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PREFACE

To evaluate the combination of third-order elastic constants K3
of cubic crystals, one needs very accurate values of the combination
of second-order elastic constants KZ' Often one can obtain numerical
values of second-order elastic constants for the sample of interest
from existing data. Due to the error propagation and the experimental
uncertainties at the time of the original measurement, however, there
may be uncertainties in the magnitude of K2. An alternative way to
arrive at Kz's would be to measure them at the time the K3 data are
taken. This measurement is quite straightforward since Kz's are
directly related to the sound velocities, which can be measured. The
extra time and effort spent in doing the latter would be justified by
an increase in accuracy. The purpose of this thesis is to study

these alternatives and compare error propagation in an effort to arrive
at the most accurate way to evaluate K2' The analysis in this thesis
shows that the question originally posed does not have a unique answer

for all samples under all conditions. One cannot decide a priori

whether the reference values of Ci' should be used or whether one should

measure the Cij each time one measures C1Jk

ever, suggests that one should use reference data rather than measuring

The analysis given, how-

each sample, if the reference data are as accurate as those of
McSkimin. If such accurate data are not available, one has no choice.

One must measure the K2 directly.
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CHAPTER 1

INTRODUCTION: GENERALIZED DEFINITION OF
ELASTIC CONSTANTS

The applicaticn of a time varying force on a solid material
causes a deformation of the solid and gives rise to stress waves. To
explain the behavior of a material upon application of stress, several
general relations between stress applied and the resulting straii have
been studied. One such relation was put forward by Hooke, according to
which, for a linear elastic medium the stress applied to a material is
proportional to the resulting strain, where the coefficient of
proportionality is a constant independent of stress, strain and their
time deri?atives. Although Hooke's law generalized to anisotropic
media is quite appropriate for description of many phenomena, it fails
totally to explain nonlinear phenomena. Thus, a more general approach
is required. Such a generalized approach was made by Murnaghan (1951)
who started from the definition of the energy of a small volume sub-
jected to a homogeneous strain. This approach later was applied to
crystals of cubic symmetry by Holt and Ford (1967).

If %0 is the internal energy of a unit mass of material in an
undeformed state, i.e., energy of the solid in equilibrium, then for

small deformations we can expand the strain energy in a series
o ogt ity eyt (1.1)

where ¢4 is the first-order perturbation term, etc. In terms of

elastic modu'i one can write the same expansion:

e AR
<t ;;;.jii
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A 0 1! Tij i3 o 2) Tijke ij ke 4
{: + 2 C. Ne: M. n. + (1.2) :
LS 3t Yijkemn i kg mn 3
!; where there is a summation over repeated indices which take successive ¥
o

. values of 1, 2, and 3, and where Cij's are the elastic constants and -
N n§; are the components of a strain tensor. The first term on the .
. right-hand side of Eq. (1.2), 99 is independent of strain and there- ?
v fore can be set equal to zero without loss of generality. The second .
- .
E; term, ¢,, is also set equal to zero, as it corresponds to displacement ?
- without deformation. Equation (1.2) then reduces to: g
b &
6= 5 C n + oA C Nis N, oo+ (1.3) 2

e 27 “ijke "ij ke T 3T “ijkemn Mij Tke "mn Tt ¢ : '
ga where cijkz are the second-order elastic constants and Cijkzmn are the ;
third-order elastic constants. &

The expansion of strain energy in terms of strains can be ;‘

' substituted into Lagrange's equation to obtain a completely general j'
3 1"’

& wave equation capable of describing both linear and nonlinear wave Nt
:

phenemona in solids of any crystalline symmetry. Such an equation has x

y been derived and has been specialized to cubic symmetry. For longitudinal 3
'y waves along the principal directions in a cubic crystal the equation [,

!

takes the form

_1
£'- 2 2 . 2
. 3 u 3 u ! 37U du
on —= = K, — + 3K, + K, —5 —< (1.4)
0 atZ 2 aaz ) 2 3 362 Jaa .

L

o aadd e W S T g e S T B R R T L L B S TR L R IDRL G
)"‘.’J{ “R o' '\',-\“_Qf ',‘{-ﬂ;."‘\(\xt'fv" AR S ) Cd WX W ™~ 4\"“\‘\’ N e T e LR » et v
' DL IERMT a A - NS, W PR RaN ” b 3 e Nalhala : Bk

2t




Xar

"
N

where the symbol KZ stands for linear combinations of second-order
elastic constants and K3 stands for linear combinations of third-order
elastic constants as shown in Table 1.1. The solution to the nonlinear

wave equation is as follows:

3K, + K
u = A, sin(ka - wt) - 23 sz 2a cos 2(ka - wt)
1 8K2 1

+ ... (1.5)

This solution shows that in a nonlinear solid the propagation of an
initially sinusoidal wave generates a second harmonic whose amplitude

is a linear function of propagation distance a and is proportional to

3K, + K

the combination of elastic constants __ER___Q.
2

is called the nonlinearity parameter. Measurement of the amplitude of

This combination often

the second harmonic generated as a longitudinal ultrasonic wave propa-
gates along the symmetry directions in cubie crystals has led to values
of the third-order elastic constants of copper, germanium, silicon,
KZnF3, SrTiO3, and CstF3, between room temperature and 77 °K, or even
3 °K.

But in the course of evaluating the third-order elastic constant,
K3, the experimenter must obtain values of the second-order elastic
constants KZ’ and the accuracy of the K3 is directly dependent upon the
accuracy of K2.

Since the second-order elastic constants of a number of crystals
have been measured, it often is possible to obtain numerical values
for the sample of interest from existing data. But the uncertainties

in the magnitude of K2 depend upon error propagation as well as upon

the experimental uncertainties at the time of the original measurement.
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Table 1.1. K2 and K3 for [100], [110], and [111] Directions

Direction of
Wave Propagation

K3
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[111]
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An alternative way to arrive at expressions for K2 would be to

measure them at the time the K3 data are taken. Since

Ky = oVl | (1.6)

this measurement is quite direct—a measurement of the density of the
material and of the velocity v of a longitudinal wave along the
direction for which K2 is defined. An advantage of this procedure is
that K2 data are taken on the same samplie as the K3 data. But one
disadvantage is that such a measurement would essentially double the
time spent in measuring the third-order elastic constants as a function
of temperature. Since such measurements typically require an
uninterrupted period of at least 36 hours, such an increase in time
would be justified only by an obvious increase in accuracy of the data.

The purpose of the present thesis is to evaluate the alternatives
by comparing error propagation. To do this, measurements were made of
the velocity of propagation in the three principal directions in
germanium, a cubic crystal.

The data are subjected to a detailed error analysis and the
results are compared with the errors propagated when the data of
McSkimin (1963) are used to calculate velocities of longitudinal ultra-
sonic waves in germanium. The comparison is made more significant by

the fact that the sample actually used by McSkimin was available for

the measurements reported in this thesis.
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CHAPTER 11
THEORY OF ELASTIC WAVE PROPAGATION

The evaluation of the second-order elastic constants from data
on the velocity of an ultrasonic wave in a cubic solid requires the
derivation of the wave equation from the basic definitions. The basic
definition of strain energy (Eq. 1.3) is general enough to allow a
description of nonlinear phenomena; however, for purposes of deriving
the linear form of the wave equation to be used throughout the remainder
of this thesis, the strain energy can be approximated by including only
the first set of terms. Since these terms contain second powers of the
strain, the coefficients are known as second-order elastic constants.
Truncation of the strain energy expansion in this way also allows one
to make a definition of Hooke's law generalized to anisotropic media.
Although the generalized Hooke's law has limited value since its very
definition prohibits the consideration of third-order elastic constants,
it still is used in engineering applications often enough to justify
its consideration in this thesis.

A. RELATION BETWEEN STRESS AND STRAIN IN AN ANISOTROPIC

SOLID (GENERALIZED HOOKE'S LAW)
To derive Hooke's law generalized to anisotropic media it is

adequate to retain only the second power terms in the strain energy.

Equation (1.3) thus becomes

" "'l
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¢ =2 Cijke My ke (2.1)

Now, consider the work done when a strain ”13 results from a stress

°1j‘ The work E done by the stress in causing the strain is

= 1
E-'z—o,ij ﬂij . (2.2)

Equating the work done to the strain energy results in

515 = Ciska Mg (2.3)

This is known as the generalized Hooke's law for an anisotropic medium.

In this form 1t can be used to describe a medium of any crystalline

symmetry in the linear approximation.

B. SECOND-ORDER ELASTIC CONSTANTS OF CUBIC CRYSTALS

4

From Eq. (2.3) it appears that there must be 3° = 81 elastic

constants c1jk2' The total number of independent constants, however,

is reduced by lattice symmetries. When the stress tensor o413 and the

strain tensor N are symmetric (i.e., %43 = o34 and Mg = ”zk)’ the

number of independent second-order constants reduces to 62 = 36. This

reduction is done easily by reindexing the stress and strain components

according to Voigt rotation as follows:

--------------
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S RS B ’ 93 T %3 T %3
9 = %92 ’ 9 = 931 T %3
93 % 933 ’ % = %12 T %
and (2.8)
MT ™M ’ Ng = N23 T N3p
N2 = N2z ’ N5 = N31 ¥ M3
N3 = N33 ’ "6 T M2 T "2
With this notation the linear relation between stress and strain is
written as
9 = Cug ng  (@:8=1,2,3,4,5,6) (2.9)

where Cas are constants and the range of summation now is up to 6 for
the indices o and 8. The elastic constants COlB and Cijkz are related.

Some examples of how these are related are shown below:

Ch = Can
C12 = S22 (2.10)
Cia = 20493 = 2yq3p

We observe that Cijkr = Cjikr and Cijkr = Cijrk‘ This implies that

there are only six combinations for the first pair of indices and six

of the second pair. Thus, for a cubic symmetry since,
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Ci1 = G2 = C33

C12 = €1 = Cy3 = C3y = Cp3 = Cyp

Cas = C55 = Cgp

the total number of independent elastic constants reduces to three,

viz, C]], C]2 and C44.

C. RELATION BETWEEN Cijls AND SOUND VELOCITY

1. Wave Speeds in an Elastic Medium

The linear equation of motion for a wave through an elastic medium
can be derived by using the strain energy Eq. (2.1) in Lagrange's equation.
As given by Green (1973) it is:

. 22uy (2.11)

pu; = C.. —_— .

i ijke axl axj

where Cijkz

are the second-order elastic constants, ui js the displace-
ment at a time t, and p is the mass density of the homogeneous medium.
In the principal directions [100], [110], and [111] in a cubic lattice
the three equations represented in Eq. (2.11) are uncoupled, and to
derive a relation between wave speeds and Cijls in these directions we

assume a solution to Eq. (2.11) of the form:
ui(xk,t) = Aoai exp i(wt - kmxm) (2.12)

where A0 is the amplitude of the wave, a; are the direction cosines

of the displacement vector, km is the wave vector given by

Kp = ke = (31) . (2.13)
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where k is the wave number, 2 (= 2,m,n) are the direction cosines of
the normal to the plane wave, and 1 is the wavelength. Substituting
Eq. (2.12) into Eq. (2.11) and using Eq. (2.13) gives a set of equations

of the form

(Ci5k " B % - ov? 55, 1u, = 0 (2.14)

where v, the speed of propagation of the wave, is given by

v = W2/K8 (2.15)

and Ui = U For a nontrivial solution of Eq. (2.14) to exist, the

determinant of the coefficient must vanish. Thus,

2
Jcijkz 2, zj - pv 5fk] =0 . (2.16)

For simplicity, let Cijkz %, zj = Ay then (2.16) reduces to

Py = ovE syl = 0. (2.17)

Equation (2.17) is an eigenvalue problem of the form

M1 M2 M3 1 0 0
M1 Ao Mgl L2100 1 0p=0 (2.18)
31 %32 33 o 0 1

whose solution gives the wave speeds. This determinant can be written

in the form
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- pv A =0. (2.19)

The fact that this is a 3 x 3 determinant indicates that there are three
solutions; i.e., there are three independent plane waves, each having
polarization in one of the three orthogonal directions. The speeds of
these waves are the eigenvalues. To determine the eigenvectors we define

the direction cosines o, 8, y of the particie displacements. They are

obtained by writing Eq. (2.16) in the form:

M1 Mo M3 (a] 1 0 0lfe
W1 My Agsllg| =ev? o 1 olls (2.20)
1 A a3 0 0 v
1 0 0
where we have used Gik = 8 é ? . The solution of this equation
gives the eigenvectors. To repeat, the solution of the eiggnvalue

problem (2.17) for eigenvalues and eigenvectors gives information about
the magnitude and direction of the speed of propagation of the three
possible plane waves through a crystal. It is specialized to the pure

mode directions in cubic crystals in the next section.

2. Wave Speeds Along Pure Mode Directions in Cubic Crystals

The three principal directions in cubic crystals are shown in
Figure 2.1. In each of these directions three pure mode elastic waves

(one longitudinal and two transverse) may propagate, while in all the

other directions waves may be coupled. We now study the behavior of
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the elastic waves along the pure mode directions of cubic crystals
and derive relations between sound velocities and Cijls'

a. [100] Direction

For the [100] plane-the-direction cosines of the plane wave
normal are £ = 1, m= 90, n = 0. For this direction,

A =C

n =
M2 T M3 237 212833523, =0
o2 =233 % Cyq -

Substitution of these values into (2.17) and simplification leads to:

(C]] = DVZ)(C44 = QVZ)(C44 - pvz)

whose three solutions give the magnitude of the three wave speeds:

C]] 1/2
V] = _O— (10ng1’tudina])
Cag)1/2 (2.22)
Vo = V3= |- (transverse)

The direction of propagation of these three waves is obtaiﬁed by
evaluating the eigenvectors o, 8, y from Eq. (2.21) for each of the
speeds v,, v,, and v5. For velocity .v,, we find a = 1, 8 = 0, and

y = 0. A comparison of a, 8, y.with £, m, n shows that the direction
cosines of the particle displacement are identical to the direction
cosines of the plane wave normal; i.e., speed vy corresponds to a

pure mode longitudinal wave. Similar calculations for o, B, y for
speeds Vo and V3 show that Vo and Va correspond to pure mode transverse
waves and that |v21 = [v3|; i.e., the two transverse waves propagate

at the same speed. This means that the speed of a transverse wave

propagating along the [100] direction is independent of polarization.
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b. [110] Direction

For the [110] plane, the direction cosines of the wave normal

are £ = 1/v2, m=1//2, n = 0. For this direction,

- -1
My T 22 =7 Gy + Cyy)
- =1
Mo = A1 =7 (Cyp + Cyy)
(2.23)
M3 T 2237 %31 7 232 =0
33 = Caq -

Substitution of these values into Eq. (2.17) and simplification gives:

] 21N
(ﬁ(cll = Cyp) - ev ](?(511 t Oyt 2Cy,) - OVZJ[C44 - pvz] = 0. (2.24)

Solution of Eq. (2.24) gives the magnitude of the three wave speeds:

_ 172
vi = Gy + Cyp + 2Cy,)/20)

1/2

Vo = {(C]] - C]z)/Zp} (2.25)

1/2

{C44/o}

The direction of propagation of these three waves is obtained
by evaluating the eigenvectors a, 8, and vy from (2.21) for each of the
speeds Vis Voo and vy Note that in this case Vo # V3 For the speed
vy we find that o = 1/v2, 8 = 1/v/2, y = 0. A comparison of a, 8, and
y with ¢, m, and n shows that the two sets are identical, so vq is a
pure mode longitudinal wave. Similar calculations of a, 8, y for the

speeds Vo and V3 and comparison with ¢, m, and n shows that they are

pure mode transverse waves.
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c. [111] Direction

The direction cosines of the wave normal in the [111] direction

are 2=m=n = 1//3. For this direction,

"
ft

M X33

(2.26)

—

=3 (C, + C

M2 T M3 T 223 % A T A T Ay 12 ¥ Cag) -

w

Using Eqs. (2.26) and (2.17), the magnitudes of the three wave speeds

are given by

_ C]] + 2C12 + 4C44 1/2
v =
1 3o

(2.27)

e [C11 -Gt C44]”2

Vo T V3 3

Again, evaluating the eigenvectors for each_of the speeds Vis Vo and
V3 shows that for Vija=g=ys= 1/Y3.

Comparison of a, B8, and y with 2, m, and n shows thq} vy is
longitudinal. Similar comparisons show that Vo and vy are transverse

and equal in magnitude.

D. SUMMARY

The relationship between sound velocity and Cijls has been
derived for the three principal directions [100], [110], and [111] in
a cubic crystal. The results are summarized in Table 2.1 where it is

clear that in the [100] and [111] directions the two transverse waves

travel at the same speed, but in the [110] direction their speeds are
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different. For the purposes of this thesis one is interested in the

relationship between Cijls and sound velocity for longitudinal waves,

as the relationship among the C..'s for longitudinal waves presented

1]
in Table 2.1 are identical with those labelled K2 in Table 1.1,
p. 4. To emphasize this point the results for the longitudinal

waves in the principal direction are repeated in Table 2.2. These

are the relationships to be analyzed.
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Table 2.2. Combination of Second-Order Elastic Constants
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5‘ EXPERIMENTAL APPARATUS AND PROCEDURE
The configuration used in the measurement of the velocity of

EE sound and the related Kz's in samples of germanium is shown in

Figure 3.1. 'Electrical pulses modulated at 30 MHz are generated by the
gated amplifier. rThey af}ive at the transducer sufface through the
impedance matching network and cause the transducer to vibrate and
generate a 30 MHz pulse of ultrasonic waves which propagate through

the sample and are received by the capacitive receiver which converts
them to an electrical signal which is amplified and displayed on an

oscilloscope.

A. CAPACITIVE RECEIVER ASSEMBLY

——
!

Details of the capacitive receiver are given in Figure 3.2. The
upper end of the receiver assembly consists of a copper electrode 1 cm

in diameter surrounded by a grounded outer assembly that is insulated

from the electrode by a Teflon ring. The electrode is spring-loaded
to make contact with the quartz transducer surface. The electrical

signal is fed to the quartz transducer through the spring.

At the lower end of the assembly is an electrode of 1 cm

E; diameter placed on a fused silica optical flat. A grounded concentric
%; copper ring in contact with the optically flat end of the sample
- provides an air gap between the electrode and the sample, a separation
Q‘ of the order of 10 microns. When the sample is placed in position, it
. 19
>
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*Il touches the outer ring. The optically flat sample face and the electrode

surfaces form a parallel plate capacitor with air as dielectric,

as shown schematically in Figure 3.2. The capacitance of the parallel

plate capacitor may be evaluated from

o
n
™
.
alx
v
AR AT

where A is the area of the plates and d is the spacing between the
plates (5u-10u), since the fringing is negligible. The capacitance is
found to be of the order of 60-120 pF for a spacing of d = 5-10 microns

and for detector diameter = 0.92 cm.

B. SAMPLES

Measurement of the velocity of sound was made in the laboratory
on several materials, but in the present thesis the focus is on samples
of germanium single crystals. The lattice structure of germanium is
cubic and there are three directions along which pure longitudinal
ultrasonic waves propagate in cubic lattices: [100], [110], and [111].
The samples allowed measurements to be made along these pure mode

directions. They are sketched in Figure 3.3 with the dimensions

indicated. The samples were first lapped to a flatness of half a wave-

EE length of light. The importance of making the samples optically flat
' results from the plane wave assumption used in the theory of ultra-

Eh sonic wave propagation. Since we used high frequency (~30 MHz), which
k corresponds to a wavelength of 0.17 mm for germanium, even a small

ﬁ' variation in the surface can produce a significant phase shift and

. affect the accuracy of the experiment.

o '-"_-"_-::.,-:‘ :
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e a = 3.76 cm

(

¢ A. Ge 100

A,

’2,
|

= 1.20 cm

B. Ge 110

o a=14.91 cm

AR

W

C. Ge 111

. _.l- A

* Figure 3.3. Dimensions of samples Ge[100], Ge[110], and Ge[111].
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. After the samples were lapped, they were washed thoroughly to %;
remove any oil that might have impeded the adherence of a copper u#
f coating. The samples were placed in a vacuum of 10'6 Torr and allowed E'
] to outgas for one hour. Then a 100 R coating of copper was sputtered ¥
i onto the surface to serve as an electrode. After removal of the 'j 
sample from ;he vacuum chamber, a quartz transducer was attached to g
one of the optically flat conducting surfaces by means of nonaqueous "
K stopcock grease, then the sample was mounted in the measurement Zf
assembly. g}
) The output of the cw oscillator (see Figure 3.1) was applied to ‘i‘
the gated amplifier whose output was tested with an oscilloscope and f:
applied through an impedance matching network across the quartz trans- «?
D ducer attached to the sample surface. By adjustment of the impedance v
matching network, the pulsed oscillator-transducer system was tuned fi
| for maximum power transmitted to the quartz transducer whose resonant E%
frequency was 30 MHz. N %
The 30 MHz pulsed ultrasonic wave generated by the transducer 52
. travels through the sample and is reflected between the sample surfaces. i
4 When it reaches the lower surface, it causes the sample surface to -}‘
vibrate. As a result, the capacitance between the surface and electrode, e
. as shown in Figure 3.2, changes periodically. This produces an alternating Eg
X current which is amplified and observed on the oscilloscope. The 3
- gated amplifier is capable of generating a second pulse train (delayed {
2 in time with respect to the first pulse train). The two pulsed ultra- :i‘
sonic waves interfere and give rise to interference maxima and minima. k'

. {3
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For a minimum, the path difference between the two pulses must contain

an odd number of half-wavelengths; viz,

Path difference = (m + %& A

wherem = 0, 1, 2, .... In taking data an initial frequency in the
range of the resonance frequency was chosen. Then a number of minima
was counted as the frequency was increased, and the final frequency
noted.

If the nth echo of one pulse train overlapped the mth echo of
the second pulse train, the difference m - n = s is the quantity used

in calculating the velocity.

Finally, the length L of the sample was measured with an accuracy

of ]0’4 cm. The velocity of the ultrasound in the sample material was

then determined using the expression:

AQ -
where

L = the length of the sample;

s =m-n (n is the echo number of some initial pulse and m is
the echo number of some other pulse delayed in time with
respect to the first pulse);

4F = frequency difference;
AQ = the number of interference minima.
N LN A e I e L <l T LT LT e
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CHAPTER IV

EXPERIMENTAL RESULTS AND DATA ANALYSIS

oy

The error propagation in determining the K2‘s from expressions
L for Cij can be evaluated directly from the data; however, in order to
o evaluate the‘re1ative magnitude of the propagated error and the error
resulting from direct measurement of the K2's it was necessary to set
o up apparatus and measure the velocity of longitudinal waves in
. crystalline samples. The calculations given in Chapter II show that
the expressions for the Kz's are related to the measured velocities
‘Y] by K2 = pV2. This chapter describes the means by which experimental

values of the longitudinal wave velocities were obtained.

A. EXPERIMENTAL DATA

Ly R

The length and the density of the samples used in the present

experiment, viz. Ge(100), Ge(110), and Ge(111), are given in Table 4.1.

Three sets of data, using 30 MHz transducers were taken for the measure-

LN

ment of velocity of sound in the samples of germanium. For each set of
data, a measurement of frequency F was taken for several values of the
maxima Q. The data are presented in Tables 4.2, 4.3, and 4.4. Plots
of F versus Q are shown for each of the samples in Figures 4.1, 4.2,
and 4.3. These figures, usually called scatter diagrams, allow one to

observe directly the scatter of the data resulting from statistical

s

variations in the magnitudes of the measured quantities. Under ideal
circumstances these variations would vanish and the data in each case

. 26
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Table 4.1.

Sample Densities and Lengths

27

Sample

Length (cm)

Density (gm/cm3)

Ge[100]
Ge[110]
Ge[111]

3.76
1.20
4.91

5.323
5.323
5.323
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would define a single straight line whose slope in combination with L

!' and s would give the exact value of the velocity in the corresponding

direction. The purpose of the next section is to define the way one

L gt

handles the actual data to arrive at the most probable straight line,

one that is a very good approximation to the exact one.

S |

B. DATA ANALYSIS

o

£

To calculate the velocity of sound in the germanium crystal

AT

for various crystalline modes one uses the expression

B~

v=2 Ls (4.1)

vy

and the observations on L, s (m and n), F, and Q presented above.

The observations on F and Q presented in the scatter diagrams

(Figures 4.1, 4.2, 4.3) suggest that for any interval aQ the corres-

ponding interval AF is not uniform for all values of Q. For example,

o651
P

if 4 = Q, - Q; and aF = F, - Fy, then for a different aQ = Q, - Q

"
’I

(= Q - 01). Fq - F5 can be different from aF = F, - Fy. This is

because the data on F and Q in practice do not have an exact functional

N

]

- relationship as a result of systematic and random errors in the experi-

Tl

ment. It therefore is important statistically to estimate the best
value of AF/AQ from the data in order to predict the most probabie
value of the velocity v. This is the purpose of the present section
which is divided into five parts.

ﬁ: The first part deals with the assumptions, relevant formulae,

and methodology employed in the estimation of AF/AQ. In the second

part, ordinary least squares estimates of the slope 8 = 4AF/4Q are

s

LA,
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presented in the standard format and also in a table. Computations

of velocity are then made and the results are shown in tabular form.

In the third part, the experimental results on velocity in the

' germanium crystals are compared with those obtained by McSkimin (1963). 4
ﬂ! The propagation of errors in the present experiment and propagation of ]
:. error in calculating velocity using standard values of second-order 7}
Si elastic consfants are discussed in the fourth part. Lastly, in the :'
. fifth part are presented the conclusions. :
.

“: 1. Assumptions and Methodology i

ii The method of ordinary least squares is used to estimate the J

» most probable value of the siope B = AF/AQ from the data. But in

= order to do so it is essential to make the (unverifiable) assumption f

'i that the statistical distribution of F does not change from one set -+
of observations to another. The evaluation of the slope B requires ;

EQ a specification of the relationship F = f(Q) and the use of statisti- 3

cal regression analysis [Kleinbaum and Kupper (1978); Johnston (1984)].

: In what follows a possible relationship between F and Q is assumed and [
;j a methodology for statistical estimation of 8 is developed. 4

. 3
= a. Functional relationship between F and Q. The scatter diagrams f
R in Figures 4.1, 4.2, and 4.3 show that in observations on each sample E
Sf the value of F at a certain value of @ is not‘consistent. This is due :
j to the fact that random errors impart bias to the observation on F. -
:: In fact, the distribution of F at the same value of Q depends upon the S
v statistical distribution of the random error. Thus, there is a whole E
Ii probability distribution of values of F for each value of Q. The =
i ;

W gt .~ y o ,’ y B A L AT et
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scatter diagrams further suggest that the variation in the mean of
F values at some Q is approximately linear with Q. Thus, a stochastic
linear relationship between F and Q can be assumed. This stochastic
linear relationship would become deterministic if the variance of F
were zero; i.e., if there were no random errors in observations of F. \

The stochastic relationship between F and Q for n observations is:

Fy=a+8Q +e, i=1,2, ...n (4.2)

where the observed frequency Fi is taken to be the dependent variable,
the number of maxima Q1 is the independent variable, and ¢ is the
stochastic disturbance, o and 8 are the regression parameters. The
values of Fi and Qi are observable but those of e; are not. The
purpose of the €5 term is to characterize the discrepancies that emerge
between the actual observed values of F and the values that would have

been given by an exact functional relationship of the form:
F=a+8Q. - (4.3)

The fact that the magritude of €, cannot be determined exactly means
that the value of F can never be forecast with certainty, i.e., with
probability 1. The uncertainty concerning Fi arises due to the
presence of the stochastic disturbances €y which, being random, imparts
randomness to Fi' The randomness in the term €y may be on account of

a variety of factors which may or may not all be quantifiable. Among
those factors are random apparatus or human ones as well as systematic

errors in measurement of F, L, and Q. The net effect of all such

)
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| factors, then, is summarized by a single stochastic variable € The ;'
. probability distribution of F and its properties are then determined E
83 by the values of Q and by the probability distribution of ¢. Thus, the ;E
" full description of the model in Equation (4.2) also calls for the full h
‘; specification of the probability distribution of the error € We ::
make the following statistical assumptions: i'
e 1. €5 is normally distributed ¥ . 0
2. e; has zero mean, i.e., <ey> = 0 ¥1i, :’
,‘ 3. £y is homoskedastic, i.e., <512> = 02. This means that i
every disturbance has the same variance o2 for all observa- &
: tions whose value is unknown. This assumption rules out, for Ij

- example, the possibility that the disturbance could be greater
for higher values of Q than for lower values of Q. >
. 4, €5 is nonautoregressive; i.e., <ej€5” ; 8 if } z g. This %
- assumption implies that the expected value of F at any time E.
in an experiment will be different from the expected value ;i
of F in the same experiment at a different time. ﬁ‘
‘i 5. Q; is a nonstochastic variable with values fixed in repeated E
- sets of observations such that for any sample size ﬁ;
i %—121 (Q; - 02 is a finite number where Q is the mean value ;j
. of 6. i
With these assumptions, we can find the properties of the .
. probability distribution of F, for all 1. The mean of F; is obtained by 2?,
’ taking the mathematical expectation value of both sides of Egq. (4.2): i’
N

e e Ty T S T e D N )
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& 3
! <F1.> = <g + SQi + g].> . (4.45)
Since the expected value of ¥ vanishes;i.e., <e;> = 0, then
-
y
<Fi> = <y + 601.> . (4.4b)
e
* The variance of F. is
Ny
Ny Var(Fi) = <[F_i - <F_i>]2>
) . 2
' = [la+50; + ;) - (2 +30,)1%
' S (4.5)

1

Equation (4.4b), which gives the mean value of F for each value
of Q, is known as the population regression line. The slope 2 measures
the change in the mean value of F corresponding to a unit change in the
i value of Q.

Estimation of the values of a and B gives the sample regression
line that serves as an estimate of the population regression line. If

a and 8 are estimated by o and B, respectively, then the sample

¥z

regression line is

==

Foo= o+ 80, (4.6)
g
. N
A where F. is the estimate of F, or the fitted value of F.. The observed
i values of F1 does not necessarily lie exactly on the sample regression
= line so that the value of Fi and ?1 in general are different. This
;; differernice is called the residual and is denoted by €. Thus we dis-
i tinguish between the following:
=
RS
o A0t o L RO (A T e A AN e
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-n
"

a + 801 e (population) ,
- u (4.7)
a + BQi e, (sample)

T
"

In general, the residual e; is different from €5 because a and g are
different from the true values of « and g. In fact, e; is the estimate
of the disturbance ey Figure 4.4 is a schematic representation of

this distinction. The slope g8 is obtained from Eq. (4.6):
9*
dQ

b. Evaluation of intercept o and slope 8. « and 8 are

estimated using ordinary least squares. If each residual e, is
squared, negative signs disappear, and the sum of squared residuals
is a nonnegative quantity. In using the least square principle one

~

selects o and B8 for minimum zeid. First, one evaluates

e = Fj - Fy = Fy - (a+BQ;), -
2 C a2
re.” = r(F; - a - BQ;)

2
ole
1.0,
Ja
2 (4.9)
Baei
— =0
a8
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Figure 4.4. Schematic representation of population line E(F) =a + £Q
and sample line F = & + &Q.
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It follows that:

ZFi =nx+ gL Q1

where n is the number of data points. Since nQi =z Qi’ the product
i

-
(o]

n ZQ1

2
0 Wy TR

m?

Evaluating the elements of the matrix, one obtains

~ 1 -1
Q—HZFi-BHZQi’ (4.]03)
and
_(Q, - Q(F, - F
B = (< Q)(‘_z ). - (4.70b)
X(Q1'Q)

The quantities a and 8 are, respectively, the intercept and the slope
of the regression line. The slope 8 is used to calculate the mean
value of the velocity reported in this thesis.

2. Use of Data in Ordinary Least Squares Estimates
of & and Velocities

a. Computer program. A computer program for evaluating the

regression line is available at The University of Tennessee Computer

Center. This program, SYSREG, presented in Appendix A, was used to
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evaluate the sample regression lines as in Equation (4.7). Values of

a and 8 evaluated from this regression line customarily are presented

as follows:

Ei = & + BQ, RE = ... (4.11)
($;) (s3)

X

.

2

where 532 is the estimate of variance of a and SB is the estimate of

2

variance of 8. R° is the coefficient of determination which is a

measure of "goodness of fit"; i.e., how well the sample regression line

2

fits the observations. R" indicates the proportion of variation of F

that can be attributed to the variation of Q. It is evaluated from

2 _ Regression Sum of Squares

R Total Sum of Squares
2
=1 - L e
12
L (Fy - F)
i - -
R® takes on the values: 0 5_R2 < 1. A zero value of R? indicates

the poorest and a unit value the best fit that can be attained.

b. Velocities in germanium. The estimated regression lines

obtained by applying the ordinary least squares estiméte to data on
the samples Ge(111), Ge(110), and Ge(100) are shown in standard form
in Table 4.5. Note that the value of R2 in all the three orientations
is close to unity which indicates that the data are well fit by the

regression lines. The results are repeated in more detail in Table 4.6,
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¥ Table 4.5. Estimated Regression Lines for Ge[100], Ge[110], and

Ge[111]

-

N

La

Sample Estimated Regression Line

v Ge (100) Fi = 27.8650 + 0.0660 Q, + e, , R = 0.9986
(0.0133 (0.0002)

:::', Ge(110) F1. = 24.916158 + 0.1118 Qi tess R2 = 0.9996

(0.0134)  (0.0003)

o Ge(111) F1. = 25.7741 + 0.05694 Q‘i e, R2 = 0.9992
(0.0134) (0.000156)

o

ME
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where & is the intercept of the estimated regression line, 8 is the :

slope, S& and Sé are the standard deviations in the measurements of IE

ﬁ a and 8. ﬁ,
X -3. Comparison of Results with Reference Values :
; The comparison of the results of the present measurements gv
Ei presented in Table 4.6 with those of McSkimin (also presented in %
' Table 4.6) is especially infurmative. The present data present the 3
> scatter resulting from all sources of error, both definable and ke
3 undefinable. Among the definable sources of error are systematic Ez
errors resulting from measurement of sample length, resonant fre- -

N quency, and density. Random errors from repetition of these measure- EJ
ments also enter. 2

a. Evaluation of scatter of data around the mean. The results ;f

.g on velocity reported in Table 4.6 give the deviation of velocity values E;
from the mean for a 95% probability level. The specification of the ud

probability level gives a more complete picture of the effect of %

X random errors on the data than usually is given. In Table 4.6 our EE
‘ estimated velocity in Ge[111] falls in the interval * 0.53% of the mean (2
f value of velocity with a 95% probability. McSkimin reported a mean if
square deviation of + 0.02%. It is apparent that our mean square ﬁ;

K deviation is larger than McSkimin's, but the significance of this ;
) statement is somewhat difficult to evaluate without information about E:

his probability level. Further, whether the difference results from
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our consideration of all sources of random error while McSkimin
considered only errors resulting from diffraction is equally
- uncertain. Comparison of the remaining data in Table 4.6 results in

similar conclusions.

b. Comparison of our mean value of velocity with values

given by McSkimin. It remains to compare the mean value of velocity

in this experiment with the values of velocity given by McSkimin.
Agreement between the two sets of values adds credibility to the
results. We let the three velocities in a germanium crystal as

measured by McSkimin be Viipe V]]O and V100" Somewhat at random,

we chose the velocity in the [111] direction for our discussion of

the comparison. (The comparison for the [110] and [100] directions
is obtained by using velocity values appropriate to those directions.)

Corresponding to McSkimin's value Vi11s We evaluate the slope

\'}
_in |
B T s -

(4.12)

To test whether the velocity estimated in this study is equal to that
of McSkimin, we have to test whether our 8 is equal to 8111 There-

fore, we set the null hypotheses,*

HO: B = B]‘I].

*A null hypothesis is a proposition which is considered valid
unless evidence throws serious doubt on it.

Iv'-““

Y y ) %
1&5-_, nﬁ‘\..\a‘;?.\ “-l’-..n‘.,. i .b‘.h:; u")&t.&m.m..r..@



Equivalently,

Ho: v = v]]].

The T-statistic for the [111] direction is the function

8- By

Sé'
The distribution of the T-statistic about zero, known as the t-distri-
bution, has (n-2) degrees of freedom. In estimating F one has two
unknowns o and 8 whose presence reduces the numper of degrees of free-
dom from n, the total number of observations, to n-2. Let the signifi-
cance level (unity minus the probability) be designated x. Then, for
a specified significance level X, the T-statistic lies between the lower
limit and the upper limit of a critical region as follows:
B -8
1,

"tz ST S22 O (4.13)
B

The critical region is shown in Figure 4.5 with the limits specified.

Without the limits the t-distribution would vary from -» to . In that

case the cumulative probability would be unity; i.e., the area under
B -8
the density function f ——gj—lll- is unity. For a significance level )
B
the area under the distribution function is the probability

Sa

¥ 8

B

t 22 - -
n-2° B -8 B -8
p f[ 111] d[ 111}

“the2,0/2
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which usually is designated as follows:
B -8
- 1 =1 -
P = [‘tn-z,x/z TS itn—z,x/Z] b (a-14)

The subscripts on the 1imits include X/2 because an area of A/2 is
found on each tail of the t-distribution between th-2.1/2 and «.

These areas can be read from t-distribution tables in statistics text-
books [Kleinbaum and Kupper (1978)]. For data in this thesis a value
A = 1% is chosen, meaning that the area of the two tails is 0.5% each.
The corresponding critical region and the T-statistic for the three
crystalline modes are evaluated and are reported in Table 4.7.

From the inequality (4.13) we have

B111 7 53 thza/2 SE S BI * 3 thoa2 (4.15)

The above inequality gives the lower and upper limits of g for the
chosen significance level A. The corresponding lower and upper
limits of the estimated velocity v are found from (4.15) by multiply-

ing the inequality by a factor 2Ls:

Vipp - 2ts - tiooy2  Sg Vv tals ta-2.0/2 ° Si .(4.16)
In terms of a percentage of Viqye we have:
t S
n-2,0/2 8
Viq1 - |8Ls ———\/————-x]OOJv”]iviv”]
111
(t - S;)
y |ots =222 BT g1y (4.17a)
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Similar results are evaluated for the other two crystalline modes.

The results are presented in Table 4.7, column 7. The associated
probabilities are calculated from (4.14) and the results are presented
in Table 4.7, column 8.

From the results reported in Table 4.7 we find that for x = 1%
or for a probability level 99% the T-statistic does not exceed the
critical region for all the three crystalline modes. As long as the
T-statistic is within the critical region for a specified significance
level, we do not reject the null hypothesis and conclude that there is
not enough evidence to suggest that g8 is different from B];], or that
the equivalently estimated velocity v is different from McSkimin's
velocity Vi In other words, the deviation of v around v]]] will
be confined to upper and Tower limits Vi1 * i for 99% of the
time. Only 1% of the time the deviation of v from Vi will be large
enough so as to fall outside the limits Ving et Av]1]. Similar or
better results are obtained for the other two crystalline modes.

Thus we may conclude that the estimates of velocity in our experi-

ment are in agreement of those of McSkimin. The results add credibility

to our experiment and results as well as McSkimin's results.
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4. Error Propagation

In this section we compare the relative error in estimation
of velocity in the present study with the error obtained by
recombining values of elastic constants measured by others and using

the expression K2 = pV2.

a. Error propagation in the present experiment. To derive a

formula for the percentage error in the velocity one uses the

expression for the regression line (Eq. 4.7).
Fi = o+ BQ; +ey, (4.18)

where i = 1, 2, ... n. After applying a least squares analysis the

fitted value of Fi is

F.o= o+ & 4.19
Fi O'+BQ'i' ( )

The mean values of F,i and Qi also fit the regression line. Therefore,

we have

F = & + éO_ s (4'20)

where F and Q are the mean values of the observations taken in the

experiment for a particular crystalline mode. These values are given

as follows:
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From Eq. {4.20),
g=F-o
Q
Taking the logarithm of both sides and evaluating the partial
derivatives:
3 _3F-a) aQ (4.21)
8 (F-a) T

Evaluation of the relative errors requires consideration of the absolute

value of each term:

88 _|s(F - o) |, ]6Q (4.22)
8 (F-3a) 1Q
- : X . .. v _ 88
Since v = 2L sB, the relative error in velocity is: v - asl and
B
S are constants. Therefore,
F 0l .23
ev e, o (4.23) =
v ?-& Q Ny
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where the identity S& = SOl has been used. This formula is used to
evaluate errors in the measurement of velocity due to random causes for
all three samples and the results are presented in Table 4.8.

The error largely depends upon the value of the mean F. The larger the
value of F, the smaller the percentage error. The error in Ge (111) is
much smaller than the error in Ge (100) because it was possible to

obtain a larger number of measures Qi in the Ge (111) sample, and hence
to have a larger value of F. The experimenter does not always have total
control over the value of F, but should always seek to obtain the largest

value possible.

b. Error‘propagation in use of reference values of Cij' The
percentage error found in the preceding section now is compared with
the error propagated when one takes the values of the second-order
constants from reference sources (McSkimin, 1963) and calculates the
velocity of longitudinal waves in the three principal directions using

the following formulae: -

2 .
V100 = C1/° (4.24a)
2 .
V10 = (Cqqp * Cip + 2044020 (4.24b)
2 _
Vi T (Cyq v 20y + 40,0/ 30 (4.24c)

in which the combinations of second-order elastic constants are
recognized as being the same as the K2's listed in Table 1.1, p. 4).

The relative errors in the velocities are:

LAR AR Alar-fan o |

--------------------
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Table 4.8. Propagated Error (&v/v) in Present Experiment

Sample Propagated Error (sv/v)
Ge[100] 0.46%
Ge[110] 0.33%
Ge[111] 0.29%
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évV]OO - ]? 5CC” . ;_5?0 (4.25a) :/
100 11 :
Vitg 1 8Cyq + 8Cqy + 26Cy, Ll (4.250) :
v 2 | C,y +C, +2C 2 o ) .
110 1 12 44 :
V117 1 §Cyq * 2<SC]2 + 46(344 .18 (4.25¢) i
Vii1 ¢ Ciq + 20y, + 4Gy, 2 p 7 .
Using these equations and the values for the errors given in the h
reference and assuming an error in the measurement of p as 0.1%, the S
propagated errors are calculated and are given in Table 4.9, :
5. Correction of Systematic Error "
Close examination of the data in Tables 4.2, 4.3, and 4.4 ?
(pp. 28, 29, 30) presented in the scatter diagrams in Figures 4.1, y
4.2, and 4.3 (pp. 31, 32, 33) reveals systematic errors in some of '
the data. Some of the numbers appear to deviate by more than one
standard deviation resulting from either an extra count or ;-missed 5
| count in the data taking. Such errors can be corrected by standard %
VE techniques. The data were subjected to analysis by a computer program é
o to make such corrections. The results are given in Tables 4.10 and 4.11
e which can be compared directly with Tables 4.6 and 4.7 (pp. 44, 50), i
Es respectively. Comparison reveals that both the slopes 3 and the standard ?
.; deviations Sg were improved. The slopes were used to calculate present "
E: experiment values of the velocities v which are observed to be in better .f

agreement with the measured data of McSkimin listed in Table 4.10, ‘and

the deviations from the mean velocity were reduced. In Table 4.11 it
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Table 4.9. Propagated Error (§v/v) from Standard Sources :
s Sample Propagated Error (év/v) from Standard Results*

: [100] 0.07% y
M [110] 0.07% 2
i: [111] 0.08% ]

*These values have been calculated using the constants given in ’
£ McSkimin (1963): :
) Cyq = 12.8528 x 10" + 0.04% -
. C22 = 4.8259 x 10" + 0.04%
::_\_ C44 = 6.67966 x 10" = 0.04% ‘
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"' is found that the T statistic still lies within the critical region

for the [100] and [110] values; however, the [111] T statistic now lies

b outside the critical region. This probably results from the fact that,

as indicated, the [111] value was obtained from McSkimin's data by
Y; adding certain numbers to give a propagated error which has not been
accounted for in the analysis. An additional possibility is that the
L present value df Sé of only 0.000053 results in an anomalously large
$ T statistic. Finally, the variation Av of the present data from those
of McSkimin in all three cases is decreased by the correction of the

systematic error.

. The results presented in Tables 4.10 and 4.11 also have been
calculated by including all of the significant figures in the lengths
given in Table 4.1 (p. 27). Tables 4.6 and 4.7 (pp. 44, 50) were calcu-
lated by rounding off the lengths to three significant figures. Although

y the change in the velocities resulting from the more accurate value of
length is not great, it was detectable in the fourth significant figure

in the velocity. Hence, the correction is justified.
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SUMMARY

‘atx’a

R TP

The analysis in this thesis shows that the question originally

|

=

posed does not have a unique answer for all samples under all con-

c

ditions. Oqe cannot decide a priori whether reference values of cij

s

should be used or whether one should measure the Cij each time

he measures the C1 K The analysis given, however, tends to support

A

the position that on those occasions one has data as accurate as those

s

of McSkimin his accuracy is greatest if he uses them rather than
remeasuring each sample. If such accurate data are not available, one

has no choice.
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' APPENDIX A
s THEORY OF PULSE SUPERPOSITION TECHNIQUE
n“
&
The equation of motion for a progressive wave propagating in a
E; medium is given by
§ u = pel (kx-ut) (A-1)
)
2 where A is the amplitude of the wave.

Let us consider two such progressive waves given by

i(kx,-wt,)
A]e 177

(Y
[ -
—
i

(A-2)

i (kxz-wtz)

A2e

5 3
[ =
N

Consider the sample of length 2 as shown in Figure A.1. The electri-

. “L&:

cal signal applied to the transducer bonded to the sample by means of

7

stopcock grease causes the transducer to emit an ultrasonic wave which

>

travels through the sample and is detected at the opposite end of the

5%

sample by the capacitive receiver. The signal is displayed on the

- oscilloscope screen. In this process the first pulse is

Ca”a
S

detected when the ultrasonic wave reaches the end of the sample at

;{ the capacitive receiver. After this, the wave undergoes reflection,
returns and once again is reflected. The second pulse thus seen on

o’

Kg the oscilloscope screen accounts for the signal that is detected

after the ultrasonic wave has undergone two reflections.

-
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Since the expression for the velocity of sound is derived upon

the basic assumption that the wave has undergone two reflections
before it is detected, the velocity formula derived below is valid for
all pulses except the first pulse which is detected before two
reflections. Therefore, for the first echo of some initial pulse which
corresponds to the second pulse that is seen on the screen as shown in
Figure A-2, one can write

(x + 22) + %? . (A-3)

X

The pulse travels the distance 2, is reflected at the sample surface
and again travels a distance %, whereupon it is reflected again at the
boundary. After the second reflection, if it travels a distance x, as
shown in Figure A-3, then the total distance traveled is (2: + x). In
addition, since the wave undergoes two reflections, it also undergoes
two phase changes which need to be accounted for. The distance corres-
ponding to one phase change is %u where ¢ is the phase change upon
reflection. Since two phase changes are involved, the corresponding
distance is given by %%u Therefore, the total distance traveled by

the wave before the first echo is seen is given by the sum

- 2¢
X X+ 22 + o

If there are n such echoes, the expression takes the general form

Xp = x +2n ¢ 2%9
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for the nth echo. Similarly, for some other initial pulse (delayed

in time with respect to the first pulse) for the mth echo, we have

= x- , 4 2mo
Xy = X + 2my + i

For overlap of echoes we require

X = X

A_I = A2 = A

Ly
and:

i (kX] -wt-l ) i (kxz'Wtz)

us=up +u,= A]e + Aze . (A-4)
Since

A] = A2 = A

t-l = tz -
and

X=X,
we have

- Aei(kx-wt)[ei(ang+2n¢) + ei(ka2+2m¢)] . (A-5)

Since the delayed pulse started later than the first one, we have

;
;

n>m, so that one can write

) '
"'0!". Cd

Ll M k4 )
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Substituting for n in terms of m and s, we have

y = Aei(kx-wt)[ei{Z(m+s)kz-+2(m+s)¢}_+e1(2mk£-+2m¢)] (A-6)
or

U = Aei(kx-wt)ei(ka;’l+2m¢)[e1'(25k2 +25¢) + -I] (A-7)
For destructive interference, we have the condition

2ske + 2s¢ = (29 + 1)7 (A-8)
where q = 0, 1, 2, 3, or, since k = ;§-= 2ifl ,

(2q + 1)m = 2s¢ + 4—"\5# . (A-9)

If we change the driving frequency so that we go through destructive

interferences, then we have for the beginning frequency f

1:
(Zq] + 1)n + 2s¢ + - (A-10)
and for the final frequency fz:
41T5f29.
(2q2 + 1)n = 2s¢ + v (A-11)

Subtracting (A-10) from (A-11), we have

Z(QZ - q])“ = 4TTv52 (fz - f]) .

Letting 9, - 6y = 4q and f2 - f] = Af and solving for the wave velocity

vV, we have

e
i
RO U,

4
L,
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- Af
. V=25 o (A-12)

. which has been used to interpret data in this thesis.
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APPENDIX B

- T

COMPUTER PROGRAM FOR COMPUTING VELOCITY

1 //SONIC JOB , ,GROUP= ,USER=" - , TIME=(5,0),CLASS=T,
// PASSWORD=
##*jOBPARM LINES=5,CARDS=5000, ROOM=BIN4
###ROUTE PRINT RMT26

2 // EXEC SAS,REGION=512K

23 //SYSIN DD *

NOTE: SAS OPTIONS SPECIFIED ARE:
SORT=U4

1 OPTIONS LS=72;
2 DATA SOUND;

3 INPUT Q F;

u CARDS;

NOTE: DATA SET WORK.SOUND HAS 108 OBSERVATIONS AND 2 VARIABLES. 2346 OBS

NOTE: THE DATA STATEMENT USED 0.08 SECONDS.

PROC PRINT;
TITLE OBSERVATIONS ON F AND Q FOR GE(111);

-
-
&Ew

NOTE: THE PROCEDURE PRINT USED 0.17 SECONDS
AND PRINTED PAGES 1 TO 2.

PROC MEANS;
TITLE STATISTICAL ANALYSIS FOR GE(111);

—
-
awm

NOTE: THE PROCEDURE MEANS USED 0.13 SECONDS
AND PRINTED PAGE 3.

117 PROC SYSREG;MODEL F=Q;

NOTE: THE PROCEDURE SYSREG USED 0.15 SECONDS
AND PRINTED PAGE 4.

118 PROC PLOT;
119 TITLE PLOT OF F VS. Q FOR GE(111);
120 PLOT F*Q;

|
:

NOTE: THE PROCIDURE >LOT USED 0.16 SECONDS
AND PRINTED PAGE 5.

T

’

NOTE: SAS INSTITUTE INC.
SAS CIRCLE
PO BOX 8000
CARY, N.C. 27511-8000

o) SaEnlgudlk BN

L g
O

£ r
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OBSERVATIONS ON F AND Q FOR GE(111) 1
14:14 THURSDAY, DECEMBER 5, 1985

!' £8S Q F
1 0 25.689
, 2 10 26.266
T 3 20 26.836
Ny y 30 27.403
h 5 40 27.988
6 50 28.557
7 60 29.128
8 70 29.700
! 9 80 30.272
: 10 90 30.832

11 100 31.399
, 12 110 31.983
3 - 13 120 32.5u6
4 130 33.133
15 140 33.687
16 150 34.266

Y 17 160 34,752
) 18 0 25.684
) 19 10 26.266
20 20 26.832
21 30 27.400
-, 22 40 27.974
1) 23 50 28.530
24 60 29.124
25 70 29.685
26 80 30.268
R 27 90 30.833
L 28 100 31,398
N 29 110 31.979

30 120 32.554
31 130 33.105
32 140 33.701
33 150 34.261
34 160 34,752

35 0 25.684
36 10 26.266
37 20 26.835
38 30 27.402
39 Lo 27.993
40 50 28.553
i1 60 29.126
42 70 29.700
L3 80 30.269
by 90 30.833

45 100 31.397
ué 110 31.989
_ uy 120 32.547
s 48 130 33,140
u9 140 33.712

50 150  34.246
51 0  25.863
52 10 26.428
{. 53 20 26.992
54 30  27.568
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OBSERVATIONS ON F AND Q FOR GE(111) 2
14:14 THURSDAY, DECEMBER 5, 1985
08S Q F
55 40 28. 14y
N 56 50 28.714
< 57 60 29.302
Py, 58 70 29.865
59 80 30.429
60 90 30.995
61 100 31.564
62 110 32.150
a 63 120 32.714
64 130 33.296
65 140 33.817
Y 66 0 25.863
‘ 67 10 26.425
68 20 26.996
69 30 27.568
70 40 28.155
X 7 50 28.744
\ 72 60 29.301
Q. 73 70 29.865
74 80 30.430
75 90 30.998
; 76 100 31.581
77 110 32.146
78 120 32.717
79 130 33.303
80 140 33.811
> 81 0 25.792
o 82 10 26.373
B 83 20 26.943
84 30 27.497
85 40 28,068
86 50 28.652
87 60 29.228
88 70 29.801
89 80 30.376
- 90 90 30.938 .
. 91 100 31.503
< 92 110 32.085
93 120 32.673
9y 130 33.235
95 140 33.801
- 96 0 25.792
o~ 97 10 26.318
98 20 26.889
99 30 27.481
o2 100 40 28.036
iy 101 50 28.610
g 102 60 29.183
103 70 29.779
104 80 30.318
= 105 90 30.886
S 106 100 31.452 ;
N 107 110 32.043
108 120 32.625
-
*oa
:§l
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STATISTICAL ANALYSIS FOR GE(111) 3 >

14:14 THURSDAY, DECEMBER 5, 1985 .

VARIABLE N MEAN STANDARD MINIMUM MAX | MUM ()

| DEVIATION VALUE VALUE .'f
v

" Q 108 72.68518519 45.56204523 0.00000000 160.0000000 ht.
» F 108 29.91292593 2.59537738 25.68400000 34.7520000 "
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STATISTICAL ANALYSIS FOR GE(111) L
14:14 THURSDAY, DECEMBER 5, 1985

. MODEL:  MODELO1 SSE 0.576765 F RATIO 1323%6.05
> DFE ‘ 106 PROB>F 0.0001
;: DEP VAR: F MSE 0.005441183 R-SQUARE 0.9992

PARAMETER STANDARD
; VAR| ABLE DF ESTIMATE ERROR T RATIO PROB>|T|
% INTERCEPT 1 25.774174 0.013409 1922.1649 0.0001
' Q 1 0.056941 0.0001565134 363.8077 0.0001
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PLOT OF F VS. Q FOR GE{111) 5
14: 14 THURSDAY, DECEMBER 5, 1985
PLOT OF F*Q LEGEND: A = 1 0BS, B = 2 0BS, ETC.
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