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ABSTRACT

This thesis reports on a simulation study of parametric and nonparametric
estimators of a first passage time distribution for a censored semi-Markov proccss.
Four estimators arc proposed and compared; Maximum Likelithood Estimator,
Renewal Equation Estimator, Asymptotic Renewal Estimator, and the Kaplan-Meier
Estimator, the last thrce estimators are nonparametric. For the particular
semi-Markov process studied, the Kaplan-Meier estimator of the first passage times
appears to be the best for small times and the Asymptotic Renewal estimator appears
to be the best for large times. The Maximum Likelihood estimator is sensitive to

’

incorrect model assumptions. All thg estimators are sensitive to censoring.

. ; .
- 4 - e

H

WAV SR S R




IS | RARLEAS

.. "c '.p_ln_"

o, “.__k__ v Y20 O

SO

SAR AN

.“ :‘ -.' P

L. INTRODUCTION ..ttt e e i et cie e 7
11 NATURE OF THEPROBLEM ... .. i 8
A, PROBLEM .. i i i e it 8

B. ESTIMATORS .. i i i e e i e 8

1. Kaplan-Meier Estimate ...........ccouviiiiinnvieninunan. 8

2. Maximum Likelihood Estimate ............... ... cooiiiiit, 9

3. Renewal Equation Estimate . .........ocvviinininenenenene. 10

4. Asymptotic Renewal Estimate ...........c..ooviiiiii i, 12

I1L ANALYSISOF THE PROBLEM ... ..ot 13
A, SIMULATION . i i e i i et it e 13

B, ANALYSIS o e e 16

C. ROBUSTNESS i it i et et e 31

Iv. CONCLUSIONS .. \\vvvvvvnnnnn, PP 38
LIST OF REFERENCES . ..ottt ittt it it i et ei e 39
INITIAL DISTRIBUTION LIST ..ttt ittt et it ei e 40

4

.............

TABLE OF CONTENTS




1%
v

S

".‘."."n [}

R R I A S A Y

IL.
I
IV,

VI
VII.
VIIIL.
IX.

XI.
XIIL
XIIIL
XIV.
XV.
XVI.
XVII.

LIST OF TABLES
OUTPUT FROM PROGRAM ... ... i 15
OUTPUT FROM PROGRAM ... i 15
AVERAGE RELATIVEBIAS ... .. i 19
AVERAGE RELATIVE BIAS ... .. i 23
AVERAGE RELATIVEBIAS ... ... . i 24
AVERAGE RELATIVEBIAS ... .. i 25
AVERAGE RELATIVEBIAS ... . . 26
AVERAGE RELATIVE BIAS ... .. i 27
AVERAGE RELATIVEBIAS ... . i 28
AVERAGE RELATIVEBIAS ... . . i 29
AVERAGE RELATIVE BIAS ...« . i 30
AVERAGE RELATIVEBIAS ... . 32
AVERAGE RELATIVEBIAS ... ... . i 33
AVERAGE RELATIVE BIAS ... o i 34
AVERAGE RELATIVE BIAS ... i 35
AVERAGE RELATIVEBIAS ... .. . 36
AVERAGE RELATIVEBIAS ... ... i 37




l’l.

7

»

4 -'_"_’_/‘.

Y YV

.
es'a &

&b

f

PN

CASNASN

PR A A S

LS

3.1a
3.1b
3.2a
3.2b

Lontonsondornadadolotlosata ats <a s tary L'A_(A‘{LJJL{L{L‘L. A AN At el o et ol S

LIST OF FIGURES

Histograms of relative bias for N=10and t=0.5...................... 17
Histograms of relative bias for N=10andt=5.0...................... 18
Histograms of relative bias for N=50and t=0.5...................... 21
Histograms of relative bias for N=50and t=5.0 ...................... 22

kBl




AP LS

L. INTRODUCTION

Finite state space semi-Markov models find application in a variety of areas such

P Ay N

as queueing theory, reliability, and clinical trials [Refs. 1,2,3]. The application of these

]

models often centers on the distribution of a first-passage time to a state or a set of

l’. '..

states representing for example the lifetime of a system or the end of a busy period of a

server. Suppose that the observations of the path of the semi-Markov process are all

]
o

that is known about the process.

In a number of these areas, data arise that are censored. This ha'ppcns
- frequently, for instance, when fitting lifctime distributions either in medicine or in the
b field of industrial quality control. In medicine, one might be measuring the amount by
. which some new drug extends the life of termunally ill patients. A certain number of
patients are still alive at the end of the experiment, so we do not know how much their
.. lives have been extended overall, and certain others might have died of unrelated
causes or have becn removed from treatment prematurcly. In quality control one
might be measuring the distribution of time-to-failure for a sample of integrated circuit
chips under conditions that accelerate aging. Again, many of the chips may not have
failed by the end of the trial, while others may have failed at the very beginning due to

manufacturing defects unrclated to the mechanisms which cause failures in the long

D
o s

run.

.
s,

‘ This thesis reports the results of a simulation experiment to compare various
parametric and nonparametric estimates of the distribution of a first-passage time for a
particular semi-Markov process with censoring. The specific simulation model and

estimates considered are given in Chapter 2. Chapter 3 contains the details of the

Pt h

simulation expcriment and results. Conclusions from the study are given in Chapter 4.
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If. NATURE OF THE PROBLEM

A.  PROBLEM

Suppose we observe N individuals. Let X (i) be the state of the i™ individual at
time . We will assume {X(), 120} i=1, 2, .., N, are independent identically
distributed semi-Markov processes with three states {0,1,2}. The individuals start at
t=0 in state 1. Upon leaving state 1, they transition to state 0 with probability 0 and
to state 2 with probability 1-0. From state 2, transition is to state 1 with probability 1.
State 0 is an absorbing state. The sojourn time in state / has a distribution function F,
(i=1,2). The individuals are censored independently. The censoring times are
exponentially distributed with mean 1/c. The entire path of transitions and sojourn
times are observed until the time of censoring, if any. Let D be the first entrance time
to state 0. The problem is to estimate the survival distribution P{D > i} with the
censored data of the N individuals.

B. ESTIMATORS

Four estimators for P{D > ¢} will be described in this section. The first being
the Kaplan-Meier estimate [Ref. 4], and the others are Maximum Likelihood, Rencwal
Equation, and Asymptotic Renewal estimates from a paper by P. A. Jacobs [Ref. 5].

1. Kaplan-Meier Estimate
One nonparametric estimate for censored data is the product limit estimate.
Let Ul' Uz' vy Un be independent identically distributed random variables with

distribution G. Let Vl' Vo, o Vn be independent identically distributed times to
censorship. Let

Z, = min (U, V)) (eqn 2.1)
and
Si = 0if UiSVi , (eqn 2.2)
1 otherwise .
8
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'ﬁ Let Z“) < 2(2) < .. < Z(n) be the order statistics of {Z;} and 60) be the
s . .. . . _—

Y corresponding order statistic of {8,}. The Kaplan-Meier estimate of G(t) is

W

‘. n colds ire< Z(ny

VIR

G(t)y=4 0 ift > Zy) & 8y = 0 (eqn 2.3)
Undefined ift > Z(n) & 6(1’1) =1

. where

t

5 C(i) = (n-i)/(n-i+ 1) (eqn 2.4)

':;: [Ref. 4:p. 464] and 6(t)= 1-G(t). If there isn’t any censoring, then the product limit
, reduces to the binomial estimate for each s. This estimate applied to the data of the
o passage times to state O for the N individuals will be referred to as the Kaplan-Meier
:'_:', f\stimate of the distribution of the first passage time to state 0 and denoted as
- A

3 P (1) = P {(D>1}.

% 2. Maximum Likelihood Estimate

" In this subsection, the maximum likelihood estimate will be given for the
:: special case when the sojourn time in state i is exponentially distributed with mean 1/ P,

(i=1L2).

7 Let R.lj be the number of transitions from state / to j for one individual. The
:_-, log likelihood function for the individual is

= Z = R,In(1-8)+ R gln 8+ R, In p,+(R g+ R,V Inp, - p T, - p,T, (eqn 2.5)

E:_\ where T, (i=1,2) is the total time spent in state i before entrance into state 0 or
:'-. censoring [Ref. 5:p. 2]. The maximum likelihood estimators are

L’ A

- 0 = Ry (Rg+Rpy) (eqn 2.6)

l: 9
i
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- P, = (Rjg+R /T, (eqn 2.7)
o
1".
o,
\_ A
N Py = R2l /Tz . (eqn 2.8)
". The maximum likelihood estimate for the survival distribution is
o [Ref. S:p. 5 eqn 1.17)
-E. A AA A A A A A A A A A A
* Po{D>1)={8p,/(A-A)H[(Ay+ Py A Jexplth,)-{(A) +p,)/A;lexplth ]} (eqn 2.9)
- A A
where A, and 7»2 are the roots of the equation
v AR A A A 5
o 8p,p, + y(p,+p,) ¥y =0. (eqn 2.10)
,. The above estimate will be referred to as the parametric estimate and denotcd as
- Lo =5
::: Pp(t) = Pp{D>t}.
::_: 3. Renewal Equation Estimate
s The probability P{D > 1} satisfies the renewal equation
o P{D>t}=Fl(t)+(1-9)§‘OFl(ds)E,(t-s)+(l-9)§‘0(F1*F2)(ds)P{D>t-s} (eqn 2.11)
\‘ <
. _
™ where F, is the distribution of the sojourn time in state i, F () = I-F, (1), and I *F, is
'.-.‘_1 the convolution of F; and F,.
_fl The solution to the renewal equation 2.11 is
2
™ P{D>1) = g(v) + [, R(ds) g(t-s) (eqn 2.12)
&
::;: where
) gty = F (1) + (1-0) ', F(ds) Fy(t-s) (eqn 2.13)
~
3
-4‘\
.,"
W&
EN
Q‘g
.
2 10
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v
N
and
= w
n\ *x
R(t) = } (1-8)" (F *F,)" (1) (cqn 2.14)
- mz=| '
::‘ where (Fl*Fz)“*(t) denotes the n-fold convolution of (F *F,) with itself at time 7.
(. A nonparametric estimate for P{D > ¢} can be obtained by replacing F; by its
, '-' . . . . . .
¥ Kaplan-Meier estimate and 8 by its maximum likelihood estimate in equation 2.12. If
N the largest sojourn time in state / is censorcd then the Kaplan-Meier estimate of F, is
:.': not an honest distribution function (F(OO) < 1) since the estimate is undefined past the
s
:: largest sojourn time. In this case the dishonest distribution estimate is used in all the
= remaining computations which will give a conscrvative estimate of the survival
- distribution.
An approximation to equation 2.12 can be found by using a discrete time
approximation to R(t) as follows. Let & > 0 be a constant and let
- P,(8) = (1-6) {[F *F,)(nd) - [F *F,)((n-1)3)} . (eqn 2.15)
- Recursively approximate R(t) as follows
%
R (0) =0 (eqn 2.16)
e
R,(8) = p,(8) : -
,(nd) = E P (8) + 2 P (8) R ((n-k)d) .
k=1
An approximation to the solution of equation 2.12 using estimates of I, and 0 is
:1-‘, A ﬂ‘((-) A A A
3 P(D>t) = g(t) + Y {R (k&) - R_((k-1)8)} g(t-k8) (eqn 2.17)
k '
where n(d) is the largest integer less than t/8 [Ref. 5:p. 9 eqn 2.9]. If the number of
2 individuals N\ or the time ¢ are large, the estimate of equation 2.17 may require a large
number of additions of small non-ncgative numbers. This estimate will be referred to
~ A
N as the renewal estimate and denoted as f’r(t) = Pr{l)> t}.
2
o)
M 3
.
-
o
-

& N

Y
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4. Asymptotic Renewal Estimate
A A
Let F; be the Kaplan-Meier estimate of F, and 8 be the maximum likelihood
estimate of 0; then define

A A
,(8) = [g explsE] F(ds) (eqn 2.18)
A
where again F, may be a dishonest distribution due to censoring of the last sojourn
time in state /. The asymptotic renewal estimate of the survival distribution is
[Ref. 5:p. 11 eq. 3.11]

P(D>1t} = expltk] (b/R) (eqn 2.19)

A . . 3
where K is the solution to the equation

(1-/6) 61(12) (ﬁz(ﬁ) =1 (eqn 2.20)
and

A A A AN A

R = (1-8) [Texplsic} s (F,*F,)(ds) (eqn 2.21)
and _

A AA A AN

b = (6/k) §,(x) . (eqn 2.22)

The l‘( for equation 2.19 was found by numerical search using equations 2.18 and 2.20.
The aboxe estimate will be referred to as the asymptotic estimate and denoted as
L© = D>,

1f P{D>t} were exactly the solution of the equation 2.12 with the

Kaplan-Meier estimate of F, and the maximum likelihood estimate of © being used

then
A A
Pr{D>t}/Pa{D>t} ~ 1 (eqn 2.23)

as t— 0 in the case where the Kaplan-Meier estimates are honest distributions.

12
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;- III. ANALYSIS OF THE PROBLEM

A. SIMULATION
A Fortran program is written to generate and analyze the data for this problem.

- All simulations are carried out on an IBM 3033AP computer at the Naval
x Postgraduate School using the LLRANDOM 1l random number generating package
::f: [Ref. 6]. The data for the simulation experiments are gencrated as follows:
j Independent exponential censor times with mean 1/c arc generated for each individual.
N The individual starts in state 1 at =0 and an exponential time with mean 1/p; 1s
- generated for the sojourn time. A comparison between the sojourn and censor time is
" done; if the sojourn time is smaller, then the sojourn time is recorded; if the censor time
\ is smaller, the truncated sojourn time and the censored death time are recorded. From
j:: state 1, if not censored yet, a uniform random number is compared to theta; if less
,., than theta, the process jumps to state 0 and the uncensored death time is recorded; if
:}_ greater than theta, the process jumps to state 2 and an exponential sojourn time with
:';: mean 1/p, is computed. The total time (sojourn times in state 1 plus sojourn times in
% state 2) is compared to the censored time; with the same actions as listed above. From
_ state 2, the process jumps to state 1 and continues until an uncensored or censored
-r death occurs. The times are recorded and the next individual is started. This continucs
-‘ until all N individuals have been generated. The data in each state is sorted in
-, increasing order for ease of program manipulations. If N is small, it is possible for all
. the sojourn times in a state to be censored or for all the first passage times to state 0 to
:ﬁ be censored which results in ’I;r(t), ’l;a(t), or ﬁk(t) being undefined for all . In these
:f cases the replication is dropped and a new replication generated.

'-Cj A sample data set is listed below for N = 10. The first row under state 1 and state
2 gives each particular censored or uncensored sojourn time that is gencrated for that
- state. Under each sojourn time, the binary number indicates whether the individual is
; censored (1) or not (0) during that sojourn time. State 0 indicates times of dcath
::f (passage time to state 0), and whether censored (1) or not (0); note that the times
indicate either the time of death (not censored) or the time of censoring (censored
Ej death time). The sojourn and death times listed below have been sorted, along with its
N associated censor indicator.
2
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State 2

0.1629 0.2041 2.2201
0 0 0

State 1

0.1356 0.1615 0.2114 0.2748 0.2996 0.3067 0.3450 0.3725 0.3996 0.430S

1 1 1 0 0 0 1 0 0 1
0.8676 1.1980 2.4630
0 0 0

State0 N=10

0.1356 0.1615 0.2748 0.3450 0.8676 0.8832 0.9930 1.1980 2.4630 2.7312
1 1 0 1 0 0 1 0 0 1

Using equations 2.3, 2.9, 2.17, and 2.19, estimates of the survival distribution
P{D>t} from the data are calculated from subroutines in the Fortran program. Qutput
from the program produces a table like the one below that includes: time, actual
s/lirvival probability (ACT(t)), Earamctric estimate (IA’p{D> t}), rencwal estimate
(P.{D>1}), asymptotic estimite (P,{D>1}), and the Kaplan-Meier estimate of the first
passage time to state 0 (P {D>t}). The actual survival probability ACT(t) is
computed using equations 2.9 and 2.10 with the actual parameter values instead of the
estimated values. The Kaplan-Meier estimate uses only the uncensored first passage
times to state 0. Output in Table I is for the data set listed above.

In Tablé I, the renewal and asymptotic estimates decrease as ¢ increases. In this
case, the largest sojourn times in both state 1 and state 2 are uncensored. To
demonstrate what can happen when the largest sojourn times are censored, Table Il
shows a case where the largest sojourn times in state 1 and state 2 are censored.
Notice that after (=35 there is little change in the rencwal estimate. The survival
probability levels off and becomes constant. The asymptotic estimate starts low (half
the probability) and goes to zero just after t=5. In a third case, when either of the

largest sojourn times in state 1 or state 2 are censored, the effccts are somewhere

14




between the two cases mentioned above; the recnewal estimate starts to level off but

NS4y

may not become constant and the asymptotic estimate starts lower than normal and

may go to zero. The dishonest Kaplan-Meier cstimate of F, has a definite affect on
A A .

o, P (t) and P,(t) for large ¢.
N :
oy TABLE 1
o OUTPUT FROM PROGRAM
¢ Survival Probability P{D >t}
:: A A A Pa
o Time ACT(t) PP{D> t} P {D>t) P_{D>t} P (D>t}
s _— _—
- 5 0.79965 0.73641 0.66667 0.68473 0.87500
T 1.0 0.66340 0.56522 0.52606 0.54348 0.58333
‘j:: 2.0 0.47996 0.35318 0.36158 0.34238 0.38889
EZ 5.0 0.19737 0.09549 0.09181 0.08560 Undefined
- 7.0 0.10985 0.04027 0.03451 0.03397 Undefined
. 10.0 0.04563 0.01103 0.00874 0.00849 Undefined
.-':'j 12.5 0.02194 0.00375 0.00272 0.00268 Undefined
;-: 15.0 0.01055 0.00128 0.00086 0.00084 Undefined
: TABLE 11
OUTPUT FROM PROGRAM - —
Survival Probability P{D > t} (largest sojourn censored)
K. A A A A
_' Time  ACT(v) P(D>1) P(D>1) P{D>1t) P (D>t}
o 5 0.79965 0.79130 0.78783 0.35320 0.90000
1.0 0.66340 0.65115 0.65547 0.16873 0.78750
" 2.0 0.47996 0.46358 0.52'{'06 0.03851 Undefined
a0 50 0.19737 0.18049 0.49071 0.00046 Undefined
_ 7.0 0.10985 0.09675 0.49020 0.00002 Undefined
10.0 0.04563 0.03797 0.49017 0.00000 Undefined
‘{\ 12.5 0.02194 0.01742 0.49017 0.00000 Undefined
2: 15.0 0.01055 0.00799 0.49017 0.00000 Undefined
L)
',
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B. ANALYSIS :

For the simulated model described above, parameter values of p, =1, p,=1,
0=0.5, and ¢=0.5 arec used. The simulation uses two different numbers of observed
individuals. The number of individuals is set at 10 and 50, representing a low and
moderate number of subjects. The simulation is replicated 500 times utilizing difTerent

seeds to generate the data. The average relative bias for each estimate is computed by

ARB(t) = (I/M) g (EST,(1)-ACT(1)/ACT(1) (eqn 3.1)
yad)
where EST (1) is the value of an estimate computed for the i replication at time ¢ and
ACT(t) is the actual model value at time £. For the Kaplan-Meier estimate, M is taken
as the number of Kaplan-Meier estimates of the first passage time to state O sull
defined by time ¢. For the other estimates, M is the number of replications (S00).

The figures below show histograms of the relative bias of the obscrvations
(EST,(1)-ACT(1))/ACT(t). Figure 3.1a shows histograms of the relative bias for cach of
the four estimates when N =10 and at 1=0.5. Each of the histograms looks relatively
normal with possibly a slight skew to the left. The parametric estimate has the ughtest
distribution and the asymptotic estimate the worst which 1s expected since the
asymptotic properties are for large ¢. Figure 3.1b shows the rclative bias for each
estimatc when N=10 and ¢+=5.0. The paramectric is somewhat normal but skewed to
the right. The rencwal estimate looks a little less skewed. The asymptotic estimate is
skewed to the right and looks exponential. At time r=35.0, less than half of the
Kaplan-Mecicr estimate of the first passage time to state 0 are defined. The histogram
of the defined Kaplan-Meier estimate is starting to show an accumulation of mass at
-1.0 which is the value of the relative bias where the largest passage time observation is
uncensorced and less than 5.0.
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Figure 3.1b Histograms of relative bias for N=10 and t=5.0.
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Table 111 shows the ARB(t) of the estimatcs {or the case when N = 10 individuals
and Table IV for the case when N= 50 individuals. The ARB(t) for each estimate is
given for sclected values of r. Along with the ARB(t) in the parentheses is the
corresponding standard error. The standard error is computed by taking ecach
observation of the relative bias (EST,(1)-ACT(1))/ACT(t) and subtracting the ARB(t),
squaring this and summing over all M observations, then dividing by M-1. This
produces the distribution variance, which is divided by M and the square root taken of
to get the standard error of the ARB(t) for each estimate at time r. The variance
together with the average relative bias can be used to obtain an estimate of the relative
mean squared error of the estimate. The right most column of the Tables III and 1V
gives the number of replications out of 500 that still has defined Kaplan-Meier
estimates of the distribution of the first passage time to state 0 by time .

TABLE II1
AVERAGE RELATIVE BIAS

Exponential Model N=10 (500 Reps)

. VA A A A B
Time Pp(t) P(t) P_(t) P (Y #KM
S5 -.00183 .01292 -.180069 .01448 500
(.00533) (.005435) (.01287) (.00743)
1.0 005735 02788 -.24628 04135 499
(.00942) (.00917) (.01501) (.01153)
2.0 03470 05672 -.34200 07631 462
(.01656) (.01568) (.01942) (.01847)
5.0 .24324 . -43114 -.37581 225
(.04120) (.04267) (.03196) (.07156)
7.0 .50476 1.30581 -.39861 -.69076 185
(.06596) (.07867) (.04399) (.08469)
10.0 1.15728 3.84602 -.25101 -1.00000 174
(.12758) (.19504) (.07358) (-00000) :
12.5 2.00816 8.49575 -.02144 -1.00000 174
(.21894) (.41214) (.11647) (.00000)
15.0 3.52449 18.05457 .34887 -1.00000 174
(.37592) (.86673) (.18841) (-00000)
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The parametric estimate ﬁp(t) uses the most correct information about the
process. For N=10, the parametric estimate is within three standard deviations of
zero bias for 1< 5. As r gets larger, the relative bias tends to increase. The parametric
estimate understandably has the smallest relative bias for small r. For large ¢, the small
sample sizes involved are probably responsible for the larger relative bias. For small
times the renewal estimate and the Kaplan-Meier estimate for the distribution of the
first passage time to state 0 have about the same average relative bias. For small N
and large ¢, the renewal estimate has large bias. As noted before, the rencwal estimate
will be biased if the largest observations of the sojourn times in a state are censored
thus causing the Kaplan-Meier estimate ‘i}i to be undefined. The bias could also be
caused by the step size in the discrete time approximation (step size 0.01) being too
large, or by numerical error in summing large quantities of small numbers, as
mentioned earlier. The Kaplan-Meier estimate does well for small ¢ and small N. As
time increases, the number of data points depreciates rapidly. Because of the small
number of subjects in each run, the Kaplan-Meier estimate of the distribution of the
first passage time to state O lost over half its data due to undefined distributions. By
time /= /0, there are no survivors using the Kaplan-Meier estimate, resulting in the
-1.0 average relative bias. From equation 2.23, the renewal estimatc and the
asymptotic estimate should be approximately the same for large ¢ if the Kaplan-Meicr
estimates ?:i are always defined. The asymptotic estimate is negatively biased for small
¢t but changed over at > /2.5. Once again, it could be biased due to censoring of the
largest sojourn times. The asymptotic estimate has the smallest average relative bias
for large time 1.

Figure 3.2a shows histograms of the relative bias for each of the four estimatcs
when N =50 and at r=0.5. Each of the histograms again looks relatively normal. The
distributions arc much tighter when compared to Figure 3.1a. The parametric estimate
has the tightest distribution and again the asymptotic estimate the worst. Figure 3.2b
shows the relative bias for each estimate when N=150 and r=5.0. All the estimates
except the Kaplan-Mcier estimate look relatively normal with possibly a slight right
skew. The Kaplan-Meicr estim:.te of the first passage time to state O has just over two
thirds of its distributions defined and is showing the start of an accumulation at -1.0

duc to the largest passage time to state 0 being less than 5.0.
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Figure 3.2b Histograms of relative bias for N=50 and t= 5.0.
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TABLE IV
AVERAGE RELATIVE BIAS

Exponential Model N=150 (500 Reps)

. A A A A
Time P (1) P (t) P (1) P (1) #KM
p r a
S -.00430 -.02928 -.12087 -.00082 500
(.00398) (.00455) (.00743) (.00512)
1.0 -.00567 -.11500 -.12875 .00403 500
(.00220) (.00278) (.00580) (.00330)
20 -.00364 -.28952 - 17511 -.00003 500
(.00705) (.00742) (.01087) (-00872)
5.0 03428 -.03348 -.29824 01067 341
(.01623) (.01946) (.01876) (.04022)
7.0 .08483 .56593 -.33861 -.35364 224
(.02326) (.03139) (.02347) (.07749)
10.0 19995 2.01703 -.35577 -.75760 188
(.03633) (.07707) (.03175) (.08671)
12.5 33775 4.36834 -.33896 -.72166 186
(.05091) (.16959) (-04109) (.14855)
15.0 52199 9.22171 -.29647 -1.00000 184
(.07067) (.36791) (.05409) (.00000)

For N=350, the parametric estimate again does well for small r. The average
rclative bias is within three standard deviations of zero for t<7. An improvement for
large ¢ for the parametric estimate is expected because of the increased number of
individuals. The renewal estimate again has large bias for large ¢, though not as much.
The asymptotic estimate is negatively biased throughout time. For 1> 2, the bias looks
constant. For N=350, the Kaplan-Meicr estimate of the first passage time to state 0
has negligible average relative bias for 1< 7. However as ¢ increases, the Kaplan-Meier
estimate looses an appreciable amount of its data due to undefined distributions. By
t=135, the Kaplan-Meicr estimate has no survivors. Once again for large ¢ (1= /3), the

asymptotic estimate has the smallest average relative bias.
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i A simulation experiment i1s done for a case in which there is a relatively high

: number of individuals N=100; ¢=0.5, p,=1, p,=1, 8=0.5. The results appear in
" Table V. The increased number of individuals has decreased the average relative bias
for all the esimates. The standard crror of all the estimates has also decrcased. From
-51 Tables [1I, 1V, and V, it appears that as the number of observed individuals increase
.::E the average relative bias for all the estimates decrease.
Al TABLE V
I AVERAGE RELATIVE BIAS
.’
I‘. . -
- Exponential Model N=100 (500 Reps)
AJ ) A A A A v
.;:"_ Time Pp(t) P (1) P (1) P (1) #KM
-
- 5 -.00192 -.09574 -.09600 -.00379 500
Y (.00150) (.00251) (.00399) (.00240)
: 1.0 -.00271 -.13334 -.08703 -.00235 500
N (.002735) (.00318) (.00512) (.00367)
s 2.0 -.00256 -.38676 -.10980 -.00267 500
e (.00495) (.00426) (.00756) (.00609)
= 5.0 01258 -.09527 -.21245 04573 448
- (.01136) (.00808) (.01378) (.02479)
o 7.0 03523 -.51234 -.26003 - 15911 281
. (.01588) (.01537) (.01729) (.05919)
- 10.0 08765 .28800 -.30374 -.47180 200
o (.02337) (.04112) (.02242) (.11283)
12.5 14951 1.90444 -.32021 -.8§7080 185
. (.03059) (.09357) (.02708) (.09137)
s 15.0 22930 5.69514 -32195 -.87581 185
(.03909) (.19744) (.03245) (.12419)
t':: _ A A
N In order to investigate the effect of censoring on the values of P (t) and P (1) for
-';.\, large ¢, a simulation study is done in which the exponential censoring times has a mean
: of 1'c=1000. The other paramcters arc p,=1, p,=1, and 0=0.5 as before. Once
again thc number of individuals are N =10, 50. The results are presented in Tables VI
3:‘_ and VII. The results in Table VI suggest that the effect of the small sample sizc
2
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resulting from N =10 dominates the performance of all the estimates except for the
Kaplan- \/lexer estimate for large . The results of Table VII suggest that the method of
computing P (1) is aflecting its performance for large ¢ since P (t),P () ~ 1 as =0,

For N =50, limited censoring has improved the average relative bias of all the estimates
for large 7. Somewhat surprisingly, with limited censoring the Kaplan-Meier estimate
has almost the best average relative bias. However, the standard error of its estimate is
larger than that of the other estimates’. Thus the Kaplan-Mecier estimate tends to be

more variable than the other estimates.

TABLE VI
AVERAGE RELATIVE BIAS

Exponential Model N=10 (Limited Censoring, ¢c=0.001) (500 Reps)

. A A - P LK

Time P (1) (1) P (1) P (1) 4K M

.5 -.01895 -.01133 -.03853 -.00768 500
(:00360) (/00441 (00476) (.00718)

1.0 -.03008 -.03266 -.02281 -.00492 500
(00629) (.00644) (00614) (01025)

2.0 -.04178 -.08352 -.02283 -.01816 500
(01058) (.00935) (01649) (01461)

5.0 -01755 -.02716 -.01934 04571 500
(02166) (02091) (02207) (02963)

7.0 .04003 05500 .02483 094158 500
(02968) (03044) (03009) (03971)

10.0 18364 25792 15076 05896 500
(03366) (:03936) (03481) (06321)

12.5 36140 53159 31332 .03902 500
(06146) (07432) (06127 (09355)

15.0 60294 94267 53732 -.00407 500
(08414) (11360) (08351) (13365)
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:::: TABLE VII
" AVERAGE RELATIVE BIAS
0
Exponential Model N=350 (Limited Censoring, ¢c=0.001) (500 Reps)
\
i i A A A A :
N Time Pp(t) P (1) P_(1) P (1) #KM
N S -.00470 -.04348 -.07253 .00380 500
(.00144) (.00193) (.00267) (.00313)
1.0 -.00760 -.15247 -.03784 00104 500
N (.00259) (.00285) (.00318) (.00425)
N 2.0 -01110 -.40891 -.01343 00562 500
(-00452) (.003595) (.00464) (.00645)
5.0 -.01035 -.79859 -.00883 .00497 500
(.00982) (.00278) (.00987) (.01279)
7.0 -.00123 -.79946 -.00283 -.00350 500
(.01340) (.00241) (.01350) (.01820)
- 10.0 02459 -.59136 01905 -01116 500
. (.01903) (.00335) (.01922) (.02926)
12.5 03757 -.13724 04945 -.08114 500
o (.02413) (.00679) (.02340) (.04066)
- 15.0 10115 .84405 09097 -.06882 500
- (.02977) (.01457) (.030195) (.03631)
> Below are reported simulation results experimenting with different parameter
E values of p, and c. For these studies, the number of ndividuals is set at N=350 to
. reduce the effects of undefined Kaplan-Meicer estimates of F,. Four different cascs are
. simulated. The sojourn time in state ! is changed to reflect a higher and lower mean
,' sojourn time and the censoring mean time is changed to reflect more or less censoring.
:'.:- The first cases that are simulated arc the changes in the mean sojourn time in
] - state 1. The other parameters are c¢=0.5, p,=1, and 0=0.5 as before. The mean
sojourn time of state 1 is increased from 1 to 2 (p; =0.5) and decreased from I to 0.5
(p;=2). With the increase in the mean sojourn time of state 1, the probability of a
g death being censored increases. For a decrease in the mean sojourn time, the opposite
‘~ is true. There are quicker jumps out of statc I, resulting in more uncensored deaths.
Tables VIII and IX show the computed average relative bias using cquation 3.1 along
:f: with the associated standard error.
"
Z.
I.
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2 TABLE VIII
) AVERAGE RELATIVE BIAS
»”,
Exponential Model N=350 (p;=0.5) (500 Reps)
\ -*( ) A A A A
1 Time Pp(t) P(1) P.(1) P (1) #KM
o~ —_—
X 5 00045 -.00505 14754 00062 500
(.00136) (.00188) (.00921) (.00234)
s 1.0 00175 -.02090 -.18477 00707 500
o (.00261) (.00326) (.01020) (.00366)
7 2.0 00647 -.06266 -.25529 .00877 500
e (-00496) (.00597) (.01228) (.00616)
~ 5.0 03886 06045 -.40236 07279 415
‘ (.01198) (.01328) (.01702) (.02202)
:: 7.0 07539 .23430 -.45897 -.04033 255
o (.01717) (.02093) (.01959) (.05350)
x 10.0 15287 76927 -.50727 -.65507 152
L. (.02643) (.04165) (.02366) (.07690)
12.5 .24079 1.53886 -.52490 -.88639 137
(.03615) (.07217) (.02772) (.06656)
15.0 35370 2.79204 -.52738 -.86033 137
(.04857) (.12186) (.03276) (.09855)
In Table VIII where the mcan sojourn time in state 1 increases, the average
- relative bias of the parametric estimate looks about the same as in Table IV. The
:ﬁ', average relative bias of the rencwal estimate is slightly better than in Table IV. The
= average relative bias of the asymptotic estimate looks like it increased, but is within
- three standard errors of Table IV. The average relative bias of the Kaplan-Meicr
Iy,
_\‘,' estimate of the first passage time to state 0 looks the same as in Table IV. The number
::'.: of defined Kaplan-Mecier cstimates has decrcased duce to the increase in the probability
‘. of a censored death as mentioned earlicr. There are two survivors at = /3.
In Table IX where thc mean sojourn time in state 1 decrcases, the parametric,
\ asymptotic, and Kaplan-Meier estimates have the same average rclative bias as in
- Table IV. The number of defined Kaplan-Meicer estimates has increased due to the
N decrcasc in the probability of a censored death. The renewal estimate has increased as
e comparcd to Table IV.
%
-,
-,
2z,




TABLE IX
AVERAGE RELATIVE BIAS

Exponential Model N=350 (p,=2) (500 Reps)

. A A A Ty .
Time | p(t) P (1) P.(v) P, (1) #KM

S5 -.00691 -.07878 -.11848 .00049 500
(.00323) (.00369) (.00504) (.00434)

1.0 -.00907 -.22873 -.10384 -.00438 500
(.00537) (.00512) (.00753) (.00685)

2.0 -.00826 -.49325 -.16288 -.00674 500
(.00893) (.00721) (.01187) (.01211)

5.0 .04037 -.16543 -.30813 -.08353 308
(.02060) (.02167) (.02132) (.05510)

7.0 11149 95936 -.34515 -.61487 221
(.03055) (.04897) (.02811) (.08054)

10.0 .28446 5.05635 -.34050 -.78435 207
(.05190) (.13410) (.04330) (.11301)

12.5 50537 12.931635 -.28668 -1.00000 207
(.07987) (.40802) (.06490) (.00000)

15.0 .82543 31.25238 -.17898 -1.00000 207
(.12395) (1.11064) (.10098) (.00000)

The next cases that are simulated are the changes in the censoring distribution;
the other parameters are p, =1, p,=1, and 0=0.5 as before. The exponential mean
time to censor is increased from 2 to 4 (¢=0.25) and decreased from 2 to 1 (¢c=1).
With an increase in the mean censoring time, the probability of a censored death
decreases. With a decrease in the mean censoring time, the opposite is truc. Tables X
and XI show the avcrage relative bias for cach simulation along with the standard
crror.

Table X where the mean censoring time increases (1/c=4), falls between Table
IV and Table VII. The average rclative bias of the parametric estimate is worse than in
the limited censoring case of Table VII but slightly better than in the case ¢=0.5 of

Table IV. The average relative bias of the renewal estimate is much worse than it is

with the limited censoring of Table VII but about the same to slightly better in the tail
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than in the case ¢=0.5 of Table IV. The average relative bias of the asymptotic
estimate is about the same as the limited censoring case but much better than in the

case ¢c=0.5. The average relative bias of the Kaplan-Meier estimate of the first passage

a . time to state 0 is about the same for small to moderate times and worse for large times
N than in the limited censoring case of Table VII and better for large times than in the
2 case ¢=0.5 of Table IV. The number of dcfined Kaplan-Meier estimates is between the

two tables, due to the incrcase in the mean censoring times. There are five survivors

« past r=15.

i

- TABLE X

. AVERAGE RELATIVE BIAS

Exponential Model N=350 (¢=0.25) (500 Reps)
. A A A A
Time P(1) P (1) P_(1) P, (t) #KM

- 5 -.00099 -.03349 -.06677 00170 500
< (:00179) (:00230) (:00331) (00323)

j 1.0 -.00071 -.13166 -.04538 00874 500
,' (:00326) (:00348) (:00434) (:00466)

_ 2.0 00178 -.36077 -.04544 00837 500
: (:00581) (:00525) (:00694) (:00720) ) .
- 5.0 2794 -.57486 -.09177 01752 486
- (:01330) (-00892) (:01460) (:02043)
- 7.0 06206 ..27543 -.10565 06881 411
by (:01876) (:01723) (:01949) (104235)

: 10.0 13879 .85619 -.09864 -.10377 307

\ (:02822) (:03879) (:02727) (:09322)
- 12.5 22881 2.71999 -.06942 -.59309 276
’ (.03788) (:07635) (:03479) (:11491)
P 15.0 .34587 5.92070 -.01964 -.69629 273
a (:04987) (-15972) (.04386) (:16339)
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In Table XI where the mean censoring time decreases, the average relative bias of
the parametric estimate is about the same for small to moderate times and then is
worse for large times than in Table 1V. The average relative bias of the renewal and
asymptotic estimates are both worse for 1> 2 due possibly to an increase in the number
of dishonest Kaplan-Meier estimates of F,. The average relative bias of the the
Kaplan-Meier estimate of the first passage time to state 0 is worse for 1>35. The
number of defined Kaplan-Meier estimates has decreased reflecting the decrease in the
mean time to censoring.

TABLE XI
AVERAGE RELATIVE BIAS

Exponential Model N=350 (c=1) (500 Reps)

. A A A A )
Time P(1) P (1) P.(t) P (1) 4KM
.5 -.00268 -.01350 -.27293 -.00012 500
(.00270) (.00317) (.00971) (.00369)
1.0 -.00193 -.05220 -.35347 00391 300
(.00451) (.00568) (.01171) (.00610)
2.0 00809 -.07041 -.47848 -.00203 488
(.00878) (.01133) (.01452) (.01352 _
5.0 10233 54674 -.66059 -.63062 128
(.02127) (.03027) (.01795) (.07727)
7.0 .21600 1.46539 -.70866 -.93652 113
(.03220) (.06044) (.02021) (.05174)
10.0 47564 4.48047 -. 73703 <1.00000 [11
(:05388) (.15766) (.02540) (.00000)
12.5 .80113 10.05152 -.73711 -1.00000 111
(.08693) (.:34001) (.03215) (.00000)
15.0 1.26789 21.62486 -.72108 -1.00000 111
(.13558) “(.72038) (.04211) (.00000)
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C. ROBUSTNESS

In the above simulations the maximum likelihood estimate used the known
correct model. Often, a model needs to be chosen to describe a data set. Attempts are
made to analyze the data to determine a good model. However, when sample sizes are
small, the difficulty of finding a good model increases. Hence due to small sample sizes
or ease of computation, an incorrect model may be chosen to describe a data sct. In
this section, the robustness of the estimates proposed in Chapter 11 is studied with
respect to an incorrect model assumption concerning the sojourn time in state 1.

The data for the simulation experiment in this section are generated from the
following three state semi-Markov process: Individuals start in state 1 at r=0. The
probability of a jump to state 0 is 0; to state 2 is 1-0. From state 2 the probability of a
jump to state 1 is 1. State 0 is an absorbing state. The sojourn time in state 2 is
exponential with mean 1/p,. The sojourn time in state 1 is the sum of two independent
exponentials with means 1/p, and 1/p;; that is, the sojourn time in state | has a
hypoexponential distribution. Censoring is independent and exponentially distributed
with mean 1/c. The same basic Fortran program is employed, modified for the above
change. The data generated are analyzed by the same Fortran subroutines for each
estimate as in the first section. In particular, the (incorrect) maximum likelihood
estimate of equation 2.9 is used. This maximum likelihood estimate assumes the
sojourn time in state 1 has an exponential distribution rather than the true
hypoexponential distribution.

For the first simulation results reported, parameter values of p =L p,=1,p5=1,
0=0.5, and ¢=0.5 arc used. Again, two dilferent numbers ol observed individuals are
uscd, 10 and 50. The simulation is replicated 500 times and the average rclative bias is
computed utilizing equation 3.1. For the Kaplan-Mecicr estimate, M is taken as the
number of defined Kaplan-Meicr estimates of the first passage time to state 0 by time
t. For the others, M is the number of replications. The actual value of the survivor
function is computed by inverting the Laplace transform of the passage time to state 0
for the semi-Markov process.
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Tables XII and XIII show the average relative bias of the hypoexponential
model at selected values of ¢ along with its associated standard error for N =10 and 50.
Again the right most column is the number of defined Kaplan-Meier estimates of the
first passage time to state 0 out of 500 replications.

TABLE XII
AVERAGE RELATIVE BIAS

Hypoexponential Model N=10 (500 Reps)

A A A A
Time P (1) P (1) P_(t) P, (1) #KM
P r a k
5 -.04965 00603 - -.18749 00434 500
(:00215) (100223) (:01511) (:00332)
1.0 -.04224 00518 -27113 00119 499
(:00415) (:00462) (:01478) (:00622)
20 02344 01920 -.35821 03759 488
(:00829) (:00994) (:01670) (:01170)
5.0 .27429 .23906 -.43864 -.03008 253
(:02259) (102654) (:02448) (103463)
7.0 49966 .58490 -.46202 -.51308 164
(103501) (:04261) (103062) (.08072)
10.0 98106 1.53795 -.40812 -.90325 142
(:06148) (:08272) (:04310) (:05049)
12.5 1.56115 2.93742 -.31726 -.97945 140 .
(109466) (:14238) (:05800) (:02055)
15.0 2.37288 5.27240 -.18077 -1.00000 139
(.14350) (.24293) (:07897) (:00000)

In Table XII, for N=10, the parametric estimate based on the incorrect model
shows more rclative bias for small ¢ than the results in Table 11 using the correct
maximum likclihood model. However, for moderate times /<¢<7 the eflect of the
small number of individuals has overwhelmed the efTect of the incorrect model and the

relative bias 1s approximately the same as for the correct model given in Table I11.
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The average relative bias of the nonparametric estimates appear to do well. The
renewal estimate and the Kaplan-Meier estimate of the first passage time to statc 0
seem to do very well for small times and about the same for moderate to large times,
with the Kaplan-Meier decreasing to -1.0 at t=1/5. The asymptotic estimate scems to
do about the same as in the situation of Table I11; it is still negatively biased and has

the smallest average relative bias for large times.

TABLE XIII
AVERAGE RELATIVE BIAS

Hypoexponential Model N=50 (500 Reps)

. A S A A ,
Time P.() P (1) P(t) P (t) #KM

5 -.04769 00196 ..10608 -.00089 500
(:00104) (:00104) (:00701) (:00154)

1.0 -.04010 -.00130 ..14888 00136 500
(100203) (100229) (:00745) (:00297)

2.0 02140 -.02910 ..19231 00557 500
(:00415) (:00520) (100965) (:00563)

5.0 21701 05244 ..29425 03315 421
(01169) (:01291) (:01620) (102328)

7.0 36307 20321 ..33710 -.09714 246
(:01303) (:01998) (:01987) (103655)

10.0 63698 64409 -.36628 -.53280 162
(:03053) (103839) (102550) (:09457)

12.5 92760 1.32451 ..36722 -.93675 150
(:04476) (.06729) (:03096) (105242)

15.0 1.29131 2.47259 ..35081 -.97947 149
(:06391) (.11708) (:03768) (102053)

In Table XIII, the case of the larger number of individuals N =50, the effect of
the incorrect model of the maximum likelihood estimate has a more noticable effect on
the average relative bias; the average relative bias for the paramctric estimate is
significantly higher than for the nonparamectric renewal and Kaplan-Meier estimates for
t<2. The nonparametric renewal and Kaplan-Mcier estimates have about the same
average relative bias for +<3. The average rclative bias of the asymptotic estimate
does the same as in Table IV, and still consistently negatively biased. The
Kaplan-Meier estimate of the first passage time to state 0 does the same as in Table
IV. There is still onc survivor at = /3.
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N A simulation experiment is done for the case in which there is a relatively high
2 number of subjects N =100; the other parameters are as before. Table XIV show the
,_ effects of the increase in observed individuals. The average relative bias of the
parametric estimate shows less relative bias than in Table XIII but still significantly
4 higher than Table V using the correct model with comparable number of subjects. The
i average reclative bias of the nonparametric estimates has lower relative bias than Table
- XIII and about the same relative bias as Table V. Again it appears that the average
relative bias for all the estimates decrease as the number of individuals increase.
- TABLE XIV
AVERAGE RELATIVE BIAS
\ Hypoexponential Model N=100 (500 Reps)
N . A A A A
P, Time P (1) P (t) P_(t) P, (t) #KM
p r a k
5 00010 04879 -.04324 03034 500
(.02439) (.02528) (.01982) (.02493)
1.0 03696 5200 -.05118 07747 500
(.03963) (.03902) (.03019) (.03903)
’ 2.0 13258 -.05690 -.05490 11607 500
) (.05843) (.04927) (.03941) (.05859)
' 5.0 .18619 -.44921 -.21495 -.02024 491
- (.008735) (-01064) (.01202) (.01580)
A 7.0 30873 -.187608 -.26080 -.04054 335
(.01312) (.01709) (.01481) (.03720)
10.0 .52842 .50623 -.30765 -.47076 184
(.02133) (.02773) (.01864) (.08033)
- 12.5 75156 1.15119 -33121 -.85091 160
5 (.03012) (.04520) (.02174) (.06960)
. 15.0 1.01691 2.06053 -.34404 -.92400 158
(.04147) (.07748) (.02499) (.05021)
To study the cfTects of censoring for this model, a simulation experiment is done
X in which the exponential censoring times has a mean of 1/c=1000. The other
N parameters are p, =1, p,=1, p;=1, and §=0.5 as before. The number of individuals is
S N =250. The results are shown in Table XV. The average relative bias of the paramectric
% 34
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:;: estimate is higher for al.l times than Table VII using the correct model. The average
Ej relative bias of the nonparametric estimates are about the same as Table VII. Again,
even with limited censoring, the average relative bias of the renewal estimate has
: computational problems for large ¢.
N
>
TABLE XV
s AVERAGE RELATIVE BIAS
v, Hypoexponential Model N =150 (Limited Censoring, c=0.001) (500 Reps)
. A A A A .
Time Pp( t) - P(1) P (1) P (1) #KM
S -.07105 -.00384 -.03344 00197 500
- (.00060) (-00081) (-00157) (.00136)
A 1.0 -.08365 -.03442 -.04223 00167 500
. (.00114) (.00156) (.00170) (.00226)
yw 2.0 -.06224 -.19090 -.02480 00162 500
> (.00224) (.00279) (.00254) (.00391)
- : 5.0 -.00469 -.70151 -.00948 00063 500
(.00561) (.00294) (.00610) (.00789)
7.0 02631 -.80405 -.010356 -.00350 500
‘ (-00798) (.00221) (.00856) (.01105)
% 10.0 07973 -.75567 -.00598 00391 500
¢ (.01182) (.00230) (.01231) (.01615)
12.5 13071 -.59906 00328 -.01794 500
(.01535) (.00345) (.01553) (.02169)
15.0 18831 -.31213 01761 -.02465 500
. (01925) (:00598) (:01889) (02797)
i
-2 Two additional simulations are done using different hypoexponential distributions
=)

for the sojourn time in state 1. For these simulations the number of individuals is sct at

T

N=150 for comparative purposcs. The first simulation uses a hypoexponential
. distribution of p, =1, p,=1, p;=0.1, 0=0.5, and ¢=0.5. Table XVI shows the

average rclative bias and standard error for this modecl.
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. TABLE XVI
AVERAGE RELATIVE BIAS

Hypoexponential Model N=50 (p;=0.1) (500 Reps)

A A A A
> Time P.(1) P (1) P.(1) P, (1) #KM

-.00004 500
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Surprisingly, in Table XVI, the average relative bias of the parametric estimate is
significantly better than Table XIII. The survivor function of the first passage time to
state 0 for the semi-Markov model having the sum of two exponentials with mean |
and 10 for the sojourn time in state 1 was computed. It was compared to the
corresponding survivor function of the Markov model of Chapter II having
exponential sojourn time in state 1 with mean [1. The paramecters p,=1, and 0=0.5
are as before for both models. For large 1, the two survivor [unctions are
approximately  P{ID>1t} =cxp[-0.045t] for the semi-Markov model and
P{D >t} = ¢exp[-0.043t] for the Markov model. Thus it appears that the small average
relative bias for the parametric estimate in Table XVI is due to the closeness of the
survivor functions for the two models. The average relative bias of the renewal
estimate is sigmficantly better than Tables XIIT and 1V. The average relative bias of

the asymptotic estimate is significantly worse than Tables XIH and IV. A possible b

e e,

cxplanation for this is that with a mcan sojourn time in state 1 of approximately 11

and a mecan censoring time of 2, the process cither jumps to state 0 at first transition or

PO NN N W e
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becomes censored due to the expected long sojourn time in state 1. Thercfore, the

Kaplan-Meier estimates for F, will probably contain most of the probability mass at
small times and relatively little mass for large times due to censoring, causing the
Kaplan-Meier estimates of F, to be unreliable for large times. The renewal and
Kaplan-Meier estimates have approximately the same relative bias for t<7. The
average relative bias of the Kaplan-Meier estimate of the first passage time to state 0 is
about the same as Tables XIII and IV. For t+2 /2.5, the Kaplan-Meier estimate is
significantly better than Tables XIII and IV, however, of the 500 replications only 85
are still defined by r= /2.5 in Table XVI.

The next simulation experiment uses a hypoexponential distribution for the
sojourn time in state 1 that very closely resembles the exponential distribution used in
Table 1V. For this simulation, the parameter are p, =1, p,=1, p;= 100, 0=0.5, and
¢=0.5. Again N =50 for comparison purposes. Table XVII show the average relative
bias and standard error of the estimates at selected times. The average relative bias of

all of the estimates are about the same as in Table [V as expected.

TABLE XVII
AVERAGE RELATIVE BIAS

Hypoexponential Model N=350 (p;=100) (500 Reps)

. A A A A ,
Time Pp(t) P.(v) P.(1) P (1) #KM
5 -.00825 -.02784 - 12817 -.00435 300
(.00213) (.002006) (00374 (.00334)
1.0 -.01009 - 11108 - 13732 - 00638 500
(.00387) (.00420) (.00743) (L00473)
2.0 -.01009 -.30050 - 18639 - 00937 S00
(.006843) (.LO717) (L0107 (.DOSSO)
5.0 02098 -.05434 317062 02698 323
(.01543) (.01872) (L01&803) (.03938)
7.0 06513 52736 BRIRES! - 18712 213
(.02182) (.030064) (L0222%) (LO828N)
10.0 16666 1.90035 -. 38933 -.(6135d 166
(.03337) (.07764) (.02940) (.11639)
12.5 28095 4.30938 -.38193 - 79971 101
(.04377) (.16887) (.03724) (.1417%)
15.0 44578 8.99799 -35141 -1.00000 160
(.06199) (.36461) (L04795) (.00000)
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1V. CONCLUSIONS

FFrom the results of Chapter 111, it can be concluded:

The maximum likelthood estimate uses the most assumptions about the model.
It understandably does well when the modecl used is correct. It is the most

sensitive to incorrect model assumptions.

The renewal estimate and asymptotic estimate are biased by censoring of the
last sojourn time in a state which makes the Kanlan-Mcier estimate undefined.
Further analysis could be done to investigate reasonable methods to make the

Kaplan-Meier estimate honest.

The asymptotic estimate has the smallest average relative bias for large times,
t=175. Tlowever, the bias is always ncgative. Further analysis could be done to

find a bias correction for it.

The Kaplan-Mecier estimate of the first passage time to state O uscs the lcast
knowledge. It does well for small times and moderate to large numbers of
individuals. The Kaplan-Meier estimate and the renewal estimate appear to do
about as well for small «.

The larger the number of individuals the smaller the average relative bias is for

all the estimates.

The renewal estimate requires a great deal of computation. In view of the
simulation results, one reccommendation is to use the Kaplan-Meier estimate as
long as not too many observations arc censored, and then use the asvmptotic

estimate for larger times. The asvmiptotic estimate needs to be used with

caution if the last sojourn times in state 1 or 2 are censored.
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