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SUMMARY

This is the second year report which is a part of a three-

year study on compliant robotic structures. Such structures are
constructed of continuously flexible elastomeric tubes that

extend, bend or twist when pressurized. The motion of each tube

element under pressure depends on its directional stiffness,

achieved through the orientation of wall corrugations and

reinforcement. Tube elements placed in series or parallel are

being designed as robotic fingers and arms that are fast-acting

and have potential payload to self weight ratios as high as 10/1

for laboratory-scale models and up to 3/1 for full-scale

prototype arms.

The first two years of this study have involved the

formulation and solution of mathematical models for the

mechanical behavior of single and multiple elastomeric

structures. The formulation of these models has been tempered by

- the knowledge of the muscle morphology and function in animal

hydrostats. In this regard, Chapter I describes fourteen soft

animal parts (worm bodies, cephalopod appendages, and vertebrate

tongues) and the mechanical principles operating in these

structures as they move during muscle contractions. Chapter II

presents a general, nonlinear mathematical model of orthotrophic

cylindrical shells that undergo large rotations when pressurized.

,- * The numerical solutions may be directly employed in the design of

rugged, lightweight actuators to achieve wrist action.
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Chapter III deals with three topics: the detailed elastic

analysis of the load-deformation behavior of bellows; the use of

.4. this general analysis in the design of strings of bending

elements suitable for use as robotic arms; and a general analysis

of the elastica,or the finite deformation patterns achieved in

cantilevered element strings (or arms) under internal pressure

and end forces due to its payload. This report ends with a brief

description of a novel compliant, robotic arm based on satellite

bellows elements, analogous to the longitudinal muscles in the

appendages of animal hydrostats.
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Chapter I

MUSCLE MORPHOLOGY AND FUNCTION IN

N ANIMAL HYDROSTATS

Lisa J. Croner

INTRODUCTION

This chapter Is about muscle. In particular, it presents an overview
of a zoologist's understanding of how muscles work in a variety of
animals' sort parts, In the hope that animal structure can serve as a
source or Ideas for the design or flexible robotic manipulators. I have
been asked by the engineers Involved in the design of flexible manipulators
to consider soft animal Darts as muscular beams which undergo various
contortions when selected muscles contract To this end, I devote the
first two parts of the chapter to a description or representative
cross-sections or fourteen sort, roughly cylindrical animal parts, and to a
discussion of the simple mechanical principles operating In these
structures when the muscles In them shorten.

In the third part of the chapter I present a brief discussion of
remaining questions which are likely to be relevant to animal-inspired
flexible robot design. I present these questions here to suggest subjects
ripe for analysis In future Incarnations of this project.
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"4 MECHANICS OF MUSCULAR HYDROSTATS

Oener~,/ Prtclphes

Muscle is familiar to us as the tissue whose activity results in
animal motion. In simple terms, a muscle cell is an elongated body which
contains a constant volume of cytoplasm and which has the ability to
become shorter and fatter forcefully when stimulated electrically. This
shape change of the individual muscle cell is converted into a shape change
of a body part when many muscle cells pull and push on the tissues
surrounding them. The stiffness, elasticity, and other material properties
of these tissues are thus extremely important in determining the body
changes resulting from a muscle contraction.

"Muscular hydrostats" are animal structures in which cell cytoplasm
and/or the constant volume of soft tissue act(s) as a hydrostatic skeleton
to transmit the work of contracting muscle (Kier, 1983). Worm bodies,
cephalopod appendages, and vertebrate tongues are examples of muscular
hydrostats. The tissues comprising them are deformable and make up a
constant volume of material. The contraction of muscles surrounding and
embedded in such tissue causes changes in the dimensions of the animal
structure; because the volume is constant, this results in changes in other
dimensions of the structure. This idea is now the basis for the standard
analysis of movement in soft-tissue, constant volume structures

... (Chapman, 1958; Chapman, 1975; Clark, 1964; Kier, 1983; Kier and Smith,
1985; Wainwright, 1982).

kt Two generalizations can be made about the muscular hydrostats I
will describe. These generalizations facilitate the development of a
model which can be used to explain the movements of these structures.
First, they are all either roughly cylindrical in shape or consist of two
cylinders separated by a membrane. Second, the muscles in these
structures are found oriented in any of three directions (Figure I).
Muscles may be oriented parallel to the long axis of the cylindrical
structure; these are "longitudinal" muscles. Muscles may be oriented
perpendicular to the long axis of the structure in "circular", "transverse"
or "radial" arrays. Muscles may wrap around the periphery of the
structure at an oblique angle to the long axis; these are "oblique" muscles
(Kier and Smith, 1985).

Muscular hydrostats are capable of making any of four basic
movements. They may extend, shorten, bend, and/or twist. The

L. arrangement of muscles within the structures determines the mechanical

principles utilized in producing these movements. These principles have

F.
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been described by various researchers. Most recently, Kier and Smith
(1985) have outlined the mechanics of muscular hydrostats, and the
following discussion reflects in large part their views.

Elongation

Elongation of a soft, constant volume cylinder occurs when its
cross-sectional area decreases. A decrease in cross-sectional area is
produced by the contraction of muscles perpendicular to the long axis of
the cylinder. Hence, one would expect to find circular, radial, or
transverse muscles in soft, cylindrical animal parts which are known to
elongate.

The contraction of oblique muscles oriented at an angle o greater
than 54044, to the long axis of the cylinder will also cause elongation.
Figure 2 demonstrates why this is so. A constant volume cylinder wrapped
for one turn by a single oblique fiber is slit longitudinally to display the
surface as a flat sheet, as shown in Figure 2B. The length, radius, and
volume of a right circular cylinder in relation to o are respectively

L = D coso
r = D sino/21-
V = nr 2L

where D Is the length or the oblique fiber. Substituting for r and L, the

volume Is

V = D3 sln2 o cos/4Tj.

The oblique fiber length is then

* . D = (4vV/sin2 o coso) 1/ 3,
.'." and

SD/V 113 = (4T/sin2 coso) 11 3.

For a constant volume, D/V113 varies directly with D and thus serves as a
"fiber length parameter".

The fiber length parameter can now be plotted against fiber angle o;
such a plot is shown in Figure 2C. The fiber is shortest when the fiber
angle is 54044, and increases in length as the angle approaches 00 or 900.

V::
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The shortening of a fiber oriented at less than 54044 will increase the
fiber angle, and will thus result in a decrease in the length of the cylinder.
The shortening of a fiber oriented at greater than 54044 will decrease the
fiber angle, thus resulting In an Increase in the length or the cylinder.
Therefore, oblique musculature can contribute to elongation and shortening
or cylindrical muscular hydrostats.

The amount and speed of elongation produced by a given decrease In
IL diameter are affected by the ratio or the length to the width of the

cylinder. This Is demonstrated as follows. Consider a right circular
cylinder or constant volume,

'" V = Tid2 L/4 = TWO 2L0/4

S""where d and L are the diameter and length respectively, and the subscript

zero denotes initial dimensions. The diameter-length relationship is
therefore

did0 = (L0L)1/2

" .i This relationship is plotted in Figure 3. Suppose that the initial state,

* where d/do = L/Lo = I, is designated as position A on the plot, and that

initially the diameter is one-half the length, or do = Lo/2, as shown by

cylinder A. Then, if the diameter is increased by a factor of two (d - 2do),

the length must decrease by a factor of four (L = Lo/4), as shown by

cylinder B. However, if the diameter Is decreased by a factor of two, the
, c-: length increases fourfold, as shown by cylinder C.
" "-' It is clear from Figure 3 that a given decrease In diameter produced

by action of radial, circular, or transverse muscles causes a greater
*: ,change in length in a cylinder with a relatively high length/diameter ratio

than in one with a lower ratio. The speed of elongation is similarly
greater In cylinders with high length/diameter ratios. Therefore, it takes
a smaller amount of radial, transverse, or circular muscle contraction to
elongate a relatively long and thin cylindrical muscular hydrostat than it
does to elongate a shorter and fatter one. One would expect, then, soft,
cylindrical animal parts which elongate a great deal to be long and thin.

t
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Shortening

Shortening is produced by the contraction of longitudinal muscles or
of oblique muscles oriented at less than 54044 to the long axis (Fig. 2).
The amount of extension determines the amount of longitudinal muscle

1011 contraction necessary to shorten a muscular hydrostat. The longitudinal
muscles of an extensible structure may have to operate over a range of
300% extension and contraction. Obliquely striated muscle cells are
thought to be capable of operating over this range (Lanzavecchia and
Arcidjacono, 1981).

The muscle cells of some long, thin, extensible structures,
however, are not obliquely striated, and cannot function beyond
elongations of roughly 40% (Rice, 1973 ). The contribution of these
muscles to shortening an extensible structure can be increased if the
lornitudinal muscles are longer than the structure itself--in other words,
if the longitudinal muscles running through an appendage insert more
deeply in the body of the animal than does the appendage itself. For
example, a longitudinal muscle 1.4 times the length of the structure it
shortens will undergo a 40% elongation during an 80% elongation of the
structure.

Bending

Bending of a cylindrical muscular hydrostat is produced by the
simultaneous contraction of the longitudinal muscles on one side of the

- cylinder and the circular, radial, or transverse muscles perpendicular to
the long axis. The material properties of tissues composing the muscular
hydrostats I will discuss are such that contraction of the longitudinal
muscles alone would result in a shortening and widening of the cylinder.
Contraction of circular, radial, or transverse muscles prevents the
diameter of the cylinder from increasing, and thus prevents shortening
from occurring. In this case, contraction of longitudinal muscles can only
shorten one side of the cylinder, and thus the cylinder bends. If
longitudinal muscles are placed along the periphery of the cylinder, the
bending moment exerted by a given contraction of these muscles is greater
than it would be if they were placed closer to the center of the cylinder.
Animals that have soft cylindrical parts with both longitudinal muscles
and circular, radial, or transverse muscles and with the longitudinal
muscles located just beneath the skin of the structure would probably,

-'.4
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therefore, include forceful bending as part of the animals' repertoire of
motions.

Longitudinal muscles located close to the axis or center of the
cylindrical structure can also contribute to bending. For a given amount of
contraction, they will do so with a smaller mechanical advantage than
longitudinal muscles located more peripherally. They will also, however,
do so more quickly, and thus with a greater "speed advantage". One would
expect that longitudinal muscles in a structure that bends very quickly and
without need of great force would be found near the central axis of the
structure.

Twisting

Twisting is produced by the contraction of obliquely oriented
muscle fibers. The direction of twisting depends on the handedness of the

, oblique muscles. If right- and left-handed oblique muscles contract
independently, both clockwise and counter-clockwise twisting is possible.
If they contract simultaneously, the structure will resist twisting in both
directions.

As described above, oblique muscle contraction may also cause
elongation and shortening of a structure, depending on the longitudinal
angle of these muscles. At 5444, these muscles are at their minimum
length; contraction of muscles at this angle will not cause shortening or
elongation of the cylinder, but only twisting.

If oblique muscles are placed along the periphery of the cylinder,
ph the moment through which the torque is applied for a given contraction is

greater than if the oblique muscles are placed more centrally. Therefore,
one would expect oblique muscles used for twisting to be located close to
the skin of the structure.

.-7
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WORM BODIES, CEPHALOPOD APPENDAGES, AND VERTEBRATE
TONGUES

The discussion so far has focussed in a general way on the
mechanical principles operating in cylindrical muscular hydrostats. In
this section I will consider how these principles operate in fourteen

' "flexible animal parts. These structures include some of the appendages of
cephalopods (the squid arm, the squid tentacle, the chambered Nautilus
cirrus, and the Octopusarm), some vertebrate tongues (those of
pangolins, lizards, and cats), and the bodies of some worms (horsehair
worms, leeches, the nematode Ascarls, earthworms, two genera of
polychaetes, and the onychophoran Per/patus).

The muscle organization in each of these structures takes one of
-* :-'_. three forms. The structures contain 1)longitudinal muscles only, 2)

longitudinal muscles and transverse, radial, or circular muscles, or 3)
longitudinal muscles; transverse, radial, or circular muscles; and oblique
muscles. This represents, in a sense, a progression of muscle
organization, in which versatility of motion increases with the addition of

.*.. each kind of muscle. This does not represent an evolutionary progression,
but simply a useful organizing principle. The structures will be discussed

* iwith reference to this progression.

Structures with L ongitudinal Muscles Only

In the generalized muscular hydrostat discussed above, the
i. contraction of longitudinal muscles can cause shortening or can contribute

to bending. However, the absence of muscles whose contraction could
d,. exert transverse tension complicates matters in structures with only
S""longitudinal muscles.

Shortening requires subsequent elongation to return contracted
longitudinal muscles to their resting lengths. Elongation results from a

"- decrease in diameter caused by the contraction of radial, circular, or
transverse muscles. Elongation can also result from elasticity of tissue
deformed by shortening. If these muscles are absent and tissue elasticityis not significant, elongation cannot occur. Shortening would therefore be

a devastating motion for such animals to make, and one would expect them
to devise mechanisms, either neural or mechanical, to prevent this.

Bending requires that some mechanism prevent an increase in
diameter while longitudinal muscles on one side of the hydrostat contract.
The prevention of an increase in diameter need not be an active muscular

. process, but can result from mechanical properties of tissue surrounding

ill
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the hydrostat. By preventing an increase in diameter, tissue with
appropriate properties would also prevent shortening.

Thus one would expect that cylindrical muscular hydrostats with
longitudinal muscles only might be incapable of shortening, capable of
bending, and surrounded by material which would prevent increases in
diameter.

Gordius (Figure 4) and Ascaris (Figure 5) represent two phyla of
worms, Nematomorpha and Nematoda respectively, whose members
function with muscles oriented only longitudinally. Ascarismoves by
thrashing its way through viscous media (Sherman and Sherman, 1 976).
6ordiusswims or crawls by means of whiplike motions (Barnes, 1980). A

- thick cuticle surrounds the bodies of these worms, and it is thought that
this cuticle causes the muscles on the dorsal and ventral sides of the

.. worms to act as antagonists (Sherman and Sherman, 1976). In Ascars,
the contraction of longitudinal muscles on one side of the worm does not
cause shortening because the thick cuticle resists the increase in width

1" associated with shortening. The cuticle is composed of several layers of
inextensible fibers, presumably collagen, which wrap in right- and

S"-, left-handed helices around the worm. These fibers are wrapped at an
average angle of 75030' to the longitudinal axis (Harris and Crofton, 1957).

* As described above (Figure 2), hydrostatic pressure pushing against fibers
wrapped around a cylinder at this angle will produce an 'elongation force".
This force is equivalent to that produced by the contraction of oblique

. .muscles wrapped at this angle. There will be no increase in diameter of
the cylinder, and the worm will bend, stretching the longitudinal muscles
on the opposite side to that of the contracting longitudinal muscles.

Eakin and Brandenburger (1974) investigated the fine structure of
gordian worms and found that the cuticle surrounding the body consists of
as many as 36 layers of helically wrapped fibers. Although the angles of
these fibers have not been measured, they are probably greater than

q.. 54044', since this Is required to resist an increase in diameter when
• .hydrostatic pressure increases as a result of longitudinal muscle

contraction. The sequence of events producing the whiplike motion of
Gordlusare likely the same as those producing Ascar/sthrashng.

. - Structures witP Longitudinal and Transverse, Radial, or Circular
- Muscles

, 7Structures with longitudinal muscles and their antagonists, the
circular, radial, or transverse muscles, are capable of elongating,

* . * . % - % . % . -. - - - . , - .. •. -. • ° ,. . - ° • , . . . .
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Figure 4. The Nematomorph worm Goro'ius. a) External view of whole

4 oanimal. Adopted from Barnies, 1980. b) Cross-section. Adopted

from Eak in and B randenbtrgr, 19 74.
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shortening, and bending. The structures I will discuss in relation to this
musculature are the tongues of pangolins (Ian/s), lizards ( Varanus), and
domestic cats (FeIls), and the bodies of leeches (Hirudo), earthworms

4 (L umbricus), and one polychaete (/Vephtys).
Hirudo, L umbricus, and Nepbtys are all segmented worms of the

phylum Annelida. Their bodies are divided into longitudinal sequences of
segments separated from each other by transverse septa. This
arrangement allows each segment to act as a little hydrostat independent
of other segments.

Clark and Clark (1960) investigated the musculature of Nephtys, a
worm which burrows and swims by means of undulatory waves of its body.
Figure 6 is a drawing of two cross-sections of Nephtys Figure 6A shows
the musculature seen within a segment, and Figure 6B shows the
musculature seen in a septum. The longitudinal muscles are clearly
antagonized by the dorso-ventral transverse muscles within a segment;
these muscles prevent an increase in height of a segment when
longitudinal muscles contract to produce bending. It is less clear what
muscles or structures prevent an increase in segmental width, although
Clark and Clark found no increase in width during locomotion. Nephtys
does not shorten and elongate noticeably (personal observation). Certainly

there is not an abundance of transverse muscle to produce elongation.
H/iruodo (Figure 7) and L umbricus(Figure 8) are capable of bending,

shortening, and elongating to incredible extents. They can also move via
peristalsis. The longitudinal and circular muscles of their body walls are
sufficient to produce these movements, as described above. Segmentation
allows for the independent action of individual body segments, and this
allows for peristalsis.

Vertebrate tongues are generally capable of shortening, elongating,
and bending. They are often, though not exclusively, used to gather food
and prey, and may sometimes be required to maneuver both quickly and
forcefully. Pangolins (Figure 9) and lizards (Figure 10) are examples of
vertebrates whose tongues have longitudinal muscles located both
centrally and peripherally. Centrally located longitudinal muscle may
function to increase the speed advantage of shortening, and peripherally

" located longitudinal muscle may function to increase the mechanical
advantage of shortening.

Doran and Baggett (1971) classified mammalian tongues into two
types: intra-oral and extra-oral. Intra-oral tongues are used to
manipulate food inside the mouth, and are capable of less than 50%
extension. Extra-oral tongues are used in addition to gather food outside
of the mouth, and are capable of greater than 100% extension. Intra-oral

,P K
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Figure 6. The polychaete worm A'ep/tys. a) External view of whole

L animal. Adapted from Morris, Abbot, and Haderlie, 1980.

b) Cross-section showing musculature of septum. c) Cross-section

showing musculature of segment. b and c adapted from Clark and

Clark, 1960.
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* Figure 7. The leech Hiruo'o. a) External view of whole animal. Adapted

V from Barnes, 1980. D) Cross-section of oesopn..l region.

c) Cross-section of m id-gut region. b and c adapted from Freeman

and Bracegirdle, 197 1.
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Figure 8. The Anneld earthworm Z UmbtriOuS~ a) External view of whole

animal. Adapted from Wainwright et al, 1976. b) Cross- c~ino

oesophageal region. c) Cross-section of intestinal region. d) Detail
of longitudinal muscle bundles. b, c, and d adapted from Freeman

and Bracegirdle, 197 1.
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Ltongues have relatively low length/diameter ratios, while extra-oral
tongues have relatively high length/diameter ratios.

An example of an extra-oral tongue is that of the pangolin (Figure
9). Pangolins are African mammals that use their tongues to dig for ants
and then to manipulate ants into their mouths. A pangolin tongue has a

S.-' high length/diameter ratio and is very extensible. The longitudinal
muscles of the tongue originate far back in the body of the pangolin and

I stretch into the tip of the tongue. This may be a mechanism for enabling
the longitudinal muscles to retract the tongue after extension, as
discussed in the subsection "Shortening" above.

Although Doran and Baggett's classification was meant to apply to
mammalian tongues, it can be extended to include many other vertebrates'
tongues. Lizards with tongues very similar to that of the monitor lizard
(Varanus) (Figure 10) have been shown to have extensible tongues with
high length/diameter ratios (Kier and Smith, 1985; Smith, 1984).

*. An example of a mammalian intra-oral tongue is that of the
domestic cat (Felis) (Figure 11). Cat tongues have a low length/diameter
ratio and do not extend far out of the mouth.

Structures with L ongitudinal Muscles, Transverse, Padia/, or
Circular Muscles; and Oblique Muscles

Structures with longitudinal muscles, their antagonists, and oblique
muscles are the most versatile of the muscular hydrostats. They may be
capable of shortening, extending, bending, and twisting. Such structures
include the segmented polychaete worm Nereis(Figure 12), the
Onychophoran worm Peripatus(Figure 13), the squid (L o11go) arms
(Figure 14) and tentacles (Figure 15), the chambered Nauti/uscirri

. (Figure 16), and the arms of Octopus (Figure 17).
The arrangement of muscles in these structures directly reflect the

mechanical principles operating in the generalized cylindrical muscular
hydrostat. Longitudinal and oblique muscles are located near the periphery
of the structures to increase the mechanical advantage during bending and
twisting. The cephalopod appendages also have longitudinal musculature

*" located more centrally, implying that they are capable of bending and
*, twisting with an increased velocity advantage also.

..~. ....,........ ............ , * ,%r.,............-.-.. -& .. ,...........-... . -..., . . -''" "'-<-"".'"
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LONGITUDINAL MUSCLE TRANS VERSE MUSCLE

* . Figure 11. Cross-section of the tongue of the domestic cat Fe/is
* Adaped from Kier and Smith, 1985.
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Figure 12. The polychaete worm A'ere, a) External view of whole

animal. Adapted from Morris, Abbot, and Haderl ie, 1980.

L b) Cross-section. Adapted from Freeman and Braegirdle, 197 1.
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SUPERFICIAL LONGITUDINIAL MUSCLE

LETHNE SLOEMSL

LEGHT-HANDED OBLIUE MUSCLE

CIRCULAR MUSCLE -~~

IWI

LONGITUDINAL MUSCLE VIk

TRANSVERSE MUSCLE ~ __ \ ~ i~.

~.11"J 1.5.

bX/M

4 1 7mmA~

Figure 15. The squid Lo/igo. a) External view of whole animal with

tentacles extended. Adapted from Barnes, 1980. b) Cut-away view

of tentacle, showing musculature. From Kier, 1983.
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A

LLONGITUDINAL MUSCLE

RADIAL MUSCLE /

Figure 16. The chambered Nautilus a) External view of whole animal.

L Adopted from Barnes, 1980. b) Cut-away view of cirrus, showing

musculature. From Kier, 1983.
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A

CIRCULAR MUSCLE

EXTERNAL LEFT-IIANDED OBLIQUE MUSCLE d ~ 'S" '

MEDI AL RIGH1 T-HANDED OBLIQUE M USCLE

* ~~LONGITUDINAL MUSCLE / ;/ i'

INTERNAL OBLIQUE MUSCLE

TRANSVERSE MUSCLE .4-.

Figure 17. Qclopous. a) External view of whole animal. bl) cut-away view

of arm, showing musculature. From Kier, 1983.
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CLOSING THOUGHTS

In the analysis presented above, muscle has been considered in the
conceptually simplest way possible--as tissue which shortens and thus
exerts tension. Cross-sections of fourteen different deformable animal
bodies, appendages, and tongues have been discussed in terms of several
simple mechanical principles that must operate during motion of these
structures.

Several questions about the mechanics of such structures remain
unanswered. Is there, for example, a functional difference between radial,
circular, and transverse muscle? In this chapter, these three types of
muscle have been lumped into one category--musculature which is
perpendicular to the longitudinal axis of a model cylinder. It is possible,
however, that circular, radial, and transverse muscles differ in the amount
of work, perpendicular to the long axis, they produce for a given
contraction, and that the directions in which each of these muscles pull is
functionally important.

To answer this question, detailed anatomical data is needed; at
present, such data is lacking. For example, do single cells in circular
muscle wrap all the way around a cylindrical muscular hydrostat in a
circle, or do cells overlap so that no one cell goes all the way around

I although the muscle as a whole does? If the former, then, since the
circumference varies directly with the radius of a circle, a 40%
contraction of circular muscle cells would result in a 40 % decrease in the
radius of the circle enclosed by the muscle; the area of the circle would
vary with the square of the radius. If the latter, a 40% contraction would
result in some smaller decrease in the circumference, the radius, and
hence the cross-sectional area of the circle enclosed by the muscles. The
same question arises when analysing the radial and transverse muscles,
and it is evident that detailed anatomical studies must be performed, and
generalizations and assumptions must be made.

To compare the radial and circular muscles of a right circular
cylindrical muscular hydrostat, assume that circular muscle cells wrap
completely around the circumference, radial muscle cells travel from the
center to the edge of the circular cross-section, and the same number of
cells of each type must contract to produce a given change in radius. Then,
since the circumference of a circle varies directly with its radius, there
is no difference between the decrease in cross-sectional area produced by
a given contraction of the circular or radial muscles.

In addition, the change in area produced by a given contraction of
radial or circular muscles will increase with the size of the circle

. . . . .
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": encompassed by the muscles. Therefore, circular muscles will produce a
larger change in area if they are placed at the periphery of a cylindrical
muscular hydrostat than they will if nearer the center, and radial muscles
will produce a larger change in area if they stretch from the center to the
periphery of the hydrostat than they will if they stretch only part way
across the circular cross-section. In the animal structures presented in
this chapter, circular muscles are always found near the periphery of the
structures (Figures 7, 8, 9, 12, 13, 15, 1 7), and radial muscles send
regular arrays of branches reaching as far to the periphery as possible
(Figure 16).

Transverse muscle is a bit more difficult to analyze. Transverse
muscle cells that pass near the center of the circular cross-section of a
cylindrical muscular hydrostat probably act similarly to radial muscles.
However, analysis of transverse muscle cells placed as chords across the
cross-section nearer the periphery requires knowledge of anatomical
detail which is not available. For example, the vertical and horizontal
muscle bundles might act in perpendicular pairs to exert a diagonal force
on the skin if both members of a pair are connected to the skin. It is
difficult to compare the change in cross-sectional area produced by
transverse muscles with that produced by radial and circular muscles
without detailed anatomical information.

Another question of interest is whether the shape and arrangement
of longitudinal muscle bundles is functionally significant. As shown in
Figure 8D, the longitudinal muscles of the earthworm are arranged as
many rows of oval bundles connected to connective tissue sheets which

.* run longitudinally with the muscle. Many other animals have longitudinal
muscle arranged seemingly randomly in dense arrays of parallel roughly
cylindrical bundles. The significance of these arrangements has not been
addressed in any literature of which I am aware.

How can the information presented in this chapter be used by
designers of flexible robotic manipulators? To date, engineers involved in
this project have designed inflatable plastic tubes whose walls are
constructed so that the tubes bend, twist, elongate, or shorten when they
are inflated. For example, an inextensible fiber oriented longitudinally in
the wall will cause the tube to bend when inflated. Such tubes are not
constant in volume, and they do not contain shortening elements; in these
ways they are unlike muscular hydrostats. However, if one were to film a
partially transparent muscular hydrostat as an opaque muscle bundle
contracted, using a zoom lens so that the length of the muscle remained a

L- constant in the field of view, the film would reveal something similar to
an inflating tube with an inextensible fiber element. The muscle, filmed

•..A~4 . 4,
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., so that it appears with a constant length, would play the part of the fiber
element, and the rest of the structure, growing larger as the camera
zooms to maintain the length of the muscle, would play the part of the
inflating tube. In this way, inextensible fibers in the walIs of inflatable
plastic tubes play a similar role in the tubes to that played by muscles in
muscular hydrostats. The orientation and placement of each determine the
motion of the structure when the tube inflates or the muscle contracts.
An insight to be gained from animal structure is that muscles (or
inextensible fibers) in particular places and in particular orientations can
result in particular motions when the structure (or tube) is activated. One
can conceive of fabulous flexible tubes with fiber elements not only in the
walls, but spanning the interior of the tubes, mimicking the muscular
arrays and actions of animal structures.

Muscle can serve as an even richer source of ideas if the variety of
muscle is considered. Although it is tempting to ignore this variety and
conduct analyses with a generalized view of muscle contraction, the truth
is that muscles are not the same from animal to animal and even from
place to place within the same animal. Muscle contracts because an
electrical impulse, usually via a nerve, sets into motion a sequence of
events which activates the contractile elements in muscle. There is an
infinite number of variations possible in this chain of events. Different
patterns of nervous stimulation can give rise to muscle contractions
which vary in strength and frequency. The manner in which an electrical
impulse is conducted through a muscle cell can determine the time-course
of a contraction. The arrangement of contractile elements in a muscle cell
will determine the force and amount of contraction. The presence or
absence of mitochondria in a muscle cell determines the source of energy
for contraction, and thus affects characteristics of contraction. An
engineer attempting to understand animal muscle structure would be
well-advised to become familiar with these variations. Since it would
require a small book to treat muscle variation even barely adequately, I
refer the interested reader to McMahon (1984), Wilkie (1976), and Hoyle
(1983). These authors treat the subject in detail, and their books may
serve as sources of other relevant references. Consideration of the
differences between muscles will lead to a more complete analysis of
animal structures, and may aid in the choice of materials and method of
control of robotic manipulators.
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Chapter II

FINITE DEFORMATIONS OF NONLINEAR,

ORTHOTROPIC CYLINDRICAL SHELLS
.° ••

Gary Orgill and James F. Wilson

INTRODUCTION

The behavior of cylindrical shells under a variety of loading

combinations and boundary conditions has been the subject of intense study.

* The literature is replete with classical and numerical solutions involving

stress, deformation and buckling mechanisms. Most of the work to date,

- however, involves isotropic, linear, elastic materials where deformations are

assumed to be small. Wilson and Orgill (1985) presented numerical results for

5 small deformations of an orthotropic thin-wall right cylinder made of a

linear, elastic material. Verma and Rana (1983) investigated displacements of

a rotating concrete cylinder with steel reinforcing rods wound around the

cylinder as helices. Reissner (1970) calculated the general expressions for

stress and strain in anisotropic, thin walled cylinders and Lekhnitskii (1963)

.. solved several problems involving linear elastic orthotropic solids. However,

the work involving finite deformations of cylindrical shells, even for linear

*elastic isotropic materials, is sparse. The classical text of Green and

' Adkins (1970), discusses finite deformation analysis for shells from a general

viewpoint. Leonard (1967) solved the particular problem of large aeformations

resulting from inflating a flexible isotropic shell of revolution. Presently

there are several commercial computer codes employing numerical techniques to

solve finite deformation, cylindrical shell problems.

As the use of rubber and other polymeric materials become increasingly

popular in structural design, an analysis is needed that accounts for both

* - .. . . .. . . .-.
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4- geometric nonlinearities arising from finite deformations and material

nonlinearities. In applications using such materials, it may be desirable to

- incorporate helical reinforcement in the cylindrical shell or to model helical

corrugations as ortnotropy of a continuum. A procedure that accounts for sucn

- material and geometric nonlinearities, as well as material orthotropy along

parallel helices oriented at a constant angle to the cylinder's longitudinal

axis, is developed herein. See Fig. 1. Parametric studies show how the

selection of the orthotropic properties will affect the deformation patterns

and how proper selection of such properties can result in an optimal

deformation or load-carrying capacity. First, the problem of axially

homogeneous stress and strain is considered. These results are then extended

to include non-axially homogeneous stress and strain that arise due to end

constraints. The assumption is made throughout this study that the stress and

-strain in the circumferential direction are homogeneous and that the cylinder

maintains a circular cross-section as it deforms. Buckling loads and

post-buckling behavior are not considered.

The loadings on the cylinder are internal pressure, an end load applied

along the longitudinal axis of the cylinder, and a pure torque about the

longitudinal axis of the cylinder, applied separately or in combination. An

incremental analysis technique is used in which small increments of load are

applied to the cylinder at each step and the incremental strain is computed by

assuming linearity over that small range. The change in section properties

such as wall thickness and radius are computed from the strain increments at

eacn step, tnus accounting for the geometric nonlinearities. In addition the

material properties, assumed to be known functions of strain, are updated as

well. After each increment of load is applied, the section properties and

material properties are recomputed. The procedure continues in this fashion

until the desired load level is attained.

i

• .. o. ........... .. .. .. ..
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PART I- AXIALLY HOMOGENEOUS STRESSES AND STRAINS

Incremental Stresses

The stresses and strains are assumed to be axially homogeneous, which is

possible if both ends of the cylinder are capped with flexible membranes. For

increments of internal pressure Ap, end load AP, and torque AT, the incre-

mental stresses at load step n are derived from elementary theory. These

are:

Ap Ri

8n t i

zzn = i + AP 
(2)"zzn 2t i  Z r Ri t i

AOrrn 0 (3)

Aa = AT AT (4)
ezn 2'R2 t i  i

where n = i + 1 = 1, 2, 3,...

Here Zi is the polar section modulus, and Ri and ti are respectively the mean

radius and thickness of the cylinder at load step n. The radial stress Acrrn

is vanishingly small, consistent with the thin wall assumption.

Constitutive Relationships and Strain Transformations

Consider the thin-walled right circular cylinder of Fig. 1, with the

orthotropy defined by the constant helix angle 6 i. The initial condition i =

0 is the no load condition. At load step n = i + 1, the incremental strain

vector An is related linearly to the incremental stress vector a n through

... the 4x4 coefficient matrix Ai, assuming sufficiently small load increments.

That is:

Acn Ai bn (i = n-i 0,1,2,...) (5)

iv -
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where

AT [n C 86 A c Arr A'yez) n  (6)

ACT - [AC &a 0 A 7
-n [ee zz 0 AOezn (7)

and T denotes transpose.

The general classical constitutive equations for Ai as discussed by

Lekhnitskii (1963) were reduced for the present problem by Wilson and Orgill

(1985). The components of Ai are as follows, where the subscripts denote,

respectively, the row position, the column position and the load step.

.' ~4i I 2v 2 2 sin 4 "

a + sin 2 6i Cos i n (a)

"°" sin 4  .Cos e.

" a22 i + 1- 2v) oin Cs 2 (8b)

a33i E. (8c).

1 1 2v 1 2 2 Va =

a a + + 1 2vCos 6e si 2e. (8d)S1 21 1

V J
a a -a (8e)
23 32 13 31. Ei

4 4 8v 4 28. 28 - (f),a44 i Ei Ei

"a a i 2 +. s2 e (. 2v) "-"~ sn4 4 i E i G e1 Gi

a sine i cose i  (8g)
2 2 2 + 21 ): 2a1  -a C .. 1- -(os 8. + -i sin 8.J

a24  - 42 2 i  Ei 2 i  G i 2 2

sine i cose i  (8h)

a a a 0 (8i)•- 34 i  43

1 1,

k, ,-,:,:.: , .,-,. ......-.-.-...... , .,..- ..-. ... ..- .., .. ........ .. . .. . ..
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In Equations (8), Ei and Ei are the tangent moduli measured in simple tensile

tests and correspond to the slopes of the stress-strain curves for principal

strains £1l i and £22 i in the 1 and 2 directions, respectively. Similarly, Gi

is the tangent modulus for a simple shear test at the principal shear strain

Y12i* Poisson's ratio v is taken as invarient with respect to strain levels

Liii and £22i as observed experimentally for rubber by Goodyear (1949). As

shown later, the angle of orthotropy ei changes with load increment.

The uniaxial stress-strain behavior with respect to the principle

directions of orthotropy is assumed in the following form:

3 5
a11 - E° c1 + B £C + C 11 (9)

3 Ce5': +B'E6 C ' E (10)"
'2 2  c22+ 22 22

and the behavior in simple shear with respect to these principal directions is

of the same form, or

12 GY 12 
+ g +Cg (i)

i where the coefficients of the strain are measured constants. The tangent

moduli with respect to the strains at level i in this 1-2 coordinate system,

found by differentiating Equations (9)-(11), are:

E= Eo + 3B cll i + 5C c li (12)

E E' + 3B' c2 + 5C' c '
1 0 22i 22i (13)

G i =G' + 3B Y + 5C Y4 (4

0 g 12i g 12i (14)

These tangent moduli are used to compute the elements of Ai given by Equations

(8) for orientation ei.

The principal strains of Equations (12)-(14) are related to the strains

*- at load level i in the cylindrical system through the well-known

.... ...................................... - - . - . .... o... . -.. .... d,. ..- ..- . . . -, , ,.. , ,1
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transformation equations (Popov, 1981) given by:

2c11i , Cei + Czzi + (Ceei - Czzi)cos2 i + Yezi sin2ei (15a)

2c 2 2 i = eei + czzi + (zzi - ceei)cos 2ei " Yezi sin2 i (15b)

"(12i ' (czzi + ceei)sin2Oi + Yezi cos2ei (15c)

L
Geometric Nonlinearities

If the initial wall thickness is to, then after the first load increment

is applied there will be a corresponding incremental radial strain AcrrI. The

5, &updated wall thickness after the first load increment

t I = to(1 + Acrrl) (16)

Similarly, after the second load increment, the updated wall thickness is:

t2 - t1(0 + brr2) (17)

between two successive load increments, it follows that the updated wall

thickness is:

ti = ti-l(1 + Lcrri) (18)

In terms of the initial wall thickness to, Equation (18) becomes:
i

t i = t o I (1 + Acrrk) to Fti (19)
k-1

The factor Fti represents the deviation of ti from to after load step i. The

closer Fti is to unity, the less the solution is affected by geometric

nonlinearity.

A similar argument is made for changes in the mean radius. Equation

(18), rewritten in terms of the mean radius and the incremental

* :\;" circumferential strain, is

* Ri = Ri-ll + 6ceei) (20)

tJ Likewise, Ri can be expressed in terms of Ro , the mean radius of the cylinder

under zero load, or

° °-,
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%,

.. ii

Ri Ro n (1 + "880=_ Ro Fri (21)
k- 1

Here, Fri represents the deviation of Ri from Ro after load step i.

Based on the cross-sectional area of a thin ring given by Ai * 2w Ri ti,

pthe updated expressions for the area become:

Ai Ai- 1 (1 + AEei )(1 + A~rri) (22)

i
Ai  2wRoto i (I + Aceek)(1 + Acrrk) = 2wRotoFai (23)

k-1

Likewise, the updated values of the polar section modulus, initially

yiven by Zo - 2iR0
2to, are:

Zi = Zi-(1 + Ac0ei) 2 (1 + Acrri) (24)

i
Zi - 2wRo2to  n (1 + Aceek) 2(I + Acrrk) 2wRo 2toFpi (25)

k-i

The corresponding expressions for changes in length of the cylinder are:

' i 1i-I(0 + Aczzu) (26)

i
L Li L 0 1I (1 + L zzi Lo Fzi (27)

k=1

" Comoutatlon of Strains

The total strains are needed in order to update values of the material

properties El, El', and Gi and to compute cylinder displacements. Expressions

for these strains are now deduced. Consider the relationsnip between the wall

thicknesses t1 and to given in Equation (16). The total radial strain after

:. the first load increment is:
'

tI - to  to(1 + A )
£ = ~ o.. o rrl A

C rrl Io to AC rrI (28)

and after tne second load increment is:

I.

" " ~'m ' ** "l' llm ' - 'k" ' :- - -' 
"

-"-. ' ,"
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t - t t (1 + ACr)(1 + ACr) " t

Crr2 0 rr to rr2 0 (1 + ACrrl)(1 + Arr2 (29) I
0 0 1

After i increments of load it follows that

I, it I(1+A )-t
t0 t k 1 ACrrk o

C Crri Z to -Fti -1 (30)

The total strains in the circumferential and longitudinal directions, obtained

J". in a similar manner, are given by:

eei = Fri - 1 (31)

Ezz i  Fzi - 1 (32)

The total shearing strain Tezi is simply the sum of the incremental shear

strains, as there are no length changes involved. After i increments of load,

this is

Y ezi ' k - A-ezk (33)
k=1

The end rotation *i of the cylinder may be expressed in terms of shear

strain. For the first and second load increments, the respective rotations

are

i Ao (34)

I- 1 ~1 R G~Zi

"€2 " R IAY ez2  (35)
1

The total rotation after two increments of load is the sum of Equations (34)

and (35), or

&Y A- (I- Azzl 36

2 -R zl +R I Aez2 = R (0 ez + (1 + AEeeI) A'yz2) (36)
3o

Extending Equation (36) to i increments of load leads to:

p..

SI.-'
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1I (+ ) AE I F "7
-- ,ezk t1 1 + Azzm L0 Fz(i'l) AYezk (37)
0 k rn i - em 0 r(i-1) k-1

" Deformations for Single-Turn Orthotropy

Consider the segment of an unloaded cylinder with radius Ro and length

*to The length is selected such that a line parallel with the principal

direction of orthotropy makes exactly one turn about the cylinder as shown in

Fig. 2. This condition is expressed as:

to  2wRotan 80 (38)

After the first load increment, L , R and eo change. The resulting

change in geometry is given by Equations (20), (26), (34) and (38), or

i. L '

Li - (2v + *1)R1 tan e, = L' (1 + Aezzl) = (2v + WoAyez)R 0 (l + Ac661 )tanB
0 (391

It follows that the length for steps i-1 and i are given as:

V - (2w + fi-l)Ri-i tan Bi-I (40)
-i

5%

- (2w + fi)Ri tan ei - (2: + t, + i -Ay Bi)Ri tan 8. (41)
1 1 1 ii R Bii-i

S"Using Equations (40) and (41), a recursion relationship to compute ei is

deduced as:

1 + AE
e. -tan 4 ( + ZZi 1 (42)

I + A Bei cot 0i.I + A ezi

Increment Selection and Convergence

The selection of the appropriate load increment will depend on the

initial angle eo , the ratio of the elastic moduli Ei/E' and Ei/Gi, the
1

magnitude of the load, and the type of loading. As the load increment is

-,-..-

o % ' 5. . . . .% a. S . . .S. . . . - .
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increased, the computational effort is decreased, but the solution error is

increased. The solution error after loading step i is defined as

10011 i- *l12
% Error - (43

11(4112

where ci is the total strain vector with components ceei, czzi, crri and yezi

The vector E* is the exact total strain vector for the corresponding loading

level containing the four strain components. The percent error is the

Euclidean norm of the residual vector divided by the Euclidean norm of the

exact solution. The exact solution is obtained by choosing increasingly

smaller loading increments until the solution converges.

Typical results of such studies are shown in Table 1 which gives values

' of load increments that can be used over the range of angle 0 4 60 4 90 deg.

". These load increments were selected so that the percent error as defined never

exceeds 5% if tne values of the total nondimensional load parameters do not

exceed their listed values. The maximum internal pressure, applied torque and

longitudinal load are p, T and P, respectively. The material is linear for

these cases, where the only nonzero constants of Equations (12)-(14) are Eo,

E' and G'.
0 0

PART II NON-AXIALLY HOMOGENEOUS STRESSES AND STRAINS

Certain edge constraints give rise to nonuniform stresses and strains in

the loaded orthotropic cylinder. To account for such nonhomogenity along the

* length, the cylinder is divided into J-1 segments each of length Azo given by

4zo (44)

The incremental and total stresses and strains are computed at each point

-.-, - I,. - . . . ... . . . .. -....
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Table 1. Load Increments Required for a Solution Error of Less than 5%
(Linear material)

Maximum value of Increment in
Load Parameter Ei/El1  Ei/Gj Load Parameter

p R 0
0.810 3 0.001

0 0
=0.01 50 3 0.001

*tR =0.07 10 3 0.005

=0.25 50 3 0.002

Et =0.40 10 3 0.001

=0.16 50 3 0.001

-- -.:-
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j-l,2,...J as shown in Fig. 1. The boundary conditions are incorporated when

* the strains are integrated numerically for the deformations. The

computational procedure follows closely that of the axially homogeneous case

of Part I. However, quantities such as Aceei, Fti, etc., are now.vector

quantities of dimension J with components Aceeij, Fti j , etc. The added index

j denotes the length from the coordinate origin as shown in Fig. 1.

Incremental Stresses

The equation of equilibrium for an element of a thin-wall shell of

revolution at location j and after loading step i, deduced by Timoshenko and

Woinowsky-Kreiger (1959), is

0eeij Pi

R P ti, (45)

Here o*ij is the meridional stress in the shell, pij is the radius of

curvature in the meridional direction, ceeij is the circumferential stress in

the shell, Rij is the shell radius, Pi is the total internal pressure, and tij

is the wall thickness. If the load increment is sufficiently small, Equation

U(45) can be rewritten in terms of the section properties of the previous step,

R t'

.... or -.

:! (i -1)j pi-1)j t(i-1)j

The meridional stress (Timoshenko and Woinkowski-Kreiger, 1959) is

p= R( - ~ piR(-~ (47)
**ij 2wR (i l)j t(i-l)j 2t(i-l)j

By combining Equations (46) and (47), the circumferential stress becomes

PiR (i'l)j (I - (48)
eeij =  ti.1 2(i-l)j.(48

.. . . . . . . . * * .... . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Expressions for the incremental stresses for load step i-I follow from

Equations (47) and (48), or

Ap R-"' . £iAG (49)
-- '-" '-" A 4,*i j = 2t (

0i-1)j

A CRyi. 1)i (I R(i'l)J ) (50)
, &oeo6ij =ti.)- 2PO-il)i

Equations (49) and (50) are similar to the internal pressure components of

stress given for the axially homogeneous case in Equations (1) and (2). Note

that for the homogeneous stress case, p(i-l)j * - and oy*ij =coijl2.

To compute strains and deformations in the cylindrical coordinate system,

it is necessary to transform c**ij to that coordinate system. Using the

stress-transformation equations (Popov, 1981) yields

.I1- cos 2a (51)" . zzij =  4,vij-- 2

where a(i-l)j , the angle that the wall of the cylinder makes with the

longitudinal axis, is defined as the gradient of the radial deformation, or

tn 1) = 1r(i)j (52)

In employing the stress transformation of Equation (51), it is assumed that

alpha is sufficiently small so that the radial stresses in the cylindrical

-,. coordinate system are small, contributing a negligible amount to the cylinder

-* deformation.

While the discussion in this section has dealt only with stress and

deformation due to internal pressure, results can be developed analogously for

end load and pure torque, as well as for various combinations of these three

types of loads.

. . - C
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Constitutive Relationships, Material and Geometric Nonlinearity

The incremental constitutive law given by Equations (5)-(8), along with

the material nonlinearity of Equations (12)-(14) and the transformations of

Equations (15), are assumed to be valid not only at each load step i but also

K. at each length location j. With this notation, Equations (5)-(8) become

1646nj allij al2ij a131j al4ij AOBenj

A Czznj a2lij a22ij a23ij a24ij AOzznj
., [.::(53)

AZrrnj a31ij a32ij a33ij a34ij AOrrnj

AcEznj a41ij a42ij a43ij a44i3  Aoeznj

n = i + 1 = 1,2,3,...
' i j "1,2,3,...J

Note the components of the coefficient matrix of Equation (53) are still given

by Equations (8) where each parameter with the subscript i now has the added

subscript j. In Equations (12)-(15), the single subscript i is also replaced

by ij.

The geometric properties, except for length change, are deduced from

14 tEquations (19), (21), (23) and (25), i being replaced by ij. The change in

length along the longitudinal axis for a segment bounded by points j and j+1

- "::' - is given by

AZij = Lzo + Uzi(j+l) - Uzij s Zo Fzi j  (54)

' where Azo is given by Equation (44) and where uzi(j+1) amd uzi j are the total

displacements measured relative to the initial points j and j+l when the
SU

cylinder is without load (i=0).

4 w
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,' Computation of Strain, Rotation and Orthotropy Angle

The total strains can be computed either from the incremental strains or

from the displacements. The radial, circumferential and shear strain at load

level i and position j, expressed as £rrij, ceeij, and Yezij respectively, are

given explicitly by Equations (30), (31) and (33), where ij replaces i.

An efficient method for calculating czzij, the longitudinal strain, is by

the finite difference method used by Utku (1981). If Uzij denotes a segment

displacement, then

•£ Uzi(j+l) Uzi(j-1).. (55)
zzj Azi -1) + Azij

The average longitudinal strain for the whole cylinder of initial length £o is

zzI (U  uz i) (56)
0

where J-1 is the number of length segments.

The end rotation q ij of the cylinder segment between locations j and j+1

can be computed from Equation (37), after the subscript j is added where

appropriate; or from the expression involving the incremental circumferential

displacement Lueij given by

Aueii

"ij (i-1)j + R il1 j (57)

The angle of orthotropy 6ij in each of the J-1 longitudinal segments is

given by Equation (42) where each subscript i or (i-i) is replaced by ij or

(i-1)j, respectively.

-*. Computation of Displacements and Curvature

The computation of displacements ur, uz and ue in the case of axially

nomogeneous strain is a straightforward application of the strain-displacement

equations (Wilson and Orgill, 1985). However, when the strains are axially

I~oF
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-nonhomogeneous, displacements are more difficult to compute and in general

,4

must be obtained numerically. The results that follow will be based on the

finite difference method discussed by Utku (1981) and Carnahan, et al (1964).

* . From the strain-displacement equations given by Sokolnikoff (1956), the

incremental radial displacement becomes

AUrij - R(i.1) j Aceeij (58)

The incremental displacement is then added to the total displacement from the

previous load step to obtain the total radial displacement at step i for

segment j, or

urij - ur(i-l)j + AUrij (59)

Computation of the incremental longitudinal displacement is obtained from

the strain-displacement equations by integrating the incremental longitudinal

strain given by

Auzi(j+1) - Auzi(j-l) = [Az(il) j + AZ(i.1)(j..1) Aczzij (60)

As j varies from 1 to J in Equation (60), a tridiagonal system of linear

equations is found. These equations are solved simultaneously for the

incremental displacements bUzi j . Tne total longitudinal displacement at step

i is once again computed by adding the incremental displacement to the total

longitudinal displacement at the previous step.

uzij = Uz(i.l)j + AUzij (61)

The computation of the circumferential displacement is obtained from the

strain-displacement equations by integrating the incremental shear strain.

The integration results in expressions similar to Equations (60) and (61) for

the longitudinal displacement. The incremental circumferential displacement

* and total circumferential displacement are, respectively:

U: " Auei(j+1) - Auei(j-1) = [AZ(i-1)j + AZ(i- 1 )(j-1)] AYezij (62)

ueij - ue(i-l)j + Aueij (63)

%-........................"~..-.-'.,-.
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With these displacements it is possible to compute aij, the angle between..':

the meridional direction and the longitudinal axis of the cylinder; and Pij,

the radius of curvature in the meridional direction. The angle aij is used in

transforming stress from the meridional direction to the longitudinal

direction as given in Equation (51). Equation (52) expresses aij in terms of

the derivative of Urij in the z-direction. In finite difference form, the

first and second derivatives of this displacement are as follows.
'%.Ai.m

u-u + U
ri " ri(j-1) ri(j+l) - tan a i

:az AZ A(i-.l)j + z(i-1)(j-1) (64)

Urij 2[Uri(j-l) + Uri(j+1) 2Urij + 3 (Az(i-l)(j-1) z(i-)j" 2 +AZ 2  (65)

0-1~)(0.1) 0 -~i1)j

The radius of curvature is computed from the following familiar form,

together with Equations (64) and (65).
2-

au
+ Urij 2 3/2

P = 2 (66)

p¥
az .

A comprehensive treatment of the finite difference representation of

displacement boundary conditions that satisfy various end restraints at j=1

7*4 and J is given by Carnahan, et al (1964). A particular example is presented

below.

For suitable convergence, it is important to select a sufficient number

of cylindrical segments J-1 to accurately represent the cylinder's overall

shape. As Equations (60) and (61) are integrated to yield the displacement,

the error in the result will decrease as J is increased. However, if J is too

large, the accuracy of the derivatives computed by Equations (64) and (65) may
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- actually decrease. It was found that the selection of the number J is

tempered by the initial cylinder geometry, the orthotropy angle eo, the

material constants, the type and magnitude of loading, and the computational

- , effort.

PARAMETRIC STUDIES

A Fortran IV computer code was written to carry out the calculations for

*. the finite deformation behavior of both the homogeneous and nonhomogeneous

types of cylinders. Selected parametric studies for both types are now pre-

sented. For cases where the material is linear and only one of the three

~ ;;loads is present (longitudinal load P, internal pressure p, or pure torque T),

the deformations depend on the following appropriate independent nondimen-

. sional load parameters and three geometric parameters.

S- PR 0 T R
; o eo ; 2 0 (67

000 00_ E 2 t 0 t R_67000 0 0

In the selected examples, the deformations were found to be very sensitive to

tne independent parameter eo, tne initial angle of orthotropy. Thus 60 was

-* taken as the abscissa in the presentation of the graphical results. The last

two geometric parameters of (67) affect deformations only in axial

nonhomogeneous problems.

The first type of cylinder has axially homogeneous stresses and strains

and is made of an orthotropic, linear elastic material with the following

properties:

Ei/Ei' = Eo/E o ' = 10 ; Ei/Gi = = 3
• > (68)

B - B' = Bg tC C' Cg = 0; v = 0.5

The results for this cylinder are presented in Figs. 3-8.

#" .'1

J
m
. _
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Figures 3, 4 and 5 show the behavior of the finite longitudinal strain

r C zz with the loading P, p, and T respectively. For longitudinal loading, it

is deduced from Fig. 3 that for 60 a 27 deg and eo > 60 deg, the curves

coalesce and ezz is linear with P. For 0 < eo < 27 deg, however, the cylinder

acts as a "soft" spring in the axial direction, since as P increases, czz
L- becomes proportionally larger. For 27 < eo < 60 deg, however, the reverse is

true but is less pronounced, where the cylinder behaves as a "hard" spring.

However, for internal pressure loading, Fig. 4, linear behavior is found for

-0 52 deg, with soft spring behavior for smaller values and hard spring

behavior (but less pronounced) for larger values of eo. Except near the

extreme values of eo, the behavior of axial strain with pure torque is more

complex, as shown in Fig. 5. For eo up to 3 deg, the behavior is linear; and

from that point to 30 deg the cylinder "winds together" where, as T increases,

b changes in Czz are proportionally smaller. However, for eo near 80 deg, as T

increases, czz becomes proportionally larger, and the cylinder winds together

more and more easily, within small cnanges for Oi.  It is noted that ei

b. decreases as the cylinder winds together.

Figures 6, 7 and 8 show tne behavior of o, the finite angle of rotation

about the longitudinal axis of the cylinder, with loading P, p, and T

respectively. The negative ordinate in Figs. 6 and 7 indicates that the

cylinder unwinds with the application of load. The change from a soft or

flexible configuration to a hard one at eo = 30 deg is apparent in Fig. 6; but

for pressure loading this change is less distinct and occurs when eo is

between 50 and 60 deg, as shown in Fig. 7. The effect of pure torque on 0 for

8o up to about 30 deg is clear from Fig. 8: as T increases, * becomes

proportionally larger, and the cylinder winds together and becomes shorter.

I 
.

V. -

% *4* * 4, ..- -. . .. . 4.
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The second type of cylinder selected for study has axially nonhomogeneous

stresses and strains, but has the same material constants as for the study

just completed. That is, the material is orthotropic, linear and elastic with

the properties defined by Equations (68). For axial nonhomogeneity, the

initial geometry (Io, Ro, to) and number of points J along the length affect

the deformation patterns. These particular quantities were chosen as

follows:

Io/Ro 10 ; Ro/t o  10 ; J 11 (69)

The boundary conditions for the second type of cylinder were chosen to

simulate a fully clamped condition at one end, j=1, and zero radial

displacement at the other end, J * 11. However, the longitudinal displacement

and twisting angle were chosen to be unrestrained at J = 11. These conditions

are:

Uzl Uel Url UrJ 0 (70)

The results for this second type of cylinder are presented in Figs. 9, 10

" and 11 in which the only loading is internal pressure. For the range of p

that overlaps (0.001 4 p 4 0.02), it is observed that the curves of Fig. 9 for

the average longitudinal strain czz are identical to those of Fig. 4 for tne

homogeneous strain czz. For this range, then, the end boundary constraints

have a negligible effect on the total longitudinal deformation. However, for

* the range of p that overlaps (0.001 4 p 4 0.02), the total end rotations 0 of

Fig. 10 differ from the counterpart results of Fig. 7 (boundaries uncon-

strained), where these rotations become more dissimilar as e. is increased

beyond 15 deg. Compared to the constrained case, the geometric changes along

the length of an unconstrained cylinder are always more pronounced. The last

. study, Fig. 11, shows the nonlinear variation in midlength radius RM, with

internal pressure. Such calculations are of particular importance for axially

.... .-."r' '' -' t"",. ., "' . , . . . . -,. ..'." ", . . , . . .' ' .-.-.. ' ' '
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nonhomogeneous deformations because they serve as a way to check the limits of

validity of the present analysis. That is, since out-of-plane stresses,

strains, and deformations were ignored, then the angle aij needs to be

sufficiently small for the results of Figs. 9, 10 and 11 to be valid, or cos

mi a 1, sin ij v ij. For instance, if p - 0.02 and 00 - 75 deg, then RM/Ro

1.25 from Fig. 11. Let aij be approximated from Equation (52) as follows.

A ur  R - R
tan ( ) tan (0.5

i~w'-- 1.25 Ro -

"tan- ( 5 0  
R°0= 2.86 deg (71)

Thus, aij is sufficiently small to justify the present analysis of Part 2.

,€..

4i- 4°.

- ,!
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CHAPTER III

LARGE DEFLECTIONS OF CONTINUOUS ELASTIC STRUCTURES

Murugappan Palaniappan and James F. Wilson

1. INTRODUCTION

A robot is a reprogrammable, multifunctional manipulator designed to

perform a variety of tasks. Examples of robot functions are material

handling, spray painting and aligning of screws in assembly line operations

(Critchlow, 1985). The present state of robot technology is that the arm

" moves around accurately but not efficiently. Most of the robotic arms in use

today consist of rigid elements connected by hinged or pivoted joints. The

movement of these arms is slow because of their high weight and inertia, and

the time needed to compute and control the coordinates of their elements or

arm segments.

A different approach to arm design is based on the motion of a

flexible elephant trunk (Mahajan, 1985). The flexible arm is made of

lightweight, polymeric material and may handle comparatively heavy payloads at

higher speeds than most rigid arm designs. These flexible arms are based on

- the action of corrugated tube elements (Wilson, 1984-a) that bend when

pressurized.

Three distinct aspects of flexible arm design are analyzed in this

thesis: the equivalent or reduced modulus E' for the corrugated portion of a

bending element; the single, elastic bending element treated as a composite,

reinforced, elastic cantilevered beam; and the whole arm deflection analysis,

. treated as bending elements in series. In this analysis, self weight is

r ,
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neglected since the payloads are expected to be at least an order of magnitude

higher than the arm weight.

Section 2 deals with the computation of reduced modulus E' of a

rectangular corrugation in which the static load responses of bellows type

arms with Young's modulus E, using classical theory of plates and shells are

derived. In his classic paper, Donnell (1932) calculated the longitudinal

flexibility for several types of corrugations and derived a reduced modulus of

elasticity for these corrugated bellows as if they were smooth tubes.

Calladine (1974) used energy methods to compute the flexibility of an axially

symmetric elastic bellows subjected to axial loading. Haringx (1952) studied

the instability of rectangular corrugation bellows when loaded by internal

pressure. Wilson (1984-b) reviewed several mathematical models and the

assumptions used to compute E' and to compare calculated and experimental

values of E'. He also shows that the mean bellows radius is the appropriate

dimension needed to convert internal pressure to an external load.

Section 3 deals with the plane, finite deflection analysis of a

cantilever beam subjected to end loading. The exact differential equation is

solved in terms of the slope of the elastic curve. Related work is summarized

as follows: Scott, Carver (1953) presented an integral power series solution

of the nonlinear beam equation in which the moment is expressed as a function

of the distance x from the origin. Lewis, Monasa (1982) presented a large

deflection analysis of thin cantilever beams of nonlinear materials subjected
o.

to a constant end moment. Theocaris, Panayotounakos (1982) solved the

nonlinear differential equation of an elastic cantilever subjected to coplanar

terminal loading, taking into account the influence of transverse shear

deformations. Bisshop, Drucker (1945) presented a solution for large

- deflections of a cantilever beam subjected to a tip transverse load in terms

S-

,p
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Y of an elliptic integral.

The solutions given by ([Scott, Carver], [Lewis, Monasa], [Theocaris,

Panayotounakos]) are in terms of Cartesian coordinates. The solution

'. presented herein involves solving iteratively a complete elliptic integral of

the first kind for the maximum slope at the tip of an elastic cantilever

subjected to general plane loading at the tip. This solution is a

- generalization of the elastica in which only longitudinal loads were

considered (Timoshenko and Gere, 1961).

Section 4 deals with the deflection of the flexible arm in two

dimensional space, where the arm is composed of end-to-end cantilevers. Each

element of the arm is analyzed as an elastic cantilever, starting from the

.. tip, with the fixed end at the tip of the previous element. Transformation

equations are used to relate the tip of each element to the global coordinate

system which is fixed at the root of the arm. Knowing the final destination

of the payload at the tip of the arm, an iterative procedure is used to vary

the pressure history in each corrugated tube element of the arm so that the

payload may reach its destination.

In Section 5, conclusions of this study and recommendations for

further research are presented. Different geometrical arrangement of the

bellows is discussed to achieve out-of-plane motion. A systematic procedure

;. is suggested to vary the pressure to achieve rapid convergence to the

destination coordinate. A data base approach is suggested to overcome the

numerous computation involved in the computation of the tip angle a.

.4 All computer codes listed in the appendices were written by the

author. They are used to compute the reduced modulus E', the shape of the

elastic curve of the deformation behavior of a single cantilever and the

equilibrium states of a manipulator arm.

• e4
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S

S
2. ANALYSIS OF BELLOWS ELEMENT

A. Mathematical Model

* Bellows are thin walled corrugated tubes designed for high flexibility

when subjected to axial loads, internal pressure or bending moments. The

present study is of a bellows corrugation model consisting of cylindrical

shell sections connected by annular plates and subjected to axial load and

Sinternal pressure. These bellows are to be used as the structural section of

the robotic manipulator. The desired motion of the bellows will be controlled

by microcomputer and monitored through pressure gages. Figure (2.1) shows a

longitudinal section through the bellows, which is subjected to internal

* pressure p and axial force Fo . The shaded section is a typical half

*" corrugation used in the analysis.

Calculations for bellows extension, compression and transverse bending

are made as if the bellows were an equivalent cylinder of the same mean

radius, length and wall thickness. The equivalent cylinder has a reduced

Young's modulus E' which is used to compute static load responses of the

bellows with modulus E. Figure (2.2) shows the geometry of a half corrugation

of the bellows together with the coordinate system for the inner and outer

shells and plate. For a bellows of n corrugations of mean cross sectional

~5*Z
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-a
area 2rRt, the axial extension from strength of materials is

P 4nb P 2nb (2.1)"b E' 2 Rt 7 WT.1

where -

P = Fo + rR
2p

El = modulus of equivalent cylinder

As the corrugation is symmetric transversely, we need to consider only

one-half of the corrugation, of length 2b, to transform it into an equivalent

cylinder, as shown in Figure (2.3). The axial extension of the equivalent

cylinder is

P 2b P b
AR = E (2.2)

.or

= (.) (2.2a)

First, the axial extension A of the corrugation is predicted from the

. theory of plates and shells. Equation (2.2a) is then used to compute the

reduced modulus E' of the equivalent cylinder. Figure (2.4) shows a free body

sketch of the corrugation together with its slope and moment compatibility at

the junctions. Figure (2.5) shows the corrugation subjected to internal
-a.

pressure p and axial force Fo and its resulting deflected shape. Radial

displacement of the plate is neglected.

The assumptions of the mathematical model are summarized below:

1) The inner and outer cylindrical shells restrain the radial displacement

of the annular plate at junctions 1 and 2.

2) Right angles are maintained at junctions 1 and 2.

3) Axial forces in the cylindrical shells have negligible effect on the

shell stiffnesses.

-a.
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its equivalent cylinder of modulus E' with same axial elon-

gation A.
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4) The cylindrical shells contribute a negligible amount to the axial

deflection under internal pressure p and axisymmetrical load Fo .

5) Plate bending accounts for all of the axial deflection under loads p and

'9 FO.

_ . 6) In-plane (radial) loads on the plate have negligible effect on its

stiffness and axial deflection.

7) Effects of rigid end plates on symmetrical deformation of a typical

element are negligible.

* 8) Classical plate and shell theory govern the system behavior under loads p

and Fo .

* "" B. Plate Analysis

The governing 4th order plate equation is

V22 = - P (2.3)

p

where

Et

P 12(l - V)

V2 d2  I d

= d 2  r dr

The pressure loading p is a non-negative quantity and the sign associated with

p is negative as the direction of p is opposite to the direction of lateral

deflection w. Here, r is the radial coordinate and Dp is the rigidity of the

plate.

A more convenient form of Equation (2.3) isL

r .' ,, -.. -_ , , .; x " , . . , ...,,. . , , , . -. .,. ... . -.. .

.- ,,, .. . ,-,,-..' e ,.. ',., ' ... ,.. ".'. -. - ,- . .. . -,,,. .'", -.'" - . ." .'•," " . . . "- -""."""."""". . ,, " ,
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I d d i d dwr Yi (r - - (2.4)

The moment and shear equations of a plate are

M 2 w v dw)dw (2.5)
rp p dr+ dr

=-D d Id d W

Q D -[- (r -)] (2.6)
rp pdr rd r dr

Integrating Equation (2.4) directly, we obtain

w =- + C3 (r)2n () + C (r2 + C + C (2.7)

1 1 1

where C0, C1 , C2 and C3 are arbitrary constants of integration.

These four constants are written in terms of the following edge

conditions.

w = 0 at r = rI  (2.8)

=D dw v dw

M = D (d-2 + v d) (2.9)
1P dr

M = - 2 d + v dw) (2.10),rp P .7 rd
dr

L 1d dw (.1,-"Qr p  - Dp d [ d 7r r -) (2.11)

2p

Apply Equation (2.8) to (2.4).

r 4

CO = "4 5p " C2 (2.12)

p

Substitute Co in Equation (2.4).

w -(r 4 - r Dp +  (r 12 n  ) + 1 2 1 + CIn (n ) (2.13)

Use the derivatives of w in Equation (2.9) and evaluate the moment at

r r

I-

• -o --. .. -." ., ._ .- .' ..' ..- , -.-. , . . . , --.." . . ." .- " . -..- ', ., - . -. .. . - - -, ..., ,. ' , ' . . N
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k
42

rl p C3  C2  C1

M p- D (3 + v) + 3 (3 + v) + 2 2(1 + v) - (1 - v)} (2.14)
rip p r- r71 pr r1 r

Use the derivatives of w in Equation (2.10) and evaluate the moment at

r r 2 .

r 2 p C3  r2f D ~ (3 + v) + -- T [ 3 i-v + 2 Ln (-) (I + v)]
r 2p p

C2
+ 2 C 1+. -- 7 2(1 + v) - -- (1 - v)} (2.15)

"- 
1  r 2

Use Equation (2.11) and evaluate the shear at r = 2 .

"r ,2P 4
Qr D p Dp- C3  2 (2.16)

2p p rr

I ior

r 2 2 2 Qr2

rI r2  r1 r(2.16a)
p p

Noting that Qr the axial force in the outer cylinder, can be

evaluated from equilibrium, C3 becomes a known constant.

The problem is now reduced to two unknown constants C1 and C2 which

are given by Equations (2.14) - (2.15) in terms of the redundant moments Mr

and Mr

C. Shell Analysis

Both the inner and outer shells have an identical coordinate system,

pressure loading p, rigidity Dc and modulus E. Hence, the governing equation

is developed for a typical shell with radius r.
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The governing 4th order cylindrical shell equation, giving radial

S deflection z at axial position y is

* d4z EtCZ P0 (2.17)

*dy r~ 0 c

where

Et 3

DC 12(1 - v

7 The moment and shear equations for a cylindrical shell are

M M = D d z (2.18)

t~~ cPr 14 Et

Sdy2

3
Q D~ d z (2.19)
Y C dy3

The particular solution to Equation (2.17) is z = - 2 Let = c
Etc 4r 2D

c c

be a shell parameter. Then, Equation (2.17) reduces to

d4z

d 4 z + 484z = - (2.17a)

?7., dy c

, The solution to the homogeneous form of this equation is

z = Y(D1 cos By + D2 sin By) + e-Y(D3 cos By + D sin 0y)

where D, D2, D3 and D4 are arbitrary constants of integration.

* .Replacing the exponential functions with hyperbolic functions and

adding a particular solution, the solution to Equation (2.17a) becomes

2
.Z = - + D sin (By) sinh (By) + D sin (0y) cosh (oY)

+ D3 cos (By) sinh (By) + 04 cos (By) cosh (By) (2.20)

or

S'aP{~ '%\~
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"- By symmetry, if y is changed to (-y), the solution must remain

unchanged i.e. the odd functions of Equation (2.20) must vanish. Hence

D = D = 0 (2.21)

Subscript 1 refers to the inner shell while subscript 2 refers to the
4

outer shell. The four constants, two from the inner and two from the outer

* shell, are written in terms of the redundant moments Mr and Mr2 .

Use the second derivative of z and evaluate moments Mr at r = r and
1c1

Mr 2cat r =r 2and at y b.
2c 2

Mrc= Dc dz
dy

= 2D c 012[A 1cos( 1b)cosh( kb) - Blsin( l b)sinh( 1b)] (2.22)

Mr2c - Dc dz

;y2

- - 2D 2[A2cos( 2b)cosh(0 2b) - B2sin(O 2b)sinh(O2b)]  (2.23)

D. Compatibility

Referring to the free body sketch of Figure (2.4), we can write the

compatibility conditions. The displacement compatibility is expressed as

. z 0 at Y, = b and r = r I  (2.24)

Sz 2 = 0 at Y2 = b and r = r2  (2.25)

The slope compatibility is given by

* .cl = epl at r = r, (2.26)

' ec2 = 'p2 at r = r 2  (2.27)

The moment compatibility is given by

Mric =Mr p at r = rI  (2.28)

M = M at r = r2  (2.29)
**r 2  r2p

r-

% % . % * % * . . -- , * .-.. .. - . - -. . . .
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The displacement conditions have been evaluated using Equation (2.20)

and are explicitly shown as Equations (2.30) - (2.31).

2pr 10 " t + A sin($1 b) sinh ( ib) + B1 cos (01b) cosh ($1b) (2.30)
c

pr 2

0 - - 2 + A2 sin(0 2 b) sinh (02b) + B2 cos (62b) cosh (02b) (2.31)
C

Explicit results for slope compatibility are as follows. Using the

first derivative of Equations (2.13) and (2.20) evaluated at r = r and y =b,

along with Equation (2.26) yields

All[sin(Olb)cosh(0 1 b) + cos( 01b)sinh(01 b)] + B1 1 [cos( 31b)sinh(01 b)

31 TTr 1 3p__ (.2

sin (0 D)coshn aD)j - C rl - C+ C3 (1)321 1 2 (r1  C1 r1  p

Using the first derivative of Equations (2.13) and (2.20) evaluated at

r r2 and y = b in Equation (2.27) yields

-A202[sin($ 2b)cosh( 32b) + cos( 2 b)sinh( 2 b)]-B202[cos( 2b)sinh( 02b)

- sin (02b)cosh(s 2b)] - 2- -C (1 )

r 1  2
r rr

r23p 2 2 (2.33)

+ C3 (-2 r
p r1 1

Explicit results for moment compatibility are as follows. Equations

(2.14) and (2.22) evaluated at r = r1 using Equation (2.28) yields

A1 [2DC 1 2cos(8lb)cosh( a1b)] - BI[2 c a12 sin( a1b)sinh( 61b)]

U 2D D rl2  (-D) (2.34)

2 2]

2" + v) 3 12

r r1
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Equations (2.15) and (2.23) evaluated at r =r 2 Using Equation (2.29)

yields

A21-2D8$2 2Cos ( 2b)cosh(0 2b)] + B2[ 2Dc $2 si n( 02b) sinh(02b)J

+ C2D C, ( ) D r 2 2P (3 + v

r2

CD (+v)+ 2 t r)1+ v)] (2.35)

The six unknown constants of integration are Al, Bit A 2 9 821 C1 and C 2

which are calculated by solving Equations (2.30) -(2.35) simultaneously.

In summary, given the system parameters: F 0, p, r1, r 2 ' t t C E and

v, we calculate

-''F 2
Qr2  =2 -Fo +rr 2 P) (2.36)

= r 2 2 r 2  Qr 2.7

Dp 1 t 12 (2.38)

E t
D= (2.39)

p 12(1-v

D = (c ) (2.40)

Et
.1/4

02 2 C )1/ (2.41)
2 4r2

L Solving the six simultaneous Equations (2.30) -(2.35) will yield the

unknown constants of integration. The deflection of the plate A at r =r 2 is

24'



S3

then computed from Equation (2.13), or

4 4 p p "r2 '2  r2
2 - +

-r~r 2  (r2  - r1 40 +C 3fF-i) n(-i

r2)2  r2)
( ] + C en (_ (2.42)

For a unit axial load P, compute the deflection A using Equation

(2.42). Then, compute the effective modulus E' of the equivalent cylinder

using Equation (2.2a).

E. Numerical Results

Define a nondimensional bellows parameter.

Rt (2.43)
jb
Let

1 Et (2.44).- T -
5.244 i

be a measure of system response i.e. flexibility. The inverse of flexibility

i.e. stiffness is

E'R (2.45)

The FORTRAN program SHELL.FOR, whose listing is given in Appendix A,

computes the effective modulus E' for a given set of system parameters. A

numerical example is shown below. Table (2.1) lists the numerical values

chosen as input parameters.

The results of the computation are as follows:

,t ,
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-V

Input Numerical

Parameter Value

p 15 psi

Fo 0 lb

E 2480 psi

v 0.5

b 0.1 in

rl 0.1 in

r2 0.5 in 5"

tp 0.09 in

" t c  0.09 in

Table 2.1 Input parameters to the program SHELL.FOR for the
"" chosen numerical example. 's

' ,

"; A

'"..

4.

m.

- SW S A ~p t A ~ ~ S
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-4,°

A = 0.1003 in

= 49.85 psi -

E 4-- r=49.75.-

3.6

S 0.0893

Design curves for stiffness S vs. nondimensional parameter X are

plotted in Figure (2.6) for different height to mean radius and height to .4

one-fourth length of corrugation ratio. These curves can be used to compute

Y the effective modulus E' for a given geometry of the bellows.

ON.4

,4

4,.•
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Figure 2.6 Design charts for stiffness S vs. nondimensional parameter X.
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3. ANALYSIS OF CANTILEVER BEAM ELEMENTS S

A. Mathematical Model

A typical element of the manipulator arm has a bellows configuration

with the ends sealed and with reinforcement on the underside as shown in

* Figure (3.1). To achieve the bending effect of the manipulator arm in either

direction, we use double sided elements placed back to back as shown in Figure

(3.2).

Each element of the arm consists of several corrugations, and the

exact number is determined by the length of the element and the maximum

desired transverse displacement or rotation at the tip of the cantilever.

The maximum tip rotation will typically be 900 or 1800 depending on

the function of the element. Elements that are designed to coil around the

load need to rotate more than the elements that help in the lifting of the

load.

A relationship between the geometry, length, the degree of rotation

and the number of corrugations in the double sided element is derived as

*follows. Assume that the corrugations on the convex surface just touch at the

maximum degree of bend. With reference to Figure (3.3), these two relations

are

A
5
*m-m

"U.

-** * *S *

*% * * .
*. * * . . . .. . .

p. . . . . . . . . . .
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Figure 3.1 Cross section and elevation view of single-sided bellows with

keviar reinforcement on the underside.
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Figure 3.3 Criteria for gap size corrugation gap away from neutral

axis just closed (a); end view of a corrugation (b).
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L R (3.1)

(R,- 2r2 )* (2b + t)n (3.2)

where

n is the number of corrugations

b is the one-fourth length of the corrugations

is the maximum degree of bend of the element

t is the uniform thickness of the bellows

L is the length of the element

r2 is the outer radius of the bellows

From Equations (3.1) - (3.2), it follows that

- 2r 2 )4n 2 ) (3.3)

The second constraint is that the number of corrugations and the

corrugation length should satisfy

(4b)n = L (3.4)

The two unknowns n, b are solved simultaneously using Equations (3.3)-

(3.4) yielding

L 2r2*

n t(3.5)
t

b -L (3.6)

The elements of the manipulator arm will be analyzed as a cantilever

beam with an equivalent modulus E' (refer to Chapter II) and second area

moment i of the composite single or double sided finger element.

The composite double sided element is symmetric about its neutral

axis. Considering half of this section, we have the equivalent cylinder, slab

El and reinforcement as shown in Figure (3.1). For analysis purpose, we

I .
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consider only the equivalo.- cylinder, a flat slab of modulus E and two

different types of reinforcement: n threads of modulus Er and radius Rr, or

rectangular reinforcement of modulus Er, as shown in Figure (3.4).

For double sided finger elements with circular threads, the second

area moment is

R3 21 3 Er 4I a 2[vR t + 2wRte (R + h + H) + - d H + - 1)n(O.3927 Rr )} (3.7a)

For double sided finger elements with rectangular reinforcements
2,. 1 3 3"

I =2Rt + 27Rt (R + h + H) +dH+ (-- 1) .sh (3.7b)
e eI E311

where the equivalent thickness of the corrugated tube is

te - t - (3.8)

B. Deflection Analysis

The manipulator arm is made up of a number of elements joined end to

end. The function of the arm determines the size and number of elements inN
- the arm. The cantilever beam analysis of a typical element with an equivalent

• stiffness EL is presented.

Large deflection is taken into account. Shear deformations are

neglected. The shape of the elastic curve is found from the exact

differential equation.

This cantilever is subjected to a coplanar terminal loading consisting

of an axial compressive force PE, a transverse force Pb and a bending moment

Mb. A floating coordinate system is chosen at the tip of the cantilever as

shown in Figure (3.5a). In previous analysis of the elastica (Timoshenko and

Gere, 1961), the only loading was an axial compressive force Pt.
.3.

.3,

, , - ° '.',j ,', , .j'.h, ._ -'w _ ",Z , . -' , . , % -.- % -, .-. ,
•

%. .. ', •- -," .- r'_,'.. ,.'.- - , - • -U
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r J

/ MODULUS E'

H SLAB (MODULUS E)

RECTANGULAR REINFORCEMENT
N THREADS OF MODULUS Er OF MODULUS Er

Figure 3.4 Cross section view of one-half of double-sided bellows used

for computing composite section moment of inertia.

3ON
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I
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I

xa

, Y i

aX

(a) (b)

I.I

-I.

Figure 3.5 Cantilever deflection model with coordinate system at the

tip subjected to coplanar terminal loading (a); loading of

|. cantilever element (b).
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The exact differential equation of the deflection curve is

M E - E d, (3.9)ds

where

-dO y

El d py pbx .Mb (3.10)d. ds "b -.b

Differentiating Equation (3.10) with respect to s and using the

relations

= sin L = cos 8
ds ds

we obtain

.4 2

El - = - P sin 0 - Pb cos e (3.11)
ds

Integrating Equation (3.11) with respect to ds, we obtain

ds = P cos 8 - P sin e + K (3.12)

We solve for the constant K1 from the edge condition: At s = 0, e =a
dO e Mb

and Hence, Equation (3.12) reduces tos" El

M2-. 1 i I 2  1 Mb2

E..( ~,~) = P (cos 0- cos a) + Pb(sin a- sin e) + lE- (3.13)

V.

.. b

t.'-..-'-.''£ ', ...,' .'-:. '. ,- .- .- - . -. . .- .. .. ' -. -. .- . - .- .- . , .- - - . . . .- ., - .. -. - , ., -. .E',
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%

d e
Since r- is known to be negative, Equation (3.13) can be rearranged as

P£ 2 PbM

ds - [2 4 (cos e - cos a) + -- (sin a- sin 8) + (b)2 ]'i/ 2de (3.13a)
El El El

Integrating, nondimensionalizing and simplifying Equation (3.13a), we

obtain

a d1=1 df (3.14)

, o (A cos e B sin e + c)

where

A =2 PI

B =2 Pb

C = -2P cos a + 2 Pb sin a + Mb2

p 2 *-J

-- PL-
P

E!

Pb
Pb E-

Mbt

Let A cos O - B sin 8 = D cos (e + Oo). Rearranging Equation (3.14),

we obtain

I f dO (3.15)

o [D cos (e + %) + C]I1 2

where

D = VAr + B7

% 60 = tan " B

fo

*1-*

-...- . - - . . .. , , . ., , . --. - . . -. - .. . - - . . . . - .- - - - . .. - . -



97

Writing 0 + 6o = 2x and simplifying Equation (3.15) we obtain

a + 60 ~dx
1 2 I - x / 2  (3.16)

1- -1 - K2 sin x](C + D) 60

where

K2  2D
C+D

Equation (3.16) represents an indefinite elliptic integral of the
S-.

first kind. Note that K and 8o depends on the angle a and the loads.

Solutions of this elliptical integral are available in tabulated form, given

a, for pure lateral, longitudinal or moment loading.

Figure (3.5b) shows an element subjected to a pressure loading p over
,..2-

a uniform area A(= R2 ) acting at a distance d and a dead weight W acting at

an angle 8.

Resolving these loads into its components, we obtain

P = -pA cos a + W cos ' (3.17a)

Pb = pA sin a- W sin a (3.17b)

Mb = pAd (3.17c)

An iterative procedure using the secant method and the IMSL subroutine

DCADRE was written to compute the unknown angle a which is involved in the

limits of Equation (3.16). A FORTRAN program CANT, whose listing is given in

Appendix B, was written to invoke this procedure and to compute the shape of

the elastic curve. The initial guess value of a is taken to be 0.

A numerical example for a typical element was computed. The length

and stiffness of the element were chosen as X = 1 in and El = 1 lb in2,

respectively. The pressure loading acts at an eccentricity of 0.1 times the

length. For increasing pressure loading, the corresponding values of the

-I
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eccentric end load P and the end moment Mb chosen are listed in Table (3.1).

The calculated deflection curves at these loads are shown in Figure (3.6).

The deflection pattern resembles that of the elastica. Table (3.1) shows the

tip angle a corresponding to each level of loading.

Eccentric End Calculated
end load moment tip angle
P lb Mb lb-in a deg.

",:

0 0 0

2 0.2 16

4 0.4 41'a

6 0.6 78

8 0.8 124

10 1.0 173

Table 3.1 End loads and the corresponding tip angle for

W 0 0, - 1 in, EI - 1 lb-in 2 and d/i = 0.1.

-,,"""
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Figure 3.8 Elastic curve of the deflection pattern of the cantilever sub-

jected to an increasing pressure together with the maximum

angle at the tip.
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4. ELEMENT STRINGS
<..

A. Transformation Equations
.-..

The manipulator arm is made up of a number of elements connected by
".1

rigid links. One end of the arm is the supporting base of the cantilever beam

while the last few elements near the tip act as a gripper or end effector.

These tip elements grip the payload by coiling around it. The points of

contact between the element and the load are sufficient to prevent the load

from slipping. The rigid links do not bend. They merely translate and

rotate.

Let the number of elements in the "lifting" arm be n and th2 elements

numbered consecutively from the supporting base 1,2...n. Each element of the

arm is modeled as a cantilever beam starting from the base. The end of the

rigid link after element i is the fixed end of the cantilever beam for element

i + 1. Given a coplanar terminal loading, we can calculate the end

deflections of that element by the methods presented in the last chapter.

Hence, we have determined the end coordinates of the element with respect to

the local coordinate system.

Determining the position and orientation of any element in the arm

relative to its base coordinate requires the transformation of coordinates

U
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through all other elements and links between the base reference and the

element whose coordinates are being determined. Similarly, by carrying out

the transformation for each of the elements, we get the overall orientation of

the "lifting" arm in the global coordinate system. Figure (4.1) shows a

relation between the local and global coordinate system.

A transformation matrix relating the (i) frame to the (i+1) frame is

of the form:

.X. Xi~ xi + Cos( 5 +1) sin( a+,) xi+,,p ',:

Y" i~p Yi+l -sin( i+l) cs(ai+l) Yi +l, i= +L J L

* -. where

is the angle measured clockwise from frame (i) to

b frame (+1).

X are the coordinates of the origin of frame (i+1) in the
+% -+

coordinate system of frame (i).

Xi+1,pYi+l,p are the coordinates of any point P in frame (i+1).

Xi are the coordinates of the same point P in frame (i).

A FORTRAN program TRANS, whose listing is given in Appendix C, models

each lifting element as a cantilever beam in the local coordinate system. The

slope computed at the tip of element i is the angle a.+1 which is used to

transform the element (i+1) from its local coordinate system to that of

element i. The position of the tip of the element in the local coordinate

system is then computed. Provision is made for the transformation between an

element and the link before it. As the link is rigid, the angle ai+1 is zero

degrees. The transformation matrix relating the tip of element i and the base

reference is the product of all matrices relating the elements and the links

S% % % . , %",- . .' . , -. 5-. . ' - . ..- .- - . - . 7 - . . . . |-
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between them. Hence, the program TRANS determines the position of the tip of

each lifting element of the arm in the global coordinate system.

B. Typical Design

Figure (4.2) shows the motion of a manipulator arm. Double or single

sided elements could be used as the structural section of the elements. The

stiffness of double sided elements were derived in part A of Chapter III. The

advantage of double sided elements is that they may bend the arm in either the

clockwise or counter clockwise direction. For instance, if the elements on

the left side are pressurized, the arm will bend in the counter clockwise

direction.

Given a destination coordinate in the feasible work space, we want to

know a pressure history in all the elements that will move the load from the

Ustarting to the given destination coordinate. Note that there are many

possible solutions or different pressure histories that could achieve the same

result. The solution procedure described below picks a solution that may not

necessarily be the one where the payload tranverses the least path distance to

achieve its target point. Mahajan (1985) investigated the problem of optimal

paths.

The end effector is designed separately. The number of these elements

is determined by the length of the element and the size of the object to be

lifted. The end effector bends in the opposite direction to that of the

lifting arm. The angle 11 to which these end effector elements should coil

around the load to prevent it from slipping is determined by a simple

geometrical drawing. The slope a at the end of each of these elements is

et1-1 -(4.1)

e

F-
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where Ne is the number of end effector elements. Then, using the program

CANT, we make runs of varying pressure levels. Since we do not know the point

of contact between the load and the end effector elements, we assume the worst

case or the case of highest moment. That is

= 1800 - a (4.2)

Mo = W(RZ + 2R + d + H) (4.3a)

Mo = W Rx (4.3b)

" The moment expressions in Equations (4.3a) - (4.3b) are for the double and

single sided elements respectively. Hence, the pressure history in the end

effector elements is determined by that pressure level whose slope at the tip

*; of the element is closest to a.

* . The lifting elements are designed as an element string. Initially,

4 the moment due to the payload is assumed to be zero. Referring to Figure

(3.5b), the angle 0 at which the load acts is updated from the slopes of all

the previous elements. For the ith element, the angle 0 is given by

i-i
Oi = 180o - I a i=2,3...n (4.4a)

k=1 k

01  1800 ( 4.4b)

Then, for a given set of internal pressures in each of the elements, we

compute the position of the tip of the element in the global coordinate system

using the transformation matrices developed in part A. Knowing the geometry

of the link joining the lifting elements to the end effector and the radius of

the load, we can compute the coordinates of the load. Referring to Figure

(4.3), we compute the coordinates of the load as follows.

RTPL = 2 RB + H + RL (4.5)

* = tan -I  L (4.6)
RL + YL

* p
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the coordinates of the center of the load.
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n
Gx = x-coordinate of nth element + RTp L sin( I a + *) (4.7)

k-I k

n
Gy = y-coordinate of nth element - RTPL cos( i a + *) (4.8)

Knowing the coordinates of the load, we can compute the moment due to the load

, xacting on each element. The entire procedure is repeated. The following

inequalities must be simultaneously satisfied for the specified tolerance

limit 6.
IGxcurrent- Gxearlierl < 6 (4.9)

IGYcurrent - GYearlierl < 6 (4.10)

The iteration stops when both the inequalities are satisfied. Hence, for a

given set of pressures, we can compute the global element deflections of the

S'"manipulator arm.

g A systematic procedure is adopted to vary the pressure in the elements

to move the load from the initial or present coordinates of the load (Xp, Yp)

. to the destination coordinates (Xf, Yf). The present position of the load can

be in any one of the four regions, as shown in Figure (4.4). With reference

4to Figure (4.2).

S"i) The load is in the upper-right region, or

x p < Xf

Yp > Yf

Then decrease the pressure in all the elements.

* ii) The load is in the upper-left region, or

* Xp < Xf

Yp < Yf

S"Then decrease the pressure in the lower elements.

r-
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iii) The load is in the lower-right region, or

j lp > Xf

Yp > Yf

Then increase the pressure in the lower elements.

iv) The load is in the lower-left region, or

Xp > Xf

'.. Yp < Yf

Then increase the pressure in all the elements.

' The iteration procedure is repeated until the following conditions are

-- satisfied:

IXp - XfI < F(1

lYp - Yfl < E2 (4.12)

where el and E2 are specified tolerance limits.

C. Numerical Results

The manipulator arm shown in Figure (4.2) is composed of six single-

sided SIMRIT finger elements connected by rigid links. The first four

elements are the lifting elements while the last two form the end effector.

There are three different types of elements A, B and C. Figure (4.5) shows a

cross section through the SIMRIT finger. Table (4.1) summarizes the geometry

for these elements. The object to be lifted is a cylinder of radius 1.25 in.

and weighing 0.5 lb. The stiffness El for these elements were derived by

Wilson (1986) and calculated by Walker (1986).

From a scale drawing, refer to Figure (4.3), we note that the tip

' angle relative to its own base for the last 2 elements (type C) is 2060. In

addition to the geometry of this element, the other input parameters to the

program CANT are

.- *"*.* *.i"~' . ~ * * . ~ j~
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BELOW

Figure 4.5 Cross section through a SIMRIT finger showing the

geometry
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Dimension Size A Size B Size C
(unit)

b (in) 0.1150 0.0828 0.0603

dl (in) 1.563 1.063 0.8000

d2 (in) 0.7087 0.4930 0.3260

d3 (in) 0.2314 0.1882 0.1380

d4 (in) 0.0948 0.0694 0.07001.
h (in) 0.1745 0.1286 0.0960

L (in) 3.875 2.688 1.730
F'

R (in) 0.6875 0.4625 0.2550

t (in) 0.0943 0.0826 0.0700

a (rad) 2.950 2.827 3.013

yp (in) 0.7156 0.4875 0.3133

Ap (in2) 1.296 0.5366 0.2150

I (in4 ) 0.3700 0.0730 0.0150

E' (lb/in 2 ) 137.2 189.7 240.9

E (lb/in 2 ) 2120. 2120. 2120.

El (lb-in 2 ) 50.77 13.92 3.640

Table 4.1 Geometry for three different types of SIMRIT finger elements.

: .... J

- . . ' p . . .p
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-~ = 770

Mo = -0.656 lb-in

W = 0.5 lb.

The pressure loading that corresponds to a maximum slope of 1030 is 37.2 psi.

The lifting elements are analyzed using the program TRANS. The first

two elements are of type A while the other two are of type B. Initially, the

moment due to the load is assumed to be zero in all of the elements. Noting

that the rigid link does not bend (i.e. a = 00), the transformation matrix is

* given as input data. Each of the other elements is modeled as a cantilever

beam in its local axis and the corresponding transformation matrix is

computed. The subroutine TRANS is then invoked to obtain the coordinates of

the tip of each lifting element in the global coordinate system. Then, using

Equations (4.5) - (4.8), the coordinates of the center of gravity of the load

j is computed. The moment due to the load is then updated. The iteration

continues till the conditions given in Equations (4.9) - (4.10) are satisfied.

In addition to the geometry of the two elements, the other input parameters to

li the program TRANS are

RL = 1.25 in.

XL = 0.5 in.
oJ
°',.1

YI. = 0.75 in.

H = 0.1 in.

* -. The results of the computation is summarized in Table (4.2). The trajectories

corresponding to the pressure loading shown in Table (4.2) are plotted in

" . Figure (4.6).

The program TRANS can handle many different options. An element in

the arm may or may not be pressurized. The elements can be of varying

geometry. However, for large nondimensional pressure parameters (PZ, Pb > 10)

S.

!-
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the results of this program should be used cautiously as numerical instability

may occur. This needs further investigation.

Using the systematic procedure described in part B, one possible

pressure loading to lift the load to a vertical position (-0.3, 7.2) is

Element Pressure (psi)

A6 9.26

A5 9.26

B4 7.45

B3 7.45

I- C2 37.20

C1 37.20

.3-

.3
.

L

e-

* .-...- ,
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5. CONCLUSIONS AND DISCUSSION

The design curves for stiffness vs. the nondimensional parameter A was

found to be within + 6% of that predicted by the Haringx model. In his paper,

" Wilson (1984-b), has shown that the Haringx model correlates well with that of

the experimental data.

The elastic curve of the deflection pattern of the cantilever

- subjected to an increasing pressure loading was found to resemble that of the

elastica. The elastica problem (Timoshenko and Gere, 1961), in which only the

longitudinal loads were considered, were verified using this model.

The calculated trajectories of a six SIMRIT finger arm subjected to

U increasing pressure histories are shown. These trajectories represent

• feasible equilibrium positions of the arm. The actual position of the arm in

the global coordinate system will be verified by experiment in due course.

UThere are several possible extensions of this research. The numerical

example shown in Chapter IV consists of single sided elements with the neutral

" axis for all the lifting elements on the same side. In this configuration,

the arm can move only in the counter clockwise direction through 1800 in the

same plane. To achieve reversal of curvature, we could either pressurize

" double sided elements judiciously or have the neutral axis for part of the arm

on one side and for the remaining part of the arm on the opposite side. With

"/ the reversal of curvature, the arm could move ± 1800 in the same plane. The

mathematical randel for plane motion can be extended to include out-of-plane

L motion. This can be achieved by arranging the bellows in a satellite

.ft%

....

.- .-.; .'.--. f. f-.t- .-. ... "....-'-" .-- '-.-'V-.-4-,;- f-- '.-. -- - . .-. - *.-. *... ..-.. "-
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configuration as shown in Figure (5.1). In the case of an even number of the

bellows (Figure (5.1a)), we can pressurize the bellows (1,2,3,4) to achieve

bending about the axis A-A. Hence, the flexible arm can have a work space

consisting of volume of revolutions in each of the four quadrants.

* Provision is made in the program TRANS to include the self weight of

the element. The self weight of the element is assumed to be a ccncentrated

mass acting in the direction of gravity at the tip of the element.

A 'Learning Program' was developed by (Mahajan, 1985) to vary the

pressure in a systematic way to achieve rapid convergence to the destination

coordinate. In his model, only the end moment was considered. Mahajan's pro-

gram could be extended to include the mathematical model presented in Chapter

IV, a model that includes end moment, longitudinal and transverse loading.

Computational efficiency could be improved. The numerical instability

Sthat occurs in the program TRANS for nondimensional pressure loading of'Pz >

10 or Pb > 10 could be overcome. In addition, the number of iterations

required to compute the tip angle a in Equation (3.16) may be reduced. We

could form a data base for the three different nondimensional loading

parameters I.L, Pb and Mb. The angle a should lie between 00 and 180*. For a

particular combination of PL, Pb and Mb, we can store that value of a which

satisfies Equation (3.16). Hence, the program TRANS can pick the right angle

a from this data base without having to perform the numerous iterations.

Another bending geometry that could he investigated is that of a

tapered section, with the broader end at the supporting base. This could be

an optimal bending geometry since the moment arm due to the load will be

higher at the supporting base, decreasing towards the gripper. Such tapered

configurations would have a much higher payload to self weight ratio than

uniform configurations.
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- Commute oeflect1Cns of outer cy-,inow- at tn so~wc:-4iwc ircte-va-s.

wy-it a(8, 38)
38 format C// Inner cyl dist deflectior' II)

const--p.r1*wr1/ (E*tc)

-Compute deflectio~ns of 2nner cyliinawr at toie speccfiec inte-vals.

bbl-Bl~dist
2mcont-x(l)*sl(bb)*sinh(bbl)+X()*cs(bb)*CC.sh(!)
writ& (8, 34)dist,:

:9 distindist+Ihh

CCompute effetive modulus an-d modulus ratio.

El-(FO*2-. 14157*Rm*Rm*o)4b/ C1. 14157*Rmn*tc*aelta)
EEl-E/E1

41 format(// Effective Modulus E',1./ Modulus rat io EE!-',
1 dl3.6//)

34 format (2d13. 6/)

z Compute roondmensional parameter lambda, f2exibility and stiff ness.

lambda-tc/ Cb*b)*Rm
flwxinEEI*tc/Rm
stiffinl/flex
wy-itw(8,49)stiff, lambda

109 fon-mtnue TIFES1,1./ LMD-,F56
101 continue

100 continue

st op

Copy avlailable to DTIC dcO, n"

pMrxit tuily legibis z~produ.ctiou
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ELSE

UPPER-ASIN (tPTEMP)
ENDI F

C SET UPPER INTEGRATION LIMIT TO THE LIMITING BOUND :N E:THER THE
C POSITIVE OR NEGATIVE RANGE.
C

IF(UPLIM.GT.0.O)THENI
IF(UPLIM.G7.UPPER )UPL1I.-UPPER

ELSE
IF (UPLIM.LT. -UPPER)UPLIMur-UPPER

ENDI F
ANS.CONST*DCADRE (FLEN ,THiETA/2. ,UPLI M,AERR,

*RERR,ERROR,IER)
WRITE(3,7)ANS

7 FORMAT(// ANSWER OBTAINED BY INTEGRATION IS ',F10.4)

LOLIM-THETA/2.

r: C

XA-sCONST*DCADRE (XCOD ,LOLIM,tJPLIM,AERR, RERR, ERROR, :ER)
YA-CONST*2DCADRE (YCOD ,LO'.IM,UPLIM,,AERR ,RERR,ERROR, IER)
WRITE(3,12)
WRITE(3,11)XA*L,YA-L

12 FORMAT(//' THE NEW COORDINATES FOR THE TIP IS :/
1 1 FORMAT' XA-',FIO.4,' YA-' ,FI0.4//)

WRITE(3,23)
13 FORMAT(//2X,'N02',9Z,'THJETA (RADIANS)',8Z2ZCOOD',10X,

+ 'YCOODl//)
C
C COMPUTE DEFLECTI ONS OF ELEME~NT NEARER THE TI P.
C

COUNTl1.
DO 21 J-1,10
LLIMmHEW/( 2. *COUNT)+LOLIM
XCOOD-CONST*DCAIlRECZCOD),LLIM,UPLIM,AERR,RERR,ERROR,IER)
YCOODUCONST*DCADRE (TCOD, LLIM,UPLIM,AERR, RERR ,ERROR, IER)
WRITE(3,9)J.LLIM,XCOOD,YCOOD

9 FORMAT(/13,51,E20.6,51,F10.4 ,5X,F10.4)
COUNT-COUNT+O. 1

21 CONTINUE
C
C COMPUTE DEFLECTIONS OF ELEMENT NEARER THE BASE.
C

DO 22 J-3,6
LLIM-NEW/( 2. *FLOAT(J) ) +LOLIM
ZCOOD.COHST*DCADRE CZCOD ,LLIM, UPLIM, AERR, RERR,O, ER)
YCOOD-CONSTDCAR(YCOD,LLIM,UPLIM,AERR,RERR,ERROR,IER)
MmA3*8
WRITEC3, 9)M,LLIM,XCOOD*L,YCOOD*L

22 CONTINUE
81 CONTINUE

STOP

C EN UCIONDE OCOPT H INERN
C
C

- FUNCTION Fl-EH(X)
REAL X,KSQ
COMMON /AREA3/)L , C,THETA, KSQ ,CONST,
fEFN-.-.KSQ*SIN(X)*SIN(X)
IFfDEPN.LT. 0.0 )DEFNz1 .E-4
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* FLEN.J.,'SQRT (DEFN)
RL"TURN

J. END
C
C
C * SUBROUTINE COMP TO COMPUTE THE
C :NEHDAEVALUJES FOR THE
C * INTEGRATIONt

C

SUBROUTINE COMPCURR
REAL CURRTHETA ,KSQ,CONST
REAL EETA,L,STIFFP,W,D,MBBAR
COMMON /AREAI/ETAL,ST"IFF,P,W,D,MEBAR
COMMON /AREA3/DL, C ,TM T,KSQ, CONST
PL--P*COS (CtRR)w*C0S (BETA)
PB-P*vfTN(CUR.R)-W*SlN (BETA)
PLBAR-PL*L*'/STI FF
PBBAR-PB*L*'"/STI FF

- A-. PLBAR
3.2. *PBBAR
Cu-2.*PLBAR*COS(CRR),2.*PBBAR*SIN(CUW)*MBBAR*MBBAR
DL-SQRT(A*A*B*B)
THETA-ATAN2(B,A)
RSQ-2.'DL/(C+DL)
CONST-2 ./SQRT(C*DL)
RETURN
END

C
C
C FUNCT"ION XCOD TO COMPUTE THE
C * INTEGRAND FOR THE COMPUTATION
C OF THE TIP AND Ih TERM.~lATE
C X-COORDINATE
C
C

FUNCTION XCOD(Z)
REAL X
COMMON /AREA3/DL,C ,THETA,KSQ, CONST
XCOD-COS (2. *X.THETA) *FLEN (X)
RETURN
END

C
C
C FUNCTION YCOD TO COMPUTE THE
C INTEGRAND FOR THE COMPUTATION *

C * OF THE TIP AND INTERMEDIATE
C V -COORDINATE
C
C

FUNCTION YCOD(X
REAL X
COMMON /AREA3/DL, C, THETA, KSQ, CONST
YCOD-SIN(2.*I-THETA) *FLEN (X)
RETURN
END

U
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C
C ..
C * MAIN PROGRAM BEGINS *

C

:NTEGER :ER
REAL DCADRE ,AERR,RERR,ERROR,F ,F ,NEW,CURR,OLD,LLIM
REAL BETAL,STIFF,P,W,D,PLPB,MBPLBAR,PBBARMBBAR
REAL A.B,C,DLTHETA,KSQ,CONST,EPS,XA,YA,NEWDEG,PLD
REAL LOLIM,UPLIM,MO,x(10),Y(10),ALPHA(10),XX(10),yyy(.0)
REAL LEN(1O),EI(10),INT-D(0),SLFWT(1O),DLRAT(10)

. REAL EXTMOM(10)
o'z C

C EXTERNAL FUNCTIONS FOR THE INTEGRATION SUBROUTINE DCADRE.
C

EXTERNAL FLEN,XCOD,YCOD
C
C COMMON BLOCKS BETWEEN FUNCTIONS, SUBROUTINES AND THE MAIN PROGRAM
C FOR THE DATA TO BE COMMUNICATED.
C

COMMON/AREAl/BETA,L,STIFF,PA,W,D,MBBAR
COMMON /AREA3/DL, C,THETA, KSQ, CONST

C
C DEFINE ERROR LIMITS AND TOLERANCES.
C

EPS" .0E-5
AERR-0.0
RERR-1.0E-2

*' DEL"O.2
C
C INITIALLY ASSUMED GLOBAL COORDINATES OF LOAD.

b GLXP- 0.0
GLYP,,0.0

C
. C READ IN DATA OF LOAD , LINK JOINING LIFTING ELEMENTS AND END

C EFFECTOR AND THE LAST LIFTING ELEMENT.
C

READ (1, .)WL,RL,XL,YL, H, RB
C
C READ IN TRANSFORMATION MATRICES FOR EACH OF THE LINKS IN THE
C LIFTING ELEMENTS.* C

DO 82 K-2,6,2
*'. READ(I,)X(K),Y(K) ,ALPHA(K)

82 CONTINUE
C
C READ IN GEOMETRY AND LOADS ON EACH OF THE LIFTING ELEMENTS.
C

DO 81 K-1,4
READ(I,*)LEN(K),E(K),INTD(K),SLFWT(K),DLRAT(K),EZTMOM(K)

C ITERATIVE LOOP TO DETERMINE THE GLOBAL LOAD POSITION DUE TO A
C SET OF PRESSURES.
C SET ANGLE AT WHICH SHEAR LOAD AND SELF WEIGHT ACTS TO 180
C DEGREES FOR THE FIRST ELEMENT.
C
81 CONTINUE
87 BETA-3.14159
CC LOOP TO DETERMINE THE LOCAL (X,Y) COORDINATES FOR THE TIP OF
C EACH ELEMENT.
C

ALPSM -n.0

%'°°°~~~~~~~~~ .. .- .. .. .. . . . .-" o. - ..
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DO 85 K-',4
L.-LEN (K)
STIFF-EI(K)
PAmINTLD(K)

C
C SHEAR LOAD AND SELF WEIGHT ACTING ON ELEMENT K.
C

W-WL-SLFWT (K)

C INITILULYASSMEETRM ANGLES FOR THE SECANT METHOD.

THEL EQUALITHOLDS

UPTEM-(TQT(1./RQ)/

IF(UPTEMP.GT.1.) THEN
UPPER-i .57

ELSE
UPPER=ASIN (UPTEMP)

* -. ENDIF
C
C SET UPPER INTEGRATION LIMIT TO THE LIMITING UPPER BOUND IN
C EITHER THE POSITIVE OR NEGATIVE RANGE.

IFULI.T..CTE
IF (UPLIM.GT.UPPER)UPLIM-UPPER

* ELSE
IF(UPLIM.LT.-UPPER)UJPLIM.-UPPER

ENDI F
* LOLIM=THETA/2.

F-CONST*DCADRE(FLEN ,LOLIM,UPLIM,AERR,
* - *RERRERROR,IER)-l.

C
C ITERATIVE LOOP TO DETERMINE THE TIP ANGLE ALPHA IjN EACH ELEMENT.

*'. C

* *10 Fl-F
OLD-CURR

_ CURR-NEW
CALL COMP(CURR)
UPLIM- (THETA+CURR) /2.

C
-,C IF(1-KSQ*SIN(X)*SIN(X)) >- 0 ,SET THE UPPER BOUND SUCH THAT

C THE EQUALITY HOLDS.
C

UPTEMP-SQRT(I. ./KSQ)
* IF(UPTEMP.GT.1.) THEN

UPPER-1.57
* .. ELSE

UPPERmASIN (UPTEM4P)
ENDI F

C
C SET UPPER INTEGRATION LIMIT TO0 THE LIMITING BOUND IN E:THER
C THE POSITIVE OR NEGATIVE RANGE.
C

IF(UPLIM.GT.0.0)THEN
IY (.tTWT.T M4. rT . TPDD.P) TTDT.T M-~DV.
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ELSE
IF (UPLIM.LT. -UPPER)UPLIM-tJPPER

ENDI F
L0..IMuTHETA'2.
FUCONST*DCAE(FLEN,LOLIM ,UPLIM,AERR,RERR,
ERROR,IER)-.

c FTEDFEEC EWE H W XRM FUNCTONS N THE

C ALPHA AS THE TIP ANGLE.

IF(ABS(F-F1) .LT.EPS)THEN
WRITE (3, 23

23 FORMAT(//5X,'F AND Fl. DIFFER BY LESS THAN EPS')
GO TO 20

ENDI F
C
C UPDATE THE ANGLE ALPHA USING THE SECANT METHOD.
C

NEW-CURR-F* (CUER-OLD ) /(F-F 2)

C ERROR CRITERION TO QUIT TIP ANGLE COMPUTATION LOOP.
C

IF (ABS(NEW-CURR).LT.EPS)GO TO 20
eu WRITE (3,I) NEW

I FORMAT(//' NEW ALPHA-',F210.4)
GO TO 10

20 NEWDEG-NEW*180./3.14159
WRITE (3,2 )NEWDEG

2 FORMAT(// ALPHA-',FIO.4,' DEGREES'
CALL COMP(NEW)
UPLIM- (THETA-NEW) /2.

C IF(1-KSQ*SIN(X)*SIN(l)) >- 0 ,SET THE UPPER BOUNM SUCH THAT
C THE EQUALITY HOLDS.
C

UPTEMPuSQRT( ./IXsQ)
IF(UPTEMP.GT.1. )THEN

UPPER-1. 57
* ELSE

UPPER-ASI N(UPTEMP)
ENDIF

C
C SET UPPER INTEGRATION LIMIT TO THE LIMITING BOUND IN EITHER THE
C POSITIVE OR NEGATIVE RANGE.
C

IF(UPLIM.GT.O. 0)THEN
IF (UPLIM.GT.UJPPER)UPLIM-tPPER

EL SE
I F(UPLIM. LT. -UPPER) UPLI M- -UPPER

ENDI F
LOLIM-THETA/2.
ANSUCONST*DCADRE (FLEN ,LOLIM,UPLIM,AERR,
RERR,ERROR,IER)
WRITE(3, 7)ANS

7 FORMAT(// ANSWER OBTAINED BY INTEGRATION IS ',F10.4)
LOLIMwTHETA/2.
ZAUCONST*DCADRE(XCOD,LOL'IM,UPLIM,,AERR,RERR,ERROR,IER)
YA-CONST*DCADRE(YCO,LOLIM,jPLIM,AERR,RERR,ERROR, IER)

C
C STORE TIP DEFLECTIONS AND CLOCKWISE ANGLE ROTATION IN
C ARRAYS X,Y AND ALPHA.
C

X( 2*K-2 ).XA*
R -. 1) wVA* T
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ALPHA(C2*K-1 ) -NEW

C TOTAL CHANGE IN ANGLE FROM THE SUPPORTING BASE.

C

C WR:TE THE -T'P DEFLECTIONS OF THE rEMENT :N THE LCAL. CoZR:NATE
C SYSTEM.
C

21 FORMAT(//5X,'ZTIP-',F7.3,5,'YTIP-',F7.3)
C
C UPDATE THE ANGLE AT WHICH THE DEAD LOAD ACTS.
C

IF(K.NE.4 )BETA-BETA-NEW
85 CONTINUE
C

*C CALL TO TRANSFORM TIP DEFLECTIONS IN LOCAL COORDINATE SYSTEM
C TO GLOBAL COORDINATE SYSTEM.
C

C CALL TRANS(X,!,ALPHA,mX,YYY,4)

C WRITE GLOBAL TIP DEFLECTIONS OF ELEMNTS.

DO 83 Km1,4
WRTE(3,115)K,XXX(K) ,K,YY Y(K)

83 CONTINUE
115 FORMAT(//5,'GLTPEL(',12,')',F7.3,5Z,'GLTPYEL(',12,')=',

F7.3)
C
C COMPUTE COORDINATES OF LOAD.
C

RTPL-2. *RB+H+eRL
PSIsATAN2(XLRL+YL)
GLXC-ZX(4 )+RTPL*SIN(ALPSUJM+PSI)
GLYCuYY(4)-RTPL*COS(ALPSUM+PSI)

C
C CRITERION TO QUIT GLOBAL LOAD POSITION ITERATION DUE TO
C A SET OF PRESSURES.
C

IF((ABS(GLXC-GLXP).LE.DEL).AND.(ABS(GLYC-GL"YP)LLE.DEL))GO TO 86
C
C UPDATE EXTERNAL MOMENT IN EACH ELEMENT DUE TO LOAD.
C

DO 84 1-1,4
EXTMOM(I )u(SLFWT(I ).WL')* (YYY(I )-GLYF)

84 CONTI NUE
C
C UPDATE GLOBAL LOAD POSITION.
C

GLXP-GLXC
GLYP-GLYC
GO TO 87

C WRITE FINAL GLOBAL LOAD POSITION DUE TO A SET OF PRESSURES.
C
56 WRITE(3,22)GLXC,GLYC
22 FORMAT(//5Z,'GL. XCOOD. LD.-',FlO.4,5X,'GL. YCOOD. LD.w.,F10.4)

STOP
END

C

C FUNCTION FLEN TO COMPUTE THE INTEGRAND
C
C

FUNCTION FLEN(X)
or



COMMSU/BROUTINE ,COMPTO COMPUT H

:)EFNI.-KQ*SI(X)*INIX

FLEN-./SQR(DEFN

COMO

COO SUBREOUTINE COM TO TA , RSQ, C TNS
PLC'O (NTEREIT VALUES (BRETA)

SBRUTSNCRWSIE (BETA)RR

REL B TAPLLSTI FFWDBA

PBBAR-PL*L*L/STI FF

A=2.*PBBAR

Cm-2.*PLBACOS(CR)+2.*PBBAR*SIN(CURR)MBBAR*MBBAR
DLaSQRT(A*A*B*B)
THETA-ATAN2(B,A)
KSQ-2.*D)L/(C+DL)
CONST-2./SQRT(C*DL)
RETURN
END

C

C NERNDFRTECOMPUTATI ON
C OF THE TIP X-COORDINATE
C
C

FUNCTION ZCOD(X
REAL Z
COMMON /ARE%3 /DL,.C, THET,KSQ ,CONST
XCOD-COS (2.*Z-THETA)*FLEN(X)
RETURN
END

C
C

C * FUNCTION YCOD TO COMPUTE THE
C * INTEGRAND FOR THE COMPUTATI ON

C OF THE TIP Y-COORDINATE
C
C

FUNCTION !COD(X
REAL X
COMMON /AREA3/DL,C,HT,KSQ,CONST
YCOD-SIN (2.*Z-THETA ) FLEN (I)
RETURN
END

C
C
C SUBROUTI NE TRANS TO TRANSFORM
C THE LOCAL COORDINATES TO THE
C * GLOBAL COORDINATES
C
C
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S-JBROL'T:NE 7RANS(X,Y,ALPHA,X= XYYY ,:E:.EM)'

RE.AL ICIO) ,Y(IQ) ,ALPHA(10) ,TRAN(3,3) ,TEMP(3,3) ,7RAN2(3,3)
REAL zXX(1O),YYY(10)

C INITIALIZE TRANSFORMATION MATR:X TO AN :DENT:77 I4ATR:X.

K C DO 12 1-1,3
DO :2 J-1,3

IF (I.EQ.J) THEN
TRAN(I ,J)-l.

ELSE
TRANCI ,3)-0.

ENDI F
12 CONTINUE
22 CONTINUE
C
C GLOBAL AND LOCAL COORDINATES FOR FIRST ELEi4ENT COINC:-DES.
C

YYIY(1) -Y(I)
DO 15 J-2,IELEM
DO 10 1-2*J-3,2*(J-1)

CALL UTOI (I(IY (I),ALPHA (I),TEMP)

CALL THLT ( TRAN ,TEMP ,TRAN2)

CPDATE TRANSFORMATION MATRIX TILL ELE MNT (3-1) AND
C THE RIGID LINK AFTER IT.
C

DO 51 1101,3
DO 50 33=1,3

TRAN(II ,Z3)-TRAN2(II,,33)
50 CONTINUE
52 CONTI NUE
20 CONTINUE
C
C COMPUTE GLOBAL TIP COORDINATES FOR ELEMENT 3
C

Xzz(J)-TRAN(1,1)*X(2*3-1),rR.AN(1,2)*Y(2*j-l),TRAN(1,3)
yyy(J)-TRAN(2,1)*z(2*J-1),TRAN(2,2)*Y(2*3-1)+TRAN(2,3)

i5 CONTINUE
* RETURN

END
C
C
C * SUBROUTINE UTOI TO FORM THE
C * TRANSFORMATION MATRIX BETWvEEN
C * FRAME (I) AND FRAME (1-.1)
C

C
SUBROUTINE UTOI (X,Y,ALPHA,IFORM)
REAL X,Y,ALPHAIFORM(3,3)
IFORM(1 ,l)-COS(ALPHA)
IFORM(2,1)=-SIN(ALPHA)
IFORM(3,1)-0.0
IFORM(1,2)-SIN(ALPHA)
IFORM(2,2)-COS(ALPHA)

F ORM(3,2):O.0

I FORM(2,3) =Y
IFORM(3,3)-l.0
RETURN

(I. END
C
C ********************

C * SUBROUTINE TMtJLT TO MLTIPLY *

P. C TWO MATRICES

'de W
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c
C

SUBROU.7 NE TMr=7 C RELA ,CRELB ,CRELA)
REAL BRELA(3,3) ,CRELB(3,3) ,CRELA(3,3)
DO 10 1-1,3

DO 20 J-1,3
CRELA(: ,z)-RL )*RL 2:)BEA( 2

-CRE..B(2,J)-BRELA( ,3)*CRE..B(--,.')
20 CONTINUE
2 0 CONTI NUE

RETURN
END




