do 48 1i1=1,n

x(i)etemp(i)

write(&,6)(x(1),4i=1,n)

format(//’ The constants Al1,B1,A2,B2,C1,C2 are resp.:’//6¢.3.6)

Compute slope and moment at junctions between plate and
inner and outer cylinders.

Thetacl=x(l)=a(3,1)*x(2)*a(3,2)
ThetacZ=x(3)+»a(5,3)+x(4)=a(5,4)
Thetapl=2/rl«x'8)+x(5)/rl=-y(3)
Thetep2=2+r2ex(6)/(rlerl)-x(5)/r2-y(S)
Hr2c=x(3)+a(6,3)+*%x(4)*a(6,4)

Mrilc=x(l)=a(4,1)+*x(2)~a(4,2)
Mrip=y(4)-a(4,6)*»x(6)~-a(4,5)=%(5)
Hr2p=y(6)-a(6,6)*x(6)-a(6,5)=x(5)

write(8,25)Mrlc

format(//,’ Moment Mrlc et r=rl1 of inner cylinder’,F10.4)
write(8,26)Mr2c )
format(/,’ Moment Mr2c at r=r2 of outer cylinder’,F10.4)
write(8,27)Thetacl

format(/,’ slope Thetacl at r=rl1 of inner cylinder’,F10.4)
write(8,28)Thetac2

format(/,’ slope Thetac2 et r=r2 of outer cylinder’,T10.4)
write(8,29)Thetepl

formatt(/,’ alope Thetapl et r=rl of plate’,F10.4)
write(8,30)Thetep2

format(/,’ eslope Thetap2 at r=r2 of plate’,F10.4)
write(8,31)Mrip

format(/,’ Moment Mrlp at r=rl of plate’,F10.4)
write(8,32)NMr2p

format(/,’ Moment Mr2p et r=r2 of plate’,F10.4)

write(8,35)

formet(//”’ radii deflection’//)
hh=(r2-rl)/int"

rerl

Compute axiel deflectiorns of the plate at the specified intervals.

do 32 i=],inte~l
wl==-(reeg-rle«g)sp/(64=Dp)
rr=r/rl
w2=c3errerrelog(rr)
w3=(zrrrr-1)*x(6)
wvaslog(rr)«=x(S)
wEwl-w2+w3+wg
write(8,34)r,w

r=rehh

delta=w

write(8,37)

formet(//’ Outer cyl disy deflection” /)

Copy available to DTIC does not
+ permit fully legible reproduction
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‘_ nh=p/int s
i\ cist=C. :*
* COngt=—DerZari/ (Z4tC) Ny
b
i. 2 Comoute cefiect:cns of cuter cy.:i1noe- at <tne sDOeC:“iec 1rie-va.s.
‘ gc 36 1=l,:nmt+l 2
i boeg=BZeg1st o™
~ Imconst+x (3)*81n (DDE) *S1nh (HDE) +x (&) *#COS (DDE) *CCSN (DDE) -
&; write(8,34)dist, = N
36 digt=gist+hh o
dist=0, A
n write(8, 38)
. 38 format (//' Inner cyl dist deflection' //) .
const=—parierl/ (Exte) N
~
j- = Compute deflections of inmner cylinger at the specifiegc i1ntervals. i
“.-‘ ’.1
do 39 imil,int+l i
. bbi=Bledist -
o ZmconSt+x (1) #$in(Db1)*sinh (bbl) +x (Z)#cos (bbl) #ccosh (DD1) .
. write (8, 34)dist, z .
3= dist=dist+hh X
;; c Compute effective modulus and modulus ratic. R
3 B
¥ E1m(FO+3. 14157%RmuRmuep) #b/ (2. 14157#Rme*towcelta)
» EE1=E/E1 -
o write(8,41)E1,EE1 e
o 41 format (//*' Effective Modulus Ei=’,dl1Z2.6//' Modulus rataic EEI=’, 1\
1 d13.6//) e
34 format (2d13.6/) -

v

n

Compute nocndimensiornal parameter lambda, flexibility and stiffress,

lambdamtc/ (b®b) #Rm

o flex=EE1*tc/Rm o
- stifful/flex
write(8, 49)stiff, lambda .
49 format(//,' STIFFNESS=',F1%5.6/' LAMBDA=' F15,&//) -
. 102 cont inue
i 101 cont inue =
100 continue o
o ' 2
.i' stop s
f -
i N
. ~
e i~
. IS
?
4 i

::': Copy available to DTIC does net
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THIS ’J.HQU.INE FQCTORISES THE CODESFI ~IENT MATRIX =

INTC :78 _.=R FATTORS AND WRITES THE~™ OVER METRIX &.

SREF INDICATES CE-IONS: SRES=S(1)=C TOR NI 203TIA. 2IvIT SZSAT-.
PRES=: FOR PARTIAL PIVOT SEARCH.

[T TRRY B )

ﬁ suprout:ine ir(a,rn, s, eDs, SUCess)
inteper s(10), temp, oref

ﬁg chnaracter SucCess+®l

LH

cimension a(i0,10)

if(s(l).e0.0)then
pref=s (1)
s(l)=]

enaif

"
F oref=1

THIS BLOCK INTERCHANGES ROWS IN THE CASE OF PARTIAL FIVOT SZARCH.

e
AR
n

if (oref.ne.0)then
amax=0,
do 10 i=l,n
if(abs(a(i, 1)). ge. amax)then
amax=abs (a(i, 1))
=3
endif
10 continue
if(k.na. 1) then
4 temp=s (1)
s(l)=g (k)
s (k)=temp
endif
endif

UL TEER AR IO VIR AR S S AU OO R L

A

v

'r"‘r'i

"

-

e PIVOTING ABOUT PIVOT ELEMENT (1,1)

rne=g (i)
iflabs(a(s(1),1)).1t. eps)then
sucess='n’

oy
e

! ge to 130
e else
a(n2, 1)=a(ng, 1) /a(s(1),1)

= endif
‘:i‘ 30 ~ontinue
.

c PIVOTING ABOUT ANY BENERAL PIVOT ELEMENT
’gt do 40 ki=g.n

S gc SO0 kE=ki,n
sum=0, 0

e do 60 a=1, ki-1
& 60 sumsgum+a (s (k&) , J)*a(s (1), 1)

S0 a(s(k2),kl)=a(s (K2), K1)=sum

if(xl. lt. n)then
if(pref.ne.0)then

i
I amax=0.
'] do 70 k3=ki,n

if(abs(a(s(k3),kl)).pe. amax)then
amax=abs (a(s(k3), k1))

Fl.‘A- = * 2" 7. - P ——
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enc1f
cont 1 nue
1f (né4. ne. k1) then
temo=sg (xl)
glul)mg (wa)
s (wa)=temp
ernd1f
enci?
1f(aps(a(s(kl),ki)).lt. eps)then
sucess='n'
go to 130
else
go 80 ilmkli+l,n
a(l(il),kl)-c(l(il),kx)/a(s(kz),kl)
dgo 90 Jismkl+i,n
sum=Q0.
do 100 iz2=1,kl-1l
lum‘luﬂ‘.(l(kl).iZ)CO(I(iE).JI)
a(s(kl),;;)-a(l(kl).Jl)-sum
endif
endif
cont inue

return
end

C py available to DTIC does not
permit fully legible reproduction
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*W1S SUBROUTINE DOES SDRWARD AND EBACHWARD 2a8SSEE On
any B VECTOR. THE RESULTS OF THE PASSES ARE OVERWRITTEN ON B.

i
W

susroutine fola.n,s, D)
intege s(10)
gimension a(i0,10),2(10)

TH1S PORTION DOES FORWARD PASS

[}]

oo 10 i=g,n

sum=0,

ae 20 )=1,1-3
sumsgum+a (s (i), J)*bis(3))

b(s(i))=mpis(i))—sum

wy

5%

TH1S PORTION DOES BACTKWARD PASS

g. e

bis(n))=b(sin))/alsin),n
do 30 i=n=1,1,-1

E: sums=0,

R* do 40 o=mi+lyn

- 40 sumssum+a (s (i), J)*b(s()))

30 b(s(i))m(b(s(i))=sum) /a(s(i), i)
-

e return
end
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v APPENDIX B
o COMPUTER PROGRAM FOR THE BENDING OF A
SINGLE CANTILEVER BEAM
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papepapaett it sc s s 2222 R AL L AL 2 2 L 2 2 L s )

d MAIN PROGRAM BEGINS .

AT RN TN T ANNNTIRAR TN AT R AT AT TRN

INTEGER IER

REAL DCADRE,AERR,RERR,ERROR,F,Fl,NEW,CURR,CLD,LLIM
REAL BETA,L,STIFF,P,w,D,PL,PB,MB,PLBAR,PBBAR,MBBAR
REAL A,B,C,DL,THETA,KSQ,CONST, EPS,XA, YA NEWDEG,PLD
REAL LOLIM,UPLIM,MO

EXTERNAL FUNCTIONS FOR THE INTEGRATION SUBROUTINE DCADRE.

EXTERNAL FLEN,XCOD,¥COD

COMMON BLOCKS BETWEEN FUCTIONS, SUBROUTINES AND THE MAIN
PROGRAM FOR THE DATA TC BE COMMUNICATED.

COMMON/AREALl /BETA,L,STIFF,P,W,D,MBBAR
COMMON /AREA3/DL,C,THETA,KSQ,CONST

DEFINE ERROR LIMITS AND TOLERANCES.

EPS=1.0E-5
AERR=0.0
RERR=1.0E-2

READ IN GEOMETRY AND LOAD ON THE ELEMENT.
READ(I,f')BE‘I‘A.L.STI!‘F,PLD.R‘,DB!L,MO
OBTAIN PRESSURE LOAD ECCENTRICITY FROM ECCENTRICITY/LENGTE RATIO.

DeDBYL*L _
LOOP TO DETERMINE TRAJECTORY DUE TO VARYING LEVELS OF PRESSURE.

DO 81 K=1,7
F=PLD*FLOAT(K)
MB=P*D+M0
MBBAR=MB*L/STIFF

INITIALLY ASSUMED EXTREME ANGLES FOR THE SECANT METHOD.

CURR=0./180.%*3.14159
NEW=175./180.%*3.14159%
CALL COMP(CURR)

UPLIM= (THETA+CURR) /2.

IF(1-KSQ*SIN(X)*SIN(X)) >=0 SET THE UPPER BOUND SUCH THAT
THE EQUALITY HOLDS.

UPTEMP=SQRT(1./KSQ)

IF(UPTEMP.GT.l.) THEN
UPPER=].57

ZLSE
UPPER=ASIN(UPTEMP)

ENDIF

SET THE UPPER INTEGRATION LIMIT TO THE LIMITING UPPER BOUND IN
EITHER THE POSITIVE OR NEGATIVE RANGE.

IF(UPLIM.GT.0.0)THEN
JIF (TPT.TM_GT.TTPPRR ) IPT.TM=TTPDRR
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ELSE
1F(UPLIM.LT.-UPPER)UPLIM=~-UPPER

ENDIF
F=CONST*DCADRE (FLEN, THETA/2. ,UPLIM, AERR,

+ RERR,ERROR,IER)-1.
ITERATIVE LOOP TO DETERMINE THE TIP SLOPE OF THE ELEMENT.

0 FlsF
OLD=CURR
CURR=NEW
CALL COMP{CURR)
UPLIM=(THETA+CURR) /2.

IF(1-KSQ*SIN(X)*SIN(X) >= 0 , SET THE UPPER BOUND SUCH THAT
THE EQUALITY HOLDS.

=N0o0on

(s XeNalsel

Pl el (PN S S as s | e B NS0 (LN e (i \r‘."

ﬁ’ UPTEMP=SQRT(1./KSQ)

A% IP(UPTEMP.GT.1l.) THEN
UPPER=1.57

w2

F; UPPER=ASIN (UPTEMP)

- ENDIF

SET UPPER INTEGRATION LIMIT TO THE LIMITING BOUND IN EITHER
THE POSITIVE OR THE NEGATIVE RANGE.

nOoonoon

IF(UPLIM.GT.0.0)THEN
IF(UPLIM.GT.UPPER)UPLIM=UPPER

E :
IF(UPLIM.LT.-UPPER)UPLIM=-UPPER
ENDIF
F=CONST*DCADRE (FLEN, THETA/2. ,UPLIM,AERR, RERR,
ERROR,IER)-1.

IF THE DIFFERENCE BETWEEN THE TWO EXTREME FUNCTIONS IN THE
SECANT METHOD 1S < EPS THEN WRITE WARNING MESSAGE AND QUIT
TIP ANGLE COMPUTATION LOOP. USE THE LAST COMPUTED ANGLE
ALPHA AS THE TIP ANGLE.

.‘l"".
ALY

-
+

|~
noonon

IF(ABS(F-F1).LT.EPS)THEN
. WRITE(3,23)
FORMAT(//5X,'F AND F1 DIFFER BY LESS THAN EPS')
g GO TO 20
. ENDIF

N
w

UPDATE THE ANGLE ALPHA USING THE SECANT METHOD.
NEW=CURR-F* (CURR-OLD) /(F~F1)
ERROR CRITERION TO QUIT TIP ANGLE COMPUTATION LOOP.

o000 000

IF (ABS(NEW-CURR).LT.EPS)GO TO 20
WRITE(3,1)NEW
FORMAT(//' NEW ALPHA=',(F10.4)
GO TO 10
NEWDEG=NEW*180./3.14159
WRITE(3,2)NEWDEG
FORMAT(//' ALPHA=',F10.4,' DEGREES' )
CALL COMP(NEW) -
UPLIM= (THETA+NEW) /2.

IF(1-KSQ*SIN(X)*SIN(X)) >= 0 , SET THE UPPER BOUND SUCH THAT
THE EQUALITY HOLDS.

7 .
e
N -
o
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=

NOONOO

& UPTEMP=SORT(1. /KSO)
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IF(CPTEMP.GT... )THEN
UPPER=_..57
ELSE
UPPER=ASIN (UPTEMP)
ENDIF

SET UPPER INTEGRATION LIMIT 70 THE LIMITING BOUND IN EITHER THE

POSITIVE OR NEGATIVE RANGE.

IF(UPLIM.GT.0.0)THEN
IF(UPLIM.GT.UPPER)UPLIM=UPPER
ELSE
IF(UPLIM.LT.-UPPER)UPLIM=-UPPER
ENDIF
ANS=CONST*DCADRE (FLEN, THETA/2.,UPLIM, AERR,
RERR,ERROR, IER)
WRITE(3,7)ANS
FORMAT(//' ANSWER OBTAINED BY INTEGRATION IS ',F10.4)
LOLIM=THETA/2.

COMPUTE TIP DEFLECTIONS OF THE ELEMENT.

XA=CONST*DCADRE (XCOD, LOLIM,UPLIM, AERR, RERR,ERROR, IER)
YA=CONST*DCADRE (YCOD,LOLIM,UPLIM, AERR, RERR,ERROR, IER)
WRITE(3,12)

WRITE(3,11)XA*L,TA%L

FORMAT(//' THE NEW COORDINATES FOR THE TIP IS :'//)
FORMAT(®' XA=',F10.4,' Ta=',F10.4//)

WRITE(3,13) .

FORMAT(//2%,'ND."',9%, 'THETA (RADIANS)',BZX,'XCO0OD',b10ZX,
*YCooD'//)

COMPUTE DEFLECTIONS OF ELEMENT NEARER THE TIP.

COONT=1.

DO 21 J=1,10

LLIM=NEW/(2.*COUNT)+LOLIM

XCOOD=CONST*DCADRE (XCOD,LLIM,UPLIM, AERR, RERR,ERROR,IER)
YCOOD=CONST*DCADRE (YCOD,LLIM,UPLIM, AERR, RERR,ERROR, IER)
WRITE(3,9)J,LLIM,XCOOD, YCOOD
FORMAT(/13,5%X,E20.6,5X,F10.4,5%X,F10.4)

COUNT=COUNT+0.1

CONTINUE

COMPUTE DEFLECTIONS OF ELEMENT NEARER THE BASE.

DO 22 J=3,6 .

LLIM=NEW/(2,.*FLOAT(J))+LOLIM

XCOOD=CONST*DCADRE (XCOD,LLIM,UPLIM, AERR,RERR, ERROR, IER)
YCOOD=CONST*DCADRE (YCOD,LLIM,UPLIM, AERR, RERR, ERROR, IER)
M=J+8

WRITE(3,9)M,LLIM,XCOOD*L, TCOOD*L

CONTINUE

CONTINUE

STOP

END

KRR RN AR AR TR R TR RN AR RRRARENAANREERER

* FUNCTION FLEN TO COMPUTE THE INTEGRAND *

HEE AR TR TR R TR AN R TR AR RARNRRRANRTRRAAR SRR A L

FUNCTION FLEN(X)

REAL X,KSQ

COMMON /AREA3/DL,C,THETA,KSQ,CONST
DEFN=1,-KSO*SIN(X)*SIN(X)
IF(DEFN.LT.0.0)DEFN=]1.E-4
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! ]
N FLEN=1/SQRT(DEFN)
DY RETURN
END
_ c
ﬁ C YT 2222222232222 R 2 22X 2 2 2 2 X 2 4 2 0 0 R &0l tl
’ c * SUBROUTINE COMP TO COMPUTE THE *
c * INTERMEDIATE VALUES FOR THE .
. c * INTEGRATION *
".-: C I 2222222222222 222 A X2 2 2 2 X R dl il dh gt
R c '
SUBROUTINE COMP(CURR )
REAL CURR,THETA,KSQ,CONST
. REAL BETA,L,STIFF,P,W,D,MBBAR
W COMMON /AREAl/BETA,L,STIFF,P,W,D,MBBAR

~ COMMON /AREA3/DL,C,THETA,KSQ,CONST

. PL=-P*COS (CURR) +W*COS (BETA)

L PBsP*CIN(CURR)-W*SIN(BETA)

R PLBAR=PL*L*L/STIFF
PBBAR=PB*L*L/STIFF

~ A=2,*PLBAR

- B=2.*PBBAR

U C=-2.*PLBAR*COS (CURR)+2.*PBBAR*SIN(CURR)+MBBAR*MBBAR
DL=SQRT(A*A+B*B)

- THETA=ATAN2(B,A)

: RKSQ=2.*DL/(C+DL)

- CONST=2./SQRT(C+DL)

RETURN

END

]
st

PYTITA22 2222222222 2R 2 22 R 22 2 2 2 2 a R it s

* FUNCTION ZCOD TO COMPUTE THE *
* INTEGRAND FOR THE COMPUTATION *
* OF THE TIP AND INTERMEDIATE *
* X~COORDINATE *

AR AR AR T RR R R RN AN RN EERRRRRRARARNRIR AN RARK
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- FUNCTION XCOD(X)

R REAL X
COMMON /AREA3/DL,C,THETA,KSQ,CONST
XCOD=COS (2. *Z-THETA) *FLEN(X)

. RETURN
~ END
o
C I 2 2 2 3222222222222 22 XL Y22 X 2 XXX 42 2 2 242 & & &
g c * FUNCTION YCOD TO COMPUTE THE *
- o * INTEGRAND FOR THE COMPUTATION *
c * OF THE TIP AND INTERMEDIATE »
L. (o * Y-COORDINATE *
.: C Py Y 2 2R 2222X222 2222 22X 222X 22X 2 22 2 2 2 24
) c
FUNCTION YCOD(X)
A_‘. RBAL X
- COMMON /AREA3/DL,C,THETA,KSQ,CONST
> YCOD=SIN(2.*X~THETA)*FLEN(X)
RETURN
’ END
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APPENDIX C
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LA AL A4 422l sl 22 2 222 "2 22" 2°2"3

* MAIN PROGRAM BEGINS *

AR AR RN A AR R TR AR A AT RN RNRARCTRA TN

INTEGER IER

REAL DCADRE,AERR,RERR,ERROR,F,Fl1, NEW,CURR,OLD,LLIM

REAL BETA,L,STIFF,P,W,D,PL,PB,MB,PLBAR, PBBAR,MBBAR

REAL A.B,C,DL,THETA,KSQ,CONST ,EPS, XA, YA ,NEWDEG,PLD

REAL LOLIM,UPLIM,M0,X(10),¥(20),ALPHA(10),XXX(10),YYY(20)
REAL LEN(10),EI(10),INTLD(10),SLFWT(10),DLRAT(20)

REAL EXTMOM(10)

EXTERNAL FUNCTIONS FOR THE INTEGRATION SUBROUTINE DCADRE.
EXTERNAL FLEN,XCOD,YCOD

COMMON BLOCKS BETWEEN FUNCTIONS, SUBROUTINES AND THE MAIN PROGRAM
FOR THE DATA TO BE COMMUNICATED.

COMMON/AREALl/BETA,L,STIFF,PA,W,D,MBBAR
COMMON /AREA3/DL,C,THETA,KSQ,CONST

DEFINE ERROR LIMITS AND TOLERANCES,

EPS=1.0E-S
AERR=0.0
RERR=]1_.0E-2
DEL=0.2

INITIALLY ASSUMED GLOBAL COORDINATES OF LOAD.

GLIP=0.0
GLYP=0.0

READ IN DATA OF LOAD , LINK JOINING LIFTING ELEMENTS AND END
EFFECTOR AND THE LAST LIFTING ELEMENT.

READ(1,*)WL,RL,XL,YL,H,RB

READ IN TRANSFORMATION MATRICES FOR EACH OF THE LINKS IN THE
LIFTING ELEMENTS.

DO B2 K=2,6,2
READ(1,*)X(K),¥(K) ,ALPHA(K)
CONTINUE

READ IN GEOMETRY AND LOADS ON EACK OF THE LIFTING ELEMENTS.

DO B8l KR=1,4
READ(1,*)LEN(K) ,EI(K),INTLD(K),SLFWT(K),DLRAT(K) , EXTMOM(K)

ITERATIVE LOOP TO DETERMINE THE GLOBAL LOAD POSITION DUE TO A
SET OF PRESSURES.

SET ANGLE AT WHICH SHEAR LOAD AND SELF WEIGHT ACTS TO 180
DEGREES FOR THE FIRST ELEMENT.

CONTINUE
BETA=3.14159

LOOP TO DETERMINE THE LOCAL (X,Y) COORDINATES FOR THE TIP OF
EACH ELEMENT.

ALPSIIM=0.0

A YA MY SLALNL Sa Sl Al ol et ol Gt At ey -
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DO 8BS K=i1,4
L=LEN(K)

STIFF«EI (K)
PA=INTLD(K)

Sy
et

SHEAR LOAD AND SELF WEIGHT ACTING ON ELEMENT K.

.
a¥aXa

WaWL+SLFWT(K)

w- DBYL=DLRAT(K)

KN MO=EXTMOM(K)

* DaDBYL*L
MB=PA*D+M0

E; MBBAR=MB*L/STIFF

INITIALLY ASSUMED EXTREME ANGLES FOR THE SECANT METHOD.

oOonn

. CURR=0./180.*3.14159
L NEW=175./180.*3.14159
) CALL COMP(CURR)

UPLIM=(THETA+CURR) /2.

IF(1-KSQ*SIN(Z)*SIN(X)) >= 0 SET THE UPPER BOUND SUCH THAT
THE EQUALITY HOLDS.

(e XeNgXe]

f UPTEMP=SQRT(1./KSQ)

' IF(UPTEMP.GT.1.) THEN
UPPER=1.57

; ELSE

< UPPER=ASIN(UPTEMP)

- ENDIF

SET UPPER INTEGRATION LIMIT TO THE LIMITING UPPER BOUND IN
EITHER THE POSITIVE OR NEGATIVE RANGE.

o
(e NaXaNel

IF(UPLIM.GT.0.0)THEN
) 1F (UPLIM.GT.UPPER) UPLIMsUPPER
.:- ELSE
o IF(UPLIM.LT.~UPPER)UPLIM=~UPPER
ENDIF
LOLIM=THETA/2.
. F=CONST*DCADRE ( FLEN,LOLIM,UPLIM, AERR,
B + RERR,ERROR, IER)~1.

ITERATIVE LOOP TO DETERMINE THE TIP ANGLE ALPHA IN EACE ELEMENT.

~0OnNnon

0 Fl=F
OLD=CURR
- CURR=NEW
- CALL COMP(CURR)
= UPLIM= (THETA+CURR) /2.

IF(1-KSQ*SIN(X)*SIN(X)) >= 0 , SET THE UPPER BOUND SUCH THAT
THE EQUALITY HOLDS.

[aNaXaNp!

UPTEMP=SQRT(1./KSQ)
) IF(UPTEMP.GT.1l.) THEN
5 UPPER=1.57
.. ELSE
UPPER=ASIN(UPTEMP)
. ENDIF

SET UPPER INTEGRATION LIMIT TO THE LIMITING BOUND IN EITHER
THE POSITIVE OR NEGATIVE RANGE.

Nnonon

IF(UPLIM.GT.0.0)THEN
- IF(UPIL.IM.GT . IIPPER)IIIDT.TMaTIPDRR

o« -
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LOLIM=THETA/2.
FeCONST*DCADRE (FLEN,LOLIM ,UPLIM, AERR,RERR,
- ERROR,IER)-1,

T

§ 3
e

- ELSE N
- IF (UPLIM.LT.~UPPER)UPLIMe-UPPER N
A ENDI F :.‘
i

.

ol

L

IF THE DIFFERENCE BETWEEN THE TWO EXTREME FUNCTIONS IN THE
SECANT METHOD IS < EPS THEN WRITE WARNING MESSAGE AND QUIT
TIP ANGLE COMPUTATION LOOP. USE THE LAST COMPUTED ANGLE

ALPHA AS THE TIP ANGLE.

_4
28
OO0 NNO

IF(ABS(F-F1).LT.EPS)THEN
WRITE(3,23)
23 FORMAT(//5Z,'F AND F1l DIFFER BY LESS THAN EPS')
GO TO 20
" ENDIF

UPDATE THE ANGLE ALPHA USING THE SECANT METHOD.
NEWsCURR-F* (CURR-OLD) /(F-F1)
ERROR CRITERION TO QUIT TIP ANGLE COMPUTATION LOOP.

a0 aoo0non

) IF (ABS(NEW-CURR).LT.EPS)GO TO 20
17 WRITE(3,1)NEW
l FORMAT(//' NEW ALPHA=' Fl10.4)
. GO TO 10
o 20 NEWDEG=NEW*180./3.14159
- WRITE (3, 2)NEWDEG
2 FORMAT(//' ALPHA=',F10.4,' DEGREES' )
. CALL COMP(NEW)
.i UPLIM= (THETA+NEW) /2.

IF(1~-KSQ*SIN(ZX)*SIN(X)) >= 0 , SET THE UPPER BOUND SUCE THAT
THE EQUALITY HOLDS. .

.
5.

o000

-

UPTEMP=SQRT(1./KSQ)

1F(UPTEMP.GT.1. ) THEN
DPPER=1.57

[ ] ELSE

=~ UPPER=ASIN(UPTEMP)

ENDIF

»» -
1

SET UPPER INTEGRATION LIMIT TO THE LIMITING BOUND IN EITHER THE
POSITIVE OR NEGATIVE RANGE.

NnNOonNn

» IF(UPLIM.GT.0.0)THEN
- IF (UPLIM.GT.UPPER)UPLIM=UPPER
- LSE
IF (UPLIM.LT.~UPPER)UPLIM=-UPPER
ENDIF
" LOLIM=THETA/2.
% ANS=CONST*DCADRE (FLEN,LOLIM, UPLIM, AERR,
+ RERR,ERROR, IER)
WRITE(3,7)ANS
: FORMAT(//' ANSWER OBTAINED BY INTEGRATION IS ',F10.4)
- LOLIM=THETA/2.
XA=CONST*DCADRE (XCOD,LOLIM,UPLIM, AERR, RERR, ERROR, IER)
- YA=CONST*DCADRE (YCOD,LOLIM,UPLIM, AERR, RERR, ERROR, IER)

L)
-~

STORE TIP DEFLECTIONS AND CLOCKWISE ANGLE ROTATION IN
ARRAYS X,Y AND ALPHA.

™
o000 n

X(2*K-1)=XA*L
VI(OXK=1)1=VA>T,

.
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ALPHA(2*K-1)=-NEW

TOTAL CHANGE IN ANGLE FROM THE SUPPORTING BASE.
ALPSUM=ALPSUM+NEW

WRITE THE TIP DE?LECTIONSOOF THE ELEIMENT IN THE LOCAL COORZSINATE
SYISTEM.

WRITE(3,21)X(2*K~1),¥(2*K~1)
FORMAT(//5X,'ZTIP="' ,F7.3,5X, '¥YTIPs"' ,F7.3)

UPDATE THE ANGLE AT WHICH THE DEAD LOAD ACTS.

IF(K.NE.4)BETA=BETA-NEW
CONTINUE

CALL TO TRANSFORM TIP DEFLECTIONS IN LOCAL COORDINATE SYSTEM
TO GLOBAL COORDINATE SYSTEM.

CALL TRANS(ZX,Y,ALPHA,XXX,YYY,4)
WRITE GLOBAL TIP DEFLECTIONS OF ELEMENTS.

DO B3 Ksl,4
WRITE(3,115)K,XXX(K),K,TYY(K)
CONTINUE

FORMAT(//5XZ, 'GLTPXEL(',I12,')=',F7.3,5%, 'GLTPYEL(',I12,")=", A
F7.3)

COMPUTE COORDINATES OF LOAD.
RTPL=2.*RB+H+RL

PSI=ATAN2 (XL,RL+YL)

GLXC=XXX (4 )+RTPL*SIN(ALPSUM+PSI)
GLYC=YYY(4)-RTPL*COS (ALPSUM+PS1I)

CRITERION TO QUIT GLOBAL LOAD POSITION ITERATION DUE TO
A SET OF PRESSURES.

IF((ABS (GLXC-GLXP).LE.DEL) .AND. (ABS (GLYC-GLYP) .LE.DEL) )GO TO 86

il R

e S

UPDATE EXTERNAL MOMENT IN EACH ELEMENT DUE TO LOAD.

P

T

DO 84 I=1,4
EXTMOM(I )= (SLFWT(I)+WL)*(YYY(I)-GLYF)
CONTINUE

UPDATE GLOBAL LOAD POSITION.

GLZP=sGLXC
GLYP=GLYC
GO TO 87

!
'_1
X
.
t o

WRITE FINAL GLOBAL LOAD POSITION DUE TO A SET OF PRESSURES.

WRITE(3,22)GLXC,GLYC

FORMAT(//5X,'GL. XCOOD. LD.=',F10.4,5%X,'GL. YCOOD. LD.=',F10.4)
STOP

END

AR R TR R R TR R R TR R AR R RN R AR AR R RN TR IR TR NRARRRRS

* FUNCTION FLEN TO COMPUTE THE INTEGRAND *

LA A LA AR AR LAl Sl Et X AR 2R R R R0 TR R 2 2P R R R R L N

FUNCTION FLEN(ZX)
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- REAL X,KSQ
s COMMON /AREA3/DL,C,THETA,KSC, CONST
DEFN=1.~KSQ*SIN(X)*SIN(X)
: IF (DEFN.LE.Q.0)DEFN=].0E-4
Sl FLEN=1./SQRT(DEFN)
RETURN
END

(2222222 22222 t2 it sl if2 2222 dXZX22X R a2l

* SUBROUTINE COMP TO COMPUTE THE *
* INTERMEDIATE VALUES FOR THE *
* INTEGRATION *

AR TR TR AT R RARA AN AR AR R AR R AR AT NN
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‘ SUBROUTINE COMP({CURR)

. REAL CURR,THETA,KSQ,CONST

b - REAL BETA,L,STIFF,P,W,D,MBBAR

- COMMON /AREAl/BETA,L,STIFF,P,W,D,MBBAR
COMMON /AREA3/DL,C,THETA,KSQ,CONST

., PL=*-P*COS (CURR ) +W*COS ( BETA)

S PB=P*SIN(CURR)=-W*SIN(BETA)

o PLBARePL*L*L/STIFF

PBBAR=PB*L*L/STIFF

N A=2,*PLBAR

5 B=2.*PBBAR

il . Ce-2,*PLBAR*COS (CURR)+2.*PBBAR*SIN (CURR)+MBBAR*MBBAR
DL=SQRT(A*A+B*B)

.- THETA=ATAN2(B,A)

. KSQ=2.*DL/(C+DL)

. CONST=2./SQRT(C+DL)

RETURN

END

AR A R E TR AT RE RN AR R RARANRA R NN

* FUNCTION XCOD TO COMPUTE THE *
* INTEGRAND FOR THE COMPUTATION *
* OF THE TIP Z-COORDINATE *
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h FUNCTION XCOD(X)

- REAL X

) COMMON /AREA3/DL,C,THETA,KSQ,CONST
ZCOD=COS (2. *X~THETA) *FLEN (X)

= RETURN

: END

CEa me
)
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* FUNCTION YCOD TO COMPUTE THE *
* INTEGRAND FOR THE COMPUTATION *
* OF THE TIP Y-COORDINATE *

AR RN R R RN R AR N AT RN RN RRARCRRAA AR RNRR .

[aXeReNeXaNaNeXs]

FUNCTION YCOD(ZX)
l . REAL X

COMMON /AREA3/DL,C,THETA,KSQ,CONST
G YCOD=SIN(2.*X-THETA)*FLEN(X)
RETURN
END

R R AR R AR AR RRTR TR RRARRRRRNRRRR AR R R

* SUBROUTINE TRANS TO TRANSFORM *
* THE LOCAL COORDINATES TO THE *
* GLOBAL COORDINATES *
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SUBROUTINE TRANSI(Z,Y,ALPHA, XXX ,YY¥Y JELEM)
REAZ X(10),Y(10),ALPHA(10),TRAN(3,3),TEMP(3,3),TRAN2(2,3)
REAL XXxx(10),7YYY(10)

INITIALIZE TRANSFORMATION MATRIX TO AN IDENTITY MATRIZ.

DO 11 I=1,3
DO 22 J=1,3
IF (1.EQ.J) THEN
TRAN(I ,J)=1.
ELSE
TRAN(1,J)=0.
ENDIF
CONTINUE
CONTINUE

GLOBAL AND LOCAL COORDINATES FOR FIRST ELEMENT COINCIDES.

xxx(1)=X(1)

YYY(1)=¥(1)

DO 15 J=2,1ELEM

DO 10 1=2*J-3,2*(J-1)
CALL UTOI(X(1),Y(I),ALPHA(I),TEMP)
CALL TMULT(TRAN,TEMP, TRAN2)

UPDATE TRANSFORMATION MATRIX TILL ELEMENT(J-1) AND
THE RIGID LINK AFTER IT.

DO 51 II=1,3
DO 50 JJ=1,3
TRAN(II,S5J)}=TRAN2(11,3J)
CONTINUE
CONTINUE
CONTINUE

COMPUTE GLOBAL TIP COORDINATES FOR ELEMENT J.
XXX(J)=TRAN(1,1)*X(2*J-1)+TRAN(1,2)*7(2*J-1)+TRAN(1,3)

YYY(J)=TRAN(2,1)*X(2*J-1)+TRAN(2,2)*Y(2*3~1)+TRAN(2,3)
CONTINUE

RETURN

END

L2 2 3A 22 2222322222222 222X22222222222d2 222 %]
*  SUBROUTINE UTO! TO FORM THE *
*  TRANSFORMATION MATRIZX BETWEEN *
*  FRAME (I) AND FRAME (I-1) *

L2 222222 42 ddd i ddfsissdl st il sl gl )

SUBROUTINE UTOI(X,Y,ALPHA,IFORM)
REAL X,Y,ALPHA,IFORM(3,3)
IFORM(1,1)=COS (ALPHA)
IFORM(2,1)==SIN(ALPHA)
IFORM(3,1}=0.0
IFORM(1,2)=SIN(ALPHA)
IFORM(2,2)=COS(ALPHA)
IFORM(3,2)=0.0
IFORM(1,3)=X
IFORM(2,3)=Y
IFORM(3,3)=1.0

RETURN

END

LA 2222 A 22ttt i il isdi sl XXX 2 2 22 2

* SUBROUTINE TMULT TO MULTIPLY *
* TWO MATRICES *

.
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SUBROUTINE TMULT(BRELA,CRELB,CRELA)
REAL BRE~A(J 3),CRELB(3,3), CREHA(B 3)
DO 10 1=1,3
DO 20 J=1,3
~A(Z,:)- BRELA(I,1)*CRELB(.,J)+BRELA(I, 2"
CREHB(Z J)+BRELA(I,3)*CRELB(Z,C)
CONTINUE
CONTINUE
RETURN
END
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