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ABSTRACT

This thesis reports on a simulation study of parametric and nonparametric

estimators of a first passage time distribution for a censored semi-Markov process.

Four estimators are proposed and compared; Maximum Likelihood Estimator,

Renewal Equation Estimator, Asymptotic Renewal Estimator, and the Kaplan-Mcier

Estimator; the last three estimators are nonparametric. For the particular

serni-Markov process studied, the Kaplan-Meier estimator of the first passage times

appears to be the best for small times and the Asymptotic Renewal estimator appears

to be the best for large times. The Maximum Likelihood estimator is sensitive to

incorrect model assumptions. All thp estimators are sensitive to censoring.
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I. INTRODUCTION

Finite state space semi-Markov models find application in a variety of areas such
as queueing theory, reliability, and clinical trials [Refs. 1,2,3]. The application of these

models often centers on the distribution of a first-passage time to a state or a set of

states representing for example the lifetime of a system or the end of a busy period of a
server. Suppose that the observations of the path of the serni-Markov process are all
that is known about the process.

In a number of these areas, data arise that are censored. This happens

frequently, for instance, when fitting lifetime distributions either in medicine or in the
field of industrial quality control. In medicine, one might be measuring the amount by
which some new drug extends the life of terminally ill patients. A certain number of

patients are still alive at the end of the experiment, so we do not know how much their
lives have been extended overall, and certain others might have died of unrelated
causes or have been removed from treatment prematurely. In quality control one
might be measuring the distribution of time-to-failure for a sample of integrated circuit
chips under conditions that accelerate aging. Again, many of the chips may not have

failed by the end of the trial, while others may have failed at the very beginning due to

manufacturing defects unrelated to the mechanisms which cause failures in the long
run.

This thesis reports the results of a simulation experiment to compare various
parametric and nonparametric estimates of the distribution of a first-passage time for a
particular semi-Markov process with censoring. The specific simulation model and
estimates considered are given in Chapter 2. Chapter 3 contains the details of the
simulation experiment and results. Conclusions from the study are given in Chapter 4.
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It. NATURE OF THE PROBLEMI

A. PROBLEM

Suppose we observe N individuals. Let Xt(i) be the state of the i"' individual at

time t. We wvill assume {Xji), t 2! 0) i = 1, 2, ... , N, are independent identically

distributed semi-Markov processes with three states {O,l,2}. The individuals start at

t=0 in state 1. Upon leaving state 1, they transition to state 0 with probability 0 and

to state 2 with probability 1-0. From state 2, transition is to state 1 with probability 1.

State 0 is an absorbing, state. The sojourn time in state i has a distribution function F.
(i= 1,2). The individuals are censored independently. The censoring times are

exponentially distributed with mean 1/c. The entire path of transitions and sojourn

times are observed until the time of censoring, if any. Let D be the first entrance time

to state 0. The problem is to estimate the survival distribution P{D > rl with the

censored data of the N individuals.

B. ESTIMATORS
Four estimators for P{D > t) will be described in this section. The first being

the Kaplan-Meier estimate [Ref. 4], and the others are Maximum Likelihood, Renewal

Equation, and Asymptotic Renewal estimates from a paper by P. A. Jacobs [Ref. 51.

1. Kaplan-Meier Estimate

One nonparametric estimate for censored data is the product limit estimate.

Let U1, U 2, ... ,I Un be independent identically distributed random variables with

distribution G. Let Vp, V 2, ... ,I Vn be independent identically distributed times to

censorship. Let

Z1 = min (Ui,Vi) (eqn 2. 1)

and

°C.

6i ifui:! Vi(eqn 2.2)

Iotherwise.
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Let Z(1 ) -< Z(2) < ... < Z(n ) be the order statistics of {Z.} and 8(i) be the

corresponding order statistic of {6i). The Kaplan-Meier estimate of'G(t) is

H C(i)l'(i) ift < Z(n)

{i: Z(i) t}

G(t) = 0 ift > Z(n ) & S(n ) = 0 (eqn 2.3)

Undefined ift > Z(n ) & 6(n ) = 1

where

C(i) = (n-i)/(n-i4+ 1) (eqn 2.4)

[Ref. 4:p. 4641 and G(t)= l-G(t). If there isn't any censoring, then the product limit

reduces to the binomial estimate for each t. This estimate applied to the data of the

passage times to state 0 for the N individuals will be referred to as the Kaplan-Meier
estimate of the distribution of the first passage time to state 0 and denoted as
A A
Pk(t) = Pk{D>t}.

2. Maximum Likelihood Estimate

In this subsection, the maximum likelihood estimate will be given for the

special case when the sojourn time in state i is exponentially distributed with mean I/pi
(i= 1,2).

Let R be the number of transitions from state i to j for one individual. The
log likelihood function for the individual is

Y R121n(l-0)+R l oln O+R 211n p2 +(RIO+R 1 2) In p, " p1TI " P2T2 (eqn 2.5)

where Ti (i= 1,2) is the total time spent in state i before entrance into state 0 or

censoring [Ref. 5:p. 2]. The maximum likelihood estimators are

.A

0 RIO/(Ro+ R 2) (eqn 2.6)

5 9



A
P1 = (RIO+ R12 )/TI (cqn 2.7)

p2 = R2 /T2 .(eqn I.S)

The maximum likelihood estimate for the survival distribution is

[Ref. 5:p. 5 eqn 1. 17)

.4 A. A A A A A 'A A

P D>t}= 0PI/(X1- 2 }fX+ 2 /X]xIX][X +p) J1 exp[tXI]) (eqn 2.9)

where I, and Ak2are the roots of the equation

AA A A +A +y
()PIP 2 + Y(P1 +P2 ) +y=0.(eqn 2. 10)

The above estimate will be referred to as the parametric -estimate and denoted as
A 

AP P(t) _ P{(D> t).

3. Renewal Equation Estimate
The probability P{D > t) satisfies the renewal equation

P(D> t} = FI(t) + (lO)ft0 Fl(ds)F2 (t-s) + (1-)f t0(F1 *F (ds)P{D> t-s} (eqn 2.11)

where F. is the distribution of the sojourn time in state i, Fi (t) = -ri (t), and F, *F2 is

the convolution of F1 and F 2.
The solution to the renewal equation 2.11 is

9P{D > t) g(t) + J'0 R(ds) g(t-s) (eqn 2.12)

where

g(t) =F 1 (t + (1-0) f 0 U-1(ds) F 2 (t-s) (eqin 2.13)

10
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and

R(t) = (I-O) n (Fl*F 2)n (t) (eqn 2.14)

where (F1 *Fz )n*(t) denotes the n-fold convolution of (F, - F2) with itself at time t.

A nonparametric estimate for P{D > t} can be obtained by replacing Fi by its

Kaplan-Meier estimate and 0 by its maximum likelihood estimate in equation 2.12. If

the largest sojourn time in state i is censored then the Kaplan-Meier estimate of F. is
A I

not an honest distribution function (Fi(O0) < 1) since the estimate is undefined past the

largest sojourn time. In this case the dishonest distribution estimate is used in all the

remaining computations which will give a conservative estimate of the survival

distribution.

An approximation to equation 2.12 can be found by using a discrete time

approximation to R(t) as follows. Let 6 > 0 be a constant and let

= (1-0) [F *F2 ](n8) - [F 1*F 2]((n-1)6)} . (eqn 2.15)

Recursively approximate R(t) as follows

Ra(0) = 0 (eqn 2.16)

Ra(6) = p 1(6 )

Ra(n°) = Pk( 6 ) + Pk(S) Ra((n-k)6) .

An approximation to the solution of equation 2.12 using estimates of F and 0 is

A A A APr{l)> t} g(t) + {Ra (kS) - Ra((k-l)6)} 9(t-k6) (eqn 2.17)

where n( 6 ) is the largest integer less than t,16 [Ref. 5:p. 9 eqn 2.91. If the number of

individuals N or the time t are large, the estimate of equation 2.17 may require a large

number of additions of small non-negative numbers. This estimate will be referred to
A A

as the rcnewal estimate and denoted as Pr(t) PrI)> t}.

C-d1
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4. Asymptotic Renewal Estimate
A A

Let F, be the Kaplan-Meier estimate of Fi and 0 be the maximum likelihood

estimate of 0; then define

= Fi(ds)  (eqn 2.18)
A

where again Fi may be a dishonest distribution due to censoring of the last sojourn

time in state i. The asymptotic renewal estimate of the survival distribution is

[Ref. 5:p. 11 eq. 3.111

A A ("A
Pa{D > t} = exp[tK] (b/It) (eqn 2.19)

where K is the solution to the equation

(-) 1(K) (P2(K) = 1 (eqn 2.20)

and

= (1-0) r exp[si^ s (Fj*F2)(ds) (eqn 2.21)

and

A A A, In.
b (6/K) (P1(K). (eqn 2.22)

The K for equation 2.19 was found by numerical search using equations 2.18 and 2.20.
The above estimate will be referred to as the asymptotic estimate and denoted as
A A
I () P{D>t}.

A
if Pr{D> t} were exactly the solution of the equation 2.12 with the

Kaplan-Meier estimate of F. and the maximum likelihood estimate of 0 being used

then

'A A
Pr{D> t}/Pa{D>t} I (eqn 2.23)

as t-+00 in the case where the Kaplan-Meier estimates are honest distributions.

12
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III. ANALYSIS OF THE PROBLEM

A. SIMULATION
A Fortran program is written to generate and analyze the data for this problem.

All simulations are carried out on an IBM 3033AP computer at the Naval

Postgraduate School using the LLRANDOM II random number generating package

[Ref. 61. The data for the simulation experiments are generated as follows:

Independent exponential censor times with mean I/c are generated for each individual.
The individual starts in state 1 at t=O and an exponential time with mean l/p is
generated for the sojourn time. A comparison between the sojourn and censor time is

done; if the sojourn time is smaller, then the sojourn time is recorded; if the censor time
is smaller, the truncated sojourn time and the censored death time are recorded. From
state 1, if not censored yet, a uniform random number is compared to theta; if less

than theta, the process jumps to state 0 and the uncensored death time is recorded; if

greater than theta, the process jumps to state 2 and an exponential sojourn time with
mean I/p2 is computed. The total time (sojourn times in state 1 plus sojourn times in
state 2) is compared to the censored time; with the same actions as listed above. From

state 2, the process jumps to state I and continues until an uncensored or censored
death occurs. The times are recorded and the next individual is started. This continues

until all N individuals have been generated. The data in each state is sorted in
increasing order for ease of program manipulations. If N is small, it is possible for all
the sojourn times in a state to be censored or for all the first passage times to state 0 to

be censored which results in Pr(t), Pa(t), or Pk(t) being undefined for all t. In these

cases the replication is dropped and a new replication generated.
A sample data set is listed below for N= 10. The first row under state l and state

2 gives each particular censored or uncensored sojourn time that is generated for that
state. Under each sojourn time, the binary number indicates whether the individual is

censored (1) or not (0) during that sojourn time. State 0 indicates times of death
(passage time to state 0), and whether censored (1) or not (0); note that the times
indicate either the time of death (not censored) or the time of censoring (censored

death time). The sojourn and death times listed below have been sorted, along with its
associated censor indicator.

13



State 2

0.1629 0.2041 2.2201

0 0 0

State I

0.1356 0.1615 0.2114 0.2748 0.2996 0.3067 0.3450 0.3725 0.3996 0.4305

1 I 1 0 0 0 1 0 0 1

0.8676 1.1980 2.4630

' 0 0 0

State0 N=10

0.1356 0.1615 0.2748 0.3450 0.8676 0.8832 0.9930 1.1980 2.4630 2.7312

1 1 0 1 0 0 1 0 0 1

Using equations 2.3, 2.9, 2.17, and 2.19, estimates of the survival distribution

P{D> t) from the data are calculated from subroutines in the Fortran program. Output

from the program produces a table like the one below that includes: time, actual
A

survival probability (ACT(t)), parametric estimate (Pp {D> t}), renewal estimate
A. ~A

(Pr{D> t}), asymptotic estimate (Pa{D> t}), and the Kaplan-Meier estimate of the first
A

passage time to state 0 (Pk{D> t}). The actual survival probability ACT(t) is

computed using equations 2.9 and 2.10 with the actual parameter values instead of the

estimated values. The Kaplan-Meier estimate uses only the uncensored first passage

times to state 0. Output in Table I is for the data set listed above.

In Table I, the renewal and asymptotic estimates decrease as t increases. In this

case, the largest sojourn times in both state I and state 2 are uncensored. To

demonstrate what can happen when the largest sojourn times are censored, Table II

shows a case where the largest sojourn times in state 1 and state 2 are censored.

Notice that after t=5 there is little change in the renewal estimate. The survival

probability levels off and becomes constant. The asymptotic estimate starts low (half

the probability) and goes to zero just after t= 5. In a third case, when either of the

largest sojourn times in state 1 or state 2 are censored, the eff'ects are somewhere

14
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between the two cases mentioned above; the renewal estimate starts to level off but

may not become constant and the asymptotic estimate starts lower than normal and

may go to zero. The dishonest Kaplan-Meier estimate of F, has a definite affect on
A A

Pr(t) and Pa(t) for large t.

TABLE I

OUTPUT FROM PROGRAM

Survival Probability P(D > t}

Time ACT(t) P {D> t} Pr{D > t} Pa{D > t} Pk{D > t}

.5 0.79965 0.73641 0.66667 0.68473 0.87500

1.0 0.66340 0.56522 0.52606 0.54348 0.58333

2.0 0.47996 0.35318 0.36158 0.34238 0.38889

5.0 0.19737 0.09549 0.09181 0.08560 Undefined

7.0 0.10985 0.04027 0.03451 0.03397 Undefined

10.0 0.04563 0.01103 0.00874 0.00849 Undefined

12.5 0.02194 0.00375 0.00272 0.00268 Undefined

15.0 0.01055 0.00128 0.00086 0.00084 Undefined

TABLE 11

OUTPUT FROM PROGRAM

Survival Probability P{D > t} (largest sojourn censored)

Time ACT(t) Pp{D> t) Pr{D> t) Pa{D> Q Pk{D>t}

.5 0.79965 0.79130 0.78783 0.35320 0.90000

1.0 0.66340 0.65115 0.65547 0.16873 0.78750

2.0 0.47996 0.46358 0.52706 0.03851 Undefined

5.0 0.19737 0.18049 0.49071 0.00046 Undefined

7.0 0.10985 0.09675 0.49020 0.00002 Undefined

10.0 0.04563 0.03797 0.49017 0.00000 Undefined

12.5 0.02194 0.01742 0.49017 0.00000 Undefined

15.0 0.01055 0.00799 0.49017 0.00000 Undefined

15



B. ANALYSIS

For the simulated model described above, parameter values of p, = 1, p2 = 1,

0=0.5, and c= 0.5 are used. The simulation uses two different numbers of observed
individuals. The number of individuals is set at 10 and 50, representing a low and

moderate number of subjects. The simulation is replicated 500 times utilizing different

seeds to generate the data. The average relative bias for each estimate is computed by

-t.

ARB(t) = (l/M) (ESTi(t)-ACT(t))/ACT(t) (eqn 3.1)

where ESTi(t) is the value of an estimate computed for the ith replication at time i and

ACT(t) is the actual model value at time t. For the Kaplan-Meier estimate, MI is taken

as the number of Kaplan-Meier estimates of the first passage time to state 0 still

defined by time t. For the other estimates, M is the number of replications (5o)Q.

The figures below show histograms of the relative bias of the ohbc-var(o)ns

(ESTi(t)-ACT(t))/ACT(t). Figure 3.1a shows histograms of the relative bias for each of'

the four estimates when N= 10 and at i=0.5. Each of the histograms looks relatively

normal with possibly a slight skew to the left. The parametric estimate has the tightest

distribution and the asymptotic estimate the worst which is expected since the

asymptotic properties are for large t. Figure 3.1b shows the relative bias for each

estimate when N= 10 and t= 5.0. The parametric is somewhat normal but skeced to

the right. The renewal estimate looks a little less skewed. The asymptotic estimate is

skewed to the right and looks exponential. At time t=5.0, less than half of the

Kaplan-Mcier estimate of the first passage time to state 0 are defined. The histogram

of the defined Kaplan-Meier estimate is starting to show an accumulation of mass at

-1.0 which is the value of the relative bias where the largest passage time observation is

uncensored and less than 5.0.

. 16
4.

4.
J.
9

i1



Ix 6
in

:I- t I

z4

(. 5"31d1)TS JO ON M'drlM J-O ON

<

ii

w u

It.

T T

On ow 0F 0 On 0 9 01 0
S31d" .0 ON sWFS JO ON

Figure3.1a Histograms of'relative bias for N= 10 and t=0.5.

U,

* " ° . - . . . . . . . . . ..



-0. .p -- -- . -

L.Jn

I I

-~0

2L 0 09 OL OL 0 0 0z 0Z 0L 0t 0

U, 
WUdffd N 3d S OO

<~Z

-% I N~M

wr
H-0

V) ct-

.

C.,4

0Sz OOZ 09L OOL 09 0 09z 0Z 09L O0L 0S 0

SIYdWS .40 ON SYdI(S J0 ON

Figure 3.l1b Histograms of relative bias for N= 10 and t= 5.0.

.5, 18



Table III shows the ARB(t) of the estimates for the case when N= 10 individuals

and Table IV for the case when N= 50 individuals. The ARB(t) for each estimate is

given for selected values of t. Along with the ARB(t) in the parentheses is the

corresponding standard error. The standard error is computed by taking each

observation of the relative bias (ESTj(t)-ACT(t))/ACT(t) and subtracting the ARB(t),
squaring this and summing over all M observations, then dividing by M-1. This

produces the distribution variance, which is divided by M and the square root taken of

to get the standard error of the ARB(t) for each estimate at time t. The variance

together with the average relative bias can be used to obtain an estimate of the relative

mean squared error of the estimate. The right most column of the Tables III and IV

gives the number of replications out of 500 that still has defined Kaplan-Meier

estimates of the distribution of the first passage time to state 0 by time t.

TABLE IllI

AVERAGE RELATIVE BIAS

Exponential Model N= 10 (500 Reps)

Time Pp(t) Pr(t) Pa(t) Pk(t) #KM

.5 -.00183 .01292 -.18069 .01448 500
(.00533) (.00545) (.01287) (.00743)

1.0 .00575 .02788 -.24628 .04135 499
" (.00942) (.00917) (.01501) (.01153)

2.0 .03470 .05672 -.34206 .07631 462
(.01656) (.01568) (.01942) (.01847)

5.0 .24324 .52162 -.43114 -.37581 225
(.04126) (.04267) (.03196) (.07156)

7.0 .50476 1.30581 -.39861 -.69076 185
(.06596) (.07867) (.04399) (.08469)

10.0 1.15728 3.84602 -.25101 -1.00000 174
(.12758) (.19504) (.07358) (.00000)

12.5 2.06816 8.49575 -.02144 -1.00000 174
(.21894) (.41214) (.11647) (.00000)

15.0 3.52449 18.05457 .34887 -1.00000 174
(.37592) (.86673) (.18841) (.00000)
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A
The parametric estimate P (t) uses the most correct information about the

p
process. For N= 10, the parametric estimate is within three standard deviations of

zero bias for t < 5. As t gets larger, the relative bias tends to increase. The parametric

estimate understandably has the smallest relative bias for small t. For large t, the small

sample sizes involved are probably responsible for the larger relative bias. Ior small

times the renewal estimate and the Kaplan-Meier estimate for the distribution of the

first passage time to state 0 have about the same average relative bias. For small N

and large t, the renewal estimate has large bias. As noted before, the renewal estimate

will be biased if the largest observations of the sojourn times in a state are censored

thus causing the Kaplan-Meier estimate Fi to be undefined. The bias could also be

caused by the step size in the discrete time approximation (step size 0.01) being too

large, or by numerical error in summing large quantities of small numbers, as

mentioned earlier. The Kaplan-Meier estimate does well for small t and small N. As

time increases, the number of data points depreciates rapidly. Because of the small

number of subjects in each run, the Kaplan-Meier estimate of the distribution of the

first passage time to state 0 lost over half its data due to undefined distributions. By

time t= 10, there are no survivors using the Kaplan-Meier estimate, resulting in the

-1.0 average relative bias. From equation 2.23, the renewal estimate and the

asymptotic estimate should be approximately the same for large t if the Kaplan-Meier
A

estimates Fi are always defined. The asymptotic estimate is negatively biased for small

t but changed over at t> 12.5. Once again, it could be biased due to censoring of the

largest sojourn times. The asymptotic estimate has the smallest average relative bias

for large time t.

Figure 3.2a shows histograms of the relative bias for each of the four estimates

when N = 50 and at t= 0.5. Each of the histograms again looks relatively normal.The

distributions arc much tighter when compared to Figure 3.1a. The parametric estimate

has the tightest distribution and again the asymptotic estimate the worst. Figure 3.2b

shows the relative bias for each estimate when N = 50 and t=5.0. All the estimates

except the Kaplan-Meier estimate look relatively normal with possibly a slight right

skew. The Kaplan-Meier estimlte of the first passage time to state 0 has just over two

thirds of its distributions defined and is showing the start of an accumulation at -1.0

due to the largest passage time to state 0 being less than 5.0.
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TABLE IV

AVERAGE RELATIVE BIAS

Exponential Model N= 50 (500 Reps)
iA A

Time P P(t) Pr(t) Pa(t Pk(t) #KM

.5 -.00430 -.02928 -.12087 -.00082 500(.00398) (.00455) (.00743) (.00512)

1.0 -.00567 -.11500 -.12875 .00403 500
(.00220) (.00278) (.00580) (.00330)

2.0 -.00364 -.28952 -. 17511 -.00003 500
(.00705) (.00742) (.01087) (.00872)

5.0 .03428 -.03348 -.29824 .01067 341
(.01623) (.01946) (.01876) (.04022)

7.0 .08483 .56593 -.33861 -.35364 224
(.02326) (.03139) (.02347) (.07749)

10.0 .19995 2.01703 -.35577 -.75760 188
(.03633) (.07707) (.03175) (.08671)

12.5 .33775 4.36834 -.33896 -.72166 186
(.05091) (.16959) (.04109) (.14855)

15.0 .52199 9.22171 -.29647 -1.00000 184
(.07067) (.36791) (.05409) (.00000)

For N= 50, the parametric estimate again does well for small t. The average

relative bias is within three standard deviations of zero for t < 7. An improvement for

large t for the parametric estimate is expected because of the increased number of

individuals. The renewal estimate again has large bias for large t, though not as much.

The asymptotic estimate is negatively biased throughout time. For t> 2, the bias looks

constant. For N=50, the Kaplan-Meier estimate of the first passage time to state 0

has negligible average relative bias for t< 7. However as t increases, the Kaplan-MCier

estimate looses an appreciable amount of its data due to undefined distributions. By

t= 15, the Kaplan-Meicr estimate has no survivors. Once again for large t( 15), the

asymptotic estimate has the smallest average relative bias.
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A simulation experiment is done for a case in which there is a relatively high

number of individuals N= 100; c=0.5, pI = 1, p2 = 1, 0=0.5. The results appear in

Table V. 'he increased number of individuals has decreased the average relative bias

for all the estimates. The standard error of all the estimates has also decreased. From

Tables III, IV, and V, it appears that as the number of observed individuals increase

the average relative bias for all the estimates decrease.

TABLE V

AVERAGE RELATIVE BIAS

Exponential Model N = 100 (500 Reps)

A A A
Time PP(t) Pr(t) Pa(t) Pk(t) #KM

.5 -.00192 -.09574 -.09600 -.00379 500
(.00150) (.00251) (.00399) (.00240)

1.0 -.00271 -.13534 -.08705 -.00235 500
(.00275) (.00318) (.00512) (.00367)

2.0 -.00256 -.38676 -. 10980 -.00267 500
(.00495) (.00426) (.00756) (.00609)

5.0 .01258 -.69527 -.21245 .04573 448
(.01136) (.00808) (.01378) (.02474)

7.0 .03523 -.51234 -.26003 -.15911 281
(.01588) (.01557) (.01729) (.05919)

10.0 .08765 .28800 -.30374 -.47180 200
(.02337) (.04112) (.02242) (.11283)

12.5 .14951 1.96444 -.32021 -.87080 185
(.03059) (.09357) (.02708) (.09137)

15.0 .22930 5.69514 -.32195 -.87581 185
(.03909) (.19744) (.03245) (.12419)

A A

In order to investigate the effect of censoring on the values of Pr(t) and P(t) For

large t, a simulation study is done in which the exponential censoring times has a near

of l:c= 1000. The other parameters arc p, = 1, 1,= 1, and 0=0.5 as before. Once

again the number of individuals are N= 10, 50. The results are presented in Tables VI

and VII. The results in Table VI suggest that the eflect of the small sample si/e
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resulting from N= 10 dominates the performance of all the estimates except for the

Kaplan-Meier estimate for large t. The results of Table VII suggest that the method of
A A A

computing Pr(t) is affecting its performance for large t since Pr(t)/Pa(t) - 1 as t-+00.

For N = 50, limited censoring has improved the average relative bias of all the estimates

for large i. Somewhat surprisingly, with limited censoring the Kaplan-Meier estimate

has almost the best average relative bias. However, the standard error of its estimate is

larger than that of the other estimates'. Thus the Kaplan-Meier estimate tends to be

more variable than the other estimates.

TABLE VI

AVERAGE RELATIVE BIAS

Exponential Model N= 10 (Limited Censoring, c=0.001) (500 Reps)
A A A

Time Pp(t Pr(t) Pa Pk(t) KM

.5 -.01895 -.01133 -.03853 -.00768 500
(.00360) (.00441) (.00476) (.00718)

1.0 -.03008 -.04266 -.022S1 -.00492 500
(.00629) (.00644) (.00614) (.01025)

2.0 -.04178 -.08352 -.02283 -.01816 500
(.01058) (.00955) (.01049) (.01461)

5.0 -.01755 -.02716 -.01934 .04571 500
(.02166) (.02091) (.02207) (.02963)

7.0 .04003 .05500 .02483 .09415 500
(.02968) (.03044) (.030(9) (.03971)

10.0 .18364 .25792 .15076 .05896 500
(.04466) (.04946) (.04481) (.06421)

12.5 .36140 .53159 .31332 .03902 500
(.06146) (.07442) (.06127) (.09355)

15.0 .602(4 .94267 .53732 -.00407 500
(.08414) (.11360) (.08351) (.13365)
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TABLE VII

AVERAGE RELATIVE BIAS

Exponential Model N = 50 (Limited Censoring, c= 0.001) (500 Reps)

A A A A
Time P P(t) Pr(t) Pa(t) Pk(t) #KM

.5 -.00470 -.04348 -.07253 .00380 500
(.00144) (.00193) (.00267) (.00313)

1.0 -.00760 -.15247 -.03784 .00104 500
(.00259) (.00285) (.00318) (.00425)

2.0 -.01110 -.40891 -.01343 .00562 500
(.00452) (.00355) (.00464) (.00645)

5.0 -.01035 -.79859 -.00883 .00497 500
(.00982) (.00278) (.00987) (.01279)

7.0 -.00123 -.79946 -.00283 -.00350 500
(.01340) (.00241) (.01350) (.01820)

10.0 .02459 -.59136 .01905 -.01116 500
(.01903) (.00335) (.01922) (.02926)

12.5 .05757 -.13724 .04945 -.08114 500
(.02413) (.00679) (.02440) (.04066)

15.0 .10115 .84405 .09097 -.06882 500
(.02977) (.01457) (.03015) (.05631)

Below are reported simulation results experimenting with different parameter

values of p1 and c. For these studies, the number of individuals is set at N = 50 to

reduce the effects of undefined Kaplan-Meier estimates of Fi. Four different cases are

simulated. The sojourn time in state I is changed to reflect a higher and lower mean

sojourn time and the censoring mean time is changed to reflect more or less censoring.

The first cases that are simulated are the changes in the mean sojourn time in

state 1. The other parameters are c=0.5, p2 = 1, and 0=0.5 as before. The mean

sojourn time of state 1 is increased from I to 2 (p1 = 0.5) and decreased from I to 0.5

= 2). With the increase in the mean sojourn time of state 1, the probability of a

death being censored increases. For a decrease in the mean sojourn time, the opposite

is true. There are quicker jumps out of state 1, resulting in more uncensored deaths.

Tables VIII and IX show the computed average relative bias using equation 3.1 along

with the associated standard error.
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TABLE VIII

AVERAGE RELATIVE BIAS

Exponential Model N =50 (p= 0.5) (500 Reps)

A A A A
Time P P(t) Pr(t) Pa(t) Pk(t) iKM

* .5 .00045 -.00505 -.14754 .00062 500
(.00136) (.00188) (.00921) (.00234)

1.0 .00175 -.02090 -.18477 .00707 500
(.00261) (.00326) (.01020) (.00366)

2.0 .00647 -.06266 -.25529 .00877 500
(.00496) (.00597) (.01228) (.00616)

5.0 .03886 .06045 -.40236 .07279 415
(.01198) (.01328) (.01702) (.02202)

7.0 .07539 .25430 -.45897 -.04033 255
(.01717) (.02093) (.01959) (.05350)

10.0 .15287 .76927 -.50727 -.65507 152
(.02643) (.04165) (.02366) (.07690)

12.5 .24079 1.53886 -.52490 -.88639 137
(.03615) (.07217) (.02772) (.06656)

15.0 .35370 2.79204 -.52738 -.86033 137
(.04857) (.12186) (.03276) (.09855)

In Table VIII where the mean sojourn time in state 1 increases, the average

relative bias of the parametric estimate looks about the same as in Table IV. The

average relative bias of the renewal estimate is slightly better than in Table IV. The
average relative bias of the asymptotic estimate looks like it increased, but is within

three standard errors of Table IV. The average relative bias of the Kaplan-Meier

estimate of the first passage time to state 0 looks the same as in Table IV. The number

of defined Kaplan-Mcier estimates has decreased due to the increase in the probability

of a censored death as mentioned earlier. There are two survivors at t= 15.

In Table IX where the mean sojourn time in state I decreases, the parametric,

asymptotic, and Kaplan-Meier estimates have the same average relative bias as in

Table IV. The number of defined Kaplan-Meier estimates has increased due to the

decrease in the probability of a censored death. The renewal estimate has increased as

compared to Table IV.
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TABLE IX

AVERAGE RELATIVE BIAS

Exponential Model N= 50 (p1 = 2) (500 Reps)

Time Pp(t) 'r(t) "a(t) P #KMP r (t)#KM

.5 -.00691 -.07878 -. 11848 .00049 500
(.00323) (.00369) (.00504) (.00434)

1.0 -.00907 -.22875 -. 10384 -.00438 500
(.00537) (.00512) (.00753) (.00685)

2.0 -.00826 -.49325 -.16288 -.00674 500
(.00893) (.00721) (.01187) (.01211)

5.0 .04037 -.16543 -.30815 -.08353 308
(.02060) (.02167) (.02132) (.05516)

7.0 .11149 .95936 -.34515 -.61487 221
(.03055) (.04897) (.02811) (.08054)

10.0 .28446 5.05635 -.34050 -.78435 207
(.05190) (.15416) (.04336) (.11361)

12.5 .50537 12.93165 -.28668 -1.00000 207
(.07987) (.40802) (.06490) (.00000)

15.0 .82543 31.25238 -.17898 -1.00000 207
(.12395) (1.11064) (.10098) (.00000)

The next cases that are simulated are the changes in the censoring distribution;

the other parameters are P1 = I, p2= 1, and 0= 0.5 as before. The exponential mean

time to censor is increased from 2 to 4 (c=0.25) and decreased from 2 to 1 (c= 1).

With an increase in the mean censoring time, the probability of a censored death

decreases. With a decrease in the mean censoring time, the opposite is true. Tables X

and XI show the average relative bias for each simulation along with the standard

error.

Table X where the mean censoring time increases (1/c=4), falls between Fable

IV and Table VII. The average relative bias of the parametric estimate is worse than in

the limited censoring case of Table VII but slightly better than in the case c=0.5 of

Table IV. The average relative bias of the renewal estimate is much worse than it is

with the limited censoring of Table VII but about the same to slightly better in the tail
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than in the case c=0.5 of Table IV. The average relative bias of the asymptotic

estimate is about the same as the limited censoring case but much better than in the

case c= 0.5. The average relative bias of the Kaplan-Meier estimate of the first passage

time to state 0 is about the same for small to moderate times and worse for large times

than in the limited censoring case of Table VII and better for large times than in the

case c= 0.5 of Table IV. The number of defined Kaplan-Meier estimates is between the

two tables, due to the increase in the mean censoring times. There are five survivors

past t= 15.

TABLE X

AVERAGE RELATIVE BIAS

Exponential Model N= 50 (c= 0.25) (500 Reps)

A A
Time Pp(t) Pr(t) Pa(t) Pk(t) #KM

.5 -.00099 -.03349 -.06677 .00170 500
(.00179) (.00230) (.00331) (.00325)

1.0 -.00071 -.13166 -.04538 .00874 500
(.00326) (.00348) (.00434) (.00466)

2.0 .00178 -.36077 -.04544 .00837 500
(.00581) (.00525) (.00694) (.00720)

5.0 .02794 -.57486 -.09177 .01752 486
(.01330) (.00892) (.01460) (.02043)

7.0 .06206 -.27543 -.10565 ,06881 411
(.01876) (.01723) (.01949) (.04235)

10.0 .13879 .85619 -.09864 -.10377 307
(.02822) (.03879) (.02727) (.09322)

12.5 .22881 2.71999 -.06942 -,59309 276
(.03788) (.07635) (.03479) (,11491)

15.0 .34587 5.92070 -.01964 -.69629 273
(.04987) (.15972) (.04386) (.16349)

n12
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In Table XI where the mean censoring time decreases, the average relative bias of

the parametric estimate is about the same for small to moderate times and then is
worse for large times than in Table IV. The average relative bias of the renewal and

asymptotic estimates are both worse for t> 2 due'possibly to an increase in the number

of dishonest Kaplan-Meier estimates of Fi. The average relative bias of the the

Kaplan-Meier estimate of the first passage time to state 0 is worse for t>5. The

number of defined Kaplan-Meier estimates has decreased reflecting the decrease in the

mean time to censoring.

TABLE XI

AVERAGE RELATIVE BIAS

Exponential Model N=50 (c= 1) (500 Reps)

A A A
Time P p(t) Pr(t) Pa(t) Pk(t) #KM

.5 -.00268 -.01350 -.27293 -.00012 500
(.00270) (.00317) (.00971) (.00369)

1.0 -.00193 -.05220 -.35347 .00391 500
(.00491) (.00568) (.01171) (.00610)

2.0 .00809 -.07041 -.47848 -.00203 488
(.00878) (.01133) (.01452) (.01352)

5.0 .10233 .54674 -.66059 -.63062 128
(.02127) (.03027) (.01795) (.07727)

7.0 .21600 1.46539 -.70866 -.93652 113
(.03220) (.06044) (.02021) (.05174)

10.0 .47564 4.48047 -.73703 -1.00000 111(.05588) (. 15766) (.02540) (.00000)

12.5 .80113 10.05152 -.73711 -1.00000 111
(.08693) (.34001) (.03215) (.00000)

15.0 1.26789 21.62486 -.72108 -1.00000 111
(.13558) -(.72038) (.04211) (.00000)
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C. ROBUSTNESS

In the above simulations the maximum likelihood estimate used the known

correct model. Often, a model needs to be chosen to describe a data set. Attempts are

made to analyze the data to determine a good model. However, when sample sizes are

small, the difficulty of finding a good model increases. Hence due to small sample sizes

or ease of computation, an incorrect model may be chosen to describe a data set. In

this section, the robustness of the estimates proposed in Chapter II is studied with

respect to an incorrect model assumption concerning the sojourn time in state 1.

The data for the simulation experiment in this section are generated from the

following three state semi-Markov process: Individuals start in state I at t= 0. The

probability of a jump to state 0 is 0; to state 2 is 1-0. From state 2 the probability of a

jump to state 1 is 1. State 0 is an absorbing state. The sojourn time in state 2 is

exponential with mean l/p 2. The sojourn time in state 1 is the sum of two independent

exponentials with means lI/p 1 and l/p 3; that is, the sojourn time in state 1 has a

hypoexponential distribution. Censoring is independent and exponentially distributed

with mean l/c. The same basic Fortran program is employed, modified for the above

change. The data generated are analyzed by the same Fortran subroutines for each

estimate as in the first section. In particular, the (incorrect) maximum likelihood

estimate of equation 2.9 is used. This maximum likelihood estimate assumes the

sojourn time in state I has an exponential distribution rather than the true

hypoexponential distribution.

For the first simulation results reported, parameter values of P1  1, P2  1, P3  1,
0= 0.5, and c=0.5 are used. Again, two different numbers of observed individuals are

used, 10 and 50. The simulation is replicated 500 times and the average relative bias is

computed utilizing equation 3.1. For the Kaplan-Mcier estimate, M is taken as the

number of defined Kaplan-Meier estimates of the first passage time to state 0 by time

t. For the others, M is the number of replications. The actual value of the survivor

function is computed by inverting the Laplace transform of the passage time to state 0

for the semi-Markov process.
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Tables XII and XIII show the average relative bias of the hypoexponential

model at selected values of t along with its associated standard error for N = 10 and 50.

Again the right most column is the number of defined Kaplan-Meier estimates of the

first passage time to state 0 out of 500 replications.

TABLE XI I

AVERAGE RELATIVE BIAS

Hypoexponential Model N= 10 (500 Reps)
A A% .AA

Time P P(t) Pr(t) Pa(t) Pk(t) #KM

.5 -.04965 .00603 -. 18749 .00434 500
(.00215) (.00225) (.01511) (.00332)

1.0 -.04224 .00518 -.27115 .00119 499
(.00415) (.00462) (.01478) (.00622)

2.0 .02344 .01920 -.35821 .03759 488
(.00829) (.00994) (.01670) (.01170)

5.0 .27429 .23906 -.45864 -.03008 253
(.02259) (.02654) (.02448) (.05463)

7.0 .49966 .58490 -.46202 -.51308 164
(.03501) (.04261) (.03062) (.08072)

10.0 .98106 1.53795 -.40812 -.90325 142
(.06148) (.08272) (.04310) (.05049)

12.5 1.56115 2.93742 -.31726 -.97945 140
(.09466) (.14238) (.05800) (.02055)

15.0 2.37288 5.27240 -.18077 -1.00000 139
(.14350) (.24293) (.07897) (.00000)

In Table XII, for N= 10, the parametric estimate based on the incorrect model

shows more relative bias for small t than the results in Table III using the correct

maximum likelihood model. I lowever, for modcrate times 1< t < 7 the efTect of the

small number of individuals has overwhelmed the effect of the incorrect model and the

relative bias is approximately the same as for the correct model given in Table 111.
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The average relative bias of the nonparametric estimates appear to do well. The

renewal estimate and the Kaplan-Meier estimate of the first passage time to state 0

seem to do very well for small times and about the same for moderate to large times,

with the Kaplan-Meier decreasing to -1.0 at t= 15. The asymptotic estimate seems to

do about the same as in the situation of Table Ill; it is still negatively biased and has

the smallest average relative bias for large times.

TABLE XIII

AVERAGE RELATIVE BIAS

"lypoexponential Model N= 50 (500 Reps)

AA
Time P p(t) Pr(t) Pa(t) Pk(t) # K.M

.5 -.04769 .00196 -.10608 -.00089 500
(.00104) (.00104) (.00701) (.00154)

1.0 -.04010 -.00130 -.14888 .00136 500
(.00203) (.00229) (.00745) (.00297)

2.0 .02140 -.02910 -.19231 .00557 500
(.00415) (.00520) (.00965) (.00563)

5.0 .21701 .05244 -.29425 .03315 421
(.01169) (.01291) (.01620) (.02328)

7.0 .36307 .20321 -.33710 -.09714 246
(.01803) (.01998) (.01987) (.05655)

10.0 .63698 .64409 -.36628 -.53280 162
(.03053) (.03839) (.02550) (.09457)

12.5 .92760 1.32451 -.36722 -.93675 150
(.04476) (.06729) (.03096) (.05242)

15.0 1.29131 2.47259 -.35081 -.97947 149
S. (.06391) (.11708) (.03768) (.02053)

-In Table XIII, the case of the larger number of individuals N= 50, the effect of

the incorrect model of the maximum likelihood estimate has a more noticable effect on

the average relative bias; the average relative bias for the parametric estimate is

significantly higher than for the nonparametric renewal and Kaplan-Meier estimates for

t:2. The nonparametric renewal and Kaplan-Meier estimates have about the same

average relative bias for t- 5. The average relative bias of the asymptotic estimate

does the same as in Table IV, and still consistently negatively biased. The

Kaplan-Meier estimate of the first passage time to state 0 does the same as in Fable

IV. There is still one survivor at t= 15.
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A simulation experiment is done for the case in which there is a relatively high

number of subjects N= 100; the other parameters are as before. Table XIV show the

effects of the increase in observed individuals. The average relative bias of the

parametric estimate shows less relative bias than in Table XIII but still significantly

higher than Table V using the correct model with comparable number of subjects. The

average relative bias of the nonparametric estimates has lower relative bias than Table

XIII and about the same relative bias as Table V. Again it appears that the average

relative bias for all the estimates decrease as the number of individuals increase.

TABLE XIV

AVERAGE RELATIVE BIAS

Hypoexponential Model N = 100 (500 Reps)

Time PP(t) Pr(t) Pa(t) Pk(t) #KM

.5 .00010 .04879 -.04324 .05034 500
(.02439) (.02528) (.01982) (.02493)

1.0 .03696 .05200 -.05118 .07747 500
(.03963) (.03902) (.03019) (.03903)

2.0 .13258 -.05690 -.05490 .11607 500
(.05843) (.04927) (.03941) (.05859)

5.0 .18619 -.44921 -.21495 -.02024 491
(.00875) (.01064) (.01202) (.01586)

7.0 .30873 -.18768 -.26090 -.04054 335
(.01312) (.01709) (.01481) (.03720)

10.0 .52842 .50623 -.30765 -.47076 184
(.02135) (.02773) (.01864) (.08035)

12.5 .75156 1.15119 -.33121 -.85091 160
(.03012) (.04520) (.02174) (.06960)

15.0 1.01691 2.06055 -.34404 -.92400 158
(.04147) (.07748) (.02499) (.05621)

To study the effects of censoring for this model, a simulation experiment is done

in which the exponential censoring times has a mean of l/c= 1000. The other

parameters are P1 = 1, p2= I, P3 = 1, and 0 = 0.5 as before. The number of individuals is

N = 50. The results are shown in Table XV. The average relative bias of the parametric
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estimate is higher for all times than Table VII using the correct model. The average

relative bias of the nonparametric estimates are about the same as Table VII. Again,

even with limited censoring, the average relative bias of the renewal estimate has

computational problems for large t.

TABLE XV

AVERAGE RELATIVE BIAS

Hypoexponential Model N =50 (Limited Censoring, c= 0.001) (500 Reps)

A A A
Time P p(t) Pr(t) Pa(t) Pk(t) i K M

.5 -.07105 -.00384 -.03344 .00197 500
(.00060) (.00081) (.00157) (.00136)

1.0 -.08365 -.03442 -.04223 .00167 500
(.00114) (.00156) (.00170) (.00226)

2.0 -.06224 -.19090 -.02480 .00162 500
(.00224) (.00279) (.00254) (.00391)

5.0 -.00469 -.70151 -.00948 .00063 500
(.00561) (.00294) (.00610) (.00789)

7.0 .02631 -.80405 -.01056 -.00350 500
(.00798) (.00221) (.00856) (.01105)

10.0 .07973 -.75567 -.00598 .00391 500
(.01182) (.00230) (.01231) (.01615)

12.5 .13071 -.59906 .00328 -.01794 500
(,01535) (.00345) (.01553) (.02164)

15.0 .18831 -.31213 .01761 -.02465 500
(.01925) (.00598) (.01889) (.02797)

Two additional simulations are done using different hypoexponential distributions

for the sojourn time in state 1. For these simulations the number of individuals is set at

N= 50 for comparative purposes. The first simulation uses a hypoexponential

distribution of P I1, p2 = 1, P3 =0.1, 0=0.5, and c=0.5. Table XVI shows the

average rclative bias and standard error for this model.
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TABLE XVI

AVERAGE RELAT"IVE BIAS

1lypoexponential Model N=50 (p3 =0.1) (500 Reps)

Time Pp(t) Pr(t) Pa(t) Pk(t) #KM

.5 -.01070 .00048 -.41461 -.00004 500
(.00036) (.00033) (.01923) (.00049)

1.0 -.01378 -.00012 -.49394 -.00087 500
(.00071) (.00079) (.01835) (.00108)

2.0 -.00851 -.00275 -.59801 -.00309 500
(.00141) (.00172) (.01730) (.00208)

5.0 .03290 -.00058 -.74519 -.00397 492
(.00359) (.00541) (.01537) (.00716)

7.0 .06534 .01743 -.79285 .01353 372
(.00512) (.00817) (.01446) (.01382)

10.0 .11795 .08352 -.83604 -.08234 165
(.00755) (.01168) (.01349) (.04149)

12.5 .16554 .17542 -.85869 -.39425 85
(.00971) (.01464) (.01295) (.07374)

15.0 .21680 .28205 -.87462 -.69274 60
(.01203) (.01784) (.01258) (.08075)

Surprisingly, in Table XVI, the average relative bias of the parametric estimate is

significantly better than Table XIII. The survivor function of the first passage time to

state 0 for the semi-Markov model having the sum of two exponentials with mean I

and 10 for the sojourn time in state 1 was computed. It was compared to the

corresponding survivor function of the Markov model of Chapter 11 having

exponential sojourn time in state 1 with mean 11. The parameters p2= 1, and 0=0.5

are as before for both models. For large t, the two survivor functions are

approximately l{ I) > t} = exp[-0.045t] for the semi-Markov model and

P{D> t) = exp[-0.043t] for the Markov model. Thus it appears that the small average

relative bias for the parametric estimate in Table XVI is due to the closeness of the

survivor functions for the two models. The average relative bias of the renewal
estimate is significantly better than Tables XIII and IV. The average relative bias of

the asymptotic estimate is significantly worse than Tables XIII and IV. A possible

explanation for this is that with a mean sojourn time in state I of approximatcly 11

and a mean censoring time of 2, the process either jumps to state 0 at first transition or
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becomes censored due to the expected long sojourn time in state I. Therefore, the

Kaplan-Meier estimates for Fi will probably contain most of the probability mass at

small times and relatively little mass for large times due to censoring, causing the

Kaplan-Meier estimates of Fi to be unreliable for large times. The renewal and

Kaplan-Meier estimates have approximately the same relative bias for t-5 7. The

average relative bias of the Kaplan-Meier estimate of the first passage time to state 0 is

about the same as Tables XIII and IV. For t2 12.5, the Kaplan-Meier estimate is

significantly better than Tables XIII and IV, however, of the 500 replications only 85

are still defined by t= 12.5 in Table XVI.

The next simulation experiment uses a hypoexponential distribution for the

sojourn time in state 1 that very closely resembles the exponential distribution used in

Table IV. For this simulation, the parameter are P1 = I, p2 = 1, P3 = 100, 0=0.5, and

c=0.5. Again N = 50 for comparison purposes. Table XVII show the ave-age relative

bias and standard error of the estimates at selected times. The average relative bias of

all of the estimates are about the same as in Table IV as expected.

TABLE XVII

AVERAGE RELATIVE BIAS

Hypoexponential Model N=50 (P3 = 100) (500 Reps)

A A A
Time P p(t) Pr(t) Pa(t) Pk(t) #KM

.5 -.00825 -.02784 -. 12817 -.00435 5()0
(.00213) (.00266) (.00574) (.00334)

1.0 -.01009 -.11 168 -.13732 -.00655 5()0
(.00387) (.00420) (.00743) (.w473)

2.0 -.01009 -.30050 -. I S659 -.1)11937 500
(.00684) (.00717) (.t)I1;14) (. s)0)

5.0 .02098 -.05434 -.31 (, 2 .0269S 333
(.01543) (.01872) (.01 W3) (.0395S)

7.0 .06513 .52736 -.36331 -.IS712 213
(.02182) (.03064) (.02223) (.1)S2Ss)

10.0 .16666 1.90635 -. 3S93 -.61354 106
(.03337) (.07764) (.42940)) (. 1159)

12.5 .2S695 4.30938 -3 193 -. 79)7 I 161
(.04577) (.163S7) (.03724) (.141 7S)

15.0 .44578 8.99799 -.35141 -1.1)0111)0 i60
(.00199) (.36461) (.04795) (.0000)
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IV. CONCLUSIONS

From the results of Chapter II1, it can be concluded:

1) The maximum likelihood estimate uses the most assumptions about the model.

It understandably does well when the model used is correct. It is the most

sensitive to incorrect model assumptions.

2) The renewal estimate and asymptotic estimate are biased by censoring of the

last sojourn time in a state which makes the Ka'lan-, leier estimate undefined.

Further analysis could be done to investigate reasonable methods to make the

Kaplan- Meier estimate honest.

3) The asymptotic estimate has the smallest average relative bias for large times,

i= 15. lowever, the bias is always negative. Further analysis could be done to

find a bias correction for it.

4) The Kaplan-YMeier estimate of the first passage time to state 0 uses the least

knowledge. It does well for small times and moderate to large numbers of

individuals. The Kaplan-Meier estimate and the renewal estimate appear to do

about as well for small t.

5) The larger the number of individuals the smaller the average relative bias is for

all the estimates.

6) The renewal estimate requires a great deal of computation. In view of the

simulation results, one recommendation is to use the Kaplan-Meier estimate as

long as not too many observations are censored, and then use the asymptotic

estimate for larger times. 1hc asyinptotic estimate needs to be used %kich

caution if the last soiourn tim... in state I or 2 are censored.
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