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ABSTRACT

The primary purpose of this thesis is to to demonstrate some principles of

combat modeling using programs for the Radio Shack TRS-80 Model 100 computer.

In addition to the combat modeling, the thesis includes several utility programs for the

M 100 of interest to students of operations analysis.

The combat modeling programs include an antisubmarine warfare (ASW)

detection simulation, a Kalman filter, and a Lanchester differential equation

simulation. The utility programs include a matrix algebra program, a numerical double

integration program using Simpson's Rule and the Romberg integration algorithm, and

a geometric programming program for zero degree of difficulty problems. The

integration program is also written as a subroutine that can be included in other

programs. The matrix algebra program includes a simultaneous linear equation solving

subroutine which can be used in other programs.

All programs are written in M 100 BASIC. Documentation includes an

explanation of the input required, the output produced, and the components of each

* program, and sample problems. The chapter on geometric programmning includes a
tutorial on the mathematical basis for that technique.
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1. INTRODUCTION

A. BACKGROUND
The NPS Operations Research Department has made Radio Shack TRS-80

Model 100 computers available to a limited number of students. Expcrience has shown
that these students have made relatively limited use of these computers. The main

reasons seem to be:
, This computer uses the BASIC programming language. NPS OA students do

not receive instruction in this language but are required to learn FORTRAN and
APL. Although FORTRAN and BASIC have similar structures, most OA
students believe they do not have time to learn a third computer language.

* Only a few M-100 programs are currently available at NPS that directly relate to
course work.

* Writing and debugging programs for the M 100 can take a considerable amount
of time. Many OA studeits believe that time would be more usefully spent
pursuing other approaches to their studies.

* The M I00 has thus far not been distributed to all OA students. Therefore,
professors have not been able to require students to use the M 100. It has been
relegated to "nice to have" status instead of being included as an essential
teaching tool.

B. GENERAL

The purpose of this paper is to develop a collection of programs in BASIC for
the M 100 that students can use in the combat modeling courses of the OA curriculum.
The programs make extensive use of subroutines which allow students to run programs
"off the shelf' or build their own programs from the subroutines. The programs arc

extensively documented so that students who learn BASIC can use the printed
programs as study aids to understand the algorithms involved. Some of the programs

are tutorial.
In testing situations professors are often limited to problems that are

arithmetically very simple. If programs for the M 100 were available, professors would

be able to give more intricate test problems without placing undue emphasis on manual
arithmetic calculation.

Additionally, when students leave NPS, they will be able to take with them a
series of programs with which they have grown familiar during their course of study.

13
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H. FEATURES COMMON TO MORE THAN ONE PROGRAM

A. GENERAL CHARACTERISTICS OF THE MODEL 100
The M 100 is a versatile and very portable computer. As provided to Naval

Postgraduate School students, it has either 24K or 32K of RAM for storage of
variables during program execution and for storage of programs and other files.
Programs and files remain active while the computer is turned off. There is an intcrnal
300 baud modem which facilitates transfering programs to other computers for storage.
The eight line LCD screen limits the graphics display capability of the M l0&.
However, output in character form can be written to RAM files and reviewed after
program execution is complete. The version of BASIC used in the M 100, creation of
text files, use of the modem, etc. are explained in Reference 1. This thesis assumes that
readers are somewhat familiar with Reference 1.

Although the programs have statements which print intermediate and final results
to the screen, the operator may wish to check the status of a variable that is not
printed by the program. To do this

"Stop the program by depressing the SH-IFT and BREAK keys simultaneously.

" Typena BASIC statement to print the desired variables and hit the EINTER

" Start the program again at the place it stopped by typing CONT and hitting the
ENTER button.

Most of the programs in this thesis do not include statements to end the
program. This is because the programs cycle back to the start of the program allowing
the operator to enter a new set of parameters without restarting the program. To end
the program

* Depress the SIHIFT key and the BREAK key at the same time.
e To rerun the program from the start, depress the F4 key.

-C* To return to the main menu, depress the F8 key.

B. COMMON TERMINOLOGY
BASIC variables are refered to in the text using capital letters. Since M/ 100

BASIC only differentiates between variables based on the first two letters of the
variable name, most BASIC variables in the following programs are combinations of

14



two capital letters, e.g. BA, CR, FT. Names of matrices are also specified using capital

letters. BASIC permits matrices to be dimensioned using variables. If, for instance,
AB = 3 and AC =4, then, the BASIC statement DIM ZZ(AB,AC) would dimension a

three by four matrix named ZZ. When capital letters are used inside the parentheses,

the size of the matrix is being specified. When a small letter is used inside the

parentheses, a particular element of the matrix is being specified. For example, ZZ(ij)
refers to the element of ZZ in the ith row and jth colun. When a matrix has more
than one dimension, the first number from the right is refered to as the column number

and the second number from the right as the row number.
When the mathematical theory behind a program is discussed, the variables used

will be small letters or Greek letters.

C. INPUT FILES

All of the programs presented in this thesis permit data to be entered from a text
file. These text files must be created using the M 100's text editor before the program is

run. The name of the text file for each program is similar to the name of the program
it supports and is given in the documentation for each program under the section

~ .titled, "Input". The contents of the input file are also explained in the appropriate

"Input" section.
Numbers in input files must be separated by a space, comma, or return. A

comma and a return may not be placed together without a number between them.

Otherwise-. the M 100 will enter an extra zero at that point. A comnma and a return

together also cause data elements which follow to be in the wrong places in their

matrices and/or wrong numbers to be read as matrix dimensions. Do not put blank

lines' in the data for the same reason.

D. FORMULA TOKENIZATION

There are some programs which must be adapted to use different equations at

the same point in the program depending on the application. For example, the

detection theory simulation in Chapter 3 must be able to handle many functions for

the probability of detection of a sensor. When the function necds to be changed, the

operator may:

Two returns together.

15



" Stop the program, call the BASIC editor for the lines that need to be changed,

ana restart the program after the function has been edited, or

" Use a tokenization routine to change the function without stopping the program.

This section describes a subroutine (see Figure 2. 1) which performs that tokenization.

1400 *Tokenize DF
1410 B$='DF="+DF$+CHR$(0)
1450 'Tokenize/exscute B$
1451 BO=VARPTR(B$ ) :B=PEEK(BO+1 )+256*PEEK(BO+2 ):CALL1606POPB1
14SS CALL2499,0,6310S:RETURN

Figure 2.1 Formula Tokenization Section.

That subroutine is taken from [Ref. 2:pp. 58-60]. Tokenization converts a string
variable into an executable BASIC statement. In the example in Figure 2.1, the right

hand side of the function equation was stored as a string variable, DFS before this
subroutine was called. For example, if the equation was DF= X+ Y, then DFS is the

, string, "X + Y". Line 1410 adds an equal sign and appropriate left hand side to DFS to
form BS, a complete assignment statement in string format. In the example above line

1410 adds "DF=" to DFS to form BS. Line 1451 computes memory location, BI, of

BS and calls the machine level subroutine in the M IO0 read only memory (ROM)

-beginning at memory location 1606. Subroutine 1606 converts the BASIC keywords in

BS into their one byte tokens and then stores them in executable form at memory

location 63105. Line 1455 calls the machine level subroutine beginning at memory

location 2499 which executes the statement stored at memory location 63105.

' . 16



III. DETECTION SIMULATION PROGRAM

A. GENERAL
The problem addressed by this program is estimating the probability of detecting

a target whose location is given by a bivariate normal distribution when the location of

each detecting sensor also has a separate BVN distribution. The target distribution is

BVN(0,0,a2 x,62yPx,y ) . The location of each sensor, Si, is distributed BVN(pu, Jv.,BV(,ui - 1 i1
2 2ui, 2vi, Pui,vi). All distribution parameters are stored in an input text file. The

program models two sensor types:
* A Deterministic Sensor. This sensor has detection probabilities of 1, 0 and I in

three concentric circular bands around the sensor's location. An example of this

type of sensor would be a sonobouy which detects all targets out to range r1,

detects no targets between ranges rI and r2 , detects all targets in a convergence

zone between r2 and r3, and detects no targets beyond r3 where 0 < r, - r2 <

r3•
" A Probabilistic Sensor. This sensor has a continuous, radially symmetric

detection pattern. The probability of detection, Pd, is a function of range and

may also be a function of one or more other parameters. The default function,

D(r,b), for calculating Pd is a Carlton function where b is a scaling parameter

(See Equation 3.1). Figure 3.1 shows graphs of several Carlton detection

functions.

Pd= D(r,b) = e r2/ 2 b 2  (eqn 3.1)

For either type of sensor the program calculates the overall probability of detection

using D(r). The deterministic sensor portion of the program can also be used to

calculate a "cookie cutter" approximation of the actual detection function. The

cookie-cutter approximation has the form D(r) = I when r:5 ro and D(r)=0 when

r>r 0 , for some specified detection range, ro* The radius, r, of the cookie-cutter
approximation is the lethal radius of the actual detection function for a sensor. Lethal
radius is a term borrowed from the damage functions of firing theory. It is used here

to help readers who are familiar with firing theory, not because being detected by a

17
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sensor is inherently lethal. The lethal radius is a scalar measure of a sensor's detection

ability and is computed using Equation 3.2. See [Ref. 3:pp. 12-15].

Lethal Radius = [2C rD(r) dr])5 (eqn 3.2)

To calculate a cookie-cutter approximation, the lethal radius of D(r) must be computed

off line and included as a sensor parameter. 2 For example, the lethal radius of the

default Carlton detection function is 2"5b.

nTHREE MT.ON OETECTION FUNCTIONS
w.th b - 1, 3, and 5.

z

C)

W "n

EL b-3
o b-1

t 0.0 5.0 10.0

R19NGE

Figure 3.1 Graph of Carlton Detection Functions.

Closed form solutions are available for some specific cases that can also be

computed with this program, e.g. a group of sensors with Carlton detection functions

at fixed locations. The program will verify these closed form solutions. However, it

./ will also estimate probability of detection for problems without closed form solutions,

e.g. a group of cookie-cutter sensors in which each sensor has a different BVN location

distribution.

2See the second example in the section of example problems at the end of this
chapter.
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The program uses a Monte Carlo simulation to estimate Pd. Because the Monte

Carlo simulation is time consuming, faster numerical integration approximations are

also available for the deterministic sensor. However, the particular numerical integration

technique used in this program will not produce correct results if sensor areas of coverage

overlap. More sophisticated numerical integration techniques are available for special

cases of the probabilistic sensor, but are not included in this program.

B. EXPLANATION OF VARIABLES

* AL is the probability that the computed confidence level does not contain the

true probability of detection for the associated standard normal CDF value.

" A2(6,6) is the intermediate calculation matrix for the Romberg integration

subroutine.

* BO and BI are the memory location parameters of BS.

B BS is the string that holds the entire equation for DF in the tokenization process.

* DI and D2 are intermediate calculation values.

* DF is the value of the detection function.

* DFS is the string that hold the right hand side of the equation for DF.

* F is the value of the function being integrated at a specific point.

* Fl is, in the data input section (lineslOO-150), the selection variable indicating

whether all sensors have the same parameters. If F1 = 1, then sensor parameters,

other than the five for location, will be listed only once: after the location

parameters of S1. If FI = 0, then values of all parameters for all sensors must be

entered explicitly in DSIN.DO. In the rest of the program, beyond line 200, F1

is a flag determining whether the calculation is based on the deterministic

(F1 = 1) or the probabilistic (Fl = 2) sensor.

" F2 is the selection variable for whether all sensors locations are distributed with

Gx = ry = O, I -yes;2-no.

* F3 is the selection variable for whether a Monte Carlo simulation (F3= 1) or a

numerical integration (F3 = 2) is used.

* H is the radius of circular limits of integration.

I, II, 12 are loop counters.

* IN is the value of the integral from a numerical approximation.

* JI through J9 are loop counters.

* NS is the number of sensors.

* NP is the number of parameters for each sensor in addition to location.
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* NR is the number of repetitions in a Monte Carlo simulation.

* PD is the probability of detection.

* RF is (l-RH2 )"5 .

* RH is the correlation between components of the BVN target location

distribution.

" SI and S2 are standard deviations of the components of the target location

distribution.

* TE is a temporary storage variable.

* TIS and T2S are times at beginning and end of a calculation.

* T1 is the time elapsed during a calculation.

• VI and V2 are variances of the components of the target location distribution.

* XS and XT are specific values of the first component, i.e. the mean X position,

of the BVN distributions of a sensor or the target respectively.

• X(NS,5+NP) is the parameter matrix for sensors. There is one row per sensor

and one column per parameter. Columns one through five are for the means,

1uSi and v,Si, the standard deviations, auS i and av,Si, and the correlation,

pS i, of the location of each sensor, Si. These parameters are in the same

coordinate system as the target location distribution.

" YS and YT are specific values of the second component, i.e. the mean Y position,

of the BVN distributions of a sensor or the target respectively.

" ZI and Z9 are selection variables.

C. INPUT

1. Input File

Before this program is run, a text file, DSIN.DO, must be created to hold the

input parameters. DSIN.DO will contain the following variables in the following

order:

* NS, NP, SI, S2, RIt, F I

* The sensor location/parameter(s) matrix, X(NS,NP + 5).

An example of a input file is shown in Figure 3.2 along with a graph of the

corresponding sensor coverage areas. Entries in the first line of Figure 3.2 indicate that

there are two sensors with three parameters each, that the target location distribution

is BVN(0, 0, 625, 625, 0), and that all sensors have the same parameters. The second

line is the parameter set for the first sensor. There is no variance in the location of
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.3 5 _.i,0,!
2).Y•.0.S0N,5,25,30 w SENSOR COvERAS (SHA tED LA-20,-20,0,0,0 m T9T LCO IS DIST 8VNO,o,523 62S,0)

LOCATION 0ISTIBUT IN' 1DtHrOc CINr-S)

Figure 3.2 Example of Input File. DSIN,
And Graph OSenisor Coverage.

either sensor. The first sensor is located at (20,20) and has additional parameters 5, 25,
and 30. If this input file represents sensors that have a deterministic detection
functions, then the sensors detect all targets within a distance of 5 and within a circular
band from 25 to 30 and do not detect targets outside of these bands. Both sensors

have the same parameters other than location, as indicated by the last element of the
first line being one, the last line contains only the location of the second sensor. If one

or more sensors had different parameters (other than location), then the last element in
the first row would have been zero. Also, the three nonlocation parameters would

have been specified for all sensors. Although the parameters for each sensor may be
different, the detection function for each sensor must be the same. For example, the
program does not allow a mi~xture of sensors with deterministic and probabilistic
detection functions.

2. Interactive Input

After the program has read the input file, the operator will be prompted to
specify:

0 Whether a deterministic or a probabilistic detection function will be used.
0 Whether the variance in target location is or is not equal to zero.

* Whether a Monte Carlo simulation or numerical approximation will be used.
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If the probabilistic detection function is used, the operator may interactively change

the detection function. If the Monte Carlo simulation is used, the operator will be

prompted to specify the number of repetitions, NR, in the simulation.

D. OUTPUT

The program prints the probability of detection, PD, to the screen of the VI 100.
If the computation was a Monte Carlo simulation, the program asks the operator to

specify an a3 for the confidence interval on the probability of detection. Permissible

a's are .10, .05, and .01. The program computes the lower and upper limits of the

confidence interval based on a normal approximation to the binomial distribution. The

expression for these limits is shown in Equation 3.3.

PD ± Z 1 ctPD(I-PD)/NR]' 5  (eqn 3.3)

Z 1-a12 is the point on a standard normal distribution at which the CDF has a value of

1-ct 2.

,-' E. EXPLANATION OF PROGRAM COMPONENTS

.41 A complete program listing is at Appendix A.

1. Initialization/Data Input, Figure 3.3

Lines 100-115 print the program title and open the input file, DSIN.

Line 120 reads the first line of DSIN and calculates the variances of the
marginal distributions of the target location distribution. It also dimensions

X(NS,5 + NP) and A2(6,6).

Lines 125-135 read the lines of DSIN that specify parameters for individual

sensors, Si, i= 1,2 ..... NS. Line 125 reads all parameters for S1. If some Si have

different nonlocation parameters, i.e. FI =0, then line 128 reads in 5+ NP parameters

for Si where i= 2,...,NS. If all sensors have the same nonlocation parameters, i.e.

F I = 1, then lines 132-135 read the five location parameters for each sensor. They also
-'. make nonlocation parameters of Si, where i = 2,3,4,...,NS, equal to the nonlocation

parameters of Sj.

3a is the probability that the computed confidence level does not contain the true
probability of detcction.
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100 CLS: PRINT" :PRINT" DETECTION SIMULATION": FORI =TO4O0 : NEXTI
110 'Input/Initialization
115 OPEN"DSIN"FORINPUTAS1
120 INPUT#INS,NP,SlS2,RH,FI:VI=S1*Sl:VZ=SZeS2
121 DIlMI(INS,5NP),A2(6,6),TI(3)
125 FORII=lTOS.NP :INPUT#i ,X( 1,1) :NEXTI1
126 IFNS=lTHEN140
127 IFFllTHEN132
128 FORI1=ZTONS:FORI2=lTOSNP:INPUT#l,X( I1,12 ):NEXTIZ:NEXTI:GOT0140
132 FORI1=2TONS:FORI2=IT05:INPUTI1,X( 11,I2 ):NEXTI2:IFNP=OTHEN135
134 FORI2=6TOS+NP:X(Il,I2)=X(1,I2):NEXTIZ
135 NEXTIl
140 RF=SQR(1-RHA2)
150 DF$="FXP( -( (XT-XS )^ 2+(YT-YS )A 2 )/( 2*X(JZ,b )A 2)

Figure 3.3 Initialization and Data Input Section.

Line 140 calculates RF, an intermediate value used in later integration

calculations.

Line 150 assigns the right hand side of the Carlton equation to DFS as the

default equation for calculating the detection function value, DF.

2. Method Selection Section, Figure 3.4

200 ' Simulation Selection Section
201 CLS:PRINT"Is the Detection function:"
203 PRINT" 1. Deterministic":PRINT" 2. Probabilistic"
205 INPUT"Enter 1 or 2:";F1
210 CLS:PRINT"Are Sensor Locations:"
212 PRINT" 1. Always At Aim Point":PRINT" 2. Distributed BVN Around Aim Point"
214 INPUT"Enter 1 or 2:";F2
215 IF1 F=2ORF2= )THENF3=1:GOT0230
220 CLS:PRINT"":PRINT"Is the Calculation:"
222 PRINT" l=Monte Carlo Simulation":PRINT" Z=Numerical Approximation"
224 INPUT"Enter 1 or 2")F3
230 TIME="0 :00:00": IF Fl=lTHENGOSUB300ELSEGOSUB500
250 GOTO200

Figure 3.4 Method Selection Section.

Lines 200-250 assign values to:

a Fl. If FI = 1, then calculations are done for a deterministic sensor. If F! 2,

then calculations are done for a probabilistic sensor.
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" F2. If F2= 1, then the sensor is always located at its aiming point, i.e.

2x =a 2y_ 0. IfF2=2, then a 2
x or a 2y is not equal to 0.

" F3. If F3 =-1, then a Monte Carlo simulation is conducted. If F3=2, then a

numerical approximation is calculated.

Line 230 sets the M 100's clock to zero to time the calculation. It also branches to the

appropriate subroutine depending upon which type of sensor is specified by F I.

3. Deterministic Sensors, Lines 300-360

300 'Deterministic Sensor Subroutine
V. 305 IFF3=lTHENGOSUB31OELSEGOSUB350

306 RETURN

Figure 3.5 Decision Logic For Deterministic Sensors.

A. Based upon the value of F3, lines 300-306 (see Figure 3.5) branch to

subroutines to conduct the calculations using a Monte Carlo simulation or a numerical

approximation.

a. Actual Detection Function, Lines 310-360

(1) Monte Carlo Simulation, Figure 3.6. Line 315 calls subroutine 900

which prompts the operator for the number of repetitions, NR.

310 'Monte Carlo of Deterministic Sensor
315 GOSUB900
320 PD=O:FORJI=IT0NR:PRINT.Z41,"Repetition:" J1:GOSUB600:FORJZ=ITONS
323 IFF2=2THElOS=X(J2,1):YS=X(JZ,2):GOT0325
324 GOSLU612
325 TI=SQR((XS-XT)A2IYS-YT )A2)
330 IFT1<=X(J2,6)THENPD=PD,1:GOT0335
332 IFT>=X(J,7)ANDT1<=X(J2,8)THENPD=PD+1:GOT0335

334 NEXTJZ
335 NEXTJ1 :PD=PD/NR :GOSUB950 :RETURN

Figure 3.6 Monte Carlo Simulation.

For repetitions one through NR, lines 320-335 generate a target
location from the BVN distribution. They then check whether that location lies within
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the circular detection bands around each sensor, Si, i= 1,2 .... ,NS. PD counts the

number of repetitions for which the target is in at least one detection band. The

Monte Carlo simulation functions accurately even if detection bands of various sensors

overlap because it does not double count if a target is detected by more than one

sensor. When all repetitions are completed, the counter, PD, is divided by NR to

produce an estimate of the probability of detection. Finally, output subroutine 950 is

called.

(2) Numerical Approximation, Figure 3.7. The volume4 under the target

location distribution is calculated for the detection bands of each Sr. This volume is

the sensor's probability of detection. Overlapping detection bands are not permitted with

this numerical approximation because the program would double count the overlapping

volumes. Subroutine 1200 conducts the integration. Probability of detection is the

volume under the target location distribution that is within the coverage area of any S.

350 'Numeric/Deterministic Subroutine
355 PD=O:FORJ2=lTONS:H=X(J2,6):GOSUB1200:PD=PD+IN
356 H=X( J2,8):GOSUB1200:PD=PD+IN
357 H=X(J2,7):GOSUB1200:PD=PD-IN:NEXTJZ
360 GOSUB950:RETURN

Figure 3.7 Numerical Approximation.

4. The Probabilistic Sensor, Figure 3.8

Lines 502-503 print a header and call subroutine 1300 which permits the

detection function to be modified. Line 503 also calls the subroutine in which the

operator specifies the number of Monte Carlo repetitions.

For each repetition, lines 520-530 generate a target location from the BVN

target location distribution. Then, for each Si they calculate the value of the sensor's

detection function using subroutine 1410 and generate a uniform random number

between zero and one. If that random number is less than or equal to Si's detection

function value at that location, then S. detected the target and PD is augmented by

4This volume, althouch it is computed and described as a volume in this section,
is not a true volume. Thk is because although the X and Y axes of the BVN are
distances, the Z axis is a probability, i.e. dimensionless. Therefore the result is really
an area, not a volume.
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500 'Probabilistic Detection Function
502 CLS:PRINT"Default Detection Function Is Carleton."
503 GOSUB1300 :GOSUB900
520 PD00: FORJ1=lTONR:PRINT.241,"Repetition:";J1:GOSUB600:FORJZ=TONS
521 IFF2=ZTHENXS=X!JZ,1):YS=X(JZ,Z):GOT0523
522 GOS UB612
523 GOSUO41O:IFRNS( 1)<=DFTHENPD=PD+I:GOT0526
524 NEXTJ2
526 NEXTJ1:PD=PD/NR
530 GOSUB950:RETURN

Figure 3.8 The Probabilistic Detection Function.

one. If one sensor detects the target, the program moves directly to the next.

repetition. Therefore, the Monte Carlo simulation functions accurately even if detection

bands of various sensors overlap because it does not double count a target that is detected

by more than one sensor. When all repetitions are completed, the counter, PD, is

divided by NR to produce an estimate of the probability of detection. Finally, output

subroutine 950 is called.

5. Generating A BVN Random Variable, Lines 600-606

600 '***Generate BVN RV**
602 UI=RND(l):U2=RND(1):TE=SQR(-2*LOGIUl))
604 XT=TE*COSI 6. 2831853*U2 ) :YT=RH*XT+RF*TE*SIN( 6. 2831853*U2)
606 XT=XT*SI:YT=YT*S2:RETURN
612 UI=RNDI1):UZ=RND(1):TE=SQR(-2*LOG(U1))
614 XS=TE*COS(6.2831853*U2):YS=X!J2,5)*XT+(l-X(JZ,5 )2)^.5*TE*SIN(6.2831853*U2)
616 XS=X(J2,1)+XS*X(J2,3):YS=X(JZ,Z)+YS*X!J2p4):RETURN

Figure 3.9 Generating A BVN Random Variable.

Lines 602-606 generate the target location. Lines 602-604 compute both

components of a BVN(O, 0, 1, 1, 0) random variable using two independent uniform
(0,1) random numbers generated by the MI00's RND(l) function. Equations 3.4, and

3.5, as described in [Ref. 4:page 9531, form the basis for lines 602 and 604. Equations

3.4 generate two independent normal(0,1) random variables, X1 ' and X2'.

Xl ' = (-21n U1 )'5 cos(2ntU 2) (eqn 3.4)
X 2 ' = (-21n U1 )'5 sin(27tU 2)
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Equations 3.5 convert these two independent normal random variables into the

components of a BVN(O, 0, 1, 1, p) distribution, X1 and X2.

XI = X I' (eqn 3.5)

X2 = pX 1' + 0-P2)'5X2'

Line 606 scales the components of the BVN(0, 0, 1, 1, Px,y) by S I and S2 to

produce the components of the BVN(0, 0, a2xf 2y, Px,y) target location distribution

and then returns to the calling program.

Lines 612-616 generate a sensor location using the same algorithm that was
used to generate the target location. However, in addition to being scaled by au and

(F, sensor locations must also be displaced by ptu and p."
6. Entering The Number Of Repetitions, Figure 3.10

900 C!S:INPUT"Enter number of repetitions for fHonte Carlo Simulation:";NR
905 RETURN
910 ZNPUT"Hji ENTER to Continue";Z:RETURN

Figure 3.10 Entering The Number Of Repetitions.

- Line 900 prompts the operator to interactively specify the number of

repetitions, NR, for Monte Carlo simulations.

Line 910 is a subroutine which stops the program while the operator views

output to the screen.

7. Output Section, Figure 3.11

All printing is to the screen of the M100. Lines 951-952 play a tune to notify

the operator that the calculation is finished. Line 953 also prints the time required to

do the calculation and branches around the selection of u for the confidence interval if

a numerical approximation was used. Lines 954-959 prompt the operator to select .1,

.05, or .01 as u=AL, the probability that the true probability of detection is not in the

confidence interval. Once AL is selected, it is reassigned the value of the standard

normal at Zl,/ 2. Line 960 prints the point estimate of Pd. Line 962 prints a short

reminder that there is no confidence interval with numerical approximations. Line 966
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950 'Print output
951 SOUN01567,l0:SOUND1244,1O:SOUNDlO'6,1 O:SOUND7S3,20
952 SOUND1O6,10:SOUND783,40
953 CLS:PRINT"":PRIT"Calculation Time (HH/tt/SS) = ")TIHE$:IFF3=ZTHEN960
954 PRINT"Select Alpha for Confidence interval:"
955 INPUT" Choices = .1, .05, .01:"sAL
956 IFAL=. 1THENAL=l.645: GOT0960
957 IFAL=.OSTHENAL=I.96:GOT0960

4958 IFAL=.01THENAL=Z.575:GOTO960
959 GOT0954
960 PRNT"*** Estimate of P(Detection) = ";:PRNTUSING" *.####")PD

961 IFF3=lTHEN965
962 PRINT"No Confidence Interval For Numerical Approximations"
963 GOT0970
965 PRINT"Confidence Interval: ("s
966 TE=AL*SQR( PD*( 1-PD )/NR ) : LL=PD-TE :UL=PD TE :IFUL>ITHENUL=1
967 IFLL<OTHENLL=O
968 PRINTUSING"M . I####*" LL ;UL s: PRINT" )" : GOSUB910
970 'Confetti Approximation
972 PRINT"":INPUT"Confetti approximation? O=No, 1=Yes: l j

Z9:IFZ9
=
OTHENRETURN

974 CLS:INPUT"Enter TOTAL lethal area for ALL sensors in the pattern:"WNA
976 TE=NA/ 6.283185*Sl*S2 ):TE=I-( I+SQR 2*TE ) )*EXP( -SQR( 2*TE ))
977 PRINT"**Confetti Approximation = ")TE:GOSUB910:RETURN

Figure 3.11 Output Section.

calculates the confidence interval according to Equation 3.3. Lines 966-967 ensure that

the confidence limits are between zero and one. Lines 965 and 968 print the confidence

interval.
Lines 970-977 approximate Pd with the "confetti approximation" described in

[ReT 5:pp. 14-161. This approximates Pd by distributing the total lethal area of the

entire group of sensors over an ellipse as described in Reference 5. This approximation

is calculated by Equation 3.6 where = (Total Lethal Area)/(2naxey).

Pd = 1 - (1 + (2 )"5) e-(2;). 5  (eqn 3.6)

Line 972 prompts the operator to indicate whether a confetti approximation is

desired and ends the output routine if it is not. Line 974 prompts the operator to enter

,.," ' the total lethal area for all sensors combined. Line 976 computes and then Pd. Line

977 prints Pd and ends the output subroutine.

8. Numerical Integration, Figure 3.12

This subroutine is a tailored version of the Romberg integration subroutine

) documented in Chapter 8. It integrates the target location distribution subject to
circular limits of integration.

28



1200 'Numerical Integration Subroutine
1201 D1=6. 2831853$1$*S2RF
1202 TL=.001
1220 CLS: PRINT"": PRINT" ! !Calculating An Integral! !": PRINT""
1230 N=Z: GOSUB1293: DY=( YU-YL )/2
1240 FORJ9=ITO06 : OY=OY/2: N=N*2
1242 Y=YU:GOSUB1296:GOSUB280:A2(J9,1)=TSOX
1245 Y=YL:GOSUB1296:GOSUB1280:A2J9,l)=A(J9,l)TSDX
1250 FORJ8=ZTON:Y=Y+DY:GOSUB1296 : GOSUB1280
1251 AZ(J9,l)=A2(J9,1)+*TSDX:NEXTJ8
1252 A2(J9,1)=A21J9,l)*DY/2
1255 IFJ9=lTHENNEXTJ9
1260 FORJ8=1TOJ9-1
1262 A2(J9,J8+1)=A2(J9,J8) ((A2(J9,J8)-A2(J9-1,J8))/( AJ8-1)):NEXTJ8
1263 TI=AZ(J9,J9)-AZ(J9,J9-1 ):IFSGN( Ti )*T1-TL>OTHENNEXTJ9ELSE1266
1264 PRINT"Tolerance of"TL;"not met after five extrapolations"
1266 XN=AZ(J9,J9):RETURN
1275 FORJ7=TO6: FORJ6=ITOJ7: PRINTUSING"##. ###" )A2( J7 ,J6);
1276 NEXTJ6:PRINT"" :NEXTJ7:INPUTZ9:RETURN
1280 REM Trapezoidal Rule Sum
1281 X=XU:GOSUB1286:TS=F:X=XL:GOSUB1286 :TS=TS+F
1282 FORJS=2ZTON-I:X=X+DX:GOSUB1286:TS=TS+F:NEXTJ5:RETURN
1285 'FIX,Y) to be integrated:
1286 F =XA Z/V1-2*RH*X*Y/S1/SZ+YA 2/V2
1287 F=(EXP(-F/2/RFA 2) )/1: RETURN
1290 'Limits of Integration:
1293 YU=X(J2,2)+H:YL=X(J2,2)-H:RETURN
1296 T3=SQR(HA 2-( Y-X(J2,2))A2): XU=X(J2,1)+T3:XL=X(J2,1 )-T3:DX=(XU-XL)/N
1297 RETURN

Figure 3.12 Numerical Integration Subroutine.

9. Changing The Detection Function, Figure 3.13

1300 PRINT" -Detection Fn (DF) in terms of XT, YT,"
1302 PRINT" and Parameters XS, YS, and X(J2,6),.... ,X(J2,5+NP) :"
1304 PRINT" *- DF = "sDF$
1306 PRINT"Hit ENTER For No Change or Enter Ne... ":INPUT" DF = ";DF$
1307 RETURN

Figure 3.13 Changing The Detection Function.

This section contains a subroutine which permits the operator to interactively
change the detection function, lines 1300-1306., These changes would be made if the

operator wanted to use a probabilistic detection function other than a Carlton

function. In both equations XT and YT represent the two components of the target
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A. location. XS and YS represent the location of Sj2 in the same coordinate system as

A. XT and YT. An example of a probabilistic detection function that is not Carlton
might be an exponential function as specified in Equation 3.7.

Pd = )er where r = distance from sensor to target. (eqn 3.7)

The entry to be made when prompted by line 1306 would be

X(J2,6)*EXP(-X(J2,6)*SQR((XT-XS)"2 + (YT-YS)2))

where X for sensor J2 is X(J2,6). In general, X(J2,6),...,X(J2,5+NP) represent NP

other parameters of the selected detection function in addition to the five parameters of

the BVN sensor location distribution. The formula for the current detection function is

displayed by line 1304. The operator may either change it as desired or hit ENTER to

leave the current formula unchanged.

10. Formula Tokenization Section, Figure 3.14

1400 "Tokenize DF
1410 B$="DF="+DF$+CHR$(0J
1450 'Tokenize/execute B$
1451 BO=VARPTR(B$ ):B=PEEK(BO1 )+Z56*PEEK(B0+Z):CALL1606,0,B1
1455 CALL2499,0,63105:RETURN

Figure 3.14 Formula Tokenization Section.

The right hand side of the detection function equation is stored as a string

variable, DFS. This section converts DFS into an executeable BASIC assignment

statement and executes that statement. A detailed explanation of this subroutine is

found in the Formula Tokenization Section in Chapter 2.

F. SAMPLE PROBLEMS

Examples 1-6 which follow have the following characteristics in common.

* They use a target location distribution that is BVN(0, 0, 252, 252, 0), except for

Example 6 in which Px,y = .5.

9 All measurements are in kilometers and are in the coordinate system of the target

location distribution.

* All confidence intervals are calculated with a = .05.
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" All Monte Carlo simulations were done with 5,000 repetitions.

* All sensors, deterministic or probabilistic, have a lethal radius of twenty and

therefore a lethal area of 400it.

1. Example I

This example is of a single cookie-cutter sensor located at (0,0) with a lethal

radius of 20. The input file and diagram of sensor coverage is at Figure 3.15. The

closed form solution may be calculated using Equation 3.8.

Pd = I - e-r/2 - 1 - e202,(2*25 2) = .273S5 (eqn 3.S)

1 3 25 25 0 0
0 0 0 0 0 20 0 0 W SENSOR COVERAGE tSHADCE AM I

n TGT LOC IS DIST BVN( ,0 625 625,01
LOCATION DISTRIBUT ION (D OIED LINESI

W-. 0

Figure 3.15 Input File And Sensor Coverage Diagram For Example I.

The probabilities of detection computed by the various computational

techniques and calculation times were as follows.

9 Closed form: .27385
* Numerical inte-ration: .27252; 3 minutes, 24 seconds

0 Monte Carlo simulation: .27640 ± .0124; 4 hours, 22. minutes.
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2. Example 2

This example is of a single Carlton sensor located at (0,0) with a lethal area

equivalent to the cookie-cutter sensor in Example 1; i.e., b= 20,'(2 5) = 14.14214. The

input file and diagram of sensor coverage is shown in IRef. 5:page 5]. The closed form
solution is at Equation 3.9. Because the sensor is located at the origin and ax =a"

Equation 3.9 simplifies to Equation 3.10 for this example.

21 1 5 25 0 0 Carlton Sensor (b=14.1421) Located At (0,0)

o 0 0 0 0 14.14214

C
.5

0.6

'" 0.4

0.2

. -4. 0 st,-Igt

Figure 3.16 Input File And Sensor Coverage Diagram For Example 2.

The probabilities of detection computed by the various computational

techniques and calculation times were as follows.
a Closed form: .242424

• Numerical Integration: None

a Monte Carlo simulation: .2452 ± .0119; 3 hours, 44 minutes.

_Pd = y e" 5 (Su+ 6 v) (eqn 3.9)

where y b2, [(b2 + 52x)(b2 + a2v)3 .

6u  P2 ju'(b 2 + 62u)? and 8v= P 2v/(b2 + a2v)"
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Pd = b2 (b2 + 2) = 14.114.1424.1422+ 252) .242424 (eqn 3.10)

3. Example 3

This example is for a single cookie-cutter sensor offset at (10,10) with a lethal
radius of 20. The input file and diagram of sensor coverage is shown in Figure 3.17.

There is no closed form solution for offset cookie-cutter sensors.

1 3 25 25 0 0
10 10 0 0 0 20 0 0 x SENSOR COVERAGE (SHADE AREAS

m TGT LOC IS DIST BVN(0,0,625.625,D)
LOCATION DISTRIBU7ION (COTtfn LINES)

.°' ......... %

Figure 3.17 Input File And Sensor Coverage Diagram For Example 3.

The probabilities of detection computed by the various computational

techniques and calculation times were as follows.

*Closed form: None.

*Numerical integration: .2400; 2 minutes, 51 seconds.

*Monte Carlo simulation: .24160 ± .01187; 2 hours, 57 minutes.

4. Example 4

This example is for a single Carlton sensoi offset at (10,10) with a lethal area
equivalent to the cookie-cutter sensor in Example 3, i.e. b =.*0',(2*)= 14.14214 Tne

input file and diagram of sensor coverage is shown in Figure 3.18. The equation for

the closed form solution is shown in Equation 3.9.
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1 1 2S 25 0 0 Coarton Sensor (b=14.1421) Located At (10.10)
10 10 0 0 0 14.14214

0.8
.

Z' 0.

i'a-.techniques and calculation times were as follows.
* Closed form: .21475

0 Numerical integration: None

.. Monte Carlo simulation: .2138 ± .0114; 3 hours, 15 minutes.

FIe 5. Example 5

; i This example is for a single convergence zone sensor located (0,0) with a lethal

area equivalent to the sensors in Examples 1-4. The sensor detects all targets at ranges

, less than four, detects no targets between four and 30, detects all targets between 30
-- and 35.83, and detects no targets beyond 35.83. The input file and sensor coverage

diagram is shown in Figure 3.19. The closed form solution is found by using Equation

. , 3.8 to calculate Pd in circles of radii 4, 30, and 35.83. Then Pd = Pd(4) " Pd (3 0) +

"", Pd( 35 83 )
-, The probabilities of detection computed by the various computational

techniques and calculation times were as follows.

* Closed form: .141463
- Numerical integration: 14128

* Monte Carlo simulation: .1416 ± .0097; 2 hours, 59 minutes.
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1 3 25 25 0 0
0 0 0 0 0 4 30 35.83295 * SENSOR COVERRGE (SHRO2 ARES)

x TGT LOC 15 DIST BVN0,0,625 625 0)
LOCRTION CISTRIBUTION (DOTfD LINES)

0 5

Figure 3.19 Input File And Sensor Coverage Diagram For Example 5.

6. Example 6

This example is for four convergence zone sensors with mean locations at

(10,10), (-10,-10), (10.10), and (-10,10). These scnsors have convergence zones equal

to that of the the sensor in Example 5. Sensor locations are distributed IIVN with P
and pvas indicated above and au = cav = 3, and pu,v = .7. The input file is at Figure

3.20. There is no closed form solution for this example.

4 325 25.5 1
* 10 10 3 3 .7 4 30 35.83Z95
* -10 -10 33 .7
*10 -10 33 .7
* -10 10 33 .7

Figure 3.20 Input File For Example 6.

The probabilities of detection computed by the various computational

techniques and calculation times were as follows.

C Closed form: None

*Numerical integration: None
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* Monte Carlo simulation: .4570 t .0138 1; 2 hours, 53 minutes.

erg"
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IV. KALMAN FILTER PROGRAM

A. GENERAL

This program successively updates an estimate of the state of a system, P, based

upon a series of measurements, . Vectors p and need not have the same dimensions.

The program makes provision for changes in the system state between measurements in

accordance with a linear system model. Covariances between elements of A and

between elements of are also accounted for by the program.

The purpose of this chapter is to describe an implementation of a Kalman filter

on the M100. A fuller explanation of the mathematical background behind Kalman

filters may be found in References 6 and 7. The notation in the following program is

similar to the notation used in Reference 6 to facilitate comparison of the

mathematical theory and computer implementation.

The state of the system, X, is assumed to be a multivariate normal random

variable, X - N(p,f), with system noise, W - (pw,Q), and measurement noise, V -

(pv,R). 9 is the matrix which models the linear change in X between measurements.

H is the matrix which shows the linear relationship between the measurement and the

system state, i.e. how the measurement depends on the system state.

The Kalman filter recursively updates p by repeating two steps, measurement and

movement. The measurement step calculates the Kalman gain, enters a new

measurement, and updates p and 1; based on that measurement. The movement step

updates p and I based upon the system model.

B. EXPLANATION OF VARIABLES

* BI is the intermediate matrix for inversion of C2.

" CI(MD,MD) and C2(MD,MD) are the matrices which hold intermediate results
of matrix calculations.

• I1 is the matrix showing the relationship between measurements and the system
state.

* I1, 12, and 13 are loop counters.

" K(NX,NZ) is the Kalman gain matrix.

" MD is the maximum of NX and NZ.

" MU(NX) is the current estimate of the system state.

• MV(NZ) is the mean of measurement noise.

• MW(NX) is the mean of system noise.
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" NX is the number of elements in the system state vector.

* NZ is the number of elements in the measurement vector.

" PH(NX,NX) is the matrix, p(, modeling the linear change in the system state
between measurements.

" Q(NX,NX) is the covariance matrix of system noise.

" R(NZ,NZ) is the covariance matrix of measurement noise.

" SG(NX,NX) is the covariance matrix of the system state.

" Z(NZ) is the vector holding the current measurement, .

-. !C. INPUT

-_c' The operator must create a RAM file, KALIN.DO, which contains the program

input. KALIN.DO must contain the following parameters and matrices in order.

0 NX and NZ, the number of elements in p and respectively.

e Matrix PHI(NX,NX), the system model matrix, (P.
• Vector MW(NX), the mean of system noise, t w"

e Matrix Q(NX,\X), the covariance matrix of system noise.

o Matrix H(NZ,NX), the matrix showing the relationship between p and {.

. Vector MV(NZ), the mean of measurement noise, tv"

0 Matrix R(NZ,NZ), the covariance matrix of measurement noise.

* Vector MU(NX), the initial estimate of the system state.

- Matrix SG(NX,NX), the initial estimate of the covariance matrix of the system
state, .

After the initial estimate of the system state is entered from the input file,

KALIN.DO, the program will prompt the operator for measurements and changes to

the 11 matrix to be entered from the keyboard.

D. OUTPUT

All output goes to the screen of the N 100. After the measurement step the

program displays the updated Kalman gain matrix, the estimated system state, P+,

and the covariance matrix, Y.+. After the movement step the program displays the

estimate of the system state, p-, and covariance matrix, r_, just prior to the next

measurement.

E. EXPLANATION OF PROGRAM

A complete program listing is located at Appendix B.
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1. Initialization/Input, Figure 4.1

100 CLS:PRINT"*****KALMAN FILTER*****":PRINT" Input Data Being Read"
110 OPEN"KALIN"FORINPUTAS1:ONERRORGOT09900
120 INPUT 1,NX,NZ:IFNX<NZTHENHD=NZELSEMD=NX
125 DIMPH(NX,NX ) ,MH( NX ,QI NXNX I,H( NZ,NX I ,MV( NZ ,R(NZ,NZ I ,MU( NX SG(NX,NX)
126 DIMClIMD,MDI,CZ(MD,HD),K(NX,NZ),Bl(NZ+,1NZ*2)
130 FORI1=ITONX:FORI2=lTONX:INPUTSl,PH(Il,I2):NEXTI2:NEXTI1
132 FORI1=lTONX: INPUT#1,MlH( Il :NEXTI1
134 FORIl=ITONX:FORI2=ITONX:INPUT#IQiIl,I2):NEXTI2:NEXTI1
136 FORI1=ITONZ:FORI2=lTONX:INPUT#1,H(I1,I2):NEXTI2:NEXTI1

138 FORI1 =TONZ:INPUT#1,MV( Ii ):NEXTI1
140 FORI1=lTONZ:FORI2=ITONZ:INPUT#1,R(II,IZ):NEXTI2:NEXTI1
142 FORII=lTONX:INPUT;1,HU( Ii ):NEXTI1
144 FORI1=1TONX:FORI2 =TONX:INPUT;1,SG(I1,IZ):NEXTI2:NEXTI1
145 CC=O:CLS:PRINT"Initial SG As Input Check:":GOSUB53Z

Figure 4.1 Initialization and Input Section.

Line 110 opens the input file, KALIN.DO and branches the program to line

9900 if an error occures. Line 120 enters NX and NZ and calculates MD. Lines 125

and 126 dimension the matrices in the program. Lines 130-144 enter the matrices from

KALINDO as described in the input section above. Line 145 initializes the

measurement counter, CC, and prints the last input matrix, SG, as a check on input

accuracy.

2. Measurement Block, Lines 150-387

Measurement block matrix equations for updating K, p, and 1 are listed in

Equations 4.1, 4.2, 4.3.

K = £1tt(ll1-tlt + R) 1  (eqn 4.1)

p= p+ K(Z - v -t l1) (eqn 4.2)

= (I - KII) (eqn 4.3)
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a. Entering A New H Matrix, Figure 4.2

150 CLS:PRINT" *****MEASUREMENT BLOCK-***
160 PRINT"Current H ":GOSUB540
162 INPUT"Enter New H ? 1=Yes, O=No:";Z9:IFZ9=OTHEN170
165 'Enter A New H
167 FORI1=lTONZ:FORI2=TONX
168 PRINT"Enter Row"iI1", Column";I2;"Of H :"j

169 INPUTH( 11, 12 ): NEXTI2: PRINT"": NEXTI1

Figure 4.2 Entering a New H Matrix.

Some Kalman filter problems require a different -I matrix for each

measurement. This section permits such a matrix to be entered. Line 160 prints a

header and calls the subroutine which prints the current H matrix. Line 162 asks the

operator whether a new H matrix is required and branches the program appropriately.

Lines 167-169 prompt the operator to fill the new H matrix row by row.

b. Kalman Gain Calculation, Figure 4.3

170 *CALC KALHAN GAIN

171 '1ULT SG H to INTO CI
172 FORI1=ITONX:FORZ=lTONZ:Cl( 11,I2 )-O:FORI3=ITONX

174 Cl(I1,I2)=(SGI1,I3*H(I2,I3))+Cl(I,I2):NEXTI3:NEXTI2:NEXTI1
180 'MULT H SG H t , INTO C2
182 FORII=lTONZ:FORI2=TONZ:C2( I1,12 )=0:FORI3=ITONX
184 C2(I1,I2)=(H(I1,I3)*C1(13,IZ))4CZI1,IZ):NEXTI3:NEXTI2:NEXTI1
200 'ADO R INTO CZ

202 FORII=TONZ:FORI2=ITONZ:C2(I1,I2)=C21I1,I2)+R(I1,I2)
203 NEXTI2:NEXTI1
210 'INVERT C2

215 GOSUB9800
220 'MULT Cl CZ INTO K
222 FORII=ITONX:FORI2=lTONZ:KII1,I2)=0:FORI3=ITONZ
224 K(1,I2)=(C1(I1,I3)*CZ(I3,I2))+K(I1,I2):NEXTI3:NEXTI2:NEXTI1

Figure 4.3 Kalman Gain Calculation.

This section updates the Kalman gain matrix, K, in accordance with

Equation 4.1. Lines 171-174 multiply . by lit and place the result in matrix Cl.

Lines 180-184 multiply H by l t and place the result in matrix C2. Lines 200-203 add

R to (HHt) and place the result in C2. Line 215 calls the subroutine which inverts
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(HY.Ht + R). Lines 220-224 multiply .I-l t by (HY.Ht + R) "1 , producing an updated

Kalman gain matrix, K.

c. Enter A Measurement and Update 11, Figure 4.4

250 '*****UPDATE MU- TO MUJ****
251 'MULT H MIJ- INTO C1
252 FORI1=lTONZ:C I1,1I)=O:FORI3=ITONX
254 C.(Il,l)=( H(I1,I3)*KU(I3))+Cl(Il,l):NEXTI3:NEXTI1
260 'ADD MV + H MU-
262 FORI1=lTONZ:Cl(Il,1I=C(Il,l)+MV(Il):NEXTI1
270 'INPUT A NEW MEASUREMENT
272 CC=CC+1:CLS:PRINT"Measuremont #" 1CC " :"
273 FOR11=lTONZ: PRINT"Enter Element" i 1 "Of Measurement: ")
274 INPUTZ(I1):NEXTI1
280 'SUBTRACT C1 FROM Z, INTO Cl
28Z FORI1=ITONZ:Cl(11,1)=Z(I1l-C1(I1,1):NEXTI1
290 'MULT K Cl INTO C2
292 FORI1=lTONX:C2(I1,1 )=O:FORI3=TONZ
294 C2(I1,1)=(K 11,13*C(13,1))C2(I1,1):NEXTI3:NEXTI1
300 'ADD C2 + MU- TO UPDATE TO M+
302 FORI1=lTONX:M(I1)=C211,1)+MU(I1):NEXTI1

Figure 4.4 Enter Measurement And Update The Estimate of p.

This section enters a new measurement, Z, from the keyboard and updates

the estimate of p in accordance with Equation 4.2. Lines 251-254 multiply H by p and

place the result in Cl. Line 262 adds pv + lip and places the result in C1. Lines

272-274 increment the measurement counter and allow the operator to enter the new

measurement, Z. Line 282 subtracts (1v + Hp) from Z, and places the result in Cl.

Lines 292-294 multiply the Kalman gain, K, by (Z - pv - -lp), and place the result in

C2. Line 302 adds p to K(Z - pv - Hp), producing the revised estimate of P.

d. Updating L, Figure 4.5

This section updates the estimate of 1: using Equation 4.3. Lines 322-326
multiply the Kalman gain, K, by H, subtract the result from the identity matrix, I, and

place the result in C1. Lines 352-354 multiply (I - K1I) by 2: and place the result into

C2. This result, the updated 1, is then copied into SG by line 362.

e. Printing The Updated K, p, And T, Figure 4.6

Lines 375-377 print a header and call the printing subroutine for the

updated Kalman gain. Lines 380-382 print a header and call the printing subroutine

for the updated estimate of the system state, p. Lines 385-387 print a header and call
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320 'MULT K H & SUBTR FROM I , PUT IN C1
322 FORII=ITONX:FORIZ=ITONX:C(1,I 2)=O:FORI3=lTONZ
324 CI(Il,12)=IK(Il,13)*H(13,I2))+Cl(I,1I2):NEXTI3:Cl(IIIZ)=-Cl(Il,I2)
326 NEXTI2:NEXTI1
328 FORI1=lTONX:Cl(I1,I1)=1C1!1,I1 ):NEXTI1
350 'MULT LAST RESULT BY SG P INTO C2
352 FORI1=ITONX:FORI2=ITONX:C2(1,I2)=O:FORI3=lTONX
354 C2(Il,I2)=Cl(II,I3)*SGI3,12))C2II,I2):NEXT3:NEXT2:NEXTI1
360 'PUT C2 INTO SG
362 FORII=lTONX:FORT2=lTONX:SG( Il1 )=C2(Il,I2):NEXTIZ :NEXT1

Figure 4.5 Updating The System Covariance Matrix, 2:.

"4 375 CLS:PRINT"Kalman Gain, K(i,j) After"
377 PRINT"Measurement #" ;CC :GOSUB510
380 CLS:PRINT"Estimate Of System State, MU(i)+ After"
382 PRTNT"Measurement #"sCC :GOSUBS2O
385 CLS:PRINT"Estimate Of Covar, SGijJ+ After"
387 PRINT"Measurement 1" iCC:GOSUB530

Figure 4.6 Printing The Updated Kalman Gain, pi, And I.

.4'.. the printing subroutine for the updated estimate of covariance matrix of the system
state, I.

3. Movement Block, Lines 400-490

Movement block matrix equations for updating ji and I are listed in

Equations 4.4, and 4.5.

P = (P + Pw (eqn 4.4)

Y. .r2.(Pt + Q (eqn 4.5)

*a. Updating The Estimate of p, Figure 4.7

Lines 422-424 multiply (p by p and place the result in Cl. Line 432 adds
%f' '

Pw to (pP, producing the updated estimate of p just before measurement CC+ 1.
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400 CLS: PRINT"*********MOVEMENT BLOCK*******"
410 'Update MU(CC)* to IMCC+1)-
420 'MULT PH MU , PUT IN C1
422 FORII=ITONX:Cl(I1,1 )=O:FORI3=ITONX
424 Cl(I1,1)=IPH I1,13)*MU(I3))+Cl(Il):NEXTI3:NEXTI1
430 'ADD C1+ M14 , INTO MU
432 FORI1=lTONX:MU(I1)=C1(I1,1)+MW(I1):NEXTI1

Figure 4.7 Updating The Estimate of Ji.

b. Updating 1, Figure 4.8

440 '-UPDATE SG **

450 'MULT PH SG ,INTO C1
452 FORI1=lTONX:FORI2=TONX:C( I1,I2)=0:FORI3=ITONX460~~~~~454 Cl(,LITZ

)= ( 
PH Il,I3)*SG(I3 ,IZ ))+C1( I1,I2 ) :NEXTI3 :NEXTI2 :NEXCTI1

460 'MULT C1 PH t, INTO C2
462 FORTI=TONX: FORI2=lTONX:C2( I1,12 )=0: FORI3=lTONX
464 C2(I1,I2)=(C1(I1,I3)*PHEI2,I3))+CZ(I1,IZ):NEXTI3:NEXTI2:NEXTI1

470 'ADD CZ + Q = SG
472 FORTI=lTONX:FORI2=ITONX:SG(I1,I2)=C2(I,I2)+Q(lI1,I2)
473 NEXTI2:NEXTI1

Figure 4.8 Updating 1.

Lines 452-454 multiply p by 1 and place the result in Cl. Lines 462-464

multiply p by (p and place the result in C2. Lines 472-473 add Q to (plq t

producing the updated estimate for 1 just before measurement CC+ 1.

c. Printing The Updated it And 1, Figure 4.9

480 PRINT"Estimate Of System State, MUl()-"
482 PRINT"Before Measurement #";CC+1:GOSUB52O
485 CLS:PRINT"Estimate Of Covar, SG(IJ)- Before"
487 PRINT"Measurement #" CC.1:GOSUB530
490 GOT0160

Figure 4.9 Printing The Updated It And Z.

L4
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Lines 480-482 print a header and call the printing subroutine for the

updated estimate of the system state, p. Lines 485-487 print a header and call the

printing subroutine for the updated estimate of the system state covariance matrix, 1.

Line 490 branches the program back to the beginning of the measurement block.

4. Printing Subroutines, Figure 4.10

Lines 500-554 contain subroutines which print the Kalman gain matrix, P, 1,

the H matrix, or the C2 matrix.

500 'PRINTING SUBROUTINES
510 'PRINT KALMAN GAIN, K
512 FORII=ITONX:FORIZ=ITONZ:PRINTUSING"#4I##.#";K tK 11,12); :NEXTI2
514 PRINT"": NEXTI1 : INPUT"Hit ENTER To Continue:" ;Z9 : RETURN
520 'PRINT MU
522 FORI1=ITONX: PRINTUSING"#I$1s"#. #' #;MU( II ); :NEXTI1 •PRINT""
524 INPUT"Hit ENTER To Continue:"5Z9:RETURN
530 'PRINT COVAR MATRIX, SG
532 FORI1=lTONX:FORIZ=ITONX:PRINTUSING"#####.#$" SG(I1,I2);:NEXTI2
534 PRINT"":NEXTI1:INPUT"Hit ENTER To Continue:";Z9:RETURN
540 'PRINT H
542 FORII=ITONZ:FORI2=TONX:PRINTUSING"#"###.##';H( I1,I2); :NEXTI2
544 PRINT"": NEXTI1 : RETURN
550 PRINT" C2 MATRIX:"
552 FORI1I~TOA: FORIZ1=TOB:PRINTUSNG"####.#1$";C2(1 1,T2); :NEXTI2
554 PRINT"":NEXTI1:INPUT"Hit ENTER To Continue:"Z9:RETURN

Figure 4.10 Printing Subroutines.

5. Inversion Subroutine For C2, Figure 4.11

This subroutine is essentially the same as the matrix inversion subroutine in

the matrix algebra program discussed in Appendix E. It has been abbreviated to invert

only matrix C2 instead of inverting several matrices of various dimensions as in

Appendix E. This subroutine also does not calculate the determinant of C2 to test for

invertability. If C2 is not invertable, an division by zero error will occur and the

program will branch to the error identification section. A detailed explanation of how

the matrix inversion subroutine functions is located in Appendix E.

6. Error Identification, Figure 4.12

Line 9900 prints a message indicating that C2 is not invertable. Line 9900 is

based upon the assumption that a division by zero error in the inversion subroutine

means that C2 is not invertable. Line 9905 prints the error code and line number of

other errors. See page 217 of Reference I for an explanation of error codes.
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9800 'INVERT C2
9815 FORI1=lTONZ:FORI2=TONZ:BlII2)=C(IIIZ):NEXTI2:NEXTII
9820 FORI1=NZ+lT02*NZ: F0RI2~lT0NZ
9822 IFII=I2.NZTHENBl(I2,I1)=IELSEB1iI2,Il)=0
9825 NEXTIZ:NEXTIl
9830 FORI1X1TONZ
9840 ML=1/B1(Il,Il):F0RI3=T2*NZ:B(I,I3)B(IlI3)*ML:NEXTI3
9842 IlI=NZTHEN9865
9845 FORI2=Il+ITONZ:IFB1(I2,I11J=THEN9860
9850 ML=-Bl(12,Il)
9855 FORI3=IlT02*NZ:BI12,PI3)=Bl(IZ,I3)IML*EBl(IlI3)):NEXTI3
9860 NEXTIZ:NEXTII
9865 FORI 1NZT0ZSTE P-i
9870 FOR12=I1-.1TOlSTEP-1:IFB1(I2,Il)=OTHEN9885
9875 ML=-Bl(12,11)
9880 FOR13:1TOZ*NZ:Bl(I2,13J:Bl12,13).(ML*Bl(I1,I3)):NEXTI3
9885 NEXT12:NEXT11
9890 FOR11TONZ: FORI2=lTONZ
9895 C2(I2,I1)=B(I2,I1+NZ):NEXTI2:NEXTIl
9897 MI=1:RETURN

Figure 4.11 Inversion Subroutine For C2.

9900 IFERL>9800ANDERR=11THENPRINT"!!!ERROR: C2 Is Not Invvertable!!!":END
9905 PRINT"Error Code";ERR;"In Lins";ERL:EN0

Figure 4.12 Error Identification.
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V. MODELS OF COMBAT USING LANCHESTER EQUATIONS

A. GENERAL

This program is an example of a time step force attrition simulation using

Lanchester equations. The scenario is that there are two sides, refered to hereafter as

the attacker and the defender. 5 The battle may be broken into phases if some model

parameters change during the course of the battle. Each side has a fixed number of

weapon types throughout the battle. The number of attacking and defending weapon

types may be different. The following characteristics must be specified for each

weapon type on each side and do not change over the course of the battle.

* The number of weapons at the start of the battle.

* The break point, i.e. the fraction of the starting number of weapons which, if
reached, would cause the battle to end. For example, if the attacker would
withdraw if 50% of a certain weapon type was lost, then the breakpoint for that
weapon type would b

* The Lanchester weapon characteristic, i.e. whether it is a square law, linear law,
logarithmic law weapon, or a hybrid.

The following characteristics of each weapon type may change from phase to phase of

the battle.

* The time required to complete that phase.

" The rate at which replacements arrive for each weapon type.

" Attrition coefficients, i.e. the rate at which a weapon type is attritted by each
opposing weapon type in a particular battle phase.

If there are not more than five weapon types per side, the program prints a dynaiic

display to the I 100 screen showing for each weapon type the fraction of starting

strength tmat has survived and the breakpoint. Regardless of the number of weapon

t-pes, the program creates an output file which shows the number of survivors at the

end of each phase, which weapon reached its breakpoint first, and the number of

sur i' ors at the end of the battle.

Slhc term, attackcr aid dcl'Cnder arc arbitrarv and are used only for notational
purpocs.
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I.

B. REPRESENTING LANCHESTER CHARACTERISTICS OF EACH WEAPON

The program includes provisions for calculating attrition with traditional

Lanchester square law and linear law equations or using a Helmbold equation.

Traditional Lanchester attrition uses different functions for different types of attrition.

The linear law functions (see Equations 5.1) for changes in strength with respect to

* -time are used to model fire that is aimed at a general area in which targets are believed

to be located An example of a linear law weapon would be artillery fire without

correction by an observer.

dx/dt = -axy, and (eqn 5.1)

dy/dt = -byx

The square law functions (see Equations 5.2) are used for fire that is aimed at a point

instead of a general area.

dx/dt = -ay, and (eqn 5.2)

dy/dt = -bx

The logarithmic law functions (see Equations 5.3) are used to model non-combat losses

-• such as disease.

dx/dt = -ax, and (eqn 5.3)

dy/dt = -by

The reasons for using these equations for modeling these types of attrition are

explained in [Ref. 9:Chapter 2]. The limitation of using Equations 5.1, 5.2, and 5.3 is

that they restrict the model to three discrete weapons types. However, there may be

weapons that do not fall cleanly into any of the three weapon types. For example,

artillery fire that is corrected by an observer may have a mixture of linear law and

square law characteristics. The traditional Lanchester equations also assume that the

full fire power of all the weapons on one side can be brought to bear against all the

targets on the opposing side. However, in battles where one side vastly outnumbers

the other, or when there are significant terrain masking or reaction time effects, this

assumption is not valid. To account for these limitations, R. Imbold proposed a set

of modified Lanchester equation in Reference 8. ltelmbold's equations and their

empirical validation are also discussed in [Ref. 9:pp. 174-181 and Footnote 2.40]. The
special cases of the Helmbold equations used in this program are those listed as

Equations 5.4.
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dx/dt = -a(x/y)toy = -axtoxl'to (eqn 5.4)

dy/dt = -b(y/x)°ox = -bytoxl'CO

They include an additional factor, (x/y)to or (y/x)o. If (o= 1, the result is the

logarithmic law equation. If (o = 0, the result is the square law equation. If (o = .5, the

result is an equation which behaves quite like the linear law equation. (0 may be set at

any value between zero and one to characterize weapons which do not fall neatly into

one of the discrete weapon types.

In the traditional Lanchester linear law equation dx/dt varies proportionately to

the number of X survivors and the number of Y survivors. In the Helmbold equation

when o = .5, dxidt varies proportionately to the square root of the number of X and Y

survivors. If dx/dt were equal for the Lanchester linear law and the HIelmbold

equation with o = .5, then a~xy = aH(xy)'5 where al and a,-, are the Lanchester and

Helmbold attrition coefficients respectively. Thus, a14 = aL(xy) ' 5 . Therefore, there is

no single value of aH that will be equivalent to a value of aL throughout an entire

simulation because x and y are changing. However, the general shapes of the functions

kI -= xy and k2= (xy) "5 are similar enough that they cause attrition to behave about

the same in both circumstances. A plot of contour lines of dx/dt = 1, 2, and 3 for

linear law and comparable Helmbold equations is shown in Figure 5.1 where aH = .02.

and aL=.0002. The contour dx/dt=2 is the same for both formulations. 6 For

dx/dt < 2 the Helmbold equations produce smaller attrition rates than do the traditional

Lanchester equations. For dx/dt> 2 the Helmbold equations produce larger attrition

rates than do the traditional lanchester equations.

The program includes BASIC code for both the traditional Lanchester and

Helmbold equations. To use the traditional Lanchester equations, lines 223-224 and

233-234 should be active, and lines 225 and 235 should be commented out or deleted.

To use the Helmbold equations, lines 225 and 235 must be active, and lines 223-224

and 233-234 must be commented out or deleted. The weapon type parameters in the

input file must match the equations which are active in the program.

6Thc llclmbold coutours were jittered slightly to avoid being overprinted at
dx,'dt 2 by the Lanchcster contour.
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Figure 5.1 dx/dt For Linear Law and HeImbold Equations.

C. EXPLANATION OF VARIABLES

" AA(NA,ND) is a matrix of the rates at which attacking weapons by type are

attritted by each type of defending weapon in a particular phase of the battle.

* AB(2,NA) is the matrix for the breakpoints of each attacking weapon type.

Elements of the first row, AB(1,i), arc the breakpoints expressed as fractions of

the starting total, i.e 0 -< AB(1,i) < 1 for i = 1,2,3...NA. Elements of the second

row, AB(2,i), are breakpoints expressed as numbers of weapons of type i, i.e. 0 <

AB(2,i) -< SD(i) for i= 1,2,3...NA.

" AT(NA) is a vector of tuning parameters that specify the Lanchester

characteristics of each attacking weapon type. If line 235 is active and lines 233

and 234 are commented out, then attrition is calculated using the llclmbold

equation, see equation 5.4. AT(i) is w and equals 0 for an aimed fire/square law

weapon, .5 for a weapon similar to a Lanchester area fire/linear law weapon, and

I for a source of non-combat/logarithmic law casualties to the defender. If lines

233 and 234 are active and line 235 is commented out, then attrition is calculated

using standard linear law and square law Lanchester equations, see equations 5.1

and 5.2. AT(i) equals I for linear law weapons and 2 for square law weapons.
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" BB(ND,NA) is a matrix of the rates at which one item of each attacking weapon
type attrits each defending weapon type in a particular phase of the battle.

" DB(2,ND) is the matrix for the breakpoints of each defending weapon type.

Elements of the first row, DB(I,j), are the breakpoints expressed as fractions of

the starting total, i.e 0 < DB(l,j) < 1 for j= 1,2,3...ND. Elements of the second

row, DB(2,j), are breakpoints expressed as numbers of weapons of type j, i.e. 0

< DB(2,j) < SD(j) for j= l,2,3...ND.

" DT(ND) is a vector of tuning parameters that specify the Lanchester

* characteristics of each defending weapon type. If line 225 is active a.1d lines 223

and 224 are commented out, then attrition is calculated using the Helmbold

equation, see equation 5.4. DT(j) is 'o and equals 0 for an aimed fire/square law

weapon, .5 for a weapon similar to a Lanchester area fire/linear law weapon, and

1 for a source of non-combat/logarithmic law casualties to the attacker. If lines

223 and 224 are active and line 225 is commented out, then attrition is calculated

using standard linear law and square law Lanchester equations, see Equations 5.1

and 5.2. DT(j) equals 1 for linear law weapons and 2 for square law weapons.

1 I1,12,13, and 14 are loop counters.

" MD is the maximum of NA and ND.

" NA is the number of attacking weapon types.

" ND is the number of defending weapon types.

. NI is the number of intervals into which a phase of battle is broken.

" NP is the number of phases of battle.

- OA(NA) is the vector of horizontal pixel positions for the current screen

representation of the fraction of surviving attackers by weapon type.

" OD(ND) is the vector of horizontal pixel positions for the current screen

representation of the fraction of surviving defenders by weapon type.

" QA(2,NA) holds the surviving number of each attacking weapon type. QA(I,i) is

the number at the start of a time increment, DT. QA(2,i) is the number after

attrition by each defending weapon is subtracted.

" QD(ND) holds the surviving number of each defending weapon type after

attrition by each attacking weapon is subtracted.

" SA(NA) is the number of attacking weapons by type at the start of the battle.

" SD(ND) is the number of defending weapons by type at the start of the battle.
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* TF is the termination flag. TF=O means a breakpoint has not been reached.

TF= 1 means a breakpoint has been reached.

" TP is the top pixel position for a rectangle or line drawn on the graphical display.

" TT is the total time that has elapsed in the battle up to the current time

increment. When a breakpoint is reached, or when all phases of the battle are

completed, TT is time length of the battle reported to LANOUT.DO.

D. INPUT

All input to the program is entered into a RAM file, LANIN.DO. The following

parameters must be entered in the following order and do not change between battle

phases.

* NP,NA,ND

" QA(NA)

" QD(ND)

" AB(NA)

" DB(ND)

" AT(NA)

" DT(ND)

The following parameters must be entered in the following order for each phase.

* TT, NI

" AR(NA)

" DR(NR)

" AAkNA,ND)

* BB(ND,NA)

* An example of an input file is shown in Figure 5.2

The situation to be simulated using the parameters in Figure 5.2 is as follows. The

battle has two phases.

1. Parameters Common To Both Phases

The attacker has two weapon types, Ai, i = I and 2. The defender has three
weapon types, Dj, i = 1, 2, and 3. The attacker starts with 200 Al's and 100 A-'s.

The defender starts with 100 DI's, 200 D2's, and 100 D3 's. The battle will end when

the first attacking or defending weapon type is attritted to 50% of its initial strength,

i.e. the breakpoint for all weapon types is .5. If this simulation is to be run using

,A- traditional Lanchester equations, both attacking weapons are square law weapons. D1

is an linear law weapon, and D2 and D 3 are square law weapons.

51



223
200 100
100 200 100
.5 .5

4.5 .5 .5
2 2
122
5 50
1 1
.8 .8 .8
.00012 .014 .016
.00018 .020 .022
.019 .017
.015 .013
.011 .009
10 50
.5 .5
.4 .4 .4
.00018 .021 .024
.00027 .030 .033
.0285 .0255
.0225 .0195

.0175 .00135

Figure 5.2 Sample Input File.

2. Situation For Phase One

The length of the first phase is five hours. The program will break that period

into 50 segments for computational purposes. Replacements arrive for both attacking

weapon types at an average rate of one weapon per hour. The replacement rate for all

three defending weapon types averages .8 weapons per hour. Ai's are attritted by each
D 1 at a rate of .00012 per hour per surviving Al. Al's are attritted by each D 2 at a

rate of .014 per hour. Rates at which the remaining A i are attritted by each Dj are

listed through the end of the next line. Dl's are attritted by each A1 at a rate of .019

per hour. Dl's are attritted by each A2 at a rate of .017 per hour. Rates at which the
remaining Dj are attritted by each A i are listed through the end of the next two lines.

3. Situation For Phase Two

The length of the second phase is ten hours. The program will break that

period into 50 segments for computational purposes. Replacements arrive for both

attacking weapon types at the rate of .5 weapons per hour. The replacement rate for

all three defending weapon types averages .4 weapons per hour. A i's are attritted by

each D l at a rate of .00018 per hour per surviving Al. Al's are attritted by each D 2

at a rate of .021 per hour. Rates at which the remaining Ai are attritted by each D
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are listed through the end of the next line. Di's are attritted by each A1 at a rate of

.0285 per hour. D i's are attritted by each A2 at a rate of .0255 per hour. Rates at

which the remaining D- are attritted by each A. are listed through the end of the next

two lines.

E. OUTPUT

The program produces two types of output:

* An output file LANOUT.DO, which lists the status of each weapon type at the
end of each phase and at the end of the battle and which weapon types have
gone below their breakpoints.

e A dynamic graphical display to the screen of the M 100 which shows the fraction
of the starting strength of each weapon type which has survived until that time
interval in the simulation.

The graphical display consists of a rectangle on the MI00 screen for each

attacking and defending weapon type. Each rectangle is 100 pixels wide and five pixels

high. Each pixel in the horizontal direction represents one percent of the starting

strength of the weapon type represented by that particular rectangle. In each rectangle

is a vertical line showing the breakpoint for that weapon type as a fraction of starting

strength. As the simulation progresses, another vertical line in each rectangle is

updated showing the fraction of survivors for that weapon type. The rectangles are

arranged in two columns, one for attacking and one for defending weapon types.

Weapon type numbers are printed to the left of the rectangles. If the replacement rate

drives the number of survivors over the starting strength for some weapon type, the

vertical line indicating the fraction of survivors will stay at the 100% level and an

asterisk will be printed to the left of the corresponding rectangle. In addition to the

rectangles there is a printed line at the bottom of the screen which tells the operator on

what phase and time interval the simulation is currently working.

F. EXPLANATION OF PROGRAM COMPONENTS

A complete listing of this program is at Appendix C.

1. Initialization Section, Figure 5.3

Line 120 sets the number of files to two and opens the input file, LANINDO.

Line 121 opens the output file, LANOUT.DO and enters the number of phases in the

battle, NP, and the number of attacking and defending weapon types, NA and ND.

Line 122 defines MD as the maximum of NA and N). If both sides have five or fewer

weapons types, line 124 sets SF = 1, indicating that the screen of the NI100 is big

enough to handle the graphical display generated during the simulation. If either side
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100 'LANCHESTER TIME STEP MODEL
120 MAXFI LES=2 :OPEN"LANIN" FORINPUTAS1
121 OPEN"LANOUT"FOROUTPUTAS2: INPUT#1 ,NP ,NA,NO
122 IFNA>NDTHENMD=NAELSEMD=ND
124 IFMD<6THENCLS:SF=1
130 DIMAA(NA,ND),BB(ND,NA),AT(NA),DT(ND),AR(NA),DR(ND)
131 DIMQA( 2,NA),QD(ND),AB( 2,NA),DB( 2,ND),SA(NA),SD(ND ),OA(NA),OD(ND)

*Figure 5.3 Initialization Section.

has more than five weapon types, the graphical display will not be generated. Lines

130-131 dimension the matrices used in the program.

2. Entering Common Parameters, Figure 5.4

132 'Enter Initial Quantities of Hpns, Break Points And Wpn Types.
134 FORI2=ITONA:INPUT#1,QA(2,IZ):SA(IZ)=QA(2,I2):OA(I2)=127:NEXTI2
135 FORI2=1TOND:INPUT#1,QD(I2):SDEX2)=QD(I2):OD(IZ)=238:NEXTI2
136 FORIZ=ITONA:INPUT#1)AB(1,IZ):AB(Z,I2)=AB1,I2) QA(2,I2):NEXTI2
137 FORI2=ITOND:INPUT#1,DB(1,I2):DB(2,12)=DB(1,12)*QD(I2):NEXTI2
138 FORIZ=ITONA:INPUT#1,AT( 12 ):NEXTI2 :FORIZ=TONO:INPUT#1,DT( 1Z ):NEXTI2
140 TM=O:IFSF=ITHENGOSUB600

.5-4' Figure 5.4 Entering Common Parameters.

This section enters the rest of the parameters that do not change from phase

to phase of the battle and initializes the variables controlling the graphical display.

Line 134 puts the starting quantity of Ai into QA(2,i) and SA(i) and sets OA(i) to 127
.~." *which indicates that 100% of Ai are surviving at the start of the simulation. Line 135

performs the same function for D: that line 134 performed for A1. Lines 136 and 137

enter the fractional breakpoints for A i and Dj respectively into AB(l,i) and DB(lj).

Lines 136 and 137 also compute the breakpoints in terms of numbers of surviving
weapons, placing them in AB(2,i) and DB(2,j). Line 138 enters the Lanchester

_- characteristic parameters, AT(i) and DT(j), for each weapon type. Line 140 sets TM,

which keeps track of the time until the end of the battle, to zero. If the graphical

display to the screen is to be used, line 140 also calls subroutine 600 which sets up the

output screen.
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3. Initialization For Each Phase, Figure 5.5

143 FORI1=1TONP:PRINT#Z,"STARTING PHASE" Il
145 'Enter Time Spent In Phase I1 and * of Intervals
146 INPUT#1 ,TT ,NI :DT=TT/Nl
150 'Enter Replacement Rates And Attrition Coefficient Matrices
152 FORI2=lTONA:INPUT#IARII2):NEXTI2:FORI2=ITOND:INPUT#1,DR(I2):NEXT12
154 FORI2=TOA:FORI3=lTOND:INPUT#1lAA(I2,I3):NEXTI3:NEXTI2
158 FORIZ=ITOND: FORI3=lTONA:INPUT#1,BB( 12,13 ):NEXTI3:NEXT12

Figure 5.5 Initialization For Each Phase.

Line 143 sets I1, the phase counter, and prints a heading to the output file.

Line 146 enters the length of the current phase, TT, and the number of intervals, NI,

into which the phase will be broken and computes the length of each interval, DT.

The choice of NI is a compromise between two competing objectives: accuracy and

time required to complete the simulation. As NI becomes larger, DT becomes smaller

and the simulation more closely approximates the continuous, mutual attrition that is

the basis of Lanchester equation theory. If NI is small and DT is large, then the

simulation tends to discount the attrition which takes place during a phase because the

program assumes force levels are constant throughout an interval, DT. However, if NI

is to large, the time required to run the simulation increases linearly. The relationship

between accuracy and speed is also a function of the attrition coefficients and number

of weapon types on each side.

Line 152 enters the replacement rates for each weapon type. Lines 154-156

enter the attrition coefficients for each weapon type.

4. Attrition Calculations For A Phase, Figure 5.6

This section breaks a phase into NI intervals of length DT, calculates the

attrition during each interval, and tests whether that attrition has caused some weapon

type to reach its breakpoint.

Line 202 sets the interval counter, 12, adds the length of the interval to the

length of the battle, TM, and prints a message to the screen telling the operator what

phase and interval is currently being processed.

Lines 222-227 calculate the attrition to attackers based upon the quantities of

each weapon surviving at the start of the interval. QA(2,i) holds the current quantity
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200 'Fight Phase Il.
202 FORI2=ITONI :TM=TM+OT:PRNT241"Phase:" I1i", Increment";I2$"out of" NI
210 'Fight Time Increment OT.
220 'Update number of attackers
222 FORI3=lTONA:QA( 1,I3)=QA( ZI3):NEXTI3:FORI3=lTONA:FORI4=ITOND
223 IFDT(I4)=lTHENQA(2,I3)-QA(2,I3)-AA(I3,I4)*QD(I4)QA( Z,I3)*DT:GOTO226
224 QA(2,13)=QA(Z,I3)-AA(T3,I4)*QDI4)*DT
225 'QA(2,13)=QAc2,I3)-AA I3,I4)* QA(ZI3)/QD(I4 )ADT(I4)*QD(I4)*dt
Z26 NEXT14:QA( ZI3 )=QA( Z,I3 )+AR(13 )*DT:IFSF=ITHENGOSUB650
227 NEXTI3
230 'Update number of defenders
232 FORI3=1TOND: FORI4=lTONA
233 IFAT(14)=ITHENQD 13)=QD(I3)-BB(I3,I4)*QD(I3)QA(1,I4)*DT:GOT0236
234 QD( 13 )=QD(I 3 )-BB( 13,14) *QA( 1,14)*DT
235 'QD(13)=QD(I3)-BB(I3,I4)*(QO(13)/QA(1,14) )AAT14 )QA( 1,14 )dt
236 NEXTI4:QD(13 )=QD( I3 )+DR( I3 )*DT:IFSF=lTHENGOSUB660
237 NEXT13
240 GOSUB300:NEXTI2
242 IFI1=NPTHENGOSUB350:CLS:PRIT"Output is in file LANOUT.DO.":END
245 PRINT#Z,"Status After Phase" ;I1 :GOSUB361:NEXTI1

Figure 5.6 Attrition Calculations for a Phase.

of Ai and is therefore decremented by lines 222-227. Attrition to each Dj should, for

consistency with the attrition to the Ai's, also be based upon the quantity of Ai's

surviving at the beginning of the interval. Therefore, the quantity of each Ai surviving

at the beginning of the interval is saved by line 222 in QA(1,i) for use during the

attrition calculations for Di . Line 222 also sets the Ai counter, 13, and the Dj counter,

14.

If the simulation is to be done with traditional Lanchester linear law and

square law equations, lines 223-224 must be active and line 225 must be commented

out or deleted. If the simulation is to be done with a Helmbold equation, lines 223-224

must be commented out or deleted and line 225 must be active. The program

displayed in Figure 5.6 has the Helmbold equations commented out. Line 222

calculates the attrition of Ai by Dj based upon a linear law, Equation 5.1. Line 223

calculates attrition based upon the square law, Equation 5.2. Whether the linear law

*or square law is used is based upon AT(i) and is determined in line 222. If line 225

were active, it would calculate attrition using the IIelmbold equation, Equation 5.4.

After attrition by each Dj is calculated, line 226 adds the replacements for Ai received

during the interval. Line 226 also calls subroutine 650 which updates the graphical

, display to reflect the attrition to each Ai .I,_-.
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Lines 232-237 calculate the attrition to defenders based upon the quantities of

each weapon surviving at the start of the interval. QD(i) holds the current quantity of

D . Line 232 sets the Di counter, 13, and the Ai counter, 14. If the simulation is to be

done with traditional Lanchester linear law and square law equations, lines 233-234

must be active and line 235 must be connented out or deleted. If the simulation is to

be done with a Helmbold equation, lines 233-234 must be commented out or deleted

and line 235 must be active. The.program displayed in Figure 5.6 has the Helmbold

equations commented out. Line 232 calculates the attrition of Dj by Ai based upon a

linear law, Equation 5.1. Line 233 calculates attrition based upon the square law,

Equation 5.2. Whether the linear law or square law is used is based upon DT(i) and is

determined in line 232. If line 235 were active, it would calculate attrition using the

Helmbold equation, Equation 5.4. After attrition by each Ai is calculated, line 236

adds the replacements for Dj received during the interval. Line 236 also calls

subroutine 660 which updates the graphical display to reflect the attrition to each Dj,

Line 240 calls subroutine 300 to check for whether a breakpoint was reached during

the interval. If no breakpoint was reached, a new interval is begun.

If all the intervals in the last phase are completed without reaching a

breakpoint, line 242 calls subroutine 350 which prints the status at the end of the battle
to the output file. If the current phase is not the last phase, then line 245 prints a

header to the output file, calls subroutine 361 which prints the status at the end of the

current phase to the output file, and starts the next phase.

5. Breakpoint Subroutine, Figure 5.7

This section determines whether any weapons have reached their breakpoints,

and, if so, prints that information in the output file, and ends the program. Line 320

sets TF = 0, indicating that no breakpoints have been reached. Line 320 then starts a

loop which tests whether any Ai have reached their breakpoints. If so, then lines

322-324 print a message to the output file specifying the weapon type, the breakpoint,

and the quantity of that weapon type that survived. Lines 335-340 test whether any 1)j

have reached their breakpoints, and if so, print a message to that effect to the output

file. If no breakpoints have been reached, then line 340 returns control to the main

program to begin attrition calculations in the next time interval.

The default battle termination criterion is that at least one weapon type must

be below its individual breakpoint at the end of a time interval. llowevcr, the operator

may wish to edit the program before running it, adding more sophisticated termination
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*300 'Check Whether Breakpoint is reached.
320 TF=O:FORI3=lTONA:IFQA 2,I3)>AB( 2,I3)THEN325
322 TF=l:PRINT#2,"Attacker Hpn"I3;"Is Below Breakpoint"
323 PRINT#2," Bp =" :PRINT#2,USING"4#1$.#W";AB(2,I3);
324. PRINT#2," Current Level :":PRINT#2,USING"###. ;"sQA(2,13); %325 NEXT13

335 FORI3--TOND:IFQD( 13 )>DB( 2,I3 )THEN340
337 TF=l:PRINT#2,"Defender Wpn"s13"Is Below Breakpoint"
338 PRINT#2," Bp =";:PRINT#Z,USING";#.##"sDB(2,I3);
339 PRINT42," Currept Level =";:PRINT#Z,USING"###.##" QD(I3)
340 NEXTI3 : IFTF=0THENRETURN
350 PRINT#2,"":PRINT#2,"":PRINT#2,"SUMMARY AT END OF BATTLE"
351 PRINT#Z,"":PRINT#2,"Time Elapsed During Battle ="s
352 PRINT#2 ,USING"####. ##" ;TN: PRINT#2,"" : GOSUB361
355 CLS:PRINT"Output is in file LANOUT.O":END
361 PRINTI#2," Att Hpn Breakpoint Current Level"
363 FOR13=lTONA : PRINT;2 ,USING";1#;#4" ;13s
364 PRINT#2 ,USING"#####P##.#" ;AB( 2,I3) ;QA( 2,I3) :NEXTT3 :PRINT#Z,""
366 PRINT#2," Def Hpn Breakpoint Current Level"
367 FORI3=lTOND:PRINT#2,USING"####" I3;
368 PRINT#2,USING"I##;######. ##" ;DB1 2,13) )QD( I3) :NEXTI3: PRINT#2,"" : RETURN

Figure 5.7 Subroutine To Test For Breakpoints.

criteria to the default criteria. For example, if the operator wants the battle to

" .terminate when A, or A2 reach half their starting strength or when A, reaches 60%

and A2 reaches 70% of their starting strength the operator should:

* Put .5 as the individual breakpoints for AI and A2 in the input file and
. Put the program lines shown in Figure 5.8 into the program after line 325.

330 IFQAI2,1)/SA11)>.6QRQA(2,2)/SAI2)>.7THEN335
331 TF=l:PRINT#2,"Special Termination Criterion Met"

Figure 5.8 Example Of An Additional Termination Criterion.

If a breakpoint has been reached, then lines 350-368 print the status of both
sides at the end of the battle. That end of battle status report includes a header, time

elapsed during the battle, and a list of attacking and defending weapon types with their

breakpoints and number of survivors. Lines 361-368 are called as a subroutine from

4.. .1 line 352 because lines 361-368 are also used to print the summary at the end of each

phase and can therefore not terminate the program.
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6. Graphics Display Initialization Subroutine, Figure 5.9

600 'Set up output screen
610 PRINT"Npn 4 Attacker Defender"
620 FORZ11=TOD:PRINTUSING*#1" I1
623 TP=2+I1*8
625 IFI1>NATHEN630
627 LINE(18,TP)-4119,TP+4),1,B:BP=18+INT(100*ABUI1 )I
628 LjNE(BP-1,TP+1)-(BP ,TP 3)1,B
630 IFI1>NDTHEN635
632 LINE(138,TP)-(239,TP+4),1,B:BP=138+INTIIO0*DB(1,I1))
633 LINE(BP-1,TP+I)-(BP,TP+3),1,B
635 NEXT11:RETURN

Figure 5.9 Graphics Display Initialization Subroutine.

The graphics display consists of a rectangle on the M I00 screen for each

attacking and defending weapon type. Each rectangle is 100 pixels wide and five pixels

high. Each pixel in the horizontal direction represents one percent of the starting

strength of the weapon type represented by a particular rectangle. The rectangles are

arranged in two columns, one for attacking and one for defending weapon types. This

subroutine draws the rectangles, labels the columns "Attacker" or "Defender", puts a

vertical line in each box at the breakpoint for that weapon type, and labels the rows of

boxes with the weapon type number.

Line 610 prints the header on line one of the screen. Line 620 starts a loop

that writes the weapon type number, I1, and prints the rectangles; Line 623 calculates

the vertical pixel position, TP, for the top of the rectangles of weapon type I1. Line

625 tes' s whether to draw a rectangle next to weapon type number I I in the "Attacker"

column. If so, the first statement on line 627 draws the rectangle. The second

statement on line 627 calculates the horizontal pixel location in the rectangle of the

breakpoint for that weapon type. Line 628 draws a double line at the breakpoint in

the rectangle. Lines 630-635 test whether a rectangle should be drawn in the defender

column. If so, they draw the rectangle and insert the breakpoint in the same manner

as was done in lines 620-628. Line 635 returns control to the main program when

there are no more rectangles to be drawn.

59



7. Updating The Graphical Display, Figure 5.10

650 'Update screen output of attackers
653 TP=3+13*8
655 LINE(0A(I3),TP)-(OA(T3),TP+2),O
656 OA( 13 )=18+INT( 100*QA( 2,13 )/SA( 13))
657 IFOA 13 )>118THENOA( I3 )=118:PRINT&) 13*40+2 ),"*":GOT0659
658 PRINTQ3*4O2," 1

659 LINE(OA(13),TP)-(OA(13),TP+3),1:RETURN
660 'update screen output of defenders
663 TP=3+13*8
665 LINE(OD(13),TP)-(OD(13),TP 2),0
666 OD( 13 )=138+INT( 100*QD( 13 )/SD( 13))
667 IFOO( 13 )>238THENOA! T3 )=238:PRINT&I3*4O+22,"*":GOTO669

668 PRINT&13*4O*22y--"
669 LINE(OD(T3),TP)-(0D(13),TP+3),1:RETURN

Figure 5.10 Subroutines To Update The Graphical Display.

This section includes two subroutines which update the vertical line in each

rectangle which indicates the fraction of survivors for that weapon type. The

subroutine in lines 650-659 updates the attacker rectangles; lines 660-669 perform the

same function for defender rectangles. Line 653 sets TP, the location of the top pixel

of the vertical line for A13 . Line 655 erases the old vertical line, the horizontal pixel

position for which was stored in OA(13). Line 656 calculates the horizontal pixel

position for the new vertical line based upon the fraction of the starting strength of

A13"S which currently survives. If the reinforcement rate exceeds the attrition rate and

drives the number of survivors over the starting strength for A13 , line 657 holds

horizontal position of the vertical line at the 100% level and prints an asterisk next to

the corresponding rectangle. If the number of survivors is less than the starting

strength, line 658 prints a blank space next to the corresponding rectangle. Line 659

writes the new vertical line to the screen showing the fraction of A13 's which survive.

Lines 660-669 perform the same function for Dj that lines 650-659 perform for A i.

G. EXAMPLE SIMULATIONS

1. Example #1

The first example uses the input file shown in Figure 5.2 The output file for

that simulation is shown in Figure 5.11.
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STARTING PHASE 1
Status After Phase 1

Att Mpn Breakpoint Current Level
1 100.00 173.93
2 50.00 68.55

Def Hpn Breakpoint Current Level
1 50.00 79.12
2 100.00 184.53
3 50.00 89.95

STARTING PHASE 2
Attacker Wpn 2 Is Below Breakpoint

Bp = 50.00 Current Level = 48.85
SUIIIARY AT END OF BATTLE
Time Elapsed During Battle = 7.20

Att Hpn Breakpoint Current Level
1 100.00 157.29
2 50.00 4.8.85

Def Wpn Breakpoint Current Level
1 50.00 66.24
2 100.00 174.64
3 50.00 84.25

Figure 5.11 Output File, LANOUT.DO, For Example #1.

2. Comparing The Lanchester and Heimbold Linear Law Equations

Examples 2 and 3 compare the differences between using a traditional
Lanchester linear law equation (Example 2) and a Helmbold equation (Example 3).
The scenereos for Examples 2 and 3 share the following elements.

* The battle has only one phase with a maximum length of 10 which is broken into
100 intervals.

* Both sides have two weapon types. Each weapon type has a starting strength of
100.

" The breakpoints for all weapon types are 50%.

* All weapon types are linear law weapons. Attrition is calculated using Equation
5.1 for Example 2 and using Equation 5.4 (w= .5) for Example 3.

" There are no replacements for any weapon type.

The only differences in the scenereos for Examples 2 and 3 are the attrition

coefficients.

a. Example #2

The input and output files, LANIN.DO and LANOUT.DO, for Example 2

are in Figure 5.12. Since these attrition rates are for the Lanchester linear law, the

dimensionality of the rates for the attacker are (number of attacker casualties) per
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(number of attackers) per (number of defenders) per (unit time). The dimensionality of

the rates for the defender are the same with the rolls reversed.

Input File: Output File:

1 2 2 STARTING PHASE 1
100 100 Attacker Npn 1 Is Below Breakpoint
100 100 Bp = 50.00 Current Level = 49.40
.5 .5
.5 .5 SUMMARY AT END OF BATTLE
1 1 Time Elapsed During Battle = 5.20
1 1
10 100 Att Hpn Breakpoint Current Level
0 0 1 50.00 49.40
0 0 2 .50.00 62.53
.00075 .00075
.0005 .0005 Def Np. Breakpoint Current Level
.00025 .00025 1 50.00 82.17
.00025 .00025 2 50.00 82.17

Figure 5.12 Input And Output Files For Example #2.

b. Example #3

The input and output files, LANIN.DO and LANOUT.DO, for Example 3

are in Figure 5.13. The attrition rates in this example are for the Helmbold Equation

with (o = .5, the Helmbold equivalent of the Lanchester linear dimensionality of the

rates for the attacker are (number of attacker casualties) per (attacker) "5 per

(defender) "5 per (unit time). The dimensionality of the rates for the defender are the

same with the rolls reversed.

To generate Helmbold coefficients that are comparable to the Lanchester

linear law coefficients, the Lanchester coefficients must be adjusted by the difference in

the dimensionality, i.e. multiplied by [(number of attackers)(number of defenders)] 5.

In this example it means multiplying the Lanchester coefficients by 100.

The results of Examples 2 and 3 show good agreement.

" The simulation using the Helmbold equations ended about 21% faster than did
-~ the battle using Lanchester equations. The same weapon type reached its

breakpoint first in both cases.

- The differences between the number of survivors for other weapon types was
quite small.
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Irput File: Output File:

1 2 2 STARTING PHASE 1
100 100 Attacker Npn 1 Is Below Breakpoint
100 100 Bp a 50.00 Current Level = 49.85
.5 .5
.5 .5 SMARY AT END OF BATTLE
.5 .5 Time Elapsed During Battle = 4.10
.5.5
10 100 Att lpn Breakpoint Current Level
0 0 1 50.00 49.85
0 0 2 50.00 64.67
.0000075 .0000075
.000005 .000005 Def pn Breakpoint Current Level
.0000025 .0000025 1 50.00 82.79
.0000025 .0000025 2 50.00 82.79

Figure 5.13 Input And Output Files For Example #3.

:.,
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VI. GEOMETRIC PROGRAMMING

A. GENERAL

The program described in this chapter solves nonlinear programming problems in

which:

" The objective function is to be minimized.

" The objective function and constraints are posynomials.

• The number of terms, 7 T, minus the number of variables, N, must equal one.

" The coefficients,8 cm,t, of all terms must be strictly positive.

• All components of the vector of decision variables, X, must be strictly positive at

optimality.

" Constraints must have the form of a posynomial on the left hand side that is less

than or equal to one.

Geometric programniing has the distinctive feature of calculating the optimal

value of the objective function before the optimal values of the decision variables are

calculated. Geometric programming also produces weights, S t , t= 1,2,3,...,T, associated

with each term. For example, in applications where the ct are prices and the objective

i : 7The number of tdTms in the objective function and in the constraints.

8Two subscripting systems are used throughout this chapter. The first uses the

letters m and t where t = 1,2 ,3 ,...,Tm is the number of the term in the mth posynomial.

Sm= 0 refers to the objective function; m= 1,2,... refers to the constraint numbers. Tm

is the number of terms in the mth consti.it. When problems of only one posynomial

are being discussed, the m is omitted. The first system also includes the letter n to

identify components of the decision variable vector, X, where n = 1,2.-N. The second

system numbers the terms without starting again at I at the beginning of each

constraint. Each term is numbered t', t"= 1,2,...,T' where T' is the number of terms in

the objective function and the constraints. The first term of the i)bjcctive function is

denoted by t' = 1. The other terms in the objective function are then numbered from

left to right. Then the terms in each constraint in turn are numbered from left to right.

For example, in Figure 6.1, t= 1, m= 0 (or t ' = 1) refers to 40xlx2 and t 2, n= I (or

t'= 5) refers to .6x-Ix32 3.
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function minimizes total cost, the St for objective function terms are the proportion of

cost that term t contributes to optimal total cost, f(X*). These weights are invariant

with respect to the prices, ct, associated with each term.

1. Definition Of A Posynomial Function

The function ffx) is posynomial if it has the form

T N a
fX) = E ct Pt(X) where pt(X) =H Xn nt (eqn 6.1)

t=1 n=1

where

* T is the number of terms.

* ct are positive scalar constants.

* X is the vector of decision variables, (xl,x2,...,xN).

* The only restriction on the exponents, am,n,t , is that they be real numbers.

A posynomial differs from a polynomial in that the coefficients of a posynomial must

be strictly positive and its exponents, an, t, need not be positive integers.

An example of a problem meeting these conditions is in Figure 6. 1.

Min 40x1X2 + 20x 2x3

Subject to:

.2x1-l x2.5 + .6x2-1x3
- 2/3

xi > 0, i=1,2,3

Figure 6.1 Geometric Programming Problem In Standard Form.

Geometric programming solves a problem of this kind by solving its dual.

When, as specified above, the number of terms minus the number of variables equals

one, then the problem has a unique solution. T - N - 1 is by convention called the

degree of difficulty. If the degree of difficulty is greater than zero, then another

nonlinear program must be solved to find the optimal St*. While this new nonlinear

program is frequently easier to solve than the original problem, its solution is beyond

the scope of this chapter which is limited to problems with a degree of difficulty of

zero.
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B. MATHEMATICAL BASIS FOR GEOMETRIC PROGRAMMING

The mathematical basis for geometric programming is summarized in [Ref. 10:pp.

494-522]. and explained in detail in Reference 11. The following explanation is

provided for tutorial purposes and is an adaptation of the explanation in [Ref. 10:pp.

- 496-502]. Notation in this chapter is consistent with that used in Reference 10.

* -a. Unconstrained Afinilnization Of Posynomnial Functions

Historically, geometric programming has been based upon and took its

name from the arithmetic-geometric mean inequality:

T T v T

y v~ Hvt t ifvt,65 t>0 and~ Es=1. (eqn 6.2)
At=1 t=1 =

The equality holds only when vl=v 2 =,...,vT. If ut is defined as ut=vts t , then

Equation 6.2 becomes

T T

Yu t  H (ut'd t (eqn 6.3)
t=1 t=1

The equality holds if t= ut/Eut. Let ut be a posynomial term as described in

Equation 6.4.

*N an
Ut = ctxPt(X)n = Ctr Xn (eqn 6.4)

n=1

A posynomial function, fX), is given by Equation 6.5.

T
.f( )= ut (eqn 6.5)

t=1

When the posynornial terms are substituted into Equation 6.3, the inequality becomes

T T N a /St} t
I ut >H rI{c n xn (eqn 6.6)

or

'u> {H'I [ct/S t ] t}{l xnqp} (eqn 6.7)
t=1 t=1 n=1

.- where p is the sum over t of an, t .
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Since the only restriction on ft has been that they be positive and sum to

one, they may be chosen such that p = 0 for n = l,2,...,N. If this selection is made,

Equation 6.5 becomes

T T

fX)= Y ctpt(X) > n (ct/1t) I(eqn 6.8)
t=1 t=1

Since equality holds when t= ut/Yut' then

T T /t t

min Y ut = max H (ct/6t) (eqn 6.9)
t=1 t=1

T T

if6 at = 1 and =an'tst = 0 for n = 1,2,...,N
.t=1 .t=1

Therefore, the minimization of the posynomial function is the same as the

maximization of the nonlinear function in Equation 6.9 subject to linear constraints.

The linearity of the constraints means that St'* and X* can be computed with linear

algebra as explained below, instead of with nonlinear programming. These

minimization and maximization problems are duals. Since equality holds if and only if

at = ut/Yut' it follows that the relationship between optimal values of 6 and X is

S* = {ctPt(X )/fX*) or (eqn 6.10)

N a

at = {ct H(xn }n,t)/f(X*). (eqn 6.11)
n=1

If the degree of difficulty is zero, then the matrix of exponents, an,t, with

another row of l's appended to the top makes a square matrix. Rows of the exponent

matrix correspond to variables and columns correspond to terms. The row of l's

corresponds to the constraint that the sum over t of at equals 1. The 6 can be

obtained by solving a set of T simultaneous linear equations AS* = b. The first

element of the b vector is 1 and the remaining elements are 0. The optimal value of

the objective function, R(*) can then be obtained by inserting St* into Equation 6.12.

Equation 6.12 is based upon Equation 6.9.

T
fZ*) = H (ct/6t) t (eqn 6.12)

t=1
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Finally, the optimal values of the decision variables, xn, can be determined by solving

the set of T equations of the form specified in Equation 6.13.

Ei an,tln(xn ) = ln[f(X*)St*/ctl for t = 1,2,...,T. (eqn 6.13)
n=1

This set of equations is overconstrained since there are only T-1 decision variables.
Therefore, only T-I equations are required. Solving these T-1 equations

simultaneously produces Pn = ln(x )which are then converted to the optimal values

of the decision variables by xn =e

b. Inequality Constraints

This section discusses the addition of posynomial inequality constraints to

the unconstrained problem discussed above. For notational purposes the objective

function and constraints will be numbered m=0,1,2,3,...,M. The objective function is

designated m=0, and the constraints are designated m=0,1,2,3,...,M. A primal

constrained posynomial would have the form

T { O tN o n tMin {c0t H Xna0 nt} (eqn 6.14)
t=1 n=1

Subject to:

T N a
fm(X) =-Cmnt HXn mnt -< 1 form = 1,2,...,M (eqn 6.15)

t=1 n=1

where xn > 0, n = 1,2,3,...,N. If 50,t are the weights for the terms in the objective

function, then

0, = Ic0t P0,t(x*)J/f(x) for t= 1,2,3,...,T 0 . (eqn 6.16)

If Xm are the Lagrange multipliers associated with constraint m, then

T

xm = f6m,t and (eqn 6.17)
.t=1

8mct/xm  Cm't Pmt(X). (eqn 6.18)
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The dual geometric program is

M T

Max 1 cm,tkm/ 6 mt m,t (eqn 6.19)
m=1 1=1

Subject To:

T
F 8, t  1 (eqn 6.20)
t=1

M T

am,n,t Sm,t = 0 for n 1 ,2,3,...,N. (eqn 6.21)
M=1 t-1

T

km = t 6mt (eqn 6.22)

and 6m' t , km ? 0.

The 6m,t are calculated using Equations 6.20 and 6.21 as a set of

simultaneous linear equations. The optimal value of the ob ective function is

calculated by multiplying the unconstrained optimum by -(km) m as in Equation

6.23.

f T / M k

0(X ) H (ct/-t) - (km) m (eqn 6.23)

X is calculated using Equations 6.24 and 6.25.

N

Y a0,n,tln(xn ) = ln(f 0(X*)8 0,t*/c 0 ,t) for t = 1,2,...,T 0 , and (eqn 6.24)
n=1

2 am ln(xn ) = In( 6 m,t /(cm,t .m) (eqn 6.25)
n=1

for t= 1,2,...,T 0 ; m= 1,2,3,...,M; and Sm,t* > 0.

As with the unconstrained problem these equations are linear in ln(xn*) Pn After

solving for Pn using Equations 6.24 and 6.25 as a set of simultaneous linear equations,

the decision variables are calculated using xn = eP n.
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C. EXPLANATION OF VARIABLES

* BI(NT+ l,NT*2) holds the A matrix in the subroutine which solves simultaneous

linear equations of the form Ax - b.

* B2(NT) holds the b vector in the subroutine which solves simultaneous linear

equations of the form Ax = b.

. B3(NT,NT-1) stores the exponents of the variables in each term. Each row of

the matrix corresponds to a term; each column corresponds to a variable. If a

variable is not stated explicitly in a term, then its entry in this matrix is zero.

* CT(3,NC,MN) holds three values for each term. CT(l,m,t) holds the coefficient,
cm,t CT(2,m,t) holds the weight, 6 m' t , for each term. CT(3,m,t) holds pm,t(X*)

for each term. m= 0 refers to terms in the objective function. m= 1,2,...,NC

refers to terms in the mth constraint. t= 1,2,...,NT(m) specifies a particular term

in the objective function or a constraint.

* FS is the optimal value of the objective function.

* 11,12, and 13 are loop counters.

* K2,K3,K4,...,K9 are variables in the simultaneous linear equation solving

subroutine. This subroutine is documented in Appendix E.

, LM(NC) holds values of Xm, m= 1,2,...,NC where km is the sum of 6 m't for the

mth constraint. = 1.

* MN is the maximum number of terms in any constraint or the objective function.

* NC is the number of constraints,

* NT(NC) is the number of terms in each constraint.

e NT is the number of terms in the objective function and the constraints.

o NV is the number of decision variables, i.e. the number of components in the

vector X.

D. INPUT

Problem parameters are entered into an input file, GEOIN.DO, before the

program is executed. GEOIN.DO must contain the following parameters in the order

specified.

" '[he number of terms, NT, the number of variables, NV, and the number of

constraints, NC.

" The number of terms in the objective function, NT(0), and the number of terms

in each constraint, NT(m) m= 1,2,...,NC.

* The coefficients of each term, cmt, CT(l1 ,m,t) m=0,1,2,...,NC, t= 1,2,...,NT(m).
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The matrix of exponents, ant, for each variable in each term. Row n of the

matrix corresponds to the variable xn, n = 1,2,...,N. Column t of the matrix

corresponds to the term Pt,(X), t' = 1,2,...,T'.

The input file for the problem specified in Figure 6.1 is in Figure 6.2.

Input File: Problem:
4, 3, 1 Min 40x 1x2 + 20x2 x3
2 2
42, 20 Subject To:

1,' 0 -1 0 .2x1- x2"5 + .6x2-1x3 -2/3 5 1
1, : -. 5 , -1
0, 1, 0, -.66666666667 xi > 0

Figure 6.2 Sample Input File, GEOIN.DO.

E. OUTPUT

The program prints the following output to the screen.

* The optimal dual variables, m,t *.

* The optimal value of the objective function, f()*).

0 The value of each pm,t(X*)

e The optimal value of each component of X, xn

F. EXPLANATION OF PROGRAM COMPONENTS

A complete program listing is located at Appendix D.

I. Initialization And Input, Figure 6.3

Line 110 opens the input file, GEOIN.DO. Line 120 enters the number of

terms, NT, and the number of variables, NV, from GEOIN.DO, and sets K9 equal to

NT for use in the simultaneous linear equation solving subroutine. Line 122 checks

whether the degree of difficulty is equal to zero. If it is not, an error message is printed

and the program ends. Line 130 enters the number of constraints, NC, and dimensions

the vector NT(NC), which holds the number of terms in the objective function and in

each constraint. Line 140 enters NT(m), m=0,l,2,...,NC, and computes MN, the

maximum over m of NT(m). Line 143 dimensions the matrices required for the

program. Line 145 enters the coefficients cm,t, placing them in CT(l,m,t).
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100 'Geometric Programming Program
110 OPEN"GEOIN"FORINPUTAS1
120 INPUT#1,NT,NV:K9=NT
122 IFNT-NV<>THENPRINT"-ERROR: Degree of Difficulty <> 0":END
130 INPUTI1,NC:DIMNT(NC)
140 H=0:FORI1=OTONC:INPUTI,NT(I):IFT(I1)>HThENMN=NT(I1):NEXTI1
143 DIHCT(3,NCNNJ,LI(NC),BI(NT+I,NT*Z ,B2(NT),B3(NT,NV)
145 FORI1=OTONC:FORI2:=TONT(11):INPUT;1 ,CT( 1,I1,Z):NEXTIZ:NEXTI1
150 FORI1=ITONT( 0) :BI(1,1 1=1 :NEXTI1
155 FORI1=T(0)+ITONT:Bl( 1,I1=0:NEXTI1
160 FORZI=2TONT :FORIZ=lTONT : NPUTI1,511TIIZ ):B3(IZj I1-1)=BlI Z1pIZ)

162 NEXTZ:NEXTIl

Figure 6.3 Initialization and Input.

Lines 150-162 enter elements of the A matrix required to solve the

simultaneous linear equations AS= b into Bl(,). Equations 6.20 and 6.21 are the basis

for this set of simultaneous linear equations. Lines 150-155 fill the first row of BI with

ones in columns corresponding to objective function terms and zeros in columns

corresponding to other terms. Bl(1,t) corresponds to Equation 6.20. Lines 160-162

enter the exponents of variables in each term into BI and B3. In BI rows 2 through

NV+ 1 = NT correspond to variables xn and columns 1 through NT correspond to

terms t'= 1,2,... ,T'. Storing the exponents in B3 is necessary because the simultaneous

linear equation subroutine changes the matrix in B l, and the exponents are required

for later calculations. B3 is the transpose of BI because of the nature of the

calculation for which B3 is later recalled.

2. Calculating The Weights For Each Term, Figure 6.4

170 PRINT"': PRINT"-**COMPUTING DELTA'S*"
172 B2(1 )1=: FORI1=2TONT :B2(1 )=0 :NEXTI1
180 GOSUB9800
200 CLS:11=1:FORIZ=0TONC:FORI3=TONT(I2):CT(2,12,I3)=BI1,1])
203 PR1NT"DELTA("sI2;",";I3s") = ";
204 PRINTUSING"#####.####";CT( 2,12,3): 11=111: IFTI>STHENGOSUB600
Z05 NEXT13:NEXTIZ:GOSUB600:CLS

Figure 6.4 Calculating 8m,t.
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Line 172 places the simultaneous linear equation b vector into B2. B2(1)= 1 is

the right hand side of the constraint in Equation 6.20. The right hand sides of the

constraints based upon Equation 6.21 are zero. Line 180 calls the simultaneous linear

equation solver in subroutine 9800 which leaves S* in Bl(t',l), t'= 1,2,...,T'. Lines

200-205 place 8" into CT(2,m,t) and prints 8m,t to the screen.

3. The Optimal Objective Function Value, Figure 6.5

210 PRINT"":PRINT"**COMPUTING OPT OBJ FN VALUE**"
212 FORI1=OTONC:LM(I1)=O:FORI=lTONT(Il):LHIl)=LL(Il)+CT(2,I1,I2)
214 NEXTIZ:NEXTI1
220 FS=I:FORII=OTONC
222 FORI2Z=1TONT(I1): FS=FS*(CT(1,I1,12)/CT(2 ,I1,IZ )J)ACT 2,I1 I2)
224 NEXTI2:FS=FS*(LM( I1)A LM(I1)):NEXTI1
229 PRINT"": PRINT"F =" =: PRINTUSING"#### .#' #")FS: GOSU8600 : CLS

Figure 6.5 The Optimal Objective Function Value.

Lines 212-214 compute Xm which equal the sum over t of 6 m,t for every

constraint and the objective function. Lines 220-224 compute the optimal objective

function value based* upon Equation 6.23. Line 229 prints the optimal objective

function value.

4. Optimal Decision Variable Values, Figure 6.6

230 'Compute optimal x(n)
232 K9=K9-1
234 FORII=lTOK9:FORI2=TOK9:B(l,123=B3(I1,I2):NEXTI2:NEXTI1
236 CC=I:FORII=OTONC:FORIZ=ITONT(Il)
237 CT(3,I1,12)=!CT(2 ,II,I2)/CT(1,Il,12)/L(I11])
238 IFI1=OTHENCTV3,I1,I2)=CT13,Il,IZ)*FS
239 B2(CC)=LOG(CT(3,I1,I2)):CC=CC*1:NEXTI2:NEXTI1
242 PRINT"P(m,t)* = opt. value of term t, constr. m, divided by its coef."
244 FORII=OTONC:FORI2=ITONT(Il):PRINT'P(")I1",")12;")* =";
246 PRINTUSING"####. ####" ;CT( 3,11,12) :NEXTI2 :GOSU8600 :NEXTI 1: CLS
250 PRINT"":PRINT"* Computing Opt Values Of X!n) *"

260 GOSUB9800
270 CLS:FORI1=ITOK9:PRINT"X*("I1;") = "s
272 PRINTUSING"## .######' ;EXP(B(I1p1 ))
273 IFII>STHENGOSUB600
275 NEXTI 1: GOSUB600: END

Figure 6.6 Optimal Decision Variable Values.
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After 8* and the optimal value of the objective function, fo(X*), have been

calculated, this section calculates X . The basis for these calculations is Equations 6.24

and 6.25. The section solves a set of simultaneous linear equations A [ln(X*)J = b and

then solves for X*•

Since the number of variables is one less than the number of terms, line 232

reduces K9 by one. Line 234 creates the A matrix by putting the matrix of exponents

that was stored in B3 into B I.

Lines 236-239 calculate the b vector. CC is a counter in the t' subscripting

system which controls the entry of b vector elements into B2(t'). Line 237 calculates

the portion of the right hand side that is common to all terms. Line 238 multiplies that

result by fo(X*) for objective function terms which produces Pt'(X*)" Line 239 places

InEpt,(X*)] into B2(t'). Lines 242-246 print pm,t(X*) to the screen. Line 260 calls the

simultaneous linear equation subroutine which solves A Eln(X*)3 =b. Lines 270-275

print X to the screen and end the program.

5. Subroutine To Stop Screen Printing, Figure 6.7

600 ZNPUT"- Hit ENTER To Continue: ";Z9:RETURN

Figure 6.7 Subroutine To Stop Screen Printing.

Subroutine 600 is used to interrupt printing loops so that results are not

scrolled off the screen before the operator can read them.

6. Simultaneous Linear Equation Subroutine, Figure 6.8

This subroutine solves simultaneous linear equations of the form Ax= b. K9

is the dimension of the square A matrix and the x and b vectors. This subroutine

documented in Appendix E, The Matrix Algebra Program.

G. EXAMPLE PROBLEMS

1. Example #1

A design engineer wants to design a cylindrical oil storage tank with a storage

capacity of 1000t cubic feet to put on an existing base. If the cost of construction is

S1/foot 2 of tank surface, what are the optimal dimensions of the tank and how much
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9800 'Simiultaneous Linear Equation Subroutine: Ax=b
9615 'Invert Matrix A
9820 FORK7=K9,1TO2eK9: FORK=lTOK9
9822 IFK7:KSK9THEtB(K8,K7)1IELSEB1(K8,K7 )=
9825 NEXTK8: NEXTK7
9830 FORK7l1TOK9
9835 IFBl(K7,K7)*SGNEB1(K7,K7) )<1E-8THENGOSUB99lO
9840 K2=1/B1IK7,K7):FORK61TZ*K9:1(K7,K6)=B(K7,K6)*K2:NEXTK6
9842 IFK7=K9THEN9865
9845 FORK8=K7.1TOK9: IFBI( K8,K7 )OTHEN986O
9850 K2=-B1IK8,.K7)
9855 FORK6=K7TO2*K9:81(KS,K6)B1I(K8,K6),(K2*51EK7pK6) ):NEXTK6
9860 NEXCTK8 :NEXTK7
9865 FORK7=K9TO2STEP-1
9870 FORKS=K7-lT01STEP- : IFB1E K8 K7 )0THEN9885
9875 KZ=-BI(KS,K7)
9880 FORK6=ITOZ*K9:BIK8,K61B14IK8,K6 ),(K2MIB(K7,.K6) ):NEXTK6

* 9885 NEXTK8 :NEXTK7
9890 'Mult A Inverse by b
9894 F0RK7=1T0K9:Bl(K7,1)=0:FOK=1T0K9:B(K71)=B(K7,1)+B1(K7,,KS+K9)*BZ(K8)
9896 NEXTK : NEXTK7 :RETURN
9900 'Error Routine
9903 IFERL>9700ANDERR=I1THENPRINT"!!!ERROR: Matrix Is Not Invertable!!!":END
9905 PRINT"Error Code" ;ERRi"In Line" )ERL END
9910 'SWITCH ROWS
9915 F0RK5=K7+1T0K9:IFBI(KS,K7)*SGN(BI(K5,K7) )<1E-8T11EN9940
9920 FORK4=1T0K9'*2:K3=B1(K7,K4):B1(K7,K4)2BlIK5,K4)
9930 BlI(KS,K4 )=K3 :NEXTK4: RETURN
9940 NEXTKS:PRINT"Error: Matrix Not Invertable":END

Figure 6.8 Simultaneous Linear Equation Subroutine.

will it cost? The tank includes the cylindrical siding plus the top. The formulation is in

Equations 6.26 and 6.27.

Min Sl(irr2 ) + Sl(2irrh) (eqn 6.26)

Subject To:

nr 2h a 1000nr r,h > 0 (eqn 6.27)

The objective function and constraint are posynomials, but the constraint is not in the

:5 1 form required by the program. Putting the constraint in :5 1 form results in

Equation 6.28. This is a zero degree of difficulty problem with three terms, two

variables, one constraint, two terms in the objective function, and one term in the

constraint.
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1000r' 2h "1 < 1 (eqn 6.28)

The coefficients, ct1, t'= 1,2,3 are nr, 2n, and 1000 respectively. The input file and

results of the program are at Figure 6.9.

Input File: Results:

3, 2, 1 6 1 I/ 3 , 82 = 213, 63 = 2/3
2, 1
3.142,_ 6.284, 1000 f(X*) = $942.48
0, 1, -1
2: 1: -2 Optimal Values for r = 10, h = 10.

Figure 6.9 Input File and Results Of Example #1.

The economic interpretation of 81 and 82 is that regardless of the price for

steel, 1/3 of the cost will be for the top and 2/3 will be for the side. If the top and

sides were constructed of different types of steel with different prices, these ratios

would not change.

2. Example #2

This problem is the example stated in Figure 6.1 The input file is in Figure

6.2. 6t,, t'= 1,2,3,4 are .5, -5, .5, and .75 respectively. The optimal value of the

objective function is 40. The optimal values of xn, n= 1,2,3 are .5, 1, and I

respectively.
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VII. MATRIX ALGEBRA PROGRAM

A. GENERAL
The matrix algebra program, MATALG, performs the following matrix algebra

functions: matrix addition, multiplication, and inversion, scalar multiplication,
calculation of determinants, integer exponentiation, and solutions to sets of
simultaneous linear equations. MATALG is menu driven. The main menu enables the
operator to enter a new matrix, print the answer matrix, or call one of the functions
listed above. Menus produced by each function prompt the operator for required
input. Matrices may be entered from the M 100 keyboard or from a RAM file. Output
goes to the M100's screen. Intermediate results may be displayed. Operations are
performed in the conventional left to right order in which matrix operations are written

out on paper, e.g. A x B x C- 1. However, if the series of operations requires altering
that order, the operator may store one matrix for future recall. Matrices may be
entered in either the left or right hand position.

B. INPUT.

The matrix input subroutine lets the operator select:
" The position9 of the matrix. If the new matrix is entered for the left side of the

operation, the program automatically places the old left side matrix on the right
side.

" Whether the matrix will be entered from the keyboard, the input file
MATIN.DO, or from RAM storage.

" Whether the matrix will be scalar multiplied or inverted.

The matrix input routine must be accessed from the main menu to enter the first
matrix. From then on, when a two matrix operation is selected from the main menu,
the subroutine performing that operation automatically calls the input subroutine for

the second matrix.

If the input file, MATIN.DO, is used, it must be created before the program is
run. MATIN.DO may contain more than one matrix. Matrices must be preceded in

MATIN.DO by their dimensions. An example of an input file is at Figure 7.1.
See the general instructions on input files in Chapter 2.

9 Left or right side of the operation.
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3 3 Note: The input file to the right contains two matrices:
123 1 231
9 87 98 745
423 423
2,3; 1,2,3
4,5,6

Figure 7.1 Sample Input File, MATIN.DO.

When matrices are entered from the keyboard, the operator will be prompted for

the matrix dimensions and for each matrix element.

C. OUTPUT

All output goes to the screen of the M 100. Output may have up to three digits

to the left and four digits to the right of the decimal point. If this configuration is not

adequate, the operator may modify the format at the line numbers specified in Figure

7.2 for the corresponding functions.

LINE FUNCTION
,. 1082 Determinant

4075 Solution to Simultaneous Linear Equations
6012 Other Matrix Output

See the instructions for the PRINT USING command in Reference 1.

Figure 7.2 Line Numbers Of Output Formats.

D. DESCRIPTION OF VARIABLES

" AI(3,K,K) holds the current matrices AI(I, Left side matrix/primary
matrix/current intermediate answcr matrix A( , ih sd/eodr
matrix. Al(3,,) = Matrix being stored. 1(2,,) = Right side/secondary

* BI(K,K) holds the answer matrix as it is being calculated.
* C(4) and R(4) are the number of columns/rows in Al or BI. C(1 and R(1)

correspond to Al10,). C(2) and R(2) correspond to AI(2,,). C(3) and R( )
correspond to Al(3,,). C(4) and R(4) correspond to BI.

" CC is the row counter in matrix output routine.

" CD and RD are the column and row of element to be changed.
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* CH is the selection variable for the main menu.

* DET(2) are the determinants ofAl(l,,) and AI(2,,).

* EF is the error Flag. 0 - No terminal error has been made. I - A terminal error
has been made. A terminal error is one from which the program can not recover.

* FF is the file Flag. 1 - MATIN.DO exists in RAM. 0 - MATIN.DO does not
exist in RAM.

* I1, 12, 13, J1, J2, and J3 are loop counters.

a K is the largest dimension of largest matrix to be processed.

* K4-K9 are counters in the simultaneous linear equation subroutine.

* MF is the multiplication/addition flag. 0 - Neither the multiplication nor the
addition subroutines are running. 1 - The multiplication subrouine is running. 2
- Addition subroutine is running.

SMIl is the matrix indicator. It shows 'vhich matrix in AI(I-3) is being operated
upon.

" MU is an intermediate multiplier in the determinant and matrix inversion
subroutines.

* OF is the output flag. I - Send output to screen. 0 - Suppress output to screen.

" SF is the simultaneous linear equation (SLE) flag: 1 - The SLE subroutine is
running. 0 - The SLE subroutine is not running.

" XP is the umber of times the matrix will be multiplied times itself in the integer
exponentiation subroutine.

" Z9 is a general purpose variable.

E. DESCRIPTION OF PROGRAM COMPONENTS

A complete program listing is located at Appendix E.

1. Initialization, Figure 7.3

100 CLS:PRINT"":PRINT" *** MATRIX ALGEBRA PROGRAM ***":PRINT"
105 PRINT"IS INPUT MATRIX, 'MATIN.DO' IN RAM?":INPUT" O=NO, 1=YES";FF
107 IFFF=ITHENOPEN"MATIN" FORINPUTAS1

300 PRINT"**Enter The Single Largest Dimension of"
305 INPUT"The Largest Matrix To Be Processed: ";K
310 DIMA1(3,KK),B1(K+1,K*Z),R(4),C(4)PDET2i):MI=l:OF=I:SF=O

Figure 7.3 Initialization Section.

Line 100 prints the program title. Line 105 permits the operator to specify
whether file MATIN.DO will be used as a source of input and sets the file flag, FF,

accordingly. Line 107 opens MATIN.DO for input if it is to be used.
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Lines 300-305 require the operator to specify the largest dimension, K, of the

largest matrix to be processed. Line 310 dimensions matrices Al and BI and vectors

R, C, and DET and initializes flags MI, OF, and SF.

2. Main Menu, Figure 7.4

This section permits the operator to select the next major operation to be

conducted and calls the subroutine performing that operation.

501 CLS:EF=O:PRINT"****MATRIX ALGEBRA PROGRAM MENU****"
504 PRINT" 1. Enter Starting Left Side Matrix"
505 PRINT" 2. Matrix Inversion"
506 PRINT" 3. Matrix Addition":PRINT" 4. Matrix Multiplication"
508 PRINT" 5. Simultaneous Linear Equations"
509 PRINT" 6. Print Current Answer Matrix":PRINT" 7. Other Options"
510 INPUT" **Enter Number: "iCH
512 IFCH=lTHENMI=1:Z9=0:GOSUB7006
513 IFCH=ZTHENMI=1:GOSUBZO00
514 IFCH=3THENGOSUB3000
515 IFCH=4THENGOSUB5000
516 IFCH=5THENGOSUB4000
517 IFCH=6THENGOSUB6000
518 IFCH<>7THENGOTO501
520 CLS:PRINT"-*MORE CHOICES:":PRINT" 1. Determinant"
524 PRINT" 2. Matrix Integer Exponentiation"
526 PRINT" 3. Store Current Matrix"
530 PRINT" 4. Retrieve Stored atrix":PRINT" 5. Scalar Multiplication"
532 PRINT" 6. Other Options":INPUT"**Enter Number: "; CH
540 IFCH=lTHENMI=1:GOSUB1000
548 IFCH=2THEN I=I :GOSUB7600
549 IFCH=3THENGOSUB8000
550 IFCH=4THENhI=I:GOSUB8ZO0
560 IFCH=STHENMI=1:GOSUBS100
570 GOTO501

Figure 7.4 Main Menu.

Line 501 initializes EF and prints the main menu header to the screen. Lines

502-510 print the first screen of options and prompt the operator for a selection. Lines

512-518 call the subroutine selected by the operator or branch to the second screen of

options. Lines 520-532 print the second screen of options and prompt the operator for

a selection. Lines 540-570 call the subroutine selected by the operator or return to the

first screen of options.

3. Pause Control Subroutine, Figure 7.5

Lines 700-702 stop the program to permit the operator to view material on the

screen and permit continuation by pressing the ENTER button.
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700 'PAUSE CONTROL
702 INPUT"** Hit ENTER To Continue" Z9:RETURN

Figure 7.5 Pause Control Subroutine.

4. Modifying the Secondary Matrix, Figure'7.6

800 'INTERMEDIATE MODIFICATIONS
810 PRINT"**Modify The 2nd Matrix?"
812 INPUT" O=No, l=Invert, 2=Scalar Multiply: ")Z9
815 IFZ9=OTHENRETURN
820 MI=2: IFZ9=ITHENGOSUB20O0ELSEGOSU85l00
825 GOT0810

Figure 7.6 Modifying The Secondary Input Matrix.

This subroutine permits the operator to invert the second matrix of a two

matrix operation or multiply that matrix by a scalar. Lines 810-812 print the options

to the screen and prompt the operator for a selection. Line 815 causes a return

without the matrix being modified if appropriate. Line 820 sets the matrix indicator,

MI, to two and calls the matrix inversion or scalar multiplication subroutine. Line 825

starts the subroutine again, permitting the operator to select another option.

5. Determinant Calculation, Figure 7.7

Lines 1005-1008 test whether the matrix is square and print an error message

if it is not. Line 1010 copies the matrix to be inverted into B1 where the calculations

will be conducted. Line 1020 initializes the value of the determinant as one and the

row counter, I1.

Line 1021 checks whether the diagonal element in the current row, Rc, is zero.

If so, then the row switching subroutine is called. If all the rows below Rc have O's in

column I I then the determinant is zero. If a non-zero element can be found below Rc

in column I I then that row is switched with R and the determinant is multiplied by -1.cII
Line 1022 tests for a terminal error from the row switching subroutine. Line 1023

multiplies the determinant by diagonal element I1 and branches to the end of the
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1000 'CALC DETERMINANT
1005 IFR( MI )=C( MI )THEN1010
1007 PRINT"ERROR: Number of rows/columns not equal:"
1008 PRINT" MATRIX IS NOT INVERTABLE!":GOSUB700:EF=1:RETURN
1010 FORI1=ITOR(MIJ:FORI2=lTOC(MI):Bl(I1,IZ)=AI(HI,I1I2):NEXTI2:NEXTI1
1020 DET(HI)=1:FORI1=TOR(MI)
1021 IFB1( 11,11 )*SGN( B1t I1,11) )<lE-1OTHENGOSUB1900ELSE1O23
1022 IFEF=lTHEN1008
1023 DET(MI)=OET(MI)*B1(11I1):IFI=R(MHI)THEN1080
1025 FORI3=ITOC!MI):Bi I1,I3)=BI.1,I3)/B(I1,I1 ):NEXTI3
1030 FOR12=IllTOR(MI ):IFB1(I2,11 )=OTHEN1060
1040 FORI3=Z1TOC(MI):B(I2,I3]=Bl(I2,13]-(B(I[2,I1)*B(I1,I3)):NEXTI3
1060 NEXTI2:NEXTI1
1080 IFOF<>ITHENRETURN
1081 PRINT"**Det. Of Matrix ")MI;" Is: ";
1082 PRINTUSING" 1$$#. m °### O)DET (HI ) : GOSUB700
1090 RETURN

Figure 7.7 Determinant Calculation.

subroutine if the Rc is the last row. Line 1025 divides all elements in Rc by the

diagonal element in Rc. Lines 1030-1060 update the elements in Rc and below in in

column I1 and to the left. Line 1080 tests whether output is to be printed to the

screen. -If not, the subroutine ends. If so, lines 1081-1082 print the determinant.

6. Row Switching Subroutine, Figure 7.8

1900 'SNITCH RONS
1910 FORJ=I14ITOR(HI):IFBI(JI1)*SGN B1(J,I1))<lE-1OTHEN194O
1920 FORJ1=lTOC(MI)*2:TE=Bl(I ,Jl):B(IIPJ1)=BltJ,Jl)
1930 B1J,Jl )=TE:NEXTJ1:GOT01950
1940 NEXTJ:EF=O:RETURN
1950 DETIMI)=-DET HI):RETURN

Figure 7.8 Row Switching Subroutine.

This subroutine is called when the determinant or inversion subroutines try to

pivot on a row, R 1 , with a zero in the main diagonal element. The subroutine looks

for the first row below RII that has a nonzero element in column 11.10 Line 1910

searches the rows below R1I for a row with a nonzero element in the appropriate

10The same column as the zero on the main diagonal in R 1I.
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column.' Lines 1920-1930 switch the elements of the rows using TE as an intermediate

storage variable. If none of the rows below R1 I have a nonzero element in the

appropriate column, then the matrix is not invertable and EF is set to one in line 1940.

If a row switch was made, the determinant changes sign in line 1950.

7. Matrix Inversion Subroutine, Figure 7.9

2000 'MATRIX INVERSION
2010 OF=O:GOSUB1000:IFDETIMI )*SGN(DET(MI ) )>E-OOREF=THEN2O17
2015 PRINT"*ERROR: Determinant=0. MATRIX NOT INVERTABLE!":GOSUB700:EF=1
2017 IFEF=THENRETURN
2020 FORI1=TORIMI):FORIZ=1TOC(HI):B1(1,PI2)=Al(M II2):NEXTI:NEXTZ1
2030 FORI1=C(MI )+ITOZ*C(MI ):FORI2=TOR( MI).
2032 FI1=12+R(I )THENBI(IZ,I1)=1ELSEB1II2,I1)=O
2035 NEXTI2:NEXTI1
2040 FORI1=1TOC(MI)
2045 IFB1( 1,I1 )*SGN( B1( I1,11) )<1E-1OTHENGOSLB1900ELSE2055
2046 IFEF=lTHEN2015
2055 MU:1/B(I1,I1):FORI3:1T02*C(MI):B(I1,13)=B(I,13)*U:NEXTI3
2057 IFII=C!MI )THEN2080
2060 FORI2=I1+ITOR( MI): IFBI( I2,I )=OTHEN2075
2065 IU=-Bl(IZ,I1)
2070 FORI3=I1TO2*C(MI):BI12,I3)=B(IZ,13)]+(J*Bl(IlPI3)):NEXT13
2075 NEXTI2:NEXTI1
2080 FORI1=C( MI TO2STEP-1
2100 FORI2=I-TOlSTEP-1:IFB1( IZI )=OTHEN2130
2110 IIU=-Bl(12,Il]

2120 FORI3=TO2*C(MI):B(I2,I3) =B[(I2,I3)+(MU*BI1,I3)):NEXTI3
2130 NEXTI2:NEXTI1
2140 FORII=TOC(MI ):FORI2=TOR(MI)
2145 A(MII2,I1)=B1(I2,Il+C(MI)):NEXTI2:NEXTI1
2190 OF=1:RETURN

Figure 7.9 Matrix Inversion Subroutine.

The matrix inversion subroutine places the matrix to be inverted, p, and an

identity matrix, I, into BI. Each row of BI holds a row of p and the corresponding

row from I. Elementary row operations are conducted on p in BI to change that
portion of B1 to an identity matrix. The same elementary row operations are

conducted on the portion of BI that started as an identity matrix. When the portion

of BI which started as p is changed to I, then the portion of BI which started as I

becomes -1

'iThe decision rule actually looks for an element outside the range 0 + 10- 10.
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Line 2010 stops intermediate results from being printed to the screen by

setting OF to zero. Line 2010 also calls the determinant calculation subroutine and

tests whether the determinant is equal to zero. If the determinant equals zero, then

lines 2015-2017 print an error message, set the error flag, and terminate the inversion

.4subroutine. Line 2020 copies I into B1. Lines 2030-2035 place an identity matrix with

the same dimensions as I into B I with pt.

Lines 2040-2075 Line 2045 checks whether the tI 1, 1 is zero. If so, then the

row switching subroutine is called. If the row switching subroutine can not find a row
for which element I1 does not equal zero, then the matrix is not invertable and line

2046 branches to the error message. Line 2055 calculates the constant, MU, 12 and

multiplies row I l by MU. Since lines 2060-2075 do not apply to the last row of I, line

2057 branches around them if I 1 points to the last row.

Lines 2060-2075 perform the elementary row operations to change to zero the

4 elements of column I1 that are in rows below row if. Lines 2080-2130 perform the

elementary row operations which change to zero the elements of P' above the main

diagonal. Lines 2140-2145 copy the inverted matrix from BI back to the appropriate

section of Al. Line 2190 turns the output back on by resetting OF and terminates the

subroutine with a return.

8. Matrix Addition, Figure 7.10

3000 'MATRIX ADDITION
3010 MF=Z: GOSUB7000: GOSUB800: IFEF=2THENRETURN

* 3015 FORI1=lTOR):FORIZ=ITOC(1):AI1IIlIZ)=AI(IIlI2)+Al(2,I1,I2)

3020 NEXTIZ:NEXTI1:GOSUB6000 :MF=O:RETURN

Figure 7.10 Matrix Addition Subroutine.

Line 3010:

- Sets M I= 2 indicating to the input subroutine that it is being called from the
<." matrix addition subroutine.
- 0 Calls subroutine 7000 to enter the second matrix.

1.2Multiplying row II by MU makes main diagonal element p11 11 equal to one,

i.e. dts identity matrix value.
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e Calls subroutine 800 to permit the operator to invert the second matrix or
multiply it by a scalar.

• Evaluates whether a terminal error was made in either subroutine 7000 or 800
and, if so, terminates the matrix addition subroutine.

Lines 3015-3020 add the elements of Al(l,,) and A2(2,,). Line 3020 also calls

subroutine 6000, printing the answer, resets M F=0, and terminates the matrix addition

subroutine.

9. Simultaneous Linear Equations, Figure 7.11

4000 'SIMULTANEOUS LINEAR EQUATIONS
4010 CLS:PRINT"**Solves Ax=b. Choices:":PRINT" 1. Enter b Vector"
4012 PRINT" 2. Change An Element In Matrix A"
4013 PRINT" 3. Solve Current A :b"
4014 PRINT" 4. Return":INPUT" * Select A Number: ";CC
4020 IFCC=IGOT04040
4022 IFCC=ZGOT04050
4024 IFCC=3GOT04060
4026 IFCC=4THEN RETURN
4035 GOTO 4000
4040 MI=2:R(2)=C(1):C(2=1:GOSUB704O:GOTO4O00
4050 INPUT"**Row, Column Of Matrix A To Be Changed: ";RD,CD
4052 PRINT" - Enter Row"RD0, Column" ;CD;":"; :INPUTAl( lRD,CD ) :GOT04000
4060 Ml=1:SF=1:OF=O:GOSUB8000:GOSUB2000
4064 IFEF=OTHEN4070
4065 PRINT"1*Solution Not Uniquely Determinable":GOSUB700:RETURN
4070 GOSUB5000:CC=O:FORII=ITOR(2):CC=CC+l:PRINT"x ")Il;") = ";4075 PRINTUSING" ###.## ;';BlI 11,1) :XFCC>6THENGOSUB700:CC=O

4080 NEXTIl:GOSB700:SF=O:GOSUB8200:GOT04000

Figure 7.11 Simultaneous Linear Equation Solving Subroutine.

This subroutine solves sets of linear equations of the form Ax= b where A is

m by m matrix of rank m and x and b are vectors of length m. Matrix A must be

entered as the primary matrix before this subroutine is called. The subroutine prompts

the operator to enter b. The subroutine also permits the operator to change individual

elements of the A matrix.

Lines 4010-4014 print a header and a menu of options and prompt the

operator to select an option. Lines 4020-4035 transfer control to execute the option

selected. Line 4040 sets MI = 2, indicating that b will be stored in A 1(2,,), dimensions

the b vector, and calls subroutine 7040 to input b. Line 4050 prompts the operator for

the row and column of the element in A to be changed. Line 4052 prompts the

operator to enter the new value for that element.
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Lines 4060-4080 solve the system of equations. Line 4060 sets MI, SF, and

OF and calls subroutines which store, then invert, the A matrix. Lines 4064-4065 print

an error message if the A matrix is not invertable. Lines 4070-480:

* Multiply A- 1 by b producing the solution vector, x.

" Print the solution vector.

" Reset SF=0.

" Retrieve the stored A matrix.

10. Matrix Multiplication Subroutine, Figure 7.12

5000 'MATRIX MULT
5010 NF=I:IF SF=ITHENSO2O
5015 MI=2:GOSUB7000:GOSUB800:IFEF =THENRETURN
5020 R(4)=R(1):C(4)=C(Z):FORI1=ITOR(4.:FORI2=TOC(4):Bl(I,I2)=0
5022 FORI3=lTOC(l):Bl(IIZ)=A(l ,l,I3)*Al(ZI,12)+Bl(Z1TZ)
5024 NEXT13:NEXTIZ:NEXTI1:MF=0
5050 IF SF=OTHENGOSUB7500:GOSUB6000
5060 RETURN

Figure 7.12 Matrix Multiplication Subroutine.

Line 5010 sets MF 13 and branches to avoid the input subroutines in line

5015 if SF equals one. 14 Line 5015 calls the subroutines to enter and modify the second

matrix. Lines 5020-5024 set the dimensions B I and perform the multiplications and

additions required to place the answer matrix in BI. If SF equals zero, 15 then line

5050 calls subroutines which copy the answer from BL to AI(1,,) and print the answer

matrix.

11. Scalar Multiplication Subroutine, Figure 7.13

This subroutine multiplies matrix AI(MI,,) by a scalar, SM. Lines

5110-5115 prompt the operator to enter the scalar and conduct the multiplication.

13MF= 1 indicates that matrix multiplication is being performed.
14 That is, if the matrix multiplication subroutine is called from the simultaneous

linear equation subroutine.

"That is, this subroutine is not being called from the simultaneous linear
equation subroutine.
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5100 'SCALER MULT
5110 INPUT"Enter Scalar Multiplier :"IS:FORI=lTOR(MI ):FORIZ1ITOC(MI]
5115 AI(HI, 1,I2)A(MII ,I12)*SM:NEXTIZ:NEXTI1:RETURN

Figure 7.13 Scalar Multiplication Subroutine.

12. Subroutine To Print A1(I,,), Figure 7.14

6000 'PRINT OUTPUT MATRIX
6010 PRINT" * Current Answer Matrix:":CC=O:FORI1=ITOR(1):CC=CC+1
6012 FORIZ=1TOC( 1 ):PRINTUSING" '##I.# ;1;";A( 1,121 )] :NEXTI2:PRINT""

6050 IFCC=3THENGOSUB7O0 :CC=O
6070 NEXTI 1: GOSUB700 :RETURN

Figure 7.14 Subroutine To Print The Primary Matrix.

Lines 6010-6070 print a header and then print AI(l,,). The matrix is printed

up to three rows at a time.

13. Matrix Input Subroutine, Lines 7000-7050

a. Input Mfatrix Configuration, Figure 7.15

The section in Figure 7.15 prompts the operator to specify:

. Whether the matrix to be entered will go on the left or right hand side of the
operation.

" Whether the matrix will be entered from the keyboard, MATIN.DO, or retrieved
from RAM storage. The dimensions of the incoming matrix are entered from the

*appropriate source.

, Line 7001 prompts the operator to specify whether the incoming matrix will

be on the left or right side of the operation. If the incoming matrix is to be on tC.e left

side, lines 7003-7004 move the matrix in A1(1,,) to AI(2,,). Lines 7006-7008 print an

appropriate header. Lines 7009-7011 print the source options for the incoming matrix.

The option to enter a matrix from MATIN.DO will be printed only if MATIN.DO has

been created (FF= I) and the end of MATIN.DO has not been reached (EOF(I) = 0).

Lines 7012-7013 transfer control to enter the matrix from the appropriate source.

Lines 7014-7018 enter the dimensions of the new matrix from the appropriate source.
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7000 'MATRIX INPUT
7001 CLS:PRINT"":PRINT"NMill This Mlatrix Be On:":INPUT" O=Left, 1=Rightj;Z9
7002 IFZ9=1T.HEM7006
7003 RE2)=R(l):C(2)=Ct1):F0RlllT0R(11:FORIZ21TOC(1J:A1(2,lIIZA1(1,IlIZJ
7004 NEXTI2:NEXTIIl:H11
7006 CLS: IFMI=ZTHEN7008
7007 PRINT"**Choices For Left Hand Matrix" :G0T07009
7008 PRINT'**choices For Right Hand Matrix:"
7009 PRINT" 1. Enter Matrix From Keyboard"
7010 PRINT" 2. Retrieve Stored Matrix":IFFF<).1THEN7O12
7011 IFEOF(1)=OTHENPRINT" 3. Enter Matrix From tIATIN.00"
7012 INPUT"**Enter A Number: "3;Z9:IFZ9=1THEN7O1S
7013 IFZ9=3THEN7018
7014 R(MI)=R(3):C(HI)C(3):G0T07020
7015 PRINT" **Enter The Rows, Columns"
7017 INPUT"In The Next Matrix: "1;R(MIJ,C(141J:G0T07020
7018 INPUTh1,R(MI ),C(MI

Figure 7.15 Input Matrix Configuration.

b. Detection Of Dimensioning Errors, Figure 7.16

7020 IF MF<>1THEN7O30
7021 IFR( 2 )C(I1)THEN7O3O
7022 PRINT"5*ERROR: Columns in LEFT MATRIX =*;C(1)
7024 PRINT" Rows In Right Matrix ="R(2)
7026 PRINT"These Must Be Equal For Matrix Kult!!":G0SWB700:EF=1:G0T07006
7030 IF MF<>2THEN7035
7031 IF(R(1J=R(2)ANDC~13=C(2))THEN 7035
7032 PRINT"**ERROR:Dimensions For-Both Input"
7034 PRINT"Matrices Must Be Equal!!":GOSLIB700:EF=1:GOT07006

Figure 7.16 Detection Of Dimensioning Errors.

If the matrix being entered is the second matrix in a matrix multiplication

operation, then lines 7020-7026 check whether the number of columns in the left matrix

is equal to the number of rows in the right matrix. If not, then an error message is

printed and control is transfered to the beginning of the inatrix input s;ubroutine. If
the matrix being entered is the second matrix in a matrix a( dition operation, then lines

7030-7034 check whether the dimensions of the left and righ -matrices are the same. If
not, then an error message is printed and control is transfe ed to the beginning of the

matrix input subroutine.
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c. Matrix Input Section, Figure 7.17

7035 IfZ9=2THENGOSUB8200 : RETURN
7036 IFZ9=3THEN7050
7037 PRINT" **Fill Matrix Row By Row:":PRINT""
7040 FORII=ITOR( MI ): FORIZ=1TOC( HI)
704Z PRINT"-Enter Row" ;I1"And Column" 12;": "

7044 INPUTA(I,1, I2):NEXTIZ:PRINT"":NEXTI:RETURN
7050 FORII=ITOR(HI):FORIZ=ITOC(MI):INPUT# ,AI!MI I1 ,IZ):NEXTIZ:NEXTI1:RETURN

Figure 7.17 Matrix Input Section.

If the incoming matrix is to be retrieved from RAM storage, line 7035 calls

the appropriate subroutine. Line 7037-7044 enter the incoming matrix from the

keyboard. If the incoming matrix is to be entered from MATIN.DO then line 7036

transfers control to 7050 which performs the entry.

14. Copy BI Into A1(1,,), Figure 7.18

7500 'COPY B1 INTO AI(1,,)
7510 R(1)=R(4):C(1)=C(4):FORII=lTOR(1):FORI2=ITOC(1)
7512 A1 ,Il,12)=B1(I1,12):NEXTIZ:NEXTII:RETURN

Figure 7.18 Subroutine to copy BI into AI(1,,).

Lines 7510-7512 dimension al(l,,) and copy BI into AI(l,,).

15. Matrix Integer Exponentiation, Figure 7.19

7600 'HATRIX INTEGER EXPONENTIATION
7610 CLS:PRINT"":INPUT"**Enter Integer Exponent > 2: ";XP
7620 R2)=R(1J):C(2)=CI 1):FOR1=ITOR(1):FORI2=TOC!Z)
7622 A(2,I1,I2)=Al(lII):NEXT2I:NEXTI1
7630 SF=I: FOREX=ZTOXP:GOSUB5020:GOSUB7500:NEXTEX:GOSUB6000:SF=O:RETURN

Figure 7.19 Matrix Integer Exponentiation Subroutine.
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This subroutine raises the primary matrix to an integer power greater than or

equal to two. Line 7610 prompts the operator to enter an exponent, XP. Lines

7620-7622 dimension AI(2,,) and copy A1(1,,) into A2(2,,). Line 7630:

" Sets SF= 1. This suppresses printing of intermediate results.

" Performs XP-I matrix multiplications.

" Prints the final result.

16. Storage and Retrieval Subroutines, Figure 7.20

8000 'STORE AlfI,,)
8010 R(3)=R(1):C(3)=C( 1:FORII=ITOR(31:FORZZ1ITOC(31
8012 A(3pIl,I2)=A1(1,II,IZ):NEXTI2:NEXTII:RETURN
8200 'RETRIEVE THE STORED MATRIX
8210 R(MI)=R(3):C(MI)=C(3):FORII=lTORIMI ):FOR12=TOC(MI )
8212 Al(MlI,I1,I2)=A(3,I1,IZh) NEXTI2:HEXTI1:RETURN

Figure 7.20 Storage and Retrieval Subroutines.

Lines 8010-8012 dimension AI(3,,) and store AI(l,,) in AI(3,,). Lines

8210-8212 dimension Al(l,,) and retrieve Al(l,,) from Al(3,,).

F. SIMULTANEOUS LINEAR EQUATION SUBROUTINE, FIGURE 7.21

Many programs require a simultaneous linear equation solver. Often these

programs compute the A matrix as part of the program and use the results in

subsequent calculations. The following subroutine may be inserted in other programs

without requiring the loading of the entire matrix algebra program.

This subroutine follows the same algorithm as the simultaneous linear equation

subroutine in the Matrix Algebra Program. K9 is the dimension of the A matrix. B I

holds the A matrix; B2 holds the b vector. The x vector is returned in the first column

of BI. If the A matrix is to be used later, it must be stored somewhere other than BI

since the A matrix in BI is changed to an identity matrix by this subroutine. Instead

of testing for a zero determinant, the subroutine uses the error identification subroutine

9900 to determine if the A matrix is not invertable. Variables K2-K9 are used to avoid

conflict with other counters.
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9800 'Simultaneous Linear Equation Subroutine: Ax=b
9802 DIM 811K9+1,K9*2hBS2(K9i:*Bl = A matrix; 82 = b vector
9805 'Input from SLEIN.DO; Set MAXFILES in main program
9806 OPEN*"SLEIN"FORINPUTAS9
9807 FORK81IT0K9:FORK7=1TOK9:INPUT#9,BIK8,K7):NEXTK7:NEXTKS
9808 FORK8=lTOK9:INPUT#9,B21 KS):NEXTK8
9815 'Invert Matrix A
9820 FORK7=K9+lT02*K9: FORK8=1T0K9
9822 IFK7=K8.K9THE'BI( K8,K7 )=1ELSEB1I K8,K7 3=0
982S NEXTK8 :NEXTK7
9830 FORK7lITCK9
9835 IFB1(K7,.K7)*SGN(811K7,K7) )<lE-THENGOSUB9910
9840 FORK61ITOZ*K9:B1(K7,K6 341(K7,K6 )/B1(K7,K7:NEXTK6
9842 IFK7=K9THEN9865
9845 FORK8=K7+1TOK9: IFB1I KS ,K7 )0THEN9860
9855 FORK6=K7T02*K9:B1(KS,K6 )B1(K8,K6)-IBl(KSK7)mBl(K7,K63 ):NEXTK6
9860 NEXTK8:NEXTK7
9865 FORK7=K9TO2STEP-l
9870 FORK8=K7-lTOlSTEP- : IFB1( K8,K7 )=THEN9885
9880 FORK6=1T02*K9:Bl(K8,K6)=BltK8,K6)-(BIK8,K7)m81(K7K6)J:NEXTK6
9885 NEXTK8 :NEXTK7
9890 'Mult A Inverse by b
9892 PRINT"** Sim Lin Eq Solution: Xlj)
9894 FORK7=1TK9:B(K7,)=:FRK8=K91T2K9:FR(6=1T0K9
9896 811 K7,1 )=1( K7,1 3+811 K7,K8 )*B2( K6):NEXTK6 :NEXTK8
9898 PRINTUSING"####.###" ;B1IK7, ) :NEXTK7: PRINTI":RETURN
9900 'Error Routine
9903 IFERL9700ANDERR=11THENPRINT'!!!ERROR: Matrix Is Not Invertable!!!":END
9905 PRINT"Error Code")ERR;"In Line" JER : END
9910 'SWITCH ROWS
9915 FORK5=K7,1T0K9:IFBI(KS,K7)*SGNlB1(K5,9K7) 3C1E-8THEN9940
9920 FORK41IT0K9*2:K3=B1(K7,K4):B1(K7,K4)B51K5K4)
9930 811 K.5,K4 )=K3 :NEXCTK4: RETURN
9940 NEXCTKS: PRINT"'Error: Matrix Not Invertable":END

Figure 7.21 Simultaneous Linear Equation Subroutine.
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VIII. NUMERICAL DOUBLE INTEGRATION PROGRAM

A. GENERAL
This program numerically integrates functions of one or two variables using

Simpson's Rule with a Romberg extrapolation to improve accuracy. The Romberg
extrapolation is described in [Ref. 12:pp.250-27 61. Using the Romberg extrapolations

allows the operator to specify an acceptable error. The program conducts

extrapolations until the error of the numerical estimate is below that specified

tolerance.

The operator may interactively change the function being integrated, the limits of

integration, or the Romberg tolerance. This program is also written as a subroutine.

However, in the subroutine the function being integrated, the lim-its of integration, and

the tolerance may not be interactively changed.

B. INPUT

All input is entered from the keyboard of the M 100. When the program begins,

a menu appears which allows the operator to select whether the function to be

integrated, the limits of integration, or the Romberg tolerance will be changed.

When the operator selects an input to be changed, the program calls the edit

function for the applicable lines in the program. The edit function terminates the

running of the program. The operator should change only the right hand side of the

input equations. After changing the lines required, the operator will hit the F8 button

on the M 100. This puts the M 100 back in the BASIC mode. The operator must then

enter RUN or hit the F4 button to run the program again. If the operator wants to
change another input, he should select another input from the menu and repeat the

process.

1. Changing The Function, f(x,y), To Be Integrated

Enter zero at the main menu. When lines 1285-1288 appear, change the right

hand side of the equation on line 1286. If the equation is too long for one line, then:

" (Calculate a partial function value on line 1286, assigning it to F.

* Add a line 1287 assigning the. final function value to F and including the partial
function value from line 1286 in the right hand side of the equation on line 1287.
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For example, if f(x,y) = (x2+y5+7) ex2*y3, then the function might be broken

down as indicated in Figure 8.1.

1286 F=EXPI XA2*YA 3)
1287 F=!XA2yA 5 +7)*F

Figure 8.1 Example Of Function To Be Integrated.

Up to two independent variables, X and Y, may be used in the equation. The operator

must ensure that f(x,y) is formulated with X as a variable for which constant limits of

integration can be specified. After f(x,y) is entered, depress F8, then F4 to return to

the main menu.

2. Changing The Limits Of Integration

Enter one at the main menu. When lines 1291-1298 appear, change the right

hand side of the equations on lines 1293-1298 as desired. The upper and lower limits

-. ~,of integration for X, XUPPER and XLOWER, must be constants. The upper and

lower limits of integration for Y, YUPPER and YLOWER, may be constants or given

in terms of X. Do not alter the return statement at line 1295. After the limits of

integration are entered, depress F8, then F4 to return to the main menu.

3. Changing the Romberg Tolerance

The operator should enter two from the main menu and enter the new

tolerance when prompted.

4. Using The Program For Single Integration

Although the program is written for double integration, single integration may

be calculated using the following steps.

" Set the function to be integrated equal to one, i.e. line 1286 will be F= I.

* In lines 1296-1297 set YTJPPER- QX) and YLOWERO .
* In lines 1293-1294 set XUPPER and XLOWER as the constant limits of X

between which the function YUPPER= 1(X) is to be integrated.

For example, for x2 dx, the corresponding limits of integration in lines 1293-1297
0

would be as indicated in Figure 8.2.
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1293 X1UPPER=2
1294 XLOWER=O
1295 RETURN
1296 YUPPER=XAZ
1297 YLOER=O

Figure 8.2 Example of Limits Of Integration.

C. OUTPUT

The estimated value of the integral is printed to the screen with its tolerance

error. If the program generated a tolerance error that was less than the tolerance

specified in the input, then that tolerance is printed. If the program could not generate

an estimate Within the specified tolerance, then a message to that effect is printed to

the screen.

D. EXPLANATION OF VARIABLES

* A2(6,6) is the matrix holding Romberg extrapolation values.

. DX and DY are the widths of intervals (XU-XL)/N and (YU-YL)/N respectively.

* F is the value of fRx,y) to be integrated at a particular point.

* JI through J9 are loop counters.

* N is the number of intervals into which the distances XU-XL and YU-YL are

divided.

- SS is the Simpson's Rulc sum specified in equation 8.1. In equation 8.1

fi= f(x,ylx = X), YL: -yi - YU, i= 1,2,3,...,n + 1. n is the number of intervals into

which the distance YU-YL has been divided. n must be a positive, even integer.

Simpsons's Rule Sum = fl+ 4f2 +2f 3 +4f 4 + 2f 5 .,..., +4fn+fn+I (eqn 8.1)

* TL is the user specified tolerance.

. XLOWER or XL is the lower limit of integration for X.

* XUPPER or XU is the upper limit of integration for X.

* YLOWER or YL is the lower limit of integration for Y.

e YUPPER or YU is the upper limit of integration for Y.

0 Z9 is a selection variable.
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E. EXPLANATION OF PROGRAM COMPONENTS

A complete program listing is located at Appendix F.

1. Initialization, Figure 8.3

1200 'Numberical Double Integration:Steven H. Cary:24 Aug 86
1201 DIA(6,6):TL=.001

4Figure 8.3 Initialization Section.

Line 1201 dimensions the matrix holding the Romberg extrapolations and sets

the default tolerance to .001.

2. Option Selection, Figure 8.4

1205 CLS:PRINT"":PRINT" *- Double Integration *"

1206 PRINT" Romberg Algorithm"
, 1210 PRINT"O=Edit Function To Be Integrated."

1211 PRINT"I=Edit Limits Of Integration."
1213 PRINT"Z-Edit Tolerance) Current Tol.--")TL
1215 PRINT"3=Calculate Integral ":INPUT"Enter 0, 1, 2, or 3:";Z9
1216 IFZ9=OTHENEDIT1285-1288
1217 IFZ9=lTHENEDIT1291-1298
1218 IFZ9=2THENPRINT"" :INPUT"Tolerance=" ;TL :GOTOZ05

Figure 8.4 Option Selection Section.

Lines 1205-1218 print a menu which permits the operator to change fRx,y), the

limits of integration, or the tolerance, or to calculate the integral. If f(x,y) or the limits

of integration are to be changed, then lines 1216 or 1217 activate the editor for the

appropriate program lines. The editor terminates program execution, thereby requiring

that the program be executed after editing. If the tolerance is to be changed, then line

9, 1218 prompts the operator to "pdate TL and redisplays the menu.

3. Integration Calculation, Figure 8.5

Line 1220 clears the screen during the calculation and prints an admonition to

be patient while the calculation occures. Line 1230 sets the initial nurnb-r of intervals

to two, calls subroutinc 1293, which calculates the intervai width, DX. Line 1240
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1220 CLS:PRZNT"" PRINT" !Be Patient ! !":PRINT""
1230 N=2:GOSUB1293:DX=IXU-XL )/2
1240 FORJ9=T06 :DX=DX/2: N=N*2
1242 X:XU:GOSUL1296:GOSUB1280 AZ!J9,1 )SSDY
1245 X=XL:GOSU51296:GOSUB128O:AZ(J9,1 )=A2(J9,1)+SS*DY
1250 FORJ8=2TON: X=X+DX: GOSUB1296: GOSUB1Z8O
1251 AZ(J9,11=AZ(J9,1,2*SS*DOY:NEXTJ8
152 AZ(J9,1)=A2(J91)*DX/3

Figure 8.5 Integration Calculation.

starts a loop in which the Simpson's Rule intervals are halved at each iteration. That

is, in the first iteration YU-YL and XU-XL are divided into four intervals, in the

second iteration 'I- y are divided into eight intervals, and so on for six iterations. Line

1240 cuts the interval for X, DX, in half and doubles the number of intervals, N.

Lines 1242-1245 call the subroutines which compute the Simpson Rule sums,

SS, at the upper and lower bounds of X. These sums are multiplied by their respective

interval widths, DY, and added together into A2(J9,1). Lines 1250-1251 calculate the

same summation for values of X between XL and XU at intervals DX and and add the

sums to A2(J9,1). Line 1252 multiplies A2(J9,1) by DX/3 to complete the Simpson's

Rule approximation of SJ f(x,y) dydx.

4. Romberg Extrapolation, Figure 8.6

1255 IFJ9=ITHENNEXTJ9
1260 FORJ8=TOJ9-1
1261 A2( J9 J8 l)=AZ(J9 J8 )((AZ( JgJ8 -A2(J9-1 J81)/(4^J8- )):NEXTJ8

Figure 8.6 Romberg Extrapolation.

Because the Romberg extrapolations require two numerical approximations,

line 1255 skips the extrapolation section after the first iteration, i.e. when J9 = 1. Lines

1260-1261 conduct the Romberg extrapolation as described in the section on Romberg

extrapolation in [Ref. 12:pp. 250-2761.
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5. Termination and Output, Figure 8.7

1262 TlfA2!J9,J9)-A2(J9,J9-1 ):IFSGN(T1 )*Tl-TL>OTHENNEXTJ9ELSE1264
1263 PRINT"Tolerance of";TL;"not met after five extrapolations"
1264 IN:A2(J9pJ9)
1265 PRINT"Integral =" ;:PRINTUSING"#Nf 1.1#. #1# ." ;IN
1266 PRINT" Actual Tolerance=" :PRINTUSING"## . ###W;T' T*SGN( TI)
1267 SOt*ND1567,10:SOUND1244,1O:SON'lDlOUb,10:SauND783,20
1268 SOUND1 6,l0:S0UN0783,40
1269 INPUT"Hit Enter To Continue:"Z9:GOT01205
1275 FORJ7=ITO6:FORJ6=ITOJ7:PRINTUSING"##.###"A2(J7J6 )
1276 NEXTJ6: PRINT"" :NEXTJ7: INPUTZ9: RETURN

Figure 8.7 Program Termination and Output.

Line 1262 finds the difference, TI, between the last two Romberg

extrapolations and compares that difference to the user specified tolerance, TL. If the

difference is greater than the tolerance, then the extrapolation is not accurate enough,

another numerical integration is conducted with DX and DY halved, and another

extrapolation is made. Otherwise, the integral is within tolerance and the program

branches to line 1264 to begin the output sequence. If the integral is not within

tolerance after six iterations, iterations, 16 the program terminates. Line 1263 prints a

message to the screen indicating that the tolerance has not been met. Line 1264

assigns the final value of the integral to IN. Lines 1265 and 1266 print the value of the

integral and the actual tolerance, 17 to the screen. Lines 1267 and 1268 play a short

tune to cue the operator that the calculation has finished. Line 1269 holds the results

on the screen until the operator hits ENTER, cycling the program back to the main

menu at line 1205.

6. Diagnostic Subroutine, Figure 8.8

Lines 1275-1276 print the A2 matrix. This subroutine can be called in the
middle of a calculation to check how far the calculation has progressed. To call the

subroutine in the middle of a calculation:

" Hit SHIFT and BREAK together to stop the calculation.

* Enter GOSUBI275.

16That is, after distances XU-XL and YU-YL have been broken into 128
intervals.

17Actual toleranc may be less than the user specified tolerance.
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1275 FORJ7=1TO6:FORJ6=ITOJ7:PRINTUSING"##.##;" A2(J7pJ6)
1276 NEXTJ6: PRINT"": NEXTJ7 :INPUTZ9: RETURN

Figure 8.8 Diagnostic Subroutine, Prints Matrix A2..

* After viewing the matrix, hit ENTER to continue the program.

7. Simpson's Rule Summation, Figure 8.9

1280 REM Simpson's Rule Sum
1281 Y=YU:GOSUB1285:SS=F:Y=YL:GOSUB1285:SS=SS+F
1282 FORJ52TOIN/2 ) :Y=Y+DY:GOSUB1285:SS=SS+4*F :Y=Y+DY:GOSUB1285
1283 SS=SS+2*F :NEXTJ5:Y=Y+DY:GOSUB128S:$S=SS+4*F:RETURN

Figure 8.9 Simpson's Rule Summation Subroutine.

Lines 1281-1283 calculate SS= E f1 + 4f 2 + 2f 3 + 4f 4 + 2f5 + .... 4fn +

fn+l where fi= x,ylx-X), YL--yi-<YU, i=1,2,3,...,n+l. n is the number of

intervals into which the distance YU-YL has been divided.

8. F(x,y) to be integrated, Figure 8.10

1285 'flx,y) to be integrated:
1286 F=l
1288 'X A Y=independent variables. Hit FS, then F4 When Done.
1289 RETURN

Figure 8.10 Subroutine To Calculate ffx,y).

The function to be integrated, fqx,y) is at line 1286.18 Lines 1285 and 1288 are

comments printed to the screen during editing to assist the operator.

18An additional line, 1287, may be added if the function is too long for one line.
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9. Limits Of Integration, Figure 8.11

1290 'Limits of Integration:
1291 'XLOHER/XUPPER are constants.
1292 'YUPPER & YLOWER may be constants or given in terms of X.

1293 XUPPER=1.5707963
1294 XLOWER=O
1295 RETURN
1296 YUPPER=SIN( X)

1297 YLOWER=O

1298 *Hit F8, Then F4 When Done
1299 DYf(YU-YL )/(N+1):RETURN

Figure 8.11 Limits Of Integration Subroutines.

Upper and lower limits of integration for X are entered at lines 1293 and 1294

respectively and must be constants. Limits of integration for Y are entered at lines

1296-1297 and may be either constants or functions of X. Line 1299 updates DY.

Lines 1290-1292 and 1298 are comments to assist the operator during editing.

F. INTEGRATION SUBROUTINE

The numerical integration program described above is adapted in Figure 8.12 for

use as a subroutine. In the subroutine neither f(x,y), the limits of integration, nor the

tolerance can not be edited during program execution. All comment lines to facilitate

editing have been removed. The subroutine returns IN as the numerical approximation

of the integral but does not print IN. The operator must dimension A2(6,6) with the

other arrays in the main program and delete line 1201 in the subroutine.

99
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1200 kNuberical Integration Subroutine:Steven H. Cary:24 Apr 86
1201 DIMA2(6,.6)
1202 T1=.001
1220 CLS: PRINT"": PRINT.. M!alculating An Intogral!!":PRINT""
1230 N=2:G0SUB1293:0X=(XU-XL 1/2
1240 FORJ9=1T06:DX=DX/2:N=N*Z
1242 X=XU:GOSUB1296:GOSUB1280:AZtJ921)=SS*DY
1245 X=XL:GOSUB1296:GOSUBl280:A2(J9,1)=A2(J9,1)+SS*DY
1250 FORJ82ZTON:XXDX:GOSUB1Z96 :GOSUBl280
1251 A2(J9,1)=A2(J9,1 )+2*SS*DY:NEXTJS
1252 A21J9,1 )=A2(J9,1 )*DX/3
1255 IFJ9=1THEt*JEXTJ9
1260 FORJ8=lT0J9-1
1262 A2(J9,J8G1)=AZ( J9,J8 )4((A2(J9,j8i-A2(J9-I1,J8)i/(4AJ8-1)):NEXCTJS
1263 T1=A2(J9,J9)-A2IJ9,J9-1 ):IFSGN(T )*T-TL>OTHEI#EXTJ9ELSE1266
1264 PRINT"Tolerance of"MT~inot met after five extrapolations"
1266 IN=AZ(J9,J9 ):RETURN
1275 FORJ71lT6:FRJ6=TJ7:PRINTUSING"##.###'sA2(J7,J6 is
1276 NEXTJ6:PRINT"" :NEXTJ7:INPUTZ9:RETURN
1280 'Simpson's Rule Sum
1281 Y=YU:GOSUB1285:SS=F:Y=YL:GOSUB1285:SS=SS+F
1282 FORJ5=2TDfN/2 :Y=Y+DY:GOSUB12852SSSS+4*F:Y=Y+DY:GOSUB1285
1Z83 SS=SS+2*F :NEXTJS:Y=Y+0Y:GOSUB1285:SS=SS+4*F:RETURN
1286 F=1
1289 RETURN
1293 XUPPER~1
1294 XL014ER0
1295 RETURN
1296 YUPPER=X
1297 YLOHER=O
1299 0Y=(YU-YLJ/(N+l):RETURN

Figure 8.12 Integration Subroutine.
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APPENDIX A

DETECTION SIMULATION PROGRAM LISTING

A complete listing of the Detection Simulation Program is as follows.

100 CLS: PRINT"": PRINT" DETECTION SIlIJLATION": FORI~lT0400:NEXTI
110 'Input/Initialization
115 OPEN"DSIN"FORINPUTAS1
120 INPUT#1)NS,NP,Sl,SZ,RH,F1:Vl=Sl*S1:V2=S2*S2
121 DIMX(NS,S+NP),A2(6,6),T1(3)
125 FORI1~lT05tNP:INPUT#1,X( 1,11 J:NEXTIl
126 IFNS=1THEN140
127 IFF1=lTHENl3Z
128 F0RIl=2T0NS:F0R12=1TO.NP:INPUT#1,X( 11,12 3:NEXTI2:NEXTI1:GOTO140
132 F0RII2TONS:F0RI2=lT05:INPUT#1,X( IlIZ)-HEXTIZ:IFNPTHiEM135
134 FORIZ=6TO5+NP:X(Il,I)XU,I2):NEXTI2
135 NEXTIl
140 RF=SQR( 1-RHA 2)
150 DF=EP-IT>SA+Y-Y) )(*(Z6A),
200 '-* Simulation Selection Section e*

201 CLS:PRINT"Is the Detection function:"
203 PRINT" 1. Deterministic":PRINT" 2. Probabilistic"
205 INPUT"Enter 1 or 2:";F1
210 CLS:PRINT"Are Sensor Locations:"
212 PRINT" 1. Always At Aim Point":PRINT" 2. Distributed BVN Around Aim Point"
214 INPUT"Enter 1 or 2:";F2
215 IF( F12ORF2=2 JTHENF31l:G0T0230
220 CLS: PRINT"": PRINT"Is the Calculation:"
222 PRINT" 1lonte Carlo Simulation":PRINT" 24lumerical Approximation"
224 INPUT"Enter 1 or 2";F3
230 TIMES="00:00:00" :IF F1~1THENGOSUB300ELSEGOSUB500
250 GOTO200
300 'Deterministic Sensor Subroutine
305 IFF3=ITHENGOSUB310ELSEGOSUB350
306 RETURN
310 'Monte Carlo of Deterministic Sensor
315 GOSUB900
320 PD=O:FORJ1=1TONR:PRINT.241,"Repetition:";J1:GOSUB600:FORJ2=1TONS
323 IFF2=2THENXS=X(J2,1):YSX(J2,2):G0T0325
324 GOSUB612
325 T1=SQR( (XS-XT 3A2,(YS-YT )A23
330 IFT1'=XtJ2,6 )THENPO=PD+1:G0T0335
332 IFT1>=X( J2,7)ANDT1<=XI J2,8 )THENPD=PD.1:G0T0335
334 NEXTJ2
335 NEXTJ1 :PD=PD/NR :GOSUIB95 : RETURN
350 'Numeric/Deterministic Subroutine
355 PD0O:F0RJ2=IT0NS:H=X(J2,6):G0SUB1200:PD=PD.IN
356 H=XIJ2,8):GOStIB1200:PD=PD.IN
357 H=X(J2,7 ):GOSU5l200:PD=PD-IN:NEXTJ2
360 GOSUB95O:RETURN
500 'Probabilistic Detection Function
502 CLS:PRINT"Default Detection Function Is Carleton."
503 GOSUB1300:GOSUB900
520 PD=0:FORJ1=lTONR:PRINT.241,"Repetition:";Jl:G0SUIB600:F0RJ2=IT0NS
521 IFF2=2THENXS=X(J2,1):YS=X(J2,23:GOTO523
522 GOSUB612
523 GOSU81I410:IFRND3 1)<=DFTHENPO=PD.1:G0526
524 NEXTJ2
526 NEXTJ1:PD=PD/NR
530 GOSUB95O:RETURN
600 '-*Generate BVN RV***
602 U1=RN4D(l3:U2=RNDE1):TE=SQRt-2*L0G(Ul 33
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604 CT=TEeCOS( 6. 2831853*U2 3:YT=RH*XT4tRF*TE*SINI 6. 2831853*U2)
606 XT=XT*S : YT=YT*SZ:RETURN
612 U1=RND(1):U2RN(1):TESQRI-2*LOG(Ul))
614 XS=TE*COSC6. Z831853*U2 ):YS=Xt J2 ,5)*XT+( 1-X(J2,5)*2 3A .5*TE*SIN( 6.2831853*UZ)
616 XS=X(J2,1),XS*X(J2,3):YSX(j22)+YS*X(J2,4):RETURN
900 CLS:INPUT"Enter number of repetitions for Monte Carlo Simulation:";NR
905 RETURN
910 INPUT"Hit ENTER to Continue"Z:RETURN
950 'Print output
951 SOUNS67,10:SOUN01244,10:SOUNO1046,l0:SLR40783,20
952 S011401046P10:SOUND783,40
953 CLS: PRINT": PRINTCalculation Time (HH/MM/SS I = 11TIHE : IFF32THEN96O
954 PRINT"Select Alpha for Confidence interval:"
955 INPUT" Choices =.1,. .05, .01:"; AL
956 IFAL=. 1THENAL=1.645: G0T0960
957 IFAL=.05THENAL=1. 96:G0T0960
958 IFAL=.O1THENAL=2.S75:60T0960
959 G0T0954
960 PRINT"*** Estimate of P(Detection) = "):PRINTUSING" ###$"P
961 IFF3=1THEN965
962 PRINT"No Confidence Interval For Nu.merical Approximations"
963 GOT0970
965 PRINT"Confidence Interval: "
966 TE=AL*SQR( PD*t 1-PD )/NR) :LL=P0-TE:UL=PO+TE:IFUL>lTHENiL=1
967 IFLL<OTHENLLOG
968 PRINTUSINGI##.##$#" LLW; :PRINT' : GOSUB910
970 'Confetti Approximation
972 PRINT"". :INPUT"Confetti approximation? O=No, l=Yes : " Z9:IFZ9=0THENRETURN
974 CLS:INPUT'Enter TOTAL lethal area for ALL sensors in the pattern:";NA
976 TE=NA/( 6.283185*S1*S2 3:TE1I-( 1+SQRC 2*TE 3))EXP( -SQR( 2*TEJ)
977 PRINT"**Confetti Approximation = ;ITE:GOSUB910:RETURN
1200 *Numnberical Integration Su~broutine
1201 D1=6.Z831853*Sl*S2*RF
1202 TL=.001
1220 CLS:PRINT"":PRINT" !'alculating An Integrel!!:PRINT-"
1230 N=2:GOSU851293:0Y=(YU-YL)/2
1240 FORJ91ITO6 :DY=DY/2 :N=N*2
1242 Y=YU:GOSUIB1296:GOSUB1280:A2(J91)TS*DX
1245 Y=YL:GOSL1296:GOSUBZ80:A2(J9,)A2(j9,1)TS*DX
1250 FORJ8=2TON:Y=Y.0Y:GOSUB1296 :GOSLM51280
1251 AZ) J9, )=A2( J9,1 )+2*TS*DX:NEXTJ8
1252 A2( J9,1 )A21 J9,1 )*DY/2
1255 IFJ9=lTHENNEXTJ9
1260 FORJ81ITOJ9-1
1262 A2(J9,J8+lI)A2(J9,J8),((A2(J9,J8)-A2(J9-1,jaI3/I4 Aj8-1)):NEXTj8
1263 T1=A21J9,J9).A21J9,J9-1):IFSGNT)*T-TL>OTHE*IEXTJ9ELSEI266
1264 PRINT"Tolerance of";TL;"not met after five extrapolations"
1266 IN=A2fJ9,J9):RETURN
1275 FORJ7=lT06:FORJ6=lTJ7:PRINTUSING"##.P$#" A21 J7,J6 3
1276 NEXTJ6 :PR NT" :NEXTJ7: INPUTZ9: RETURN
1280 REM Trapezoidal Rule Suma
1281 X=XU:GOSUB1286:TS=F:X=XL:GSUB1286:TS=TSF
1282 FORJ5=2T0N-1:.X:XDX:GOSLRS1286:TS=TS4F :NEXTJS:RETURN
1285 'F(X,Y) to be integrated:
1286 F=XA 2/V-2*RH*X*Y/S1,S2,yA 2/V2
1287 F=(EXP( -F/2/RFA 23 )/D1: RETURN
1290 'Limits of Integration:
1293 YU=XIJ2,2).H:YL=X(J2,2)-H:RETURN
1296 T3SRH -yXj,) )X=(2l)T:LXJI)T. ~1X-L/
1297 RETURN
1300 PRINT" -Detection Fn (OF1 in terms of XT', YT,"
1302 PRINT" and Parameters XS, YS, and XIJ2,6) .... XIJ2,54NP3:"
1304 PRINT" ** OF ="W
1306 PRINT"Hit ENTER For No Change or Enter Ne... ":INPUT" OF = 1;DFS
1307 RETURN
1400 'Tokenize OF
2410 B$=1"OF=11DF$+CHRV(0)
1450 'Tokenize/uxecute 8$
1451 BO=VARPTR(8$):Bl=PEEKIBO+l),256*PEEKIBO,2):CALL16O6,0,Bl
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1455 CALLZ~99,O,63IO5.RETURN
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APPENDIX B

KALMAN FILTER PROGRAM LISTING

A complete listing of the Kalman Filter Program is as follows.

100 CLS:PRINT"*ea*KALMAN FILTER*****":PRINT" Input Data Being Read"
110 OPEN"KALIN" FORINPUTASI:ONERRORGOTO9900
120 INPIJT#1 ,NX',NZ: IFNX<ZTHENlDNZELSEMD=NX
125 DIMPH( INX I ,M4( NX 3 Q(NX(,O) ,H( NZNX 3,MV( HZ) ,Rl( NZNZ) ,MU(NX) SG( NXNX)
126 DIMC1(t4DM),C2(MOMDJK(tO(,NZ)
127 DIM1(NZ+1,NZ*2)
130 FORI1~lTONX:F0RI2=ITONX:INPUT#1,PH(I12 ):NEXTI2:NEXTI1
132 FORI1=lT0NX:INPUT#1,MH( i) :NEXT1
134 FORI1~lTONX0:FORI21ITONX:INPUT#l,Q(11,I2):NEXTI2:NEXTI1
136 FORI11lTONZ:FORIZ~lTONX:INPUT#1,H( Il,12):NEXTI2:NEXT1
138 FORI1=lTONZ:INPUT#1,MV(I1 ):NEXTI1
140 FORI1=lT0NZ:FORI2=lT0NZ:INPUTh1,Rl(I1,I2):NEXTI2:NEXTI1
142 FORII=1TONX:INPUT#1,MUI I):NEXTI1
144 FORI11ITONX:FORI21TONX:INPUT#1,SGEI1,I2 ):NEXTIZ:NEXTI1
145 CC=O:CLS:PRINT"Initial SG As Input ChacK:":GOSUB532
150 CLS:PRINT*1 *****MEASUREMENT BLOCK*****"
160 PRINT"Current H ": GOSUBS4O
162 INPUT"Enter New H ? l=Yes, 0=No:"iZ9:IFZ9=THEN170
165 'Enter A New H

4167 F0RI1=1TONZ:FORI2=1TONX
168 PRINT"Enter Row;sIl;", Column";12i'Of H :11;
169 INPUTH(I1,12):NEXTIZ:PRINT"':NEXTI1
170 'CALC KALMAN GAIN
171 *MULT SG H t, INTO C1

-~172 FORI1=1TOX:FORI21ITONZ:C1EllI2)=0:FOR13=1TONX
174 Cl11,12)=(SG(11,13)*H(IZ,3))C(I,IZ):NEXT13:NEXT12:NEXTII
180 'MULT H SG H t PINTO C2
182 FORI1=1TONZ:FORI21lT0NZ:CVI11,I2 )=0:FORI3=1T0NX
184 C2(I1,I2J=(H(Il,I3)*Cl(I3,I2))+C2(I1,IZ):NEXTI3:NEXTI2:NEXTII
200 'ADD R INTO CZ

203 NEXTIZ:NEXTI1
210 'INVERT CZ
215 GOSUB9800
220 tIULT C1 C2 INTO K
222 FORI11lTDNX:FORI2=lTONZ:K( I12)=0:FORI31ITONZ
224 K(I1,I2)=(C(I,I3)*C2(3,2)+KIII):NEXTI3:NEXT2:NEXTI1
250 - **UPDATE MU- TO MU+*E*
251 'MULT H MU- INTO C1
252 FORI1=1TONZ:CI1I1,1 )=:FORI3=1TONX
254 CI1I1,1)=IH(I1,I3)*MU(I3)),CltI1,1):HEXTI3:NEXTI1
260 'ADD MY + H MU-
262 FORI11ITONZ:ClIl,1)=C1111,1)4MV1h)NEXTI1
270 'INPUT A NEW MEASUREMENT
272 CC=CC+1:CLS:PRINT"Measurement #";CC;":1
273 FORI1=1TONZ:PRINT"Enter Element";I1;"Of Measurement:";11
274 INPUTZ(1hNEXTI1
280 'SUBTRACT C1 FROM Z, INTO C1
282 FORI11lTONZ:Cl(I1,1I:Z(1l)-C2(I1,1):NEXTII
290 'MULT K C1 INTO CZ

*292 FORI1=1T0NX:C2(II,1)=0:F0RI31lT0NZ
294 C2(11,I3=(K(i1,r3J*C1(I3,1I)4C2(I1,1):NEXTI3:NEXTI1
300 'ADD C2 + MU- TO UPDATE TO MU+
302 FORIIlTONX:MUJI1)C2(I1,1).MU(I1):NEXTI1
320 'MULT K H 9 SUBTR FROM I v PUT IN C1
322 FORIl=1TONX:F0RI2=1T0NX:Cl11,12J=0 FORI3=1TONZ
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326 NEXTIZ:NEXTIl
328 F0R11TONX:CltI1,Ill)=1.C111Il l):NEXTI1
350 'MULT LAST RESULT BY SG P INTO C2
352 F0R11T0NX:FORIZ=lT0NX:C2( 11,12 )=O:FORI31lT0NX
354 C2I1,I2)=(Cl(I1,I3)*SG(I3,I2JJ+C2tI1,I2):NEXTI3:NEXTI2:NEXTIl
360 'PUT CZ INTO SG
362 FORI1=1TONX:FORI2=lTONX:SG(Il,12)=C2(I1I:NEXTI2:NEXTI1
375 CLS:PRINT"Kalman Gain, Kfi,j) After"
377 PRINT"Measurement # "CC:GOSUB51O
380 CLS:PRINT"Estimate Of System State, MU(i)+ After"
382 PRINT"tleasurement #" =CCGOSUB520
385 CLS:PRINT"Estimate Of Covar, SG(i,j)+ After"
387 PiINT"Measurement #";CC:GOSUB530
400 CLS: PRINT'******MOVEMENT BLOCK****"
410 'Update rvtCC). to MU(CC1)-
420 'MULT PH MU vPUT IN Cl
4*22 F0R111IT0<:C(I1,1)0:FORI3TO'8
424 CJ1I1,1)=(PH(I1,13)*MU(13 ))+Cl1I1,1):NEXTI3:NEXTI1
430 'ADD Cl. MWN , INTO MU
432 F0R11T0NX:MU(Il)=Cl(Il,l)?Il):NEXTIl
440 'i**UPDATE SG3 **
450 'MULT T SG3 , INTO Cl
452 F0R11T0NX:FORI21lT0NX:ClIl,12 =0:F0R13=lT0NX

460 'MULT Cl PH t, INTO CZ
462 F0R11=lT0NX:FORIZ=1TONX:CZ(11,I2 =0:FORI31T~tIX
464 C2(11,12)=(CI(Il,I3)*PH(I2,13))+C2(Il12)NEXTI3:NEXTI:N4E)TIl
470 'ADD C2 + Q = SG
472 FORI1=lTOtX:FRI2lT0NX:SG(IlI2)C(Il,I2)+QII,I2):NEXTIZ:NEXTIl
480 PRINT"Estimate Of System State, MUU 1)-"'
482 PRINT"Before Measuremuent #" =CC.:GOSUB520
485 CLS:PRINT"Estimate Of Covar, SG(I,J)- Before"
487 PRINT "Measurement 4 ;CC+1:GOSUBS30
490 GOT0160
500 'PRINTING SUBROUTINES
510 'PRINT KALMAN GAIN K
512 FORII11TONX:FORI2=ITONZ:PRINTUSING"####.##;)KI1,IZ);:NEXTI2
514 PRINT"":NEXTI1:INPUT"Hjt ENTER To Continue:";Z9:RETURN
520 'PRINT MU
522 F0R11=TONX:PRINTUSING"##1#1##.#W';MU( II); :NEXCTI1:PRINT"l
524 INPUT"Hit ENTER To Continue:";Z9:RETURN
530 'PRINT COVAR MATRIX, SG
532 FORI11lTONX: FORI2=1TONX:PRINTUSING"####.##",SG(I11,12)* :NEXTI2
534 PRINT"":NEXTI1:INPUT"Hit ENTER To Continue:";Z9:RETURN
540 'PRINT H
542 FORII=1TONZ:FORI2=1T0W(:PRINTUSING"####.##i$H(Il,I2)s:NEXTI2
544 PRINT"" :NEXTI1:RETURN
550 PRINT" C2 MATRIX:"
552 FORI1=1T0A:FORI2=1TOB:PRINTUSING"######.#t";CZ(Il,I2);:NEXTI2
554 PRINT...:NEXTIX:INPUT"Hit ENTER To Continue:."sZ9:RETURN
9800 'INVERT C2
9815 F0RIIlT0NZ:FORI2=TNZ:B(I12)C2(I1,I2):NEXTI2:NEXTI1
9820 FORI1=NZ,1T02*NZ: FORI2=lTONZ
9822 IF11=2NZTHENBI( 12,11 )=ELSEB1I 12,11 )0
9825 NEXT12:NEXT11
9830 FORI11ITONZ
9840 ML=1/B1(Il,I1):F0R131lT02*NZ:B1(I1,13JB(I1,13JeML:NEXTI3
9842 IFI11NZTHEN986S
9845 F0RI2=I1+IT0NZ:IFB1( I2,11 )0THEN9860
9850 ML-Bl(I2,11)
9855 F0R13=IlTO2*NZ:B1(I2,I3)=Bl1I2,I3).(ML*B1(I1,I3)):NEXCTI3
9860 NEXT12:NEXTI1
9865 FOR1NZTO2STEP-1
9870 F0R12=Il-lTO1STEP-1:IFBI12,I1 )0THEN9885
9875 ML=-Bl12,Il)
9880 F0R13=1T02*NZ:Bl(I2,I3)=B1(I2,I3),(ML*B(II1,I3))hNEXTI3
9885 NEXTl2:NEXTI1
9890 FOR11TONZ: FORI2=1TONZ
9895 C2(I2,Il)=Bl(I2,I11NZ):NEXTI2:NEXTII
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9897 HI=1:RETURN
9900 IFERL>9700ANDERR=11THENPRINT"!!!ERROR: CZ Is Not Invee-table!!!":END
9905 PRINTError Codea ERRi"In I .*%o")ERL:END
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APPENDIX C

LANCHESTER SIMULATION PROGRAM LISTING

A complete listing of the Lanchester Simulation Program is as follows.

100 'LANCHESTER TIME STEP MODEL
*120 MAXFILES=2:.OPEN'LANIN'FORINPUTASI

121 OPEN"LANOUJT"F0ROUYTPUTAS2:INPUT#1,NP,NA,ND
122 IFNA>NDTHENMD=NAELSEMD=ND

130 DIMAA(NA,ND),BBtNDNA),AT(NA),DT(ND),AR(NA),DR(ND)
131 DIMQA(2,NA),QD(ND),AB(2,NA),DB(2,ND),SA(NA),SD(ND),OA(NA),OD(ND)
132 'Enter Initial Quantities of Hpns, Break Points And W~pn Types.
134 FORI21lTONA:INPUT#l,QA(2,I2):SA(I2)=QA(2,I2):0A(I2)=127:NEXTIZ
135 FORI2=lTOND:INPUT#l,QD(I2):SD(I2)=QD(I2):OD(I2)=238:NEXTI2
136 FDRI2~lTDNA:INPUT#1,ABg1,I2):ABt2,I2)=AB(1,IZ)*QA(2,I2):NEXTI2
137 FORI2=lTDND:INPUIT#l,DBU1,I2):DB(2,I2)=DB(1,I2)*QD(IZ):NEXTI2

V~a138 FORI2~lTOt4A-INPUT#1,AT(I12):.NEXTI2:FORIZ1TOND:.INPUTh1,DTI 12 ):NEXTI2
140 TM=O:IFSF1ITHENGOSUB600
143 FORI11lTONP:PRINT#2 ,"STARTING PHASE" ;I1
145 'Enter Time Spent In Phase Il and 4 of Intervals
146 INP1T1,TT,NI:DT=TT/NI
150 'Enter Replacement Rates And Attrition Coefficient Matrices
152 FDRI2~lT0NA:INPUT#1,AR(I2):NEXTI2:FORI2=lT0ND:INPUT#1,DR(I2):NEXTIZ
154 FORI2~1T0NA:FORI31lTONO:INPUT#1,AAtI2,I3)

&156 NEXT13:NEXT12
157 FDRI2:1TOND: FORI3=lTDNA:INPUT#l,BB(12,13)
159 NEXT13:NEXTI2
200 'Fight Phase Il.
202 FORI2=lT0NI:TM=TM4DT:PRINT.241,"Phase:";Ils", Increment";I2;"out
of";NI
210 'Fight Time Increment DT.
220 'Update number of attackers
222 F0RI3=lTDNA:QA(1,I3JAQA(2,I3):NEXTI3:FORI3=lT0NA:FORI4=lT0ND

' 1223 'IFDT(I4)=lTHENQA(2,I3)=QA(Z,13)-AA(I3,I4)*QD(I4)*QA(2,I3)*DT:.GOT0226
224 'QA(2,13)=QA(2,I3)-AA(13,I4)*QDEI4)*DT
225 QA(Z,13)=QA(2,I3)-AA(13,I4)*(QA(2,13)/QD(14))A DT(14)*QD(I4)*DT
226 NEXT14:QA(2,I3)=QA(2,I3)+AR(I3)*DT:IFSF=ITHENGOSUB60

-4'227 NEXT13
230 'Update number of defenders
232 FORI3=1TOND:FORI41lTONA
233 'IFAT(I4)lITHENQD(I3)=QD(13)-BB(I3,14)*QD(13)*QA(1,141*OT:G0T0236
234 'QD(13)=QD(13)-BB(I3,I4)*QA(1,I4)*DT
235 QD(I3)=QD(I3)-BB(I3,I4)*IQD(I3)/QA(1,I4) )A AT(14)*QA(1,I4)*DT
236 NEXT14:QD(I3)=QD(I3)+DR(I3)*DT:IFSF~lTHENGOSUB660
237 NEX13
240 GOSUB300:NEXTI2

* -242 IFI1NPTHENGOSUB350:CLS:PRINT"Output is in file LANOUT.0O.":END
245 PRINT#,"Status After Phase" IlG0SUB361:NEXTIl
300 'Check Whether Breakpoint is reached.
320 TF=0:FORI31ITONA:IFQA(2,I3)>AB(2,I3)THEN325
322 TF=1:PRINT#2,"Attacker Wpn";13i"Is Below Breakpoint"
323 PRINT#2,"1 Bp =";:PRINT#2,USING"##)#)j)$";AB 2,I3);
324 PRINT#2," Current Level ="; :PRINT#2,USING'####.##" ;QA( 2,13)

*325 NEXT13
* 335 FORISlTOND:IFQD( 13 )>DBC 2,13 )THEN340
* '336 TF=1:PRINT#2,"Defender Wpn";13s;"Is Below Breakpoint"

337 PRINT#2,11 Bp =";:PRINT#2,USING"#;##.##;";DB(2,I3);
338 PRINT#2," Current Level =" :PRINT#2,USING'P###.##"QD( 13)
340 NEXTI3:IFTF=OTHENRETURN
350 PRINT#2,"":PRINT#2,""':PRINT#2,"SUIMMARY AT END OF BATTLE"
351 PRINT#2,"":PRINT1#2,"Time Elapsed During Battle "
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352 PRINT#2 ,USING"####. ##" ;TM: PRINT#2,l": GOSUB362
35S CLS:PRINT"Output is in file LANOUT.DO")END
361 PRINT#2PII Att WPn Breakpoint Current Level"
363 FORI3=lTONA: PRINT#2 ,USING"'#####W ; 13;
364 PRIMThZ ,.USING"'# ######41#.1W ;ABI 2,13 ) A( 2,13): NEXTI3:PRINT#W2,""
366 PRINT#2," Def M'pn Breakpoint Current Level"
367 FORI3flTO'D : PRINT#2 ,USING"$#1lll#*'W13i
368 PRINT#2 ,USING"########4##.#P#*)DB( 2,13) ;QDE 13): NEXT13 :PRINT#2,"" : RETURN
600 'Set u~p output screen
610 PRINT"Hpn 0 Attacker Defender"
620 FORI11TOMD :PRINTUISING"##" ;I1
623 TP2411l*8
625 IFII>NATHEN630
627 LINE(18,TPJ-(l19,TP,4),1,8S:BP128,XNT(IOO*AB(2,I1))
628 LINEIBP-1,TP.1)-IBPTP+3),1,jB
630 IFI1>NDTHEN635
632 LINE( 138,TP )-( 239,TP.4),1,B:BP138+fl4V 100*DB( 1,11))
633 LINEIBP-l,TP,1)-(BPrTP.3)P1,B
635 NEXTI1:RETURN
650 'Update screen output of attackers
653 TP=3+13*8
655 LINE(OA3),TP)-(OA(13),TP+2),0
656 OA(13 )=18+INfl lOOCQA 2,13 )/SA( 13))
657 IFOA(13 )>118TI4ENOA(I3 )z118:PRINT. (13140*2),"*":G0T0659
658 PRINT.I3*40+2,1--
659 LINE(OA(I3),TP)-(OA(I3),TP*3),1:RETURN
660 'Update screen output of defenders
663 TP=3+I3*8
665 LINE(OD(I3),TP)-(OD(13),TP+2),0
666 00113 )=138.INT( 10O0*QD( 13)/SD1 13))
667 IFODI 13 )>Z38TI4ENOA( 13 )238:PRINT.13WC.O,22,"*":60T0669
668 PRINT.13*40.22pl-"
669 LINE(OD(I3),.TP)-(OD(13),TP+3),l:RETURN
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APPENDIX D

GEOMETRIC PROGRAMMING PROGRAM LISTING

A complete listing of the Geometric Programming Program is as follows.

100 'Geometric Programming Program
110 OPEN'GEOIN"FORINPUTAS1
120 INPUT#lNT,NV:K9=NT
122 IFNT-NV<>THENPRINT"**ERROR: Degmee of Difficulty <> 0":E4D
130 INPUT#1,NC:DIM4T(NC)
140 It=IO:F0RI10OTONC:INPUT#1,NTI1):IFNT(Il)>MNTHENM=N4T(Il:NEXTI1
143 DIMCTE3,NC,MN),LM(NC),B1ENT+1,NT*Z),B2(NTJB3(NTNV)
145 F0R1=0TONC:F0R12=1TONT(I):INPUT#1,CT(1,I1,I2):NEXTI2:NEXTIl
150 FORI1=1TONTI 0):B1( 1,11J=1:NEXTI1
155 F0RI1=NTI 0)+lTONT:B1( 1,I1)=0:NEXT1
160 FORII2T0NT:F0R12=lT0NT:INPUT#1,B1(I1,I2):B3tI2,I1-1)=B1(Il,I2)
162 NEXTI2:NEXTI1
170 PRINT"": PRINT"i**COMPUTING DELTA' S**e"
172 B2(1 3:F0R11l2TONT:B2( Ii )0:NEXTI1
180 GOSUB9800
200 CLS:11=1:F0R12=OTONC:F0R13=1T0NT(I2):CT(2,I2,I3)=B1(Il,1J
203 PRINT"DELTA( " 120"," )I30) 0.
204 PRINTUSING"###1.####";CTI 2,12,I3):I=Il:IFI1>THENGOSB5600
205 NEXT13:NEXTIZ:GOSUB600:CLS
210 PRINT"":PRINT"**COMPUTING OPT FN VALUE**'.
212 FORI1=0T0NC:LM(1):FRI21ITONT(I):LM(13LM(I13.CT(2I1,I2)
214 NEXTI2:NEXCTI1
220 FS1: F0R11=0T0NC
222 F0R1221TONT(I1):FS=FS*(CT(1I1l,I2)/CT(2,I1,I2) )A CT(2,I1,IZ)
224 NEXT12:FS=FS*(LM( I1)A LM(I1)):NEXTI1
229 PRINT"": PRINT11F* ="; :PRINTUSING'####.##" iFS: GOSUB600 :CLS
230 'Compute optimal x(n)
232 K9=K9-1
234 F0RI11lT0K9:FORI2~1T0K(9:B1(I1,I2)=B3(I,I2):NEXTI2:NEXTri
236 CC=l: FOR1OT0NC:FORI2=1TONTi Il)

238 IFI1OTHENCT( 3,11,12 )CTg 3,11 IZ 3*FS
239 B2(CC)=LOG(CT(3,I,12)):CC=CC+1:NEXTI2:NEXTIl
242 PRINT"P~m,t)* =opt, value of term t, constr. m, divided by its coefficient."
244 F0RI1=OTONC:F0RI21lT0NT(Il):PRINT"IP("';I1;"," I2;")* ='*;
246 PRINTUSING"1 #1.####4"sCT( 3,11,12 ):NEXT12:GOSUB600:NEXTI1:CLS
250 PRINT"":PRINT"** Computing Opt Values Of X(n) *
260 GOSUB9800
270 CLS:FOR11l1TOK9:PRINT"'X*I";1;1)
272 PRINTUSING"1##### 4.###w'EXP(Bl(Il,l))
273 IFI1>STHENGOSUB600
275 NEXCTII:GOSUB600:END
600 INPUT"** Hit ENTER To Continue: "sZ9:RETURN
9800 'Simultaneous Linear Equation Subroutine: Axzb
9815 'Invert Matrix A
9820 F0RK7=K9,1T02*K9: FORKS=1TOK9
9822 IFK7=K8.K9THENB1(K8,K7Jz1ELSEB1(K8,K7j=0
9825 NEXTKS:NEXTK7
9830 F0RK7=1TOK9
9835 IFB1E K7,K7 )*SGN( BlEK7,K7)I)<1E-STHENGOSUB991O
9840 K2=1/B11K7,K7 J:F0RK6=1T02*K9:B1EK7,K6 )B1EK7,,K6 J*K2:NEXCTK6
9842 IFK7=K9THEN9865
9845 FORK8=K7+1TOK9:IFB1( K8,K7 10THEN9860

a9850 K2=-81EKS,K7)
9855 FORK6-K7T02*K9:B1(K8,K63:81(K8,K6)EK2*BEK7K6):NEXTK6
9860 NEXCTK8 NEXTK7
9865 FORK7=K9TO2STEP-1
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9870 FORK8=K7-1TOISTEP-1:IFB1IK8,K7 3:0THEN9885
9875 K2=aB1K8,K7)
9880 FORK61ITOZCK9:B1(K8,K6 )=BIKS,K6 3.(K2*Bl(K7,K6)) :NEXCTK6
988S tIEXtKS: NEXTK7
9890 'Nult A Inverse by b
9894 FORK71IT0K9:Bl(K7,1J=O:FORK81IT0K9:B1(K7,1)81(K7,)81K7K8+K9)*82(K8I
9896 NEXTK8:NEXTK7: RETURN
9900 'Error Routine
9903 IFERL>9700ANDERR=IITHENPRINT"!'!ERROR: Matrix Is Not Invertabl!!":END
9905 PRINT"Error Code" ERR ;In Line" ;ERL END
9910 'SHZTCH ROWS
9915 FORKS=K7,1TOK9:IFB1(K5,K7)*SGN(B1(KS,K7) )<lE-8lTHEN9940
9920 FORK41lT0K9*2:K3=Bl(K7,K4):B1IK7,K4)2B1IK5,K4)
9930 Bi (KS ,K4 I K3:NEXTK4:RETURN
9940 NEXTK:PRINT"Error: Matrix Not Invertable":END

111



APPENDIX E

MATRIX ALGEBRA PROGRAM LISTING.

A complete listing of the Matrix Algebra Program is as follows.

100 CLS:PRINT11":PRINT11 *i** MATRIX ALGEBRA PROGRAM IHHV':PRINT""
105 PRINT"IS INPUT MATRIX, 'MATIN.D0' IN RAM?":INPUT11 0=NO,. 1=YES;FF
107 IFFF1ITHENOPEN"'MATIN"IFORINPUTASl
300 PRINT"**Enter The Single Largest Dimension of"
305 INPUT"'The Largest Matrix To Be Processed: ";K
310 DIMAI(3,KK),BI(K~lK*2JR(4),C(4),OET(2):Ml~1:OF=1:SF=0
501 CLS:EF=0:PRINT"**3**ATRIX ALGEBRA PROGRAM MENU***t*"
504 PRINT" 1. Enter Starting Left Side Matrix"
505 PRINT" 2. Matrix Inversion"
506 PRINT" 3. Matrix Addition":PRINT' 4. Matrix Multiplication"
508 PRINT" S. Simultaneous Linear Equations"
509 PRINT" 6. Print Current Answer Matrix":PRINT" 7. Other Options")
510 INPUT" **Enter Number:"sCH
512 IFCH1ITHENMI=1:Z9=0:GOSUB7006
513 IFCH=ZTHENMI=1:GOSUB2000
514 IFCH=3THENGOSUB3000
515 IFCH=4THENGOSUBSO00
516 IFCH=5THENGOSUB4000
517 IFCH=6THENGOSUB6000
518 IFCH<>7THENGOTOSO1
520 CLS: PRINT"**H*MORE CHOICES: "-PRINT" 1. Determinant"
524 PRINT" 2. Matrix Integer Exponentiation"
526 PRINT" 3. Store Current Matrix"
530 PRINT" 4. Retrieve Stored Matrix"
531 PRINT" S. Scalar Multiplication"
532 PRINT" 6. Other Options":INPUT*1**Enter Number: "3; CH
540 IFCH~lTHENMI=1:GOSUB1000
548 IFCH=2THE1*1I=1:GOSUIB7600

p549 IFCH=3THENGOSUB8000
550 IFCH=4THEN1=1 :G0SUB8200
560 IFCH=5THENMI=1:GOSUBS100
570 GOTO5Ol
700 'PAUSE CONTROL
702 INPUT"** Hit Enter To Continue"sZ9:RETURN
800 'INTERMEDIATE MODIFICATIONS
810 PRINT**Modify The 2nd Matrix?"
812 INPUT" 0=No, l=Invert, Z=Scalar Multiply: ";Z9
815 IFZ9=OTHENRETURN
820 MI=2 :IFZ9=lTHENGOSUIB2000ELSEGOSUBS100
825 GOT0810
1000 'CALC DETERMINANT
1005 IFRE MI 3C( HI THENl01O
1007 PRINT"ERROR: Number of rows/columns not equal:"~
1008 PRINT" MATRIX IS NOT INVERTABLE!":GOSUB700:EF1I:RETURN
1010 FORII=1T0R(Ml):F0R12zlT0CEMI):Bl(ll,I2)=A1(Ml,I1,I23:NEXTI2:NEXTI1
1020 DETEMI )=l:FORI1=1TOR( MI)
1021 IFB1E 11,11)*SGNE Bit 1111)<1E-10THENGOSUB1900ELSE1O23
1022 IFEF=ITHEH1008
1023 DETEMI)=DETEMI)*Bl(IlI1):IFI1=RIMI 3THEN1O8O
1025 F0RI3=ITOC(Ml):Bl(I1,I13)=Bl(II13)/B1IIlI1J:NEXTI3
1030 F0R12=I1.1T0R(MI 3:IFB1(I2.,1JOTHEN1O6O
1040 F0R13I11TOC(Mli:B1(I2,133=Bl12,133-(B1(12,I1)*B1IllI3)3:.NEXT13
1060 NEXTI2:NEXTIl
1080 IFOF<>lTHENRETURN
1081 PRINT11**Oet. Of Matrix "sMI;" Is: -1;
1082 PRINTUISING##I#P. ####" IDET( MI3: GOSI.3700
1090 RETURN
1900 'S&ITCH ROWS



1910 FORJzl1.lTOR(NI):IFB1(J,I1)*SGN(81(JsI1))C1E-1OTHEN194O
1920 F0RJIl-lTOCtHI)*2:TEzB1(l1,Jl):Bltl1,JllzBliJJl)
1930 Bl(J,Jl )TE:NEXTJ1:G0T01950
1940 NEXCTJ:EF1I:RETURN
1950 DET(I Z)=-DET(MI ):RETURN
2000 'MATRIX INVERSION
2010 OF=O:GOSIJB1000:IFDETIMI 3'SGNE DETCHI) )>1E-I00REF=1THEN2O17
2015 PRINT"*ERROR: DeterminantaO. MATRIX NOT INVERTABLE!":GOSUB7O0:EF=1
2017 IFEF=THENRETURN
2020 F0RIlmIT0R(MI):F0RI2=1TOC(HIJ:B1(I1,ZZ)=Al(M1,I1,I2):NEXT12:NEXTII
2030 FORIItC(MI )+1TO2*C(HI ):FORI21lTOR( MI)
2032 IFII=12+R(MI )THENB1(I2,Il)1IELSEBI1I2,Il)0O
2035 NEXTIZ:NEXT1
2040 FORI1a1TOC(MI I
2045 IFB1(XII1 )*SGNE SIt 11,1) 3(1E-1OTHENGOSI.51900ELSE2055
2046 IFEF=ITHEN2O1S
2055 iL1l/B11,I1):FORZ331T2*CIlI):Bltll,13I=BlII1,I3)*ML.NEXT13
2057 IF1C(MI )THEN2O80
2060 FORI2=11TOR(MI ):IFBIZII1)0THEN2075
2065 ML=-B1t12,Il)
2070 F0RI3lITO2*C(MI):B1(I2,I3)=Bl~I2,I3J+(ML*B1(I11I3)):NEXTI3
2075 NEXTIZ:NEXTII
2080 FORI1=C(MI )TO2STEP-1
2100 FOR1212-ITO1STEP-1:IFBhI(I2,I1)=0THEN2130
2110 ML=-BIt12,I11
2120 FOR13=1TO2*C(NI):BI2I,I3)=Bl(I2,I3),(ML*B81I1,13)j:NEXT13

i'.2130 NEXTI2:NEXTIl
2140 FORI1:1TOC( MI )FORI2=1TORt MI)
2145 A1(MI,12,11)=B1(12,I11C(MI)):NEXTI2:NEXTI
2190 OF=1:RETURN
3000 *MATRIX ADDITION
3010 MF=2:MI=2:GOSUIB7000:GOSUBS80:IFEF1ITHENRETURN
3015 FORI11lTOR(1):FORI2=1TOCE1):A1(1I,IP2)=A1(1,I112).A1(2,I1,12)
3020 NEXTI2:NEXTI1:GOSUB6000:1F0:RETIRN
4000 'SIMULTANEOUS LINEAR EQUATIONS

*4010 CLS:PRINT"emSolves Axb. Choices:":PRINT" 1. Enter b Vector."
4012 PRINT" 2. Change An Element In Matrix A."
4013 PRINT" 3. Solve Current Ax~b."
4014 PRINT" 4. Return. ":INPUT" * Select A Nu.mber: ";CC
4020 IFCC~1GOT04040
4022 IFCC=26OTO4050
4024 IFCC3GOTO406O 0
4026 IFCC=4THEN RETURN
4035 GOTO 4000
4040 MI=2:R(2)=C~l):Cg21=1:GOSUB7o40:G04000
4050 INPUT"**Row, Column Of Matrix A To Be Changed: ";RD,CO
4052 PRINT" - Enter Row" iRD i"p Column" ;C0;":" :INPUTAI 1 ,RD ,COI: GOTO4000
4060 MI=l:SF=l:OFO:GOSUB8000:G0SI.52000
4064 IFEF=OTHEN4O7O
4065 PRINT"*Solut ion Not Uniquely Determinable': GOSUSB700 :RETURN
4070 GOSJBO0O:CC0G:F0RI1=1TOR(2):CC=CC+:PRINT"x"sIll")= 0
4075 PRINTUSING"#####.# If#" IB1(lf 1): IFCC>6THENGOSUSB700 :CC=O
4080 NEXTIl :GOSUIB700:SF:O :GOSUBO200:60T04000
5000 'MATRIX MUJLT
5010 MF=l:IF SF=lTHENSO2O
5015 M12Z:GOS4.27000:GOSUBOOO:IFEFlITHENRETURN
5020 R(4)Z-RE1):C(4)=C(2):FORIlzlTOR(4):FORI2=lTOC(4):B1(II,12)zO)
5022 F0R13:1TOC(1):B2(Il,121:Al(lIl,13J*Al(2,1I3,121,Bl(l1,121
5024 NEXT13:NEXTI2:NEXCTI1:MF=O
5050 IF SF=OTHENG0SUB7500:GOSUB6000
5060 RETURN
5100 'SCALER itJLT
5110 INPUT"Enter Scalar Multiplier:";SM:FORI1~1T0R(MI ):FOR1221TOC(MI)
5115 AltMI,l1,I2)2A1(MII1,I2)*SM:NEXTI2:NEXTI1:RETURN
6000 'PRINT OUTPUT MATRIX

46010 PRINT" ** Current Answer Matrix:":CC0O:FORI1=IT0Rt1):CCECC.1
6012 FOR12zlTOC(1) :PRINTUSING"#*W.*###*'IAlI 1,11,12 ii:NEXTI2:PRINT*""
6050 IFCCSTHENGOSUB700 :CC=O
6060 NEXTI1: GOS.B 700: RETURN
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7000 'MATRIX INPUT
7001 CLS:PRINT1-:PRINTI1 This Matrix Be On:"
7002 INPUT" 0:Left, l=Right";Z9: IFZ91THEN7006
7003 R(2)=RE1J:C(2)=C(1):FORIl1TOR(l):FORI2=1TOC(1)
7004 A1(2,Il1I2)=A1(1,I1,I2):NEXTI2:NEXTI1:MI~l
7006 CLS:IFMI2ZTHEN7008
7007 PRINT"**Choices For Left Hand Matrix" :G0T07009
7008 PRINT"**Choices For Right Hand Matrix:"
7009 PRINT" 1. Enter Matrix From Keyboard"
7010 PRINT" 2. Retrieve Stored Matrix":IFFF<>1THEN7O1Z
7011 IFEOFE1)=OTHENPRINT" 3. Enter Matrix From MATIN.DO"
7012 INPUT"**Enter A Number: 11;Z9:IFZ9=1THEN7O1S
7013 IFZ9=3THEN7Ol8
7014 R(MI)=R(3):C(MIJ=C(3):G0T07020
7015 PRINT" **Enter The Rows, Columns"
7017 INPUT"In The Next Matrix: 1'sR1MI)PCIMIh-GOT070Z0
7018 INPUT#1,.R(MI ),C(MI)
7020 IF MF<>1THEN7O3O
7021 IFR(Z2 =CE 1 THEN7O3O
7022 PRINT"**ERROR: Columns in LEFT MATRIX z*'Ct1)
7024 PRINT" Rows In Right Matrix =;R12)
7026 PRINT'These Must Be Equal For Matrix Mult!!"1:GOSUB700:EFl:G0T07006
7030 IF HF<>2THEN7035
7031 IF(RU)=R42IANDCI1)=C(2))THEN 7035
7032 PRINT"**ERROR:Oimensions For Both Input"
7034 PRINT"Matrices Must Be Equal!!":GOSU)B700:EF=1:GOT07006
7035 IFZ9=THENGSUBSZO:RETURN
7036 IFZ9=3THEN7O5O
7037 PRINT" **Fill Matrix Row By Rol[:PINT""
7040 FOR11TOREMI ):FORIZ=1TOCE MI)
7042 PRINT"-Enter Row I1"And Column"W0';" "
7044 INPUTA1(MII1,12):NEXrI2:PRINT'":NEXTI1:RETURN
7050 F0RII=ITOR(MI):F0RI2lTOC(MI):INPUT#1,Al(MI,.I1,X2)
7052 NEXTI2:NEXTI1:RETURN

S ~ 7500 'MAKE ANSWER MATRIX THE FIRST MATRIX FOR THE NEXT OPERATION
7510 R(1)zR(4):C(1)=C(4):FORI1=1T0R(1j:FORI2=1TOCI1)
7512 Al(1,11,12)=Bl(Il12):NEXTI2:NEXT11:RETURN
7600 'MATRIX INTEGER EXPONENTIATION
7610 CL.S:pRNT-':NPUT"**Enter Positive Integer Exponent: ";XP
7620 R(2)=RI1):CI2C(3:FR11=TR():FORI~1TC2)
7622 A1(2,11,I2)A(1,I,12I:NEXTI2:NEXTI1
7630 SF=l: F0REX=2T0XP:GOSUB5020:GOSUB750O:NEXTEX:GOGUB6O00:SF0O:RETURN
8000 *STORE AlE 1,,)
8010 RE3)=RE1):C(3)C(1J:FRI1TR3):FORI2lTC(3)

-8012 A1(3,Il1)=AI1,,I2):NEXTI2:NEXTI1:RETURN
8200 'RETRIEVE THE STORED MATRIX
8210 R(MIJ=R(3):CIMI IC(3):F0RI1lTORMI):FORIZ=IT0C(MI)
8212 AIMI,I1,12)=A113,11,12):NEXTI2:NEXTII:RETURN
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APPENDIX F

NUMERICAL INTEGRATION PROGRAM LISTING

A complete listing of the Numerical Integration Program is as follows.

1200 tNumerical Double Integration:Steven H. Cary:24 Apr 86
1201 DIMA(6,6):TL=.001
1205 CLS:PRINT"":PRINT" W*Double Integration m*
1206 PRINT" Romberg Algorithm"
1210 PRINT"OEdit Fun~ction To Be Integrated."
1211 PRINT"l=Edit Limits Of Integration."
1213 PRINT"2=Edit Tolerance; Current Tol.='iTI
1215 PRINT"3=Calculate Integral. ":INPUT"Enter 0, 1, 2, or 3:";Z9
1216 IFZ9=OTHENEDITl285-l288
1217 IFZ91ITHENEDITl29l-1298

*1218 IFZ9=ZTHENINPUTI'Tolerance = ";TL:G0T01205
*1220 CLS:PRINT'"":PRINT" !!Be Patient!!":PRINT""

1230 N=2:GOSUB1293:DX=(XU-XL )/2
1240 FORJ9lT06: DX=DX/2 H=N*2
1242 X=XU:GOSU)81296:.GOSUB1280:A2(J9,l )SS*DY
1245 X=XL:GOSUB1296:GOSUB1280:AZtJ9,1)=A2(J9,l),SS*DV
1250 FORJ8=2T0N:X=X+DX:GOSUB1296:GOSUB1280
1251 A2(J9,l)=A2(J9,l)+2*SS*DY:NEXTJS
1252 A2(J9,1)=A2(J9,1)*OX/3
1255 IFJ9=lTHENNEXTJ9
1260 F0RJ8=1T0J9-1
2261 A2J9,J8.1 )=A2IJ9,J8)+I 1A21J9,J8)-A21J9-1,JS) )/E'AjS-1) ):NEXTJ8
1262 T1=A2(J9,J9 )-A2EJ9,J9-1 ):IFSGN(Tl )*T1-TL>OTHENNEXTj9ELSE1264
1263 PRINT"Tolerance of"MT;"not met after five extrapolations"
1264 IN=AZIJ9,J9)
1265 PRINT"Integral = : PRINTUSING ###. lt#S; IN
1266 PRINT" Actual Tolerance z";:PRINTUSING"#.####";TI*SGN(Tl)
1267 SOUND1567,10:SO~lt4D1244,10:S0U)ND1046,l0:sOUJND783,20
1268 SOUND1046,10:SOUN0783,40
1269 INPUT"Hit Enter To Continue:";Z9:G0T01205
1275 FORJ71lT06:FORJ6=lT0J7:PRINTUSING"##.P#;A2J7,J6);
1276 NEXTJ6 :PRINT'": NEXTJ7: INPUTZ9: RETURN
1280 REM Simpson's Rule Su.m
1281 Y=YU:GOSt.Sl285:SS=F :YYL :GOSLB1285:1 =SsF
1282 FORJS2ZTO(/2 ):YY+DY:GSB1285:SSS,4*F:YYDY:OSUB1285
1283 SS=SS+2*F:NEXTJ5:Y=Y4DY:G0SUB1285:SSSS4F:RETURN
1285 'F(x,y) to be integrated:
1286 F=1
1288 IX & Y a independent variables. Hit FS, then F4. i4en Dore.
1289 RETURN
1290 'Limits of Integration:
1291 'XL0NER/XUPPER are constants.
1292 *YUPPER & YLOWER may be constants or given in terms of X.
1293 XUPPER1.5707963
1294 XLOER0O
1295 RETURN
1296 YUPPER=SIN(X)
1297 YLOWERO0
1298 'Hit F8, Then F4. I4hn Done
1299 DY=(YU-YL)/(N+l):RETURN
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