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ABSTRACT

There are many variables that contribute to the explanation of why a person

enlists in the Army. To efficiently manage personnel policy in regards to the

recruitment process, the impact and significance of these variables needs to be fully

understood. Ordinary least squares regression analysis is a powerful and useful tool in

helping to explain the interaction of these variables. The understanding of the theories

and methods behind this approach is essential. Army analysts apply regression derived

results every day in a myriad of situations and operational contexts. Misuse or

misunderstanding of these results can lead to inaccurate recommendations to the

decision maker.

The thesis develops the framework for a parsimonious linear statistical model of

quality enlistment contracts for the U.S. Army. There is a need for such a model that

can be utilized by USAREC and DCSPER analysts to perform quick response analysis

to 'what if' questions.

In order to facilitate further model enhancement and use, it is developed in a

step-by-step fashion. The author uses a 'walk through' approach and thoroughly

discusses the assumptions, procedures and analytical. tools that were utilized in the

model development. This approach was specifically requested by the Army analysts at

USAREC.
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I. INTRODUCTION

The Commander, United States Army Recruiting Command (USAREC), is

responsible for developing and issuing policies, procedures and standards for the
recruitment of personnel into the United States Army. Each year, the Deputy Chief of
Staff of Personnel (DCSPER) generates an accession mission based on the number of
attritions and changes to the overall endstrength. This mission is then given to the

Commander, USAREC. It is changed and updated throughout the year as policy
decisions and fiscal and Congressional constraints dictate. This accession mission is
broken down into several different categories relating to types (male, female, prior
service, non-prior service) and quality (high school graduate, non-high school graduate,

mental category I,II,IIIA,IIIB,IV,V). Historically, the largest problem in attaining
these requirements has been in the enlistment of male, high school graduate, non-prior

service, mental category I-liA (GSM I-IliA) recruits. In this study, the problem of

attempting to predict the number of these quality male recruits for future years is

modelled. Ordinary least squares multiple linear regression analysis and stepwise

regression analysis is utilized with an historical data base provided by USAREC.

A. PROBLEM STATEMENT

There are several objectives of this thesis. They vary in both scope and

magnitude.
First and foremost is the near term need for the development of a predictive

model to be used by the active duty Army 'green suit' analysts (hereafter refered to as

Army analysts) stationed at USAREC headquarters and at the DCSPER, Department

of the Army. At these agencies, major policy decisions are routinely contemplated.
These decisions are usually concerned with aggregate responses to possible major

personnel policy changes and/or budgetary realignments. There is a need for a quick
response mechanism to answer various 'what if' questions concerning the quality of the

force.

In this regard, it is desired to build a model that can be easily understood and
quickly updated. Although a sufficient degree of complexity is an inherent desired

feature of any proposed model, the true value of this particular model may be more in
its ability to be maintained and updated, and its propensity for understanding by the

9
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(continuous) change of Army analysts that are stationed for a tour of duty at these

agencies. The Army has initiated many studies in this field (usually through

contracting) with various results. Where applicable, these studies will be referenced in

the body of this thesis. There is an inherent problem, however, in the Army's ability to

keep up with these efforts, either in the updating of the data base or in the level of
understanding of the current, on-line Army analysts assigned to USAREC and

DCSPER. It is thought by many that an in-house model, easily updated and

universally understood, would be preferable to a more complex yet harder to

comprehend effort. The need for simplicity for the analysts and understanding by the

decision makers is a cornerstone on which this model will be derived.

It is not envisioned that this model will be a panacea to quality enlistment

modeling. On the contrary, it will be promulgated as a 'first effort' on how to go

about developing a model with the data base as given.

A concerted effort will be put forth on the whys and hows of going through the

ordinary least squares and stepwise regression analysis used in developing this model.

Most Army analysts have little knowledge or experience in the detailed theory of

regression analysis. Their familiarity with the subject matter may be limited to
graduate level studies (if at all) or to some contact with regression models in previous

duty assignments. The community of experts in the manpower modeling field is small

and few are in the active Army. The chapters of this thesis will cover the details of the

model, some of the theory of its development and application, and possible sources of
further study that needs to be accomplished. It is desired that an examination of this

material, some of which will be heuristic in nature, will bridge this gap in knowledge.

I opefully, it will lead to a better understanding of the dynamics that affect the quality

of the force and the accepted methods of modeling the interrelationships involved.
Army analysts must be able to do more than just 'crunch the numbers' that they are
given by other analysts. Forming a base for the understanding and refinement of this

model is another major objective of this thesis.

B. BACKGROUND

In lebruary, 1986, the Chief of Staff, USAREC, tasked the Programs, Analysis

and Evaluation Directorate (PAE) to review the current list of enlistment supply

models and to reevaluate and assess what factors (variables) were contributing

significantly to explaining quality male enlistment contracts. This thesis is in partial

10
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fulfillment of that requirement. Although there have been many studies in this field,

the need still exists for continuing development in order that the Programs Analysis

and Evaluation Directorate may have an in-house model with current data and

accessable to Army analysts. Other studies, such as the Enlistment Supply Model

published by Daula and Smith, [Ref. 1] and the Recruiting Resources Allocation

System by ABT Associates, Inc., [Ref. 21 are commendable. The problem is that they

are neither readily accessable nor easily updated by USAREC or DCSPER personnel.

Further, the level of understanding required is well beyond the expertise of the typical

Army analyst. He must bear the burden of providing the day-to-day answers to

various decision makers asking a plethora of questions on a litany of different issues.

With his day-to-day plight in mind, the study objective of this thesis was conceived.

C. STUDY OBJECTIVE

The primary objective of this thesis is to develop a model using ordinary least

squares multiple linear regression analysis and stepwise regression analysis to predict

total Army male quality (GSM I-IliA) contracts for future years. Special emphasis is

placed on the explanation of the methods and techniques used to derive this model.

All data elements must be readily obtainable and possess some potential for future

prediction.

D. THE DATA

A longitudinal data base for this study was provided by PAE, USAREC (Table

1). The data is cross sectional in that it is broken down by recruiting battalions

(IA,IB,...,6L) and time series in that it provides data for each of these battalions by

year (1982,1983,1984,1985). Knowing the structure of the data has important

implications as to the types of techniques that will be employed in the regression

analysis. Of the 56 recruiting battalions of USAREC, data elements for 55 were made

available (battalion 3L, San Juan, Puerto Rico was omitted). In all, the data base

contained 19 variables. Foe a more detailed explanation of the data, to include

variable descriptions, see Appendix B.

E. A REGRESSION REVIEW

If one accepts the premise that historical actualities can be used as a basis to

predict future events, then regression analysis is a powerful tool that can provide much

insight into the predicting phenomenon. The principle behind ordinary least squares is

as follows.

II
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TABLE I

PARTIAL LIST OF DATA PROVIDED BY USAREC

BN YEAR CONT RCTR UNEMP PROP HSMMA TOTPOP WHIPOP

1A 1982 657 53.75 8.05 14.7 13931 2169022 2083422
1A 1983 805 52.25 -7.93 15.1 13816 2180204 2093593
1A 1984 703 52.50 7.43 19.5 14153 2191385 2103765
1A 1985 724 50.00 6.20 15.7 13275 2202566 2113936
lB 1982 1585 155.00 8.60 13.4 37180 6109021 4448873
lB 1983 1977 165.00 7.53 13.4 36648 6157147 4481896
1B 1984 1733 161.00 6. 15 15.3 29749 6205793 4515079
lB 1985 1611 150.50 5.55 17.4 28648 6254179 4548262

6L 1982 1217 103.25 11.08 8.5 26838 4103713 3743095
6L 1983 1278 103.00 11.18 8.4 26473 4153740 3785629
6L 1984 1060 106.00 9.95 8.8 25459 4203768 3828164
6L 1985 1396 97.00 8. 63 8.5 24122 4253796 3870698

EIPAY BLKPOP HISPOP INCOMPC QMA BNADV PAYCO ARMYMS DOD-A

551.4 57346 25885 7610 555 720 6.99 '0.33 1348
573.6 57840 26018 8715 555 633 10.49 0.37 1370
573.6 58334 26152 9056 753 555 3.91 0.39 1121
573.6 58828 26285 9396 753 738 3. 76 0.41 1041
551.4 1483920 120148 10223 1338 2207 9.46 0.39 2509
573.6 1495431 121100 11888 1338 1837 12.26 0.42 2776
573. 6 1506942 122051 12072 1922 1107 1.55 0. 40 2647
573.6 1518453 123003 12256 1922 1357 1.52 0.41 2295

• 551. 4 106922 119881 9416 960 1014 9. 89 0. 37 2066
573.6 108560 121342 10978 960 836 12.56 0.40 1879
573. 6 110199 122804 11135 1281 1058 1. 43 0. 36 1866
573.6 111838 124265 11291 1281 1124 1.41 0.43 1869

Using some of the data for Contracts (CONT) and Propensity (PROP) from

Table 1 above, draw a straight line through a cluster of the plotted data points on a

scatter diagram (Figure 1.1). Then, for each point, find the vertical distance from the

straight line, square this distance, and then add together all of the squared distances.

Of all the straight lines that could be possibly drawn through the points on the graph,

the best-fitting line is the one wit/h the smallest sum of the squared distances. This line is

called the regression line. The signed (positive or negative) distance from any point to

the regression line is called the residual. It is the difference bctween .the actual value of

Contracts (IA ACTUAL) and the value of Contracts that the regression line predicts

12
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residual = -384 for BN IA. The sum of all of the residuals squared is called the sum of
squares about the regression, or E ( . [Ref 3] Without the theory of

regression, if asked to predict next year's contracts (or any year's contracts), one would

choose the mean or average number of contracts as the best predictor. The mean is

represented in Figure 1.1 as Y = 1185. The square of the distance between the

average value and the predicted value is called the sum of squares due to regression, or

( - Y)2 . The mean is defined as the YYi/n, where n equals the number of data

points. In this example, XYi = 657+ 1585+ 1217 and n = 3, so Y = 1185. Another

important term, called the total sum of squares corrected for the mean is equal to the

addition of the sum of squares due to the regression plus the sum of squares about the

regression. Algebraically, this is (, Y)i + + (Y, _yi) 2. It will be

helpful to keep Figure 1.1 in mind as this thesis is read. Although the figure portrays a

simple linear regression of two variables (CONT being the dependent variable on the

vertical axis and PROP being the independent variable on the horizonal axis), it has

direct translation to the theory of multiple linear regression. In multiple linear

regression, the objective is still to minimize the squares of the distance between ihe actual

and the predicted values, only now there are several (instead of two) dimensions.

Graphical interpretations cannot be made above three dimensions. Above three

dimensions, the regression line becomes a regression hyperplane in the hyperspace

defined by the independent variables. The important thing to remember, however, is

that all of the mathematics required to derive the regression line for simple regression

are still valid for multiple regression. Therefore, the analysis of multiple regression will

rely heavily on the interpretation of these mathematically derived values (or

estimators). The mathematically derived estimators for the regression line in Figure 1.1

is called a regression equation. This regression equation is given in the form:

Y = P0 + PIX1 + C

where the variables are:

Y = CONTRACTS = CONT = the dependent variable

X 1 = PROPENSITY = PROP = the independent variable

and the parameter estimators are:

0= 1700 = the intercept with the dependent variable axis

Pl = " 44.8 = the slope of the regression line

14
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and the model error is represented by:

c = residual with assumed distribution N(0,r 2

(residuals are also assumed to be independently distributed)

In looking at this particular equation, it seems counterintuitive that one would

predict that, as the propensity for service goes up, the actual number of contracts goes

down. This is because of the negative slope of the regression line which can be

determined mathematically by the negatively signed parameter estimator for the slope.

The signs of parameter estimates are important. The analyst must be cognizant of

these anomalies and be prepared to think through the interpretation of his

mathematical results. Hopefully, this thesis will explain this phenomenon. This study

will outline many key estimators, how they are derived and their various uses. It is

imperative, however, to understand Figure 1.1 before moving on into the body of this

thesis.

F. INITIAL ASSUMPTIONS

There are several assumptions which should be explicitly stated. First of all, it is

assumed that the data provided is accurate. This is imperative to the mechanics of

model building and the analysis of the data.

More importantly, however, is the assumption that the personal and

environmental statistical data upon which model is based have some effect on an

individual's decision as to whether or not to enlist. Implicit in this assumption is that

persons living in different areas of the country with different environments will behave

differently. Also implicit is that different persons facing similar environments will

behave in a similar manner. These assumptions, and the assumption that this behavior

stays relatively stable across time, are fundamental to the cross sectional and time

series regression analysis that will be required.

Finally, since a linear regression model is being built, it is necessary to assume

that trends will continue exactly as they have in the past. Over the near term, this i, a

reasonable assumption. Over the long term, it is not. This implies that the predictions

from the model will be more accurate for the next one or two time periods than for

more future time periods. This is because real events rarely behave in a linear manner

over long periods of time.

15



G. THESIS OUTLINE

This thesis develops and explains a model for the prediction of future GSM

I-IIIA contracts. It is developed to predict the total contracts for a 'typical' Army

recruiting battalion. In Chapter II, an outline is presented on how the regression

model in this thesis will be built. Chapter III details some of the preliminary analysis

and planning that led to the model formulation. Chapter IV continues through the

development process and outlines many helpful statistical tools for data and regression

analysis. Chapter V presents the model in detail and the results of the fitting of the

model to the finalized data base. The last chapter, Chapter VI, lists the conclusions

and recommendations of this study. Several Appendixes are included to enhance

understanding and are referenced throughout the body of the thesis. A List of

Appendixes is provided on page 6. Appendix A may be of particular interest. It is a

4 select glossary of terms used in this study. If a certain term is unfamiliar, this is the

first place one should look.

H. PROGRAMMING LANGUAGES AND STATISTICAL PACKAGES.

The programing languages used in the completion of this project are FORTRAN

77 (the 1977 update of the Formula Translation language) and APL (A Programing

Language). The statistical packages used were GRAFSTAT (IBM Corporation) and

the SAS-Statistical Analysis System Version V (SAS Institute Incorporated). With the

realization that not all of these computational assets are readily available to most

Army analysts, virtually all analysis and most of the required graphics that are

presented can be accomplished using the SAS statistical package. This is in accordance

with the current capabilities of both DCSPER and USAREC. Some GRAFSTAT

graphics (such as Figure 1.1) will be presented only for the purpose of enhancing visual

understanding.

16
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I!. BUILDING REGRESSION MODELS

I inear regression analysis is applicable to a vast array of subject matter. Linear

regression models are built so that researchers can test the validity or falsity of
hypothesized functional relationships. The purpose of the model that will be built in
this thesis is to try to extract the main features of the relationships that are hidden or

implied in the tabulated data in Table 1 on page 12.

Before one starts building a model, it is useful to have an outline of how to go
about the process. This chapter provides the basic structure that will be followed in

Chapters III, IV and V.
There are three distinct phases of building regression models. They are the

Planning Phase, the Development Phase and the Verification and Maintenance Phase.

[Ref. 3:p. 4141

Building a regression model is a time consuming task. It is made even more time

consuming by the requirement to fully explain and document assumptions, methods,

and results. Documentation is essential because one must be very careful in the use of
multivariable regression analysis. Results from predictive models can be easily
misinterpreted or misused. The analyst is wise to state his assumptions and desired

goals of the model in order to minimize the potential for misunderstanding. The

figures of this chapter provide flowcharts that can be followed when faced with
building a regression model. Although these flowcharts are generic in nature, they
detail the special problems encountered when dealing with cross sectional and time

series data.

The regression review and Figure 1. 1 in Chapter 1 discuss a simple regression

approach. This thesis, however, will be describing some methods for building
multivariate regression models. When analyizing multivariate models, the analyst must

rely on many statistical indicators. Although these indicators will be mentioned in this
chapter, a more detailed explanation will be provided in Chapters II, IV and V.

A. THE PLANNING PHASE
As can be seen in Figure 2.1, the first and foremost task in model building is to

define the problem. Sometimes this is the most difficult step. What is the analyst
really trying to accomplish? The problem statement must be specific, understandable

and to the point.
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Figure 2.1 The Planning Phase of Model Building

Next comes the data selection. Both the carrier (independent) and the response
(dependent) variables must be clearly identifiable, readily available and as complete as
possible. One should 'brainstorm' to try to think of any variable which might be
relevant to the problem.

One of the first tasks is to check the data for validity. Histograms and scatter

plots are excellent tools for this. Look at the data distribution. Pay close attention to
the outliers. Ask if there are valid explanations as to why some of the data looks as if

_ it does not belong. If necessary, consult the experts for advice. Also pay particular

attention to the range of the data. Data that varies little will sometimes provide

artificially high or artificially low values for the degree to which the model fits the data.

18
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The regression hyperplane must fit through the hyperspace that is defined by the

carrier variables. Small relative ranges tend to shrink this hyperspace and obtaining

good predictions will become difficult.

Once the data has been verified, run the first regression. At first, it is only

necessary to look at a few basic indicators. The analyst must be familiar with the

information that the ANOVA table is providing. Stepwise regression is a powerful and

widely accepted tool that can be extremely helpful when looking for significant

variables that are basic to the problem. Stepwise regression is more fully explained in

Appendix A. The analyst needs to become familiar with the ideas behind the

correlation matrix and what it is indicating about multicollinearity. Multicollinearity

arises whenever two or more independent variables used in the regression are not

independent but are correlated. Among other things, the presence of multicollinearity

will lead to larger standard errors in the model. Also it is helpful to understand the

Variance Inflation Factor statistic and the Condition Index in the Variance Proportion

Matrix. All of these indicators and procedures will be discussed in Chapter III. The

first regression should provide a very rough indication of what kind of fits are going to

be possible.

Finally, before leaving the Planning Stage, it needs to be determined whether

there will be time and resources available to complete the task correctly. 'Half efforts'

will lead to incorrect results and a lack of confidence in both the analyst and the

regression procedures. The bottom line is that if time and resourses are not available,

then stop. Again, Chapter III provides a 'walk through' of the procedures that are

detailed in this section.

B. THE DEVELOPMENT PHASE
This section provides a brief outline of the development phase of model building.

Chapter IV will discuss in Jetail the concepts and statistical indicators that are outlined

in this section.

The first regression from the Planning Phase tells the analyst quite a bit about

the behavior of the data in the model. Once the decision has been made to go ahead

with the modelling effort, one moves to the Development Phase of model building.

Many different approaches to the regression problem can occur during this phase.

The analyst may feel uneasy about some facet of the initial regression findings.

The Development Phase is time consuming in that trial and error is the normal method

19
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Figure 2.2 The Development Phase of Model Building

of testing various ideas. Many times, ideas evolve from the results of" previous

i'. experiments. This is the hallmark of the scientific process. Figure 2.2 outlines the

i Development Phase of regression model building.

Sometimes new variables are derived from raw data. This is usually because the

. analyst has some idea that it makes sense to do so, or because the original regressions

are not behaving in an intuitive manner. This is similar to what happened in Figure

1.1 on page 13, where an increase in PROPENSITY resulted in a decrease in

CONTRACTS. In the model that will be developed in this thesis, three out of the five

variables that are finally utilized were derived f'rom raw data.
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Once the analyst is satisfied with the data, it must be separated into

cross-sectional groupings (all battalions) by time period (year). For the data in Table 1

on page 12, this implies that it is separated into four distinct groups; all battalion data

for 1982, all battalion data for 1983 and so on. The purpose of this procedure is to

check for heteroscedasticity without having the mathematical results biased by

autocorrelation. 1leteroscedasticity is a condition where the error terms (C) are not

constant for all values of the independent variables. Autocorrelation is a condition

where the error terms from different observations are correlated. Both of these

conditions will affect the size of the standard error of the regression coefficient and

therefore bias the results of the regression model.

Now each grouped (cross-sectional) data set is run through the regression

procedures. The correlation matrix will indicate highly correlated carrier variables and

the stepwise procedure will show which are the most significant in explaining the fit of

the regression line. It is now time to drop those variables that are insignificant or are

contributing the most to multicollinearity. Again, new variables may become apparent

at any time. They should be included and scrutinized by the analyst until all practical

possibilities have been exhausted.

Rerun the regression for all of the finalized groups of data. Look at the results

and compare between time periods. Are the parameter estimates comparatively stable?

Are they signed the same? Are the same variables significant in each time period? Are

they comparable in magnitude? If the groups are different, are they significantly

different? Most of the answers to these questions are judgment calls on the part of the

analyst. Whatever the call, he should be able to justify his decision based upon the

knowledge of the problem and the underlying data base. Next, plot the residuals

versus the predicted values and look for any signs of hctcroscedasticity,. If

heteroscedasticity is present, the results of the regression cannot be considered valid.

Unless the analyst has some valid reason to do otherwise, this should be the first time

that he considers transforming the data. Transformations inherently lead to a lack of

understanding in the modeling process and should be avoided up until the point at

which the benefit to the model derived by the transformation exceeds the detriment to

the user in the understanding of the model. If heteroscedasticity is significant, then

apply the appropriate variance stabilizing transformation to the groups of data.

[Ref. 3:p. 238] If heteroscedasticity is not a problem, or if the transformation renders

the problem insignificant, it is time to re-pool the data back to its original longitudinal

structure.
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The data set would look exactly like Table I again, except that now the analyst
will be working only with those variables that were found to be significant in the

cross-sectional analysis.
Run the regression on the entire pooled data set. Plot the residuals and check for

autocorrelation. If autocorrelation is present, the results of the regression are biased

and the standard error of the estimates is inaccurate. Accept or fail to accept the

hypothesis on autocorrelation in the residuals using a runs test or the popular
Durbin-Watson test. If autocorrelation seems to be a problem, then the true
correlation coefficient of the data structure needs to be determined and another

transformation on the data needs to be performed. Rerun the regression using the
transformed data and then double check to ensure that the effects of autocorrelation

are no longer present. The 'best regression equation' has now been determined.

Finally, check to see that the model is fulfilling the goals as set forth in the

Planning Stage. If not, it may be time to start anew, possibly with new variables. Or,

it may be time to re-access the goals of the model. Whatever the case, once the

analyst has decided that the 'best equation' has been achieved, it is time to move to the

model Validation and Maintenance Phase. Chapter IV details a step-by-step method
for the development of the GSM I-liA model that is being built in this thesis.

C. VALIDATION AND MAINTENANCE PHASE

If the analyst feels comfortable about the achievement of the goals and the

*stability of the model after the Development Stage, then he has gone a long way

towards the validation of the model. Figure 2.3 provides a step-by-step summary of

this phase of model building. Chapter V details this phase as it applies to the

regression model that is being built in this thesis. The concepts that are outlined in

this section are more fully explained in Chapter V.

One last check needs to be performed to see if there is any systematic lack of fit
in the model. Remember that the residuals contain all of the information on the lack

of fit in the model and they should be checked for any possible pattern.
Next, validate the model. Validation merely implies checking to see if the model

makes sense. Check the model by trying a few predictor variables and see if the

response variable makes sense. For instance, try some data points near an extreme of

the prediction space to see if the response is coherent with that extreme. There are

", many methods of validation and there is really no 'best method'. [Ref. 3:p. 420] As it
is with variable selection, it is up to the judgment of the analyst.
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Figure 2.3 The Validation and
Maintenance Phase of Model Building

Is this equation useful and are these parameters reasonable? This is the final
validation test of the model. Does it pass the scrutiny of the experts? The final

product should achieve the desired objectives as outlined in the initial problem

statement. Obviously, the intermediate goals were either achieved or revised in order
to get to this final stage. The only thing left to do is to establish the proper

documentation for the model, this should include all assumptions and the ranges of the

inputs for which the model is valid.
Finally, the model needs to be maintained, updated and periodically re-evaluated

for accuracy and validity. This can be especially difficult for complex models that are
to be maintained by Army analysts in a high turnover environment. One to the goals
of this model has been to attempt to keep this maintenance procedure as simple as
possible. It is now time to move on to Chapters 111, IV, and V to see how well this

goal was accomplished.

23



III. PLANNING THE GSM I-liA MODEL

This chapter explains the specifics of planning the GSM I-IIIA model. Much

reference will be made to Figure 2.1 of Chapter 2 which provides an outline of the

Planning Phase. It may be useful to review Figure 2.1 at this time.

A. DEFINING THE PROBLEM

The problem definition stems directly from the study objective. This thesis will

detail a step-by-step procedure which can be used to build a predictive model for future

year GSM I-llA contracts. The data for this model must be easily updated and

readily available. The data should also have some potential for future prediction. This

model will be developed to predict the results of a 'typical' Army recruiting battalion

and is not designed for predicting any specific battalion results. Since one of the major

objectives of the thesis is to provide a 'walk through' for the reader on the hows and

whys of model building, the author has chosen the first person plural as the pronoun of

choice. We will now attempt to build this model.

B. SELECTION OF THE INDEPENDENT AND DEPENDENT VARIABLES.
Data for this project was provided by the Programs Analysis and Evaluation

(PAE) section of USAREC. It is as appears in Table I on page 12 and as described in

Appendix B. Since this model is now in the Planning Phase we should be

'brainstorming' in order to try to think of any variable which might be relevant to the

problem. We are trying to predict total contracts, and the variable CONT from Table

I seems to be the logical and ideal choice for the dependent variable. Also, we figure
that other variables, both endogenous and exogenous, may play some role in

determining the number of contracts signed. Many variables, such as the Consumer

Price Index (CP1), are contemplated. These variables, mostly of the exogenous variety,

might be useful in capturing some of the social or demographic dynamics of the

enlistment process. The problem is, however, that these statistics are not available at

the cross-sectional (battalion) level and time specific (by year) period that would fit

with the rest of the data structure.
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C. CHECKING THE DATA

The final list of variables from the Planning Stage are as presented in Table i.

The only exception is with the battalion term, BN. Being alpha-numeric in nature, it

can not be plotted in the multivariate hyperspace in order to determine a least squares

fit. The analyst can substitute a numerical counterpart if he desires to use the

battalion as a carrier variable. Therefore, the battalions are numbered from 1 to 55

instead of from IA to 6L. This variable will be more thoroughly discussed as the

model is developed. Table 1 is complete in that there are no missing data entries for

any battalion during any year. Appendix B provides a detailed explanation of the data

that will be used in this thesis. After checking the data using histograms and scatter

plots and carefully verifying the outliers, the Planning Stage finalized matrix of

longitudinal data appears below.

CONT BN YEAR RCFR UNEMP DOD-A

657 1 1 1982 53.75 8.05 ....... 1348

805 1 1983 52.25 7.93 ....... 1370 b1
Y =1 := : : :. : 1= :

1396 1 55 1985 97.00 8.63 ....... 1869 b 7

where Y = 220x 1 matrix (a column vector of the dependent variables)

X = 220x18 matrix (a column vector of l's catonated with the

220x17 matrix of the independent variables)

1 = 18x 1 matrix (a column vector of parameter estimates)

Notice that this is the initial matrix format required for the Normal Equations

for Multiple Linear Regression (see definition in Appendix A). The column vector of

l's in the X matrix is required for the matrix multiplication of the bi values in the

matrix.

D. THE FIRST REGRESSION

As stated in the introduction, SAS will be utilized as the statistical package for all

of the analysis in this thesis.
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Appendix C shows the basic format for the SAS input. Not every procedure was

required for every step of the model development process. With few exceptions,

Appendix C lists all of the steps that were used throughout Chapter III and some of

Chapter IV. At each step in the Planning and Development Stage, this thesis will

specify the procedure that is important to that particular step and provide a table of

the output and diagnostics from SAS that are pertinent to that step.

Running the first regression with the data as in Table I (except 1 replaces IA, 2

replaces IB, etc), several outputted indicators are obtained.

E. DETERMINING IF THE DATA IS BASIC

Table 2 is the printout of the ANOVA table. The MODEL statement in SAS

automatically provides this output. [Ref. 4] Reference is made to Figure 1.1 on page

13 for a graphical interpretation and to Appendix A for the algebraic interpretation of

the values in the ANOVA table.

TABLE 2

ANALYSIS OF VARIANCE TABLE FROM SAS

DEP .VARIABLE: CONT
ANALYSIS OF VARIANCE

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB>F

MODEL 17 23653906 1391406 382.419 0.0001
ERROR 202 734963 3638. 429
C TOTAL 219 24388868

ROOT MSE 60.31939 R-SQUARE 0.9699
DEP MEAN 1007. 241 ADJ R-SQ 0.9673
C. V. 5. 988577

For illustrative purposes, the values in the ANOVA table in Table 2 are derived
below. A few important facts to remember is that the MS ERROR is the best

(unbiased) estimate of the variance of the residuals and, therefore, the ROOT MSE is

the best (biased) estimate of the standard deviation of the residuals.

MODEL df number of independent variables = 17

ERROR df number of data lines - MOI)EL df- I = 220 - 17 - I = 202

CORRECTED TOTAL df = MODEL df + ERROR df = 17 + 202 = 219

SS MODEL sum of squares due to regression = 23653906

SS ERROR = sum of squares about the regression = 734963

SS CORRECTED TOTAL SS MODEL + SS ERROR = 24388868
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MS MODEL - SS MODEL / MODEL df = 23653906 / 17 = 1391406

MS ERROR = SS ERROR / ERROR df = 734963 /202 = 3638.429 = a 2

F VALUE = MS MODEL / MS ERROR = 1391406 / 3638.429 = 382.419

PROB> F = F distribution with 17 and 202 degrees of freedom = 0.0001

ROOT MSE = square root of MS ERROR = 60.31939 = c.

DEP MEAN = the average of the 220 values of CONT = 1007.241 = Y

COEFFICIENT OF VARIATION = (ROOT MSE / DEP MEAN) x 100 = 5.988577 = C.V.

RSQUARE = SS MODEL / SS CORRECTED TOTAL = 0.9699 R

ADJ RSQ = I - (1-RSQUARE) x (n-i / n - MODEL df + I)

= 1 - (1-.9699) x (219 / 220- 17 + 1)

= 1 - (.0301) x (1.0735) = 0.9673 - Ra 21a

At this point in the planning stage, we are merely trying to determine if we have

variables that are basic to the regression. To determine this, we look at the F VALUE

and PROB> F statistics. If we did not have a regression, then we would not have a
slope. As seen in equation 1.1 on page 13, the slope is equal to our P, values (for i not

0). By doing an F test (with 17 and 202 degrees of freedom), we postulate a null

hypothesis that the P3 values all equal 0. A high F value tends to reject this null

hypothesis, indicating that the I values do not equal 0. The PROB> F is the actual

level of significance, a (actual), at which we reject this null hypothesis. What we are

saying in this ANOVA table is that there is less than a .0001 probability of rejecting a

true null hypothesis ("1 :0 = 0). In other words, there is statistically less than 1

chance in 10,000 that there is no slope and all of the JI values equal 0.

We will use a (critical) = .1 as the critical level of significance when checking
variable significance in this thesis. Since a (actual) = .0001 < a (critical) = .1, we

continue with this data base knowing that there are some variables that are basic to

the regression.

To determine which variables are basic to this particular regression, one would

look at the matrix for parameter estimates in Table 3. It, like the ANOVA table, is

printed automatically when the MODEL statement is requested in SAS. Looking

down the column of PROB > ITI, we find nine variables that meet our criteria of a
(actual) < a (critical). They are BN, RCTR, TOTPOP, Wl1IPO! , BLKPOI',

ItISPOP, QMA, ARMYMS and DODMA. This is an indication that these are the

significant variables that are explaining this particular regression when all of the
variables are included at the same time.
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TABLE 3

PARAMETER ESTIMATES WITH VARIANCE INFLATION FACTORS

PARAMETER STANDARD T FOR HO: PROB VARIANCE
VARIABLE DF ESTIMATE ERROR PARAMTR=O >ITI INFLATION

INTER 1 11842.283 21933.657 0.540 0.5899 0.00
YEAR 1 -7.058418 11.261912 -0.627 0.5315 9.58
BN 1 0. 854557 0. 341596 2.502 0. 0132 1.77
RCTR 1 1.717983 0.516035 3.329 0.0010 11.17
UNEMP 1 -0.949183 2. 454547 -0.387 0. 6994 1.79
PROP 1 -0.559418 1.674842 -0.334 0.7387 3.44
HSMMA 1 0.0005085386 0.001407693 0.361 0.7183 8.52
PAYCO 1 -0.598691 2. 458493 -0. 244 0. 8079 4.09
TOTPOP 1 -0.000156535 .00003336254 -4.692 0.0001 101.47
WHIPOP 1 0.0001638404 0.00003360.13 4.876 0.0001 61.98
BLKPOP 1 0.0001727377 .00004012063 4.205 0.0001 16.81
HISPOP 1 .00007096273 .00002216656 3.2.r1 0.0016 5.68
INCOMPC 1 0.002052645 0.005432364 0.378 0.7059 3.41
MA 1 -0. 053719 0. 029942 1. 794 0. 0743 8.67
NADV 1 0.015437 0.015610 0.989 0.3239 1.92

ElPAY 1 1. 346967 0. 967061 1. 393 0. 1652 5.22ARMYMS 1 3633. 248 130. 275 27. 889 0. 0001 1. 86
DODMA 1 0. 523631 0. 015331 34. 155 0. 0001 4.57

Finally, welook at the result of the stepwise regression in Table 4. Th:is coes
,o.from the PROC STEPWISE statement in Appendix C. SAS will print a complete

ANOVA table as each variable is entered. Table 4 is the summary of relevant

statistics from each of these ANOVA tables, which SAS also provides. The analyst has

chosen to use the Stepwise Procedure, as opposed to the Forward Stepwise Procedure

or the Backward Stepwise Elimination Procedure. A summary of these procedures can

be found in Appendix A. The Stewise Procedure indicates that there are four variables

that are significant at the ct (critical) = .1 level when only one variable is brought in at a

time. They are DODMA, ARMYMS, RCTR and QMA. All other variables fail to

meet the .1 level of significance.

We conclude this section of the model planning with the knowledge that there

exists data that is basic to the problem. The key indicators in Tables 2, 3 and 4 have

provided the 'green light' to go ahead.

F. CHECKING FOR NIULTICOLLINEARITY

The reason that we check for multicollinearity is because if there is a linear

combination between the dependent variables in the X matrix (page 25), then our

estimators will be unstable with high standard errors and we will probably calculate an

artificially high R2 value. The R2 statistic is an indicator of how well the model fits
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TABLE 4

SUMMARY OF STEPWISE OUTPUT FROM SAS

STEPWISE REGRESSION PROCEDURE FOR DEPENDENT VARIABLE CONT

VARIABLE NUMBER PARTIAL MODEL
STEP ENTERED REMOVED IN R**2 R**2 C(P) F VALUE PROB>F

1 DODMA 1 0. 7516 0. 7516 1449.37 659.45 .0001
2 ARMYMS 2 0.2087 0.9602 52.79 1137.73 .0001
3 RCTR 3 0.0038 0. 9640 29.24 22.84 .0001
4 MA 4 0.0010 0.9650 24.45 6.23 .0133

5 INPAY 5 0.0004 0.9654 23.80 2.45 .1188
6 INCOMPC 6 0.0004 0.9658 23.34 2.28 .1321
7 BNADV 7 0.0002 0.9660 24.18 1.07 .3010
8 BN 8 0.0001 0.9661 25.30 0.82 .3671
9 HISPOP 9 0.0001 .0.9662 26.36 0.87 .3521

10 WHIPOP 10 0.0002 0.9664 26.92 1.34 .2480
11 TOTPOP 11 0.0001 0.9666 27.97 0.88 .3485
12 BLKPOP 12 0.0031 0.9697 9.04 21.34 .0001
13 YEAR 13 0.0000 0.9697 10.49 0.56 .4566
14 HSMMA 14 0.0001 0.9698 12.28 0.21 .6450
15 UNEMP 15 0.0000 0.9698 14.16 0.12 .7246
16 PROP 16 0.0000 0.9698 16.05 0. 10 .7464
17 PAYCO 17 0.0000 0.9698 18.00 0.06 .8079

the data. An artifically high R2 value is undesirable. A good example of

multicollinearity (also known as collinearity) would be if the data base contained the

measures of PERCENT MALES and PERCENT FEMALES per battalion. Clearly,

these variables are not independent and if both were included in the regression model,

the model would suffer from collinearity problems.

One indicator of multicollinearity is the Variance Inflation Factor (VIF) statistic,

which is printed in the parameter estimates matrix. A SAS request of VIF in the

MODEL statement provides this data in the Parameter Estimate Matrix (see Table 3).

What is important to know about the VIF is that big is bad. Numbers of around 10

and over indicate multicollinearity. [Ref. 3:p. 416] Notice in Table 3 that there are

several Variance Inflation Factors near or over 10.

Table 5 shows a partial output that is derived from SAS using the COLLIN

procedure in the MODEL statement of SAS (Appendix C). Another key indicator is

the Condition Index. Its derivation is somewhat involved, [Ref. 4:p. 551 As with the

VIF, a big condition number is not a good sign. A condition index of 50 or more

implies multicollinearity is a problem and the model suffers from multicollinearity. In

this instance, there is an indication that at least five independent variables appear to be

collinear.
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TABLE5

PARTIAL MATRIX OF COLLINEARITY DIAGNOSTICS FROM SAS

COLLINEARITY DIAGNOSTICS

CONDITION VAR PROP VAR PROP VAR PORP
NUMBER EIGENVALUE INDEX INTERCEP YEAR BN

1 15.811 1.000 0.0000 0.0000 0.0004
2 0. 734740 4. 639 0. 0000 0. 0000 0. 0005
3 0. 498840 5. 630 0. 0000 0. 0000 0. 0545
4 0. 322976 6. 997 0. 0000 0. 0000 0. 0070
5 0. 234600 8.209 0. 0000 0. 0000 0. 0716
6 0. 164497 9. 804 0. 0000 0. 0000 0. 4488
7 0.076709 14. 357 0.0000 0.0000 0.0051
8 0. 048103 18. 130 0. 0000 0. 0000 0. 0021
9 0.037163 20.626 0.0000 0.0000 0.1961

10 0. 020718 27. 625 1. 0000 0. 0000 0. 0404
ii 0.017691 29.895 0.0000 0.0000 0.0250
12 0.014183 33.387 0.0000 0.0000 0.0035
13 0.007865 44.835 0.0000 0.0000 0.0304
14 0. 006012 51. 280 0. 0000 0. 0000 0. 0244
15 0. 004832 57. 201 . 0000 0. 0000 0. 0268
16 .000486733 180. 230 0 0000 0. 0000 0. 0617
17 0.00007761 451.351 0.0001 0.0001 0.0001
18 1. 687E-08 30611 0. 9999 0. 9999 0. 0015

Table 6 is a printout of the correlation of estimates matrix. It is obtained from
SAS by requesting CORRB in the MODEL statement. Its derivation is simply the

X'X"1 matrix scaled to unit diagonals. If you want to know which dependent variables

are most highly correlated to each other, this is the place to look. Inspection shows

that all of the population variables are highly correlated. This agrees with the VIF for

TOTPOP, WHIPOP and BLKPOP, which also indicated a problem with these

variables. The VIF also indicated a problem with RCTR and possibly YEAR,

HSMMA and QMA. Checking Table 6 for these variables indicate that RCTR is most

highly correlated with HSMMA (-0.4926); YEAR with PAYCO and EIPAY (0.5236

and -0.7072); IISMMA with RCTR (-.4926); and QMA with PAYCO (0.4771). An

arbitrary level of p > 10.41 was established by the analyst as an indicator of significant

correlation. It is at this time that one needs to remember that the correlation

coefficient shows only the extent to which two variables are linearly associated. It does

not necessarily imply that there is any causal relationship between the two variables.

Trying to figure out an explanation for the correlation between QMA and PAYCO

could be difficult unless one was intimately familiar with the data gathering process

and the demographics of these two variables. Even then, there may be no logical
reason for the correlation. The only thing that is needed to know is that these two
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TABLE 6

CORRELATION OF PARAMETER ESTIMATES FROM SAS

CORRB INTER YEAR BN RCTR UNEMP ElPAY

INTER 1.0000 -0.9999 0.0390 -0.2103 -0.1165 0.6963
YEAR -0.9999 1.0000 -0.0390 0.2098 0.1156 -0.7072
BN 0.0390 -0.0390 1.0000 -0.0624 -0.3301 0.0422
RCTR -0.2103 0.2098 -0.0624 1.0000 -0.0697 -0.0964
UNEMP -0.1165 0.1156 -0.3301 -0.0697 1.0000 -0.0911
PROP 0.2255 -0.2227 0.0699 -0.0480 0.1364 -0.0292
HSMMA 0.0258 -0.0296 -0.0669 -0.4926 0.0798 0.1617
PAYCO -0.5188 0.5236 0.0001 0.0443 -0.0225 -0.6104
TOTPOP -0.1120 0.1104 -0.2427 0.1679 0.0794 0.0093
WHIPOP 0.1104 -0.1095 0.2592 -0.1646 -0.0508 0.0196
BLKPOP 0.0347 -0.0356 0.2948 .-0.2737 -0.1356 0..0584
HISPOP 0.0894 -0.0887 0.0530 -0.1935 -0.0142 0.0107

INCOMPC 0.2461 -0.2387 0.0112 -0.2313 0.1816 -0.2366SMA 0.2470 -0.2400 -0.0279 -0.3261 0.0490 -0.1627
NADV 0.2829 -0.2857 -0.0678 -0.3092 0.1162 0.3273
ElPAY 0.6963 -0.7072 0.0422 -0.0964 -0.0911 1.0000
ARMYMS 0.1985 -0.1962 -0.2304 -0.1904 -0.1046 -0.0264
DOMA -0.0461 0.0478 0.1412 -0.3699 -0.2819 -0.1164

CORRB PROP HSMMA PAYCO TOTPOP WHIPOP ARMYMS

INTER 0.2255 0.0258 -0.5188 -0.1120 0.1104 0.1985
YEAR -0.2227 -0.0296 0.5236 0.1104 -0.1095 -0.1962
BN 0.0699 -0.0669 0.0001 -0.2427 0.2592 -0.2304
RCTR -0.0480 -0.4926 0.0443 0.1679 -0.1646 -0.1904
UNEMP 0.1364 0.0798 -0.0225 0.0794 -0.0508 -0.1046
PROP 1.0000 0.2914 0.0465 0.1378 -0.1777 -0.2272
HSMMA 0.2914 1.0000 -0.1636 -0.1713 0.0828 -0.0085
PAYCO 0.0465 -0.1636 1.0000 0.0448 -0.0903 -0.0668
TOTPOP 0.1378 -0.1713 0.0448 1.0000 -0.9610 -0.1695
WHIPOP -0.1777 0.0828 -0.0903 -0.9610 1.0000 0.1672
BLKPOP -0.2622 0.3252 -0.1555 -0.9096 0.8809 0.1691
HISPOP -0.1292 0.2237 -0.1067 -0.8436 0.7681 0.3010
INCOMPC 0.4867 0.0896 0.1104 -0.3007 0.2586 0.0108
QMA 0.1471 -0.1228 0.4771 -0.0434 -0.0516 0.1333
NADV -0.0387 0.1294 -0.2450 -0.0375 0.0393 0.0058

EIPAY -0.0292 0.1617 -0.6104 0.0093 0.0196 -0.0264
ARMYMS -0.2272 -0.0085 -0.0668 -0.1695 0.1672 1.0000
DOMA -0.0815 -0.0814 -0.0807 0.0246 -0.0719 0.2523

CORRB BLKPOP HISPOP INCOMPC QMA BNADV DOMA

INTER 0.0347 0.0894 0.2461 0.2470 0.2829 -0.0461
YEAR -0.0356 -0.0887 -0.2387 -0.2400 -0.2857 0.0478
BN 0.2948 0.0530 0.0112 -0.0279 -0.0678 0.1412
RCTR -0.2737 -0.1935 -0.2313 -0.3261 -0.3092 -0.3699
UNEMP -0.1356 -0.0142 0.1816 0.0490 0.1162 -0.2819
PROP -0.2622 -0.1292 0.4867 0.1471 -0.0387 -0.0815
HSMMA 0.3252 0.2237 0.0896 -0.1228 0.1294 -0.0814
PAYCO -0.1555 -0.1067 0.1104 0.4771 -0.2450 -0.0807
TOTPOP -0.9096 -0.8436 -0.3007 -0.0434 -0.0375 0.0246
WHIPOP 0.8809 0.7681 0.2586 -0.0516 0.0393 -0.0719
BLKPOP 1.0000 0.7740 0.1558 -0.1520 0.0546 0.0639
HISPOP 0.7740 1.0000 0.1905 -0.0035 0.1148 0.1058
INCOMPC 0,1558 0.1905 1.0000 0.2612 -0.0564 0.04845MA -0.1520 -0.0035 0.2612 1.0000 -0.0100 -0.0070

NA0V 0.0546 0.1148 -0.0564 -0.0100 1.0000 -0.1154
EIPAY 0.0584 0.0107 -0.2366 -0.1627 0.3273 -0.1164
ARMYMS 0.1691 0.3010 0.0108 0.1333 0.0058 0.2523
DOMA 0.0639 0.1058 0.0484 -0.0070 -0.1154 1.0000
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variables are correlated and this relationship is possibly contributing towards an error

in the parameter estimates. This same line of thought carries over to the model as a

whole. When we postulate a Y = f0 X + C model, we are merely implying that there

is a linear association between the carrier and the response variables, not necessarily a
", causal relationship.

To summarize our first regression to this point, we know that there are basic
variables to the model as proposed using the current dependent variable, CONT.

Furthermore, the regression indicates some collinearity problems which will need to be

scrutinized in the full development phase. With the rough indicators that have been

derived thus far, we now need to acccss some preliminary goals for the model.

G. ESTABLISHING GOALS

When attempting to diagnose a problem using only statistical indicators, one

must establish a standard by which results will be compared. This chapter has already
discussed a few goals that are desired by our analysis. A complete statement of goals

by the investigator is desirable at this point so that analytical results can be quickly

and decisively interpreted.

1) NUMBER OF PREDICTOR VARIABLES = as few as possible.

2) SIGNIFICANCE OF FINAL VARIABLES < 0.1 (a critical).

3) ROOT MSE < 20% x DEP MEAN => C.V. < 20.

4) VIF < 8 for all variables.

5) CONDITION INDEX < 50 for all variables.

6) FINAL R VALUE = as high as possible.

7) NO DISCERNABLE PATTERN IN TIlE PLOTTED RESIDUALS.

Figure 3.1 Goals of the GSM I-IliA Model

With these preliminary goals as stated, the project now passes to the

Development Phase.
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IV. DEVELOPING THE GSM I-liA MODEL

In this chapter we will go into the specifics of developing the GSM I-liA model.

Much reference will be made in this chapter to Figure 2.2 of Chapter 2. It may be

useful to review Figure 2.2 at this time.

A. SEPARATING THE DATA
The first regression has provided information on some of the interactions among

the variables. In dealing with longitudinal data, there needs to be checks for both

heteroscedasticity and autocorrelation. Presently the data contains 19 carrier variables

(the 18 as shown in Table I plus the I to 55 numerical representations for BN) on 55

battalions over a four year time period. It is desired to analyze this data and check for

homogeneity without having the results biased by autocorrelation. The residuals

contain all of the information concerning the fit of the model. Therefore, they can

contain information on both heteroscedasticity and autocorrelation at the same time.

By separating the data into time groups (by year) and running separate regressions on

the individual sets of data, the effects of autocorrelation cannot be observed.

After separating the data base, we now have four separate response and four

separate carrier matrices. For example, the matrices for 1982 are as shown below.

657 1 1 53.75 8.05 14.7 ....... 1348 b0

1585 1 2 155.00 8.60 13.4 ....... 2509 b1

Y

1217 1 55 103.25 11.08 8.50 ...... 2066 b15

where Y = 55x I matrix (a column vector of the dependent variables)

X = 55x16 matrix (a column vector of l's catonated with the

55x15 matrix of the independent variables)

I = 16x I matrix (a column vector of parameter estimates)

Notice that there are now only 15 carrier variables. First of all, only the

numerical BN can be utilized in the least squares regression so the alpha-numerical

representation had to be dropped. Also the variables for YlAI( and IIPAY had to be
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dropped because there is no change in their values within any year across any

battalion. Their inclusion would make the carrier matrix singular because it would not

have full rank.

The restructuring of the data into year groups in order to obtain the carrier

matrices can be accomplished by SAS. As shown in Appendix C, the use of the PROC

SORT statement will sort the data. This model uses the year as the basic time unit, so

our option is to sort the data BY YEAR.

B. ANALYSIS OF THE CROSS SECTIONAL DATA
After running the time grouped cross-sectional data, an analysis is performed in

much the same way as was done for the first regression. First of all, it is desired to

find basic variables. A summary of the stepwise regressions by year is presented in

Table 7.

TABLE 7

BY YEAR STEPWISE SUMMARY OF FIRST REGRESSION DATA

STEPWISE REGRESSION PROCEDURE FOR DEPENDENT VARIABLE CONT

1982 1983 1984 1985
STEP ENTERED PROB>F ENTERED PROB>F ENTERED PROB>F ENTERED PROP>F

1 DODMA .0001 DODMA .0001 DODMA .0001 DODMA .0001
2 ARMYMS .0001 ARMYMS .0001 ARMYMS .0001 ARMYMS .0001
3 RCTR .0179 RCTR .0057 RCTR .0244 RCTR .0193
4 WHIPOP .1241 TOTPOP .1776 QMA .0556 QMA .1894
5 BN .2295 PROP .2285 BLKPOP .1325 WHIPOP .1100
6 PROP :1657 WHIPOP .2426 WHIPOP .1088 BLKPOP .1527
7 TOTPOP 3880 PAYCO 2816 TOTPOP .0425 TOTPOP .0328
8 BLKPOP .1080 UNEMP .2348 HISPOP .0103 HISPOP .1311
9 INCOMPC .1429 BLKPOP .5578 HSMMA .0982 HSMMA .0570

10 HISPOP .1470 HISPOP .2104 UNEMP .2981 PAYCO .2095
11 HSMMA .1539 BN .5019 PROP .3227 BNADV .3659
12 QMA 2155 INCOMPC .5001 BNADV .3865 BN .3981
13 AYCO :4769 BNAOV .6601 PAYCO .9453 INCOMPC .5063
14 BNADV 5207 MA .8058 INCOMPC .9813 PROP .4273
15 UNEMP .9208 SMMA .8815 BN .9852 UNEMP .6861

Table 8 contains the variables, their P ROB > JT statistics and their corresponding

Variance Inflation Factors. This information came directly from the matrix of

Parameter Estimates with Variance Inflation Factors similar to the one displayed in

Table 3 on page 28.

It is time to stop and really think about what is happening in this model. For

the proposed model using the dependent variable CONT, there are two dependent

variables that are significant in every y'ear in both the F-Test (Stepwise) and t-Test
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TABLE 8

BY YEAR SIGNIFICANCE AND VIF FOR FIRST REGRESSION DATA

1982 1983 1984 1985
VARIABLE PROB>ITI VIF PROB>ITI VIF PROB>ITI VIF PROB>ITI VIF
INTERCEP .0001 0.000 .0001 0,000 .0001 0.000 .0001 0.000
BN .0410 2.165 .4659 2.090 .9852 2.390 .6.549 2.139
RCTR .1435 12.832 .0312 13.889 .0958 15.116 .0665 11.306
UNEMP .9208 1.748 .5432 1.592 .3255 1.650 .6861 1.934
PROP .2605 4.352 .4195 4.179 .3567 4.316 .3943 3.256
HSMHA .0975 8.849 .8815 10.701 .1460 10.358 .1873 9.276
PAYCO .5194 2.168 .6254 2.775 .9660 4.086 .3185 3.564
TOTPOP .0087 151.139 .0331 106.092 .0046 120.374 .0062 123.036
NHIPOP .0240 95.524 .0424 65.671 .0010 69.150 .0007 63.525
BLKPOP .0089 22.228 .1324 18.541 .0002 18.271 .0013 16.490
HISPOP .0756 6.619 .1873 6.316 .0039 6.390 .0820 5.906
INCOMPC .2488 3.503 .5346 3.221 .9790 3.940 .4795 3.354
Q A .2773 6.710 .7917 6.269 .0123 21.907 .0945 21.762
BNADV .5362 2.841 .7366 4.064 .4405 2.400 .4212 3.241
ARMYMS .0001 1.897 .0001 1.695 .0001 2.203 .0001 2.032
DODMA .0001 6.011 .0001 5.685 .0001 7.014 .0001 6.522

(complete model) statistical analysis. They are DODMA and ARMYMS. There is

now only one question that needs to be asked. Is this knowledge of any value to us?

The answer is, probably not. First of all, DODMA and ARMYMS are derived ex post

facto. Army recruiting battalion areas are unique to the Army. Recruiting areas are

not uniform DOD wide. Therefore, it would be difficult and time consuming to

attempt to gather data of the proper cross-sectional structure in order to try to predict

these variables. This would violate one of the overall objectives of this particular

model. Secondly, since the dependent variable, CONT, is utilized to derive these two

variables, we would expect that would all help to explain each other. This is why, in

Table 4, over 96% of the model has been explained (model R2  .9602) in the

stepwise procedure after the introduction of these two variables. Similar results were

obtained in the individual year stepwise regressions, with anywhere from R2  .953 for

1983 to R2 = .981 in 1985 after the introduction of just these two variables.

The variable RCTR is significant in every stepwise procedure (Table 7) and every

t-Test (Table 8) except for 1982. It seems to be a good predictor. It is easily

obtainable and, to a certain extent, controllable. It has good potential for

predictability. One only needs to look at present and proposed recruiter manning

rosters. RCTR, however, does seem to have significant collinearitv problems. It

exceeds our goal of VIF < 8 for every year in Table S. Checking the Correlation of

lstimates Table (not shown here but similar to Table 6 of Chapter 3) RCTR is most

highly correlated to IISMMA in 1982 (-.4325), IISMM.\ in 1983 (-.5209), I)Oi)MA
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and HSSMA in 1984 (-.5290 and -.4809 respectively) and INCOMPC, QMA and

DODMA in 1985 (-.4187, -.4043 and -.4214 respectively).

Another noteworthy factor is that W1IIPOP and TOTPOP in Table 7 seem to be

more significant than any of the other population variables. Other studies have shown
that areas of greater multiethnic population tend to attract significantly more recruits
than other areas. [Ref. 6] This would lead us to believe that the higher range

concentrations of WHIPOP would possibly have a detrimental effe't- on contracts. We

cannot, however, surmise anything yet as to why these two variables might be

significant. Our model has problems with collinearity with both WHIPOP and

TOTPOP. Both have VIF substantially greater than 8 in Table 8. Other significant

collinearity problems seem to be arising with HSM MA, QMA and BLKPOP.

Unemployment is not a significant indicator at all. In Table 7 for 1982 and 1985,

it is the least significant of all of the predictor variables. Although this is

counterintutive, it has also been shown in previous studies to be both significant and

insignificant in explaining GSM I-IIIA accessions, depending upon the year and the

dependent variable that is being studied. [Ref. 7] It may be that we are not using this

statistic in the most appropriate manner and should be thinking about alternate
possibilities of unemployment indicators for inclusion into the model.

Also, PROP is not a significant predictor. In Table 3 on page 28, the parameter

estimate for the first regression (entire set of data) was equal to -0.559418. Tlhe

negative sign of the parameter estimate is counterintutive (similar to the negative sign

that we obtained with just 3 data points in Figure 1.1). This may be telling us

something. Parameter estimates for PROP in each year group regression were positive

for 1982 and 1983, but negative for 1984 and 1985. The a (actual) values for the t

, statistic (Table 8) ranged from .2605 for 1982 to .3943 for 1985. All of these values are

outside of our model goals of ai (critical) = .1. One reason that comes to mind when

attempting to explain this may be that propensity is high in smaller markets and low in

larger markets. Thus, although propensity may be high, it will not necessarily explain

a high (in absolute terms) number of contracts.

There seems to be much work that needs to be done here. The results of the first

regression, along with the results of the first set of time grouped regressions show many

problems, especially with collinearity. Correlation is good if it is between the carrier
and predictor variables. It is not good if it is just between the predictors.
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C. THE SECOND REGRESSIONS

At this time we decide to drop both DODMA and ARMYMS and rerun the

regressions. This series of regressions will be referred to as the second regression. In

order to circumvent the obvious problem of multicollinearity between WIJIPOP and

TOTPOP, yet still retain them in the predictor matrix, a new variable is adopted. This

new term, PERCWI (for percent white) is merely the WHIPOP divided by TOTPOP.

In SAS, this is easily produced by the algebraic equation immediately following the

INPUT line (Appendix D). Also dropped is the QMA variable. QMA was displaying

some problems with collinearity. In looking at Appendix B, it is noticed that QMA is

usually derived as a straight percentage of TOTPOP and only updated once every other

year, whereas IHSMMA is a number based on actual counts that are performed by

recruiters and verified at certain non-specific time intervals by the Area Recruiting

Zone (ARZ) verification teams. All else being equal, IISMMA is a prefered statistic

because of its perceived accuracy. Since QMA and l-ISMMA are closely related, and

since there is also a problem with collivearity in the IISMMA variable, it is anticipated

that dropping QMA might help to alleviate this collinearity problem with I-SMMA as

well.

The results of the second regression are only slightly encouraging. Tables 9 and

10 present the summary of the second regression results for the overall and year
grouped data bases. The regressions modeled 13 dependent variables versus CONT.

The far left column of Table 10 lists the independent variables used in these

regressions. These tables present the results as compared to the preliminary established

goals of the model as outlined in Figure 3.1 of Chapter 3.

The R2 values all fell substantially, but this was to be expected after dropping

the two derived variables, DODMA and ARMYMS. The t statistic indicates that

RCTR is significant in every year, as does the stcpwise regression procedure. The new

variable, PERCWI, is significant in every year with the stepwise procedure.

Furthermore, none of the population parameters are showing.any signs of collinearity

problems. UNEMP and PROP, two variables that have been historically good

indicators, are significant in some years, but not in others. The VIF and Condition

Index (C.I.) indicate multicollinearity, especially with RCTR and IISMMA. Until this

problem can be solved, many of the key indicators are suspect in their accuracy.

There are several issues that arise from the second regression. The first is the

question of why BN would be a significant variable. BN is merely an ordinal number
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TABIE 9

SECOND REGRESSION RESt_ LIS VLRSUS ESTABLISHED GOALS

1982 1983 1984 1985

R2 = .82 .75 .60 .60

VARIABLES RCTR RCTR RCTR RCTR
WHOSE PROP PROP PROP PAYCO

PROB>jTJ HISPOP HISPOP HISPOP BNADV
WAS UNEMP
< 0. 1 PERCWI

BN
BNADV

VARIABLES
w/C.I.> 50 2 2 1 1( TOTAL #)

VARIABLES RCTR RCTR RCTR
w/VIF > 8 HSSMA HSMMA

C.V.<20 YES YES YES YES

TABLE 10

SECOND REGRESSION STEPWISE RESULTS
FOR VARIABLES WTII PROB> F < 0.1

PARAMETER ESTIMATES OF SIGNIFICANT VARIABLES

FROM STEPWISE REGRESSION

1982 1983 1984 1985

BN 3.116 - - 2.262
RCTR 7.601 13.37 10.63 5.291
UNEMP 26.56 25.05 - -
PROP 17.56 27.36 16.84 -
HSMMA - - -
PAYCO - - - -
PERCWI 1292 208.4 189.6 283.3
BLKPOP - - - -
HISPOP -17E-5 -27E-5 -17E-5 -
INCOMPC - -
BNADV .3034 - - .1468

given to the alpha-numeric battalion names. One must be very careful when using

substitute ordinal level data in a regression equation. In this instance, however, it is

signifying an interesting phenomenon. Why does the mere battalion name signify

contracts? Part of the answer has to do with the concept of lurking or latent variables.

As stated previously, there is no possible way in which one can collect numerical data

38

i":' : .- '- .-; -.: < -",: -.: -.' -.--"< --. - --- , -5 -. '., -- -" --. .- ,.- .- . --- -> '7.- -> .-.5 . .-.'-.'-/ .-< .< --'.- -.'.-' > ." .' -.' -.'.-- -> 7> -

- -- • "." --.--<'.'."'*' ".-........................................,,,...,.....,.,.l...................................,....., .



on all possible aspects of the recruiting process. There are many undefinable or

uncaptureable nuances that lead to the decision to enlist in the Army. Intangables

such as leadership within the recruiting battalion, a wealth of overachicving recruiters,

favorable local school officials or the mere history of being the 'best', 'worst' or an

. 'also ran' battalion may have significant impact. The fact that BN is showing up as a

significant variable implies that battalions are doing the way they are just because they

are named that lSattalion. In an attempt to capture this phenomenon and to discard

the substitute numbering system for the battalions, the analyst checked sevcral

indicators of battalion output history over the four years covered by this study.

Instead of merely using the (constant interval) BN number, another variable was

contemplated that would more readily capture the 'spread' between the battalions.

After several trials, the variable BNPER (meaning battalion percent) was adopted. It

is the number of contracts signed by a battalion in a particular year, divided by the

total number of contracts signed in that year. For example, BN IA signed 657

contracts in 1982. There were a total of 51,431 contracts signed in 1982. Therefore,

BN IA is given a new variable of 657/51431 = 0.0127744. In looking at all of the

battalions ovL, all of the years, the standard deviation of this indicator is less than one

third of its mean and it is fairly normally distributed with no significant skewing. Some

battalions are always near the top percent of total recruits, and some are always near

the bottom.. This variable allows the analyst to control his inputs at the battalion level

based on his knowledge of a particular unit. For instance, although a particular

battalion usually recruits about 2.5 % of the total mission, a leadership change or a

high recruiter turnover rate or a particularly disastrous local situation may force the

analyst to decrease that number and re-distribute it to another more favorable location.

Or, some demographic phenomenon may lead to an entire region (or Brigade) having

their inputted numbers shifted. If this much detail is not desired, we can merely plug

in the percent of total mission that has been assigned to that unit as a result of the

latest Enlisted Personnel Model (EPM) run.

There are some valid concerns with using proportions as predictor variables.

First of all, their average value will never change (it will alwavs be 1.01 total nuibcr

of battalions in this case). Secondly, this particular variable could not be used with the

dependent variable, CONT, because they are linear functions of one another. It would

be just like artificially plugging in equalities on both sides of the hypothCsiiCd linear

regression equation. We are still, however, in the trial and error mode, so mnaybC we

will be able to utili/e this new variable in a future regression run.
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The second issue is that PROP is now becoming a significant variable. As stated

earlier, it is speculated that propensity may be more of a proportion indicator than an

absolute value indicator. This might be due to higher propensities in smaller market

areas and vice versa. In Table 10, it is now seen that PROP has all positive parameter
values. The reason that PROP would now have all positive parameter values when in

the first regression, it had both positive and negative values has to do with the concept

of the costock. [Ref. 5] In speaking of the costock of a independent variable, we are

refering to all of the other independent variables in a particular regression. For
example, if we were modeling CONT versus RCTR, UNEMP and PROP, the costock

of PROP is RCTR and UNEMP. The thing to remember is that the value of a

parat,,eter estimate of a particular independent variable may have more to do wit/h the

data values of its costock than it does withi its own data values. In other words, as given
in the example above, the derived parameter estimates for PROP may be more a

function of the data values of RCTR and UNEMP than the data values of PROP

itself.

With this in mind, we look at another aspect of the second regression. In Table

9 and 10 we notice that there are different significant variables in different years. As a

matter of fact, there are no two years in which the significant variables are the same.

We know that the costock has a lot to do with the values of a particular regression

equation. All else being equal, we would certainly prefer that the regression equations
for each year contain the same variables at the same level of significance. If this were

to happen, we could compare parameter estimates with some degree of validity. One of
the largest abuses of regression analysis is when an attempt is made to try to compare

parameter estimates that have been derived from two different regressions using two

different costocks. These types of comparisons are not valid.
Finally, the second regression is somewhat unstable across time periods in the R 2

values that are achieved (see Table 9). These R2 values are not necessarily bad, but

since we are building a predictive model, a higher R2 value is prefered. We are not

sure just how high of an R 2 value can be obtained from this particular data base. If

there are any tics in the data values of a particular independent variable in the carrier

matrix, the R2 value can never attain unity. This is because the regression hyperplane

would be trying to fit itself through the two dillerent points in the same plane, which

cannot be done. This phenomenon is known as pure error. If pure error is present in

a data base, the R2 value can never be 1.0. We do not know how much pure error is

present in this regression, but higher R2 values will be prefered.
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D. THE THIRD AND SUBSEQUENT REGRESSIONS

A third regression is now planned. In order to check the PROP variable against

our suspicions that it is a propor*tion indicator, we contemplate changing the dependent

variable. Again, we must remember that the overall goal of the model is to predict

total GSM I-liA contracts. Perhaps a dependent variable of CONT/TOTPOP or

CONT/QMA would give us some indication of the proportion of a specific population

that a recruiting battalion is actually enlisting. One term that is utilized by the

recruiting community is that of Penetration. Penetration is the proportion of contracts

that are signed per the market of GSM I-IIIA available. We adopt the term PENT,

which equals CONT/HSMMA. This looks to be an ideal response variable because we

have seen that there is definitely collinearity between HISMMA and the other predictor

variables (see Table 9). By putting HSMMA on the response side and dropping it

from the predictor side, we expect to decrease the problem with multicollinearity. Also,

we can now utilize the variable BNPER since there is no longer a strict linear function

between it and PENT. Since this is an entirely new approach with a new dependent

variable, we will keep all of the other carrier variables for this regression.

The results of this regression are much more encouraging. Tables 11 and 12

present the summary of the third regression results for the year grouped data bases.

The far left column of Table 12 lists the independent variables used in these regressions

versus the dependent variable PENT.

TABLE 11

THIRD REGRESSION RESULTS VERSUS ESTABLISHED GOALS

1982 1983 1984 1985

R2 =  .81 .85 .84 .77

VARIABLES PROP PROP PROP PROP
WHOSE BNPER BNPER BNPER BNPER

PROB>T RCTR RCTR RCTR RCTR
WAS BLKPOP BLKPOP PERCWI PERCWI
< 0.1 INCOMPC INCOMPC

VARIABLES
w/C.I.> 50 2 2 1 1( OTAL #)

VARIABLES - RCTR -
w/VIF > 8

C. V. <20 YES YES YES YES

IJ
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TABLE 12

THIRD REGRESSION STEPWISE RESULTS
FOR VARIABLES WITlH PROB> F < 0.1

PARAMETER ESTIMATES OF SIGNIFICANT VARIABLES
FROM STEPWISE REGRESSION

1982 1983 1984 1985

PROP 11E-4 1OE-4 90E-5 13E-4
BNPER 2.658 3.386 2.602 2.289
RCTR -62E-5 -71E-5 -54E-5 -45E-5
PERCWI -13E-3 -27E-3 -53E-3 -28E-3
UNEMP ....
PAYCO
BLKPOP 12E-9 -15E-9 - -
HISPOP
INCOMPC - -25E-7 -16E-7 -24E-7
BNADV ....

As compared with Table 9, the R2 values have increased for most years and are

more stable. There is more stability in the variables across the years in that PROP,

BNPER and RCTR appear in every year using both the t-Test and the stepwise F Test.

PERCWI also shows up every year in the stepwise procedure. There is only one VIF

greater than 8, and that is for RCTR in 1983. There is still collinearity problems in

every year according to the Condition Index numbers.

Checking for collinearity in the Correlation of Parameter Estimates Matrix for

this regression (see Table 13) it is noted that there are several variables that indicate a

p > 10.41. Our collinearity problems are very proFbly arising with one of these

relationships. Since UNEMP, PAYCO, HISPOP, BNADV and EIPAY are not

significant in any year in Tables II and 12, these are the first candidate variables to be

dropped in the next regression attempt. Checking these variables against Table 13, it is

seen that UNEMP, PAYCO and BNADV are not highly correlated with any other

variable, IIISPOP is negatively correlated with RCTR (-0.4331), and E1IPAY is

correlated with PROP and INCOMPC (-0.4481 and -0.6207 respectively).

Dropping these five insignificant variables and running a fourth regression still

indicated a condition index greater than 50 for one variable. Since BLKPO' and

PERCWI are highly correlated (p > .7), these are the two suspect variables as to the

probable cause of this indicator of multicollinearity. In trying to determine which of

these variables to drop, it is decided that BLKPOI' should go because it has been

shown to be the least significant in more years than PERCWI.

4
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* TABLE 13

CORRELATION OF PARAMETER ESTIMATES FROM SAS
FOR TIlE THIRD REGRESSION

CORRB INTER PROP BNPER RCTR HISPOP INCOMPC

INTERCEP 1.0000 0.3493 -0.0150 0.0992 -0.1431 0.4520
PROP 0.3493 1.0000 -0.1865 0.4271 -0.0858 0.4853
BNPER -0.0150 -0. 1865 1. 0000 -0.6623 0. 2929 0. 0071
RCTR 0.0992 0.4271 -0.6623 1.0000 -0.4331 -0.1051
PERCWI -0.1230 -0.1614 -0.0952 -0. 3369 0. 3454 0. 1932
UNEMP -0.0517 0. 1821 -0.2426 0. 0179 0. 0919 0. 2350
PAYCO 0.0200 0.2116 0.1169 -0.0075 -0.0291 0.2443
BLKPOP -0.2060 -0.5186 0. 1636 -0.5566 0. 2739 -0. 0208
HISPOP -0.1431 -0.0858 0. 2929 -0.4331 1. 0000 -0. 0580
INCOMPC 0.4520 0.4853 0.0071. -0.1051 -0.0580 1.0000
BNADV -0.1457 -0. 1561 -0.1208 -0.3229 0. 1673 -0.1193

CORRB PERCWI UNEMP PAYCO BLKPOP BNADV

INTER -0.1230 -0.0517 0.0200 -0.2060 -0.1457
PROP -0.1614 0.1821 0.2116 -0.5186 -0.1561
BNPER -0.0952 -0.2426 0.1169 0.1636 -0.1208
RCTR -0.3369 0.0179 -0.0075 -0.5566 -0.3229
PERCWI 1.0000 0.0633 -0.0043 0.7239 0.1211
UNEMP 0. 0633 1. 0000 -0.2970 -0.0648 0. 1453
PAYCO -0.0043 -0.2970 1.0000 -0.0528 -0.0941
BLKPOP 0. 7239 -0. 0648 -0. 0528 1. 0000 0. 1129
HISPOP 0. 3454 0. 0919 -0. 0291 0.2739 0. 1673
INCOMPC 0. 1932 0. 2350 0.2443 -0. 0208 -0.1193
BNADV 0.1211 0.1438 -0.0941 0.1129 1.0000

Now a fifth regression was run. The independent variables were PROP, BNPER,
RCTR, PERCWI and INCOMPC. The dependent variable was PENT. For every
year except 1985, INCOMPC was the last variable to enter the stepwise regression. It

was also an insignificant variable in 1982 according to the t-Test. Every other variable

for every other year was significant for both tests. There was, however, still a
collincarity problem. A single condition index of greater than 50 was noted for every

separate year regression.

Several combinations using four of the five independent variables listed above

were then tried. This is because one of our goals in this model is to use as few

predictor variables as possible. It must be remembered that for every variable that is

included in the model, the analyst must take the time and effort to predict that

variable. It is hoped that a combination of four could be found that was 'as good as'

the above combination of five. Any combination chosen had to meet all of the goal

criteria as set forth in Figure 3.1. Finally, one 'best equation' was chosen. It was
decided that INCOMPC could be dropped with no substantial loss to the model. This
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p2
was determined when checking the partial R values as given in the stepwise summary

(similar to Table 4). The partial R2 values for INCOMPC ranged from 0.0001 in 1982

to 0.03 in 1985. These added values to the overall R2 were considered insignificant.

The dropping of this variable also solved the condition index collinearity problem, with

the highest index value being 32.16 for 1982 which is well below our goal of 50.

Before moving on a few issues need to be addressed. Although we have named

the regressions first, second, etc., this is really a misnomer. There have actually been

scores of regressions run to this point, each checking a different aspect of the problem

or verifying the intuitions of the analyst. One can do this to the point where the data

tends to dictate the 'next move' of the analyst.. If this happens, we will end up with a

model that will only fit the data that is contained in the data base. A predetermined

set of goals (such as Figure 3.1) tends to counter this problem. Also, the validation

phase contains provisions to check the model with different data to assure the model's

validity.

The most notable work with the other regressions was with the unemployment

variable, UNEMP. For the time span of this study, UNEMP was not a significant

variable except for a few regressions, mostly in 1982. This is counterintutive to most

USAREC analysts. An attempt was made to transform this variable in two distinct

ways.

4 First of all, a variable called CIIUNEMP was attempted. This variable was

actually the change in unemployment within a battalion between years. This was

derived by using the following formula.

CtIUNEMPt = (UNEMPt - UNEMPt.I) / UNEMPt. 1

where t = 1983,1984,1985

This variable did not prove to be any more significant than the UNEMP variable.

Also, a dummy variable was defined as a battalion either being above or below

the average national unemployment as calculated by the Bureau of Labor Statistics. It

was hypothesized that although perspective accessions might not be familiar with their

particular unemployment rate, they could be cognizant of whether they were in an area

that was higher or lower than the national average as reported in the local media. This

dunmy variable also did not prove to be significant.

44
,Se



The only logical explanation for this is that the costock of UNEMP is carrying

the signal from UNEMP. It is thought that PROP is the predominant carrier of the

signal since PROP is the most significant variable in all of the regressions and is a

variable that is designed to capture several signals that may or may not be otherwise

measured.

The bottom line at this point is that although this study has discussed five

regressions to end up with four variables, the trials and thought processes that have

actually taken place significantly exceeds that which is discussed in the text.

E. CHECKING FOR LEVERAGE

In regression model building, one should check every regression equation for

possible lack of fit due to outliers. Outliers may cause an effect called leverage which

can cause a significant decrease in values.

-." One method of finding outliers is to look at the "studentized" residuals. These

residuals are produced when a P or R is requested in the option section of the

MODEL statement in SAS (see Appendix D). Studentized residuals are merely the

actual icsiduals that have been set to a normal distribution with a variance of one.

Therefore, we would expect their values to range from about -3.0 to + 3.0. With the

sample size of 55 battalions per year that we have, we would expect that approximately

two residual values per year would exceed 11.961. Looking down the list of studentized

residuals in Table 14, we notice that there are two residuals that are outliers in 1982

(6E and 6J), eleven in 1983 (313, 3D, 3E, 3F, 3G, 311, 3J, 3K, 5A, 513, 6G) none in 1984

and one in 1985 (6G). These battalions should be rechecked to insure that their

underlying data base is accurate. If it seems to be proper, the analyst should attempt

to explain the deviation that these samples are displaying.

Another more powerful indicator of lack of fit due to leverage is the Cook's I)

statistic. [Ref. 4] It is also located in Table 14. It measures two things at once.

Cook's D will get large when (1) the residual gets large and (2) when there is an outlier

data point that is lying outside of the data cloud in the carrier hyperspace and is

exerting some leverage on the regression plane. In Table 14, wve notice that the Cook's

D statistic is significantly larger in 1982 for 6E; in 1983 for 3B, 31), 3K, 5A, 6E and

6G; in 1984 for IN, 6E and 6C(; and in 1985 for 6G and 611.

Discarding data from the data base is a judgement call on the part of the analyst.

One should never discard data from the data base without significant reason. The

45

'.5'' -*



TABLE 14

YEARLY VALUES OF "STUDENTIZED" RESIDUALSAND COOK'S D STATIST ICS

1982 1983 1984 1985

STDNT COOKS STONT COOKS STONT COOKS STDNT COOKSRESID D RESID D RESID D RESID D
1A -0.152 0.000 0.973 0.004 -1.068 0.006 0.222 0.0001B -1.376 0.018 0.412 0.002 -0.318 0.001 -0.238 0.001iC -0.935 0.002 0.728 0.002 0.643 0.002 0.044 0.0001D -0.146 0.000 0.265 0.000 -0.734 0.004 -0.266 0.0001E -1.327 0.005 -0.536 0.001 -0.749 0.002 -0.270 0.000
IF -0.148 0.000 0.287 0.000 -0.348 0.001 -0.711 0.002IG 0.804 0.006 1.660 0.025 0.545 0.002 -0.123 0.0001H -0.894 0.005 0.421 0.001 0.205 0.000 0.094 0.000
11 -0.491 0.001 -0.132 0.000 -0.825 0.003 -0.505 0.001IK -0.056 0.000 0.490 0.001 0.741 0.002 0.597 0.0011L -1.026 0.002 0.406 0.000 -0.901 0.003 -0.997 0.0061N -1.220 0.006 0.210 0.000 -1.737 0.012 -1.244 0.004
3A -1.567 0.015 0.341 0.001 -1.273 0.006 -0.961 0.007
3B -0.267 0.001 2.777 0.050 0.280 0.000 0.629 0.0033C -1.108 0.004 0.063 0.000 -0.570 0.001 -1.149 0.0103D 0.292 0.001 2.679 0.049 -0.050 0.000 0.142 0.0003E -0.853 0.004 2.143 0.029 -0.031 0.000 0.968 0.0073F 0.299 0.000 2.278 0.012 0.524 0.001 0.725 0.002
3G 0.632 0.001 2.046 0.008 -0.258 0.000 0.997 0.0033H 0.135 0.000 2.376 0.019 1.122 0.004 1.536 0.00931 -1.126 0.004 1.174 0.002 0.027 0.000 0.387 0.0003J -1.779 0.019 2.197 0.028 -0.280 0.001 -0.315 0.0013K -0.519 0.002 2.874 0.043 0.478 0.001 -0.148 0.000
4A -0.829 0.002 1.336 0.005 0.552 0.001 1.066 0.0044C -1.217 0.007 -0.613 0.001 -1.001 0.002 -1.345 0.003
4D -0.467 0.001 1.012 0.003 0. 492 0.001 1.006 0.0054E -1.460 0.007 -0.230 0.000 -1.299 0.007 -1.113 0.0064F -0.584 0.001 1.830 0.015 0.250 0.000 0.554 0.002
4G -0.475 0.000 0.846 0.002 0.122 0.000 0.411 0.0004H -1.310 0.004 0.342 0.000 -0.421 0.001 -0.108 0.00041 -1.641 0.015 0.343 0.000 -0.475 0.001 0.268 0.0004J -0.968 0.004 0.183 0.000 -0.295 0.000 0.256 0.000
4K -1.088 0.005 0.415 0.001 0.297 0.000 0.829 0.0015A 1.146 0.009 2.169 0.032 0.426 0.001 0.288 0.0015B 1.105 0.003 2.169 0.008 1.593 0.004 0.948 0.0025C -0.505 0.001 1.509 0.013 -0.147 0.000 0.336 0.001
5D -0.822 0.001 0.445 0.000 -0.614 0.001 -0.198 0.000
5E -0.151 0.000 0.897 0.003 0.166 0.000 0.147 0.0005F -1.020 0.009 -0.078 0.000 -0.108 0.000 0.811 0.002
5H -0.475 0.000 1.085 0.002 0.207 0.000 0.040 0.00051 -1.711 0.012 0.050 0.000 -0.412 0. 001 0.366 0.000
5 -1.100 0.003 0.350 0.000 -0.395 0.000 0.284 0.0005K -1.735 0.015 0.947 0.004 0.138 0.000 0.383 0.000
5L -1.113 0.003 0.186 0.000 -0.609 0.001 0.206 0.0005M -1.541 0.005 0.253 0.000 0.125 0.000 0.431 0.0015N -0.435 0.000 1.578 0.011 0.242 0.000 -0.338 0.0006A -0.534 0.002 0.053 0.000 -0.835 0.002 -0.852 0.0026E -2.251 0.122 -1.212 0.034 -0.799 0.015 -0.303 0.002
6F -1.021 0.009 -0.036 0.000 -0.392 0.001 -1.057 0.0086G 0.883 0.004 2.927 0.040 1.899 0.020 2.207 0.027
6H -0.444 0.002 0.834 0.005 -1.381 0.007 -1.737 0.02161 -1.017 0.002 0.424 0.000 0.023 0.000 -1.319 0.004
6J -2. 044 0.027 -0. 626 0.002 -1. 411 0.008 -1. 754 0.0096K -1.388 0.003 -0.141 0.000 -0.293 0.000 -0.913 0.002
6L 0. 111 0.000 1.512 0.006 0.811 0.002 0.769 0.003
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biggest perpetrators of lack of fit for this model seems to be battalions 6E, 6G and 6F.

It is the judgement of the analyst to discard 6E and to keep the rest. The reasoning for

this is that battalion 6E represents Honolulu, which is an extreme point in almost ever

statistical variable that is included in the model. Also, its actual contributions to

contracts (approximately one-half of one percent) is negligible. In consulting with

experienced USAREC analysts, Honolulu (along with San Juan, P.R.) are seldom used

in other regression models due to their peculiar demographics and unique

characteristics.

On the other hand, 6G and 6F represent the Phoenix and the Portland battalions.

Phoenix is undoubtedly and outlier due to its low PERCWI value and Portland due to

its low PROP value. In any event, their exclusion is not deemed appropriate due to

the fact that they contribute significantly more total contracts than does I Ionolulu. In

fact, their inclusion (with associated range of carrier variables) may tend to add to the

robustness of the model.

F. THE FINAL REGRESSIONS

After discarding the values for battalion 6E and rerunning the regression, an

across the board increase in R2 values is obtained. Partial R2 increases ranged from

.0034 in 1985 to .0232 in 1983.

Table 15 shows the pertinent regression statistics for the final regression of 1985.

Other years were nearly identical. In every year the stepwise procedure brought in the

variables in the same order (PROP,BNPER,RCTR then PERCWI). Tables 16 and 17

display the results of the final regressions which determined our 'best separate

equations'. A detailed discussion of these result will be provided later in the text.

Notice that every variable is significant in each test in each year (each was

significant at the 0.0001 level). All parameters are equivalent in magnitude and signed

the same. The regressions are stable across time periods and indicate fairly good R2

values for cross-sectional data. Since they each contain the same costocks, their

parameter estimates are comparable. We are satisfied that these regressions have

achieved our preliminary goals as specified in Figure 3.1. It is now time to check the

underlying assumptions of multivariable regression analysis to insure that these

equations are valid.
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TABLE 15
FINAL RESULTS OF 1985 YEAR GROUP REGRESSION

SAS
YEAR=1985

DEP VARIABLE: PENT SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB>F
MODEL 4 .008142583 0. 002035646 35.863 0. 0001
ERROR 49 0.002781353 .00005676231
C TOTAL 53 0.010924

ROOT MSE 0. 007534076 R-SQUARE 0. 7454
DEP MEAN 0. 055076 ADJ R-SQ 0. 7246
C.V. 13.67944

PARAMETER STANDARD T FOR HO: VARIANCE
VARIABLE DF ESTIMATE ERROR PARAMTR=O PROB>ITI INFLATION

INTERCEP 1 0.070790 0. 013362 5.298 0.0001 0.000000
PROP 1 0.001561433 0.0002565583 6.086 0.0001 1.312525BNPER 1 2.568842 0. 350706 7.325 0. 0001 3.068071
RCTR 1 -0.000515104 .00007407063 -6.954 0. 0001 3.136923
PERCWI 1 -0.051608 0. 012295 -4.197 0. 0001 1. 410820

CORRELATION OF ESTIMATES
CORRB INTERCEP PROP BNPER RCTR PERCWI
INTERCEP 1. 0000 -0.6737 0. 3081 -0.5463 -0.8637
PROP -0.6737 1. 0000 -0.1487 0. 3528 0. 3389
BNPER 0. 3081 -0. 1487 1. 0000 -0. 7903 -0. 4657
RCTR -0.5463 0.3528 -0.7903 1.0000 0.4311
PERCWI -0.8637 0.3389 -0.4657 0.4311 1.0000

COLLINEARITY DIAGNOSTICS VARIANCE PROPORTIONS
CONDITION PORTION PORTION PORTION PORTION PORTION

NUMB EIGENVALUE INDEX INTERCEP PROP BNPER RCTR PERCWI

1 4.815 1.000 0.0003 0.0022 0.0010 0.0010 0.0004
2 0. 128379 6. 124 0. 0010 0. 2313 0. 0365 0. 6447 0. 0004
3 0.:034521 11.811 0.0191 0.3913 0.0210 8.0974 0.1328""4 0. 018265 16. 237 0. 0294 0. 0277 0. 7019 0. 4610 0. 0029
5 .003529 36. 941 0. 9503 0. 3474 0. 2397 0. 3960 0. 8635

G. CHECKING FOR HOMOGENEITY IN THE RESIDUALS

Our 'best separate equations' to this point are of the form:

PENTt = P0,t + 01,tPROP + 02,tBNPER
+ P3 ,tRCTR + P4,tI'ERCWI + ct

where t = 1982, 1983, 1984, 1985

These equations were derived under the assumption that the residual errors are

independent, that they have a mean of zero, that they have a constant variance (known
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TABLE 16

FINAL REGRESSION RESULTS VERSUS ESTABLISHED GOALS

1982 1983 1984 1985

R2=  .78 .83 .82 .74

VARIABLES PROP PROP PROP PROP
WHOSE BNPER BNPER BNPER BNPER

PROB>ITi RCTR RCTR RCTR RCTR
WAS PERCWI PERCWI PERCWI PERCWI
< 0. 1

VARIABLES
w/C.I. > 50 0 0 0 0i ( TOTAL #)

VARIABLES - - -
w/VIF > 8

C.V.<20 YES YES YES YES

TABLE 17

FINAL REGRESSION STEPwISE RESULTS
FOR VARIABLES WITtl PROB> F < 0.1

PARAMETER ESTIMATES OF SIGNIFICANT VARIABLES

FROM STEPWISE REGRESSION

1982 1983 1984 1985

PROP 11E-4 16E-4 12E-5 15E-4
BNPER 2.659 3.376 2.771 2.568
RCTR -56E-5 -69E-5 -55E-5 -51E-5
PERCWI -58E-3 -74E-3 -66E-3 -51E-3

as homogeneity) and that they conform to a normal distribution. fleteroscedasticity is

where the model fails to meet the assumption of constant variance. The easiest

method of checking these regressions for heteroscedasticity is by plotting the residuals.

The most common residual plot is the plot of the residuals versus the predicted

values. The reason for this is because the covariance between the residuals and the

predicted values is equal to zero. The procedure PROC PLOT in Appendix I)

indicates how to get these residual plots from SAS. Each individual year has to be

generated and checked. Figure 4.1 is the graph of the residuals versus the predicted

values for the year 1985. This is actually a three dimensional graph in that the plotted
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SAS
YEAR=1985

PLOT OF RESIDI*YHAT1 SYMBOL IS VALUE OF BNN

I 6
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4 5
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Figure 4.1 1985 Plot of Residuals vs Predicted Values
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data points indicates which battalion is being plotted. The resolution of SAS is only

down to the first number of the battalion (a plot of I can indicate from battalion IA to

IN), but it can give a quick indication of which general region is contributing the most

to the error in the model. In this particular graph, most of the l's are lying below the
F

zero reference line and most of the 5's are lying above. This quickly gives us an
indication that the First Brigade is below the regression plane for Penetration and

Fourth Brigade is lying above. Similar results were obtained for the other three years.

There is no discernable pattern in this year (nor were there in any other years) and we

can tentatively conclude that there is no heteroscedasticity within the year groupings.

Plotting the residuals against the predicted values is not the only plot that can or

should be used. Plotting the residuals against the independent variables can give some

indication as to whether a transformation of the variables is needed. If the residuals

plot out in a megaphone type shape (close to each other on one side of the graph and

spread apart on the other) then there is a problem with constant variance. If this

pattern is apparent, then a transformation on the response variables may be needed or

a weighted least squares regression method is required. [Ref. 3:p. 1481 An archlike

pattern may indicate the need for extra terms (such as a quadratic). Figure 4.2 shows
C,.

such a plot for each independent variable for a different year. Appendix D specifies

how to produce these plots from SAS. Again, each plot in each year must be checked.

These plots indicated no discernable pattern and heteroscedasticy is not indicated.

H. CHECKING FOR NORMALITY IN THE RESIDUALS

One of the most important indicators that the model is correct is in the checking

of the residuals for normalitv. This is an initial assumption for the derivation of the

regression equations and is crucial for the validity of using F-Tests as key statistical

indicators. lurthermore, if there is no discernable pattern in the residuals and if the

residuals can be shown to follow a normal distribution, then there is no graphical or

statistical indication that heteroscedasticity is present in the proposed models.

One of the quickest methods of checking for normality is to plot the residuals

and visually determine if the pattern follows a normal bell-shaped distribution. SAS

can accomplish this using the PROC CIIART statement as presented in Appendix I).

'I he output for this procedure for 1985 is as shown in Figure 4.3 . This figure tends to

support the assumption of a normal distribution, as did the charts of the other years.
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SAS
YEAR=1985

FREQUENCY BAR CHART
MIDPOINT
RESID1 RESIDUALS FREQ CUM. PERCENT CUM.

FREQ PERCENT
-0.019 1 0 0 0.00 0.00
-0.017 ***** 1 1 1.85 1.85
-0.015 ***** 1 2 1.85 3.70
-0.013 0 2 0.00 3.70
-0.011 ************.- 3 5 5.56 9.26
-0.009 *********************** 5 10 9.26 18.52
-0.007 *************** 3 13 5.56 24.07
-0.005 ***** 1 14 1.85 25.93
-0.003 ***********if******** 4 18 7.41 33.33
-0.001 **************************** 6 24 11.11 44.44
0.001 I*********************************** 7 31 12.96 57.41
0.003 ************************************** 8 39 14.81 72.22
0.005 ******************** 4 43 7.41 79.63
0.007 4******************** 4 47 7.41 87.04
0.009 ******************** 4 51 7.41 94.44
0.011 ***** 1 52 1.85 96.30
0.013 ***** 1 53 1.85 98.15
0.015 1 0 53 0.00 98.15
0.017 ***** 1 54 1.85 100.00
0.019 0 54 0.00 100.00

1 2 3 4 5 6 7 8

FREQUENCY

Figure 4.3 Graphical Inspection for Residual Normality - 1985

We can use a Chi-Squared goodness-of-fit test to further support the hypothesis

of a normal distribution. The null hypothesis is Ilo : The residuals are distributed

Normal (0, a2). The results of the Chi-Squared test for each year are as follows:

1982 -u (actual) = .262

1983 - a (actual) = .580

1984 - a (actual) = .527

1985 - u (actual) = .319

Since these values of a (actual) are greater than a (critical) = 0.1, we fail to

reject the null hypothesis that the residuals for each year group are normally

distributed.

To summarize the progress on the planning and developing of the GSM I-IIIA

model to this point, the following steps have been accomplished.

1) First regression run. Basic variables present.
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2) Data separated into time groups to nullify effects of possible autocorrelation.

3) Subsequent regressions to reduce the effects of multicollinearity.

4) Subsequent regressions to determine significant variables per time group.

5) Subsequent regressions to determine final 'best separate equation' per time group.

6) Check for leverage from insignificant outliers per time group.

7) Plots of residuals. Visual check in each time group for heteroscedasticy.

8) Check for normality in each time group using charts and statistical tests.

It is now time to repool the data back into its original longitudinal structure.

The data set has the same basic structure as in Table I on page 12, except that now we

will be working with only the four independent variables that were found to be

significant in the cross-sectional analysis.

Another regression is performed using these four variables. An overall R value

of 0.7171 is obtained. As expected, each of the variables in the individual year groups

is significant in the overall regression using both the t-Test and the stepwise F-Test.

Again, multicollinearity is not a problem as the Condition Index and Variance

Inflation Factors are well below the model goals. It is now time to check the residuals

of this overall regression for any signs of autocorrelation.

I. CHECKING FOR AUTOCORRELATION

Autocorrelation is a problem that sometimes arises with time series data.

Positive autocorrelation tends to underestimate the standard error of the estimated
coefficients and could lead to an indication of significance (i.e., slope not = 0) when

actually the coefficients are not significant.

Once the data is restructured and the regression is accomplished, one of the first

indicators for autocorrelation is for the residuals (in the overall regression) to become

non-normal. In our particular model, we will now be checking a total of 216 residuals

(54 battalions x 4 years) for normality. This is quite a large sample size to be trying to

determine a goodness-of-fit for any known distribution. If the statistical indicators

come out to confirm a normal distribution, it would be a very good sign. If not , it

could be due to the sample size or it could be the fact that the residuals arc carrying

certain biasing information concerning autocorrelation. There are several methods to

check for autocorrelation which will be covered in this section.

The results of a Chi-Square goodness-of-fit test for the re-pooled residuals

indicate an a (actual) equal to .055. This is less than a (critical) so we fail to accept

the hypothesis that the residuals are distributed normally. This is the first bad sign.
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One very quick way of checking for autocorrelation is to look at the residual

plots in Table 18. These plots are given by SAS when the request of R is indicated in

the option section of the MODEL statement. These are actually plots of the

studentized residuals (similar to those presented in Table 14) of the overall regression.

A residual that is within 0.5 standard deviations of the mean is left blank; between 0.5

and 1.0 standard deviations gets a single *; between 1.0 and 1.5 gets **; and so forth.

When checking for autocorrclation, we look for patterns in these residuals. A graphical

example of this is given in Table 18. The GOOD is a hypothetical example that is

presented for illustrative purposes. The BAP are selected segments of actual results

from our newly (repooled) postulated model. Notice that there is a distinctive pattern

of a definitive series of positive or negative residuals in the actual (BAD) results. What

we are looking for is something similar to the GOOD results where there is a seemingly

random shift between the positively and negatively plotted residuals.

TABLE 18
PLOTS OF STUDENTIZED RESIDUALS FROM SAS

I--- THE GOOD ---- I- ---------------- THE BAD---------------

BN -2-1-0 1 2 BN -2-1-0 1 2 BN -2-1-0 1 2
UU * 3C ** 6A *
UU * 3C 6A
UU 3C * 6A
UU * 3C ** 6A **
VV 3D 6F **
VV *3D 6F
VV 3D 6F
VV 3D 6F **
WW 3E * 6G *WW 3E 6GWW* 3E 6G

WW 3E ** 6G
XX 3F 6H *
XX 3F **** 6H *
XX * 3F * 6H **
XX * 3F * 6H
YY 3G 61 **YY * 3G 61
YY * 3G 61
YY 3G ** 61 **
ZZ * 3H 6J
ZZ ** 3H 6J *
ZZ * 3H * 6J **
ZZ * 3H ** 6J

Another graphical method is provided by SAS and is shown in Figure 4.4. The

PROC PLOT procedure is again used. This time we will plot the residuals from one

year versus the residuals of the previous year. The idea is that ifautocorrelation is not
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present, then the only discernable pattern should be a cloud of residual plots centered

around the (0,0) coordinate. Otherwise, we can assume that the two plotted residuals

are pairwise correlated and therefore not independent. Figure 4.4 does not look very

promising. The fact that many negative residuals are being plotted against other

negative residuals, and many positive residuals are being plotted against other positive

residuals indicates that positive correlation is very probable (negative correlation would

have been centered on the complimentary northwest to southeast axis).

One should seldom rely on graphical methods alone, however. Another test that

is easy to perform is the runs test. It is a simple non-parametric test based on

probability theory. Reference is made to Figure 4.5.

Our data is structured over a four year time period. If we place the residuals for

each battalion in a row over this four year period and if these residuals are independent

and randomly distributed we would expect them to fall in a distribution that is similar to

the distribution that is depicted at the bottom of Figure 4.5. In Figure 4.5, if we have

four columns of residuals (where each column equates to a year) and each residual can

be either positive (+) or negative (-), then probability theory indicates that there are

16 different ways (24 combinations) that these four columns of positive and negative

residuals can be arranged. By looking at the actual arrangement versus the theoretical

arrangement, we compare to see if there is independence or non-independence.

Independence is indicated if the distributions are statistically identical. Too few runs (a
run beingdefined as astring of positive or negative residuals) indicates a positive

autocorrelation between the year groups. This means that the variables in one time

period will be high if the variables in the previous time period were high and low if the

previous time period were low. Too many runs indicate that there is a negative

correlation and that one year's highs will cause the next year's to be low, and vice

versa.

In looking at Table 19, our overall analysis of the regression residuals indicate

too few runs. This signifies positive correlation. By inspection, the actual cumulative

probability distribution in Table 19 is not identical to the theoretical cumulative

distribution in Figure 4.5, therefore the residuals are not independent and

autocorrelation is possible. This supports our observations from the BAD.

One final check could be the Durbin-Watson Test. It is the most popular of the

autocorrelation tests. The Durbin-Watson test is a test which postulates a hypothesis

that there is no correlation in the residuals (110: p = 0 between adjoining periods).
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SAS
PLOT OF RESIDUALS FOR 1984 VS RESIDUALS FOR 1985

RESIDUALS
FOR 1984

0. 0150

0. 0125

0.0100

**

0.0075 * *

I * * *

0.0050 * * *

0.0025

0. 0000 -----------.. -- - -..... . ... .... --- -- --- -- --- --

-0. 0025 +

-0.0050I * *

-0. 0075

-0.0100*

-0.0125

-- - - - - - - - - - - - - - - - - - - --------- ------0.015 -0.003 0.009 .021

RESIDUALS FOR 1985

Figure 4.4 Plot of Lag-One Residuals for 1984 vs 1985 from SAS
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POSSIBLE COMBINATIONS = 24 16

(**** SIGNS ***) RUNS

1 + + + + 1
2 + + + 2
3 + + - 2
4 + + - + 3
5 + - + + 3
6 + - + 3
7 + - - 2
8 + - + - 4
9 110 - - - + 2

11 - - + + 2
12 - - + - 3
13 - + - - 3
14 - + + - 3
15 - + + + 2
16 - + - + 4

RUNS 1 2 3 4

FREQUENCY 2 6 6 2

PROBABILITY .125 .375 .375 .125

CUMULATIVE .125 .50 .875 1.00
PROBABILITY

Figure 4.5 Theoretical Distribution for Runs Test

SAS has an option (DW) which will calculate a Durbin-Watson statistic. If the
underlying data base was purely time-series in structure, then this option would be

ideal. The underlying data base for this regression, however, is longitudinal.

Furthermore, the time span of the serial portion of the data is only four years. This is

not enough units of sample size in order to do a Durbin-Watson Test with any degree

of accuracy.

J. TRANSFORMATION OF THE VARIABLES

All of the graphical and statistical techniques that we have employed indicate

autocorrelation. This implies that a transformation of the data is is required. The idea

behind the transformation that we will use is to subtract out the effects of the previous

year's correlation from the present year's data, and use this resultant transformed data

for building the finalized regression model. First, a determination of the actual

correlation is required. The calculation of the true (actual) correlation coefficient, Pa'
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TABLE 19

RUNS TEST RESULTS FOR OVERALL REGRESSION

BN R82 R83 R84 R85 (*** SIGNS ***) RUNS

IA -0.001241 0.008685 -0.008464 0.002043 - + - + 4
1B -0.011716 0.004273 -0.002061 -0.001031 - + - - 3
1C -0.007402 0.007605 0.006852 0.001432 - + + + 2
1D -0.000309 0.003754 -0.004902 -0.000976 - + - - 3
1E -0.010784 -0.003933 -0.005845 -0.001013 . . . . 1
1F -0.001267 0.002864 -0.002646 -0.005989 - + - - 3
IG 0.005885 0.013278 0.003000 -0.001671 + + + - 2
IH -0.010284 0.001426 -0.000047 -0.001306 - + - - 3
11 -0.005516 -0.002165 -0.008134 -0.005148 . . . . 1
1K -0.000963 0.003649 0.005655 0.003974 - + + + 2
IL -0.008081 0.004893 -0.006942 -0.007875 - + - - 3
IN -0.010382 0.002084 -0.014450 -0.009868 - + - - 3
3A -0.015223 0.001774 -0.012066 -0.009367 - + - - 3
3B -0.002737 0.024288 0.003528 0.007530 - + + + 2
3C -0.010129 0.000804 -0.004841 -0.009029 - + - - 3
3D 0.001749 0.022454 -0.000884 0.000942 + + - + 3
3E -0.007807 0.019081 0.000352 0.009787 - + + + 2
3F 0.002805 0.020199 0.005236 0.007384 + + + + 1
3G 0.004176 0.017198 -0.001996 0.008889 + + - + 3
3H -0.000892 0.018997 0.008046 0.012272 - + + + 2
31 -0.010070 0.011057 0.000395 0.003383 - + + + 2
3J -0.017311 0.017266 -0.003279 -0.004264 - + - - 3
3K -0.006674 0.023623 0.002226 -0.002977 - + + - 3
4A -0.008884 0.010292 0.003525 0.008390 - + + + 2
4C -0.010280 -0.005494 -0.008715 -0.011747 - - - - 1
40 -0.004799 0.008260 0.003489 0.007306 - + + + 2
4E -0.013210 -0.002234 -0.011172 -0.009604 - - - - 1
4F -0.006490 0.015066 0.001456 0.003886 - + + + 2
4G -0.004083 0.007727 0.001667 0.004095 - + + + 2
4H -0.012256 0.002925 -0.003732 -0.000890 - + - - 3
41 -0.016221 0.001357 -0.005137 0.001106 - + - + 4
4J -0.008587 0.001020 -0.003359 0.001753 - + - + 4
4K -0.009324 0.004253 0.002135 0.006641 - + + + 2
5A 0.009027 0.018026 0.003143 0.003796 + + + + 1
5B 0.009407 0.019036 0.014146 0.009152 + + + + 1
5C -0.004602 0.013281 -0.000192 0.004489 - + - + 4
5D -0.007355 0.003645 -0.005200 -0.001307 - + - - 3
5E -0.001404 0.008321 0.002072 0.002669 - + + + 2
5F -0.010517 -0.001710 -0.001200 0.006828 - - - + 2
5H -0.003820 0.010553 0.003917 0.002602 - + + + 2
51 -0.015058 0.000153 -0.003294 0.004511 - + - + 4
5J -0.009090 0.004122 -0.002474 0.003986 - + - + 4
5K -0.014821 0.00959 0.002669 0.004858 - + + + 2
5L -0.008416 0.003143 -0.003995 0.002807 - + - + 4
5M -0.013881 0.003025 0.002460 0.005870 - + + + 2
5N -0.003045 0.015589 0.004272 -0.001644 - + + - 3
6A -0.007684 -0.002056 -0.009474 -0.009681 . . . . 1
6F -0.009216 -0.000314 -0.003385 -0.009416 . . . . 1
6G 0.005392 0.023753 0.015176 0.016055 + + + + 1
6H -0.005602 0.005791 -0.012722 -0.015993 - + - - 3
61 -0.009914 0.003006 -0.000451 -0.011823 - + - - 3
6J -0.019204 -0.006437 -0.012900 -0.015844 . . . . 1
6K -0.012839 -0.001868 -0.003404 -0.009066 . . . . 1
6L 0.000567 0.013283 0.007282 0.005887 + + + + 1

RUNS 1 2 3 4
FREQUENCY 13 17 17 7 (TOTAL =54)
PROBABILITY .24 .31 .31 .13
CUMULATIVE .24 .55 .86 1.00
PROBABILITY
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for the data base for our overall regression is according to the following formula.

[Ref. 8:p. 5101

':lA,85x:IA,84 + EIA,84XClA,83 + ':IA,83x':IA,82 + ':IB,85x:IB,84 + .....
Pa=

2A84 + 21A83 + 1A,82 + 1B84 .....

Substituting the residuals from the regression (Table 19), this implies that the

true correlation coefficient for this overall regression is

(.002043)(-.008464) + (-.008464)(.008645) + (.008645)(-.001214) + (-.001031)(-.002061) + ......

Pa

(-.008464)2 + (.008685)2 + (-.001241)2 + (-.001031)2 + ......

= .175482

A positive value for Pa is consistent with all of the other indications of correlation.

For the first data line (BN IA, 1982) the transformation of the independent and

dependent variables are according to the following formulas. [Ref. 8:p. 510]

xi, -( pa2)/2 xi, I

y I lPa2) I12 (4.1)

where i= PROP,BNPER,RCTR,PERCWI

For the last 215 data lines, the following equations are utilized.

x i ,] = xij - Pa xij-1

Y j ' Yj - Pa Yj-I (4.2)

where i= PROP,BNPER,RCTR,PERCWI

j = 2,3,...,216

Again, these transformations are to nullify the effect of previous year correlation on

the next year's data.
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Although we assume (and there is in fact) independence (and therefore no

correlation) between one battalion in 1985 and another battalion in 1982, the data

structure dictates that a transformation between these two variables is warranted. For

instance, there is no correlation between battalion IA in 1985 and battalion IB in 1982.

*However, equations 4.2 dictate that
*b*

X i,1lB,1982 = Xi,IlB,1982- Pa Xi, lA,1985
and

Y 1B,1982 = Y1B,1982 - Pa YlA,1985

where i= PROP,BNPER,RCTR,PERCWI

After transforming all of the variables in the data base of the final model, we

arrive with the Development Phase finalized matrix of longitudinal data. It appears as

below.

PENT PROP BNPER RCTR PERCWI

0.406 1 14.471 0.012 52.915 0.944 bo

0.049 1 12.520 0.010 42.817 0.791 b1
y- X

0.050 1 6.955 0.021 78.398 0.750 b

where Y = 216x I matrix (a column vector of the dependent variables)

X = 216x 5 matrix (a column vector of l's catonated with the

216x 4 matrix of the independent variables)

= 5 x 1 matrix (a column vector of parameter estimates)

K. INSPECTING THE RESULTS

A regression on these matrices is now performed with the results as displayed in

Table 20. The "T' on the end of the variable names now indicate a transformed

variable.
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TABLE 20

RESULTS OF REGRESSION ON TRANSFORMED DATA

SAS
DEP VARIABLE: PENTTRANS

SUM OF MEAN
SOURCE DF S8UARES SQUARE F VALUE PROB>F
MODEL 4 0.030239 0.007559647 99.795 0.0001
ERROR 211 0.015984 0.0000757518
C TOTAL 215 0.046222

ROOT MSE 0.008703551 R-SQUARE 0.6542
DEP MEAN 0.042223 ADJ R-SQ 0.6476
C. V. 20.61326

PARAMETER STANDARD T FOR HO: VARIANCE
VARIABLE DF ESTIMATE ERROR PARAMTR=O PROB>jTJ INFLATION

INTERCEP 1 0.062179 0.007412616 8.388 0.0001 0.000000
PROPT 1 0.001531895 0.0001770035 8.655 0.0001 1.408339
BNPERT 1 2.685632 0.203836 13.175 0.0001 2.790335
RCTRT 1 -0.000537034 .00004744603 -11.319 0.0001 3.190078
PERCWIT 1 -0.056823 0.007936443 -7.160 0.0001 1.363656

CORRELATION OF ESTIMATES
CORRB INTERCEP PROPT BNPERT RCTRT PERCWIT

INTERCEP 1.0000 -0.6785 0.3278 -0.6033 -0.8795
PROPT -0.6785 1.0000 -0.2127 0.4426 0.3689
BNPERT 0.3278 -0.2127 1.0000 -0.7775 -0.4271
RCTRT -0.6033 0.4426 -0.7775 1.0000 0.4452
PERCWIT -0.8795 0.3689 -0.4271 0.4452 1.0000

COLLINEARITY DIAGNOSTICS VARIANCE PROPORTIONS

CONDITION PORTION PORTION PORTION PORTION PORTION
NUMB EIGENVALUE INDEX INTERCEP PROPT BNPERT RCTRT PERCWIT

1 4.763 1.000 0.0003 0.0028 0.0014 0.0011 0.0005
2 0.165250 5.369 0.0006 0.2364 0.0399 0.0371 0.0003
3 0.043872 10.419 0.0199 0.3818 0.0849 0.0387 0.1173
4 0.024188 14.032 0.0125 0.0001 0.6515 0.4867 0.0197
5 0.003914 34.884 0.9667 0.3789 0.2223 0.4364 0.8621

This indicates that our 'best regression' equation is

PENTT = 0.062179 + 0.001531 PROPT + 2.68563 BNPERT

- 0.000537 RCTRT - 0.056823 PERCWIT + c

After checking for heteroscedasticy, leverage and then repooling the data with the

final four independent variables, we obtained a pre-transformed R2 value of .7171.

The R2 value of the transformed data is now .6549. This drop is to be expected after

reducing the variables via the transformations due to the positive autocorrelation. The

final model of the transformed data fulfills all of the preliminary goals as outlined in
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Figure 3.1. The positive parameter estimates for PROPT and BNPERT are reassuring.

We would expect that the Penetration would increase as the Propensity and Battalion

percent of mission increases. The negative signs for RCTRT and PERCWIT

however, are worthy of discussion.

If RCTRT has a negative value, then USAREC is probably experiencing negative

returns to scale in the employment of recruiters. These results have been empirically

substantiated by previous studies. [Ref. 6] This finding was not apparent in the initial

regressions when CONT was the dependent variable. Obviously, more recruiters bring

in more contracts. With PENETRATION as the dependent variable, however, the

slope of the regression plane through the RCTR dimension in the carrier hyperspace is

negative, indicating negative returns to scale in the market penetration.

The negative slope for PERCWIT is a little more difficult to explain. It must be

remembered that this variable was always the least significant of the four significant

variables in the stepwise regressions (it was always brought in last). Again, it is very

possible that its parameter estimate is being heavily. influenced by the costock of

variables. Furthermore, its absolute magnitude is relatively high. In checking with

Appendix B, the maximum value of PERCWI is .99. A maximum PERCWIT input

value of x* =.816272 would decrease PENTT by a total of .046830 (P1 x PERCWIT

-.056823 x .816272 = 0.046830). The maximum PERCWIT input value would be

L derived by a battalion with a 99% white population that is transformed. This is

calculated as

x = .99 - (.175482 x .99) = .816272

where p = .175482

1%

A total decrease in Penetration of .046830 is significant when one considers that the

average value of Penetration is .051157. This further supports the theory that the

parameter estimate for PERCWIT is highly influenced by its costock.

After satisfying ourselves that the 'best equation' has been obtained to this point,

it is now time to move into the Validation and Maintenance Phase of the GSM 1-1IlA

model.
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V. VALIDATION AND MAINTENANCE OF THE GMA-I-IIIA MODEL

In this section we will discuss a few techniques for verifying and updating the

GSM I-IIIA model. It may be useful to review Figure 2.3 of Chapter 2 at this time.

A. CHECK FOR SYSTEMATIC LACK OF FIT

Much work has been accomplished towards the development of this model.

Many checks and balances have been performed along the way for compliance with the

application of the theory of multivariable regression analysis. As was indicated in

Table 20, we have achieved a final R 2 value of .6542 for the transformed data model.

A few final checks need to be performed to ensure that there is no lingering systematic
lack of fit.

First of all, a plot of the residuals to check for normality is shown in Figure 5.1.

A normal, symmetric distribution seems to, be indicated. A Chi-Squared goodness of

fit test is performed on these residuals. The hypothesis is -1: the residuals are

normally distributed. The level of significance of this test is a (actual) = .4003. Since

a (actual) > a (critical), and since the graphical representation indicates no apparent

problems, we fail to reject the null hypothesis that the residuals are normally

distributed.

Secondly, we need to ensure that the transformation that was applied using

equations 4.1 and 4.2 on page 60 is effective in nullifying the effects of autocorrelation.

Longitudinal data presents special problems due to its structure. Autocorrelation

is a almost always a time series problem, and we have a mixture of cross sectional and

time series data. The runs test is especially applicable to this type of data structure. A

runs test was performed on the residuals from the transformed data and the results are

as appears in Table 21. Comparing Table 21 with Table 19 indicates that there is

much less of a problem now with too few runs. In fact, the middle distributions of two

and three runs has shifted dramatically toward the three runs side. A distribution like

this indicates possible negative correlation. This would really be considered a weak

indication, however, because the skewness of the distribution in Table 21 is weighted

more in the center than in the tails. A better indicator might be a check of the final

calculation of Pa-
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FREQUENCY BAR CHARTMIDPOINT
RESID1 RESIDUALS FREQ CUM. PERCENT CUM.

FREQ PERCENT
-0.018 ** 2 0.93 0.93
-0.016 *** 3 5 1.39 2.31
-0.014 ******* 7 12 3.24 5.56
-0. 012 ******** 8 20 3.70 9.26
-0. 010 ************ 12 32 5.56 14.81
-0.008 ***************** 17 49 7.87 22.69
-0. 006 ***************** 17 66 7.87 30.56
-0. 004 * 15 81 6.94 37.50
-0. 002 ******************* 19 100 8.80 46.30
0. 000 * 21 121 9.72 56.02
0. 002 ***************** 17 138 7.87 63.89
0. 004 * 27 165 12.50 76.39
0. 006 ************* 13 178 6.02 82.41
0. 008 ********** 10 188 4.63 87.04
0.010 **** 6 194 2.78 89.81
0.012 ******* 7 201 3.24 93.06
0.014 ** 2 203 0.93 93.98
0.016 **** 4 207 1.85 95.83
0.018 * 1 208 0.46 96.30
0.020 **** 4 212 1.85 98.15
0.022 * 1 213 0.46 98.61
0. 024 ** 2 215 0.93 99.54
0.026 * 1 216 0.46 100.00

.....--- ..---- . .---- ..-- "....--- -

5 10 15 20 25

FREQUENCY

Figure 5.1 Graphical Inspection for Residual Normality - Transformed Data

Calculating Pa in the exact same manner as before, we derive a value of Pa =

-0.0335. The negative sign confirms our suspicions of possible negative correlation,

but, by inspection, the magnitude of Pa indicates that autocorrelation has been

removed from the model.

Since there is no suggestion of systematic lack of fit in the model, we can assume

that the statistical tests that were utilized to derive the parameter estimates were valid.

Now it is time to check these parameter estimates.

B. MODEL RANGES AND VALIDATION

There are several methods which can be employed to validate our model

equation. As stated in Chapter 4, the equation is of the following form.

PENTT = 0.062179 + 0.001531 PROPT + 2.68563 BNIERT

- 0.000537 RCTRT - 0.056823 PIERCWIT + c
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TABLE 21

RUNS TEST RESULTS FOR TRA \NSFORMED DATA REGRESSION

1A 0.010457 0.008586 -0.010425 0.003279 + + - + 3
lB -0.011753 0.006372 -0.002550 -0.000714 - + - - 3
1C -0.007723 0.008380 0.004769 -0.000287 - + + - 3
1D -0.000885 0.003093 -0.006209 -0.000612 - + - - 3
1E -0.010802 -0.002197 -0.005321 -0.000323 - - - - 1
IF -0.001459 0.002551 -0.003726 -0.005976 - + - - 3
IG 0.006778 0.012082 0.000716 -0.002583 + + + - 2
IH -0.009648 0.003526 -0.000262 -0.001198 - + - - 3
11 -0.005554 -0.001443 -0.008009 -0.003968 - - - 1
1K -0.000175 0.003744 0.004849 0.003003 - + + + 2
IL -0.009204 0.005889 -0.007881 -0.006555 - + - - 3
1N -0.008958 0.004106 -0.014852 -0.007569 - + - - 3
3A -0.012683 0.005024 -0.012097 -0.006631 - + - - 3
3B -0.001632 0.024406 -0.001163 0.00.6198 - + - + 4
3C -0.011272 0.002459 -0.004985 -0.008590 - + - - 3
3D 0.003759 0.022579 -0.004615 0.001265 + + - + 3
3E -0.007486 0.020729 -0.002826 0.009715 - + - + 4
3F 0.000833 0.019648 0.001369 0.006114 + + + + 1
3G 0.003206 0.016546 -0.005273 0.009253 + + - + 3
3H -0.001774 0.019725 0.005222 0.011323 - + + + 2
31 -0.012090 0.012593 -0.001590 0.003293 - + - + 4
3J -0.017347 0.020900 -0.006018 -0.003382 - + - - 3
3K -0.005122 0.025383 -0.001271 -0.002976 - + - - 3
4A -0.008369 0.011944 0.001900 0.007899 - + + + 2
4C -0.012380 -0.003886 -0.007995 -0.010329 - - - - 1
4D -0.002797 0.009086 0.002063 0.007047 - + + + 2
4E -0.014781 -0.000016 -0.010916 -0.007581 -. . . 1
4F -0.004567 0.016403 -0.001033 0.003902 - + - + 4
4G -0.005086 0.008043 0.000023 0.003563 - + + + 2
4H -0.013032 0.004767 -0.004349 -0.000339 - + - - 3
41 -0.016027 0.004291 -0.005444 0.002247 - + - + 4
4J -0.009373 0.002289 -0.003637 0.002267 - + - + 4
4K -0.010106 0.005358 0.001300 0.006201 - + + + 2
5A 0.007874 0.016325 -0.000111 0.002726 + + - + 3
5B 0.008970 0.017374 0.010726 0.006338 + + + + 1
5C -0.005943 0.014285 -0.002616 0.004309 - + - + 4
5D -0.008178 0.004904 -0.006028 -0.000690 - + - - 3
5E -0.001323 0.008089 0.000236 0.001816 - + + + 2
5F -0.010071 0.000757 -0.000846 0.007033 - + - + 4
5H -0.005214 0.010879 0.001381 0.001187 - + + + 2
51 -0.015174 0.003128 -0.003256 0.004723 - + - + 4
5J -0.010100 0.005254 -0.003589 0.003879 - + - + 4
5K -0.015408 0.011757 0.000451 0.003992 - + + + 2
5L -0.009754 0.004019 -0.005002 0.003235 - + - + 4
5M -0.014262 0.005128 0.001499 0.004761 - + + + 2
5N -0.004140 0.015539 0.000897 -0.002710 - + + - 3
6A -0.006741 -0.000386 -0.008856 -0.007702 - - - - 1
6F -0.007629 0.001181 -0.003418 -0.008621 - + - - 3
6G 0.007668 0.023303 0.011498 0.013911 + + + + I
6H -0.008195 0.006858 -0.013745 -0.013408 - + - - 3
61 -0.006979 0.004854 -0.001002 -0.011557 - + - - 3
6J -0.017226 -0.003314 -0.012041 -0.013655 -. . . 1
6K -0.010154 0.000221 -0.003127 -0.008226 - + - - 3
6L 0.002192 0.012931 0.004692 0.004992 + + + + 1

RUNS 1 2 3 4
FREQUENCY 10 11 22 11 (TOTAL = 54)
PROBABILITY .19 .20 .41 .20
CUMULATIVE .19 .39 .80 1.00
PROBABILITY
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One of the quickest and easiest methods is to check the equation at the midpoint

and at the extremes of the data ranges. By inserting the mean values of the

independent variables on the right hand side of the above equation, we would expect

the resultant equality to be equal to the mean value of Penetration. This is because, by

definition, Y = 3 X . Another check is to look at the minimum and maximum values

of the dependent variable. First we choose the battalion with the lowest value of

Penetration. Then we insert into the equation the data that corresponds to this

minimum value. We would expect that the resultant value of PENTT from this

equation would be moving away from the mean and towards the minimum value of

Penetration. The same logic also applies for the maximum value of Penetration.

Appendix B provides all of the relevant data that is required to initiate these

tests. Appendix B also contains the data ranges for which this model is valid.

Regression theory dictates that the regression equation is relatively reliable near the

means of the inputted data ranges. At the extremes it is much less accurate. For any

inputted data values outside of the data range, the model can be considered to have no

predictive value. From Appendix B, the means of the data ranges are as follows:

DATA AT THE MEAN =>

PENT PROP BNPER RCTR PERCWI

(MEAN) 0.05115 14.48 0.0183 88.69 0.8429

Taking the minimum and maximum values of PENT from Appendix B, we search

the data base to find the corresponding input variables for these values. The minimum

Penetration over the four year time span was obtained by battalion 6J in 1982. The

maximum Penetration was by battalion 3D in 1983. The variables for these two

extreme values of Penetration are as follows:

DATA AT TtlE MIN = >

PENT PROP BNPER RCTR PERCWI

(6J;1982) 0.01967 8.0 0.0136 59.0 0.9431

DATA AT THIE MAX =>

PENT PROP BNPER RCTR PERCWI

(3D;1983) 0.10396 23.9 0.0163 68.25 0.6676
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Applying the transform where x* = x - (Pa) x for all of the above variables

(where Pa = .175482), the following transformed variables are derived.

PENT PROP BNPER RCTR PERCWI

(MEAN) 0.04218 11.93 0.0150 73.12 0.6950

(6J;1982) 0.01622 6.59 0.0112 48.63 0.7776

(3D;1983) 0.08572 19.71 0.0134 56.27 0.5504

Inserting the values of the independent variables in the regression equation
supplies the following results.

TEST AT THE MEAN = >

0.062179 + 0.001531 (11.93) + 2.68563 (.0150) - 0.000537 (73.12) - 0.056823 ('6950)

= 0.04221

TEST AT THE MIN = >

0.062179 + 0.001531 (6.59) + 2.68563 (0.0112) - 0.000537 (48.63) - 0.05682 (.7776)

= 0.03204

TEST AT THE MAX = >

0.062179 + 0.001531 (19.71) + 2.68563 (.0134) - 0.000537 (56.27) - 0.056823 (.5404)

= 0.06741

As can be readily seen, the test at the mean provides an estimate of the

dependent variable (0.04221) that is extremely close to the mean value of the

transformed dependent variable (0.04218). The discrepancy is due purely to roundoff

error. At the extremes, the magnitude is not nearly so close. This lack of accuracy is

not, however, unexpected. At the extremes, we are satisfied that the equations provide

predictions that are in the correct direction.

C. USING THE REGRESSION EQUATIONS

Once that we are satisfied that the regression equations are behaving correctly,

we can begin to utilize the model as a tool for predicting GSM I-IIIA contracts.

As was previously stated in this thesis, one o" the primary objectives is to

minimize the number of input variables in the model. For every independent variable

that is included in the model, the analyst must devise some scheme to predict that input

variable. It does not matter how close of a fit one can achieve with a predicting

regression model. The results can only be as accurate as the inputted data.
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Ways of predicting the independent variables for this particular model could be

the subject for several more theses. The desired complexity is left totally to the

discretion of the analyst.

Some variables, such as RCTR and PERCWI are relatively stable and fairly

predictable. Predicting experienced recruiters for a future year may merely entail

,. looking at unit manning rosters. The use of the prior year estimate for PERCWI

might be the most logical choice for the next year's prediction.

The variable BNPER is relatively stable for some battalions, but suffers a wide
variance in others. Again, unless the analyst has some reason to feel otherwise,

possibly using the previous year's data for next year's prediction might be the most

reasonable choice.
Propensity is the most significant variable in the regression equation. We would

like to be as accurate as possible in the prediction of this variable. The variance for

this variable has been dissipated due to the fact that we are using a four year moving

average. Propensity may be particularly attractive to more complex regression

techniques since it is a 'catch all' type variable and may be partially explained by

several other controllable variables.

There are numerous methods that an analyst can utilize to predict future year

carrier variables. For illustrative purposes, this study will make a few simple

assumptions for a 1986 data base and apply the proper methods of applying the

regression equation. If the analyst wishes to predict the propensity for any one

particular battalion, he should follow the same methodology that was utilized in testing

the minimum and maximum values. That is, merely estimate the values of the
independent variables for the battalion under consideration, transform and insert these

values into the regression equation. If the analyst wishes to predict contracts for the

entire Army, he must estimate values for the entire data base. A simple example of

this procedure is provided.

The following assumptions will be utilized to determine the 1986 data base for

the GSM I-lIlA model. These assumptions are merely hypothetical and are not based

on any factual data or observations.

1) PROP - Assume a 2% across the board drop in propensity from 1985

levels for every battalion.

2) BNPER - Due to changing economic conditions, allocate an increase of

0.02 % to each battalion in the 5th Brigade (except 4A and 4C)
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and a 0.02 % decrease in each battalion in the 6th Brigade from

1985 levels.

3) RCTR - Assume a net gain of two recruiters per battalion over 1985

recruiter endstrengths.

4) PERCWI- Assume the same white percentage population as in 1985.

The data base for 1986, under the above assumptions, would be structured as shown

below. A comparison with Table I on page 12 displays the differences between the

1985 data base and this assumed 1986 data base.

BN PROP86 BNPER86 RCTR86 PERCWI86

IA 13.7 0.0129422 52.00 0.959761

1B 15.4 0.0287982 152.50 0.727236
: • .

6L 6.5 0.0247549 99.00 0.909940

After applying the necessary transformations as specified in equations 4.1 and 4.2
on page 60, the finalized matrices for the assumed 1986 data base are as shown below.

Y IA 1 13.48 0.0127 51.193 0.944 0.062179
Y*I

Y IB 1 11.29 0.0107 42.874 0.791 0.001531

Y 86 X 861 2.68563
-0.000537

y 6L 1 6.101 0.018 88.841 0.677 -0.056823I

where Y 8 6 = 54 x I matrix (a column vector of the dependent variables)
X 86 = 54 x 5 matrix (a column vector of l's catonated with the

54 x 4 matrix of the independent variables)

5 x I matrix (a column vector of parameter estimates)

Multiplying the X matrix times the P3 matrix will result in a 54 x I matrix of the
transformed y values (PENTT). This matrix represents the model's predictions for

transformed penetration in each battalion in 1986. In order to solve for total
contracts, we need to 'untransform' the y values and multiply the resultant matrix
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times the estimated number of HSSMA for each battalion. Since we transformed the

data by yt = (Yt) - P (Yt-)' we 'untransform' using the following equation.

Yt = P (yt-1)+ X t(I) >

Y86 = P (Y85) + X' 86 (Ji)
= P (Y85)+ Y 86

This implies that

.0543 .03586 .04543

.0562 .04010 .05001
y86 = .175482 +

.0378 .01967 .04395

Using the USAREC estimates (as of 20 June, 1986) for the number of 1986 High

School Male Market Available (HSSMA 8 6), the following matrix equations will

provide the number of contracts per battalion for each of the 54 battalions represented

in the model.

.04543

.05001
x HSSMA 86  x [12396 27547 . . . 22784]Y86 x SM86=:...

.04395

=[563 1377 .... 1001]

Taking the sum of all of the individual battalion contracts will result in the

aggregate number of Army contracts predicted in 1986.

Total Army Contracts = 563 + 1377 + ... + 1001

= 50,132

Therefore, under the assumptions that we specified for the 1986 data base, total

Army GSM I-I11A contracts for the 54 included battalions in 1986 should equal
50,132. This compares with 50,794 in 1982; 62,781 in 19S3; 51,359 in 1984; and 55,098

in 1985.
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VI. CONCLUSIONS AND RECOMMENDATIONS

WO In this thesis, the problem of building a predictive model in order to determine
VI,.

high quality Army enlistment contracts was formulated and solved using stepwise and

ordinary least squares linear regression analysis.

The model was developed using a readily available data base and easily obtained
variables. It is simple in structure and requires the analyst to predict only a limited

number of input variables. All of these aspects contribute towards the desired goal of

developing an easy-to-understand and easy-to-update regression model.

This model could be used as a framework for the continued development and

refinement of a predictive model to be used by USAREC and DCSPER analysts.

There is a need for a 'quick look' predictive tool for getting fast answers to a variety of
proposed policy changes. Army analysts at USAREC and DCSPER are trying to

upgrade and refine their capabilities in this area.

In concluding this study, a few recommendations are in order. First of all, there
needs to be a concerted effort to continually maintain and update the relevant data

bases under USAREC control. The mathematical formulations and theories that arc

used in the technical analysis are useless without an accurate data base. Furthermore,

the data maintained by USAREC is highly susceptible to the effects of autocorrelation.
In order to efficiently counteract this undesirable side effect, all of the data must be
assimilated in time specific intervals. Monthly, quarterly or yearly data bases need to

be established. Some conscientious and straightforward method needs to be developed
in order to measure or estimate the variables. After this methodology is developed, it

needs to be well-documented. A universal understanding of the data by both the

on-line analysts and potential external/contractor analytical assistants is essential.

Also, much work could be done towards predicting input variables for this model.
Propensity is the most significant variable in this model and there are probably several

variables in the data base which affect the propensity of individuals to join the Army.

Discovering how income per capita or unemployment rates arc reflected in the

propensity for service could lead to some insight into the enlistment process.

A more accurate assessment of the behavior of individual battalions could be a
worthwhile project. This study models the 'typical' battalion and is useful in

,2
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interpreting and comparing against the average. A more detailed study of each

individual battalion could prove to be fruitful in leading to an understanding of the

variances in the cross-scctional behavior over time.

Finally, there needs to be a continued emphasis on the efficient allocation of

recruiters. It is the one variable that is most easily controlled by the Army personnel

establishment. The negative returns to scale that were discovered in the development

phase of this model is somewhat unsettling. In a large and dispersed organization such

as USAREC, some negative returns may be unavoidable. This is especially true when

mission takes priority over costs. Its existence needs to be recognized, however, and

positive control measures need to be implemented, continually assessed, and updated.
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APPENDIX A

SELECTED GLOSSARY OF REGRESSION TERMS

Definitions of selected regression terms are presented as follows:

Adjusted R2 (Ra 2) A statistic where an adjustment has been made for the

corresponding degrees of freedom of the two quantities, the Residual Sum of Squares

(RSS) and the Corrected Total Sum of Squares (CTSS). The idea behind the Ra 2 is
that this statistic can be used to compare equations fit not only to a specific set of data

but also to two or more entirely different sets of data. This statistic is usually used

only as an initial gross indicator. [Ref. 3:p. 921

Analysis of Variance (ANOVA) Table - Format for the presentation of key statistics of

a regression model. Typically, it is given as follows: [Ref 3:p. 20]

Source of Degrees of Sum of Squares Mean Square F Value Prob> F
Variation Freedom (d) (SS) (MS)

Due to the n
Regression x 2(Yi-Y) MS MS 2

1y-Y MReg MReg' s
(MODEL) i= I SS/dQ

About the n

Regression n-x+ 1 _(Yi-Yi) s SS(n-2)

(ERROR) i=1

Total, n
Corrected n- 1 (Yi-7)2

for the Mcan i= I

where Yi = Y (actual) Yi= Y (predicted) Y = Y (average)

n = number of observations x = number of predictor variables
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Alpha (a) - a is the level of significance. It is -the maximum probability of rejecting a

true null hypothesis (1I). [Ref. 9 :p. 78 ]

Autocorrelation - Autocorrelation is a situation, usually found in time series data, in

which the impact of a independent variable on the dependent variable is not always

completely instantaneous. This implies that there is a a correlatidn, usually over time.

Also known as Serial Correlation. [Ref. 10:p. 289]

Backward Stepwise Elimination Procedure - A procedure that tries to examine only the

'best' regressions containing a certain number of variables. The basic procedure is as

follows:

1. A regression equation containing all of the variables is computed.

2. The partial F-test value is calculated for every predictor variable

treated as though it were the last variable to enter the regression

equation.

3. The lowest partial F-test value, say Fl, is compared with a

preselected significance level, say Fo.
a. If Fl < FO, remove the variable which rose Fl from consideration

and recompute the regression equation in the remaining variables.

Then reenter stage (2).

b. If FI> FO, adopt the regression equation as calculated. [Ref. 3:p. 305]

Carrier Variables - See Independent Variables.

Coefficient of Determination - See R2 [Ref. 10:p. 1461

Confidence Coefficient - Confidence Coefficients are used when speaking of confidence

intervals. The confidence coefficient is the number (I-ai) x 100 percent. Therefore, at

an a equal to .05, the confidence coefficient is equal to 95 percent. [Ref. 10:p. 55]

Corrected Sum of Squares - The Corrected Sum of Squares (CSS) is the value obtained

when the Correction for the Mean is subtracted from the Uncorrected Sum of Squares.

Notationally, this is CSS = X1
2 - (yXi2)/n and is called the Corrected Sum of

Squares for the X's. [Ref. 3:p. 14]

Corrected Sum of Products - The Corrected Sum of Products (CSP) is the value

obtained when the Correction for the Mean is subtracted from the Uncorrected Sum of
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Products. Notationally, this is CSP = ZXiYi - (ZXi)(ZYi)/n and is called the

Corrected Sum of Products for X and Y. [Ref. 3:p. 14]

Correlation Coefficient - The correlation coefficient, puw, provides an empirical
measure of the linear association between U and W. Its values can be between -1 and

1. When puw is nonzero, this means that there exists a linear association between the

specifics values of xi and Yi in the data. The value of a correlation pxy shows only the
extent to which x and y are linearly associated. It does not by itself imply that any
sort of causal relationship exists between x and y. [Ref. 3:p. 43]

C(P) Statistic - The C(P) statistic is used to assess the fit of a regression equation. It is
closely related to the R2 and adjusted R 2 statistic. A close fitting model will have a

low C(P) value close to P, where P is the number of parameters in the model including

0o. If several models are being contemplated, one method to determine the "best"

model is to plot C(P) vs P for all of the models and then choose the model where C(P)

falls closest to the P line. One word of caution, however, is that smaller models have

smaller values of C(P), but larger models have C(P) values closer to P. If a low C(P)
value close to P is not clear cut, then the analyst must make a decision. See reference

for more complete details. [Ref. 3:p. 299]

Degrees of Freedom - Degrees of freedom (in regression) is a number that is associated

with any sum of squares. This number indicates how many independent pieces of
information involving the n independent numbers YI, Y2, Y3, ... are needed to compile

the sum of squares. [Ref. 3:p. 19]

Dependent Variable - The receptor of changes that are deliberately made or that simply

happen to the independent variables. Also called the Response Variable, it is the value

that a regression model is trying to predict or control. [Ref. 3:p. 3]

Dummy Variable - A variable used as an independent variable that is arbitrarily picked

by the analyst. It is introduced to factor two or more distinct levels of data that may

have separate deterministic effects on the dependent variables. They are usually (but

not always) unrelated to the any physical levels that might exist in the factors

themselves. [Ref. 3:p. 241]

Endogenous Variables - Variables that are jointly determined or that have outcome

values determined through the joint interaction of other variables within the system.

[Ref. 10:p. 3391
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Exogenous Variables - Exogenous variables affect the outcome of the endogenous

variables, but are determined outside of the system. [Ref. I0:p. 339]

F Test for the A NOVA Table - F equals the ratio of the Mean Square due to the

Regression divided by the Mean Square about to Regression. Algebraically, it is F =

MSReg / s2. (see Analysis of Variance definition). This value is then compared to the

100(1-t) % point of an F distribution with (Nr - N.) and Ne degrees of freedom. If

the ratio is significant (ie -prob> F in ANOVA Table is greater than the selected

100(1-t)% ) than the model is probably inadequate and attempts should be made to

discover when and how the inadequacy occurs. If the F value is insignificant (ie -

prob> F in ANOVA Table is less than the selected 100(l-cz)%), then it is reasonable to

assume that the model is accurate and that the pure error (or residual error - S2) and

the lack of fit (MS) mean squares can be used as estimates of U2. [Ref. 3:p. 37]

Forward Stepwise Regression Procedure - A technique which begins with no variables in

a model. For each independent variable, a F statistic is calculated to reflect that

particular variables contribution to the model if it is included. Variables are then

included in the order of most significant to least significant. [Ref. 4:p. 102]

General Linear Hypothesis - The General Linear Hypothesis is of the form -- Y = 10
+ 1XI + 032 X2 + c, where y is the dependent variable, X1 and X2 are the

independent variables, Po is the intercept value, 31 and 02 are the 'coefficients' or

parameter estimates and c is the error term. [Ref. 3:p. 102]

Heteroscedasticity - H-eteroscedasticity is a situation in which the random errors (Ci's)

from the statistical regression model have different (non-constant) variances.

[Ref. 10:p. 289]

Hornoscedastic - A situation where there is an identical variance in the random errors.

Homoscedastic is the converse of heteroscedastic. [Ref. 10:p. 119]

Indempotent Matrix - An indempotent matrix is a special form of a matrix that is

symmetric and that holds the following two properties. [Ref. 10:p. 311

1) M = M'and

2) MxM = M 2 = M
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Idependent Variable - Variables that can either be set to a desired value or else take on

values that can be observed but not controlled. Also known as Carrier or Predictor

Variables. [Ref. 3:p. 3]

Lack of Fit - A situation in which a postulated model is not correct. Lack of fit is

present when the residuals contain both random AND systematic errors. [Ref. 3:p. 34]

Level of Significance - See a

Least Squares - A concept having to do with minimizing the square of the distance

between an actual and predicted value. See Chapter 1, Section E for a detailed

explanation.

Latent Variables - Variables that are not incorporated in a regression equation (or,

perhaps, are not even measured) that contribute to the error in the model. Also called

Lurking variables. [Ref. 3:p. 2951

Lurking Variables - See Latent Variables.

,lulticollinearity - Also known as ill conditioning, multicollinearity is a situation in

which there is an interrelationship amongst the predictor (or carrier) variables. These

interrelationships will adversly affect statistical results which may cause estimated

values to be far firom the true values. [Ref. 10:p. 610]

Multiple Regression - Regression using more than one explanatory (or carrier) variable.

Nonsingular Matrix - A square matrix whose determinate is nonzero. Nonsingular

matrices have full row rank (all rows and columns are linearly independent). [Ref. IlI

Normal Equation for Multiple Linear Regression - The general linear equation for

multiple linear regression in matrix form is as follows. [Ref. 3:p. 74]

x'xP = x'Y

Overfitting - The fitting of regression equations that involve more predictor variables

than are necessary to obtain a satisfactory fit to the data. [Ref. 3:p. 298]

Outliers - An outlier is a point that is far from the mean in absolute value and is,

perhaps, several standard deviations away from the mean. In regression analysis, a

residual that is an outlier comes under close scrutiny in order to determine if its

peculiarity can be established. [Ref. 3:p. 1521
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Parameter Equations for Simple Linear Regression - The general equations for

estimating simple linear regression parameters are as follows. [Ref. 3:p. 14]

! 1 SxyI/Sx and PO = Y  P,

where: S xy= YXiYi - nXY

sxx= EXi2 - nX 2

Residuals - Residuals (often denoted ci) is the difference between the actual value of y

and the predicted value of y. Algebraically, this is denoted as Yi - Yi. The residuals

contain all the information on the way in which the regression model fails to explain

the observed variation in the dependent variable. [Ref 3:p. 34J

Residual Plots - Plots of residuals versus other parameters in the regression. For

analytical purposes, the plot of ci versus Y is common. The reason that the residuals

are plotted against the predicted values is because the covariance between these two

values (Cov(c,Y)) is equal to 0, whereas the covariance between the residuals and the

actual values is not. (actually, cov(ci,Yi) = a2 (I-X(Y'Y)'Ix,)).

Ridge Regression - A regression procedure that is intended to overcome certain lack of

fit situations where correlations between the various carrier variables in the model

cause the X'X matrix to become close to singular, giving rise to unstable parameter

estimates. (The estimates may, for example, have the wrong sign or be much larger

than physical or practical considerations would deem appropriate). [Ref 3:p. 3131

R 2 - R2 measures the proportion of total variation about the mean Y explained by the

regression. Algebraically, R2 = (SS due to the Regression),'(Total SS, corrected for

the mean Y) = Y)2 )( As more variables arc added to the regression,

R2 (unlike adjusted R2 ) will never decrease. [Ref. 3:p. 191

Stepivise Regression Procedure - A technique which begins with no variables in a

model. For each independent variable, a F statistic is calculated to reflect that

particular variables contribution to the model if it is included. Variables are then

included one by one in the order of most significant to least significant. Unlike the

Forward Stepwise Regression Procedure, however, once a variable is entered, a

regression is performed on all of the variables that are currently in the model, and any

variables that may now have an F statistic which is less significant than the newly

entered variable will be removed from the model. [Ref. 4:p. 1021
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Weighted Least Squares - A regression technique used when some of the carrier

observations are 'less reliable' than others. This is usually indicated when the variances

of the observations are unequal or, sometimes, if the various observations are

correlated. The basic idea is to use a transform of the observations to other variables

that do fit the basic assumptions of the ordinary least squares model and then apply

the usual (unweighted) analysis to these new variables. [Ref. 3:p. 1081

X'X Matrix - Matrix notation format for determining the Y-Xi,

EXi2 and n. It is of particular use in multiple regression for ease of computation.

The X'X matrix is determined as follows and is used in the Normal Equation for

Multiple Linear Regression (see definition). [Ref. 3:p. 74]

n 2Xi

X'Y=

X'Y Matrix - Matrix notation format for determining the Yi"

It is of particular use in multiple regression for ease of computation. The X'Y matrix

is determined as follows and is used in the Normal Equation for Multiple Linear

Regression (see definition). [Ref. 3:p. 741

x'Y =

X'X inverse Matrix (X'X) - The X'X inverse matrix is an extremely important concept

in multiple regression calculations. The calculation of this matrix allows for the solving
of the multiple regression equations. This matrix must be nonsingular. When both

sides of the Normal Equation for Multiple Linear Regression are multiplied by X'X "1

the resultant matrix is the matrix of the estimators of the coefficients, J. The X'X

inverse matrix is calculated as follows. [Ref 3:p. 78]

Xi2  -y

(X'X)-I_ (l'ny(Xi -X) 2)
_-Vxi n
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APPENDIX B

THE VARIABLES

A detailed listing of variable information, definitions and statistical
data follows. Statistical information does not include BN 6E (Honolulu).
Variables that appear in the final model are analyzed first, complete
with histograms. The other variables appear later with a less rigorous
summary. There was no attempt to weight any data elements. All
estimates are derived from performing statistical analysis on the raw
data as given.

The following variables appear in the finalized model.

********************** PENETRATION ****************************

VARIABLE NAME: PENT

DESCRIPTION: Contracts divided by HSMMA by battalion by year.
Penetration actually shows what percent of the market that actually
contracted with the Army.

UPDATED: As Contracts and HSMMA are updated.

MEAN MEDIAN ST. DEVIATION MIN MAX
.051157 .048616 .016318 .019678 .10397
*************************** PROPENSITY *****************************

VARIABLE NAME: PROP
DESCRIPTION: Army Positive Propensity measure. Four year moving
average of the percent of positive respondents to questions
about military and Army service on the Youth Attitude
Trackin Survey (YATS). The data is presented as percent
times 10.

UPDATED: Fall quarter (actual), other quarters (estimated)

MEAN MEDIAN ST. DEVIATION MIN MAX
14.48 14.1 4.5095 6.4 27.3

************************** BATTALION PERCENT *************************

VARIABLE NAME: BNPER

DESCRIPTION: Contracts divided by the total number of contracts
signed
in any given year. BNPER tells what percent of the total number of
incoming GSM I-IIIA recruits were accessed by that particular
battalion.

UPDATED: Daily as contracts are updated.

MEAN MEDIAN ST. DEVIATION MIN MAX
.0183 .0179 .0056139 .0062 .0334
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HISTOGRAMS OF MODEL RAW DATA
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iiillilliitftil iiifr I llitlif frr l f lfl iiiirr riuill i
S4ollowing variabl es were considered rr the model. ome were

used in the derivation of other variables. These data goints are
maintained at USAREC headquarters at Fort Sheridan, Illinois.Ill liiilllfl ililfl li i il iil llll 11ll ll i il l 11l l1l1l1l1

**************************** BATTALION ******************************

VARIABLE NAME: BN
ESCRIPTION: USAREC recruiting battalion reference codes
BN 3L not provided)

UPDATED: As organizational realignments dictate

******************************* YEAR *******************************

VARIABLE NAME: YR

DESCRIPTION: fiscal year (1982 to 1985)

UPDATED: 1 October of each year

*************************** CONTRACTS *******************************

VARIABLE NAME: CONT

DESCRIPTION: Number of GSM I-IIIA contracts actually written per year

UPDATED: daily throughout the year

MEAN MEDIAN ST. DEVIATION MIN MAX
1018.5 975 325.27 319 2021

*************************** UNEMPLOYMENT *****************************
VARIABLE NAME: UNEM

DESCRIPTION: Average total unemployment in a given battalion for a
for a given year. The data is presented as percent times 100.

UPDATED: Yearly by the Bureau of Labor Statistics with subsequent(by zipcode) updates by USAREC to fit into battalion structure.

MEAN MEDIAN ST. DEVIATION MIN MAX
8.68 8.53 2.23 3.33 15.43

************ HIGH SCHOOL MALE MARKET AVAILABLE (CAT I-IlIA) **********

VARIABLE NAME: HSMMA

DESCRIPTION: Measured or predicted size of available pool of high
school seniors or high school graduates within the last two yearsthat are in mental category I-IlIA. Also known as the market.All variables were as given by USAREC except for HSMMA for 1985.HSMMA for 1985 was the average value for H SMMA84 and HSMMA86 (as of

June 25, 1986)
UPDATED: Random times throughout the year by USAREC.

MEAN MEDIAN ST. DEVIATION MIN MAX
21783 21525 8393 8172 46120
* ** PAY COMPATIBILITY

VARIABLE NAME: PAYCO
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DESCRIPTION: Civilian to military pay compatibility. This is the
difference in the year-to-year percent chan es between
income per capita and the Basic pay for an E-1 under four
months of active duty service. Data is given in percent times 100.

UPDATED: As INCOMPC and E-1 PAY is updated.

MEAN MEDIAN ST. DEVIATION MIN MAX
6.45 5.61 3.34 .21 12.7

********************** TOTAL POPULATION *

VARIABLE NAME: TOTPOP

DESCRIPTION: Total population within a battalion area.

UPDATED: Every census (actual), each year (estimated) with 5-year
projections available every year.

MEAN MEDIAN ST. DEVIATION MIN MAX
4.15E6 4.02E6 1.18E6 2.06E6 8.92E6

* * WHITE POPULATION *

VARIABLE NAME: WHIPOP

DESCRIPTION: Total white population within a battalion area.

UPDATED: Every census (actual), each year (estimated) with 5-year
projections available every year.

MEAN MEDIAN ST. DEVIATION MIN MAX
3.45E6 3.44E6 8.83E6 1.81E6 6.10E6

** BLACK POPULATION *

VARIABLE NAME: BLKPOP

DESCRIPTION: Total black population within a battalion area.

UPDATED: Every census (actual), each year (estimated) with 5-year
projections available every year.
MEAN MEDIAN ST. DEVIATION MIN MAX

4.90E5 2.70E5 4.15E5 6782 1.52E6

* * * * HISPANIC POPULATION *

VARIABLE NAME: HISPOP

DESCRIPTION: Total hispanic population within a battalion area.

UPDATED: Every census (actual), each year (estimated) with 5-year
projections available every year.

MEAN MEDIAN ST. DEVIATION MIN MAX
2.77E5 76325 4.40E5 10496 2.36E6

** INCOME PER CAPITA *

VARIABLE NAME: INCOMPC

DESCRIPTION: Average income per capita (in dollars) within a
battalion area.

PDATED: Yearly by the Bureau of Labor Statistics with subsequent
by zipcode) updates by USAREC to fit into battalion structure.
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MEAN MEDIAN ST. DEVIATION MIN MAX
9429 9394 1374 6255 13105

* ** * QUALIFIED MILITARY AVAILABLE *

VARIABLE NAME: QMA

DESCRIPTION: Predicted number.(times 100) of physically, mentally
and morally Qualified for service males within a battalion area.
Normallv predicted as a straight percentage of the total male
population.

UPDATED: Every two years.

MEAN MEDIAN ST. DEVIATION MIN MAX
1183 1165 387 336 2658

**************** BATTALION ADVERTISEMENT EXPENDITURES * *I

VARIABLE NAME: BNADV

DESCRIPTION: Battalion level expenditures (in hundreds of dollars)
that were spent on advertising within the battalion. Does not include
any national advertising expenditures.

UPDATED: Yearly

MEAN MEDIAN ST. DEVIATION MIN MAX
969 903 352.9 273 2211

E-1 PAY ***********************************

VARIABLE NAME: ElPAY

DESCRIPTION: Basic pay of an enlisted rank I (E-i) with under four
months of active federal service.

UPDATED: Yearly as congressions pay changes mandate.

MEAN MEDIAN ST. DEVIATION MIN MAX
568.5 573.6 9.613 551.4 573.6

'************** ARMY MARKET SHARE ***************************

VARIABLE NAME: ARMYMS

DESCRIPTION: The total number of contracts by the Army divided by
the total number of Department of Defense contracts within a
battalion.

UPDATED: Yearly when DOD-A is updated.

MEAN MEDIAN ST. DEVIATION MIN MAX
.3811 .38 .04146 .26 .47

**************** DEPARTMENT OF DEFENSE MINUS ARMY *******************

VARIABLE NAME: DOD-A

DESCRIPTION: The total number of military contracts minus the total
number of Army contracts within the battaYion.

PDATED: Yearly by the Department of Defense with subsequent
(by zipcode) updates by USAREC to fit into battalion structure.

MEAN MEDIAN ST. DEVIATION MIN MAX
1658.4 1522 549.89 533 3597
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APPENDIX C

SAS INPUT PROGRAM FOR INITIAL REGRESSIONS

//JACK JOB 0438,9999), 'THESISOUT' ,CLASS=A//*MAIN SYSTEM=SY2
// EXEC SASV5
//SYSIN DD *
OPTIONS LINESIZE = 80;
DATA DATAI'

INPUT BNN $ YEAR BN CONT RCTR UNEMP PROP HSMMA PAYCO TOTPOP WHIPOP
cards-
IA 1982 1 657 53.75 8.05 14.7 13931 6.99 2169022 2083422
1A 1983 1 805 52.25 7.93 15.1 13816 10.49 2180204 2093593

6L 1984 55 1060 106.00 9.95 8.8 25459 1.43 4203768 38281646L 1985 55 1396 97.00 8.63 8.5 24122 1.41 4253796 3870698

bATA DATA2;
INPUT BLkPOP HISPOP INCOMPC QMA BNADV ElPAY ARMYMS DODMA
cards;57346 25885 7610 555 720 551.4 0.33 1348 IA57840 26018 8715 555 633 573.6 0.37 1370 1A

110199 122804 11135 1281 1058 573.6 0.36 1866 6L
111838 124265 11291 1281 1124 573.6 0.43 1869 6L

bATA ALLYEARS;
MERGE DATA1 DATA2;

PROC REG DATA=ALLYEARS:
MODEL CONT=YEAR BN RtTR UNEMP PROP HSMMA PAYCO TOTPOP WHIPOP

BLKPOP HISPOP INCOMPC QMA BNADV ElPAY ARMYMS DODMA /
ID BNN; R CORRB COLLIN VIF

PROC STEPWISE DATA=ALLYEARS;
MODEL CONT=YEAR BN RCTR UNEMP PROP HSMMA PAYCO TOTPOP WHIPOP

BLKPOP HISPOP INCOMPC QMA BNADV ElPAY ARMYMS DODMA /
SLE1I SLS=I;

PROC SORT DATA = ALLYEARS;
BY YEAR;

PROC REG DATA=ALLYEARS:
MODEL CONT=BN RCTR UNEMP PROP HSMMA PAYCO TOTPOP WHIPOPBLKPOP HISPOP INCOMPC QMA BNADV ARMYMS DODMA /
BY YEAR;

PROC STEPWISE DATA=ALLYEARS-
MODEL CONT=BN RCTR UNEMP PROP HSMMA PAYCO TOTPOP WHIPOP

BLKPOP HISPOP INCOMPC QMA BNADV ARMYMS DODMA /SLE1I SLS=I;
BY YEAR;
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APPENDIX D

SAS INPUT PROGRAM FOR INTERMEDIATE REGRESSIONS

I/JACK JOB f0438,9999),'THESISOUT' ,CLASS=A
//*MAIN SYSI EM=SY2
//EXEC SAS

//SYSIN DO *
OPTIONS LINESIZE = 80;
DATA DATA1

INPUT A~N $ YEAR BN CONT RCTR UNEMP. PROP HSMMA PAYCO TOTPOP WHIPOP
PERCWI=WHIPOP/TOTPOP;
PENT=CONT/HSMMA;
IFYA EQ 1982' THEN BNPER = CONT/51431;
IF YEAR EQ 1983 THEN BNPER = CONT/63498;
IF YEAR EQ 1984 THEN BNPER = CONT/52299;
IF YEAR EQ 1985 THEN BNPER = CONT/55941;
cards;

'(data
DATA DAA2

INPUT BLKPOP HISPOP INCOMPC QMA BNADV ElPAY ARMYMS DODMA
cards;
(data)

bATA ALLYEARS-
MERGE DATAl' DATA2-

PROC REG DATA=ALLYEARS-
MODEL PENT=PROP BNPEh RCTR PERCh'1 /R CORRB COLLIN V1F

OUTPUT OUT=OUTi P=YHAT1 R=RESID;
ID BNN;

PROC STEPWISE DATA=ALLYEARS-
MODEL PENT=PROP BNPER RCTk PERCWI

/ SLE1l SLS1l;

DATA 0UT82-
SET OOT1*
IF YEAR E 1982 THEN DELETE;
R82=RESIO1;

DATA 0UT83-
IFSEAR OO E 1983 THEN DELETE;
R83=RESID1;pDATA 0UT84-
IFSEAR OOT E 1984 THEN DELETE;

* R84=RESIDl;

DATA 0UT85-
IFSEAR OO E 1985 THEN DELETE;
R85=RESIDl;

DATA LAG83;
MERGE' OUT82 0UT83;

DATA LAG84;
MERGE' OUT83 0UT84;

DATA LAG85;
MERGE' OUT84 0UT85;
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PROC PLOT
DATA= LAG83-
PLOT R82*R8D*t / VREF=O HREF=O;IPROC PLOT
DATA= LAG844=*PLOT R83*R8I* / VREF=O HREF=O;

PROC PLOT
DATA= LAG85-
PLOT R84*R8;='*' / VREF=O HREF=O;

/ SLE1l SLS=1;

PROC SORT DATA=OUT1;
BY YEAR;

PROC PLOT
OATA=OUT16
PLOT RESIt1*YHAT1=BNN/VREF=O;

*BY YEAR;

PROC PLOT
OATA=OUT1

BPLOT RESIbl*PROP=BNN/VREF=0;

PROC PLOT
OATA=OUT1
PLOT RESIblMBNPER=BNN/VREF=O;

BY YEAR;

PROC PLOT
DATA=OUT1
PLOT RESltbl*RCTR=BNN/VREF=O;

BY YEAR;

PROC PLOT
OATA=OUTI1
PLOT RESib1*PERCWI=BNN/VREF=O;

BY YEAR;

PROC CHART
DATA=OUT1
HBAR RESIb1/MIDPOINTS=-. 021 TO .021 BY .0020;

/BY YEAR;
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