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ABSTRACT

\The primary purpose of this thesis is to to demonstrate some principles of
combat modeling using programs for the Radio Shack TRS-80 Model 100 computer.
In addition to the combat modeling, the thesis includes several utility programs for the
M100 of interest to students of operations analysis.

The combat modeling programs include an antisubmarine warfare (ASW)
detection simulation, a Kalman filter, and a Lanchester differential equation
simulation. The utility programs include a matrix algebra program, a numerical doublé
integration program using Simpson’s Rule and the Romberg integration algorithm, and
a geometric programming program for zero degree of difficulty problems. The
integration program is also written as a subroutine that can be included in other
programs. The matrix algebra program includes a simultaneous linear equation solving
subroutine which can be used in other programs.

All programs are written in MI100 BASIC. Documentation includes an
explanation of the input required, the output produced, and the components of each
program, and sample problems. The chapter on geometric programming includes a
tutorial on the mathematical basis for that technique.
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I. INTRODUCTION

A.  BACKGROUND
The NPS Operations Rescarch Department has made Radio Shack TRS-80
Model 100 computers available to a limited number of students. Expcrience has shown
that these students have made relatively limited use of these computers. The main
reasons seem to be:
¢ This computer uses the BASIC programming language. NPS QA students do
not receive instruction in this langua%e but are required to learn FORTRAN and
A Although FORTRAN and BASIC have similar structures, most OA
students believe they do not have time to learn a third computer language.

¢ Only a few M-100 programs are currently available at NPS that directly relate to
course work.

¢ Writing and debue%ing programs for the M100 can take a considerable amount
of time. Many OA studerits believe that time would be more usefully spent
pursuing other approaches to their studies.

e The M100 has thus far not been distributed to all OA students. Therefore,
professors have not becn able to require students to use the M100. It has becn

relegated to “nice to have” status instead of being included as an essential
teaching tool.

B. GENERAL

The purpose of this paper is to develop a collection of programs in BASIC for
the M 100 that students can use in the combat modeling courses of the OA curriculum.
The programs make extensive use of subroutines which allow students to run programs
"off the shelf” or build their own programs from the subroutines. The programs arc
extensively documented so that students who learn BASIC can use the printed
programs as study aids to understand the algorithms involved. Some of the programs
are tutorial.

In testing situations professors are often limited to problems that are
arithmetically very simple. If programs for the M100 were available, professors would
be able to give more intricate test problems without placing undue emphasis on manual
arithmetic calculation.

Additionally, when students leave NPS, they will be able to take with them a

series of programs with which they have grown familiar during their course of study.
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I II. FEATURES COMMON TO MORE THAN ONE PROGRAM
v )
Z: A.  GENERAL CHARACTERISTICS OF THE MODEL 100
‘:' The MI100 is a versatile and very portable computer. As provided to Naval ‘
v ' Postgraduate School students, it has either 24K or 32K of RAM for storage of
A variables during program execution and for storage of programs and other filcs.
:: Programs and files remain active 'vhile the computer is turned ofl. There is an internal
_ 300 baud modem which facilitates transfering programs to other computers for storage.
e The eight line LCD screen limits the graphics display capability of the M100.
e However, output in character form can be written to RAM files and reviewed after
" " program execution is complete. The version of BASIC used in the M 100, crcation of
,':.',‘ . text files, use of the modem, etc. are explained in Reference 1. This thesis assumes that
o readers are somewhat familiar with Reference 1.
... Although the programs have statements which print intermediate and final results
j,-\. to the screen, the operator may wish to check the status of a variable that is not
~.~3 printed by the program. To do this

e ® Stop the program by depressing the SHIFT and BREAK keys simultaneously.
;' . 'tl)‘l);ﬁ% n? BASIC statement to print the desired variables and hit the ENTER
): | %tf,r]t é}&eb%rggﬁm again at the place it stopped by typing CONT and hitting the
b Most of the programs in this thesis do not include statements to end the
:i’ ‘ program. This is because the programs cycle back to the start of the program allowing

;..j the operator to enter a new set of parameters without restarting the program. To end
;:;' the program

- ¢ Depress the SHIFT key and the BREAK key at the same time.
~._- ¢ To rerun the program from the start, depress the F4 key.
- ® To return to the main menu, depress the F8 key.
ke
X B. COMMON TERMINOLOGY
o BASIC variables are refered to in the text using capital letters. Since M100
V-ﬁ BASIC only differentiates between variables based on the first two letters of the
:’.': variable name, most BASIC variables in the following programs arec combinations of
L
e
‘§g§ 14
0‘. v
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‘:SE“ . T R o N S T S N Sy ST O e St e e L I I AN e
IR NI A £t R ICCECIRT I Sl




L - - H EEPPE  pae aad ” = FTUTA T DEOTEWY ITw 7T i yvw

! two capital letters, e.g. BA, CR, FT. Names of matrices are also specified using capital
'::::. letters. BASIC permits matrices to be dimensioned using variables. If, for instance,
::E:, AB=3 and AC=4, then the BASIC statement DIM ZZ(AB,AC) would dimension a
‘,,‘,‘, three by four matrix named ZZ. When capital letters are used inside the parentheses,
N ’ the size of the matrix is being specified. When a small letter is used inside the
: _..; parentheses, a particular element of the matrix is being specified. For example, ZZ(i,j)
" refers to the element of ZZ in the ith row and jth column. When a matrix has more
. than one dimension, the first number from the right is refered to as the column number
:;\' and the second number from the right as the row number.
:.. When the mathematical theory behind.a program is discussed, the variables uscd
ii;:‘, will be small letters or Greek letters. ' -
o C. INPUT FILES
Yy All of the programs presented in this thesis permit data to be entered from a text
--r: file. These text files must be created using the M100’s text editor before the program is
w run. The name of the text file for each program is similar to the name of the program
e it supports and is given in the documentation for each program under the section
E? titled, “Input”. The contents of the input file are also explained in the appropriate
: t_-g’ “Input” section.
i Numbers in input files must be separated by a space, comma, or return. A
5l comma and a return may not be placed together without a number between them.
; . Otherwise, the M100 will enter an extra zero at that point. A comma and a return
:;\ together also cause data elements which follow to be in the wrong places in their
M matrices and/or wrong numbers to be read as matrix dimensions. Do not put blank
e lines! in the data for the same reason.
5
! ‘: D. FORMULA TOKENIZATION
i, There are some programs which must be adapted to use different equations at

the same point in the program depending on the application. For example, the
detection theory simulation in Chapter 3 must be able to handle many functions for

'
Pl

) oy . .
I the probability of detection of a sensor. When the function nceds to be changed, the
1N
e operator may:
-
b
he s
o ,
e Two recturns together.
g 15
e
”.
R) +
a::‘

Wttt . «
," , J_.‘ .-: ! ._’*.J,\‘,‘?N,\. AR Yy

R -

-
A

!

RO e
.

% -
\‘-)\\'\

'J-'.‘.r" o> .r + -"’)- 3-" ST NI



4 b ke

e

WAL

::‘&.v

¢ "l’

f e Stop the program, call the BASIC editor for the lines that need to be changed,
: ¥ and restart the program after the function has becn edited, or

N : e Use a tokenization routine to change the function without stopping the program.
g . . . . . . _—

o This section describes a subroutine (see Figure 2.1) which performs that tokenization.
::; "n

z ey 1400 ‘Tokenize DF

1Y 1410 B$="DF="+DF$+CHR$(0)

1450 ‘Tokenize/execute B$
1451 BO=VARPTR(B$):B1=PEEK(BO+1)+256%PEEK(B0+2):CALL1606,0,B1

“;0'"‘ 1455 CALL2499,0,63105:RETURN
Al
e
f:‘,}.‘ .
2
s Figure 2.1 Formula Tokenization Section.
™
.:: That subroutine is taken from [Ref. 2:pp. 58-60]. Tokenization converts a string
i: variable into an executable BASIC statement. In the example in Figure 2.1, the right
U
:::f.‘ hand side of the function equation was stored as a string variable, DFS before this
i subroutine was called. For example, if the equation was DF=X+Y, then DFS is the
0 "-. . " ” . . . .
~ string, "X+ Y". Line 1410 adds an equal sign and appropriate left hand side to DFS to
"
. ~ form BS, a complete assignment statement in string format. In the example above line
:A.“ 1410 adds “DF=" to DFS$ to form BS. Line 1451 computes memory location, B1, of
o BS and calls the machine level subroutine in the M100 read only memory (ROM)
;: beginning at memory location 1606. Subroutine 1606 converts the BASIC keywords in
O — . . .
Ly - BS into their one byte tokens and then stores them in executable form at memory
::f.’u location 63105. Line 1455 calls the machine lcvel subroutine beginning at memory
. location 2499 which executes the statement stored at memory location 63108S.
Aeal
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III. DETECTION SIMULATION PROGRAM

'3.; . A. GENERAL

The problem addressed by this program is estimating the probability of detecting
a target whose location is given by a bivariate normal distribution when the location of
each detecting sensor also has a separate BVN distribution. The target distribution is

BV.\’(0,0,czx,czy,px,y). The location of each sensor, §;, is distributed BVN(pui, "Vi’

2 e . .
c uy ¢ vy pui'vi)' All distribution parameters are stored in an input text file. The

; program models two sensor types:

- o o~

¢ A Deterministic Sensor. This sensor has detection probabilities of 1, 0 and 1 in
three concentric circular bands around the sensor’s location. An example of this

Yo ™o

Ca

type of sensor would be a sonobouy which detects all targets out to range ry,

.
Y,

detects no targets between ranges ry and r,, detects all targets in a convergence
zone between ry and ry, and detects no targets beyond ry where 0 < ry = ry <
" 1'3.

E ¢ A Probabilistic Sensor. This sensor has a continuous, radially symmetric
. detection pattern. The probability of detection, P, is a function of range and
may also be a function of one or more other parameters. The default function,
I D(r,b), for calculating P is a Carlton function where b is a scaling parameter

' (See Equation 3.1). Figure 3.1 shows graphs of several Carlton detection
h) functions.

29,2
Py = D(rb) = e7/20 (eqn 3.1)

For either type of sensor the program calculates the overall probability of detection
. using D(r). The deterministic sensor portion of the program can also be used to

calculate a “cookie cutter” approximation of the actual detection function. The
0 cookie-cutter approximation has the form D(r)=1 when r=<rj and D(r)=0 when
¥ r>r, for some specified detection range, Iy The radius, r, of the cookie-cutter
approximation is the lethal radius of the actual detection function for a sensor. Lethal
A 4 radius is a term borrowed from the damage functions of firing theory. It is used hcre
K to help readers who are familiar with firing theory, not because being detected by a
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Pk sensor is inherently lethal. The lethal radius is a scalar measure of a sensor’s detection
L]
RO ability and is computed using Equation 3.2. See [Ref. 3:pp. 12-15].
.Y
o Lethal Radius = [2f°rD(r) dr3-3 : (eqn 3.2)
Tt . o .
'0:"‘ To calculate a cookie-cutter approximation, the lethal radius of D(r) must be computed
“ . . .
%.';' off line and included as a sensor parameter.2 For example, the lethal radius of the
Wi default Carlton detection function is 2-b.
‘,;:5'."
N
SN w THREE CRRLTON_DETECTION FUNCTIONS
',:' wvithb = 1, 3, ond 5.
«.’ (}
Wy -
=
g - O
§ihS -
h e :
RO Q
ot : E
iy L
0l (o= |
I Lo
<
oY)
. f\"
;-\ ‘
: *‘F’] E L] T T L) l T L) L] L '
Wed ; 0.0 5.0 10.0
| RANGE
>
AL
R
L
)
}Z.‘ Figure 3.1 Graph of Carlton Detection Functions.
lv\
Qv
| Closed form solutions are available for some specific cases that can also be
K . . ) . .
o:'.:l computed with this program, e.g. a group of sensors with Carlton detection functions
Gy ) . . . .
g at fixed locations. The program will verify these closed form solutions. However, it
3..' will also estimate probability of detection for problems without closed form solutions,
e e.g. a group of cookie-cutter sensors in which each sensor has a different BVN location
-y .
N distribution.
) :',)-"
3]
49N
e 2 - : :
b See the second example in the section of example problems at the end of this
chapter.
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The program uses a Monte Carlo simulation to estimate P4. Because the Monte

Carlo simulation is time consuming, faster numerical integration approximations are

also available for the deterministic sensor. However, the particular numerical integration

technique used in this program will not produce correct results if sensor areas of coverage

overlap. More sophisticated numerical integration techniques are available for special

cases of the probabilistic sensor, but are not included in this program.

B.

EXPLANATION OF VARIABLES

AL is the probability that the computed confidence level does not contain the
true probability of detection for the associated standard normal CDF value.
A2(6,6) is the intermediate calculation matrix for the Romberg integration
subroutine.

BO and B1 are the memory location parameters of BS.

BS is the string that holds the entire equation for DF in the tokenization process.
D1 and D2 are intermediate calcvlation values.

DF is the value of the detection function.

DFS is the string that hold the right hand side of the equation for DF.

F is the value of the function being integrated at a specific point.

F1 is, in the data input section (lines100-150), the selection variable indicating
whether all sensors have the same parameters. If F1=1, then sensor parameters,
other than the five for location, will be listed only once: after the location
parameters of S. If F1=0, then values of all parameters for all sensors must be
entered explicitly in DSIN.DO. In the rest of the program, beyond line 200, F1
is a flag determining whether the calculation is based on the deterministic
(F1=1) or the probabilistic (F1=2) sensor.

F2 is the selection variable for whether all sensors locations are distributed with

6,=6,=0. | -yes; 2-no.

F3 is ghe selection variable for whether a Monte Carlo simulation (F3=1) or a
numerical integration (F3=2) is used.

H is the radius of circular limits of integration.

I, 11, 12 are loop counters.

I'N is the value of the integral from a numerical approximation.

J1 through J9 are loop counters.

NS is the number of sensors.

NP is the number of parameters for each sensor in addition to location.
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;:: ¢ NR is the number of repetitions in a Monte Carlo simulation.

'.::, e PD is the probability of detection.

bt e RFis (1-RH2).

. ¢ RH is the correlation between components of the BVN target location

?- distribution. )
: e S] and S2 are standard deviations of the components of the target location

: distribution. T
& e TE is a temporary storage variable.

S e TIS and T2S are times at beginning and end of a calculation.

! ¢ T1 is the time elapsed during a calculation.

2 ® VI and V2 are variances of the components of the target location distribution.

¢ XS and XT are specific values of the first component, i.e. the mean X position, ]

of the BVN distributions of a sensor or the target respectively.
‘{ ® X(NS,5+ NP) is the parameter matrix for sensors. There is one row per sensor
E. and one column per parameter. Columns one through five are for the means,
" "lu,Si and "v,Si’ the standard deviations, Gu,Si and GV'Si' and the correlation,
< psi, of the location of each sensor, S;. These parameters are in the same
- coordinate system as the target location distribution.
' ® YS and YT are specific values of the second component, i.e. the mean Y position,
- of the BVN distributions of a sensor or the target respectively. i
':' e 71 and Z9 are selection variables.
's.:
19
R C. INPUT
- 1. Input File
:ﬂ Before this program is run, a text file, DSIN.DO, must be created to hold the
2: input parameters. DSIN.DO will contain the following variables in the following
Ky, order:
< ¢ NS, NP, S1, S2, RH, FI
X ¢ The sensor location/parameter(s) matrix, X(NS§,NP+ §).
™ An example of a input file is shown in Figure 3.2 along with a graph of the
j'., corresponding sensor coverage areas. Lntries in the first line of IFigure 3.2 indicate that
B there are two sensors with three parameters cach, that the target location distribution
0 is BYN(0, 0, 625, 625, 0), and that all sensors have the same parameters. The sccond )
:: linc is the parameter sct for the first scnsor. There is no variance in the location of
R
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200 0:0/005.25,30
2 eU8.0.0,9.20, VERAGE (SHADED ARERS)
-20,-20,0,0,0 - ?E?sggscgscmsr BVN(0,0,625

625,0)
LOCATION DISTRIBUTION {ooTteD LINES)

Figure 3.2 Example of Input File, DSIN,
And Graph Of Sensor Coverage.
either sensor. The first sensor is located at (20,20) and has additional parameters 5, 25,
and 30. If this input file represents sensors that have a deterministic detection
functions, then the sensors detect all targets within a distance of 5 and within a circular
band from 25 to 30 and do not detect targets outside of these bands. Both sensors
have the same parameters other than location, as indicated by the last element of the
first line being one, the last line contains only the location of the second sensor. If one
or more sensors had different parameters (other than location), then the last element in
the first row would have been zero. Also, the three nonlocation parameters would
have been spccified for all scnsors. Although the parameters for each sensor may be
different, the detection function for each sensor must be the same. For example, the

program does not allow a mixture of sensors with deterministic and probabilistic
detection functions.

2. Interactive Input
After the program has read the input file, the operator will be prompted to
specify:
¢ Whether a deterministic or a probabilistic detection function will be used.
e Whether the variance in target location is or is not equal to zero.

® Whether a Monte Carlo simulation or numerical approximation will be used.
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.:'t'::l If the probabilistic dctection function is used, the operator may interactively change

::":‘.o the detection function. If the Monte Carlo simulation is uscd, the operator will be

Ut c . D . .

R3S prompted to specify the number of repetitions, NR, in the simulation.

R D. OUTPUT

?.::j: The program prints the probability of detection, PD, to the screen of the M100.
;-\., If the computation was a Monte Carlo simulation, the program asks the operator to
’ specify an o’ for the confidence interval on the probability of detection. Permissible

Q.::. a’s are .10, .05, and .01. The program computes the lower and upper limits of the

'_ confidence interval bascd on a normal approximation to the binomial distribution. The

.": \ expression for these limits is shown in Equation 3.3.

S

e PD % Zl_u/thD(l-PD)/Z\'R]'S (eqn 3.3)

e

J, 1 . . . . . .

:’ 2 Z|.q . Is the point on a standard normal distribution at which the CDF has a value of

.“ ’)

i l-a;2.

Zj_;l;: E. EXPLANATION OF PROGRAM COMPONENTS

‘-':::j A complete program listing is at Appendix A.

o 1. Initialization/Data Input, Figure 3.3
- Lines 100-115 print the program title and open the input file, DSIN.

,:::: Line 120 rcads the first line of DSIN and calculates the variances of the
"o

D ::ﬁ marginal distributions of the target location distribution. It also dimensions

NN

N X(NS,5+NP) and A2(6,6).
Lines 125-135 read the lines of DSIN that specify parameters for individual

';.:::: sensors, S;, i=1,2,..,NS. Line 125 reads all parameters for §;. [f some §; have
E::::_:: different nonlocation parameters, i.e. F1=0, then line 128 reads in S+ NP parameters
_,f.' for S; where 1=2,..,NS. If all sensors have the same nonlocation paramcters, iLe.
o FI=1, then lines 132-135 rcad the five location parameters for cach sensor. They also
- make nonlocation parameters of S;, where i = 2,3,4,...,NS, equal to the nonlocation
J_' parameters of S.

s

b

=

ShRY a is the probability that the computed confidence level does not contain the true
oY probabxlm of dctection.

22




100 CLS:PRINT"'":PRINT" DETECTION SIMULATION":FORI=1TO400:NEXTI
110 ‘Input/Initialization

115 OPEN"DSIN"FORINPUTAS]

120 INPUT#1,NS,NP,S1,S2,RH,F1:V1=S1%S1:V2=52%52

121 DIMXINS,5+NP),A2(6,6),T1(3)

125 FORI1=1TOS5+NP:INPUTH#1,X(1,I1):NEXTI1

126 IFNS=1THEN140

127 IFF1=1THEN132

128 FORI1=2TONS:FORI2=1TOS5+NP:INPUT#1,X{I1,I2):NEXTI2:NEXTI1:60T0140
132 FORI1=2TONS:FORI2=1TO5:INPUT#1,X(I1,I2):NEXTI2:IFNP=0THEN135

134 FORI2=6TOS+NP:X(I1,I2)=X{1,I2):NEXTI2

135 NEXTI1

140 RF=SQR{1-RH"2)

150 DF$="EXP(-( (XT-XS)N24(YT-YS)N2)/(2%X(J2,6)72))*

Figure 3.3 Initialization and Data Input Section.

Line 140 calculates RF, an intermediate value used in later intcgration

calculations.

Line 150 assigns the right hand side of the Carlton equation to DFS as the
default equation for calculating the detection function value, DF.
2. Method Selection Section, Figure 3.4

- 200 "% Simulation Selection Section ex

201 CLS:PRINT"Is the Detection function:

203 PRINT" 1. Deterministic":PRINT'" 2. Probabilistic"

205 INPUT"Enter 1 or 2:"3Fl

210 CLS:PRINT"Are Sensor Locations:"

212 PRINT" 1. Always At Aim Point":PRINT" 2. Distributed BVN Around Aim Point"
214 INPUT"Enter 1 or 2:"3F2

215 IF(F1=20RF2=2)THENF3=1:60T0230

220 CLS:PRINT"":PRINT"Is the Calculation:”

222 PRINT" 1=Monte Carlo Simulation":PRINT"” 2=Numerical Approximation"
224 INPUT"Enter 1 or 2"3F3

230 TIMES$="00:00:00":IF F1l=1THENGOSUB300ELSEGOSUB500

250 GOT0200

Figure 3.4 Method Selection Section.

Lines 200-250 assign values to:
e Fl. If Fl=1, then calculations are done for a deterministic sensor. If Fl=2,

then calculations are done for a probabilistic sensor.
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it e F2. If F2=1, then the sensor is always located at its aiming point, i.c.
Y .

Sk 62y =062, =0. If F2=2, then 62, or 62, is not equal to 0.

':.'\‘. e F3. If F3=1, then a Monte Carlo simulation is conducted. If F3=2, then a
i numerical approximation is calculated.

.'{ A

4 3 - -~ , . .

»' ! Line 230 sets the M 100’s clock to zero to time the calculation. It also branches to the

) appropriate subroutine depending upon which type of sensor is specified by F1.

s,

:o‘,‘ 3. Deterministic Sensors, Lines 300-360
Wy

0o
4 - 300 ‘Deterministic Sensor Subroutine
Asa 305 IFF3=1THENGOSUB310ELSEGOSUB350
.ﬁf X 306 RETURN
Lo

e
333 : . . .

N Figure 3.5 Decision Logic For Deterministic Sensors.
oF
% . .
. Based upon the value of F3, lines 300-306 (see Figure 3.5) branch to
ik subroutines to conduct the calculations using a Monte Carlo simulation or a numerical
approximation.
b a. Actual Detection Function, Lines 310-360

"N . . . . .

: (1) Monte Carlo Simulation, Figure 3.6. Line 315 calls subroutine 900
o which prompts the operator for the number of repetitions, NR.

3

e

2

4 310 'Monte Carlo of Deterministic Sensor
315 GOSUB900

Pa] 320 PD=0:FORJ1=1TONR:PRINT.261,"Repetition:";J1:G0SUB600: FORJ2=1TONS

o 323 IFF2=2THENXS=X(J2,1):YS=X(J2,2):GOT0325
S 326 GOSUB612
AN 325 T1=SQR((XS-XT " 2+(YS-YT) 2)

Mgy 330 IFT1<=X(J2,6)THENPD=PD+1:GOTO335

AN 332 IFT1>=X(J2,7 JANDT1<=X(J2,8 )THENPD=PD+1:GOT0335
it 334 NEXTJ2

‘ 335 NEXTJ1:PD=PD/NR:GOSUB950: RETURN

\':-:

LSRN
oo
oA Iigure 3.6 Monte Carlo Simulation.
hE

el For rcpetitions one through NR, lines 320-335 genecrate a targct
J- . . .r - . . . . . . .
wé_ location from the BV'N distribution. They then check whether that location lics within
ol
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the circular detection bands around each sensor, Si' 1=1,2,...,NS. PD counts the
number of repetitions for which the target is in at least one detection band. The
Monte Carlo simulation functions accurately even if detection bands of various sensors
overlap because it does not double count if a target is detected by more than one
sensor. When all repetitions are completed, the counter, PD, is divided by NR to
produce an estimate of the probability of detection. Finally, output subroutine 950 is
called. '

(2) Numerical Approximation, Figure 3.7. The volume* under the target
location distribution is calculated for the detection bands of each S;. This volume is
the sensor’s probability of detection. Overlapping detection bands are not permitted with
this numerical approximation because the program would double count the overlapping
volumes. Subroutine 1200 conducts the intcgration. Probability of detection is the

volume under the target location distribution that is within the coverage area of any S;.

350 'Numeric/Deterministic Subroutine

355 PD=0:FORJ2=1TONS:H=X(JZ,6):6G0SUB1200:PD=PD+IN
356 H=X(JZ2,8):G0SUB1200:PD=PD+IN

357 H=X(J2,7):G0OSUB1200:PD=PD-IN:NEXTJ2

360 GOSUB950:RETURN

Figure 3.7 Numerical Approximation.

4. The Probabilistic Sensor, Figure 3.8

Lines 502-503 print a header and call subroutine 1300 which permits the
detection function to be modified. Line 503 also calls the subroutine in which the
operator specifies the number of Monte Carlo repetitions.

For each repetition, iines 520-530 generate a target location {rom the BVN
target location distribution. Then, for each §; they calculate the value of the sensor’s
detection function using subroutine 1410 and gencrate a uniform random number
between zero and one. If that random number is less than or equal to S;’s detection

function value at that location, then S; detected the target and PD is augmented by

, 4This volume, although it is computed and described as a volume in this section,
1s. not a truc volume, This is because although the X and Y axes of the B are
distances, the 7 axis is a probability, 1.e. dimensionless. Therefore the result is really

an arca, not a volume.
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A
i
AN)
>
Py
',|’
i
LX)
"v:g 500 'Probabilistic Detection Function
“iye 502 CLS:PRINT"Default Detection Function Is Carleton.”
Rk 503 GOSUB1300:GOSUB900
520 PD=0:FORJ1=1TONR:PRINT.261,"Repetition:"3J1:GOSUB600: FORJ2=1TONS
N 521 IFF2=2THENXS=X(J2,1):YS=X(J2,2):G0T0523 .
> 522 GOSUB612
K 523 GOSUB1410:IFRNS(1)<=DFTHENPD=PD+1:GOTO526
W 526 NEXTJ2
Sy 526 NEXTJ1:PD=PD/NR
e 530 GOSUB950:RETURN y
-
L
o Figure 3.8 The Probabilistic Detection Function.
i '
¥ .
' one. If one sensor detects the target, the program moves directly to the next,
. repetition. Therefore, the Monte Carlo simulation functions accurately even if detection
_t bands of various sensors overlap because it does not double count a target that is detected
‘S ... .
ﬁ: by more than one sensor. When all repetitions are completed, the counter, PD, is
< o . . oy . .
o divided by NR to produce an estimate of the probability of detection. Finally, output
subroutine 950 is called.
i:: 5. Generating A BVN Random Variable, Lines 600-606
.‘$
)
=

- 600 '¥xxGenerate BVN RV “
- 602 Ul=RND(1):U2=RND{1):TE=SQR( -2%L0OG(U1))
> 604 XT=TEXCOS(6.2831853%U2): YT=RH*XT+RF*¥TE*SIN(6.2831853»U2)
" 606 XT=XT%S1:YT=YT%*S2:RETURN ,
< 612 U1=RND{1):U2=RND(1):TE=SQR(-2%LOG(UL1))
e 614 XS=TE#COS(6.2831853%U2):YS=X(J2,5)%XT+(1-X(J2,5)%2 )" ,ExTEXSIN( 6.2831853%U2)
616 XS=X(J2,1)4XS%X(J2,3):YS=X(J2,2)+YS*X(J2,4):RETURN

. w

14y Figure 3.9 Generating A BVN Random Variable.

Lines 602-606 generate the target location. Lines 602-604 compute both
o9 components of a BVN(0, 0, 1, 1, 0) random variable using two independent uniform
(0,1) random numbers generated by the M100’s RND(1) function. Equations 3.4, and
3.5, as described in [Ref. 4:page 953}, form the basis {or lines 602 and 604. Equations

3.4 generate two independent normal(0,1) random variables, X and X5".

(-2In U})> cos(2nUs) (eqn 3.4)
(-2In U}) sin(2nUy) :

Xy
Xy
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Equations 3.5 convert these two independent normal random variables into the
components of a BVN(0, 0, 1, 1, p) distribution, Xl and XZ'

X=X/ (eqn 3.5)
, Xy =pX" + (1'92)'5X2'

Line 606 scales the components of the BV\‘(O 0, 1, 1, py y) by S1 and S2 to

| produce the components of the BVN(O, 0, 0'2 y’ Px y) target location distribution
{ and then returns to the calling program.
Lines 612-616 generate a sensor location- using the same algorithm that was

used to generate the target location. However, in addition to being scaled by ¢, and
6, sensor locations must also be displaced by p; and p,.
6. Entering The Number Of Repetitions, Figure 3.10

K 900 C!S:INPUT"Enter number of repetitions for Monte Carlo Simulation:"3;NR
4 905 RETURN
§ 910 INPUT"Hit ENTER to Continue'3Z1:RETURN

Figure 3.10 Entering The Number Of Repetitions.

! B Line 900 prompts the operator to interactively specify the number of
repetitions, NR, for Monte Carlo simulations.
Line 910 is a subroutine which stops the program while the operator views
output to the screen.
7. Output Section, Figure 3.11
All printing is to the screen of the M100. Lines 951-952 play a tune to notify

R I

the operator that the calculation is finished. Line 953 also prints the time required to
do the calculation and branches around the selection of @ for the confidence interval if
a numerical approximation was used. Lines 954-959 prompt the operator to select .1,
; .05, or .01 as a= AL, the probability that the true probability of detection is not in the
confidence interval. Once AL is selected, it is rcassigned the value of the standard

(I normal at Zl~a/2' Line 960 prints the point estimate of Py. Line 962 prints a short

q

w reminder that there is no confidence interval with numerical approximations. Line 966
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GO
ettt

950 'Print output

951 SOUND1567,10:SO0UND1244%,10:SOUND1046,10:SOUND783,20

952 SOUND1046,10:SOUND783,40

953 CLS:PRINT"":PRINT"Calculation Time (HH/MM/SS) = "3TIMES$:IFF3=2THEN960
954 PRINT"Select Alpha for Confidence interval:®

955 INPUT" Choices = .1, .05, .0l:"3AL

956 IFAL=.1THENAL=1.645:60T0960

957 IFAL=.05THENAL=1.96:G0T0960

958 IFAL=.01THENAL=2.575:G0T0960

959 GOTO954

960 PRINT"#%x Estimate of P(Detection) = ";:PRINTUSING" #.####8")PD

961 IFF3=1THEN965

962 PRINT"No Confidence Interval For Numerical Approximations"

963 GOTO970

965 PRINT"Confidance Interval: ("

966 TE=AL*SQR(PD*(1-PD)/NR):LL=PD-TE:UL=PD+TE:IFUL>1THENUL=1

967 IFLL<OTHENLL=0 : .

968 PRINTUSING"##.888#%8"3LL3UL3 : PRINT" )" :GOSUB910

970 ‘Confetti Approximation

972 PRINT"":INPUT"Confetti approximation? 0=No, l=Yes:"3Z9:IFZ9=0THENRETURN
974 CLS:INPUT"Enter TOTAL lethal area for ALL sensors in the pattern:"“3;NA
976 TE=NA/(6,283185%51%52):TE=1~{ 1+SQR{ 2%TE ) )¥EXP{ -SQR(2*TE ))

977 PRINT"#xConfetti Approximation = “3TE:GOSUB910:RETURN

Figure 3.11 Output Section.

calculates the confidence interval according to Equation 3.3. Lines 966-967 ensure that
the confidence limits are between zero and one. Lines 965 and 968 print the confidence
interval.

Lines 970-977 approximate Py with the “confetti approximation” described in
[Ref. S:pp. 14-16]. This approximates P4 by distributing the total lethal area of the
entire group of sensors over an ellipse as described in Reference §. This approximation
is calculated by Equation 3.6 where { = (Total Lethal Area)/(2ncx0'y).

Py=1-(1+ (20 (20 (eqn 3.6)

Line 972 prompts the operator to indicate whether a confetti approximation is
desired and ends the output routine if it is not. Line 974 prompts the operator to enter
the total lethal area for all sensors combined. Line 976 computes § and then Pj. Line
977 prints P4 and ends the output subroutine.

8. Numerical Integration, Figure 3.12

This subroutine is a tailored version of the Romberg intcgration subroutine
documented in Chapter 8. It integrates the target location distribution subject to
circular limits of integration.

28

(% ) ’ —\(.‘(\‘\'r-\ "ri\ x
ﬂﬂtém» U X i) f’. >

1) ad] A {) ".q




1200 'Numerical Integration Subroutine

1201 D1=6.2831853%S1%S2%RF

1202 TL=.001

1220 CLS:PRINT"":PRINT" t1Calculating An Integral?!":PRINT""
1230 N=2:G0SUB1293:DY=(YU-YL)/2

1240 FORJ9=1T06:DY=DY/2:N=N»*2

1242 Y=YU:GOSUB1296:G0SUBL1280:A2(J9,1)=TS*DX
Y=YL:GOSUB1296:GOSUB1280:A2(J9,1)1=A2(J9,1 )+TSxDX

1250 FORJ8=2TON:Y=Y+DY:GOSUB1296:G0SUB1280

1251 A2(J9,1)=A2(J9,1)+2%TS*DX:NEXTJ8

1252 A2(J9,1)=A21J9,1)%DY/2

1255 IFJ9=1THENNEXTJ9

1260 FORJ8=1T0OJ9-1

1262 A2(J9,J8+1)=A2(J9,J8)+((A2(J9,J8)-A2(J9-1,J8))/(4"J8-1)):NEXTJIS
1263 T1=A2(J9,J9)-A2(J9,J9-1):IFSGN(T1)%*T1-TL>OTHENNEXTJ9ELSE1266

- - A
)
n
»
n

1264 PRINT"Tolerance of"3TL3i"not met after five extrapolations"
1266 IN=A2(J9,J9):RETURN .
} 1275 FORJ7=1T06:FORJ6=1TOJ7:PRINTUSING #i#. . ###"3A2(J7,J6)3

1276 NEXTJ6:PRINT"":NEXTJ7:INPUTZ9:RETURN

1280 REM Trapezoidal Rule Sum

) 1281 X=XU:GOSUBL1286:TS=F:X=XL:G0SUB1286:TS=TS+F

h 1282 FORJS5=2TON-1:X=X+DX:G0SUB1286:TS=TS+F:NEXTJ5:RETURN
1285 'F(X,Y) to be integrated:

1286 F=X"2/V1-2%RH%X%Y/S1/52+Y2/V2

1287 F=(EXP(-F/2/RF~2))/D1:RETURN

) 1290 ‘Limits of Integration:

1293 YU=X(J2,2)+H:YL=X(J2,2)~-H:RETURN .

1296 T3=SQRIHA2-{Y=X(J2,2))"2):XU=X(J2,1)4T3:XL=X(J2,1)-T3:DX=(XU-XL /N
1 1297 RETURN

Figure 3.12 Numerical Integration Subroutine.

9. Changing The Detection Function, Figure 3.13

1300 PRINT" -Detection Fn (DF) in terms of XT, YT,"

" 1302 PRINT" and Parameters XS, YS, and X(J2,6),....,X(J2,5¢NP):"

P 1304 PRINT" % DF = “3;DF$

K 1306 PRINT"Hit ENTER For No Change or Enter New...":INPUT"” DF = ";DF$
1 1307 RETURN

Figure 3.13 Changing The Detection Function.

B This section contains a subroutine which permits the operator to interactively
change the detection function, lines 1300-1306., These changes would be made if the

. operator wanted to use a probabilistic detection function other than a Carlton

function. In both equations XT and YT represent the two components of the target
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location. XS and YS represent the location of Sy, in the same coordinate system as
XT and YT. An example of a probabilistic detection function that is not Carlton

might be an exponential function as specified in Equation 3.7.
Py = )»e’}‘r where r = distance from sensor to target. (eqn 3.7)

The entry to be made when prompted by line 1306 would be
X(J2,6)*EXP(-X(J2,6)*SQR((XT-XS$)*2+ (YT-YS)~2))

where A for sensor J2 is X(J2,6). In general, X(J2,6),...,.X(J2,5+ NP) represent NP
other parameters of the selected detection function in addition to the five parameters of
the BVN sensor location distribution. The formula for the current detection function is
displayed by line 1304. The operator may either change it as desired or hit ENTER to
leave the current formula unchanged.

10. Formula Tokenization Section, Figure 3.14

1400 ‘Tokenize DF

1410 B$="DF="+DF$+CHRS$(0)

1450 'Tokenize/execute B$

16451 BO=VARPTR(B$):B1=PEEK(BO+1)+256%PEEK(B0+2):CALL1606,0,B1
1455 CALL2499,0,63105:RETURN

Figure 3.14 Formula Tokenization Section.

The right hand side of the detection function equation is stored as a string
variable, DFS. This section converts DFS into an executcable BASIC assignment
statement and executes that statement. A detailed explanation of this subroutine is

found in the Formula Tokenization Section in Chapter 2.

F. SAMPLE PROBLEMS
Examples 1-6 which follow have the following characteristics in common.
¢ They use a target location distribution that is BVN(0, 0, 252, 252, 0), except for
Example 6 in which Pxy= S.
¢ All measurements are in kilometers and are in the coordinate system of the target
location distribution.

¢ All confidence intcrvals are calculated with a=.0S5.
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¢ All Monte Carlo simulations were done with 5,000 repetitions.
e All sensors, deterministic or probabilistic, have a Icthal radius of twenty and
therefore a lethal area of 400x.
1. Example 1
This example is of a single cookie-cutter sensor located at (0,0) with a lethal
radius of 20. The input file and diagram of sensor coverage is at Figure 3.15. The
closed form solution may be calculated using Equation 3.8.

2,52 yJI
Py=1-€T7207 = 1. 20527259 = 27385 (eqn 3.8)
13252500
000002000 » SENSOR COVERAGE (SHACED AREAS)

16T LOC 1S DIST BVNI(O,0,625,625,0)
) LOCATION DISIRIBUTION (ocTteo Lines)
o

Figure 3.15 Input File And Sensor Coverage Diagram For Example 1.

The probabilities of detection computed by the various computational
techniques and calculation times were as follows.
® Closed form: .27385
¢ Numerical integration: .27252; 3 minutes, 24 seconds
. ¢ Monte Carlo simulation: .27640 £+ .0124; 4 hours, 22 minutes.
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“ 2. Example 2
2: This example is of a single Carlton sensor located at (0,0) with a lethal area
12y equivalent to the cookie-cutter sensor in Example 1; i.c., b=20/(2"") = 14.14214. The
et . . : . -
K input file and diagram of sensor coverage is shown in [Ref. 5:page 5]. The closed form
- solution is at Equation 3.9. Because the sensor is located at the origin and 6, = O,
:{: Equation 3.9 simplifies to Equation 3.10 for this example.
A
A
~ g
(24}
oy 11252500 Cariton Sensor (b=14.1421) Located At (0,0)
b 0000 0 14.16216
i:‘?
N e |}
S S
LA™ g 0.8 ;
. g os}
LN -
: “:; .g‘ 0.4 L
)] 3
iy 202}
0% ol =
: %
DAL %,
[\ Nl
[\ %
S
™
»
e
LA
.'
Ny
o

Figure 3.16 Input File And Sensor Coverage Diagram For Example 2.

' Ty T iy

The probabilities of detection computed by the various computational
techniques and calculation times were as follows.
¢ Closed form: .242424

¢ Numerical Integration: None

.

vy
L

X

(3

L g
e

S ¢ Monte Carlo simulation: .2452 £ .0119; 3 hours, 44 minutes.

1o Py=7v e 3(8,+9,) (eqn 3.9)
o2 where y = b2/[(b2+62,)(b%+62,)1°5,
. 8y = K2/(6F + 0%), and 8, =2 /(b2 + o)
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Py = b2(b2 + 62) = 14.1922(14.1422+25%) = 242424 (eqn 3.10)

3. Example 3

This example is for a single cookie-cutter sensor offser ar (10,10) with a lethal
radius of 20. The input file and diagram of sensor coverage is shown in Figure 3.17.
There is no closed form solution for oflset cookie-cutter sensors.

13252500

10100002000 » SENSOR COVERAGE (SHADED ARERS)

w TET LOC 1S DIST BVN(O,0,625,825,0)
LOCATION DISTRéBUTIGN (COTIED LINES)

Figure 3.17 Input Iile And Sensor Coverage Diagram For Example 3.

The probabilities of detection computed by the various computational
techniques and calculation times were as follows.
e Closed form: None.
¢ Numerical integration: .2400; 2 minutes, 51 seconds.
¢ Monte Carlo simulation: .24160 £ .01187; 2 hours, 57 minutes.
4. Example 4
This example is for a single Carlton sensor offset at (10,10) with a lcthal arca
cquivalent to the cookie-cutter sensor in Example 3, i.e. b=20/(2‘5)= 14.14214 The

input file and diagram of sensor coverage is shown in Figure 3.18. The equation for
the closed form solution is shown in Equation 3.9.




B
e
N
Ay,
i 11252500 Cariton Sensor (b=14,1421) Locoted At (10,10)
B 10 10 0 0 0 164.14214
i
¢ § T
': i 0.3 i
R 8 os}
K\ 5 t
W Zoal
V 2 0.2 l:
I' %c’%g‘o -------
[ ) e
\ %
) qt’o
3:' e 20
o Q “atril
ho,':;?g%ord?r\zzges Oe BVN Tgt Distr bution
L} X 9
)
&
e
Figure 3.18 Input File And Sensor Coverage Diagram For Examplc 4.
i The probabilities of detection computed by the various computational
o
4; techniques and calculation times were as follows.
b e Closed form: .2147S
¢ Numerical integration: None i
'.;: e Monte Carlo simulation: .2138 * .0114; 3 hours, 15 minutes.
~\.: 5. Example 5
I\
ot This example is for a single convergence zone sensor iocated (0,0) with a lethal
. area equivalent to the sensors in Examples 1-4. The sensor detects all targets at ranges
5 less than four, detects no targets between four and 30, detects all targets between 30
5'5: and 35.83, and detects no targets beyond 35.83. The input file and sensor coverage
: diagram is shown in Figure 3.19. The closed form solution is found by using Equation
e 3.8 to calculate Py in circles of radii 4, 30, and 35.83. Then Py = Pd(4) - P4(30) +
j: P4(35.83).
" The probabilities of detection computed by the various computational
..
: techniques and calculation times were as follows.
= ® Closed form: .141463 .

N ® Numerical integration: .14128
¢ Monte Carlo simulation: .1416 £ .0097; 2 hours, 59 minutes.
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i 13252500
)
X . SENSOR COVERRGE (SHRCED ARERS)
o 00000430 35.83295 w T6T LOC 1S DIST BVN(D,0,623,625,0)
' LOCATION CISTRIBUTION (DOTfED LINES)
: o
v
‘!
1%
[y
-
9"
K\
)
s
!
.I
P‘l
3
\
R Figure 3.19 Input File And Sensor Coverage Diagram For Example 5.
N 6. Example 6
| . This example is for four convergence zone sensors with mean locations at
1%
- (10,10), (-10,-10), (10.-10), and (-10,10). These sensors havc convergence zones equal
to that of the the sensor in Example 5. Sensor locations are distributed BVIN with |
A )
o T _ _ — . . -
: and p, as indicated above and ¢,,=0, =3, and Pu,v .7. The input file is at Figure
s 3.20. There is no closed form solution for this example.
)
s |
§
o 32525 .51
. 10 10 3 3 .7 4 30 35.83295
K>, -10 -10 3 3 .7
o~ 10 -10 3 3 .7
N -10 10 3 3 .7
0
\
¥ Figure 3.20 Input File For Example 6.
& The probabilities of detection computed by the various computational
X techniques and calculation times were as follows.
b P
. ¢ Closed form: None
‘ ¢ Numerical integration: None
b
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o Monte Carlo simulation: .4570 £ .01381; 2 hours, 53 minutes.
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1V. KALMAN FILTER PROGRAM

A.  GENERAL

: This program successively updates an estimate of the state of a system, p, based
i upon a series of medsurements, {. Vectors ft and { need not have the same dimensions.
The program makes provision for changes in the system state between mecasurements in
»‘ accordance with a linear system model. Covariances between elements of M and
: between elements of § are also accounted for by the program.
¢ The purpose of this chapter is to describe an implementation of a Kalman filter
on the M100. A fuller explanation of the mathematical background behind Kalman
filters may be found in References 6 and 7. The notation in the following program is
; similar to the notation used in Reference 6 to facilitate comparison of the
> mathematical theory and computer implementation.
" The state of the system, X, is assumed to be a multivariate normal random
'.‘ variable, X ~ N(j,X), with system noise, W ~ (pw,Q), and mcasurement noise, V.~
j (n,R). @ is the matrix which models the linear change in X between measurcments.
H is the matrix which shows the linear relationship between the measurement and the
system state, i.e. how the measurement depends on the system statc.
N The Kalman filter recursively updates pt by repeating two steps, measurcment and
" movement. The measurement step calculates the Kalman gain, enters a new
; measurement, and updates p and X based on that measurement. The movement step

updates p and X based upon the system model.

o B. EXPLANATION OF VARIABLES
P ¢ Bl is the intermediate matrix for inversion of C2,

:,, o CI{MD,MD) and C2(MD,MD) arc the matrices which hold intermediate results
- of matrix calculations.

H is the matrix showing the relationship between measurements and the system
state.

G xX]
®

e [1,12, and I3 are loop counters.
K(NX,NZ) 1s the Kalman gain matrix.
e MD is the maximum of NX and NZ.

: ¢ MU(NX) 15 the current estimate of the system state.
N . . .
\ e MV(NZ) is the mecan of measurcment noise.
L . . .
5 * MW(NX) is the mcan of system noisc.
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! e NX is the number of elements in the system state vector.
~J-:; y
. . .
o _':%- ® NZis the number of elements in the measurement vector.
4
:j ¢ PH(NX,NX) is the matrix, ¢, modeling the linear change in the system state
ol g g 3
. between measurements.
" ~. ¢ Q(NX,NX) is the covariance matrix of system noise.
Ny , . . . . .
. &;-' o R(NZ,NZ) is the covariance matrix of measurement noise.
*‘-.;,' ¢ SG(NX,NX) is the covariance matrix of the system state.
Ras e Z(NZ) is the vector holding the current measurement, &.
g
)'.l
v“:h
oL C. INPUT
w-:ﬁ:j The operator must create a RAM file, KALIN.DO, which contains the program
R input. KALIN.DO must contain the following parameters and matrices in order.
o ¢ NX and NZ, the number of elements in p and { respectively.
AT . . . .
AN ¢ Matrix PH(NX,NX), the system model matrix, .
ANRY
::.‘:-3 * Vector MW(NX), the mean of system noise, .
’ "- . . bl . . 3
VY o Matrix Q(NX,NX), the covariance matrix of system noise.
-}-:. e Matrix H(NZ,NX), the matrix showing the relationship between p and C.
S ® Vector MV(NZ), the mean of measurement noise, f,,.
'-'.-:':‘ ' e Matrix R(NZ,NZ), the covariance matrix of measurement noise.
‘ e Vector MU(NX), the initial estimate of the system state.
ey . N‘latri¥SG(NX,NX), the initial estimate of the covariance matrix of the system
A state, X.
R N . . : .
el After the initial estimate of the system state is entered from the input file,
' ':r KALIN.DO, the program will prompt the operator for measurements and changes to
‘ the H matrix to be entered from the Kevboard.
s
g .
5 D. OUTPUT
E AN
".' All output goes to the screen of the M100. After the measurement step the
program displays the updated Kalman gain matrix, the estimated system state, p+,
- and the covariance matrix, X +. After thc movement step the program displays the
:_-‘:j estimate of the system state, M-, and covariance matrix, -, just prior to the next
-
e measurement.
'h.,. v
— E. EXPLANATION OF PROGRAM
::-Tj'.‘ A complete program listing is located at Appendix B.
1
o
N
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1. Initialization/Input, Figure 4.1

100 CLS:PRINT"#exxxKALMAN FILTERM%¥%%' :PRINT" Input Data Being Read"
110 OPEN"KALIN"FORINPUTAS1:ONERRORGOT09900

120 INPUTH1,NX,NZ:IFNX<NZTHENMD=NZELSEMD=NX

125 DIMPHINX,NX),MHINX ) ,QUNX,NX ), HINZ,NX I ,MVINZ ) ,RINZ,NZ ) ,MUINX ) ,SGINX,NX )
126 DIMC1(MD,MD),C2(MD,MD),KI(NX,NZ},B1INZ+1,NZ%2)

130 FORI1=1TONX:FORIZ2=1TONX:INPUT#1,PH(I1,TI2):NEXTI2:NEXTI1

132 FORI1=1TONX:INPUTH#1,MW(I1):NEXTI1

134 FORI1=1TONX:FORI2=1TONX:INPUTH#1,Q(I1,I2):NEXTIZ:NEXTI1

136 FORI1=1TONZ:FORIZ2=1TONX:INPUT#1,H(I1,12):NEXTI2:NEXTI1

138 FORI1=1TONZ:INPUT$#1,MV(I1):NEXTI1

140 FORI1=1TONZ:FORI2=1TONZ:INPUT#1,R(I1,I2):NEXTI2:NEXTI1

142 FORI1=1TONX:INPUT#1,MU(I1)}:NEXTI1

144 FORI1=1TONX:FORIZ2=1TONX:INPUT#1,SG(I1,X2):NEXTI2:NEXTI1

145 CC=0:CLS:PRINT"Initial SG As Input Check:":G0OSUB532

Figure 4.1 Initialization and Input Section.

Line 110 opens the input file, KALIN.DO and branches the program to line
9900 if an error occures. Line 120 enters NX and NZ and calculates MD. Lines 125
and 126 dimension the matrices in the program. Lines 130-144 enter the matrices from
KALIN.DO as described in the input section above. Line 145 initializes the
measurement counter, CC, and prints the last input matrix, SG, as a check on input
accuracy.
2. Measurement Block, Lines 150-387

" Measurement block matrix equations for updating K, p, and X are listed in
Equations 4.1, 4.2, 4.3,

K = THYHZH! + R)! (cqn 4.1)
h=p+ KZ-n,-Hp) (eqn 4.2)
T = (1-KIDE | (eqn 4.3)
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G. Entering A New H Matrix, Figure 4.2

150 CLS:PRINT*" 3 NMMEASUREMENT BLOCKI ¥k 33"

160 PRINT"Current H ":GOSUB540

162 INPUT"Enter New H ? l=Yes, 0=No:'3Z9:IFZ9=0THEN170
165 'Enter A New H

167 FORI1=1TONZ:FORI2=1TONX

168 PRINT"Enter Row"3Il3", Column"3I23"0f H :"3

169 INPUTH(I1,I2):NEXTI2:PRINT"":NEXTI1

Figure 4.2 Entering a New H Matrix.

Some Kalman filter problems require a different H matrix for each
measurement. This section permits such a matrix to be entered. Line 160 prints a
header and calls the subroutine which prints the current H matrix. Line 162 asks the
operator whether a new [ matrix is required and branches the program appropriately.
Lines 167-169 prompt the operator to fill the new H matrix row by row.

b. Kalman Gain Calculation, Figure 4.3

170 'CALC KALMAN GAIN

171 'MULTYT SG H t, INTO C1

172 FORI1=1TONX:FORI2=1TONZ:C1(X1,12)=0:FORI3Z=1TONX

174 C1(I1,I2)=(SG(I1,I3)*H(I2,I3))+C1(I1,12):NEXTIZ:NEXTI2:NEXTI1
180 'MULT H SG H t , INTO C2

182 FORI1=1TONZ:FORI2=1TONZ:C2(I1,1I2)=0:FORI3=1TONX

184 C2(I1,I2)=(H(I1,I3)%®CL{I3,I2))+C2(I1,I2):NEXTI3:NEXTI2:NEXTI1
200 'ADD R INTO C2Z

202 FORI1=1TONZ:FORI2=1TONZ:C2(I1,I2)=C2{I1,I2)+R(I1,12)

203 NEXTIZ:NEXTI1

210 'INVERT C2

215 GosuUB9800

220 'MULT Cl1 C2 INTO K

222 FORI1=1TONX:FORI2=1TONZ:K{I1,I12)=0:FORI3=1TONZ

224 K(I1,I2)=(C1{I1,I3)%C2(I3,I2))+K(I1,I2):NEXTI3:NEXTI2:NEXTI1

Figure 4.3 Kalman Gain Calculation.

This section updates the Kalman gain matrix, K, in accordance with
Equation 4.1. Lines 171-174 multiply T by H' and place the result in matrix Cl.
Lines 180-184 multiply H by ZH" and place the result in matrix C2. Lines 200-203 add
R to (HZHt) and place the result in C2. Line 215 calls the subroutine which inverts
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(HZH' + R). Lines 220-224 multiply ZH® by (HZH' + R)'l, producing an updated
Kalman gain matrix, K.
¢. Enter A Measurement and Update pt, Figure 4.4

250 '066exUPDATE MU- TO MU+H66¢

251 'MULT H My- INTO C1

252 FORI1=1TONZ:C1(I1,1)=0:FORI3=1TONX

254 CI(I1,1)=(H(I1,I3)*MU(I3))+CLl(I1,1):NEXTI3:NEXTI1
260 'ADD MV + H MU-

262 FORI1=1TONZ:C1(I1l,1)=Cl(X1,1)+MV{(I1):NEXTI1

270 'INPUT A NEW MEASUREMENT

272 CC=CC+1:CLS:PRINT"Measuraemant #"3CC3":"

273 FORI1=1TONZ:PRINT"Enter Element”;Il1;"0Of Measurement:";
276 INPUTZ(I1):NEXTI1 .

280 'SUBTRACT C1 FROM Z, INTO C1

282 FORI1=1TONZ:C1l(Il,1)=Z(I1)-Cl(I1,1):NEXTI1

290 'MULT K Cl1 1INTO cC2

292 FORI1=1TONX:C2(I1,1)=0:FORI3=1TONZ

294 C2(I1,1)=(K(I1,I3)%C1(I3,1))+C2(X1,2):NEXTI3:NEXTI1
300 ‘ADD C2 + MU- TO UPDATE TO MU+

302 FORIL1=1TONX:MU(I1)=C2(I1,1}+MU(I1):NEXTI1

Figure 4.4 Enter Measurement And Update The Estimate of p.

This section enters a new measurement, Z, from the keyboard and updates
the estimate of p in accordance with Equation 4.2. Lines 251-254 multiply H by p and
place the result in C1. Line 262 adds p, + Hp and places the result in Cl. Lines
272-274 increment the measurement counter and allow the operator to enter the new
measurement, Z. Line 282 subtracts (u, + Hp) from Z, and places the result in CI.
Lines 292-294 multiply the Kalman gain, K, by (Z - p,, - Hp), and place the result in
C2. Line 302 adds p to K(Z - p, - Hp), producing the revised estimate of .

d. Updating X, Figure 4.5

This section updates the estimate of X using Equation 4.3. Lines 322-326
multiply the Kalman gain, K, by H, subtract the result from the identity matrix, I, and
place the result in C1. Lines 352-354 multiply (I - KH) by X and place the result into
C2. This result, the updated L, is then copied into SG by line 362.

e. Printing The Updated K, p, And X, Figure 4.6

Lines 375-377 print a hcader and call the printing subroutine for the
updated Kalman gain. Lines 380-382 print a header and call the printing subroutine
for the updated estimate of the system state, p. Lines 385-387 print a header and call
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A2y
LAY
TOhY! 320 'MULT K H & SUBTR FROM I , PUT IN Cl
KRl 322 FORI1=1TONX:FORI2=1TONX:C1{I1,I2)=0:FORI3=1TONZ
324 C1(I1,I2)=(K(I1,I3)*H(I3,I2))+C1(I1,I2):NEXTI3:C1(I1,12)=-CL(I1,12)
RS 326 NEXTI2:NEXTI1
Ny 328 FORI1=1TONX:C1(I1,I1)=14C1(I1,I1):NEXTI1
o 350 'MULT LAST RESULT BY SG , INTO C2
"o 352 FORI1=1TONX:FORI2=1TONX:C2(I1,12)=0:FORI3=1TONX
s 354 C2(I1,12)=(C1(I1,I3)%SG(I3,12))4C2(I1,12):NEXTI3:NEXTI2:NEXTI1
2SN 360 'PUT C2 INTO SG
. 362 FORI1=1TONX:FORI2=1TONX:SG(I1,12)=C2(I1,I2):NEXTI2:NEXTI1
.
ot
[}
e‘\%l
§ . . . .
! &, Figure 4.5 Updating The System Covariance Matrix, X.
il '
R
2 A
v Lo
4, -~ .
O 375 CLS:PRINT"Kalman Gain, K(i,j) After"
5y 377 PRINT"Measurement #"3CC:GOSUB510
;;- 380 CLS:PRINT"Estimate Of System State, MUli)+ After”
- 382 PRINT"Measurement #"3;CC:GOSUB520
385 CLS:PRINT"Estimate Of Covar, SG(i,j)+ After"
N 387 PRINT"Measurement #“3CC:G0SUB530
-.}-.‘
o
fy '.‘\\:“-:
B . .. . .
"Ly Figure 4.6 Printing The Updated Kalman Gain, g, And X.
-' “. . . . . . .
SO the printing subroutine for the updated estimate of covariance matrix of the system
P
}‘": state, X.
LAY
v‘ 3. Movement Block, Lines 400-490
Movement block matrix equations for updating p and X are listed in
LN .
) Equations 4.4, and 4.5.
¢ ,‘."n'i
alad
AJ
e = + 4.4
A p= op Ry (eqn 4.4)
e
W L =¢Z¢'+Q (eqn 4.5)
J'_J
R
o a. Updating The Estimate of p, Figure 4.7
vy Lines 422-424 multiply ¢ by p and place the result in Cl. Linc 432 adds
s
SN By, to @n, producing the updated estimate of p just before measurement CC + 1.
%N
;l "%
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P
! 400 CLS:PRINT " #%xxxusnxMOVEMENT BLOCKMx "
; 410 ‘'Update MU(CC)+ to MUICC+1)-
. 420 'MULT PH MU , PUT IN C1
422 FORI1=1TONX:C1(I1,1}=0:FORI3=1TONX
I 426 C1(I1,1)=(PHITI1,I3)%MU(I3))+C1(I1,1):NEXTIZ:NEXTI1
» 430 'ADD Cl+ MA , INTO MU
> 432 FORI1=1TONX:MU(I1)=C1(I1,1)+MA(I1)}:NEXTI1
+
.ﬁ‘ .
Y
b, Figure 4.7 Updating The Estimate of p.
v
o b. Updating X, Figure 4.8
»
)
G
I 440 '%*UPDATE SG
- 450 'MULT PH SG , INTO C1
i %52 FORI1=1TONX:FORI2=1TONX:C1(I1,12)=0:FORI3=1TONX
n 456 C1(I1,I2)=(PH(I1,I3)%SG(I3,12))+C1(11,12):NEXTIZ:NEXTI2:NEXTI1
o 460 'MULT €1 PH t, INTO C2

462 FORI1=1TONX:FORI2=1TONX:C2(I1,I2)=0:FORI3=1TONX
464 C2(I1,I2)=(CL(I1,I3)%PHIIZ,I3))1+C2(I1,12):NEXTIZ:NEXTIZ2:NEXTI1
K, 470 'ADD €2 + Q = SG
' 472 FORI1=1TONX:FORI2=1TONX:SG(I1,I2)=C2(I1,12)+Q(I1,I2)
1§ 473 NEXTIZ:NEXTIL
I}

Figure 4.8 Updating L.

Lines 452-454 multiply ¢ by X and place the result in Cl. Lines 462-464
h multiply ¢X by @' and place the result in C2. Lines 472-473 add Q to ozo!,
producing the updated estimate for X just before measurement CC+ 1.

T4y e e,

-

~

., c¢. Printing The Updated p And X, Figure 4.9
"
>
R <
i)
; l
480 PRINT"Estimate Of System State, MU(I)-"
o 482 PRINT"Before Measurement #'"3;CC+1:GOSUB520
“,. 485 CLS:PRINT"Estimate Of Covar, SG(I,J)- Bafore"
-, 487 PRINT"Measurement #"3CC+1:G0SUB530
D 490 GOTOl60
30"
. &'
-, Figure 4.9 Printing The Updated p And X.
B~
-
{ “f
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:.0" Lines 480-482 print a header and call the printing subroutine for the
v . . .
,‘:.‘l updated estimate of the system state, p. Lines 485-487 print a header and call the
e . . . . . .
.3.:0. printing subroutine for the updated estimate of the system state covariance matrix, X.
)
) Line 490 branches the program back to the beginning of the measurement block.
pon 4. Printing Subroutines, Figure 4.10
f."_:‘_ Lines 500-554 contain subroutines which print the Kalman gain matrix, g, X, |
‘el the H matrix, or the C2 matrix.
,\\:
A
_:-(
5 500 'PRINTING SUBROUTINES
e 510 'PRINT KALMAN GAIN, K .
e 512 FORI1=1TONX:FORI2=1TONZ:PRINTUSING"#####3t. ##" 3K(I1,12 )5 :NEXTI2
516 PRINT"*:NEXTI1:INPUT"Hit ENTER To Continue:";29:RETURN
520 'PRINT MU
o 522 FORI1=1TONX:PRINTUSING"H##### . $5#" ;MU(I1 )5 :NEXTI1: PRINT""
S 526 INPUT"Hit ENTER To Continue:'3Z9:RETURN
v 530 'PRINT COVAR MATRIX, SG
" 532 FORI1=1TONX:FORI2=1TONX:PRINTUSING"###:##. #5#"3SG(I1,12)5 :NEXTI2
W 536 PRINT"“:NEXTI1:INPUT"Hit ENTER To Continue:"3Z9:RETURN
h 5460 'PRINT H
e 562 FORI1=1TONZ:FORI2=1TONX: PRINTUSING" #####% . ##" sH(I11,12)) :NEXTI2
544 PRINT"*:NEXTI1:RETURN
a 550 PRINT" C2 MATRIX:"
ey 552 FORI1=1TOA:FORI2=1TOB:PRINTUSING"######s. #5"3C2(11,12)3 :NEXTI2
AR 554 PRINT"*:NEXTI1:INPUT"Hit ENTER To Continue:"3Z9:RETURN
pr
-
W
\\
oy Figure 4.10 Printing Subroutines.
R
o
> 5. Inversion Subroutine For C2, Figure 4.11
_;. This subroutine is essentially the same as the matrix inversion subroutine in
35!
the matrix algebra program discussed in Appendix E. It has been abbreviated to invert
:l‘: only matrix C2 instead of inverting several matrices of various dimensions as in
P . . . .
ROR Appendix E. This subroutine also does not calculate the determinant of C2 to test for
) . - . . .. .
L invertability. If C2 is not invertable, an division by zero error will occur and the
B . . . . . . .
program will branch to the error identification section. A detailed explanation of how
; :‘_ the matrix inversion subroutine functions is located in Appendix E.
‘ L} 4
: 1;: 6. Error Identification, Figure 4.12
o
o, Line 9900 prints a message indicating that C2 is not invertable. Line 9900 is
based upon the assumption that a division by zero error in the inversion subroutinc
‘» means that C2 is not invertable. Line 9905 prints the error code and linc number of
,_-: other errors. See page 217 of Reference 1 for an explanation of error codes.
YOS
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9800 °'INVERT C2

9815 FORI1=1TONZ:FORI2=1TONZ:B1l(I1,X2)=C2(I1,X2):NEXTI2:NEXTI1
9820 FORI1=NZ+1TO2x%NZ:FORI2=1TONZ

9822 IFI1=I2+NZTHENB1(I2,I1)=1ELSEB1(I2,I1)=0

9825 NEXTIZ:NEXTI1

9830 FORI1=1TONZ

9840 ML=1/B1(I1,I1):FORI3=1TO2%NZ:B1(I1,I3)=B1(I1,I3)*ML:NEXTI3
9862 IFI1=NZTHEN9865

9845 FORI2=I1+1TONZ:IFB1(I2,I1)=0THEN9860

9850 ML=-Bl(I2,Il)

9855 FORIZ=I1TO2%NZ:B1(I2,13)=B1(I2,I3)+(ML*B1(I1,I3)}:NEXTI3
9860 NEXTIZ:NEXTI1

9865 FORI1=NZTO2STEP-1

9870 FORI2=I1-1TQ1STEP-1:IFB1(I2,I1)=0THEN9885

9875 ML=-Bl(I2,I1)

9880 FORI3=1TO2*NZ:B1(I2,I3)=B1(I2,I3)+(ML*B1(I1,I3)):NEXTI3
9885 NEXTI2:NEXTI1

9890 FORI1=1TONZ:FORI2=1TONZ

9895 C2(I2,I1)=B1l(I2,I1+4NZ):NEXTI2:NEXTI1

9897 MI=1:RETURN

Figure 4.11 Inversion Subroutine For C2.

9905 PRINT“Error Code'"3ERR;"In Line"3ERL:END

9900 IFERL>9800ANDERR=11THENPRINT"!!'ERROR: C2 1Is Not Invertable!!!":END

Figure 4.12 Error [dentification.
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V. MODELS OF COMBAT USING LANCHESTER EQUATIONS

. A. GENERAL
: This program is an example of a time step force attrition simulation using
Lanchester equations. The scenario is that there are two sides, refered to hereafter as

\ the attacker and the defender.’ The battle may be broken into phases if some model
parameters change during the course of the battle. Each side has a fixed number of
weapon types throughout the battle. The number of attacking and defending weapon
tvpes may be different. The following characteristics must be specified for each
weapon type on each side and do not change over the course of the battle.

® The number of weapons at the start of the battle.

* The break point, i.e. the fraction of the starting number of weapons which, if
4 rcached, would cause the battle to end. For éxample, if the attacker would
4 withdraw if 50% of a certain weapon type was lost, then the breakpoint for that

weapon type would be 0,

* The Lanchester weapon characteristic, 1.e. whether it is a square law, linear law,
loganthmic law weapon, or a hybrid.

The following characteristics of each weapon type may change from phase to phase of
the battle.

Tate bR

¢ The time required to complete that phase.
N ® The rate at which replacements arrive for each weapon type.

A ¢ Attrition cocflicients, i.e. the rate at which a weapon type is attritted by cach
. opposing weapon type in a particular battle phase.

If there arec not more than five weapon types per side, the program prints a dynamic
display to the M100 screen showing for each weapon type the fraction of starting
2 strength tonat has survived and the breakpoint. Regardless of the number of weapon
types, the program creates an output file which shows the number of survivors at the
end of each phase, which weapon reached its breakpoint first, and the number of

survivors at the end of the battle.

-
-BwVateal g

3 R . .
. “The terms attacker and defender are arbitrary and are used only for notational
purposcs.
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B. REPRESENTING LANCHESTER CHARACTERISTICS OF EACH WEAPON

The program includes provisions for calculating attrition with traditional

Lanchester square law and linear law equations or using a Helmbold equation.

Traditional Lanchester attrition uses different functions for different types of attrition.

Ca The linear law functions (see Equations 5.1) for changes in strength with respect to
N . .

‘\- . time are used to model fire that is aimed at a general area in which targets are belicved
SO to be located An example of a linear law weapon would be artillery fire without

correction by an observer.

s dx/dt

= .axy, and (eqn S.1)
f. dy/dt = -byx ) ’

The square law functions (see Equations 5.2) are used for fire that is aimed at a point

Iy instead of a general area.

\j:

.‘.j dx/dt = -ay, and (eqn 5.2)

‘ dy/dt = -bx

}_' The logarithmic law functions (see Equations 5.3) are used to model non-combat losses

-::: such as disease.

3

) dx/dt = -ax, and (eqn 5.3)

3% dy/dt = -by

f: The reasons for using these equations for modeling these types of attrition are

-, explained in {Refl. 9:Chapter 2]. The limitation of using Equations 5.1, 5.2, and 5.3 is

’ that they restrict the model to three discrete weapons types. However, there may be

'; weapons that do not fall cleanly into any of the three weapon types. For example,

:Sj artillery fire that is corrected by an observer may have a mixture of linear law and

" square law characteristics. The traditional Lanchester equations also assume that the
full fire power of all the weapons on one side can be brought to bear against all the

:" targets on the opposing side. However, in battles where one side vastly outnumbers

,‘ the other, or when there are significant terrain masking or reaction time effects, this

g‘ assumption is not valid. To account for these limitations, R. Helmbold proposecd a sct

. of modified Lanchester equation in Reference 8. Helmbold's equations and their

_:f: empirical validation are also discussed in [Ref. 9:pp. 174-181 and Footnote 2.40]. The ;

\ special cases of the Helmbold equations used in this program are those listed as "

:'. - Equations 5.4.

N 47

E

R

r"‘ "'4' — -.‘V'.i‘, .ﬁ' Y .
K ‘!’n'.l'e.\‘*!“l‘l ll“"-"!’\"ﬁl’ﬂﬁ'ﬂ. R S



dx/dt = -a(x/y)‘oy = .axWx!-@ (eqn 5.4)
dy/dt -b(y/x)mx = -bymxl'w
They include an additional factor, (x/y)w or (y/x)w. If =1, the result is the

logarithmic law equation. If @ =0, the result is the square law equation. If w=.5, the
result is an equation which behaves quite like the linear law equation. ® may be set at
any value between zero and one to characterize weapons which do not fall neatly into
one of the discrete weapon types.

In the traditional Lanchester linear law equation dx/dt varies proportionately to
the number of X survivors and the number of Y survivors. In the Helmbold equation
when o= .5, dx/dt varies proportionately to the square root of the number of X and Y
survivors. If dx/dt were equal for the Lanchester linear law and the Helmbold
equation with @=.5, then aj xy = aH(xy)'5 where aj and ayy are the Lanchester and
Helmbold attrition coefficients respectively. Thus, apy = aL(xy)'s. Therefore, there is
no single value of apy that will be equivalent to a value of aj throughout an entire
simulation because x and y are changing. However, the general shapes of the functions
ky= xy and k2=(xy)'5 are similar enough that they cause attrition to behave about
the same in both circumstances. A plot of contour lines of dx/dt = 1, 2, and 3 for
linear law and comparable Helmbold equations is shown in Figure 5.1 where agy=.02.
and ap = .0002. The contour dx/dt=2 is the same for both formulations.® For
dx/dt < 2 the Helmbold equations produce smaller attrition rates than do the traditional
Lanchester equations. For dx/dt>2 the Helmbold equations produce larger attrition
rates than do the traditional lanchester equations.

The program includes BASIC code for both the traditional Lanchester and
Helmbold equations. To use the traditional Lanchester equations, lines 223-224 and
233-234 should be active, and lines 225 and 235 should be commented out or deleted.
To use the Helmbold equations, lines 225 and 235 must be active, and lines 223-224
and 233-234 must be commented out or delcted. The weapon type parameters in the

input file must match the equations which are active in the program.

6The Helmbold coutours were jittered slightly to avoid being overprinted at
dx/dt=2 by the Lanchester contour.
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Lanchester—Bold; Helmbold—Not Boild

80 120 160 200

Number Of Defenders

40

40 80 120 180 200
Number Of Attackers

C.

Figure 5.1 dx/dt For Lincar Law and Helmbold Equations.

EXPLANATION OF VARIABLES

AA(NAND) 1s a matrix of the rates at which attacking weapons by type are
attritted by each type of defending weapon in a particular phase of the battle.
AB(2,NA) is the matrix for the breakpoints of each attacking weapon type.
Elements of the first row, AB(1,i), are the breakpoints expressed as fractions of
the starting total, i.e 0 < AB(1,i) < 1 fori=1,2,3..NA. Elements of the second
row, AB(2,1), are breakpoints expressed as numbers of weapons of type i, 1.e. 0 <
AB(2,)) = SD(i) fori=1,2,3..NA.

AT(NA) is a vector of tuning parameters that specify the Lanchester
characteristics of each attacking weapon type. If line 235 is active and lines 233
and 234 are commented out, then attrition is calculated using the Heclmbold
equation, see equation 5.4. AT(i) is @ and equals O for an aimed fire/square law
weapon, .5 for a weapon similar to a Lanchester area fire/linear law weapon, and
1 for a source of non-combat/logarithmic law casualties to the defender. If lines
233 and 234 are active and line 235 is commented out, then attrition is calculated
using standard linear law and square law Lanchester equations, see equations 5.1

and 5.2. AT(i) cquals 1 for linear law weapons and 2 for square law weapons.
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¢ BB(ND,NA) is a matrix of the rates at which one item of each attacking weapon
type attrits each defending weapon type in a particular phase of the battle.

e DB(2,\D) is the matrix for the breakpoints of each defending weapon type.

e Elements of the first row, DB(1,}), are the breakpoints expressed as fractions of
“E;r:: the starting total, i.e 0 = DB(l,)) = 1 for j=1,2,3..ND. Elements of the second
;;‘::’ row, DB(2,j), are breakpoints expressed as numbers of weapons of type j, i.e. 0
B < DB(2,j) = SD(j) forj=1,2,3..ND.
o e DT(ND) is a vector of tuning parameters that specify the Lanchester
}_5-\ characteristics of each defending weapon type. If line 225 is active a..d lines 223
::& and 224 are commented out, then attrition is calculated using the Helmbold
T equation, see equation 5.4. DT(j) is ® and equals 0 for an aimed fire/square law
e weapon, .5 for a weapon similar to a Lanchester area fire/linear law weapon, and
‘-‘: 1 for a source of non-combat/logarithmic law casualtics to the attacker. If lines
.r:‘( 223 and 224 are active and line 225 is commented out, then attrition is calculated
' ".':.‘; using standard lincar law and square law Lanchester equations, see Equations 3.1
vt and 5.2. DT(j) equals 1 for linear law weapons and 2 for square law weapons.
\: e 11,12,13, and 14 are loop counters.
:\ : e MD is the maximum of NA and ND.
2 ¢ NA is the number of attacking weapon types.
- ¢ ND is the number of defending weapon types.
“::: ¢ NI is the number of intervals into which a phase of battle is broken.
_-:jf e NP is the number of phases of battle.
YN e OA(NA) is the vector of horizontal pixel positions for the current screen
. representation of the fraction of surviving attackers by weapon type.
{i::::‘ e OD(ND) is the vector of horizontal pixel positions for the current screen
‘:.2 representation of the fraction of surviving defenders by weapon type.
NN e QA(2,NA) holds the surviving number of each attacking weapon type. QA(l,i) is
=5 the number at the start of a time increment, DT. QA(2,i) is the number after
i attrition by each defending weapon is subtracted.
: ::13 e QD(ND) holds the surviving number of each defending weapon type after
‘ attrition by each attacking weapon is subtracted.

e SA(NA) is the number of attacking weapons by type at the start of the battle.
e SD(ND) is the number of defending weapons by type at the start of the battle.
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: ¢ TF is the termination flag. TF=0 means a breakpoint has not been reached.

W TF=1 means a breakpoint has been reached.

bt ¢ TP is the top pixel position for a rectangle or line drawn on the graphical display.

e TT is the total time that has elapsed in the battle up to the current time
increment. When a breakpoint is reached, or when all phases of the battle are
completed, TT is time length of the battle reported to LANOUT.DO.

‘el WP WP

D. INPUT
All input to the program is entered into a RAM file, LANIN.DO. The following

parameters must be entered in the following order and do not change between battle
4 phases. ' | '
| e NP,NAND
. e QA(NA)
: * QD(\D)
. e AB(NA)
e DB(\D)
& e AT(NA)
e DT(ND)
The following parameters must be entered in the following order for each phase.
e TT, NI
e AR(NA)
e DR(NR)
¢ AANAND)
¢ BB(ND,NA)

An example of an input file is shown in Figure 5.2

A Sy

The situation to be simulated using the parameters in Figure 5.2 1s as follows. The
battle has two phases.

1. Parameters Common To Both Phases
The attacker has two weapon types, A, i = 1 and 2. The defender has three
weapon types, Dj, i = 1,2, and 3. The attacker starts with 200 A{’s and 100 A,'s.
The defender starts with 100 Dl's, 200 Dz's, and 100 D3’s. The battle will end when
the first attacking or defending weapon type is-attritted to 50% of its initial strength,
i.e. the breakpoint for all weapon types is .5. If this simulation is to be run using
}; traditional Lanchester equations, both attacking weapons are square law weapons. D,

is an linear law weapon, and D, and D5 are square law weapons.

EXLELS
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23
Sy 223
200 100
i 100 200 100
— .5 .5
A" .5 .5 .5
Ag¥yly 22
o 122
Y 5 50
S 11
Y .8 .8 .8
.00012 .016¢ .016
e .00018 .020 .022
_c",l:: .019 .017
,, .015 .013
o .011 .009
ahl 10 50
K .5 .5
R 6 .6 .6
.00018 .021 .024
1 .00027 .030 .033
3 o’ .0285 .0255
W .0225 0195
T2 .0175 .00135
R 7'
ol
RO
w5 Figurc 5.2 Sample Input File.
\ ek
E N .
e 2. Situation For Phase One
<t . X .
L The length of the first phase is five hours. The program will break that period
. into 50 segments for computational purposes. Replacements arrive for both attacking
O
o weapon types at an average rate of one weapon per hour. The replacement rate for all
\ .-‘. . . - .
Ko~ three defending weapon types averages .§ weapons per hour. Aj’s are attritted by each
{2 D, at a rate of .00012 per hour per surviving Al. Aq’s are attritted by each D, at a
N rate of .014 per hour. Rates at which the remaining A; are attritted by cach Dj are
:'_" listed through the end of the next line. D)’s are attritted by each Aj at a rate of .019
14 per hour. Dy’s are attritted by cach A, at a rate of .017 per hour. Rates at which the
W remaining D, are attritted by each A; are listed through the end of the next two lines.
; gl i g
3. Situation For Phase Two
SN . .
-.::«. The length of the second phase is ten hours. The program will break that
B .
N period into 50 segments for computational purposcs. Replacements arrive for both
:}:.f attacking weapon types at the rate of .5 weapons per hour. The replacement rate for
o all threc defending weapon types averages .4 weapons per hour. Ay’s are attritted by
- each Dy at a rate of .00018 per hour per surviving Al. A’s are attritted by cach D,
¢ at a rate of .021 per hour. Rates at which the remaining A, are attritted by cach Dj
‘ ’
RO
50
‘:j 52
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are listed through the end of the next line. Dy’s are attritted by each A at a rate of
0285 per hour. Dj’s are attritted by each A, at a rate of .0255 per hour. Rates at
which the remaining Dj are attritted by each A; are listed through the end of the next

two lines.

E. OUTPUT
The program produces two types of output:

® An output file, LANOUT.DO, which lists the status of each weapon type at the
end of each phase and at the end of the battle and which weapon types have
gone below their breakpoints.

e A dvnamic graphical display to the screen of the M 100 which shows the fraction
of the starting strength of each weapon type which has survived until that time
interval in the simulaton. ) :
The graphical display consists of a rectangle on the M100 scrcen for ecach

attacking and defending weapon type. Each rectangle is 100 pixels wide and five pixcls
high. Each pixel in the horizontal direction represents one percent of the starting
strength of the weapon type represented by that particular rectangle. In each rectangle
is a vertical line showing the breakpoint for that weapon type as a fraction of starting
strength. As the simulation progresses, another vertical line in each rectangle is
updated showing the fraction of survivors for that weapon type. The rectangles are
arranged in two columns, one for attacking and one for defending weapon types.
Weapon type numbers are printed to the left of the rectangles. If the replacement rate
drives the number of survivors over the starting strength for some weapon type, the
vertical line indicating the fraction of survivors will stay at the 100% level and an
asterisk will be printed to the left of the corresponding rectangle. In addition to the
rectangles there is a printed line at the bottom of the screen which tells the operator on

what phase and time interval the simulation is currently working.

F. EXPLANATION OF PROGRAM COMPONENTS
A complete listing of this program is at Appendix C.
1. Initialization Section, Figure 5.3
Line 120 sets the number of files to two and opens the input file, LANIN.DO.
Line 121 opens the output file, LANOUT.DO and enters the number of phases in the
battle, NP, and the number of attacking and defending weapon types, NA and ND.
Line 122 defines MD as the maximum of NA and ND. If both sides have five or fewer
weapons types, line 124 sets SI' = 1, indicating that the screen of the M100 is big

cnough to handle the graphical display generated during the simulation. If cither side
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100 °‘LANCHESTER TIME STEP MODEL

. 120 MAXFILES=2:0PEN"LANIN"FORINPUTAS1

" 121 OPEN"LANOUT"FOROUTPUTAS2:INPUT#H#1,NP,NA,ND
122 IFNA>NDTHENMD=NAELSEMD=ND

x;: N 126 IFMD<6THENCLS:SF=1
D) > 130 DIMAA(NA,ND),BB(ND,NA),AT(NA),DT(ND),AR(NA),DR(ND)
;a e 131 DIMQA(2,NA),QD(ND),AB(2,NA),DB(2,ND),SA(NA),SDIND),0A(NA),OD(ND)
\ W
R
o Figure 5.3 Initialization Section.
2
23 has more than five weapon types, the graphical display will not be generated. Lines
‘f:l‘(' 130-131 dimension the matrices used in the program. ' '
2. Entering Common Parameters, Figure 5.4
o
tt‘*
Wy
o 132 'Enter Initial Quantities of Wpns, Break Points And Wpn Types.
T 136 FORI2=1TONA:INPUT#1,QA(2,12):SA(I2)=QA(2,12):0A(12}=127:NEXTI2
. 135 FORI2=1TOND:INPUT#1,QD(I2):SD(I2)=QD(I2):0D(12)=238:NEXTI2
o~ 136 FORIZ=1TONA:INPUTH1,AB(1,12):AB(2,12)=AB(1,12)*QA(2,12):NEXTI2
. 137 FORIZ=1TOND:INPUT#1,DB(1,I2):DB(2,12)=08(1,12)%QD(I2):NEXTI2
Y 138 FORI2=1TONA:INPUT#1,AT(I2):NEXTI2:FORI2=1TOND: INPUT#1,DT(12):NEXTI2
AN 140 TM=0:IFSF=1THENGOSUB600
4 A ':::
3 ..j. . .
K Figure 5.4 Entering Common Paramecters.
o
.4-':' This section enters the rest of the parameters that do not change from phase
LN T . . . .
. to phase of the battle and initializes the variables controlling the graphical display.
.,; Line 134 puts the starting quantity of A, into QA(2,i) and SA(i) and scts OA(i) to 127
-;::: which indicates that 100% of A, are surviving at the start of the simulation. Line 135
'N . . .
:':t:: performs the same function for D; that line 134 performed for A;. Lines 136 and 137
3,
L. enter the fractional breakpoints for A, and Dj respectively into AB(1,i) and DB(1,)).
My Lines 136 and 137 also compute the breakpoints in terms of numbers of surviving
- . . . . .
T weapons, placing them in AB(2,i) and DB(2,j). Line 138 enters the Lanchester
T P 8 )
‘\}’E characteristic parameters, AT(i) and DT(j), for each weapon type. Line 140 sets TM,
Sy which keeps track of the time until the end of the battle, to zero. If the graphical
display to the screen is to be used, line 140 also calls subroutine 600 which scts up the
Tl
P output screen.
et
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3. Initialization For Eacl: Phase, Figure 5.5

143 FORI1=1TONP:PRINT#2,"STARTING PHASE"3Il

145 'Enter Time Spent In Phase Il and # of Intervals

146 INPUTH1,TT,NI:DT=TT/NI

150 'Enter Replacement Rates And Attrition Coefficient Matrices

152 FORI2=1TONA:INPUT#1,AR(I2):NEXTI2:FORI2=1TOND:INPUT#1,DR(I2):NEXTI2
154 FORI2=1TOMNA:FORIZ=1TOND:INPUT#1,AA(I2,I3):NEXTI3Z:NEXTI2

158 FORIZ=1TOND:FORI3=1TONA:INPUT#1,BB(X2,I3):NEXTI3Z:NEXTI2

Figure 5.5 Initialization For Each Phase.

Line 143 sets 1, the phase counter, and prints a heading to the output file.
Line 146 enters the length of the current phase, TT, and the number of intervals, NI,
into which the phase will be broken and computes the length of each interval, DT.
The choice of NI 1s a compromise between two competing objectives: accuracy and
time required to complete the simulation. As NI becomes larger, DT becomes smaller
and the simulation more closely approximates the continuous, mutual attrition that is
the basis of Lanchester equation theory. If NI is small and DT is large, then the
simulation tends to discount the attrition which takes place during a phase because the
program assumes force levels are constant throughout an interval, DT. However, if N1
1s to large, the time required to run the simulation increases linearly. The relationship
between accuracy and speed is also a function of the attrition coefficients and number
of weapon types on each side.

Line 152 enters the replacement rates for each weapon type. Lines 154-156
enter the attrition coefficients for each weapon type.

4. Attrition Calculations For A Phase, Figure 5.6

This section breaks a phase into NI intervals of length DT, calculates the
attrition during each interval, and tests whether that attrition has caused some weapon
type to reach its breakpoint.

Line 202 sets the interval counter, 12, adds the length of the interval to the
length of the battle, TM, and prints a message to the screen telling the operator what
phase and interval is currently being processed.

Lines 222-227 calculate the attrition to attackers based upon the quantities of

each weapon surviving at the start of the interval. QA(2,1) holds the current quantity
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200 ‘Fight Phase Il.

202 FORIZ2=1TONI:TM=TM+DT:PRINT241,"Phase:"3I11", Increment";I2i"out of' NI
210 'Fight Time Increment OT.

220 ‘Update number of attackers

222 FORI3Z=1TONA:QA(1,I3)=QA(2,I3):NEXTI3:FORI3Z=1TONA:FORI4=1TOND

223 IFDT(IG)=1THENQA(2,I3)=QA(2,I3)-AA(I3,14)%QD(14)%QA(2,I3)%DT:G0T0226
224 QA(2,I3)=QA(2,I3)-AA(13,14)%QD(I4)*DT

225 'QA(2,13)=QA(2,I3)-AA(13,I4)%(QA(2,I3)/QD(I4)) DT(14)%QD(I4 )xdt

226 NEXTI4:QA(2,I31=QA(2,I3)+AR(I3)*DT:IFSF=1THENGOSUB650

227 NEXTI3

230 'Update number of defenders

232 FORI3=1TOND:FORI4=1TONA

233 IFAT(IG)=1THENQD(I3)=QD(I3)-BB(I3,14)%QD(I3)*QA(1,I4)*DT:G0T0236

234 QD(I3)=QD(I3)-BB({I3,14)%QA(1,I4)*DT

235 'QD(I3)=QD(I3)-BB(I3,I4)*(QD(I3)/QA(1,14)) AT(IGI*QA(]1,14 )xdt

236 NEXTI4:QD(I3)=QD(I3)+DR(I3)*DT:IFSF=1THENGOSUB660

237 NEXTI3

240 GOSUB300:NEXTI2

262 JFI1=NPTHENGOSUB350:CLS:PRINT"Output is in file LANOUT.DO.":END

245 PRINT#2,"Status After Phase"3I1l:GOSUB361:NEXTI1

Figure 5.6 Attrition Calculations for a Phase.

of Ai and is therefore decremented by lines 222-227. Attrition to each D]- should, for
consistency with the attrition to the A;’s, also be based upon the quantity of A;'s
surviving at the beginning of the interval. Therefore, the quantity of each A surviving
at the beginning of the interval is saved by line 222 in QA(l,i) for use during the
attrition calculations for Dj. Line 222 also sets the Ai counter, 13, and the Dj counter,
14.

If the simulation is to be done with traditional Lanchester linear law and
square law equations, lines 223-224 must be active and line 225 must be commentcd
out or deleted. If the simulation is to be done with a Helmbold equation, lines 223-224
must be commented out or deleted and line 225 must be active. The program
displayed in Figure 5.6 has the Helmbold equations commented out. Line 222
calculates the attrition of A; by Dj based upon a linear law, Equation 5.1. Line 223
calculates attrition based upon the square law, Equation 5.2. Whether the lincar law
or square law is used is based upon AT(i) and is determined in line 222. If line 225
were active, it would calculate attrition using the Helmbold equation, Equation 5.4.
After attrition by each Dj is calculated, line 226 adds the replacements for Ai received
during the interval. Line 226 also calls subroutine 650 which updates the graphical
display to reflect the attrition to cach A;.
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Lines 232-237 calculate the attrition to defenders based upon the quantities of
each weapon surviving at the start of the interval. QD(i) holds the current quantity of
Dj. Line 232 sets the Dj counter, I3, and the Ai counter, I4. If the simulation is to be
done with traditional Lanchester linear law and square law equations, lines 233-234
must be active and line 235 must be commented out or deleted. If the simulation is to
be done with a Helmbold equation, lines 233-234 must be commented out or deleted
and line 235 must be active. The program displayed in Figure 5.6 has the Helmbold
equations commented out. Line 232 calculates the attrition of Dj by A; based upon a
linear law, Equation 5.1. Line 233 calculates attrition based upon the square law,
Equation 5.2. Whether the linear law or square law is used is based upon DT(i) and is
determined in line 232. If line 235 were active, it would calculate attrition using the
Helmbold equation, Equation 5.4. After attrition by each A, is calculated, line 236
adds- the replacements for D]- received during the interval. Line 236 also calls
subroutine 660 which updates the graphical display to reflect the attrition to cach Dj'
Line 240 calls subroutine 300 to check for whether a breakpoint was reached during
the interval. If no breakpoint was reached, a new interval is begun.

If all the intervals in the last phase are completed without reaching a
breakpoint, line 242 calls subroutine 350 which prints the status at the end of the battle
to the output file. If the current phase is not the last phase, then line 245 prints a
header to the output file, calls subroutine 361 which prints the status at the end of the
current phase to the output file, and starts the next phase.

5. Breakpoint Subroutine, Figure 5.7

This section determines whether any weapons have reached their breakpoints,
and, if so, prints that information in the output file, and ends the program. Line 320
sets TF = 0, indicating that no breakpoints have been reached. Line 320 then starts a
loop which tests whether any A; have reached their breakpoints. If so, then lines
322-324 print a message to the output file specifying the weapon type, the breakpoint,
and the quantity of that weapon type that survived. Lines 335-340 test whether any l)j
have reached their brcakpoints, and if so, print a message to that effect to the output
file. If no breakpoints have been reached, then line 340 returns control to the main
program to begin attrition calculations in the next time interval.

The default battle termination criterion is that at least one weapon type must
be below its individual breakpoint at the end of a time interval. Flowever, the operator

may wish to edit the program before running it, adding more sophisticated termination
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300 'Check Khether Breakpoint is reached.

320 TF=0:FORI3=1TONA:IFQA(2,I3)>AB(2,I3)THEN325

322 TF=1:PRINT#2,"Attacker Wpn"3I33"Is Below Breakpoint"

323 PRINTH#2," Bp ="3:PRINTH#2,USING"###8.4%"3AB(2,I3);

324 PRINT#2," Current Level =";:PRINT#2,USING"####.88"3QA(2,I3)
325 NEXTI3

335 FORI3=1TOND:IFQD(I3)>DB(2,I3)THEN340

337 TF=1:PRINT#2,"Defender Wpn"3I33"Is Baelow Breakpoint"

338 PRINT#2," Bp ="3:PRINTH#2,USING"###%,.8#"3DB(2,I3);

339 PRINT#2," Current Level ="3:PRINTH#2,USING"####.8#4#"3QD(I3)
340 NEXTI3:IFTF=0THENRETURN

350 PRINT#2,"":PRINT#2,%":PRINT#2,"SUMMARY AT END OF BATTLE"

351 PRINT#2,"":PRINT#2,"Time Elapsed During Battle ="j

352 PRINTH#2Z,USING"H###8#. 88" 3 TM: PRINTR2,"" :GOSUB361

355 CLS:PRINT"Output is in file LANOUT.DO":END

361 PRINT#2," Att HWpn Breakpoint Current Level"

363 FORIZ=1TONA:PRINTH#2,USING"#H###8#"313; .

264 PRINTH#2,USING"H#H#HHRBHRSN . BB 3AB(2,I3)3QA(2,I3):NEXTIZ :PRINTH2,""
366 PRINT#2," Def Wpn Breakpoint Current Level"

367 FORI3Z=1TOND:PRINT#2,USING"#####8"313;

368 PRINTH#2,USING"#HEHR#SR#R.8830B12,13)3QD(I3):NEXTIZ:PRINT#2,"" :RETURN

Figure 5.7 Subroutine To Test For Breakpoints.

criteria to the default criteria. For example, if the operator wants the battle to
terminate when A| or A, reach half their starting strength or when A reaches 60%
and A, reaches 70% of their starting strength the operator should:

® Put .5 as the individual breakpoints for A| and A, in the input file and

¢ Put the program lines shown in Figure 5.8 into the program after line 328.

330 IFQA(2,1)/SA(1)>.60RQA(2,2)/SA(2)>, 7TTHEN335
331 TF=1:PRINT#2,"Special Termination Criterion Met"

Figure 5.8 Example Of An Additional Termination Criterion.

If a breakpoint has been reached, then lines 350-368 print the status of both
sides at the end of the battle. That end of battle status report includes a header, time
elapsed during the battle, and a list of attacking and defending weapon types with their
breakpoints and number of survivors. Lines 361-368 are called as a subroutine {rom

line 352 because lines 361-368 are also used to print the summary at the end of each

phase and can therefore not terminate the program.
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6. Graphics Display Initialization Subroutine, Figure 5.9

600 ‘Set up output screen

610 PRINT"Hpn # Attacker Defender"

620 FORI1=1TOMD:PRINTUSING"#8#"3I1

623 TP=2+1I1%8

625 IFI1>NATHEN630

627 LINE(18,TP)-(119,TP+4),1,B:BP=18+INT(100%AB(1,I1]))
628 LINE(BP~1,TP+1)-(BP,TP+3),1,B

630 IFI1>NDTHEN635

632 LINE(138,TP)-(239,TP+4),1,B:BP=138+INT(100%DB(1,11))
633 LINE(BP-1,TP+1)-(BP,TP+3),1,B

635 NEXTI1:RETURN

Figure 5.9 Graphics Display Initialization Subroutine.

The graphics display consists of a rectangle on the M100 screen for cach
attacking and defending weapon type. Each rectangle is 100 pixels wide and five pixels
high. Each pixel in the horizontal direction represents one percent of the starting
strength of the weapon type represented by a particular rectangle. The rectangles are
arranged in two columns, one for attacking and one for defending weapon types. This
subroutine draws the rectangles, labels the columns “Attacker” or "Defender”, puts a
vertical line in each box at the breakpoint for that weapon type, and labels the rows of

. boxes with the weapon type number. '

Line 610 prints the header on line one of the screen. Line 620 starts a loop
that writes the weapon type number, 11, and prints the rectangles; Line 623 calculates
the vertical pixel position, TP, for the top of the rectangles of weapon type I1. Line
625 tes's whether to draw a rectangle next to weapon type number I1 in the “Attacker”
column. If so, the first statement on line 627 draws the rectangle. The second
statement on line 627 calculates the horizontal pixel location in the rectangle of the
breakpoint for that weapon type. Line 628 draws a double line at the breakpoint in
the rectangle. Lines 630-635 test whether a rectangle should be drawn in the defender
column. If so, they draw the rectangle and insert the breakpoint in the same manner
as was done in lines 620-628. Line 635 returns control to the main program when

there are no more rectangles to be drawn.
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o 7. Updating The Graphical Display, Figure 5.10

650 'Update screen output of attackers

653 TP=3+I3%8

655 LINE(OA(I3),TP)}-(0A(I3),TP+2),0
OA(I3)=18+INT(100%QA(2,I3)/SA(I3))

657 IFOA(I3)>118THENOA(I3Z)=118:PRINTD(I3%40+2),"%":6G0T0659
658 PRINTIIZ®G0Q+2," *

659 LINE(DA(I3),TP)-{0A(I3),TP+3),1:RETURN -
‘update screen output of defenders

663 TP=3+]I3x8

LINE(OD(I3),TP)-(0OD(I3),TP+2]),0
0D(I3)=138+INT(100%QD(I3)/SD(I3))
IFOD(I3)>238THENOA{I3)=238:PRINTARII%G0+22," %" :G0T0669
668 PRINTIIZ*G40+22,"

669 LINE(OD(I3),TP)-(0OD(I3)},TP+3),1:RETURN.

st
o
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" o
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oo
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Figure 5.10 Subroutines To Update The Graphical Display.
;: This section includes two subroutines which update the vertical line in each
rectangle which indicates the fraction of survivors for that weapon type. The
X A subroutine in lines 650-659 updates the attacker rectangles; lines 660-669 perform the
) same function for defender rectangles. Line 653 sets TP, the location of the top pixel
: of the vertical line for Aj3. Line 655 erases the old vertical line, the horizontal pixel
‘ position for which was stored in OA(I3). Line 656 calculates the horizontal pixel
_1: position for the new vertical line based upon the fraction of the starting strength of ’
Ajy’s which currently survives. If the reinforcement rate exceeds the attrition rate and
i drives the number of survivors over the starting strength for Ajpsz, line 657 holds
horizontal position of the vertical line at the 100% level and prints an asterisk next to
i, the corresponding rectangle. If the number of survivors is less than the starting
:' strength, line 658 prints a blank space next to the corresponding rectarigle. Line 659
': writes the new vertical line to the screen showing the fraction of Ays’s which survive.
Lines 660-669 perform the same function for Dj that lines 650-659 perform for A;.
G. EXAMPLE SIMULATIONS
. 1. Example #1
The first example uses the input file shown in Figure 5.2 The output file for
v that simulation is shown in Figure 5.11. ]
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B STARTING PHASE 1

') Status After Phase 1

b

Att Wpn Breakpoint Current Laevel

S 1 100.00 173.93

A 2 50.00 68.55
,(;"“ Def Wpn Breakpoint Current Level
et 1 50.00 79.12
O 2 100.00 184.53
¥ 3 50.00 89.95

v STARTING PHASE 2

;‘;ﬂ‘s‘ Attacker Wpn 2 Is Below Breakpoint
!‘F‘ﬂ" Bp = 50.00 Current Level = 48.85
booN

iyt SUMMARY AT END OF BATTLE

)

:0 " Time Elapsed During Battle = 7.20
,N:. Att Wpn Breakpoint Current Level
; 1 100.00 157.29

2 50.00 48.85
o Def Wpn Breakpoint Current Level
el 1 50.00 66.24
e 2 100.00 176.64
.ef:,. 3 50.00 84.25
AN
)
‘f"::
(AN . .
KK Figure 5.11 Output File, LANOUT.DO, For Example #1.
>
'o,.. . 2. Comparing The Lanchester and Helmbold Linear Law Equations
' ]
08
Rl »

Examples 2 and 3 compare the differences between using a traditional
g . Lanchester linear law equation (Example 2) and a Helmbold equation (Example 3).

e : The scenereos for Examples 2 and 3 share the following elements.

Qi * The battle has only onc phase with a maximum length of 10 which is broken into
:!::" 100 intervals.

. . Ill&gh sides have two weapon types. Each weapon type has a starting strength of
E:.E;g ¢ The breakpoints for all weapon types are 50%.

t::_::: . All Pveagon tyf)es are linear law weapons. Attrition is calculated using Equation
3 or Example 2 and using Equation 5.4 (0w =.5) for Example 3

. ¢ There are no replacements for any weapon type.

’;i;::: The only differences in the scenercos for Examples 2 and 3 are the attrition
;E: \ coefTicients.

ss 7 a. Example #2

- The input and output files, LANIN.DO and LANOUT.DO, for Example 2
s::"é: are in Figure 5.12. Since these attrition rates are for the Lanchester lincar law, the
;;:;‘: dimensionality of the rates for the attacker arc (number of attacker casualties) per
e
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*1,
.
}:e,' (number of attackers) per (number of defenders) per (unit time). The dimensionality of
}E“ the rates for the defender are the same with the rolls reversed.
LI.“'
taind
0
*‘ Input File: Output File:
W
. 122 _ STARTING PHASE 1
Ay 100 100 : Attacker Wpn 1 Is Below Breakpoint
100 100 Bp = 50.00 Current Level = 49.40
.5 .5
vnd .5 .5 SUMMARY AT END OF BATTLE
A v 11 Time Elapsed During Battle = 5.20
, 11
: 10 100 Att Wpn  Breakpoint Current Level
o 00 1 50.00 49.40
Lo 00 2 .50.00 62.53
.00075 .00075
.0005 .0005 Def Wpn Breakpoint Current Level
W .00025 .00025 1 50.00 82.17
2N .00025 .00025 2 50.00 82.17
AN
)
o Figure 5.12 Input And Output Files For Example #2.
o
:’i b. Example #3
" : The input and output files, LANIN.DO and LANOUT.DO, for Example 3
o . . .. . . .
i are in Figure 5.13. The attrition rates in this example are for the Helmbold Equation
g P q
Y with @ = .5, the Helmbold equivalent of the Lanchester linear dimensionality of the
S i
585 rates for the attacker are (number of attacker casualties) per (attacker)® per
0 p P
i . . - B .
> (defender)'5 per (unit time). The dimensionality of the rates for the defender are the
A same with the rolls reversed.
;.‘.;: To generate Helmbold coeflicients that are comparable to the Lanchester
r 008
-;" linear law coefficients, the Lanchester coefficients must be adjusted by the diflcrence in
[} »
‘3:," ' the dimensionality, i.e. multiplied by [(number of attackers)(number of defenders)]'s.
A0 . . C . .
g In this example it means multiplying the Lanchester coefficients by 100.
. The results of Examples 2 and 3 show good agreement.
is' ¢ The simulation using the Helmbold equations ended about 21% faster than did
NSy the battle using Lanchester equations. The same weapon type reached its
:{\: breakpoint first in both cases.
LN

e The differences between the number of survivors for other weapon types was
quite small.
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Output File:

STARTING PHASE 1

Attacker Wpn 1 Is Below Breakpoint
Bp = 50.00 Current Level = 69.85

SUMMARY AT END OF BATTLE
Time Elapsed During Battle = 4.10

Att Wpn Breakpoint Current Level

1 50.00 4%9.85
4 50.00 64.67
Def Wpn  Breakpoint Current Level
1 50.00 82.79
2 50.00 82.79

‘ Input File:
122
- 100 100
. 100 100
"",' .5 .5
J .5 .5
.5 .5
i .5 .5
3 10 100
X 00
[N
W .0000075 .0000075
)
o .000005 .000005
' .0000025 .0000025
* ,0000025 .0000025
i
,
‘l
o
it
'.'
[
R
Wiy
KA
[
o
s
S
*.
Py,
£
A 1]
)
‘
3’0
oY
(3™
»,
A
[
My
LA
SN
LW
L ¥
s
Y
“u
L)
¥
.'Lf
f‘
'.
'}
W ¥
?,
Q
]
)
[
B
::‘
A
u"‘

Figure 5.13

Input And Output Files For Example #3.
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'*1 VI. GEOMETRIC PROGRAMMING
o A. GENERAL
L
b 4t The program described in this chapter solves nonlinear programming problems in
-'! .5. which:
) ¢ The objective function is to be minimized.
3! ! {; ¢ The objective function and constraints are posynomials.
¢ The number of tcrms,7 T, minus the number of variables, N, must equal one.
i yE

.

The coefficients,? ¢ of all terms must be strictly positive.

£
P
[ ]

m,t’
¢ All components of the vector of decision variables, ¥, must be strictly positive at

X . .

:.:::., optimality.
BOC . . . .

! ‘::; ¢ Constraints must have the form of a posynomial on the left hand side that is less
W
::'o:: than or equal to one.

Y

’ Geometric programming has the distinctive feature of calculating the optimal
;::"': value of the objective function before the optimal values of the decision variables are

3t . . : .
;: calculated. Geometric programming also produces weights, Gt, t=1,2,3,...,T, associated
‘.’) . . . . . . .

::, " with each term. For example, in applications where the ¢, are prices and the objective
!
) > -

»j\j The number of tétms in the objective function and in the constraints.

'\_\

B o . .

3 8Two subscripting systems are used throughout this chapter. The first uses the

ptung sy g p

letters m and r where ¢t = 1,23,...,T

) rre m 18 the number of the term in the mth posynomial.
)l l.'

: , m=0 refers to the objective function; m= 1,2,... refers to the constraint numbers. Tm
: '\. 1s the number of terms in the mth consti...at, When problems of only one posynomial
:f:::', arc being discussed, the m is omitted. The first system also includes the letter n to
- identify components of the decision variable vector, y, where n=1,2,...,N. The second
& system numbers the terms without starting again at 1 at the beginning of cach
( z constraint. Each term is numbered t', t'=1,2,....,T" where T’ is the number of terms in
2’ the objective function and the constraints. The first term of the abjectuve function is
g denoted by t° = 1. The other terms in the objective function are then numbered from
"& left to right. Then the terms in cach constraint in turn are numbered from left to right.
'f For example, in Figure 6.1, t=1, m=0 (or t'=1) refers to 40x;X5 and t=2, m=1 (or
¥ "" t'=5) refers to .6x2'lx3'2"3.
T 64
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function minimizes total cost, the 8, for objective function terms are the proportion of
cost that term t contributes to optimal total cost, I(x*). These weights are invariant
with respect to the prices, ¢,, associated with each term.
1. Definition Of A Posynomial Function
The function f{}) is posynomial if it has the form

N

T a ¢
) = Y ¢, p(x) wherep(x) = Mx; ™ (eqn 6.1)
t=1 n=1l

where

¢ T is the number of terms.

* ¢, are positive scalar constants. )

oy is the vector of decision variables, (X],Xg,.,XN\)-

¢ The only restriction on the exponents, amn,t is that they be real numbers.
A posynomial differs from a polynomial in that the coeflicients of a posynomial must
be strictly positive and its exponents, ap t need not be positive integers.

An example of a problem meeting these conditions is in Figure 6.1.

Min 40x1x2 + 20x2x3
Subject to:
.2x1'1x2'5 + .6x2'1x3
Xy > 0, i=1,2,3

Figure 6.1 Geometric Programming Problem In Standard Form.

Geometric programming solves a problem of this Kind by solving its dual.
When, as specified above, the number of terms minus the number of variables equals
one, then the problem has a unique solution. T - N - 1 is by convention called the
degree of difficulty. If the degree of difficulty is greater than zero, then another
nonlinear program must be solved to find the optimal 6;. While this new nonlinear
program is frequently easicr to solve than the original problem, its solution is beyond
the scope of this chapter which is limited to problems with a degree of difficulty of

Zero.
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B. MATHEMATICAL BASIS FOR GEOMETRIC PROGRAMMING
The mathematical basis for geometric programming is summarized in [Ref. 10:pp.
494-522). and explained in detail in Reference 11. The following explanation is
provided for tutorial purposes and is an adaptation of the explanation in [Ref. 10:pp.
496-502]. Notation in this chapter is consistent with that used in Reference 10.
a. Unconstrained Minimization Of Posynomial Functions
Historically, geometric programming has been based upon and took its

name from the arithmetic-geometric mean inequality:

T T
v,8, 2 I v, t ifv,8 >0 and ) 8, = L (eqn 6.2)
1 t=1 t=1

ANl

The equality holds only when V= V2= VT If u, is defined as ut=vt6t’ then
Equation 6.2 becomes

Ae

T
1ut > Hl(“v’*-‘:)&t (eqn 6.3)
The equality holds if 8, = ut/Zut. Let u, be a posynomial term as described in
Equation 6.4.
N a
u, = ¢, 0p ()] = Il x n,t (eqn 6.4)

ns

]

A posynomial function, f{}), is given by Equation 6.5.

T

) = ¥y (eqn 6.5)
t=1

When the posynomial terms are substituted into Equation 6.3, the inequality becomes
T T N a S
You, 2 I {lc, Mx, rl't]/ﬁt} t (eqn 6.6)
t=1 t=1 n=1

or
T T §. N
You, 2 (I [c/8,3 YH{IT x, @) (eqn 6.7)
t=1 t=1 n=1

where @ is the sum over t of a, ,8,.
r
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Since the only restriction on 8, has been that they be positive and sum to

one, they may be chosen such that ¢ = 0 for n = 1,2,...,,N. If this selection is made,

Equation 6.5 becomes

T T $
%) = ¥ o) 2 T (cy/dy) (eqn 6.8)
t=1 t=1
] Since equality holds when 6t = ut/Zut, then
’ T T 5
min )" u, = max IT (c,/8,) t (eqn 6.9)
t=1 t=1

T T
ifz 6{ =1 and Zan tat =0forn=12..N
t=1 t=1 °’ :

Therefore, the minimization of the posynomial function is the same as the

| maximization of the nonlinear function in Equation 6.9 subject to linear constraints.
The linearity of the constraints means that Bt'* and x* can be computed with linear

algebra as explained below, instead of with nonlinear programming. These

minimization and maximization problems are duals. Since equality holds if and only if

6, = ut/Zut, it follows that the relationship between optimal values of & and y is

o= {ep (X OMAL ) or (eqn 6.10)

N x A t %
8, = {c M(xy } ™YY ) (eqn 6.11)
n=1

If the degree of difficulty is zero, then the matrix of exponents, ap with
another row of 1's appended to the top makes a square matrix. Rows of the exponent
matrix correspond to variables and columns correspond to terms. The row of I's
corresponds to the constraint that the sum over t of 6t equals 1. The 8" can be
obtained by solving a set of T simultaneous lincar equations A8" = b. The first
element of the b vector is 1 and the remaining elements are 0. The optimal value of
the objective function, f(x*) can then be obtained by inserting 6t* into Equation 6.12.

Equation 6.12 is based upon Equation 6.9.

*

s T .8,
flx )= {[l(c(/ﬁt ) (eqn 6.12)
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Finally, the optimal values of the decision variables, x;, can be determined by solving
the set of T equations of the form specified in Equation 6.13.

N
D an’tln(xn*) = In[RY )8, /e,d fort = 1.2,..,T. (eqn 6.13)
n=1

This set of equations is overconstrained since there are only T-1 decision variables.
Therefore, only T-1 equations are required. Solving these T-1 equations
* ) .
) which are then converted to the optimal values

b

. . . *
of the decision variables by x,, = e

simultaneously produces p,, = In(x

b. Inequality Constraints
This section discusses the addition of posynomial inequality constraints to
the unconstrained problem discussed above. For notational purposes the objective
function and constraints will be numbered m=0,1,2,3,...,M. The objective function is
designated m=0, and the constraints are designated m=0,1,2,3,..,.M. A primal

constrained posynomial would have the form

T N g
Min Y {cq, M x, Aty (eqn 6.14)
t=1  n21
Subject to:
T N g
f(x) = tz Cme M X, mnt <1 form = 1,2,...M (eqn 6.15)
=1 n=1

where x, > 0, n = 1,23,.N. If 80 ¢ are the weights for the terms in the objective

function, then

8o, = [eo, Po (X /f(X") for t=123,..T, (eqn 6.16)

If )‘m are the Lagrange multipliers associated with constraint m, then

T

Ay = t-16m’t and (eqn 6.17)

Gm,t/},m = Cmt pm,t(X)' (eqn 6.18)
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The dual geometric program is

moT 5
Max I 11 Cepy hpy/8y 0 m,t (eqn 6.19)
Subject To:
T
Yo, =1 . (eqn 6.20)
t=1
MOoT
Y Yapnedm, =0forn=123..N. (eqn 6.21)
m=l t=1 ’
Tm
A= X 0me : (eqn 6.22)
t=1
and sm,t' )‘m 20

The &, , are calculated using Equations 6.20 and 6.21 as a set of
simultaneous linear equations. The optimal value of the objective function is
calculated by multiplying the unconstrained optimum by H(}»m) M a5 in Equation
6.23.

* ! 6t T )‘m
fox ) = ?I(Ct/ﬁt) n1 (A (eqn 6.23)
= ms
x* is calculated using Equations 6.24 and 6.25.
N * * *
y ag n dn(xy ) = In(fo(x g ¢ /) fort = 1,2,.,Tj, and (eqn 6.24)
n=1
N * * *
Y amndo(xy ) = In@p /e rpy) (eqn 6.25)
n=1

fort=1,2,.., Ty m=1,2.3,.,M; and ﬁm,[*> 0. )
As with the unconstrained problem these equations are linear in In(x, ) = p, After
solving for p using Equations 6.24 and 6.25 as a set of simultaneous linear equations,

.. . . p
the decision variables are calculated using x; = e n
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EXPLANATION OF VARIABLES
BI(NT+ 1,NT*2) holds the A matrix in the subroutine which solves simultaneous

linear equations of the form Ax=b.

B2(\NT) holds the b vector in the subroutine which solves simultaneous linear
equations of the form Ax=b.

B3(NT,NT-1) stores the exponents of the variables in each term. Each row of
the matrix corresponds o a term; each column corresponds to a variable. If a
variable is not stated explicitly in a term, then its entry in this matrix is zero.
CT(3,NC,MN) holds three values for each term. CT(1,m,t) holds the coeflicient,
Cm,t CT(2,m,t) holds the weight, 6m,t’ for each term. CT(3,m,t) holds Pm,t(X*)
for each term. m=0 refers to terms in the objective function. m=1,2,... NC
refers to terms in the mth constraint. t=1,2,...,NT(m) specifics a particular term
in the objective function or a constraint.

FS is the optimal value of the objective function.

1,12, and I3 are loop counters.

K2,K3,K4,..,.K9 are variables in the simultancous linear equation solving
subroutine. This subroutine is documented in Appendix E.

LM(NC) holds values of A ;, m=1,2,..,NC where )‘m is the sum of sm,t for the
mth constraint. Ay = 1.

MN is the maximum number of terms in any constraint or the objective function.
NC is the number of constraints,

NT(NC) 1s the number of terms in each constraint.

NT is the number of terms in the objective function and the constraints.

NV is the number of decision variables, i.e. the number of components in the

vector ¥.

INPUT
Problem parameters are entered into an input file, GEOIN.DO, before the

program is executed. GEOIN.DO must contain the following parameters in the order

specified.

L.

%) Y545 NSRS
Xt A _14. ~.“.g

The number of terms, NT, the number of variables, NV, and the number of
constraints, NC.

The number of terms in the objective function, NT(0), and the number of terms
in each constraint, NT(m) m=1,2,... NC.

The coeflicicnts of each term, ¢ CT(l,m,t) m=0,1,2,....NC, t=1,2...,,NT(m).

m,t’
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¢ The matrix of exponents, a for each variable in each term. Row n of the

n,t

matrix corresponds to the variable x, n=1.2,.,N. Column t of the matrix

n,
corresponds to the term py(y), t' = 1,2,...,T".

The input file for the problem specified in Figure 6.1 is in Figure 6.2.

Input File: Problem:
4.3, 1 Min 40x1x2 + 20x2x3
2, 2
4(2), Zg Subject To:
190" V. -1,..5 -1, -2/3
%, ?, _15 0_1 .2X1 XZ + .6X2 X3 <1
0, 1, 0, -. 66666666667 x; >0
Figure 6.2 Sample Input File, GEOIN.DO.
E. OUTPUT

The program prints the following output to the screen.
¢ The optimal dual variables, 6m,t*'
e The optimal value of the objective function, f(x‘).
¢ The value of each pm,t(x#)

¢ The optimal value of each component of ¥, xn*.

F. EXPLANATION OF PROGRAM COMPONENTS
A complete program listing is located at Appendix D.
1. Initialization And Input, Figure 6.3
Line 110 opens the input file, GEOIN.DO. Line 120 enters the number of
terms, NT, and the number of variables, NV, from GEOIN.DO, and scts K9 equal to
NT for use in the simultaneous linear equation solving subroutine. Line 122 checks

whether the degree of difficulty is equal to zero. Ifit is not, an error message is printed
and the program ends. Line 130 enters the number of constraints, NC, and dimensions
the vector NT(NC), which holds the number of terms in the objective function and in
each constraint. Line 140 enters NT(m), m=0,1,2,...NC, and computes MN, the
maximum over m of NT(m). Line 143 dimensions the matrices required for the

program. Line 145 enters the coeflicients ¢ placing them in CT(1,m,t).

m,t’
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o
:v:l
!
‘::!
et 100 ‘Geometric Programming Program
4t
i 110 OPEN"GEOIN"FORINPUTAS]
120 INPUT#1,NT,NV:K9=NT
" 122 IFNT-NV<>1THENPRINT™#%*ERROR: Dagree of Difficulty <> 0":END
b7 130 INPUT#H#1,NC:DIMNT(NC) -
A 140 MN=0: FORI1=0TONC: INPUT#1,NT(I1):IFNT(I1)>MNTHENMN=NT (I1):NEXTIL
' ) 143 DIMCT(3,NC,MN),LM(NC),BL(NT+1,NT%23,B2(NT },B3(NT,NV)
o 165 FORI1=OTONC:FORI2=1TONT(I1):INPUT#1,CT(1,11,12):NEXTI2:NEXTI1
T 150 FORI1=1TONT(0):B1(1,I1)=1:NEXTI1 i
t 155 FORI1=NT(0)+1TONT:B1(1,I1)=0:NEXTI1
160 FORI1=2TONT:FORI2=1TONT: INPUT#1,81(I1,12):B3(12,11-1)=B1(I11,I2)
" 162 NEXTI2:NEXTI1
Ve
::!
,'.;
ll']
thy, . LT
& Figure 6.3 Initialization and Input.
',:“ Lines 150-162 enter elements of the A matrix required to solve the
J: simultaneous linear equations Ad="b into B1(,). Equations 6.20 and 6.21 are the basis
B
¥, . . . . . .
Ay for this set of simultaneous linear equations. Lines 150-155 fill the first row of Bl with
) . . .. . .
ones in columns corresponding to objective function terms and zeros in columns
t: corresponding to other terms. BI1(1,t) corresponds to Equation 6.20. Lines 160-162
::: enter the exponents of variables in each term into Bl and B3. In Bl rows 2 through
3 NV+1=NT correspond to variabies x, and columns 1 through NT correspond to
“ . . - .
terms t'=1,2,...,T". Storing the exponents in B3 is necessary because the simultaneous
o linear equation subroutine changes the matrix in Bl, and the exponents are required -
»
3:- for later calculations. B3 is the transpose of Bl because of the nature cf the
0 calculation for which B3 is later recalled.
2. Calculating The Weights For Each Term, Figure 6.4
‘\
P
I
"
B 170 PRINT"*:PRINT"*COMPUTING DELTA'Swx:x"
¢ 172 B2(1)=1:FORI1=2TONT :B2(11}=0:NEXTI1
180 GOSUB9800
re 200 CLS:I1=1:FORI2=0TONC:FORIZ=1TONT(I2):CT(2,12,13)=B1(I1,1)
e 203 PRINT"DELTA("3123","3I33") = "3
o 206 PRINTUSING"#B###. ##8%"3CT(2,12,13):11=1141: IFI1>5THENGOSUB600
K. 205 NEXTI3:NEXTI2:GOSUB600:CLS
5,
b
Y Figure 6.4 Calculating d . . ’
’
b
A4
.. » -
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. .
]
]

Line 172 places the simultaneous linear equation b vector into B2, B2(1)=11s
the right hand side of the constraint in Equation 6.20. The right hand sides of the
constraints based upon Equation 6.21 are zero. Line 180 calls the simultaneous linear
equation solver in subroutine 9800 which leaves 6‘ in BI(t',1), '=1,2,...,T". Lines
200-205 place 8" into CT(2,m,t) and prints am,t* to the screen.

3. The Optimal Objective Function Value, Figure 6.5

P aa

! 210 PRINT"":PRINT"%*COMPUTING OPT OBJ FN VALUE»»"

212 FORI1=0TONC:LM(I1)=0:FORI2=1TONT(I1):LM(I1)}=LM(I1)+CT(2,I1,I2)
214 NEXTI2:NEXTI1

220 FS=1:FORI1=0TONC

222 FORIZ=1TONT(I1):FS= FS*(CT(1,11,121/CT(Z,II,IZJ)ACT(Z.II;IZ)
226 NEXTI2:FS=FS*(LM(I1)ALM(I1)):NEXTIL

229 PRINT"“:PRINT"F% =";:PRINTUSING"####. . #u8" 3 FS:60SUB600:CLS

Figure 6.5 The Optimal Objective Function Value.

/ Lines 212-214 compute A, which equal the sum over t of 6m,t for every

: constraint and the objective function. Lines 220-224 compute the optimal objective
function value based upon Equation 6.23. Line 229 prints the optimal objective
function value.

J 4. Optimal Decision Variable Values, Figure 6.6

"t 3

230 'Compute optimal x(n)

232 K9=K9-1

s 234 FORI1=1TOK9:FORI2=1TOK9:B1(I1,12)=B3(I1,I2):NEXTI2:NEXTI1

. 236 CC=1:FORI1=0TONC:FORIZ2=1TONT(I1)

i 237 CT(3,I1,X12)=(CT(2,I1,I2)/CT(1,I1,12)/LM(I1))

{ - 238 IFI1=0THENCT(3,I1,X2)=CT(3,I1,I2)%FS

239 B2(CC)=LOG(CT(3,I1,I2)):CC=CC+1:NEXTI2:NEXTI1

262 PRINT“P(m,t)* = opt. value of term t, constr. m, divided by its coef."
244 FORI1=0OTONC:FORIZ2=1TONT(I1):PRINT"P("3I13","sI23" )% ="3

. 2646 PRINTUSING"###%, #8844t 3CT(3,I1,I12) :NEXTI2:GOSUB600:NEXTI1:CLS
) 250 PRINT"":PRINT"»% Computing Opt Values Of X(n) %"

260 GOSUB9800

270 CLS:FORI1=1TOK9:PRINT"X®("3I13") =

f 272 PRINTUSING"####8%. #u#uns"3EXP(B1(I1,1))

' 273 IFI1>STHENGOSUB600

¥ 275 NEXTI1:GOSUB600:END

Y Figure 6.6 Optimal Decision Variable Values.
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After 8" and the optimal value of the objective function, fo(x*), have been
calculated, this section calculates x*. The basis for these calculations is Equations 6.24
and 6.25. The section solves a set of simultaneous linear equations A [ln(x*)J =b and
then solves for x*.

Since the number of variables is one less than the number of terms, line 232
reduces K9 by one. Line 234 creates the A matrix by putting the matrix of exponents
that was stored in B3 into BI.

Lines 236-239 calculate the b vector. CC is a counter in the t' subscripting
system which controls the entry of b vector elements into B2(t"). Line 237 calculates
the portion of the right hand side that is common to all terms. Line 238 multiplies that
result by fO(x‘) for objective function terms which produces Py (x*) Line 239 places
InCpy(X )J into B2(t"). Lines 242-246 print Pm, (X ) to the screen Line 260 calls the
51multaneous linear equation subroutine which solves ALln(y )] =b. Lines 270-275
print x to the screen and end the program.

5. Subroutine To Stop Screen Printing, Figure 6.7

600 INPUT“2¢ Hit ENTER To Continue: "3Z9:RETURN

Figure 6.7 Subroutine To Stop Screen Printing.

Subroutine 600 is used to interrupt printing loops so that results are not
scrolled off the screen before the operator can read them.
6. Simultaneous Linear Equation Subroutine, Figure 6.8
This subroutine solves simultaneous linear equations of the form Ax=b. K9
is the dimension of the square A matrix and the x and b vectors. This subroutine
documented in Appendix E, The Matrix Algebra Program.

G. EXAMPLE PROBLEMS
1. Example #1
A design engineer wants to design a cylindrical oil storage tank with a storage
capacity of 1000m cubic feet to put on an existing base. If the cost of construction is
Sl/foot2 of tank surface, what are the optimal dimensions of the tank and how much
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:i. 9800 'Simultaneous Linear Equation Subroutine: Ax=b
oy 9815 'Invert Matrix A
: 9820 FORK7=K9+1T02%K9:FORK8=1TOK9
9822 IFK7=K8+K9THENB1(K8,K7)=1ELSEB1(K8,K7)=0
; _ 9825 NEXTK8:NEXTK7
a2 9830 FORK7=1TOK9
B 9835 IFBL(K7,K7)*SGN(B1(K7,K7))<1E-8THENGOSUB9910
B 9840 K2=1/B1(K7,K7):FORK6=1T02%¥K9:B1(K7,K6 )=B1(K7,K6 I*K2:NEXTK6
R 9842 IFK7=K9THEN9865
e - 9845 FORK8=K7+1TOK9:IFB1(K8,K7)=0THEN9860
' 9850 K2=-B1(K8,K7)
9855 FORK6=K7TO2%K9:B1(K8,K6)=B1(K8,K6 )+(K2*B1(K7,Ké )} :NEXTK6
9860 NEXTK8:NEXTK7
) 9865 FORK7=K9TO2STEP-1
9, 9870 FORK8=K7-1TO1STEP-1:IFB1(K8,K7)=0THEN98S5
9875 K2=-B1(K8,K7)
. 9880 FORK6=1T02%K9:B1(K8,K6 )=B1(K8,K6 )+{K2*¥B1(K7,K6 ) ):NEXTK6
Rl 9885 NEXTKS:NEXTK7
" 9890 'Mult A Inverse by b
9894 FORK7=1TOK9:B1(K7,1)=0: FORK8=1TOK9:B1(K7,1)=B1(K7,1)4B1(K7,K8+K9)*BZ(K8)
5 9896 NEXTK8:NEXTK7:RETURN
;::! 9900 'Error Routine
N 9903 IFERL>9700ANDERR=11THENPRINT"!!1ERROR: Matrix Is Not Invertable!!!":END
f!; 9905 PRINT"Error Code"3ERR3"In Line"3ERL:END
o 9910 *SWITCH ROWS
e 9915 FORK5=K7+1TOK9:IFBL(KS,K7 }¥SGN(BL(K5,K7) )<1E-8THEN9940
' 9920 FORK4=1TOK9%2:K3=B1(K7,KG):BL(K7,K4)=BL(KS5,K4%)
9930 BL(K5,K4%)=K3:NEXTK4:RETURN
.‘*‘5' 9940 NEXTKS:PRINT“Error: Matrix Not Invertable":END
' L]
kY
¥ A
i
L . . . . .
y Figure 6.8 Simultaneous Linear Equation Subroutine.
L .
" will it cost? The tank includes the cylindrical siding plus the top. The formulation is in
] . - —_—
i Equations 6.26 and 6.27.
2
!
, Min SI(nr?) + $1(2mrh) (eqn 6.26)
[
in’:
By
BN Subject To:
20
'y
KX
,‘ nr2h 2 1000r r,h > 0 (eqn 6.27)
KX
K
Eé The objective function and constraint are posynomials, but the constraint is not in the
»::, < 1 form required by the program. Putting the constraint in < 1 form results in

Equation 6.28. This is a zero degree of difliculty problem with three terms, two
variables, one constraint, two terms in the objective function, and one term in the
constraint.
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1000r-2h! < | (eqn 6.28)

The coefficients, Cy's t'=1,2,3 are ®, 2n, and 1000 respectively. The input file and

results of the program are at Figure 6.9.

Input File: Results:

, 2,1 8y = 1/3, 8, = 2/3, 83 = 2/3
.’142,_(15. 284, 1000 f(y") = $942.48

=2 Optimal Values for r = 10, h = 10,

y

NOLWNW
—— P Y

’
] 9

b Figure 6.9 Input File and Results Of Example #1.

The economic interpretation of &, and &, is that regardless of the price for
W steel, 1/3 of the cost will be for the top and 2/3 will be for the side. If the top and
d sides were constructed of different types of steel with different prices, these ratios
Be would not change.
2. Example #2

K This problem is the example stated in Figure 6.1 The input file is in Figure
," 6.2. 5t" tv'=123,4 are .5, =3, .5, and .75 respectively. The optimal value of the
m objective function is 40. The optimal values of Xp n=123 are .5, 1, and 1

respectively.
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VII. MATRIX ALGEBRA PROGRAM

A.  GENERAL

The matrix algebra program, MATALG, performs the following matrix algebra
functions: matrix addition, multiplication, and inversion, scalar multiplication,
calculation of determinants, integer exponentiation, and solutions to sets of
simultaneous linear equations. MATALG is menu driven. The main menu enables the
operator to enter a new matrix, print the answer matrix, or call one of the functions
listed above. Menus produced by each function prompt the operator for required
input. Matrices may be entered from the M 100 keyboard or from a RAM file. Output
goes to the M100’s screen. Intermediate results may be displayed. Operations are
performed in the conventional left to right order in which matrix operations are written
out on paper, e.g. A X B x cl However, if the series of operations requires altering
that order, the operator may store one matrix for future recall. Matrices may be
entered in either the left or right hand position.

B. INPUT.
The matrix input subroutine lets the operator select:
¢ The position® of the matrix. If the new matrix is entered for the lelt side of the
Q%eratlon, the program automatically places the old left side matrix on the right
side.

e Whether the matrix _will be entered from the keyboard, the input file
MATIN.DO, or from RAM storage.

e Whether the matrix will be scalar multiplied or inverted.

The matrix input routine must be accessed from the main menu to enter the first
matrix. From then on, when a two matrix operation is selected from the main menu,
the subroutine performing that operation automatically calls the input subroutine for
the second matrix.

If the input file, MATIN.DO, is used, it must be created before the program is
run. MATIN.DO may contain more than one matrix. Matrices must be preceded in
MATIN.DO by their dimensions. An example of an input file is at Figure 7.1.

Sce the general instructions on input files in Chapter 2.

9Left or right side of the operation.
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;, o 33 Note: The input file to_the right contains two matrices:
123 123 }l23|

987 987 456

Wy 423 423

AL 2,3

N 1,2,3

Wi 4,5,6

Ry

1’. \‘

Figure 7.1 Sample Input File, MATIN.DO.

‘ ‘.tl'i_“\‘ When matrices are entered from the keyboard, the operator will be prompted for
- the matrix dimensions and for each matrix element.
e C. OUTPUT
+ Y

‘. ‘*3 All output goes to the screen of the M100. Output may have up to three digits
2 , to the left and four digits to the right of the decimal point. If this configuration is not
adequate, the operator may modify the format at the line numbers specified in Figure
- 7.2 for the corresponding functions.

ALY
O
) \i\'

LR

oW

LINE _FUNCTION

- 1082 Determinant . .
X 4075  Solution to Simultaneous Linear Equations
y _~: 6012  Other Matrix Output

;f‘_:: See the instructions for the PRINT USING command in Reference I.

iy .1
Wy
¢ \._'\ . .

3 Figure 7.2 Line Numbers Of Output Formats.

e

A

] D. DESCRIPTION OF VARIABLES

‘.:"f ¢ AI(3,K,K) holds the current matrices. Al(l ,} = Left side matrix/primary
' matrix/current intermediate answer matrix.  Al1(2,) = Right side/secondary

matrix. Al(3,,) = Matrix being stored.
" ¢ BI(K,K) holds the answer matrix as it is being calculated.

e C(d4) and R&d) are the number of columns/rows in Al or Bl. C{l and Rflg
correspond to Al C(2) and R(2) correspond to Al{2,,). C(3) and R(3

c Iy)
' ::._:: correspond to Al(g,,)'. C(4) and R(4) correspond to Bl.
‘ij ¢ CC is the row counter in matrix output routine.
i3
» pag ¢ CD and RD are the column and row of element to be changed.
»
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e CH is the selection variable for the main menu.
e DET(2) are the determinants of Al(1,,) and Al(2,,).

e EF is the error Flag. 0 - No terminal error has been made. 1 - A terminal error
has been made. A ferminal error is one from which the program can not recover.

e FF is the file Flag. 1 - MATIN.DO exists in RAM. 0 - MATIN.DO does not
exist in RAM.

e 11,12, 13, J1, 32, and J3 are loop counters.
¢ K is the largest dimension of largest matrix to be processed.
e K4-K9 are counters in the simultaneous linear equation subroutine.
¢ MF is the multiplication/addition flag. 0 - Neither the multiplica,tion nor the
addition subroutines are running. 1 - The multiplication subroutine is running.
- Addition subroutine is running.

e MI is the matrix indicator. It shows which matrix in A1(1-3) is being operated
upon.

e MU is an intermediate multiplier in the determinant and matrix inversion
subroutincs.

¢ OF is the output flag. 1 - Send output to screen. 0 - Suppress output to screen.

e SF is the simultaneous linear equation (SLE) flag: 1 - The SLE subroutine is
running. 0 - The SLE subroutine 1s not running.

e XP is the umber of times the matrix will be multiplied times itself in the integer
exponentiation subroutine.

® 79 is a general purpose variable.

E. DESCRIPTION OF PROGRAM COMPONENTS
A complete program listing is located at Appendix E.

1. Initialization, Figure 7.3

100 CLS:PRINT"":PRINT" *%% MATRIX ALGEBRA PROGRAM 3% :PRINT™"

105 PRINT"IS INPUT MATRIX, 'MATIN.DO' IN RAM?":INPUT" O0=NO, 1=YES"}FF
107 IFFF=1THENOPEN"MATIN"FORINPUTAS1

300 PRINT"»xEnter The Single Largest Dimension of"

305 INPUT"The Largest Matrix To Be Processed: “;K

310 DIMA1(3,K,K),Bl(K+1,K*2),R(%),C(4),DET(2):MI=1:0F=1:SF=0

Figure 7.3 Initialization Scction.

Line 100 prints the program title. Line 105 permits the operator to specify
whether file MATIN.DO will be used as a source of input and sets the file flag, FI,
accordingly. Line 107 opens MATIN.DO for input if it is to be used.
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'L*')

B3

gl

, -.i' Lines 300-305 require the operator to specify the largest dimension, K, of the
K . . . . .

) largest matrix to be processed. Line 310 dimensions matrices Al and Bl and vectors

R R, C, and DET and initializes flags MI, OF, and SF.
2. Main Menu, Figure 7.4
This section permits the operator to select the next major operation to be

conducted and calls the subroutine performing that operation.

s

A

N‘ 501 CLS:EF=0:PRINT"#x%%%MATRIX ALGEBRA PROGRAM MENU®ex"

Wy 504 PRINT" 1. Enter Starting Left Side Matrix"

o8 505 PRINT" 2. Matrix Inversion"

g 506 PRINT" 3, Matrix Addition':PRINT" 4. Matrix Multiplication”
iy 508 PRINT" 5. Simultaneous Linear Equations"

509 PRINT" 6. Print Current Answer Matrix":PRINT" 7. Other Options"
510 INPUT" **Enter Number: “3;CH
" 512 IFCH=1THENMI=1:Z9=0:GOSUB7006
o 513 IFCH=2THENMI=1:G0SUB2000
l" 514 IFCH=3THENGOSUB3000
g 515 IFCH=4THENGOSUBS000

"\:. 516 IFCH=5THENGOSUB4000
D B17 IFCH=6THENGOSUB6000
Ve 518 IFCH<>7THENGOTO501
. 520 CLS:PRINT'"3%MORE CHOICES:™:PRINT" 1. Determinant"
P . 52¢ PRINT*" 2. Matrix Integer Exponentiation”
e 526 PRINT" 3. Store Current Matrix"
RN 530 PRINT" 4. Retrieve Stored Matrix":PRINT" 5. Scalar Multiplication"
'.r: 532 PRINT" 6. Other Options":INPUT"¥%Enter Number: "3 CH
S « 540 IFCH=1THENMI=1:G0SUB1000Q
fay 548 IFCH=2THENMI=1:GOSUB7600
- 549 IFCH=3THENGOSUBS000
) 550 IFCH=4THENMI=1:60SUB8200
X 560 IFCH=5THENMI=1:GOSUBS100 I
e 570 GOTOS01
.':‘t'
a0
R Ml

Figure 7.4 Main Menu.

Line 501 initializes EF and prints the main menu header to the screen. Lines

o 502-510 print the first screen of options and prompt the operator for a selection. Lines
A :

e 512-518 call the subroutine selected by the operator or branch to the second screen of
X options. Lines 520-532 print the second screen of options and prompt the operator for
2'_::: a selection. Lines 540-570 call the subroutine selected by the operator or return to the
2‘, first screen of options.

Kt

. 3. Pause Control Subroutine, Figure 7.5
R Lines 700-702 stop the program to permit the operator to view material on the

1) p prog P P
3N
"E: screen and permit continuation by pressing the ENTER button.

a9
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700 'PAUSE CONTROL
702 INPUT"%x% Hit ENTER To Continue"3Z9:RETURN

Figure 7.5 Pause Control Subroutine.

4. Modifying the Secondary Matrix, Figure 7.6

800 'INTERMEDIATE MODIFICATIONS

810 PRINT"#xModify The 2nd Matrix?"

812 INPUT" 0=No, 1l=Invert, 2=Scalar Multiply: "3Z29
815 IFZ9=0THENRETURN -
820 MI=2:IF29=1THENGOSUB2000ELSEGOSUB5100

825 GOT0810 .

Figure 7.6 Modifying The Secondary Input Matrix.

This subroutine permits the operator to invert the second matrix of a two
matrix operation or multiply that matrix by a scalar. Lines 810-812 print the options
to the screen and prompt the operator for a selection. Line 815 causes a return
without the matrix being modified if appropriate. Line 820 sets the matrix indicator,
MI, to two and calls the matrix inversion or scalar multiplication subroutine. Line 8§25
starts the subroutine again, permitting the operator to select another option.

5. Determinant Calculation, Figure 7.7

Lines 1005-1008 test whether the matrix is square and print an error message
if it is not. Line 1010 copies the matrix to be inverted into Bl where the calculations
will be conducted. Line 1020 initializes the value of the determinant as one and the
row counter, [1.

Line 1021 checks whether the diagonal element in the current row, R, is zero.
If so, then the row switching subroutine is called. If all the rows below R have 0’s in
column I1 then the determinant is zero. If a non-zero element can be found below R,

in column I1 then that row is switched with R and the determinant is multiplied by -1.

Line 1022 tests for a terminal error from the row switching subroutine. Line 1023

multiplics the determinant by diagonal element Il and branches to the end of the ‘:
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1000 'CALC DETERMINANT

1005 IFR(MI)=C(MI)THEN10lO

1007 PRINT"ERROR: Number of rows/columns not equal:"

1008 PRINT" MATRIX IS NOT INVERTABLE!*:GOSUB700:EF=1:RETURN
1010 FORI1=1TOR(MI):FORI2=1TOC(MI):B1(I1,I2)=A1(MI,I1,I2):NEXTI2:NEXTI1
1020 DET(MI}=1:FORI1=1TOR(MI)

1021 IFBL(I1,I1)%*SGN(B1(I1,I1))<1E-10THENGOSUB1900ELSE1023

1022 IFEF=1THEN1008

1023 DET(MI)=DET(MI}*B1(I1,I1):IFI1=R(MI)THEN1080

1025 FORIZ=1TOC(MI):B1({I1,I3)=B1l(11,I3)/B1(I1,I1):NEXTI3

1030 FORI2=I1+1TOR(MI):IFB1(I2,I1}=0THEN1060

1040 FORI3=I1TOC(MI):B1(I2,I3)=B1l(I2,I3)-{B1l(I2,I1)%*B1(I1,I3)):NEXTI3
1060 NEXTI2:NEXTI1

1080 IFOF<>1THENRETURN

1081 PRINT"*xDet. Of Matrix '"3;MI3" Is: "3

1082 PRINTUSING"$##ii, #8838 3DET (M1 ) : GOSUB700

1090 RETURN .

Figure 7.7 Determinant Calculation.

subroutine if the R is the last row. Line 1025 divides all elements in R, by the
diagonal element in R.. Lines 1030-1060 update the elements in R and below in in
column I1 and to the left. Line 1080 tests whether output is to be printed to the
screen. -If not, the subroutine ends. If so, lines 1081-1082 print the determinant.

6. Row Switching Subroutine, Figure 7.8

1900 *‘SWITCH ROWS

1910 FORJ=I1+1TOR(MI):IFB1(J,11)%SGN(B1(J,I1))<1E~-10THEN1940
1920 FORJ1=1TOC(MI }*2:TE=B1(I1,J1}:B1(11,J1)=B1(J,J1)

1930 B1(J,J1)=TE:NEXTJ1:GOTO1950

1940 NEXTJ:EF=0:RETURN

1950 DET(MI)=-DET(MI):RETURN

Figure 7.8 Row Switching Subroutine.

This subroutine is called when the determinant or inversion subroutines try to
pivot on a row, Ryy, with a zero in the main diagonal element. The subroutine looks
for the first row below Ry that has a nonzero element in column 11.19 Line 1910

scarches thc rows below Ry, for a row with a nonzero clement in the appropriate

10T he same column as the zero on the main diagonal in Ry .
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column.!! Lines 1920-1930 switch the elements of the rows using TE as an intermediate
j ’ storage variable. If none of the rows below Ry, have a nonzero element in the
! - appropriate column, then the matrix is not invertable and EF is set to one in line 1940.
If a row switch was made, the determinant changes sign in line 1950.

7. Matrix Inversion Subroutine, Figure 7.9

2000 °'MATRIX INVERSION

2010 OF=0:GOSUB1000:IFDET(MI }%SGN(DET(MI))>1E~100REF=1THEN2017
2015 PRINT"*ERROR: Determinant=0. MATRIX NOT INVERTABLE!":GOSUB700:EF=1
2017 IFEF=1THENRETURN

2020 FORI1=1TOR(MI):FORI2=1TOC(MI):B1(I1,I2)=A1(MI,I1,I2):NEXTI2:NEXTI1
2030 FORI1=C(MI)+1T02%C(MI):FORI2=1TOR(MI)

2032 IFI1=I2+R(MI)THENB1(I2,I1)=1ELSEB1(I12,I1)=0

2035 NEXTI2:NEXTI1

2040 FORI1=1TOC(MI)

2045 IFB1(I1,I1)%SGN(B1(I1,X1))<1E-10THENGOSUB1900ELSE2055

204¢ IFEF=1THEN2015

2055 MU=1/B1(I1,I1):FORI3=1TO2X*C(MI):B1(I1,I3)=B1(I1,I3)%MU:NEXTI3
2057 IFI1=C(MI)THEN2080

2060 FORI2=I1+1TOR(MI):IFB1(I2,I1)=0THEN2075

2065 MU=-Bl1(I2,I1) '

2070 FORI3=I1T02%C(MI):B1(12,I3)=B1(I2,I3)+(MUB1{I1,I3)):NEXTI3
2075 NEXTIZ:NEXTI1

2080 FORI1=C(MI)TO2STEP-1

2100 FORI2=I1-1TO1STEP-1:IFB1(I2,I1)=0THEN2130

2110 =-B1(I12,I1)

2120 FORIZ=1TO2%C(MI):B1(X2,I3)}=B1(I2,I3)+(MUxB1(I1,I3)):NEXTI3
2130 NEXTI2:NEXTI1

2140 FORI1=1TOC(MI):FORI2=1TOR(MI)

2145 Al(MI,I2,I1)=B1(I2,I1+C{MI)):NEXTI2:NEXTI1

2190 OF=1:RETURN

Figure 7.9 Matrix Inversion Subroutine.

The matrix inversion subroutine places the matrix to be inverted, p, and an
identity matrix, I, into Bl. Each row of Bl holds a row of pu and the corresponding
row from [. Elementary row operations are conducted on p in Bl to change that
portion of Bl to an identity matrix. The same elementary row operations are
conducted on the portion of Bl that started as an identity matrix. When the portion
of B1 which started as p is changed to I, then the portion of Bl which started as I
becomes u'l.

IThe decision rule actually looks for an element outside the range 0 *+ 10-10,
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Line 2010 stops intermediate results from being printed to the screen by
setting OF to zero. Line 2010 also calls the determinant calculation subroutine and
tests whether the determinant is equal to zero. If the determinant equals zero, then
lines 2015-2017 print an error message, set the error flag, and terminate the inversion
subroutine. Line 2020 copies p into Bl. Lines 2030-2035 place an identity matrix with

" the same dimensions as p into B with .

Lines 2040-2075 Line 2045 checks whether the M1 is zero. If so, then the
row switching subroutine is called. If the row switching subroutine can not find a row
for which element I1 does not equal zero, then the matrix is not invertable and line
2046 branches to the error message. Line 2055 calculates the constant, MU,12 and
multiplies row 11 by MU. Since lines 2060-2075 do not apply to the last row of j, line
2057 branches around them if 11 points to the last row.

Lines 2060-2075 perform the elementary row operations to change to zero the
elements of column I1 that are in rows below row il. Lines 2080-2130 perform the
elementary row operations which change to zero the elements of g above the main
diagonal. Lines 2140-2145 copy the inverted matrix from Bl back to the appropriate
section of Al. Line 2190 turns the output back on by resetting OF and terminates the
subroutine with a return.

8. Matrix Addition, Figure 7.10

3000 'MATRIX ADDITION

3010 MF=2:G0SUB7000:G0SUB800: IFEF=1THENRETURN

3015 FORI1=1TOR(1):FORI2=1TOC{1):A1€1,I1,I2)=A1(1,I1,T2}+A1(2,11,1I2)
3020 NEXTIZ:NEXTI1:GOSUB6000:MF=0:RETURN

Figure 7.10 Matrix Addition Subroutine.

Line 3010:

e Sets MI=2 indicating to the input subroutine that it is being called from the
matrix addition subroutine.

¢ Calls subroutine 7000 to enter the second matrix.

.. 12Muttiplying row I1 by MU makes main diagonal clement py; 1 equal to one,
i.e. its identity matrix value. ’
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Calls subroutine 800 to permit the operator to invert the second matrix or

R multiply it by a scalar.

3 s Evaluates whether a terminal error was made in either subroutine 7000 or 800
i and, if so, terminates the matrix addition subroutine.

. Lines 3015-3020 add the elements of Al(l,) and A2(2,). Line 3020 also calls
AN subroutine 6000, printing the answer, resets MF=0, and terminates the matrix addition
et .

4 ! subroutine.

:g - 9. Simultaneous Linear Equations, Figure 7.11

5

D

A

..': 4000 'SIMULTANEOUS LINEAR EQUATIONS

‘Q‘ 4010 CLS:PRINT"#%Solves Ax=b. Choices:":PRINT” 1. Enter b Vector™ S
o 4012 PRINT" 2. Change An Element In Matrix A"

4013 PRINT" 3. Solve Current Ax=b"
6014 PRINT" 4. Return":INPUT" % Select A Number: ";CC

) 4020 IFCC=160T0%040

1 4022 IFCC=2G0T0%050

) 4024 IFCC=3GOT04060

e 4026 IFCC=GTHEN RETURN

o 4035 GOTO 4000

.“-. 4040 MI=2:R(2)=C(1):C(2)=1:60SUB7040:G0T04000

4050 INPUT"#xRow, Column Of Matrix A To Be Changed: "3RD,CD
4052 PRINT" - Enter Row"3RD3", Column*3CD3™:";:INPUTAL(1,RD,CD):G0T04000

X 4060 MI=1:SF=1:0F=0:60SUB8000:GOSUB2000
< 4064 IFEF=0THEN4070
4065 PRINT"*Solution Not Uniquely Determinable':GOSUB700:RETURN
j 4070 GOSUB5000:CC=0:FORI1=1TOR(2):CC=CC+1:PRINT"x{"3I13") = "}
K> ) 4075 PRINTUSING"H#####. ###8"381(I1,1):IFCC>6THENGOSUB700:CC=0
R 4080 NEXTI1:GOSUB700:SF=0:60SUB8200:GOT04000
L]
"

Figure 7.11 Simultaneous Linear Equation Solving Subroutine.

e This subroutine solves sets of linear equations of the form Ax=b where A is

KK m by m matrix of rank m and x and b are vectors of length m. Matrix A must be

::Q entered as the primary matrix before this subroutine is called. The subroutine prompts

‘.:: the operator to enter b. The subroutine also permits the operator to change individual

e elements of the A matrix.

i;,'{. Lines 4010-4014 print a header and a menu of options and prompt the

o operator to select an option. Lines 4020-4035 transfer control to execute the option

; ) selected. Line 4040 sets MI =2, indicating that b will be stored in A1(2,,), dimensions
. the b vector, and calls subroutine 7040 to input b. Line 4050 prompts the opcrator for

o the row and column of the element in A to be changed. Line 4052 prompts the

% operator to enter the new valuc for that element. .
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::;-‘ Lines 4060-4080 solve the system of equations. Line 4060 sets MI, SF, and
3 ‘ Y - . . -« . .
::,"" OF and calls subroutines which store, then invert, the A matrix. Lines 4064-4065 print
?.‘ .g: . . . . .

i an error message if the A matrix is not invertable. Lines 4070-480:

's:;:;. e Multiply Al by b producing the solution vector, X.

;.?*"t ¢ Print the solution vector.

2,8

8 e Reset SF=0.

G L

¢ Retrieve the stored A matrix.

:;:l; 10. Matrix Multiplication Subroutine, Figure 7.12

RO,

ey

e

5000 'MATRIX MULT

. 5010 MF=1:IF SF=1THEN5020

;:;. ¢ 5015 MI=2:GOSUB7000:GOSUB800: IFEF=1THENRETURN

n 5020 R(4)=R(1):C(4)=C(2):FORIL=1TOR(4 ):FORI2=1TOC(4):B1(I1,12)=0

':r.' 5022 FORI3=1TOC(1):B1(I1,I2)=A1(1,I1,I3)#A1(2,I3,12)+B1(I1,12)

:,t.‘:t 50264 NEXTI3:NEXTI2:NEXTI1:MF=0

o 5050 IF SF=OTHENGOSUB7500:GOSUB6000

iy 5060 RETURN

;.;.s

0

i3S

‘- Figure 7.12  Matrix Multiplication Subroutine.

h )

i Line 5010 sets MF!3 and branches to avoid the input subroutines in line
o 5015 if SF equals one.!® Line 5015 calls the subroutines to enter and modify the second
'i » q y

,: i matrix. Lines 5020-5024 set the dimensions Bl and perform the muiltiplications and
2 additions required to place the answer matrix in Bl. If SF equals zero,! then line
| )%' . . .

' 5050 calls subroutines which copy the answer from Bl to Al(l,,) and print the answer
:;E;:: matrix.

-5’.0, 11. Scalar Multiplication Subroutine, Figure 7.13
" v . . i . .
‘,;‘.'.g This subroutine multiplies matrix Al(MI,) by a scalar, SM. Lincs
“:.U’i

5110-5115 prompt the operator to enter the scalar and conduct the multiplication.

'i: I3MF = 1 indicates that matrix multiplication is being performed.

oy . 14That is, if the matrix multiplication subroutine is called from the simultancous
O linear equation subroutine.

e, DThat is, this subroutine is not being called from the simultancous linear
equation subroutine.

i 86

AR A L L A 3 -
RN RN S N MM W DTS XK YN



'y 5100 'SCALER MULT
W 5110 INPUT"Enter Scalar Multiplier:"3SM:FORI1=1TOR(MI):FORI2=1TOC(MI)
5115 Al(MI,I1,X2)=A1(MI,I1,I2)%SM:NEXTI2:NEXTI1:RETURN

.l

i’ Figure 7.13 Scalar Multiplication Subroutine.
. 12. Subroutine To Print Al(l,,), Figure 7.14

o

"

6000 'PRINT OQUTPUT MATRIX

6010 PRINT" #% Current Answer Matrix:":CC=0:FORI1=1TOR(1}:CC=CC+l

) 6012 FORI2=1TOC(1):PRINTUSING"#### . H#8#"3A1(1,I1,I2)3:NEXTIZ:PRINT""
‘; 6050 IFCC=3THENGOSUB700:CC=0

s 6070 NEXTI1:GOSUB700:RETURN

l.
'\
N
Pyl
. Figure 7.14 Subroutine To Print The Primary Matrix.
4
! Lines 6010-6070 print a header and then print Al(1,,). The matrix is printed
L, up to three rows at a time.
’ 13. Matrix Input Subroutine, Lines 7000-7050
! - a. Input Matrix Configuration, Figure 7.15
Y The section in Figure 7.15 prompts the operator to specify:
,‘ ¢ Whether the matrix to be entered will go on the left or right hand side of the
X operation.
¢ Whether the matrix will be entered from the keyboard, MATIN.DO, or retrieved
A from RAM storage. The dimensions of the incoming matrix are entered from the
p? appropriate source.
\ Line 7001 prompts the operator to specify whether the incoming matrix will
4 be on the left or right side of the operation. If the incoming matrix is to be on t!¢ left
. side, lines 7003-7004 move the matrix in Al(l,,) to Al1(2,,). Lines 7006-7008 print an
3: appropriate header. Lines 7009-7011 print the source options for the incoming matrix.
"s The option to enter a matrix from MATIN.DO will be printed only if MATIN.DO has
‘:: been created (FF=1) and the end of MATIN.DO has not been reached (EOF(1)=0).
Lines 7012-7013 transfer control to enter the matrix from the appropriate source. !
;. Lines 7014-7018 enter the dimensions of the new matrix from the appropriate source.
L 1
E: !
"
L
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L g
N
N
i
g
':j‘f‘
AKX
pro 7000 'MATRIX INPUT
£3 7001 CLS:PRINT"":PRINT"Will This Matrix Be On:*:INPUT" O=Left, 1=Right";Z9
7002 IFZ9=1THEN7006
. 7003 R(2)=R(1):C(2)=C(1):FORI1=1TOR(1):FORI2=1TOC(1):AL(2,I1,12)=A1(1,I1,I2)
e 7004 NEXTI2:NEXTI1:MI=1
¥ 7006 CLS:IFMI=2THEN7008
t‘:‘;l 7007 PRINT"#%Choices For Left Hand Matrix":60T07009
,'! 7008 PRINT"#%xChoices For Right Hand Matrix:*
o 7009 PRINT" 1. Enter Matrix From Keyboard"
e, 7010 PRINT" 2. Retrieve Stored Matrix":IFFF<>1THEN7012
7011 IFEOF(1)=0THENPRINT* 3. Enter Matrix From MATIN.DO"
e 7012 INPUT“%*Enter A Number: *3Z9:IFZ9=1THEN7015
i) 7013 IFZ9=3THEN7018
Q‘ 7014 R(MI}=R(3):C(MI)=C(3):60T07020
ERA 7015 PRINT" *¥Enter The Rows, Columns”
e 7017 INPUT"In The Next Matrix: “3R(MI),C(MI}:GOT07020
?t,t\-} 7018 INPUTH1,R(MI),C(MI) .
AR
Q" W
';',:::: Figure 7.15 Input Matrix Configuration.
LW
:’:‘.‘ . . .. .
AN b. Detection Of Dimensioning Errors, Figure 7.16
Y,
A
W0 7020 IF MF<>ITHEN7030
oy 7021 IFR(2)=C(1)THEN7030
" 7022 PRINT“%XERROR: Columns in LEFT MATRIX ="3;C(1)
7026 PRINT" Rows In Right Matrix ="3R(2)
- 7026 PRINT"These Must Be Equal For Matrix Mult!?"”:G0SUB700:EF=1:G0T07006
) 7030 IF MF<>2THEN7035
- 7031 IF(R(1)=R(2)ANDC(1)=C(2))THEN 7035
a o 7032 PRINT"»**ERROR:Dimensions For-Both Input"
';2 3 7034 PRINT"Matrices Must Be Equal!?!":G0SUB700:EF=1:G0T07006
R4
';‘q‘;' . . . . .
‘,z,:,g Figure 7.16 Detection Of Dimensioning Errors.
‘s'k ()
B
R) “.' . . . . . . . . .
“aoed If the matrix being entered is the second matrix in a matrix multiplication
LX)
A . . . .
) operation, then lines 7020-7026 check whether the number of columns in the left matrix
AN - is equal to the number of rows in the right matrix. If not, then an crror message is
‘.;_C" ]
D) . . . .. .
J}::;:' printed and control is transfered to the beginning of the 1natrix input subroutine. If
Wy . . . .. . .. . .
;.a::. the matrix being entered is the second matrix in a matrix acdition operation, then lincs
e 7030-7034 check whether the dimensions of the left and righ: matrices are the same. If
;.;?’ . not, then an error message is printed and control is transfe ed to the beginning of the
A
%: . matrix input subroutine.
[3 's
e
i #
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§ c. Matrix Input Section, Figure 7.17

7035 1£Z9=2THENGOSUB8200:RETURN

‘ N 7036 IFZ9=3THEN7050

] 7037 PRINT™ %xFill Matrix Row By Row:':PRINT""

7040 FORI1=1TOR(MI):FORI2=1TOC(MI)

7042 PRINT"-Enter Row"3Ils"And Column'3I23":"}

7044 INPUTAL(MI,I1,I2):NEXTIZ2:PRINT"":NEXTI1:RETURN

7050 FORI1=1TOR(MI ):FORIZ2=1TOC(MI ):INPUT#1,A1(MI,I1,12):NEXTI2Z:NEXTI1:RETURN

v . -

»

) Figure 7.17 Matrix Input Section.

If the incoming matrix is to be retrieved from RAM storage, line 7035 calls
the appropriate subroutine. Line 7037-7044 enter the incoming matrix from the

L

L . . . . .

& keyboard. If the incoming matrix is to be entered from MATIN.DO then line 7036

L

! transfers control to 7050 which performs the entry.

’ 14. Copy Bl Into Al(1,,), Figure 7.18

i)

#

' 7500 'COPY Bl INTO Al(1,,)

4 7510 R(1)=R(%):C(1)=C(4):FORI1=1TOR(1):FORI2=1TOC(1)

7512 A1(1,I1,I2)=B1(I1,12):NEXTI2:NEXTI1:RETURN

g

{

L Figure 7.18 Subroutine to copy Bl into Al(1,,).

Lines 7510-7512 dimension al(l,,) and copy Bl into AI(l1,,).

‘ . . . .

y 15. Matrix Integer Exponentiation, Figure 7.19

)

{

‘!

7600 'MATRIX INTEGER EXPONENTIATION

w: 7610 CLS:PRINT"":INPUT"#xEnter Integer Exponent > 2: "3iXP

i 7620 R(2)=R(1):C(2)=C(1):FORI1=1TOR(1}: FORI2=1TOC(2)

i 7622 A1(2,11,12)=A1(1,11,12):NEXTI2:NEXTI1

. 7630 SF=1:FOREX=2TOXP: GOSUB5020:GOSUB7500 : NEXTEX:G0SUB6000 : SF=0:RETURN

: i
!

o . . . . . i

K. Figure 7.19 Matrix Integer Exponentiation Subroutine. e

89

- )
FEAN

) . . - . M T |
N : : - wy ; DAY < X0 Sty Wy T Mo nfy ¥ sty ataty -
SRR "!.","“tte’»‘;'v."..x:'.-; NN S '.%l!ﬁﬁ’:’: '!'u‘! {2t ~"a'! ‘2“ ¥ !’.,‘l.!'\ OO TN 'ﬂﬂ'-“n‘-.’:! h""""'l'- i .’:-..!" ERAAEES Ry N,



A,

{z
My . . . . . .
w;,'; This subroutine raises the primary matrix to an integer power greater than or
[ . .

fs:r: equal to two. Line 7610 prompts the operator to cnter an exponent, XP. Lines
\.'-_l .

7620-7622 dimension Al(2,,) and copy Al(l,,) into A2(2,,). Line 7630: 1

4; - e Sets SF=1. This suppresses printing of intermediate results. ‘
R e Performs XP-1 matrix multiplications.

Xy .

¥ ¢ Prints the final result.

[

16. Storage and Retrieval Subroutines, Figure 7.20

RN

s:"t

54

ot

e 8000 'STORE Al(l,,)

o 8010 R(3)=R(1):C(3)=C(1):FORI1=1TOR(3 }: FORE2=1TOC( 3}

8012 A1l(3,I1,I12)=A1(1,I1,12):NEXTI2:NEXTI1:RETURN

. 8200 'RETRIEVE THE STORED MATRIX

i 8210 R(MI)=R(3):C(MI)=C(3):FORI1=1TOR(MI }:FORI2=1TOC(MI)
iyt 8212 Al(MI,I1,I2)=A1(3,11,I2):NEXTI2:NEXTI1:RETURN
i
2y
R
nhe

oy Figure 7.20 Storage and Retrieval Subroutines.

bﬁp

' . . . . .
:’,.f Lines 8010-8012 dimension Al(3,) and store Al(l,) in Al(3,). Lines
iy . . o
1-1. 8210-8212 dimension A1(l,,) and retrieve Al(1,,) from A1(3,,).
AR

o F. SIMULTANEOUS LINEAR EQUATION SUBROUTINE, FIGURE 7.2

" . . . .
:.‘5 Many programs require a simultaneous linear equation solver. Often these
)
j:." programs compute the A matrix as part of the program and use the results in
) .

"-’t subsequent calculations. The following subroutine may be inserted in other programs
e without requiring the loading of the entire matrix algebra program.
) ’ ' . 3 . . . .
;;:' This subroutine follows the same algorithm as the simultaneous linear equation
:k subroutine in the Matrix Algebra Program. K9 is the dimension of the A matrix. Bl
o8y . . .
« holds the A matrix; B2 holds the b vector. The x vector is returned in the first column
oy of B1. If the A matrix is to be used later, it must be stored somewhere other than Bl
::::‘ since the A matrix in Bl is changed to an identity matrix by this subroutine. Instead
B, . . . . . . .
.“:: of testing for a zero determinant, the subroutine uses the error identification subroutine
¥
*7*:, 9900 to determine if the A matrix is not invertable. Variables K2-K9 are used to avoid
o conflict with other counters.
AL

\
A
u:.‘-‘A
zb;&
Bt 90
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9800 ‘Simultaneous Linear Equation Subroutine: Ax-b

. 9802 DIM B1(K9+1,K9%2),B2(K9):'Bl = A matrixs; B2 = b vector
9805 ‘Input from SLEIN.DO; Set MAXFILES in main program

9806 OPEN"SLEIN"FORINPUTASY

9807 FORK8=1TOK9:FORK7=1TOK9:INPUT#9,B1{K8,K7):NEXTK7:NEXTKS
9808 FORK8=1TOK9:INPUT#9,B2(K8):NEXTK8

9815 ‘Irvert Matrix A

9820 FORK7=K9+1T02%K9: FORK8=1TOK9

9822 IFK7=K8+K9THENB1(K8,K7)=1ELSEB1{K8,K7)=0

. 9825 NEXTK8:NEXTK7

9830 FORK7=1TOK9

9835 IFBL(K7,K7)#SGNIB1(K7,K7))<1E-8THENGOSUB9910

9840 FORK6=1T0O2%K9:B1(K7,K6)=B1(K7,K6)/BL(K7,K7):NEXTK6

9842 IFK7=K9THEN9865

9845 FORKE8=K7+1TOK9:IFB1(K8,K7)=0THEN9860

9855 FORK6=K7TO2%K9:B1(K8,K6)=BL{K8,K6)1~-(BLIKS8,K7)I*B1(K7,K6)):NEXTKE
9860 NEXTKS8:NEXTK7

9865 FORK7=K9TO2STEP-1 {
9870 FORK8=K7-1TO1STEP-1:IFB1(K8,K7)=0THEN9885

9880 FORK6=1TO2%K9:B1(K8,K6)=B1(K8,K6)-(BL(K8,K7)%B1(K7,K6)):NEXTKé
9885 NEXTK8:NEXTK7

9890 'Mult A Inverse by b

9892 PRINT"#* Sim Lin Eq Solution: X(i) ="

9894 FORK7=1TOK9:B1(K7,1)=1:FORK8=K9+1T02%K9: FORK6=1TOK9

9896 BLl(K7,1)=B1(K7,1)+BL(K7,K8)%B2(Ké6 ):NEXTK6:NEXTKS

9898 PRINTUSING"###3. 888" 3B1(K7,1 ) :NEXTK7 :PRINT"" :RETURN

9900 ‘Error Routine

9903 IFERL>9700ANDERR=11THENPRINT"!!JERROR: Matrix Is Not Invertable!!?!":END
9905 PRINT“Error Code"3ERR3"In Line';ERL:END

9910 'SWITCH ROWS

9915 FORK5=K7+1TOK9:IFB1(K5,K7)I%SGN(B1(K5,K7))<1E-8THEN9940

9920 FORKG=1TOK9%2:K3=B1l(K7,K4):B1(K7,K%)=B1l(K5,K%)

- 9930 B1(K5,K4)=K3:NEXTK&G:RETURN

9940 NEXTK5:PRINT"Error: Matrix Not Invertable":END

Figure 7.21 Simultaneous Linear Equation Subroutine.
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. VIII. NUMERICAL DOUBLE INTEGRATION PROGRAM

A. GENERAL

o

‘1 This program numerically integrates functions of one or two variables using
‘ Simpson’s Rule with a Romberg extrapolation to improve accuracy. The Romberg
N extrapolation is described in [Ref. 12:pp.250-276]). Using the Romberg extrapolations
is allows the operator to specify an acceptable error. The program conducts
E: extrapolations until the error of the numerical estimate is below that specified
¢ tolerance. ’ ’
. The operator may interactively change the function being integrated, the limits of
N integration, or the Romberg tolerance. This program is also written as a subroutine.
: However, in the subroutine the function being integrated, the limits of integration, and
‘ the tolerance may not be interactively changed.

W B. INPUT

: All input is entered from the keyboard of the M100. When the program begins,
i' a menu appears which allows the operator to select whether the function to be
! integrated, the limits of integration, or the Romberg tolerance will be changed.

Y When the operator selects an input to be changed, the program calls the edit
, function for the applicable lines in the program. The edit function terminates the
:: running of the program. The operator should change only the right hand side of the
. input equations. After changing the lines required, the operator will hit the F8 button
& on the M100. This puts the M100 back in the BASIC mode. The operator must then
o enter RUN or hit the F4 button to run the program again. If the operator wants to
;. change another input, he should select another input from the menu and repeat the
process.

k 1. Changing The Function, f(x,y), To Be Integrated

‘:: Enter zero at the main menu. When lines 1285-1288 appear, change the right
4 hand side of the equation on line 1286. If the equation is too long for one line, then:

¢ C(alculate a partial function value on line 1286, assigning it to F.

¢ Add a line 1287 assigning_the, final function value to F and including the partial
function value from linc 1286 in the right hand side of the equation on line 1287.
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24,3 i
For example, if fix,y) = (x2+y°+7) * ¢X""Y", then the function might be broken
down as indicated in Figure 8.1.

1286 F=EXP(X"2%Y"3)
1287 F=(X"N2+Y 547 )%F

Figure 8.1 Example Of Function To Be Integrated.

Up to two independent variables, X and Y, may be used in the equation. The operator
must ensure that f{x,y) is formulated with X as a variable for which constant limits of

integration can be specified. After f{x,y) is entered, depress F8, then F4 to return to
the main menu.

2. Changing The Limits Of Integration
Enter one at the main menu. When lines 1291-1298 appear, change the right

hand side of the equations on lines 1293-1298 as desired. The upper and lower limits
of integration for X, XUPPER and XLOWER, must be constants. The upper and
lower limits of integration for Y, YUPPER and YLOWER, may be constants or given
in terms of X. Do not alter the return statement at line 1295. After the limits of
integration are entered, depress F8, then F4 to return to the main menu.

3. Changing the Romberg Tolerance

The operator should enter two from the main menu and enter the new
tolerance when prompted.

4. Using The Program For Single Integration

Although the program is written for double integration, single integration may
be calculated using the following steps.

¢ Set the function to be integrated equal to one, i.e. line 1286 will be F= 1.
¢ In lines 1296-1297 set YUPPER = f{X) and YLOWER=0.

¢ In lines 1293-1294 set XUPPER and XLOWER as the constant limits of X
between which the function YUPPER = {(X) is to be integrated.

For example, for jO x2 dx, the corresponding limits of integration in lines 1293-1297

would be as indicated in Figure 8.2.

93 -
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Fard

1293 XUPPER=2
1294 XLOWER=0
1295 RETURN
1296 YUPPER=X"2
1297 YLOWER=0

Figure 8.2 Example of Limits Of Integration.

C. OUTPUT

The estimated value of the integral is printed to the screen with its tolerance
error. If the program generated a tolerance error that was less than the tolerance
specified in the input, then that tolerance is printed. If the program could not generate
an estimate within the specified tolerance, then a message to that effect is printed to

the screen.

D. EXPLANATION OF VARIABLES

e A2(6,6) is the matrix holding Romberg extrapolation values.

¢ DX and DY are the widths of intervals (XU-XL)/N and (YU-YL)/N respectively.

¢ Fisthe value of f{x,y) to be integrated at a particular point.

e J1 through J9 are loop counters.

e N is the number of intervals into which the distances XU-XL and YU-YL are
divided.

e SS is the Simpson’s Rule sum specified in equation 8.1. In equation 8.1
fi— fx,yx = X), YL=y,=YU, 1=1,2,3,...,n+ 1. nis the number of intervals into

which the distance YU-YL has been divided. n must be a positive, even integer.
Simpsons’s Rule Sum = fj +46 + 2[5+ 4l + 2fg+,..., +4f +1 | | (eqn 8.1)

¢ TL is the user specified tolerance.

e XLOWER or XL is the lower limit of integration for X.
¢ XUPPER or XU is the upper limit of integration for X.
¢ YLOWER or YL is the lower limit of integration for Y.
e YUPPER or YU is the upper limit of integration for Y.

e 79 is a selection variable.

94

'.--| BTV N ,A(("”\'( o
AR 5 3 e ( Q,&'..A n‘.. b NS \u » . ey




o 2 e . , MENEET RS
kot BT T o e 22 Y i 2 3 d Bakat

\!’

W

L E. EXPLANATION OF PROGRAM COMPONENTS

7 . ‘ A complete program listing is located at Appendix F.
" " 1. Initialization, Figure 8.3

w

By 1200 'Numberical Double Integration:Steven H. Cary:2¢ Aug 86
’ 1201 DIMAZ2(6,6):TL=.001

"y )

X Figure 8.3 Initialization Section.

Line 1201 dimensions the matrix holding the Romberg extrapolations and sets
the default tolerance to .001.

. 2. Option Selection, Figure 8.4

1205 CLS:PRINT"":PRINT" ®x Double Integration "
i 1206 PRINT" Rombarg Algorithm*
" 1210 PRINT"0=Edit Function To Be Integrated."
-~ 1211 PRINT"1=Edit Limits Of Integration.®
< 1213 PRINT"2=Edit Tolerance; Current Tol.=";TL
s 1215 PRINT"3=Calculate Integral ":INPUT"Enter 0, 1, 2, or 3:"3;29
: :\-_‘. 1216 IFZ9=0THENEDIT1285-1288

1217 IFZ9=1THENEDIT1291-1298
1218 IF29=2THENPRINT"":INPUT"Tolerance="3TL:G0T01205

A8

(4

‘,-I

o Figure 8.4 Option Selection Section.

" Lines 1205-1218 print a menu which permits the operator to change f{x,y), the
f limits of integration, or the tolerance, or to calculate the integral. If f{x,y) or the limits
bl of integration are to be changed, then lines 1216 or 1217 activate the editor for the
g

appropriate program lines. The editor terminates program execution, thereby requiring
o that the program be executed after editing. If the tolerance is to be changed, then line
h 1218 prompts the operator to 'pdate TL and redisplays the menu.

3. Integration Calculation, Figure 8.5

-
'

.
Y

-

&Y

Line 1220 clears the screer. during the calculation and prints an admonition to

be patient while the calculation occures. Line 1230 sets the initial numbezr of intervals

I X

&

to two, calls subroutine 1293, which calculates the interval width, DX. Linc 1240
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1220 CLS:PRINT"":PRINT" 11Be Patient!!":PRINT""
1230 N=2:60SUB1293:DX={XU-XL)/2

1240 FORJ9=1T06:DX=DX/2:N=N%2

1262 X=XU:G0SUB1296:6G0SUB1280:A2(J9,1)=SS*DY

1245 X=XL:GOSUB1296:G0SUB1280:A2(J9,1)=A2(J9,1)+SS*DY

1250 FORJ8=2TON:X=X+DX:GO0SUB1296:GOSUB1280

1251 A2(J9,1)=A2(J9,1)+2%SSHDY :NEXTJ8

1252 A2(J9,1)=A2(J9,1)%DX/3

Figure 8.5 Integration Calculation.

starts a loop in which the Simpson’s Rule intervals are halved at each iteration. That
is, in the first iteration YU-YL and XU-XL are divided into four intervals, in the
second iteration ** .y are divided into eight intervals, and so on for six iterations. Line
1240 cuts the interval for X, DX, in half and doubles the number of intervals, N.

Lines 1242-1245 call the subroutines which compute the Simpson Rule sums,
SS, at the upper and lower bounds of X. These sums are multiplied by their respective
interval widths, DY, and added together into A2(J9,1). Lines 1250-1251 calculate the
same summation for values of X between XL and XU at intervals DX and and add the
sums to A2(J9,1). Line 1252 multiplies A2(J9,1) by DX/3 to complete the Simpson’s
Rule approximation of f f(x,y) dydx. '

4. Romberg Extrapolation, Figure 8.6

1255 IFJ9=1THENNEXTJ9
1260 FORJ8=1T0J9-1
1261 A2(J9,J8+1)=A2(J9,J8)+((A2(J9,J8)-A2(J9-1,J8))/(4"J8-1)):NEXTI8

Figure 8.6 Romberg Extrapolation.

Because the Romberg extrapolations require two numerical approximations,
line 1255 skips the extrapolation section after the first iteration, i.e. when J9=1. Lincs
1260-1261 conduct the Romberg extrapolation as described in the section on Romberg
extrapolation in [Ref. 12:pp. 250-276].
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‘ 5. Termination and Output, Figure 8.7

1262 T1=A2(J9,J9)-A2(J9,J9-1):IFSGNIT] )*T1-TL>0THENNEXTJ9ELSE1264%
1263 PRINT"Tolerance of";TL;"not met after five extrapolations®
1264 IN=A2(J9,J9)

1265 PRINT"Integral ='";:PRINTUSING"S#SBHH®, #R##%" 3 IN
1266 PRINT" Actual Tolerance='"j:PRINTUSING"##.4###%#" 3 T1%SGN(T1)
1267 SOUND1567,10:SOUND124%,10:SOUND10%46,10:SOUND783,20

1268 SOUND1046,10:SOUND783,40

1269 INPUT"Hit Enter To Continue:"329:60T01208

1275 FORJ7=1T06:FORJ6=1TOJ7:PRINTUSING " #%, 888" 3A2(J7,J6))

1276 NEXTJ6:PRINT"":NEXTJ7:INPUTZ9:RETURN

o vy
o v m w .

v

"
[}

[ .

Figure 8.7 Program Termination and Output.

{ Line 1262 finds the difference, TIl, between the last two Romberg
) extrapolations and compares that difference to the user specified tolerance, TL. If the
i difference is greater than the tolerance, then the extrapolation is not accurate cnough,

another numerical integration is conducted with DX and DY halved, and another
;: extrapolation is made. Otherwise, the integral is within tolerance and the program
1 branches to line 1264 to begin the output sequence. If the integral is not within
A tolerance after six iterations, iterations,!® the program terminates. Line 1263 prints a

message to the screen indicating that the tolerance has not been met. Line 1264
assigns the final value of the integral to IN. Lines 1265 and 1266 print the value of the

. integral and the actual tolerance,!” to the screen. Lines 1267 and 1268 play a short
' tune to cuc the operator that the calculation has finished. Line 1269 holds the results
’ on the screen until the operator hits ENTER, cycling the program back to the main
" menu at line 1205.
>, 6. Diagnostic Subroutine, Figure 8.8
.;' Lines 1275-1276 print the A2 matrix. This subroutine can be called in the
‘ middle of a calculation to check how far the calculation has progressed. To call the
' subroutine in the middle of a calculation:
) ¢ Hit SHIFT and BREAK together to stop the calculation.
R * Enter GOSUB1275.
\ . 16That s, after distances XU-XL and YU-YL have been broken into 128
3! intervals.
; 7 Actual toleranc may be less than the user specified tolerance.
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1275 FORJ7=1T06:FORJ6=1TOJ7:PRINTUSING"#%# . 888" 3A2(J7,J6)
1276 NEXTJ6:PRINT"":NEXTJ7:INPUTZ9:RETURN

Figure 8.8 Diagnostic Subroutine, Prints Matrix A2..

¢ After viewing the matrix, hit ENTER to continue the program.
7. Simpson’s Rule Summation, Figure 8.9

1280 REM Simpson’s Rule Sum

1281 Y=YU:GOSUBL285:SS=F:Y=YL:GOSUB1285:SS=5SS+F

1282 FORJ5=2TO(N/2):Y=Y+DY:60SUB1285:SS=SS+4X%F : Y=Y +DY :GOSUB1285
1283 SS=SS+2x%F:NEXTJ5:Y=Y+DY :GOSUB1285:55=5S+4%F : RETURN

Figure 8.9 Simpson’s Rule Summation Subroutine.

Lines 1281-1283 calculate SS= Y f| + 4fy + 263 + 4fy + 25 + .., 4f, +

f,+1 Where fi=f(x,y|x=X), YL=sy;=YU, i=1,23,..,n+ 1. n is the number of

n
intervals into which the distance YU-YL has been divided.

8. F(x,y) to be integrated, Figure 8.10

1285 'f(x,y) to be integrated:

1286 F=1

1288 'X & Y=independent variables. Hit F8, then F% When Done.
1289 RETURN

Figure 8.10 Subroutine To Calculate f{x,y).

The function to be integrated, f{x,y) is at line 1286.1% Lines 1285 and 1288 are

comments printed to the screen during editing to assist the operator.

18 An additional line, 1287, may be added if the function is too long for one line.
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it 9. Limits Of Integration, Figure 8.11
(3P
g
\‘!“"
T..'k.
1290 ‘Limits of Integration:
e 1291 ‘XLOWER/XUPPER are constants.
¢ Sgh] * 1292 °*YUPPER & YLOWER may be constants or given in terms of X.
}:‘l% 1293 XUPPER=1.5707963
é‘? 1296 XLOWER=0
g 1295 RETURN
;.'»!.‘ X 1296 YUPPER=SIN(X)
s 1297 YLOWER=0
1298 'Hit F8, Then F4 When Done
O 1299 DY={YU-YL)/(N+1):RETURN
N
R8T
e
N/
X

Figure 8.11 Limits Of Integration Subroutines.

R Upper and lower limits of integration for X are entered at lines 1293 and 1294

N ‘ respectively and must be constants. Limits of integration for Y are entered at lines

W 1296-1297 and may be either constants or functions of X. Line 1299 updates DY.
Lines 1290-1292 and 1298 are comments to assist the operator during editing.

! {q F. INTEGRATION SUBROUTINE

A The numerical integration program described above is adapted in Figure 8.12 for
use as a subroutine. In the subroutine neither f{x,y), the limits of integration, nor the
A . tolerance can not be edited during program execution. All comment lines to facilitate

N editing have been removed. The subroutine returns IN as the numerical approximation

ot of the integral but does not print IN. The operator must dimension A2(6,6) with the
' other arrays in the main program and delete line 1201 in the subroutine,
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‘Numberical Integration Subroutine:Steven H. Cary:24 Apr 86
DIMA2(6,6)

TL=.001 ,
CLS:PRINT"":PRINT" tfCalculating An Integral?!":PRINT""
N=2:6G0SUB1293:DX=(XU~XL)/2

FORJ9=1T06 : DX=DX/2 : N=N»*2
X=XU:G0SUB1296:GOSUB1280:A2(J9,1 )=5SS*DY

X=XL :6G0SUB1296:GO0SUB1280:A2(J9,1)=A2(J9,1)+SS*DY

FORJB=2TON: X=X+DX:6G0SUB1296 : GOSUB1280
A2(J9,1)1=A2(J9,1)+2%SS*DY :NEXTJU8

A26J9,1)=A2(J9,1)%DX/3

IFJ9=1THENNEXTJ9

FORJ8=1T0J9-1

A20J9,J8+411=A21J9,J8)+( (A2(J9,J8)-A2(J9-1,J8) )/(4J8-1) ) :NEXTJS
T1=A2(J9,J9)-A20J9,J9~1):IFSGN(T1 1*T1-TL>OTHENNEXTJ9ELSE1266
PRINT“Tolerance of"3;TL3"not met after five extrapolations’
IN=A2(J9>J9):RETURN .

FORJ7=1T06: FORJ6=1TOJ7 : PRINTUSING"## . 888" 3A2(J7,J6 )3

NEXTJ6 : PRINT"" :NEXTJ7:INPUTZ9:RETURN

'Simpson’s Rule Sum

Y=YU:G0SUB1285:SS=F:Y=YL :GOSUB1285:SS=SS+F
FORJE=2TO(N/2):Y=Y+DY :GOSUB1285:SS=5S+4*F : Y=Y +DY :GOSUB1285
SS=SS+2%F :NEXTJS5: Y=Y +DY : GOSUB1285:55=SS+4%F : RETURN

F=1

RETURN

XUPPER=1

XLOWER=0

RETURN

YUPPER=X

YLOWER=0

DY=(YU-YL }/(N+1):RETURN

-

V- R Rl Sy
W 2 RIS R Y

AL

Figure 8.12 Integration Subroutine.
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APPENDIX A
DETECTION SIMULATION PROGRAM LISTING

A complete listing of the Detection Simulation Program is as follows.

CLS:PRINT"":PRINT" DETECTION SIMULATION'":FORI=1T0400:NEXTI
'Input/Initialization

OPEN"DSIN"FORINPUTAS1
INPUTH1,NS,NP,S1,S2,RH,F1:V1=S1%S1:V2=52%S2
DIMX(NS,5+NP),A2(6,6),T1(3)

FORI1=1TOS5+NP:INPUT#1,X(1,I1):NEXTI1

IFNS=1THEN140

IFF1=1THEN132
FORI1=2TONS:FORI2=1TO5+NP:INPUTH#1,X(I1,I2):NEXTIZ:NEXTI1:GO0T0140
FORI1=2TONS:FORI2=1TO5: INPUTH#1,X(I1,I2):NEXTIZ2: IFNP=OTHEN13S
FORI2=6TO5+NP:X(I1,I2)=X(1,I2):NEXTI2

NEXTI1

RF=SQR(1-RH"2)

DF$="EXP(~((XT-XS) 2+(YT-YS)"2)/(2%X(J2,6)"72))"

"% Simulation Selection Section e

CLS:PRINT"Is the Detection function:"

PRINT" 1. Deterministic'":PRINT" 2. Probabilistic"

INPUT"Enter 1 or 2:"3F1

CLS:PRINT"Are Sensor Locations:"

PRINT" 1. Always At Aim Point":PRINT" 2. Distributed BVN Around Aim Point"
INPUT"Enter 1 or 2:"“;F2

IF(F1=20RF2=2 )THENF3=1:G0T0230

CLS:PRINT"":PRINT"Is the Calculation:*

PRINT" l1l=Monte Carlo Simulation":PRINT" 2=Numerical Approximation"
INPUT"Enter 1 or 2"3F3

TIME$="00:00:00":IF F1=1THENGOSUB300ELSEGOSUBS500

G0T0200

'Deterministic Sensor Subroutine

IFF3=1THENGOSUB310ELSEGOSUB350

RETURN

‘Montae Carlo of Deterministic Sensor

GOSUB900
PD=0:FORJ1=1TONR:PRINT.241,"Repeatition: " 3J1:G0SUB600: FORJ2=1TONS
IFF2=2THENXS=X(J2,1):YS=X(J2,2):G0T0325

GOSUB612

T1=SQR( (XS-XT )" 2+(YS-YT)*2)

IFT1<=X(J2,6 )THENPD=PD+1:G0T0O335

IFT1>=X(J2,7)ANDT1<=X{J2,8 )THENPD=PD+1:GOTO335

NEXTJ2

NEXTJ1:PD=PD/NR:GOSUB950: RETURN

'Numeric/Deterministic Subroutine
PD=0:FORJ2=1TONS:H=X(J2,6):GOSUB1200:PD=PD+IN
H=X(J2,8):60SUB1200:PD=PD+IN
H=X(J2,7):G0SUB1200:PD=PD-IN:NEXTJ2

GOSUB950 : RETURN

'Probabilistic Detection Function

CLS:PRINT"Default Datection Function Is Carleton."
0SUB1300:GOSUBS00
PG=0:FORJ1=1TONR:PRINT.241,"Repatition:"3J1:6G0SUB600:FORJ2=1TONS
IFF2=2THENXS=X(J2,1):YS=X(J2,2):G0T0523

GOsuBée12

GOSUB1410:IFRND{1)<=DFTHENPD=PD+1:G0T0526

NEXTJ2

NEXTJ1:PD=PD/NR

GOSUB950: RETURN

'#xxGeneratae BYN RV

Ul=RND(1):U2=RND(1):TE=SQR( -2%L0OG(Ul1))
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9,
v 604 XT=TEMCOS(6.2831853%U2):YT=RH*XT+RFXTEXSIN(6.2831853%U2)
L 606 XT=XT%S1:YT=YT%S2:RETURN
L4 612 UL=RND(1):U2=RND(1):TE=SQR(=-2%LOG(U1))
-? 614 XS=TEXCOS(6.2831853%U2 ):YS=X(J2,5 1XT+(1-X(J2,5)%2 )" .E*TEXSIN( 6.2831853%U2)
616 XS=X(J2,1)1+XS%X(J2,3):YS=X(J2,2)+YS*¥X(J2,4):RETURN
900 CLS:INPUT"Enter number of repetitions for Monte Carlo Simulation:";NR
905 RETURN
N 910 INPUT"Hit ENTER to Continue™3;Z1:RETURN
3 950 ‘Print output
f 951 SOUND1567,10:S0UND1264%,10:SOUND10%6,10:SOUND783,20
y 952 SOUND1046,10:SOUND783,40
% 953 CLS:PRINT"":PRINT"Calculation Time (HH/MM/SS) = "“3TIMES$:IFF3=2THEN960
i 954 PRINT"Select Alpha for Confidance interval:" -
955 INPUT" Choices = .1, .05, .01:"3AL
" 956 IFAL=.1THENAL=1.645:60T0960
957 IFAL=.05THENAL=1.96:G0T0960
958 IFAL=.01THENAL=2.575:G0T0960
2 959 GOT0954
# ) 960 PRINT'x Estimate of P(Detection) = "y :PRINTUSING" #.#hu##";PD
> 961 IFF3=1THEN965 .
A 962 PRINT"No Confidence Interval For Numerical Approximations"
963 GOT0970
965 PRINT"Confidence Interval: (")
TE=AL*SQR(PD*{1-PD)}/NR):LL=PD-TE:UL=PD+TE :IFUL>1THENUL=1
967 IFLL<OTHENLL=0
968 PRINTUSING"##.##8##8"3LL3UL3 :PRINT" )" :GOSUB910
970 'Confetti Approximation
972 PRINT"":INPUT"Confetti approximation? 0=No, l=Yes:"329:1FZ9=0THENRETURN
CLS:INPUT"Enter TOTAL lethal area for ALL sensors in the pattern:";NA
976 TE=NA/(6.283185%S1%S2):TE=1-(1+SQR( 2%TE ) )*EXP( -SQR( 2%TE ) ) :
977 PRINT"#xConfetti Approximation = "3;TE:GOSUB910:RETURN
1200 ‘'Numberical Integration Subroutine
1201 D1=6.2831853%S1%S2%RF
1202 TL=.001
1220 CLS:PRINT"":PRINT" t1Calculating An Integral!!":PRINT""
1230 N=2:G0SUB1293:DY=(YU-YL)/2
1240 FORJ9=1TO06:0Y=DY/2:N=N»%2
1242 Y=YU:GOSUB1296:G0SUB1280:A2(J9,1)=TS*DX
1265 Y=YL:GOSUB1296:G0SUB1280:A2(J9,1)=A20J9,1)+TS*DX
{ 1250 FORJS=2TON:Y=Y+DY:G0SUB1296:G0OSUB1280 .
1251 A2(J9,1)=A2(J49,1)+2%TS*DX:NEXTJ8
P 1252 A2(J9,1)=A2(J9,1)%DY/2
) 1255 IFJ9=1THENNEXTJ9
~ 1260 FORJ8=1TOJ9-1
% 1262 A2(J9,J8+41)=A2(J9,J8)4((A2(J9,J8)1-A2(J9-1,J81)1/1647J8-1)):NEXTIS
1263 T1=A2(J9,J9)-A2(J9,J9-1):IFSGN(T11*T1-TL>OTHENNEXTJ9ELSEL1266
. 1264 PRINT"Tolerance of";TL3;"not met after five extrapolations”
ty 1266 IN=A2(J9,J9):RETURN
h 1275 FORJ7=1T06:FORJ6=1TOJ7 :PRINTUSING"#8 8uB"3AZ(J7,J6)}
1276 NEXTJ6:PR:NT"":NEXTJ7:INPUTZ9:RETURN
1280 REM Trapezoidal Rule Sum
‘5 1281 X=XU:G0SUB1286:TS=F:X=XL:GOSUB1286:TS=TS+F
6f 1282 FORJ5=2TON-1:X=X+DX:GOSUB1286:TS=TS+F :NEXTJS:RETURN
1285 'F(X,Y) to be integrated:
1286 F=X"2/V1-2%RH%X%Y/S1/S2+Y"2/V2

- .
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O] 1287 F=(EXP(~F/2/RF"2))/D1:RETURN

f 1290 ‘Limits of Integration:

? 1293 YU=X(J2,2)+H:YL=X(J2,2)-H:RETURN

4 1296 T3=SQRIH"N2-(Y-X(J2,2))72):XU=X(J2,1)+T3:XL=X(J2,1)-T3:DX={ XU-XL }/N

1297 RETURN

1300 PRINT" -Detection Fn (DF) in terms of XT, YT,"

1302 PRINT" and Parameters XS, YS, and X(J2,6).... X(J2,54NP):"
= 1304 PRINT" »» DF = ")DF$

¢~ 1306 PRINT"Hit ENTER For No Change or Enter New...":INPUT" DF = ",DF$
:.. 1307 RETURN

N 1400 'Tokenize DF
J 1410 B$="DF="+DF$+CHRS$(0)
[ 1450 'Tokenize/cxecute BS

L 1451 BO=VARPTR(BS$):B1=PEEK(BO+1)+256#PEEK(B0O+2):CALL1606,0,B1
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A APPENDIX B

Q KALMAN FILTER PROGRAM LISTING
48

. A complete listing of the Kalman Filter Program is as follows.
q‘ i) .

PR 100 CLS:PRINT"##x#xKALMAN FILTERM#%%* :PRINT* Input Data Being Read"
e 110 OPEN“KALIN"FORINPUTAS1:ONERRORGOT09900

-.* 120 INPUT#1,NX,NZ: IFNX<NZTHENMD=NZELSEMD=NX

‘N 125 DIMPHINX,NX,MH(NX ), QUNX,NX ), HINZ,NX ) ,MVINZ ) ,RL(NZNZ) s MUCNX ) SGINX,NX)
" 126 DIMC1(MD,MD),C2(MD,MD},K(NX,N2)

127 DIMBL(NZ+1,NZ%2}

130 FORIL=1TONX:FORIZ=1TONX:INPUTH#1,PH(I1,I2):NEXTI2:NEXTI1
OO 132 FORI1=1TONX:INPUT#1,MH(I1):NEXTI1
134 FORI1=1TONX:FORIZ=1TONX:INPUT#1,Q(I1,I2):NEXTI2:NEXTI1
136 FORI1=1TONZ:FORI2=1TONX:INPUT#1,H(I1,I2):NEXTI2:NEXTI1
138 FORI1=1TONZ:INPUT®#1,MV(I1):NEXTI1

)
.}:. 140 FORI1=1TONZ:FORI2=1TONZ:INPUT#1,R1(I1,I2):NEXTI2:NEXTI1
" 142 FORI1=1TONX:INPUT#1,MU(I1):NEXTI1
A 144 FORI1=1TONX:FORI2=1TONX:INPUT#1,56(I1,12):NEXTI2:NEXTI1
145 CC=0:CLS:PRINT"Initial SG As Input Check:":GOSUB532
150 CLS:PRINT® %%%%%ME ASUREMENT BLOCK 33"
)N 160 PRINT“Current H *:GOSUB540
! 162 INPUT“Enter New H ? 1=Yes, 0=No:"3Z9:IFZ9=0THEN170
Ry 165 'Enter A New H
» 167 FORI1=1TONZ:FORI2=1TONX
X 168 PRINT“Enter Row"3I13", Column“"3I2;"0f H :"3
(o 169 INPUTH(I1,I2):NEXTI2:PRINT"":NEXTI1
170 °*CALC KALMAN GAIN
171 'MULT SG H t, INTO C1
- 172 FORI1=1TONX:FORI2=1TONZ:C1(I1,I2)=0:FORI3=1TONX
174 C1(I1,I2)=(SG(I1,I3)%H(I2,13))+C1(I1,I2):NEXTIZ:NEXTI2:NEXTI1
-ﬁ*- 180 'MULT H SG H t , INTO C2
N 182 FORI1=1TONZ:FORI2=1TONZ:C2111,12)=0:FORI3=1TONX
A ;C 184 C2(I1,T2)=(H(I1,I3)%C1(I3,I2))+C2(I1,X2):NEXTI3:NEXTIZ2:NEXTI1
Wy 200 'ADD R INTO C2
202 FORI1=1TONZ:FORI2=1TONZ:C2(I1,I2)=C2(I1,I2)+R1(I1,I2)}
N 203 NEXTIZ:NEXTI1
o5 210 'INVERT €2
:.. Iy} 215 GOSUB9800
K ) 220 '*MULT €1 C2 INTO K
oy 222 FORI1=1TONX:FORI2=1TONZ:K(I1,12)=0:FORI3=1TONZ
,:n, 226 K(I1,I2)=(C1(I1,I3)%C2(I3,12))+K(I1,T12):NEXTIZ:NEXTI2:NEXTI1
Vi 250 'exxxUPDATE MU- TO MU+
251 'MULT H MU- INTO C1
: 252 FORI1=1TONZ:C1(I1,1)=0:FORI3=1TONX
Ay 256 C1(I1,1)=(H(I1,I3)*MUII3))+C1{I1,1):NEXTI3:NEXTI1
}_g 260 'ADD MV + H MU-
P 262 FORI1=1TONZ:C1(11,1)=C1(11,1)+MVII1):NEXTI1
A 270 'INPUT A NEW MEASUREMENT
.k‘ 272 CC=CC+1:CLS:PRINT"Measurement #"3CC3":"
L\ 273 FORI1=1TONZ:PRINT"Enter Element";I1,"0f Measurement:";
276 INPUTZ(I1):NEXTI1
oy 280 'SUBTRACT C1 FROM Z, INTO Cl
RO 282 FORI1=1TONZ:C1(I1,1)=Z(I1)-C2(X1,1):NEXTI1
o 290 'MULT K Cl INTO €2
. 292 FORI1=1TONX:C2(I1,1)=0:FORI3=1TONZ
29% C2(I1,1)=(K(I1,I3)%C1(I3,1))+C2(I1,1):NEXTI3:NEXTI1
. 300 'ADD C2 + MU- TO UPDATE TO MU+
1M 302 FORI1=1TONX:MU(I1)=C2(I1,1)+MU(I1):NEXTI1
320 'MULT K H & SUBTR FROM I , PUT IN C1
& 322 FORI1=1TONX:FORI2=1TONX:C1(I1,12)=0:FORI3=1TONZ
:.»j 326 C1(I1,I2)=(K{I1,I3)%H(I3,12))+C1(I1,12}):NEXTI3:C1(I1,I2)=-C1(I1,I2)
."l
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326 NEXTI2:NEXTI1

) 328 FORI1I=1TONX:C1l(I1,I1)=1+C1(I1,1I1):NEXTI1

] 350 'MULT LAST RESULT BY SG , INTO C2

352 FORI1=1TONX:FORI2=1TONX:C2(I1,12)=0:FORI3=1TONX

354 C2(11,I2)=(C1l(I1,I3)%SG(I3,I2))+C2(I1,I2):NEXTIZ:NEXTIZ2:NEXTI1
360 'PUT C2 INTO SG

362 FORI1=1TONX:FORI2=1TONX:SG(I1,I2)=C2(I1,I2):NEXTIZ:NEXTI1
375 CLS:PRINT"Kalman Gain, K{i,j) After"

¥ N 377 PRINT"Measurement #"3;CC:GOSUB510

¢ 380 CLS:PRINT"Estimate Of System Stata, MUli)+ After”

382 PRINT"Measurement #"3CC:GOSUB520

385 CLS:PRINT"Estimate Of Covar, SG(i,j)+ After"

387 PRINT"Measurement #''3;CC:GOSUB530

400 CLS:PRINT "6 %3%%%MOVEMENT BLOCK%¥¥%%3x63¢"

410 ‘'Update MUICC)+ to MU(CC+l)-

420 'MULT PH MU , PUT IN C)

422 FORI1=1TONX:C1l(Il,1)=0:FORI3=1TONX

{ 424 CL(I1,1)=(PH(I1,I3)*MU(I3))+CL(I1,1):NEXTIZ:NEXTI1
430 *ADD Cl+ MW , INTO MU

432 FORI1=1ITONX:MU(I1)=C1l{I1,1)+MR(I1}:NEXTI1

460 '%¥#UPDATE SG »x

450 'MULT T SG , INTO Cl

452 FORI1=1TONX:FORIZ=1TONX:C1l(I1,I2)=0:FORI3=1TONX

45% C1(I1,I2)=(PH(I1,I3)%SG(I3,12))}+C1(I1,12):NEXTIZ:NEXTI2:NEXTI1
460 'MULT Cl PH t, INTO C2

462 FORI1=1TONX:FORI2=1TONX:C2(I1,I2)=0:FORI3=1TOMX

464 C2(11,12)=(C1(11,I3)%PH(I2,13))+C2(T1,12):NEXTI3:NEXTI2:NEXTI1
470 *ADD C2 + @ = SG

472 FORI1=1TONX:FORI2=1TONX:SG(I11,I2)=C2(I1,I2}+Q(I1,I2):NEXTI2:NEXTI1
480 PRINT"Estimate Of System State, MUI)-*

482 PRINT"Before Measurement #"3CC+1:G0SUBS20

485 CLS:PRINT"Estimate Of Covar, SG(I,J)- Before"

487 PRINT"Measurement #"3;CC+1:G0SUB530

490 GOTOl60

500 ‘'PRINTING SUBROUTINES

510 °*PRINT KALMAN GAIN, K

512 FORI1=1TONX:FORIZ2=1TONZ:PRINTUSING"##8838 #83K(I1,X2)3:NEXTI2
516 PRINT"":NEXTI1:INPUT"Hit ENTER To Continue:"3;Z9:RETURN

520 *PRINT MU

522 FORI1=1TONX:PRINTUSING"####%%, #5#"3sMU(I1 )3 :NEXTI1:PRINT""

524 INPUT"Hit ENTER To Continue:"3Z9:RETURN

530 'PRINT COVAR MATRIX, S6

532 FORI1=1TONX:FORI2=1TONX:PRINTUSING"#an## . #8"3SG(I1,I2)3:NEXTI2
534 PRINT"*:NEXTI1:INPUT"Hit ENTER To Continue:*3Z9:RETURN

540 'PRINT H

542 FORI1=1TONZ:FORIZ2=1TONX:PRINTUSING ####5%#. ##"3;H(I1,T2)4:NEXTI2
544 PRINT"":NEXTI1:RETURN

550 PRINT" C2 MATRIX:"

552 FORI1=1TOA:FORIZ2=1TOB:PRINTUSING"#a88##.8#";C2(11,I2)3:NEXTI2
554 PRINT"'" :NEXTI1:INPUT"Hit ENTER To Continue:"3Z9:RETURN

9800 'INVERT C2

9815 FORI1=1TONZ:FORI2=1TONZ:B1(Il1l,I2)=C2(I1,I2):NEXTI2:NEXTI1
9820 FORI1=NZ+1TO2#*NZ:FORI2=1TONZ

9822 IFI1=I2+NZTHENB1(I2,I1)=1ELSEBL1(I2,11)=0

9825 NEXTIZ:NEXTI1

9830 FORI1=1TONZ

9840 ML=1/B1l(I1,I1):FORYI3=1TO2*NZ:B1(I1,I3)=B1(I1,1I3 ML :NEXTIZ
9842 IFI1=NZTHEN9865

9845 FORI2=I1+1TONZ:IFB1(I2,I1)=0THEN9860

9850 ML=-Bl(I2,I1)

9855 FORI3=I1TO2*NZ:B1(I2,I3)=B1{I2,I3)+(ML*B1(11,I3)):NEXTI3

9860 NEXTIZ2:NEXTI1

9865 FORI1=NZTO2STEP-1

9870 FORI2=I1-1TO1STEP-1:IFB1(I2,I1)=0THEN9885

9875 ML=-B1(I2,I1)

9880 FORI3=1TO2*NZ:B1(I2,I3)=B1(X2,I3)+(ML»BLl(I1,I3)):NEXTI3

9885 NEXT12:NEXTI1

9890 FORI1=1TONZ:FORI2=1TONZ

9895 C2(12,I11)=B1(I12,I1+NZ):NEXTI2:NEXTI1
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9857 MI=1:RETURN
9900 IFERL>9700ANDERR=11THENPRINT"!!'ERROR:

C2 Is Not Invertable!!!":END

9905 PRINT"Error Code"3ERR3;"In | »e"3ERL:END
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APPENDIX C
o
o LANCHESTER SIMULATION PROGRAM LISTING
.‘-‘ -
N - . . .
o‘, A complete listing of the Lanchester Simulation Program is as follows.
PN e B
A 100 'LANCHESTER TIME STEP MODEL
e 120 MAXFILES=2:0PEN"LANIN"FORINPUTASL
‘< 121 OPEN"LANOUT"FOROUTPUTASZ: INPUT#1,NP,NA,ND
122 IFNA>NDTHENMD=NAELSEMD=ND
T 124 IFMD<5THENCLS:SF=1 _
> 130 DIMAA(NA,ND},BB{ND,NA},ATINA),DT(ND),AR(NA},DR(ND)
131 DIMRA(2,NA),QD(ND),AB(2,NA},DB(2,ND)>SA(NA),SDIND},0A(NA),OD(ND)
132 'Enter Initial Quantities of Wpns, Break Points And Wpn Types.
1P 13¢ FORI2=1TONA:INPUTH#1,QA(2,12):SA(I2)=QA(2,12):0A(12)=127:NEXTI2
AN 135 FORI2=1TOND:INPUT#1,QD(12):SD(I2)=QD(I2):0D(12)=238:NEXTI2
N 136 FORIZ=1TONA:INPUT#1,AB(1,12):ABI2,12)=AB(1,I2)%QA(2,12):NEXTIZ
o 137 FORI2=1TOND:INPUT#1,DB(1,I2):DB(2,I2}=DB(1,12)*QD(I2):NEXTI2
A 138 FORI2=1TONA:INPUTH#L,AT(I2):NEXTI2:FORI2=1TOND: INPUT®1,DT(12):NEXTI2
" 140 TM=0:IFSF=1THENGOSUB6Q0
4

143 FORIL1=1TONP:PRINT#2,"STARTING PHASE'3Il
145 'Enter Time Spent In Phase Il and # of Intervals
INPUTH#1,TT,NI:DT=TT/NI

vl.'
fw)
£
o

Y C 150 ‘*Enter Replacement Rates And Attrition Coefficient Matrices
B 152 FORIZ=1TONA:INPUT#H#1,AR(I2):NEXTI2:FORI2=1TOND:INPUT#1,DR(I2):NEXTI2
! jﬂ 156 FORIZ=1TONA:FORIZ=1TOND:INPUTH#1,AA(12,13)
WX * 156 NEXTI3:NEXTI2
.J"" 157 FORI2=1TOND:FORI3=1TONA:INPUT#1,BB(I2,I3)

159 NEXTI3:NEXTI2
200 ‘Fight Phase 11l.

[ . 202 FORIZ2=1TONI:TM=TM+DT:PRINT.241,"Phase:"3I13", Increment”3I2;"out
Ly of'3NI
:‘_ 210 ‘Fight Time Increment DT.
5 220 'Update number of attackers
A~ 222 FORI3=1TONA:QA(1,I3)=QA(2,I3):NEXTI3:FORIZ=1TONA:FORI4=1TOND
P 223 'IFDT(I4)=1THENQA(2Z,I3)=QA(2,I3)-AA(I3,I4)%QD(14)*QA(2,13)*DT:G0TO226
-~ 224 'QA(2,I3)=QA(2,I3)-AA(I3,I4)%QD(I4)*DT

225 QA(2,I3)=QA(2,I3)~AA(I3,16)%(QA(2,I3)/QD(I4) ) DT{I4)*QD(I4)*DT
226 NEXTI4:QA(2,I3)=QA(2,I3)+AR(I3)%DT:IFSF=1THENGOSUB650

J‘:J 227 NEXTI3
i\' 230 ‘'Update number of defenders
_35{ 232 FORI3=1TOND:FORI4=1TONA
-fﬁ‘ 233 'IFAT(I4)=1THENQD(I3}=QD(I3)-BB(I3,14)*QD(I3)%QA(1,1I4 )%0T:G0T0236
;?_ 234 'QD(I3)=QD(I3)-BB(I3,I4}%QA(1,1I4)%DT
-8 235 QD{I3)=QD(I3}-BB(I3,14)%(QD(I3)/QA(1,I4)) NAT(I4)%QA(1,I4)*DT
236 NEXTI4:QD(I3)=QD(I3)+DR(I3)*DT:IFSF=1THENGOSUB660
X 237 NEXTI3
) 240 GOSUB300:NEXTI2
'J? 242 IFI1=NPTHENGOSUB350:CLS:PRINT”Output is in file LANOUT.DO.":END
2*: 245 PRINT#2,"Status After Phase"3I1:G0SUB361:NEXTI
.. 300 ‘Check bdhether Breakpoint is reached.
}: 320 TF=0:FORI3=1TONA:IFQA(2,I3)>AB(2,I3)THEN325
308 322 TF=1:PRINT#2,"Attacker HWpn'"3I3:"Is Below Breakpoint"
323 PRINT#2," Bp ="3:PRINTH#2,USING"#8#8.88"3AB(2,1I3);
,ﬂ) 329 PRINT#2," Current Level ="j:PRINT#2,USING"###i#.8#%"3QA(2,I3)
S 325 NEXTI3
i 335 FORIZ=1TOND:IFQD(I3)>DB(2,I3)THEN34O
L "o 336 TF=1:PRINT#2,"Defender HWpn"3I33"1Is Below Breakpoint"
';J 337 PRINTH#2," Bp ="3:PRINT#2,USING"###%.858"3DB(2,I3)}
. L4 338 PRINT#2," Current Level ="j:PRINT#2,USING"H###%. #8#"3QD(I3)
' 340 NEXTI3:IFTF=OTHENRETURN
350 PRINT#H#Z,"":PRINT#2,"" :PRINT#2,"SUMMARY AT END OF BATTLE"
N 351 PRINT#2,"":PRINT#2,"Time Elapsed During Battle ="}
31
P
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)
o
!
LR
¢:;‘ 352 PRINTH#Z ,USING"®#8##. #5#" s TM: PRINT#2,"" :60SUB361
‘-‘.: ° 355 CLS:PRINT"Output is in file LANOUT.DO";END
ey . 361 PRINT#2," Att Wen Breakpoint Current Level”
e 363 FORI3Z=1TONA:PRINT#2Z,USING #####%#" 3133
. h 364 PRINTHR2,USING"H#EHHHBIRUBRR  HR"3ABI2,I3)3QA(2,I3):NEXTIZ :PRINTH#2,""
366 PRINT#2," Def Wpn Breakpoint Current Level"
Ay 367 FORIZ=1TOND:PRINT#2,USING ####RS" 3133
%Y 368 PRINTH2,USING"H#BHREHRARE. #83DB(2,I3)3QD(IZ):NEXTIZ :PRINT#H#2,"" :RETURN b
) ﬁ: 600 'Set up output screen
L, 610 PRINT"Wpn 8 Attacker Defender"
i‘ 620 FORI1=1TOMD:PRINTUSING"#8"3I1
i 623 TP=2+I1%8 4
. 625 IFI1>NATHEN630
. 627 LINE(18,TP)-(119,TP+4),1,B:BP=18+INT(100%AB{(1,1I1))
A 628 LINE(BP-1,TP+1)-i{BP,TP+3),1,B
sy 630 IFII>NDTHEN63S
Rl 632 LINE(138,TP)-(239,TP+4),1,B:BP=138+INT(100%DB(1,I1))
5 633 LINE(BP-1,TP+1)-(BP,TP+3),1,B
ol 635 NEXTI1:RETURN
L) 650 'Update screen output of attackers
653 TP=3+I3%8
655 LINE(OA(I3),TP)-(0A(I3)},TP+2),0
M 656 OA(I3Z)=18+INT(100*QA(2,I3)/SA(I3))
\," 657 IFOA(I3)>118THENOA(I3 )=118:PRINT.(I3%40+2},"%”:GOT0659
K 658 PRINT.I3»40+2," *
‘:"'l 659 LINE(OA(I3),TP)-(0OA(X3),TP+3),1:RETURN
By} 660 ‘Update screen output of defenders
D 663 TP=3+13%8
¢ 665 LINE(OD(IZ),TP)-(OD(I3),TP+2),0
666 OD(I3)=138+INT(100%QD(I3)/SD(I3))
Ry 667 IFOD(I3)>238THENOA(I3)=238:PRINT.I3Z*G0+22,"%*":G0T0669
ol 668 PRINT.I3%G0+22," ™
) {.W 669 LINE(OD(I3),TP)-(0OD(I3),TP+3),1:RETURN
L
3
.!"
B ﬂ
3&
ool
]
ot
(
R
N
l'.?l
D)
I'p:l
X
l"‘
“ -
2
I'| '
L
0?5
Sy .
N ‘
¥
oy
.éfl. 4
O
B 108
K2
M.:‘
U
s
%
"a‘!

A O O A A Il M o AP o o, o A, L ORI T ¢ T AT o AL T T T L 4 Lot SCRTATARET Aft
T NN AR J}i\:’?,;m‘v A F A DA Lo Sl RSP i 4 - ')“ ‘ . Ot W L LA O RA N O

SN



APPENDIX D
GEOMETRIC PROGRAMMING PROGRAM LISTING

A complete listing of the Geometric Programming Program is as follows.

100 ‘'Geometric Programming Program

110 OPEN"GEOIN"FORINPUTAS1

120 INPUTH1,NT,NV:K9=NT

122 IFNT-NV<>1THENPRINT"»*#xERROR: Daegree of Difficulty <> 0":END
130 INPUT#1,NC:DIMNT(NC) A

140 MN=0:FORI1=0TONC:INPUTHI,NT(I1):IFNT(I1)>MNTHENMN=NT(I1):NEXTI1
143 DIMCT(3,NC,MN),LMINC),BI{NT+1,NT%*2),B2(NT),B3(NT,NV)

145 FORI1=0TONC:FORI2=1TONT{(I1):INPUTH#1,CT(1,I1,X2):NEXTI2:NEXTI1
150 FORI1=1TONT(0)}:B1l(1,I1)=1:NEXTI1

155 FORI1=NT(0)+1TONT:B1{1,I1)=0:NEXTI1

160 FORI1=2TONT:FORI2=1TONT:INPUT#1,B1(I1,I2):B3(I2,I1-1)=81(I1,I2)
162 NEXTI2:NEXTI1

170 PRINT"*:PRINT"»*%COMPUTING DELTA'Skx"

172 B2{1)=1:FORI1=2TONT:B2(I1)=0:NEXTI1

180 GOSUB9800

200 CLS:I1=1:FORI2=0TONC:FORI3=1TONT(12):CT(2,I2,I3)=B1(I1,1)

203 PRINT“DELTA("3X23","3133") = 'y

204 PRINTUSING"H##H3%. ####"3CT(2,12,13):I1=I1+1:IFI1>5THENGOSUB600
205 NEXTI3:NEXTI2:GOSUB600:CLS

210 PRINT"'":PRINT"*xCOMPUTING OPT FN VALUE%"

212 FORI1=OTONC:LM(I1)=0:FORI2=1TONT(I1):LM(I1)=LM(I1)+CT(2,I1,I2)
214 NEXTI2:NEXTI1

220 FS=1:FORI1=0TONC

222 FORI2=1TONT(I1):FS=FS*(CT(1,I1,I2)/CT(2,I1,I2))7CT(2,I1,I2)
226 NEXTI2:FS=FS*(LM(I1) LM(I1)):NEXTI1

229 PRINT"":PRINT™F%* ='"3:PRINTUSING"####.##8"3FS:60SUB600:CLS

230 ‘'Compute optimal x(n)

232 K9=K9-1

234 FORI1=1TOK9:FORI2=1TOK9:B1(I1,I2)=B3(I1,I2):NEXTI2:NEXTI1

236 CC=1:FORI1=0TONC:FORI2=1TONT(I1l)

237 CT(3,I11,12)=(CT(2,11,12)/CT(1,11,I2)/LM(I1))

238 IFI1=0THENCT(3,I1,1I2)=CT(3,I1,I2)%FS

239 B2(CC)=LOGICT(3,I1,I2)):CC=CC+1:NEXTIZ2:NEXTI1

262 PRINT"P(m,t)* = opt. value of term t, constr. m, divided by its coefficient."
244 FORI1=0TONC:FORI2=1TONT(I1):PRINT"P(*3I13","sX2;3" )% ="}

246 PRINTUSING" ###% #83#8"3CT(3,11,I12):NEXTI2:GOSUB600 :NEXTIL:CLS
250 PRINT"“:PRINT"#¥% Computing Opt Values Of X(n) "

260 GOSUB9800

270 CLS:FORI1=1TOK9:PRINT"X%("3I13") = "y

272 PRINTUSING H##8##348 . S8888 " 3EXP(B1(I1,1))

273 IFI1>5THENGOSUB600

275 NEXTI1:GOSUB600:END

600 INPUT"%¢ Hit ENTER To Continue: "3Z9:RETURN

9800 ‘'Simultaneous Linear Equation Subroutine: Axzb

9815 'Invert Matrix A

9820 FORK7=K9+1T02*K9:FORK8=1TOK9

9822 IFK7=K8+K9THENB1(K8,K7)=1ELSEB1(K8,K7)=0

9825 NEXTK8:NEXTK7

9830 FORK7=1TOK9

9835 IFBL(K7,K7)%#SGNI{B1(K7,K7))<1E-B8THENGOSUB9910

9840 K2=1/B1(K7,K7):FORK6=1TO2*#K9:B1(K7,K6)=BL(K7,K6 )%K2:NEXTKé6
9842 IFK7=K9THEN9865

9845 FORK8=K7+1TOK9:IFB1(K8,K7)=0THEN9860

9850 K2=-81(K8,K7!}

9855 FORK6=K7TO02%K9:B1(K8,K6)=B1(K8,K6)+(K2XB1(K7,K6)):NEXTKE
9860 NEXTK8:NEXTK?7

9865 FORK7=K9TO2STEP-1

109




9870
9875

9885
9890
9894
9896
9900
9903
9905
9910
9915
9920
9930
9940

ey _—
s :."5!55-"%"‘.’:‘:‘*;‘ﬁ-'a a

FORK8=K7-1TO1STEP-1:IFB1(K8,K7)=0THEN9885

K2=~B1{K8,K?7)

FORK6=1TO2%K9:B1(K8,K6)=B1(K8,K6 )+(K2x#B1(K7,K6) ) :NEXTK6

NEXTK8:NEXTK?

'Mult A Inverse by b
FORK7=1TOK9:B1(K7,1)=0:FORK8=1TOK9:B1(K7,1)=BL(K7,1)+B1{K7,K8+K9)xB2(K8)
NEXTK8:NEXTK7:RETURN

‘Error Routine

IFERL>9700ANDERR=11THENPRINT” ! 'ERROR: Matrix Is Not Invertable!!!":END
PRINT"Error Coda";ERR3"In Line"3ERL:END

'SWITCH ROKWS

FORK5=K7+1TOK9:IFBL(K5,K7 )*SGN(B1(K5,K7))<1E-8THEN9940
FORKG=1TOK9%2:K3=B1(K7,K4):B1(K7,K%)=B1(K5,K4%)
B1(K5,K4% )=K3 :NEXTK4 :RETURN

NEXTKS:PRINT"Error: Matrix Not Invertable":END
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APPENDIX E

s . :
:,':' MATRIX ALGEBRA PROGRAM LISTING.
AN
)
:E? . A complete listing of the Matrix Algebra Program is as follows.
I ]
100 CLS:PRINT"":PRINT" e MATRIX ALGEBRA PROGRAM %" :PRINT"™
e 105 PRINT"IS INPUT MATRIX, °'MATIN.DO' IN RAM?":INPUT" 0=NO, 1=YES"3;FF
g 107 IFFF=1THENOPEN"MATIN"FORINPUTAS]
3'.0. 300 PRINT"*xEnter The Single Largest Dimension of"
W 305 INPUT"The Largest Matrix To Be Processed: ";jK
Y 310 DIMA1(3,K,K),B1(K+1,K*2},R(4),C{4),DET(2):MI=1:0F=1:SF=0
.u:’l 501 CLS:EF=0:PRINT"#6xMATRIX ALGEBRA PROGRAM MENUsxx"
¢ 504 PRINT" 1. Enter Starting Left Side Matrix"
505 PRINT" 2. Matrix Inversion"
W 506 PRINT" 3, Matrix Addition":PRINT” 4. Matrix Multiplication"
> 508 PRINT" 5. Simultaneous Linear Equations”
*g 509 PRINTY 6. Print Current Answer Matrix":PRINT" 7. Other Options';
! 510 INPUT"  %*Enter Number:"3;CH
512 IFCH=1THENMI=1:Z9=0:GOSUB7006
513 IFCH=2THENMI=1:G0SUB2000
R 514 IFCH=3THENGOSUB3000
515 IFCH=4THENGOSUBS000
3:pb 516 IFCH=5THENGOSUB4000
$ 517 IFCH=6THENGOSUB6000
W 518 IFCH<>7THENGOTO501
: % 520 CLS:PRINT"#%XMORE CHOICES:":PRINT" 1. Determinant"”
- - 524 PRINT" 2. Matrix Integer Exponentiation®
]. 526 PRINT" 3, Store Current Matrix"
[ 1%

530 PRINT" 4. Retrieve Stored Matrix"
531 PRINT™ 5. Scalar Multiplication"
532 PRINT" 6. Other Options":INPUT"#xEnter Number: "3 CH

> 540 IFCH=1THENMI=1:GOSUB1000
1-' 548 IFCH=2THENMI=1:GOSUB7600 - _
% 549 IFCH=3THENGOSUB8000O
_: 550 IFCH=GTHENMI=1:GOSUB8200
N 560 IFCH=STHENMI=1:GOSUB5100
§ 570 GOTOS501
700 'PAUSE CONTROL
- 702 INPUT"#% Hit Enter To Continue"s29:RETURN
A 800 *INTERMEDIATE MODIFICATIONS
& 810 PRINT"#*Modify The 2nd Matrix?"
’ 812 INPUT" 0=No, 1l=Invert, 2=Scalar Multiply: "3;29
W 815 IFZ9=0THENRETURN
o 820 MI=2:IFZ9=1THENGOSUB2000ELSEGOSUB5100
% 825 GOTO810
1000 'CALC DETERMINANT
e 1005 IFR(MI)=C{MI)THEN1010
ﬁf 1007 PRINT"ERROR: Number of rows/columns not equal:"
¥y 1008 PRINT" MATRIX IS NOT INVERTABLE!":GOSUB700:EF=1:RETURN
oy 1010 FORI1=1TOR(MI ):FORI2=1TOC(MI):B1(I1,12)=AL(MI,T1,I2):NEXTI2:NEXTI1
;.:o 1020 DET(MI)=1:FORI1=1TOR(MI}
! 1021 IFB1(I1,I1)*SGN(BL(I1,I1))<1E-LO0THENGOSUB1900ELSE1023
deé 1022 IFEF=1THEN1008
1023 DET(MI)=DET(MI)*B1(I1,I1):IFI1=R(MI )THEN1080
" G 1025 FORI3Z=1TOC(MI):B1(I1,13)=B1(I1,I3)/B1(I1,I1):NEXTI3
L 1030 FORI2=I1+1TOR(MI):IFB1(I2,X1)=0THEN1060
o 1040 FORIZ=I1TOC(MI):B81(I2,I3)=B1(12,I3}~(B1(I2,I1}%BL1(I1,I3)}:NEXTI3
:,:0 1060 NEXTI2:NEXTIL
‘& 1080 IFOF<>1THENRETURN
KN o 1081 PRINT"#xDet. Of Matrix "IMI}" Is: "3
NN 1082 PRINTUSING"###3# . #3888 DET(MI ) : GOSUB700
1090 RETURN
A 1900 ‘SWITCH ROWS
'a":
¥y
e 111
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:": 1910 FORJ=I1+1TOR(MI):IFB1(J,I1)%SGN({B1(J,I1))<1E-10THEN1940
) 1920 FORJ1=1TOC(MI )%2:TE=B1(Il1,J1):B1l(I1,J41)=B1(J,J]1)
g" 1930 81(J,J1)=TE:NEXTJ1:60T01950
h*" 1940 NEXTJ:EF=1:RETURN
o 1950 DET{MX )s-DET{(MI):RETURN
i 2000 ‘MATRIX INVERSION .
- 2010 OF=0:GOSUB1000:IFDET(MI )*SGN(DET(MI))>1E-100REF=1THEN2017
i: 2015 PRINT"%ERROR: Determinant=0. MATRIX NOT INVERTABLE!":GOSUB700:EF=1 R
!| ‘ 2017 IFEF=)THENRETURN
i. 2020 FORII1=1TOR(MI):FORIZ2=1TOC(MI}:B1(I1,X2}3=AL(MI,I1,12):NEXTI2:NEXTI1
R 2030 FORI1=C(MI)+1TO2%C(MI):FORIZ=1TOR(MI)
;‘ 2032 IFI1=I2+R(MI)THENB1(I2,I1)=1ELSEB1(I2,I1)=0
* 2035 NEXTI2:NEXTIL ‘
2040 FORI1=1TOC(MI)
o 2045 IFBL(I1,I1)%*SGN(B1(X1,I1))<1E-10THENGOSUB1900ELSEZ2055
W 2046 IFEF=1THEN2015
‘ 2055 ML=1/B1{I1,I1):FORI3=1TO2%CIMI):B1(11,13)=B1(11,I3)*ML:NEXTI3
¥ 2057 IFI1=C(MI)THEN2080
2 2060 FORI2=I1+1TOR(MI):IFB1{12,1I1)=0THEN2075
i 2065 ML=-B1112,I1) :
-t 2070 FORI3Z=I1TO2%C(MI):B1l(I2,I3)=B1(I2,I3)+(ML*BL(I1,I3)):NEXTI3
2075 NEXTI2:NEXTI1
R 2080 FORI1=C(MI)TO2STEP-~1
\ 2100 FORI2=J1-1TO1STEP-1:IFB1(12,I1)=0THEN2130
8 2110 ML=-Bl(I2,Il)
U4 2120 FORI3=)TO2%C(MXI):Bl(I2,I3)=B1l(I2,I3)+(ML*B1(TI1,I3)):NEXTI3
o, 2130 NEXTI2:NEXTI1
! 1: 2140 FORI1=1TOC({MI)}:FORI2=1TOR(MI)
1L} 2145 Al(MI,I2,11)=B1(I2,I1+C(MI)):NEXTI2:NEXTI1
2190 OF=1:RETURN
. 3000 'MATRIX ADDITION
._‘ :v 3010 MF=2:MI=2:G0SUB7000:G0SUB800:IFEF=1THENRETURN
: 3015 FORI1=1TOR(1):FORX2=1TOC(1):A1(1,X1,I2)=A1(1,X1,12)+A1(2,I1,12)
‘. 3020 NEXTI2:NEXTI1:GOSUB6000:MF=0:RETURN
4 4000 'SIMULTANEOUS LINEAR EQUATIONS .
» 4010 CLS:PRINT"#%Solves Ax=b. Choices:":PRINT" 1. Enter b Vector.”
O 4012 PRINT" 2. Change An Element In Matrix A."
4013 PRINT" 3, Solve Current Ax=b."
| 4014 PRINT™ 4. Return.":INPUT" * Select A Number: *"j;CC
T 4020 IFCC=1G0T04040 t
‘- 4022 IFCC=2GOT04050
M 4024 IFCC=3G0OT04060 - _
LA 4026 IFCC=4THEN RETURN
Y 4035 GOTO 4000
LA 4040 MI=2:R(2)=C(1):C(2)=1:G0SUB7040:G0T04000
4050 INPUT"»%Row, Column Of Matrix A To Be Changed: "3RD,CD
. 4052 PRINT" - Enter Row"jRD3", Column"3;CDs":";:INPUTAL(1,RD,CD):GOT04000
t“‘ﬂ 4060 MI=1:SF=1:0F=0:60SUB8000:GOSUB2000
‘:;l 4064 IFEF=0THEN4070
4065 PRINT"%Solution Not Uniquely Determinable’ :GOSUB700:RETURN
M 4070 GOSUBS5000:CC=0:FORI1=1TOR(2):CC=CC+1;:PRINT"x(*3I13") = "3}
,.'5' 4075 PRINTUSING"#HE#S. 8888 3B1(I1,1): IFCC>6THENGOSUB700:CC=0
'01 4080 MNEXTI1:GOSUB700:SF=0:60SUB8200:650T04000
5000 'MATRIX MULT
' 5010 MF=1:1IF SF=1THEN5020
_l;g * 5015 MI=2:G0SUB7000:G0SUB800:IFEF=1THENRETURN
’fg 5020 R(4)=2R(1):C(4)=C(2):FORI1=1TOR(%):FORI2=1TOC(4):B1(1I1,12)=0
5 5022 FORI3=z1TOC(1):B1(XI1,I2)=A1(1,I1,I3)%A1(2,I3,X2}+B1(11,I2]}
Ko 5024 NEXTI3:NEXTIZ:NEXTI1:MF=0
)‘. 5050 IF SF=0THENGOSUB7500:G0OSUB6000
[N 5060 RETURN
5100 °*SCALER MULT
Y 5110 INPUT"Enter Scalar Multiplier:"3SM:FORI1=1TOR(MI):FORI2=1TOC(MI)
“!: 5115 A1{MX,I1,I2)=A1(MI,X1,12)%SM:NEXTI2:NEXTI1:RETURN
.| 6000 ‘'PRINT OUTPUT MATRIX
‘ 6010 PRINT" s# Current Answer Matrix:":CC=0:FORI1=1TOR{1):CC=CC+1
.‘:l 6012 FORIZ=1TOC(1):PRINTUSING #HBE . SR8 3AL(1,I1,X2)3 :NEXTI2:PRINT""
-‘.’ 6050 IFCCsSTHENGOSUB700:CC=0
':-' 6060 NEXTI1:GOSUB700:RETURN
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l? 7000 °'MATRIX INPUT

} 7001 CLS:PRINT"*:PRINT"Will This Matrix Be On:"

:& 7002 INPUT" O=Left, 1=Right"3;29: IFZ9=1THEN7006

'y 7003 R(2)=R(1):C(2)=C(1):FORI1=1TOR(1):FORI2=1TOC(1)
WE 7004 Al(2,I1,I2)=A1(1,11,I2):NEXTI2:NEXTI1:MI=1

7006 CLS:IFMI=2THEN7008

7007 PRINT"¥xChoices For Left Hand Matrix":G0T07009
7008 PRINT"#*%Choices For Right Hand Matrix:“

7009 PRINT" 1. Enter Matrix From Keyboard"

N 7010 PRINT" 2. Retriave Stored Matrix":IFFF<>1THEN7012
¥ 7011 IFEOF(1)=0THENPRINT" 3., Enter Matrix From MATIN.DO"
X4 7012 INPUT"¥xEnter A Number: "3Z9:IFZ9=1THEN7015

N . 7013 IFZ9=3THEN7018

7014 R(MI)=R(3):C(MI)=C(3):60T07020
7015 PRINT" sxEnter The Rows, Columns®

o 7017 INPUT"In Tha Next Matrix: "jR(MI),C{MI):G0TO7020
0 7018 INPUT#1,R(MI),C(MI)

] 7020 IF MF<>1THEN7030

> 7021 IFR(2)=C(1)THEN7030

N 7022 PRINT“#**ERROR: Columns in LEFT MATRIX ="3C(1)

O 7024 PRINT" Rows In Right Matrix ="3R(2)

7026 PRINT"These Must Be Equal For Matrix Mult!!":GOSUB700:EF=1:G0T07006
7030 IF MF<>2THEN7035

" 7031 IF(R(1)=R(2)ANDC{1)=C(2))THEN 7035

B 7032 PRINT“#%ERROR:Dimensions For Both Input”

.} 7034 PRINT"Matrices Must Be Equal!!":GOSUB700:EF=1:GOT07006
1 7035 IFZ9=2THENGOSUBS200:RETURN

& 7036 IFZ9=3THEN7050

by 7037 PRINT" %x%Fill Matrix Row By Row:':PRINT""

w 7040 FORI1=1TOR(MI):FORI2=1TOC(MI )

7042 PRINT"-Enter Row"3I13;"And Column'3I23":")
7044 INPUTAL(MI,I1,XI2):NEXTI2:PRINT“":NEXTI1:RETURN

B 7050 FORI1=1TOR(MI):FORI2=1TOC(MI):INPUT#1,A1(MI,I1,I2)
12 7052 NEXTI2:NEXTI1:RETURN
. 7500 'MAKE ANSWER MATRIX THE FIRST MATRIX FOR THE NEXT OPERATION
: . 7510 R(1)=R(4):C(1)=C{4):FORI1=1TOR(1):FURI2=1TOC(1)
K 7512 A1(1,I1,I2)=B1(I1,X2):NEXTI2:NEXTI1:RETURN
o 7600 ‘MATRIX INTEGER EXPONENTIATION
7610 CLS:PRINT““:INPUT“#%Enter Positive Integer Exponent: "iXP

» 7620 R{2)=R(1):C(2)=C(1):FORI1=1TOR(1):FORI2=1TOC(2)
& 7622 A1(2,I1,I2)=A111,I1,12):NEXTI2:NEXTI1

3 7630 SF=1:FOREX=2TOXP:G0OSUB5020:G0SUB7500:NEXTEX:GOSUB6000:SF=0:RETURN
> 8000 ‘STORE Al(1l,,)

. 8010 R(3)=R(1):C(3)=C(1):FORI1=1TOR(3):FORI2=1TOC(3)
:, 8012 Al(3,I1,I2)=A1(1,I1,I2):NEXTIZ:NEXTI1:RETURN

Wy 8200 'RETRIEVE THE STORED MATRIX

8210 R(MI)=R(3):C{MI)=C(3):FORI1=1TOR(MI):FORI2=1TOC(MI)

,? 8212 AI{MI,I11,I2)=A11(3,11,12):NEXTI2:NEXTI1:RETURN
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! APPENDIX F ‘ 1
! NUMERICAL INTEGRATION PROGRAM LISTING |

A complete listing of the Numerical Integration Program is as follows.

]
b
1200 ‘Numberical Double Integration:Steven M. Cary:24¢ Apr 86
1201 DIMA2(6,6):TL=,001
by 1205 CLS:PRINT"":PRINT" #%* Double Integration "
t‘ 1206 PRINT" Romberg Algorithm"
* ’ 1210 PRINT"0=Edit Function To Be Integrated."
1211 PRINT"1=Edit Limits Of Integration.”
" 1213 PRINT"2=Edit Tolerance; Current Tol.=";TL
L} 1215 PRINT"3=Calculate Integral. “:INPUT"”Enter 0, 1, 2, or 3:"3;29
“ 1216 IFZ9=0THENEDIT1285-1288
" 1217 IFZ9=1THENEDIT1291-~1298
. 1218 IFZ9=2THENINPUT"Tolerance = "3TL:G0TQ1205
W 1220 CLS:PRINT™":PRINT" 1'Be Patient?!":PRINT""
R 1230 N=2:G0SUB1293:DX=(XU-XL)/2
1240 FORJ9=1T06:DX=DX/2:N=N%2
v 1262 X=XU:6G0SUB1296:G0SUB1280:A2tJ9,1 )=SS»DY
k", 1245 X=XL:6G0SUB1296:GOSUB1280:A21J9,1)=A2(J9,1)+SS*DY
- 1250 FORJ8=2TON:X=X+DX:6G0SUB1296:G0SUB1280
N 1251 A2(J9,1)=A2(J9,]1)+2%SS*DY :NEXTJ8
1252 A2(J9,1)=A2(J9,1)%0X/3
Y 1256 IFJ9=1THENNEXTJ9
1260 FORJ8=1T0J9-1
1261 A20J9,J8+1)=A21J9,J8)41(A21J9,J83-A2(J9-1,J8))/(6"J8-1)):NEXTJS
1262 T1=A2(J9,J9)-A2(J9,J9-1):IFSGN(T]1 )*T]1-TL>OTHENNEXTJ9ELSE1264
Y 1263 PRINT"Tolerance of"3TL;"not met after five extrapolations"
- 1264 IN=A2(J9,J9)
A 1265 PRINT"Integral ="3:PRINTUSING"#3##8%. sasitn" 1IN
R 1266 PRINT" Actual Tolerance = "3 :PRINTUSING"#%.3##8"3T1%SGN(T1)
‘. g 1267 SOUND1567,10:S0UND1244,10:SOUND1046,10:SOUND783,20
t 1268 SOUND1046,10:SOUND783,40
1269 INPUT"Hit Enter To Continue:*"329:6G0T01205
..' 1275 FORJ7=1T06:FORJ6=1TOJ7:PRINTUSING"## 88%#''3A2(J7,J6)}
.‘, 1276 NEXTJ6:PRINT"" :NEXTJ7:INPUTZ9:RETURN
] 1280 REM Simpson's Rule Sum
;| 1281 Y=YU:G0SUB1285:SS=F:Y=YL:60SUB1285:55=SS+F
'I 1282 FORJS5=2TO(N/2):Y=Y+DY:GOSUB1285:SS=SS+4%F : Y=Y +DY :GOSUB1285
_," 1283 S$S=SS+2%#F :NEXTJ5:Y=Y+DY :GOSUB1285:SS=SS+4%F : RETURN
' 1285 'F(x,y) to be integrated:
) 1286 F=1
x 1288 'X & Y = independent variables. Hit F8, then F&¢ When Done.
1289 RETURN
t 1290 'Limits of Integration:
;" 1291 'XLOWER/XUPPER are constants.
f 1292 'YUPPER & YLOWER may be constants or given in terms of X.
k>, 1293 XUPPER=1.5707963
o 1294 XLOWER=0
1295 RETURN
% 1296 YUPPER=SIN(X) M
[\~ 1297 YLOWER=0
’p; 1298 ‘Hit F8, Then F4 Hhen Done
”', 1299 DY={YU-YL)/(N+1):RETURN

-
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