
80A-A175 311 THE ROLE OF SOFTUARE DEVELOPMENT STANDARDS IN u/ -

REQUIREMENTS ANALYSIS AND DESIGN(U) NAVAL POSTGRADUATE
USI FE SCHOOL MONTEREY CA N 0 LYLE SEP 86

UNCLASSFI F/G 9/2 N

EmmonsEEEE
Eh~~hEE~EE

,, .-

.14

L[

- 32

Iiii
1.8

LI 125 1l.l4 lI1.

4,
"°'

%

%__
t j.

44,-'," ,l',"_, r ." - ,,"- ...- ." .", ,, .,.,€ ,,' ."-"" "~ - "S -"' -"- '"." " "' ",,"" - ''"" "."r "
"
-"- ."' .",'," ',"

" ' '

" % r% ', " . % -. ." . - ". % . ,v .. . % -. ,' -. '-. ". - .. . - -. '. -p' . ,,'-, -. -. . .. -,".,. . , " .'-.'% ',. -. -. -. . -. -. ,.

Lfl

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC

S~D
TH OETHESIS

THE OLEOF SOFTWARE DEVELOPMENT STANDARDS

0 - IN REQUIREMENTS ANALYSIS AND DESIGN

by

LU Margaret Queen Lyle

September 1986

Thesis Advisor: Barry A. Frew

Approved for public release; distribution is unlimited

..

.I~h~~l.~Oo°.,.

- -2* .

UNCLASSIFIED ~f, ~ 21
SECURITY CLASSIFICATION OF THISP=AGE')

REPORT DOCUMENTATION PAGE

Ia REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS e -e

UNCLASSIFIED
2a SEC'JRTY CLASSIFICATION AUTHORITY 3 DISTRISUTION/ AVAILABILITY OF REPORT

Approved for public release;
2b OECLASSIFICATION/DOWNGRAOING SCHEDULE distribution is unlimited .,.•

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
(If applicable)

Naval Postgraduate School Code 54 Naval Postgraduate School

6c ADDRESS ICity, State, and ZIPCode) 7b ADDRESS(City, State. and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

Sa NAME OF FUNDING /SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IOENTIFICATION NUMBER

ORGANIZATION (If applicable)

Sc ADDRESS (City, State, and ZIPCode) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK JNIT

ELEMENT NO NO NO ACCESS:ON NO

(Include Security Classification)

THE ROLE OF SOFTWARE DEVELOPMENT STANDARDS IN REQUIREMENTS ANALYSIS AND

DESIGN

. QSOA AUTk'OR(S)
Lyle, Margaret Q.

'3, 7Yv' 0; REPORT I 1b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAOE COUNT

Master's Thesis FROM TO 1986, September 7"
'6 3LuP L.',ENTARY NOTATION

' COSATi CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

ED GROUP SUB-GROUP Software Standards

Software Development

" 4B3SRACT (Continue on reverie if necessary and identify by block number)

Software is the most expensive aspect of computer systems. It also

has the potential to have the greatest adverse impact on the system. This

thesis examines the role of software standards in the early development
phases of requirements analysis and design. Both the costs and benefits

associated with the use of standards are evaluated. Tools and techniques
that support the use of standards are identified and evaluated for use in

producing software that is usable and maintainable. Current Navy software 4.

development guidelines are identified and evaluated with respect to current

industry practices. The analysis indicates that software standards are 17.7
essential in the development life cycle. Navy guidelines do mandate the

use of such standards in the development of mission critical computer
"% .%"

.' D S ":' ON, AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

f2 _%C.ASSF'ED/jNLMITED C SAME AS RPT CDTIC USERS Unclassified

2 AEOF RESPONSIBLE INDIVIDUAL 22 Code)O I 2A2c C; CE S VBOLCDR Barry Frew(4)o-Lg." Code 54Fw

DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASS'FCAT0'. r) ; .S , "'"

All other ed(t,ons are obsolete UNCLASSIFIED
1CA II

• . ,...€.. -" ' ' ', -'" '*& '' '"
' •

' / '-' ''" 'P'''' '''i''i
"i"

" " 'mm, " , '* .'r'" .'J .
,

.
'

..
. ' .

"'•, " "" " " ' . .. ',,, . • " '

UNCLASSIFIED

SECURITY CLASSIFICATION Of THIS PAGE Ctshn Va Enem4

#19 - ABSTRACT (CONTINUED)

software. The importance of frequent reviews and the
use of supporting tools and techniques is emphasized.

S 0 -LF 1-6 0

2 NCASIFE

SEUIYC ASIIAIN FTI AG*h*DteEtrd

Approved for ,blic release; distribution is unlimited. '"

The Role of Software Develop- _nt Standards %1,
in Requirements Analysis and Design *

by

Margaret Queen Lyle
Lieutenant, United States Navy

B.A., College of Great Falls, 1972 -
M.S., Florida State University, 1973

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
September 1986

Author: LYX 4- ±
Margaret tueen Lyle

Approved by: //j6 A.r
B A r s i Adv i so '

:neth J. Euske, econd Reader

Willis R. Greer, Jr., Chaikman,
Department of Administrative Sciences

Kneale T.
Dean of Information and Polic ciences

3

ineI

| .p - .2... -- -

ABSTRACT

Software is the most expensive aspect of computer

systems. It also has the potential to have the greatest

adverse impact on the system. This thesis examines the role

of software standards in the early development phases of

requirements analysis and design. Both the costs and

benefits associated with the use of standards are evaluated.

Tools and techniques that support the use of standards are

identified and evaluated for use in producing software that

is usable and maintainable. Current Navy software

development guidelines are identified and evaluated with

respect to current industry practices. The analysis

indicates that software standards are essential in the

development life cycle. Navy guidelines do mandate the use

of such standards in the development of mission critical

computer software. The importance of frequent reviews and

the use of supporting tools and techniques is emphasized.

4

- "~~~~..."...,. -.- ' ,- .-....- " '. '. _IL?.--. -...<-.-'."- '."..•.. ..'.".".""."." "." "..'.". .'. ."."."."." ".".

TABLE OF CONTENTS

I. INTRODUCTION--7

ii. THE NEED FOR STANDARDS----------------------------- 10

A. B NEFI S O STA DAR S -- --- ---- --- ---- - 1

A. BENETS OF STANDARDS---------------------------- 12

III. NAVY GUIDELINES FOR SOFTWARE DEVELOPMENT----------18

A. DOD-STD-2167------------------------------------ 19

B. SECNAVINST 5231.1B----------------------------- 21

C. SECNAVINST 5233.1B----------------------------- 21

D. SECNAVINST 5230.8------------------------------- 22

IV. STRUCTURED DEVELOPMENT TECHNIQUES----------------- 24

A. STRUCTURED ANALYSIS---------------------------- 26

B. TOP-DOWN METHODOLOGIES------------------------- 29

C. STRUCTURED DESIGN------------------------------ 31

D. STRUCTURED PROGRAMMING------------------------- 31

V. AUTOMATED TOOLS AND THE DEVELOPMENT
ENVIRONMENT-- 35

VI. DEVELOPMENT TOOLS----------------------------------- 41

A. FACILITATED APPLICATION SPECIFICATION
TECHNIQUE--------------------------------------- 41

B. AUTOMATED DESIGN TOOLS------------------------- 42_

C. DATA DICTIONARY--------------------------------- 47

D. HARDWARE/SOFTWARE MONITORS--------------------- 48

E. TOOLS AND STANDARDS ENFORCEMENT--------------- 50 .:]

VII. STANDARDS AND THE REVIEW PROCESS---------------- 51------ .

A-

VIII. CONCLUSIONS - 59

A. STANDARDS DEVELOPMENT ---------------------- 59

B. IMPLEMENTATION ISSUES ---------------------- 61

C. CREATING A DEVELOPMENT ENVIRONMENT --------- 63

K LIST OF REFERENCES ------------------------------------ 66

INITIAL DISTRIBUTION LIST ----------------------------- 72

,N'

6

V 'aN .- *.N. '* ~ .- *' --. a*~ ~

I. INTRODUCTION

Software, the fastest growing segment of the computer

and information processing industry, is costly--costly to

develop and even more costly to maintain. Pentagon

expenditures for mission critical software totaled $11

billion last year, and it is predicted that "by 1990 the

amount will more than double, accounting for roughly 20% of

everything the Pentagon spends on weapons" (Newport, 1986,

p. 133). Newport (1986) also reports that industry-wide,

"75% of the time, businesses never use the software programs

they undertake, either because they never complete them or

because they arrive too late" (p. 132).

These circumstances indicate that the traditional method

of developing software is not working. The current trend in

software development is transforming the development life

cycle from a seemingly haphazard, trial and error process

into a discipline, based on standard practices,

methodologies and rigorous management control (Newport,

1986). The past five years have seen major revisions of

Navy software development instructions, incorporating

accepted industry practices into the development of Navy

software.

At first glance, the benefits of standardization seem

obvious. Yet considerable time and effort are required to

7

4 -r 4 6_p

implement and sustain a standards-based development

environment. An effective software standards program is

two-fold in nature--standards must not only be developed,

they must also be adhered to and their use enforced.

Well-founded standards go hand-in-hand with an effective

systems methodology (Ross, 1976). "Absence of standards

makes programs difficult to maintain and impedes the

development effort--particularly where a number of

programmers must work together toward a common goal"

("Imposing," 1985, p. 1).

Software standards are vital in ensuring on-time

delivery of quality software products and in minimizing

maintenance costs. Tools, techniques and methodologies are

the cornerstones of software development and maintenance.

In support of a formal life cycle, software development

tools are part of an emerging technology, with front-end

design deemed the key to successful end products (Forman,

1980). By focusing on development, where errors are less

expensive to correct, maintenance problems can be reduced

(Mazzucchelli, 1985).

This thesis focuses on the requirements analysis and

design phases of software development. Although development

standards are equally important in later phases such as

coding and testing, those areas are addressed only as they

relate to the earlier stages. Second, the thesis assumes

the existence of development standards, although key areas

8

where standards are required as highlighted. Third,

consideration of development tools has been limited to those

that are currently available commercially. Fourth, existing

DOD guidelines for software development have been examined

at the Department of the Navy level. More general

guidelines, such as Federal Information Processing Standards

(FIPS) publications, are not specifically addressed.

Specifically, this research is concerned with the

controls and management issues that contribute to

manageability of the software development process. Chapter

II evaluates the need for standards, and weighs the costs

and benefits associated with a standards program. Chapter

III surveys Navy guidelines for software development.

Chapter IV evaluates the methodologies mandated for use in

the Navy guidelines and assesses their effectiveness in

developing usable and maintainable software. Chapter V

develops general requirements for automated tools to support

software requirements analysis and design. Chapter VI

surveys four specific techniques and tools that can

facilitate the development process. Chapter VII details the

review process which is critical to the successful use and

enforcement of software standards. Chapter VIII summarizes

key issues in developing, implementing and using software

standards and recommends specific steps for creating a

standards-based software development environment.

9

.7- 0 s7_,I

4 -- * -----. . .77 r .

II. THE NEED FOR STANDARDS

This chapter establishes a rationale for developing and

using standards to guide the development of software.

First, the costs associated with error-laden software are

identified. Second, the emphasis is focused on the earlier

stages of software requirements analysis and design. Third,

both the benefits and costs associated with standards

development are discussed. Finally, an assessment is made

concerning the use of standards in developing software.

Software is the most expensive component of computer

systems, and it has the potential to have the greatest

adverse impact on the system. A misunderstanding of the

user's requirements and faulty debugging have far-reaching

effects (Ramamoorthy, Prakash, Tsai, & Usuda, 1984). An

examination of the software development process reveals that

all too often, projects are delivered behind schedule,

software quality is poor, the final product is cumbersome

and expensive to maintain (Pressman, 1982).

One study indicates that "error removal constitutes up

to 40% of the cost of a system--and that between 45% and 65%

of these errors are made in system design" (Rush, 1985, p.

ID/11). Unfortunately, "as errors move through the

development cycle undetected, the cost to correct them

increases up to multiples of 100 or more" (Mazzucchelli,

10

1985, p. 81). By focusing on improved development efforts,

maintenance problems can be reduced.

Traditionally, software development has been viewed as

an art, with few formal rules guiding the process (Frank,

1983). More recently, the concept of software engineering

has evolved, seeking to bring order to the development of

computer software by devising formal techniques for software

development (Pressman, 1982). Based on documented standards

and methodologies, "these techniques deal with software as

an engineered product that requires planning, analysis,

design, implementation, testing, and maintenance" (Pressman,

1982, p. xv).

A wide spectrum of software development philosophies

exist, ranging from no rules at all to formal standards that

are rigidly enforced. Forman (1980) concludes that the

traditional method of developing software has become

cumbersome and too costly for today's marketplace. With the

traditional method, considerable time was spent developing

specifications and code and little feedback was provided to
the user until late in the development cycle. Software

engineering, on the other hand, requires user involvement

throughout requirements analysis and design, thus helping to

produce a software product that does indeed meet the needs

of the user.

[': 11

A. BENEFITS OF STANDARDS

According to Boehm (1981), greater emphasis should be

placed on the earlier phases in the software life cycle, as

requirement and design errors are about 100 times more

expensive to correct than implementation errors. With 40%

of the total life cycle cost of software attributable to

development and 60% to maintenance, the implementation and

enforcement of software standards are major factors in

reducing the costs of producing and maintaining software

(Pressman, 1982). Identifying the constraints, objectives,

design tools, and parameters in a standardized way yields

considerable progress in dealing with problems effectively

(Tausworthe, 1978). As "a major portion of maintenance

activity comes from misunderstanding the user's requirements

or from faulty debugging during operation, . . some of

these maintenance problems could be reduced if more

attention were paid to development" (Ramamoorthy et al.,

1984, p. 193).

The overall quality of software products can be improved

by standardizing the practices of programmers during the

entire life cycle of the product. "The subject of software

standards is normally greeted with yawns of boredom or

screams of anguish--yawns when the standards affect someone

else, screams when they are applied to one's own project.

Yet standards are fundamental to the success of most

software projects" (Poston, 1984b, p. 94). Poston (1984c)

12

, -.. -.- '.-.. -.- ..-.-..... .-.-.. . . .-.-.-.. .,... . .-...-.. . . .-. .',,, , , , '," ' ..&4

observes that several situations occur when standards are

not required:

First, the process of communicating a design to another
project member requires two efforts: an initial effort to
explain the technique used in creating and documenting the
design, and a second effort to explain the design itself.
If a standard technique is used, the initial explanation
can be omitted. Second, without a standard design
technique, designing a fix for a fault (bug) takes longer.
The person trying to find and eliminate the fault must
know not only what is wrong with the code but what it was
meant to accomplish in the first place. This requires
understanding the original designer's intent and,
therefore the design technique. (pp. 95-96)

It is reasonable to assume that consistent, documented

terminology and project standards improve communication

among team members and result in fewer misinterpretations

(Poston, 1984c). Standards serve as a "written, usable

formalization of experience--successful experience. Their

use overcomes a common problem: most project experience is

lost, or at best handed down by word of mouth or individual

behavior" (Braverman, 1979, p. 81). Thus, standards "reduce

the vulnerability of the project to personnel turnover and

time lost getting new personnel up to speed" (Peters, 1981,

p. 103).

Overall benefits accrue by adopting and enforcing

programming standards. The goals of standards are many--

good schedule and cost performance, high product

reliability, adequate documentation, increased productivity,

smooth development and delivery, higher quality software,

machine independence, more productive work force, and

reduced production and maintenance costs (Tausworthe, 1978).

13

.4

7-v, 4J 7 -- r - - - - P U .

It is critical to note that "standards are not an end in

themselves, but only a means to an end" (Hall, 1983, p.

112). Standards themselves do not accomplish--people do

(Tausworthe, 1978).

B. COSTS OF STANDARDS

"It seems intuitively that systematic development

procedures would lead to better results" (W. Myers, 1978, p.

374). Yet the development and enforcement of standards

exhort a toll on the user organization. Considerable time

and effort are required to develop and enforce software

standards. Further effort is required to keep the standards

up to date. A significant number of organizations that have

standards do not enforce use of the standards:

A (1983] survey conducted by the University of Maryland
reflects that most companies have a software development
policy and many of them have a "Standards and Practices"
document. Of those companies surveyed, most of the
military-industrial companies have a methodology manual,
but unfortunately it was reported either out of date or
currently "Under Revision." In addition, application and
enforcement varied across projects and most standards were
not enforced or augmented by software tools.
(Thayer, 1984, p. 154)

Use of a methodology and software engineering tools

requires the user to be organized and to impose certain

discipline. In those organizations that do have established

standards, the focus is most often on code development or

tape formats (Poston, 1984c). Yet, "the characteristics

being controlled are of somewhat less importance to the

quality of the final software product than are the proper

14

fA

development of requirements and design" (Branstad & Powell,

1984, pp. 75-76).

There are few published statistics on the costs or

savings associated with having or not having standards in

place on a software project. A cost-benefit analysis

(Boehm, 1981) can be used in determining the potential cost

savings to be realized from a standards development effort.

However, at best, this estimate is based on subjective

values. Fostel (1981) assesses that "accurate life cycle

analysis is hard. Generally, the results will be an over

estimate of the expected gains to be derived from adherence

to a 'single' standard" (p. 127).

With conservative estimates, the cost of developing

standards can be amortized over a number of projects. In

conducting a cost benefit analysis the organization must

also account for the fact that standards are not static, but

rather evolve with use and advances in technology (Boehm,

1981). Thus, total costs include not only initial

development efforts, but also should include costs for

keeping the standards up to date.

Some organizations do not invest in imposing and

enforcing the use of standards, based on a belief that such

development efforts are not cost effective (Thayer, 1984).

Those organizations that do have an active standards program

report little savings in the short run, with a sizable

overhead investment in costs for training and automated

15

-

V5

tools acquisitions/development. "The most significant

economic return on the investment in software standards

comes during the maintenance phase" (Branstad & Powell,

1984, p. 76). Standardized development leads to

maintainable software:

Many maintenance problems would be solved if software were
developed according to precise methodologies. Formal
requirement and design specifications, detailed and clear
documentation, and extensive testing and validation
produce economies in the maintenance phase. These
preventive maintenance activities coincide with the
development activities, and better development translates
as reduced maintenance effort after the delivery.
(Ramamoorthy et al., 1984, p. 200)

Commitment from management, developers and users is

essential for the software standards effort to come to

fruition and to be effective. Each of these groups reaps

the potential benefits of software standards: decreased

variability, increased product quality, increased worker

productivity, facilitated communication, and better control

(Branstad & Powell, 1984). Thus standards should "c-ow out

of successful, documented experience and a commitment by

management to maintain a successful environment" (Braverman,

1979). But "an unused standard is worse than no standard at

4. all" (Fostel, 1981, p. 128), providing a zero return on the

* .standards development effort.

The evidence indicates that in the final evaluation,

standards, if used, do contribute to better quality
I-

software. Standards "can be used to ensure that each and

every module in a system, the overall architecture of the

16

4,

5. .,- - "- - "- . - .- .. • . . •- - "- " - .. .- - . - .- " ' " - " "• .. - - ... " . . .- - .-

system, and the decisions which lead to this configuration

are all established and documented at central checkpoints

during the design effort" (Peters, 1981, p. 103). Such a

philosophy will result in software that both meets the

requirements of the user, and is maintainable throughout its

lifetime. For these reasons, the benefits of software

standards offset the investment required.

17

7i -
. - . -

. ~ ~*'* ,5
.. 5 S S '5.

sytm*ndtedc sn whc edt hs cofgrto

III. NAVY GUIDELINES FOR SOFTWARE DEVELOPMENT

I

. This chapter examines current Navy directives for

,software development. The specific guidance mandated for

all phases of development of miss ion-critical software is

discussed. The chapter concludes with an evaluation of the

use of standards in developing Navy software.

A 1980 Government Accounting Office (GAO) report found

that "current Government-wide ADP policy, guidance, and

standards do not specifically address development, use, and

. . evaluation of software tools and techniques" (Comptroller,

1980, p. 27). Since that time at least four Department of

the Navy instructions governing software development

standards have been revised and do indeed mandate the use of

software tools and techniques (DOD-STD-2167, SECNAVINST

5000.1B, SECNAVINST 5230.8, and SECNAVINST 5231.1B). For

example, DOD-STD-2167 issued in June 1985, "incorporates

practices which have been demonstrated to be cost-effective

from a life cycle perspective, based on information gathered

~by Department of Defense (DOD) and industry" (p. iii/iv).

Emphasizing the iterative nature of software development,

i "the standard accommodates alternative design methodologies,

Mthe effective use of prototyping in the software development

• process, and the use of reusable software modules where

applicable" (Heffernan, 1985, p. 16).

18

Navy software development standards include comprehen-

sive development and documentation requirements, with a

primary emphasis on formal methodologies and supporting

software tools. The majority of Navy software directives

focus on software development for mission-critical systems,

with stringent guidelines mandated. Although not required

for other software development projects, use of these

standards is encouraged for all software projects. The

general framework of these standards can be tailored to any

software project, thus formalizing the development process

for both mission-critical and non-mission-critical computer

system software.

A. DOD-STD-2167

DOD-STD-2167 superseded DOD-STD-1979A (Navy) and was

2 issued as part of DOD's software initiative for the 21st

2 century. Its use is mandated in the development of mission-

critical computer software (SECNAVINST 5000.1B, 1983).

Based on an integrated structured approach to software

development, DOD-STD-2167 (1985):

establishes a uniform software development process which
is applicable throughout the system life cycle. The soft-
ware development process defines development activities
which result in: (1) the generation of different types
and levels of software and documentation, (2) the
application of development tools, approaches, and methods,
and (3) project planning and control. (p. iii/iv)

Development standards are based on a six-phase model:

requirements analysis, preliminary design, detailed design,

coding and unit testing, computer software component

19

-V

2,

Y rP4rw7w . 12- .7". ' W7~' Wy . '2h~ Y2" .V 7.% J.00 2nw

integration and testing, and computer software configuration

item testing. The standard requires the developer to

"establish and implement a complete process, including

methodologies and tools for developing the software and its

documentation" (DOD-STD-2167, 1985, p. 11). The use of a

number of structured software engineering methods is

required: top-down design, modular decomposition, software

development library, structured requirements analysis tools,

formal and informal reviews, program design language, and

structured programming. Data item descriptions for

documentation deliverables are identified for each

development phase.

DOD-STD-2167 provides guidelines for tailoring its

application to smaller projects. By utilizing structured

development techniques coupled with frequent formal and

informal reviews and audits, the standard

provides increased and more accurate visibility into the
software development process, promotes earlier detection
and elimination of software errors, emphasizes establish-
ing a complete, agreed-to, understandable, and testable
set of requirements prior to beginning design . . . [It is
predicted that] DOD will realize an estimated $40 million
savings per year through improved contractor productivity
and the elimination of redundant paperwork.
(Sprague, Maibor & Cooper, 1985, p. 48)

DOD-STD-2167 relies solely on reviews, formal and

informal, to monitor conformance to development standards

and to verify that the evolving software meets the require-

ments specifications of the user. Automation of the manual

tasks of review and audit is not addressed.

20

N "P-71 -

B. SECNAVINST 5231.1B
SECNAVINST 5231.1B details application of the five phase

life cycle management cycle to the development of informa-

tion systems. The five phases are: mission analysis and

project initiation, concept development, definition and

design, system development, and deployment and operation.

Again, the use of structured techniques such as top-down

design, design walkthroughs, and program libraries is

required. Conducting walkthroughs and reviews helps to

monitor conformance to standards, while also helping to

gauge how well the resulting requirements and design are

meeting the needs of the user.

COMNAVDAC has a draft instruction providing detailed

implementation guidelines of the life cycle management

phases. DOD-STD-2167 relates the system life cycle to its

software development phases, thus providing an integrated

view of life cycle management for software development.

C. SECNAVINST 5233.1B

While DOD-STD-2167 addresses the requirements for a

development methodology, SECNAVINST 5233.1B provides

detailed documentation requirements. SECNAVINST 5233.1B

(1979), which applies to all Navy components, including

contractors, provides "necessary instructions and policy

guidance for the preparation of automated data system (ADS)

documents applicable to the Department of the Navy" (p. 1).

The instruction prescribes use of a "standard method to

21

.- .- -..- -. -.-- .-- -. ' -

describe, format, and document data independent of any pro-

gramming language" (p. 53). SECNAVINST 5233.1B primarily

represents guidelines for the physical preparation of

software documentation, e.g., margins, paper stock, document

numbering. Although actual document content is not

addressed, the contents must describe the development

process as dictated in DOD-STD-2167.

D. SECNAVINST 5230.8

SECNAVINST 5230.8 directs that information processing

standards be developed within Navy commands, with COMNAVDAC

responsible for initiating and managing technical standards

development programs Navy-wide. The Navy program is part of

a larger DOD-wide effort, whose scope "includes areas such

as terminology, problem description, programming languages,

systems documentation, ADP equipment characteristics, input

and output format and codes, source data media and fonts,

systems software, . . and teleprocessing interfaces"

(SECNAVINST 5230.8, 1982, p. 2).

In endorsing the use of structured software development

techniques, the Navy is supporting development of software

that has been developed with greater attention given to user

requirements and the maintainability of the software. The

initiative not only acknowledges the need for standards for

software development, but also places the requirement on

Navy commands to use such standards. However, the standards

will not be developed overnight. Nor will the mere

22

4r'.

existence of standards ensure maintainable software.

However, standards facilitate documentation of the complex

task of software development, and as such, promote

production of software that is usable and maintainable. The

next step is for the Navy to require use of development

standards such as DOD-STD-2167 for all Navy software,

regardless of application system type.

4F

l "

23

n7.

S.
"

IV. STRUCTURED DEVELOPMENT TECHNIQUES

This chapter examines the structured development

methodologies mandated for use in mission-critical Navy

software development projects. Strengths and weaknesses of

representative structured methoaologies are assessed. In

conclusion, the structured techniques are judged to be

effective in developing usable and maintainable Navy-

developed software.

The Navy guidelines discussed in Chapter III provide a

general framework within which to develop software. Struc-

tured techniques offer well-defined methods for use through-

out the software life cycle of planning, development, and

maintenance (Pressman, 1982). As a whole, the techniques

contribute to an overall guiding methodology from system

conception to design, coding and testing. The benefits to

be derived from integration of the structured techniques

warrant their use in Navy software projects.

Standards bound a development methodology, providing

measurable milestones with which to gauge conformance. With

the structured methods, specific milestones and deliverables

can be identified for each development phase. DOD-STD-2167

provides detailed identification of such deliverables, in

the form of its data item descriptions. Reviews, both

during and concluding each phase, monitor conformance to the

24

standards. Pressman (1982) observes that "reviews are the

only known mechanism for management and technical control"

(p. 26).

DOD-STD-2167 implies that software developed under its

guidelines will meet the requirements of the user. However,

the standard does not specifically address measuring the

impact of standards on the development process, nor is the

issue of how to measure actual software quality quantified.

Different measures, assessing such issues as productivity,

perception, product characteristics, and impact of the soft-

ware on the process, are available for such use (Sprague &

Carlson, 1982).

DOD-STD-2167 provides a broad framework for software

development, leaving application specific details to the

discretion of the user. For example, the use of a program

design language is required, although a specific language is

not identified. A development methodology, consisting of

methods, procedures, techniques, and tools, must be speci-

fied to each environment, marrying local needs and goals

with Navy standards. The chosen methodology "must be usable

as well as adaptable. It must conform to the needs, struc-

ture and . . . mission of the organization" (Levine, 1985,

p. 72). Customizing to specific needs promotes both accep-

tance and use of the adopted methodology within the organi-

zation. Concessions must be accommodated on both sides for

success to be achieved.

25

. 6

While many design methodologies are in use today, no

single methodology can be identified as "best" in all

situations. The structured programming objectives of

readability, reliability, and programmer efficiency coincide

with Navy software objectives (Jensen, 1981). The following

discussion focuses on the advantages and disadvantages of

representative methodologies, including structured analysis,

top-down design and implementation, structured design, and

structured programming.

The structured techniques are "consistent and rely on a

simple set of rules" ("Imposing," 1985, p. 2), thus

facilitating their use in many different programming

environments. A 1980 GAO report concluded that:

structured programming produces computer programs which
are easier to test, and once tested, easier to modify.
Thus structured programming can both reduce the chances of
errors in the user results . . . and make it easier and
quicker to respond to future user requests for
modifications. (Comptroller, 1980, pp. 13-14)

However, no amount of testing can guarantee 100 percent

software reliability. Testing can reduce "doubts and risks

about the performance of the product in the target environ-

ment" (Pressman, 1982, p. 293). At best, successful testing

provides "reasonable" assurance that software will perform

as required.

A. STRUCTURED ANALYSIS

Structured analysis involves the use of graphic documen-

tation tools to produce detailed specifications of the

26

5.7

proposed system. The primary tools of structured analysis,

which serve as vehicles of communication, are data flow

diagrams, the data dictionary, and structured design

languages. Both data flow diagramq and the data dictionary

present a top-down definition of complex data elements, thus

simplifying these elements into more manageable elements

(Yourdon, 1979).

Structured analysis results in partitioned designs,

graphically depicted in successively detailed levels, and is

implementation-independent of the resulting end-system

(Yourdon, 1979). "Good requirements are complete,

consistent, testable, traceable, feasible, and flexible. By

just stating necessary boundary conditions, they leave room

for tradeoffs during system design" (Ross & Schoman, 1977,

p. 7).

Some systems are developed with no written user specifi-

cations. Although there is no absolute guarantee that

structured analysis will result in what the user wants, the

evolving software design is based on a formal, written

assessment of user requirements. Hence, analysis is based

less on intuition and more on a formal procedure for identi-

fying and documenting user requirements. Thus, the proba-

bility of producing a system that does indeed serve a useful

purpose is increased ("Structured," 1985).

As a problem solving activity, structured analysis

"contributes to the accurate and detailed analysis long

27

-
:.

before a line of code is written" (Mazzucchelli, 1985, p.

77). Ross and Schoman (1979) conclude that "use of well-

structured models together with a well-defined process of

analysis . . . does provide a strong foundation for actual

system design" (p. 12).

Potential problems with structured analysis result from

its reliance on communication between humans to derive the

logical structure of the system. "Communication between two

human beings always involves some risk of a misunderstanding

of one sort of another" (Yourdon, 1979, p. 55). The use of

diagrams serves as a communication tool, easing the

potential for misunderstanding. However, "structured pro-

gramming cannot resolve communication failures caused by

deficient specifications or a poor development organization"

(Jensen, 1981, p. 32).

Data flow diagrams "provide an easy, graphic means of

modeling the flow of data through a system--any system,

whether manual, automated, or a mixture of both" (Yourdon,

1979, p. 39). Complex diagrams are broken into successively

simpler levels, until the lowest level of decomposition is

reached. The data flow diagram focuses on the logical flow

of data to derive software structure. The resulting "design

representations form the basis for all subsequent develop-

ment work" (Pressman, 1982, p. 202).

The data dictionary is "an organized collection of logi-

cal definitions of all data names that are used in the data

28

flow diagram" (Yourdon, 1979, p. 41). Every data element is

defined to its lowest level of detail. The data dictionary

records "all decisions related to the structure and

implementation of every file and record. This information

(should be] recorded in such a way that it can be easily

retrieved and analyzed" (Howden, 1982, p. 320).

Structured design languages are used to describe the

"bottom-level processes in the bottom-level data flow

diagrams" (Yourdon, 1979, p. 42). Structured design

languages describe what a module is to accomplish, without

specifying how the intent or any implementation details will

be achieved. They are independent of the high level

programming language used in the actual coding process and

result in a mini functional specification for each bottom-

level process. Also known as pseudocode or program design

language, structured design languages are well-organized and

precise and can be written quickly and easily. They also

provide "an easy-to-read overview of the procedural logic

for the maintenance programmer" (Yourdon, 1979, p. 152).

B. TOP-DOWN METHODOLOGIES

Top-down methodologies facilitate management's ability

to monitor and control system development (Mazzucchelli,

1985). These techniques allow for "iterations within the

conventional boundaries of analysis, design, and

programming" (Yourdon, 1979, p. 56). They provide a gradual

progression to levels of greater and greater detail

29

. ,

(Bergland, 1981). Three aspects of top-down techniques can

be identified: top-down design, top-down coding, and top-

down testing or implementation:

- top-down design: a design strategy that breaks large,
complex problems into smaller, less complex problems--
and then decomposes each of those smaller problems into
even smaller problems, until the original problem has
been expressed as some combination of many small,
solvable problems.

- top-down coding: a strategy of coding high-level,

executive modules as soon as they have been designed--
and generally before the low-level, detail modules have
been designed.

- top-down testing or top-down implementation: a strategy
of testing the high-level modules of a system before the

low-level modules have been coded--and possibly before
they have been designed. (Yourdon, 1979, p. 59)

Top-down design "provides an organized method of

breaking the original problem into smaller problems that we

can grasp, and that we can solve with some degree of

success" (Yourdon, 1979, p. 62). Top-down testing and

implementation facilitate major interfaces being "exercised

at the beginning of the project . . . [so that] users can

see a working demonstration of the system" (Yourdon, 1979,

pp. 63-64) early in the development process. The top-down

techniques focus

on the overall functions and objectives of the system
rather than on lines of code and concentrate on basic
design characteristics required by the user. This
emphasis results in a more logical, segmented development
process and provides the framework for many of the leading
structured methodologies that are used today.
(Mazzucchelli, 1985, p. 84)

An alternative is to integrate the software from the

bottom up. This approach is appropriate when "processing at

30
C.

a-

,n W •-

low levels in the hierarchy is required to adequately test

upper levels" (Pressman, 1982, p. 300). The relative

advantages of top-down versus bottom-up testing are often

argued. Selection of the "best" approach is driven by

software characteristics. "In general, a combined approach

that uses the top-down approach for upper levels of the

software structure, coupled with a bottom-up approach for

subordinate levels, may be the best compromise" (Pressman,

1982, p. 302).

C. STRUCTURED DESIGN

Structured design simplifies system design by decompos-

ing complex programs into small, relatively independent

functional modules. By minimizing connections between

modules (coupling) and maximizing relationships within

modules (cohesion), complexity is reduced (Stevens, Myers &

Constantine, 1974). The functional modules are black box in

nature, performing a specific function "with little regard

for the internal logical structure of the software"

(Pressman, 1982, p. 292). Structured design reduces the

effort required to modify programs and reduces original

errors as the problem at hand is simplified (Stevens et al.,

1984).

D. STRUCTURED PROGRAMMING

Structured programming is based on the principle that

all programs can be written using combinations of a limited

31

number of logical constructs: sequence, if-then-else, and

do-while. This technique minimizes the "complexity of

program flow and keeps each element of a program manageably

small" (Pressman, 1982, p. 131). These constructs are black

box in nature, having single entry and exit points. Such an

application allows code to be read and understood from the

top down (Yourdon, 1979). Use of the structured constructs

"reduces program complexity and thereby enhances reada-

bility, testability, and maintainability" (Pressman, 1982,

p. 244).

Potential problems with the structured techniques

revolve around programmer acceptance of these techniques and

understanding their application. These techniques represent

a change in the way programs are developed, with more formal

approaches to making and documenting decisions in all phases

of development. Thus programmer training and its associated

learning curve must be accounted for in the overhead

associated with a standards development effort.

"Structured programming--improperly applied--is no

better than traditional methods of program design" (Jensen,

1981, p. 32). It is still very possible to write poor code

using the structured techniques. "Even the best structured

programming code will not help if the programmer has been

told to solve the wrong problem, or, worse yet, has been

given a correct description, but has not understood it"

(Ross & Schoman, 1977, p. 6). Overall, Navy software

32

U

... _,.- -.

* standards do not address this issue, implying that the use

of structured programming is the panacea for most

development problems.

The use of structured techniques helps reduce errors in

analysis and design, thus reducing the costs of testing and

maintenance. A Computer Sciences Corporation survey on the

use of structured analysis and design techniques over a

seven year period revealed that almost 50% of the

development time is spent on analysis and design when

structured techniques are utilized, as opposed to 30% when

structured techniques are not employed (Mazzucchelli, 1985).

Manual approaches to structured analysis are prone to

costly errors. Problems include the time required to redraw

diagrams for every revision, the volumes of paper to

shuffle, and the number of errors inherent in any human

process. The development of automated tools to support

structured analysis is contributing to their efficiency:

While contributing to better communication and organiza-
tion, structured techniques--in and of themselves--do not
solve the productivity/quality crisis. The automation of
the software development process has begun to address
these problems during the last few years. Tools are now
available to automate the job of software engineering. A
variety of tools can be chosen to address different
development functions and contribute significantly to
increased productivity and especially to quality.
(Mazzucchelli, 1985, pp. 80-81)

W. Myers (1978) concludes that "modern programming

practices are effective in improving the processes of

software development" (p. 384). By automating some of the

functions associated with the structured techniques, their

33

p.

effectiveness is further increased. The next chapter
4
4

-/ conceptualizes the use of automated tools in enforcing

software standards.

.4

.4

.4
-'S

P'S

.5'

.5.

.5

P.

-P

p'S

'S.

.5.

5'-

34

4

I

P.

- ... - ~ -. .

-..- 5'.-A.A-Y~a~. .a * ~ -. -p --

V. AUTOMATED TOOLS AND THE DEVELOPMENT ENVIRONMENT

This chapter establishes the rationale for using

automated tools in support of software development. First,

the elements of a tool-supported environment are defined.

Second, the costs and benefits, both long and short term,

associated with the use of automated tools are discussed.

As Blum (1985) observes, "the software community has

done an excellent job of attempting to automate everyone's

job except their own" (p. 43). Software design is still all

too often a paper and pencil drill, with redesign a major

effort of juggling plastic templates and mountains of paper.

However, a well constructed tools environment can systema-

tize and improve the software development process, bringing

increased standardization and automated control (Federal

Software, 1982).

An integrated development environment should encompass

five elements: tools, standards, procedures, training, and

control measures (Federal Software, 1982). Although all are

essential to the success of a project, the focus here is on

control measures and the relationship between tools and

standards. The successful environment uses a system

development methodology in conjunction with computerized

software tools. Thus, tools are needed that support

35

established systematic procedures, following a system from

its conception to its final design (Egyhazy, 1985).

The ideal tool would provide a single solution to manage

the complete life cycle, from requirements analysis to

maintenance, along with an associated methodology and a

working implementation (Miller, 1979). Available technolo-

gies "provide various levels of computer assistance in most

or all areas of the development life cycle, at levels

including requirements definition, systems design, coding,

testing, documentation, and maintenance" (Gillin, 1984, p.

1). Although not yet available in any one package,

"industry observers predict that manufacturers will [soon]

develop complete software development product lines to

provide integrated tools that together encompass the entire

software development life cycle" (Mazzucchelli, 1985, p.

86).

An integrated tools environment "provides an opportunity

for standardization within the production development

environment" (Pfrenzinger, 1985, p. 44). To be most effec-

tive, the environment should yield designs and code

consistent to the same level of detail. "If a design is

expressed in a consistent fashion, then some measure of its

contents can be made" (Brown, 1985, p. 135).

Higher quality software can be achieved through the use

of computer technology. A 1980 GAO report advocates the use

of automation and identifies a number of benefits that

36

.. . ..

* h. o--- - - k o. -.- - .-...- o . -

software tools and techniques can offer the federal

government:

- better management control of computer software develop-
ment, operation, maintenance, and conversion;

- lower costs for computer software development,
operation, maintenance, and conversion;

- feasible means of inspecting both contractor-developed
and in-house-developed computer software for such
quality indications as conformance to standards and
thoroughness of testing. (Houghton, 1982, pp. 1-2)

To be effective, tools require standards, order and

discipline, with their functional capabilities defined by

organizational procedures and standards (Fisher & Herdt,

1985). The structure and detail required by automated aids

leave less to the discretion of programmers, resulting in

more consistent products. "Standards provide the means of

customizing a set of tools so that they are used effectively

within an organization" (Hall, 1983, p. 114).

A number of integrated tools are available, offering

support for standardized development procedures and identi-

fied methodologies. The hardware suite for a development

environment is a major factor in tool selection. Different

products offer diverse approaches to development, ranging

from mainframe to microcomputer applications.

This effort focuses on a microcomputer environment,

where "by using the right software tools and by applying

traditional system life cycle methodology, the PC can be a

cost-effective alternative to applications development on

mainframes" (Michielsen, 1986, p. 96). There are also a

37

number of PC-based development utilities, for such tasks as

report generation and screen formatting, which further inte-

grate the development process (Michielsen, 1986). PC-based

tools are portable and the resulting products can be imple-

mented on a variety of mainframe environments (Leavitt,

1986). Also, microcomputers are more interactive than

mainframes, and "the terminals can communicate with each

other and with a central source without tying up the

mainframe" ("Proper," 1984, p. 17).

Automated tools speed up the development process and

enforce discipline (Martin & Hershey, 1986). "Almost all

software development organizations can see productivity and

quality increases from their staffs with the use of appro-

priate automated tools" (Mazzucchelli, 1985, p. 86).

Further, "automated design techniques can greatly improve

the technical soundness of an installation. They provide

capabilities not available to designers using manual

methods. These capabilities help to reduce the life cycle

costs of the system" ("Application," 1981, p. 10).

Selection of a tool is a long-term strategic decision,

often representing a major investment in development,

training and/or maintenance efforts. Choosing a particular

automated package should be subjected to the "same economic,

operational, and technical criteria used to determine

application requirements" (Michielsen, 1986, p. 96).

p.3

'T" 38

-'.

b ."

n

The primary advantage of automated tools, as a whole, is

their ability to graphically illustrate how data moves

through a system and to allow the programmer to easily make
=1

changes to a system model (Korzeniowski, 1985). In

automating the tasks of system designers, the computer can:

process data cheaper, faster, and more rigorously than a
human programmer . . . and can check a program's adherence
to standards in a way that humans cannot, and will not, do

.. . [things must be described] unambiguously and
completely before a computer can process them these
can be the disciplining force that directs the project,
provides a structure for analysis, and provides a basis
for controlling the project. (Federal Software, 1982, p.
7)

Users report little gain in the initial use of automated

tools--"all the words, symbols and layout choices have to be

entered to start a design document. The advantages comes

with the follow-up work, the editing, the corrections, the

repositioning of paragraphs or design elements" (Leavitt,

1986, p. 59). Users do report significant time savings in

later stages, such as testing and maintenance. "Often the

improved quality of the specifications produced more than

make up for the cost of a development tool because they save

so much coding and maintenance time" (Mazzucchelli, 1985, p.

86).

The majority of current system development tools focus

on the early analysis and design of a system (Inmon, 1985).

Use of tools in these stages facilitates errors being "iden-

tified and eliminated more easily during the period of

development where they remain inexpensive to correct"
NI

39

I

..

-7 -Y : -. Y -. .- _. . - p. -Ji

(Mazzucchelli, 1985, p. 86). "When appropriate automation

is available, it becomes easier to perform the work the

standard way than by any alternative means. In such

instances, standards audits or enforcement becomes

transparent, since the development process incorporates the

standard" (Branstad & Powell, 1984, p. 74). Thus, the use

of automated tools and/or methodologies promotes consistency

in product design. Supported by established software and

development standards,

applications development on micros [can] be managed and
conducted most efficiently. If software tools, communica-
tion parameters, and screen-handling conventions are pre-
defined, then the process of managing development as
programmers move from application to application can be
handled efficiently. The same software tools and
methodologies provide a common ground of understanding to
build systems. (Michielsen, 1986, p. 98)

40

VI. DEVELOPMENT TOOLS

Having established a rationale for the use of automated

tools in support of software development, the focus now

shifts to specific tools and techniques that facilitate the

development process. This chapter examines four types of

commercially available tools that can improve the

development process--a requirements specification technique,

a class of automated design tools, the data dictionary, and

hardware/software monitors. These tools support the use of

the structured techniques mandated for use in Navy software

development. The tools can be used singly or in conjunction

with each other to compound their effectiveness.

A. FACILITATED APPLICATION SPECIFICATION TECHNIQUE

Although some development processes such as statement of

objectives and requirements analysis are subjective and thus

more difficult to define, methods have been developed to

facilitate these tasks and to help the requester

conceptualize and verbalize his needs (Rush, 1985). One of

the newest requirements analysis methodologies is the

facilitated application specification technique (FAST) which

uses a structured, trained-leader workshop to focus on the

requirements definition stage of system design. FAST is

actually a series of interactive design techniques which are

used "to extract high-quality business system specifications

41

-F

FI -7

from end users in a workshop environment. They are not

replacements for analytical methodologies, but they can all

work with and supplement any methodology" (Rush, 1985, p.

ID/13).

FAST utilizes specific techniques in a structured meet-

ing setting to facilitate communication between system

designers and end users, focusing on the interviewing and

information gathering processes required to define system

requirements. In the workshop, users describe "their

business functions, information needs, data elements used

and how they want to interface with the system" (Rush, 1985,

p. ID/14). In assessing the success of the FAST techniques,

Rush (1985) concludes that the "specifications developed

from these methods have been more thorough, better

documented and more consistent than with a less rigorous

approach as well as being obtainable more quickly and at

less expense" (p. ID/15).

B. AUTOMATED DESIGN TOOLS

One type of commercially available microcomputer package

which can ease the tasks of software development focuses on

the early stages of system definition and preliminary

design, facilitating the planning of program logic before

code is actually generated. These design tools automate

many of the time-consuming tasks of system designers,

including graphic designs, document production, word

42

processing, error checking/consistency, and data

dictionaries (W. Myers, 1985).

These design tools automate many of the manual proc-

flexible way to document project components without having

to maintain the entire design on paper. "Good automated

design tools support an evolutionary development process

that overcomes the rigidity of the classical process with

its frozen specifications and long lead time between initial

request and operational implementation" (Leavitt, 1986, p.

59).

These packages focus on detailing the logical flow of

data through the proposed system and combine the logic of

structured analysis with the graphics capability of a micro-

computer (Leavitt, 1985). Hardware-wise, the design tools

require a PC with 640 KB of memory and a 10 MB hard disk.

Representative packages include Excelerator (Index Tech-

nology), Analyst Toolkit (Yourdon) and DesignAid (Nastec).

The design tools "help the user focus on the business

unit to be served, to determine what problems it faces and

how well they are being met independent of the [actual]

computing environment" (Leavitt, 1986, p. 58). With a

strong emphasis on diagramming aids and the data dictionary,

these tools facilitate system documentation. The tools

contribute to a well-organized and well-defined design

phase, documenting how data moves through the system. A

43

- r 'i. * . - -- * - - --- -- - . -" :" " " "" - " ". "' " "" "" " '!

design data base is defined in terms of the logical func-

tions of the data elements, "rather than in terms of the

hardware or software that use them" ("Case," 1984, p. 16).

A major strength of the design tools is their strong

graphics capability. Change is an integral part of system

design, and automated design packages "enable a programmer

to easily depict changes to a system model" (Korzeniowski,

1985, p. 63). The tools offer a number of predefined

graphics symbols, with particular emphasis on data flow and

data structure diagrams. Supported by the use of a mouse,

the tools are menu driven, simplifying creation, modifica-

tion, and validation of design diagrams and documentation.

The user can quickly and automatically construct and recon-

struct data flow diagrams and structure charts. The system

automatically captures process names assigned to the

elements of the data flow diagrams, and maintains a consis-

tency check throughout the process. Data flows are balanced

from level to level of abstraction, and discrepancy messages

are generated as required. Another feature is the capa-

bility to scale the size of the diagrams and charts and

their accompanying labels and data elements.

As the design evolves, a data dictionary is dynamically

created, recording data elements and where and how they are

used. The dictionary serves as the central repository for

information about the system, including such elements as

processes, functions, screen descriptions, and data flows.

44

*1*f

This same information is essential in later development

stages such as detailed design and coding. The tools also

support importing/exporting data dictionary definitions

from/to other sources.

Another important feature of the design tools which

assists the designer is the consistency/accuracy check.

"Checking for errors represents one of the most important

features from automated tools. Consistency checkers go

through parts of a project manual or the entire model and

check consistency between data flow diagrams, data

dictionary entries and process specifications"

(Mazzucchelli, 1985, p. 83). Diagrams are automatically

validated for accuracy and completeness, with syntax and

definition errors identified in error reports and/or on the

screen. This feature also facilitates conformance to design

standards, if the standards of the organization parallel

those implemented with the tool. "Automating error checking

reduces the total number of errors simply because it does a

complete and thorough check--one more comprehensive than any

analyst would be willing or able to do manually"

(Mazzucchelli, 1985, p. 83).

Although initially configured to the unique structured

development methodology of the tool, some of the design

tools offer an optional capability which allows the user to

define symbols and documentation standards. Such a

45

.6 5. B. . * . .~~.. .

-. . . - . -. _. - .*~ *~* - ~ -r-

capability allows the organization to further tailor the

tool to support its own design standards.

A number of utilities, which also serve to ease the job

of the designer, are included with the basic tool. Screen

facilities such as menus, reverse video blinking, and help

messages are available. Some of the tools support free form

graphics and a sketch capability which further automate

tasks normally done by hand.

Automated design tools produce machine readable and

easily modifiable documentation, thus facilitating documen-

tation of the design process. Design and documentation

tasks can be done online and cataloged in the design

dictionary, thus producing system documentation as a

byproduct of the design process. A major feature of the

tools is the ability to incorporate text and graphics. As

design changes are easily made, the tools promote

completeness, consistency and accuracy of the design.

In assessing the benefits to be derived from the use of

automated design tools, "users of the microcomputer packages

admit that they do not save time in the first phase of

systems development but claim time savings in later stages"

(Korzeniowski, 1985, p. 63). "All the words, symbols and

layout choices have to be entered to start a design

document. The advantage comes with the follow-up work, the

editing, the corrections, the repositioning of paragraphs or

design elements" (Leavitt, 1986, p. 59).

46

n. . ..!

C. DATA DICTIONARY

The data dictionary is critical to the success of any

software development process. Although the data dictionary

is available in both manual and automated forms, this

discussion assumes an automated PC-based capability. The

data dictionary is supported in both mainframe and micro-

computer environments, thus facilitating transfer of data to

and from both environments. Used to define both data and

software design, the data dictionary controls a clear and

consistent definition of data used in software design and

coding. Thus, design changes can be implemented consis-

tently and completely (Brown, 1985).

The data dictionary is the primary tool to control

defining and describing data (Leong-Hong & Plagman, 1982).

The dictionary

explicitly represents the relationship among data and the
constraints on the elements of a data structure. Algo-
rithms that must take advantage of specific relationships
can be more easily defined if a dictionary-like data
specification exists. (Pressman, 1982, p. 230)

The data dictionary directly supports the design process

and indirectly improves the development process. Data ele-

ments are defined in terms of their functions, not the

hardware and software that use them ("Case," 1984).

Ultimately incorporated into system documentation, the data

dictionary documents a number of different specifications as

they are developed and refined--data entry, file content,

47

-- . -~ ... , -. ~ *. oo.

report layout, data element narrative references, and file

program cross references ("Software," 1985).

The data dictionary can also play an integral role in

defining and enforcing data standards:

It can be used to promulgate because the [data dictionary]
can be made to record only acceptable standard data
definitions. Databases or application systems requesting
data entities will only be able to retrieve standard des-
criptions of data entities and will only have standard
data names. The [date dictionary] can be used to monitor
and to enforce standard data definitions because through

its edit and validation facilities, it can screen out non-
standard, or nonconforming data elements. If and when
nonconformance is detected, the DBA can take appropriate
action. (Leong-Hong & Plagman, 1982, p. 52)

D. HARDWARE/SOFTWARE MONITORS

As noted earlier, the primary focus of this research is

on the early development stages of requirements analysis and

design. As such, no discussion is made of the use of tools

in the later stages of coding, testing and maintenance. The

next type of tool is best utilized during testing and actual

use of the software product.

Once the application program is ready for use (i.e.,

mainframe processing), hardware and software monitors are

another type of tool that can be employed in monitoring

software development and conformance to standards. Although

available only on mainframe computers, hardware and software

monitors can be used to monitor conformance to coding

standards and measure quality factors such as efficiency of

systems and applications (Gitomer, 1984). In different

ways, both hardware and software monitors "collect data on

48

system utilization during normal operations for on-line or

after-the-fact analysis" ("Twelfth," 1984, p. 28). These

tools provide data on workload analysis, system tuning and

capacity planning (Freedman, 1985).

These monitors can identify inefficient applications,

and corrective action can then be taken. Software monitors

can generate data about applications program execution, such

as "number of transactions processed, input/output

operations executed, records added or deleted to a file or

database, . . . time elapsed while the program was in execu-

tion, [and] CPU time for the program" (Gitomer, 1984, p.

52).

Although both types of monitors can be used in assessing

the quality of the finished product, inherent characteris-

tics of each one result in their capabilities not being

fully exploited. Hardware monitors are expensive and

complex to use ("Thirteenth," 1985). The information

produced is often not worth the required investment in time

and money (Gitomer, 1984). Although easier to use, software

monitors have extremely large core and CPU requirements

("Thirteenth," 1985). As their use often can cause a

virtual standstill of online processing, actual use is often

restricted to short, infrequent time intervals. Such

sporadic use decreases the potential role that software

monitors can play in monitoring applications programs and

their adherence to software standards (Gitomer, 1984).

.5 49

E. TOOLS AND STANDARDS ENFORCEMENT

The four types of tools evaluated in this chapter

support development standards and can thus improve the

development process. In surveying current commercial

software packages, none were found to support total automa-

tion of requirements analysis and design. At this time,

technology does not support automation of the actual

creative process required in these stages. The tools

discussed do, however, provide support for the manual

documentation of the creative process. The four types of

tools also provide support for the review process in the

next section, with the review being the focal point in

monitoring and enforcing the use of standards.

50

Y. P

VII. STANDARDS AND THE REVIEW PROCESS

This chapter examines the relationship between standards

and a review process to monitor and enforce their use.

Environmental conditions that support the use of standards

are identified. Next, the role of verification and

validation in the development process is defined. Finally,

the concept of the review is defined and evaluated.

Once development standards are established, they must be

continuously and actively monitored for proper implementa-

tion and use (Foote-Lennox, 1984). Standards that are not

monitored may not be followed. "Too often no specific

procedures are advocated and evaluation is based predomi-

nantly on the production of a running program. Since the

process of development is largely ignored, the programmer

has little motivation to be systematic" (Egyhazy, 1985, p.

8).

What is meant by conformance to standards? At the

deliverable level, it means

assuring that each intermediate product that is the
output of one step in a multistep process is of the
highest possible quality before it becomes the input to a
succeeding step. This not only assures the quality of the
next deliverable, but increases the chances of achieving
it at the first attempt. (Duncan, 1986, p. 136)

As discussed earlier, there are commercially available

tools that support the use of standards. These tools do not

automate the task of ensuring actual conformance to

51

7-7-7 77- 17.17

standards. The tools do, however, ease the steps of

determining software requirements and both logical and

physical design.

Certain conditions are necessary for a successful

standards program. Conformance mechanisms ensure that the

product meets requirements and promote the use of the

standards. Standards which actually ease the job of

designers and programmers promote their own use.

The individual designer/programmer and that individual's

perception of the standards ultimately determine the success

or failure of the standards program. "The largest single

component affecting productivity and product quality is the

individual; it has a weighting factor at least twice as

large as any other" (Blum, 1985, p. 46). "A key measure of

success is the degree to which the development staff view

the standards as tools in their work. Participation in the

selection and shaping of the standards and methods promotes

this attitude and the consequent useful application of the

standards" (Freeman & Hermon, 1983, p. 106).

Management commitment is also essential. Using

standards often involves a change from the way software has

been developed. It is often a

major and potentially disruptive change from the status
quo. . . . Any lack of management commitment is instantly
visible and transmitted to the staff. Giving lip service
to the adoption of standards while failing to support them
with real resources is worse than doing nothing at all.
(Freeman & Hermon, 1983, p. 105)

52

bI

.. - . - . .- "."-. -- '"" ' '" " " - ."" " "" " i J x -'

Most people resist change, as it represents a departure

from the status quo. Thus, "the change, [in this case the

use of standards], must be motivated. . . . An educational

program should be initiated. People must understand the

standards in order to use them" (Branstad & Powell, 1984, p.

74). Staff members must receive formal training to support

the standard methodology adopted, and to help them integrate

the standards into their work.

To effect enforcement of software standards, one

approach

concentrates on the process by which the software product
is produced rather than on the characteristics of the
product itself. To effect the approach, specific steps in
the development process are standardized both with respect
to their occurrence and to the techniques used to accom-
plish the step. (Branstad & Powell, 1984, p. 74)

Thus, use of a formal methodology, such as the overall

structured approach detailed earlier, not only promotes use

of standards, but eases the task of monitoring actual

implementation. When a design is expressed consistently,

some measure of its contents can be made. "Completeness and

consistency can be expressed in terms of mismatched inter-

faces and processes, or by the data a process uses" (Brown,

1985, p. 135).

Reviews are key to the enforcement of standards. Navy

guidelines mandate formal and informal reviews as control

mechanisms for software quality and conformance to develop-

ment standards. "Shifting attention from controlling the

development process toward managing the development of a

53

i'..P

design will provide a clear understanding of the tasks and

issues involved in the development process" (Brown, 1985, p.

136). Thus, emphasis should be on the early design stages,

since the cost for software corrections during operations
is many times the cost incurred in detecting problems
during design, inspections provide an unusual leveraging
of cost/benefit over the entire life cycle of the
software. (Frank, 1983, p. 85)

Validation and verification are two key aspects of the

review process (Boehm, 1984). "Validation ensures that an

implementation of a design actually behaves as the design

intended. Verification determines that a design has been

consistently stated and constrained throughout its life

cycle" (Brown, 1985, p. 134). In order to enforce

standards, "both the software product being created and the

process of creating it must be measurable, repeatable and

changeable. These most important requirements lead us to

basic design constraints on the environment" (Poston, 1984a,

p. 87). Thus, verification is part of every successful

review. Both the automated design tools and the design data

dictionary support the verification process with their

automated cross-referencing capability.

Software must be reviewed both during and concluding

each phase of development. To be effective, reviews should

be based on the development methodology, standards and

tools. The development methodology serves as the basis for

the review process, which maps the process from stage to

stage. Software design and code:

54

,- --- --.-- - . -. '.' . "", , -. ,. " . .. '.. .' " '. -• - -- < ' i ':. . .- -.i " "-.! . ,-- - -i?, / i il i ? - . - -? ,i l l i ' ' . . '- - i ? - i ? - - .? -- : . . i . .? - ... i.. • . . '.

cannot be formally inspected or reviewed without reference
to basic standards. The standards represent the discrimi-
nating measure of acceptable and unacceptable design and
programming practices. Standards can also serve the
extremely vital purpose of insuring that the development
process is not reduced to simply generating compliable
code. (Frank, 1983, p. 82)

Reviews must be based on a formal plan in order to

assess a product both in terms of meeting requirements and

conforming to standards. Such a pla- must state how quality

will be examined and measured, and identifies controls used

to ensure that defined standards and procedures are

followed.

Differing levels of experience, ability, style of work,
and even attitude, can cause variations in quality levels
within the same department. But if quality plans are
mandatory and are produced according to standard guide-
lines, the variations in quality should diminish. .
People rarely read standards manuals from cover to cover,
but if at the start of a project they were told what the
relevant standards were and exactly where they could be
found, the chances of the standards being applied
correctly would increase. (Duncan, 1986, p. 136)

Tools, both automated and manual, are integral to the

review process. Automated design tools provide assistance

during the inspection/review process. These tools track and

record changes. For example, the design tools generate

reports indicating failure to achieve relevant consistency

and conformance to the design standards embodied in the

tool. Both structural and design inconsistencies in succes-

sive levels of design are audited and flagged if not

achieved.

The structured techniques produce a hierarchy of design

detail. Therefore, successive levels of detail can be

55

- -- - - - - - - -- ".,.

checked for consistency and completeness, i.e., "for

processes without inputs, data elements that are not used,

and so forth. The expansion of requirements into design and

design into detail design will provide some confidence that

requirements can be traced to specific features" (Brown,

1985, p. 135).

Automated documentation also makes for faster and easier

review. Documentation can be presented interactively, and

the reviewer can assess that all functions are present,

required text, data and diagrams are included, and required

detail is correct. Automated documentation allows the

system to be described more completely and accurately and is

more concise than manual methods. "Updating is made easier

because only the functions affected by the change require

recalling. This can be done automatically, while with

manual methods one has to review the whole lot"

("Structured," 1985, p. 507).

The review process also contributes to better documenta-

tion, as the review must have complete and comprehensive

documentation to be effected (Citron, 1984). Reviews

can serve as the basis for evaluating adherence to
standards and procedures, ascertaining the quality of
products, and providing the needed information for mana-
gerial decisions. If an acceptable level of quality is
not attained at a given checkpoint, it is a good time to
make changes or reconstruct the products and then review
for quality assurance again. This will reduce the possi-
bility of errors in one software development stage from
cascading into a later stage.
(Federal Software, 1983, p. 68)

56

%J 1 1 .1. - d

P P

Enforced use of standards will "reduce the overall cost

of software by reducing the effort spent on maintenance

through better planning, design and control of software

resources" (Federal Software, 1983, p. 9). "The disci-

plined, structured methods some products impose on

developers can improve application design and quality.

These tools can enforce structured, standardized techniques

on programmers. That forces the creation of a maintainable

product" (Gallant, 1984, p. 26).

The review process helps define, audit and enforce

standards (Yourdon, 1978). It ensures that software meets

requirements and performs as intended. Although reviews

take time, the time spent considerably reduces future time

spent on testing, integration and maintenance (Citron,

1984). The payoff "is in higher performance in quality and

delivery of the product . . . primarily because of the

substantial reduction in the maintenance activity resulting

from the higher quality of the product" (Frank, 1983, p.

85).

Reviews, driven by a quality plan, are the key elements

in properly implementing and using software development

standards. The quality plan details the standards required

in producing the software. The review itself determines if

the product has been produced according to standards

(Duncan, 1986).

57

-P.

,o~~~...---.

- .i*. *....

zIr ; .- 1 7 - 7 T

'All the enforcement mechanisms in the world will not

ensure conformance to standards unless the actual users of

the standards are committed to their use:

A standard is only a standardized method. Only if it in
fact serves some well-defined need will it be accepted and
will it in some way create a standard portion (that part
specified by its applicability clause) of a total world,
the majority of which will remain nonstandard. A struc-
tured network of carefully devised, bounded, and success-
ful standards will be found to be so useful that
the self-serving interests of those affected by them will
cause their acceptance and adoption as a natural optimiza-
tion step. There is no room for alternate possibilities.
Standards cannot create a standard world.
(Ross, 1976, pp. 596-597)

4.5

4..

4.

°°. • . . .

VIII. CONCLUSIONS

This chapter recaps key issues in using standards and

tools in a software development environment. First, the

requirement for three types of software standards is

discussed. Second, key implementation issues are addressed.

Finally, recommendations are made for creating a development

environment.

A. STANDARDS DEVELOPMENT

Although not specifically addressed in this thesis, the

development of standards must precede their use and enforce-

ment. The following discussion provides a general overview

for the actual selection and development of software

standards. At the local command level, the general

guidelines in DOD-STD-2167 and the other Navy software

standards discussed in Section III must be specified to the

local processing environment. Such standards establish

quality control measures and "norms of good practice, while

providing leeway for the use of diverse development

techniques and approaches" (Branstad & Powell, 1984, p. 73).

Standards should be developed for all phases of the

development process and can be divided into three

categories: life cycle development, developer support and

job function (Poston, 1984a). In each category, the

standards should document successful experience and

59

.r.

represent the way that software products are to be developed

within the organization (Braverman, 1979).

Life cycle standards detail the actual development

process, from requirements analysis to coding to testing and

maintenance (Poston, 1984a). DOD-STD-2167 provides the

general framework upon which Navy commands can develop life

cycle standards. A six phase life cycle, based on a

structured approach, is mandated.

. Support standards provide the framework for support to

the actual users of the standards--training, tools,

standards and metrics, techniques, and management policies

(Poston, 1984a). The development staff is "the most

important factor in determining product quality and process

efficiency" (Poston, 1984a, p. 88). Thus, the support

standards detail what, why and how particular staff members

are to perform their jobs. Training support and the use of

tools are specifically detailed in this type standard.

It is also important to partition available staff

positions into job functions, the third major area for

standards development (Poston, 1984a). These standards

address project management, project assurance, product

development, verification/validation/testing, and

configuration management. Depending on the number of

persons assigned to a project, one person could perform all

functions on a small project, while on a large project,

several persons could be assigned to each function. Most

60

important is clear assignment of function so that all

personnel know what is expected of them.

B. IMPLEMENTATION ISSUES

Branstad and Powell (1984) address specific implementa-

tion issues in the successful establishment and use of soft-

ware standards, and observe that such an implementation

involves "significant understanding and insight into the

state of current technology, human nature, people's ability

to deal with change, and the goals of the particular organi-

zation and project" (p. 74). These issues center around the

selection, introduction, support, and use of standards and

are discussed below.

Prerequisite to implementing a standards program "are

the existence and enforcement of definitive programming

standards, as well as management's understanding, support,

and trust--which itself is a function of the quality and

timeliness of the work produced by the system's group"

("Structured," 1985, p. 501). Standards must be measurable

in order to be enforced (Branstad & Powell, 1984). "The

measurement may relate to size, complexity, functionality,

or the number of errors discovered during reviews" (Poston,

1984a, p. 89). Thus it must be possible to determine if the

work does comply with the standard. With such standards as

module size or naming conventions, compliance is easily

measurable. With quality-related standards, direct

measurement is more difficult, as quality is a more

61

'a . 4 " . ' -.- ' . " -. - " " - " " " . -" - ' ""' - - . ' ' - - " - """ - - -

subjective judgment. The use of a standardized development

methodology focuses on the way in which the product is

developed, with quality achieved by controlling the develop-

ment process (Branstad & Powell, 1984).

Often, the implementation of software standards repre-

sents a change in the way in which software is developed.

"The development process is redefined in a number of ways,

new methods and tools are introduced, and additional control

is often imposed" (Wedburg, 1981, p. 134). As Oliver (1985)

observes, "change carries a cost, which must be weighed

against its benefits" (p. 19). Not only is management

commitment essential, but actual users of the standards must

also understand the proper use of the standards. "Office

politics, personalities, motivation, collaboration, and

performance criteria are all crucial considerations when

introducing change" (Freeman & Hermon, 1983, p. 106).

The staff performing the work is the single most

important factor affecting the quality of the product and

efficiency of the development (Poston, 1984a). Although

choosing both a methodology and supporting tools is inte-

gral to the success of a standards program, it does not

guarantee success. "To actually change the behavior of

systems professionals requires marketing, education, moni-

toring, and feedback. (And--if the feedback so indicates--

more marketing, more education, more monitoring, and more

62

feedback until the desired change is achieved)" (Hedrick,

1986).

As Ross (1976) observed, "a standard is only a

standardized method. Only if it in fact serves some well-

defined need will it be accepted and will it in some way

create a standard portion . . . of a total world, the

majority of which will remain nonstandard" (pp. 596-597).

Education, training, and continual updating of the standards

will assist users in correctly applying the standards and

promote the development of quality software.

C. CREATING A DEVELOPMENT ENVIRONMENT

Based on this research effort, the following steps are

judged to be critical in establishing a successful software

development program. These steps are achievable and can be

implemented in Navy software development environments.

The first step in any standards development effort

involves adoption of a life cycle development methodology.

Such a methodology brings discipline to the entire develop-

ment process, from requirements analysis to configuration

management. In the case of mission critical Navy software,

DOD-STD-2167 mandates the use of a structured methodology.

Representative methodologies include Jackson, Yourdon and

Warnier (Pressman, 1982). The particular methodology is not

as important as the fact that a methodology is adopted.

Levine (1985) reports that "nearly 800 purchased systems

development methodologies or standards [are] in place at

63

major organizations" (p. 72). Key to the selection of a

methodology is its ability to support the needs and mission

of the organization. "A methodology embraces the way an

organization designs, develops and implements systems"

(Levine, 1985, p. 72).

Once the methodology is identified, the organization

should identify tools to support the methodology. Two

options are available in acquiring tools--off-the-shelf and

custom developed. If commercially available software

supports the requirements of the organization, such packages

should be utilized:

In contemplating procurement of any software program, the
economics always favor the low-risk, high leverage solu-
tion of purchasing existing products. In make-or-buy
trade-offs, paybacks from a purchase usually occur in one-
third the time, while investment costs are also recaptured
in one-third the time. The development time is reduced to
one-fifth and development costs to as little as one-
seventh. (Frank, 1983, p. 164)

Equally important is the fact that future maintenance costs

are substantially reduced when off-the-shelf software is

utilized (Hedrick, 1986).

A minimum set of tools is required to implement a

standards program. In evaluating available design tools,

several candidate packages support the different structured

methodologies. At least one of the integrated design tools

discussed earlier should be selected to support the life

cycle methodology. Additionally, a requirements analysis

technique should be employed to facilitate accurate identi-

fication of user requirements. During the design process, a

64

data dictionary is essential for consistent identification

and use of data in both design and later in the coding

process. Finally, hardware or software monitors are

required to fine tune the final product for efficient

operation.

Actual standards must then be developed to finely detail
S.o

the methodology, its application and use. Each of the three

major types of standards discussed above is required. A

standards coordinator should be designated to monitor the

use of standards, keep them up to date, and ensure that

training is provided. Finally, the review process should be

formalized with the designation of a review group to ensure

not only that standards are being employed, but that

standards are being correctly employed.

65

LIST OF REFERENCES

Application system design aids. (1981, October). EDP

Analyzer, 19, pp. 1-12.

Bergland, G.D. (1981, October). A guided tour of program
design methodologies. Computer, _4, pp. 13-37.

Blum, B. (1985, January). Understanding the software
paradox. ACM SIGSOFT Software Engineering Notes, 10,
pp. 43-47.

Boehm, B.W. (1981). Software engineering economics.
Englewood Cliffs, NJ: Prentice-Hall, Inc.

Boehm, B.W. (1984, January). Verifying and validating
software requirements and design specifications. IEEE
Software, 1, pp. 75-88.

Branstad, M., & Powell, P.B. (1984, January). Software
engineering project standards. IEEE Transactions on
Software Engineering, _-Q0, pp. 73-78.

Braverman, P.H. (1979, July). Yes, folks, standards are a
many-splendored thing. Computer, 12, pp. 81-84.

Brown, P. (1985, April 15). Managing software development.
Datamation, 3i, pp. 133-136.

Case Western implements automated design tools. (1984,
August 20). Computerworld, 18, p. 16+.

Citron, A. (1984, January). A software review method that
really works. BYTE, 9, pp. 437-440.

Comptroller General of the United States. (1980, April 29).
Wider use of better computer software technology can
improve management control and reduce costs (FGMSD-80-
38). Washington, DC: General Accounting Office.

DOD-STD-2167. (1985). Software development standard
documentation set.

Duncan, M. (1986, March 15). But what about quality?
Datamation, 32, pp. 135-139.

66

I.j

'. .' - .**J' .~ .*.. -, -.. ' V .:%.

Egyhazy, C.J. (1985, January). Technical software develop-
ment tools. Journal of Systems Management, 36, pp. 8-
13.

Federal Software Testing Center. (1983, June).
Establishing a software engineering technology (SET)
(Report OSD/FSTC-83/014). Washington, DC: General
Services Administration.

Federal Software Testing Center. (1982, February). A
software tools project: A Means of capturing technology
and improving engineering (Report OSD/82-I01).
Washington, DC: General Services Administration.

Fisher, G. & Herdt, D. (1985, July). Establishing a
programmer's workbench. Federal Software Information
Exchange, 3, pp. 5-9.

Foote-Lennox, T. (1984). More standards, more trouble. In
Proceedings of the Third Software Engineering Standards
Application Workshop (pp. 55-58). Silver Spring, MD:
IEEE Computer Society Press.

Forman, J. (1980, June). Implementing software standards.
Computer, 13, pp. 67-70.

Fostel, G.N. (1981). Principles of software standardiza-
tion. In Proceedings of the Software Engineering
Standards Application Workshop (pp. 125-133). Silver
Spring, Md: IEEE Computer Society Press.

Frank, W.L. (1983). Critical issues in software. New
York: John Wiley and Sons.

Freedman, D.H. (1985, October). Performance and capacity
management: No longer a technician's game.
Infosystems, 32, pp. 54-56.

Freeman, P., & Hermon, R.A. (1983). Lessons learned from
the development and application of software engineering
standards. In Proceedings of the Second Software
Engineering Standards Application Workshop (pp. 103-
108). Silver Spring, MD: IEEE Computer Society Press.

Gallant, J. (1984, December 10). Do tools help find DP
gold? Computerworld, 18, p. 1+.

Gallant, J. (1986, February 24). Software spending to
rise. Computerworld, 20, p. 19+.

Gillin, P. (1984, August 20). Computer-aided software
engineering: Automating DP. Computerworld, 18, p. 1+.

67

:iI
',"." 2, ," .'" '" .' ," -," • " '" J "- "", " °"-....-."'...."..... -.... .

Gitomer, J. (1984, Summer). Measuring system performance
with software monitors. Journal of Information Systems
Management, 1, pp. 50-55.

Hall, P.A. (1983). Standards as paper tools. In
Proceedings of the Second Software Engineering Standards
Application Workshop (pp. 111-114). Silver Spring, MD:
IEEE Computer Society Press.

Hedrick, R.T. (1986, May 15). Improving productivity at
Northern Trust. Datamation, 32, pp. 97-104.

Heffernan, H. (1985, June 7). Revolutionary software
standard near. Government Computer News, 4, p. 1+.

Houghton, R.C. (1982, March). Software development tools
(Special Publication 500-88). Washington, DC: National
Bureau of Standards.

Howden, W.E. (1982, May). Contemporary software
development environments. Communications of the ACM,
25, pp. 318-329.

Imposing programming standards. (1985, October). Datapro
Management of Applications Software, 7, pp. 1-3.

Inmon, W. (1985, March 4). Systems tools: Let buyer

beware. Computerworld, 19, p. 45.

Jensen, R.W. (1981, March). Structured programming.

Computer, 14, pp. 31-48.

Korzeniowski, P. (1985, May 27). Micro tools speed system
development. Computerworld, 19, p. 55+.

Leavitt, D. (1986, February). Design tools: The real
starting point. Software News, 6, pp. 57-59.

Leavitt, D. (1985, February). The proper design tools can
bring improved productivity. Software News, 5, pp. 80-
84.

Leong-Hong, B.W., & Plagman, B.K. (1982). Data
dictionary/directory Systems. New York, NY: John Wiley
& Sons.

Levine, A. (1985, April). Selecting a systems development
methodology. Infosystems, 32, p. 72.

7 Martin, J., & Hershey, A. (1986, March). Software
engineering depends on information engineering.

• Software News, 6, pp. 60-62.

68

Mazzucchelli, L. (1985, December 9). Structured analysis
can streamline design. Computerworld, 19, pp. 77-86.

Michielsen, K. (1986, March 15). Micro applications
development. Datamation, 32, pp. 96-98.

Miller, E. (1979). Tutorial: Automated tools for software
engineering. Silver Spring, MD: IEEE Computer Society.

Myers, E. (1985, March 15). Getting a grip on tools.
Datamation, 31, pp. 30-35.

Myers, W. (1978, February). The need for software
engineering. Computer, 11, pp. 12-26.

Newport, J.P. (1986, April 28). A growing gap in software.
Fortune, 113, pp. 132-142.

Oliver, P. (1985, Summer). Approaches to software
engineering. Journal of Information Systems Management,
2, pp. 11-19.

Peters, L. (1981). A conceptual basis for software design
standards. In Proceedings of the Software Engineering
Standards Application Workshop (pp. 102-107). Silver
Spring, MD: IEEE Computer Society Press.

Pfrenzinger, S. (1985, April 29). Too many tools spoil
center. Computerworld, 19, p. 39+.

Poston, R.M. (1984a, July). Determining a complete set of
software development standards: Is the cube the answer?

IEEE Software, 1, pp. 87-89.

Poston, R.M. (1984b, April). IEEE software engineering
standards. IEEE Software, 1, pp. 94-98.

Poston, R.M. (1984c, January). Software standards. IEEE
Software, 1, pp. 95-97.

Pressman, R.S. (1982). Software engineering: A
practitioner's approach. New York, NY: McGraw-Hill.

Proper methodology, micro link yield variety of benefits.
(1984, August 20). Computerworld, 18, p. 17.

Ramamoorthy, C.V., Prakash, A., Tsai, W., & Usuda, Y.
(1984, October). Software engineering: Problems and
perspectives. Computer, 17, pp. 191-209.

Ross, D.T. (1976, November). Homiles for humble standards.
Communications of the ACM, 19, pp. 595-600.

69
..

..4,- ; . " - "

Ross, D.T., & Schoman, K.E. (1977, January). Structured
analysis for requirements definition. IEEE Transactions
on Software Engineering, 1, pp. 6-15.

Rush, G. (1985, October 7). A fast way to define system
*. requirements. Computerworld, 19, pp. ID/11-16.

SECNAVINST 5000.1B. (1983, April 8). System acquisition.

SECNAVINST 5230.8. (1982, May 10). Information processing
standards for computers (IPSC) program.

SECNAVINST 5231.1B. (1985, March 8). Life cycle management
(LCM) policy and approval requirements for information
system projects.

SECNAVINST 5233.1B (1979, January 25). Department of the
* .Navy automated data systems documentation standards.

Sprague, L.R., Maibor, D.S., & Cooper, L. (1985, July 19).
New DOD standard speeds software development.
Government Computer News, 4, pp. 48-49.

Sprague, R.H., & Carlson, E.D. (1982). Effective decision
support systems. Englewood Cliffs, NJ: Prentice-Hall.

Stevens, W.P., Myers, G.J., & Constantine, L.L. (1974,
May). Structured design. IBM Systems Journal, 13, pp.
115-139.

Structured system analysis and its tools (Report AS40-050-
501). (1985, July). Delran, NJ: Datapro Research
Corporation.

Tausworthe, R.C. (1978). Standardized development of
computer software: Part II, standards. Pasadena, CA:
Jet Propulsion Laboratory, California Institute of
Technology.

Thayer, R.H. (1984). The world of software engineering
standards. In Proceedings of the Third Software
Engineering Standards Application Workshop (pp. 149-
156). Silver Spring, MD: IEEE Computer Society Press.

Thirteenth annual survey of performance related software
packages. (1985). EDP Performance Review. Annual
Reference Issue 1985, pp.1-63.

Twelfth annual survey of performance related software
packages. (1984, December). EDP Performance Review,
12, pp. 1-39.

70

Wedburg, G.H. (1981). Implementation of software engineer-
ing standards. In Proceedingrs of the Software Engineer-
ing Standards Application Workshop (pp. 134-138).
Silver Spring, MD: IEEE Computer Society Press.

Yourdon, E. (1979). Managring the structured techniq'ues.
Englewood Cliffs, NJ: Prentice-Hall, Inc.

Yourdon, E. (1978). Structured walkthroughs. New York,
NY: Yourdon Inc.

71

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. LCDR Barry Frew, Code 54Fw 2
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943-5000

4. Professor Kenneth J. Euske, Code 54Ee 1
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943-5000

5. Ms. Jeanne L. Frew, Code 008 2
Fleet Numerical Oceanography Center
Monterey, California 93940

6. Curricular Officer, Code 37 1
Computer Technology Programs
Naval Postgraduate School
Monterey, California 93943-5000

7. LT Margaret Lyle, USN 1
10213 Pumphrey Court
Fairfax, Virginia 22032

72

b%'% ". -. %". -. % -.. % °.j..................."...............-..-....-.............-......-..............-.....--..........

- - "-

.4

-V

-V

-V

-II

S.

V

I w

-S

-4

-V

*'h.

/
.4

-SI

~- -V ~ v ~. r* ~ - ~.r * * - ~*4.*. *V "~j~V -

, 'V.. -

* t*~,* .'.

