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PREFACE

To evaluate the combination of third-order elastic constants K(

of cubic crystals, one needs very accurate values of the combination

of second-order elastic constants K2 Often one can obtain numerical

values of second-order elastic constants for the sample of interest

from existing data. Due to the error propagation and the experimental

uncertainties at the time of the original measurement, however, there

may be uncertainties in the magnitude of K 2. An alternative way to

arrive at K 2 s would be to measure them at the time the K 3 data are

taken. This measurement is quite straightforward since K 2 s are

directly related to the sound velocities, which can be measured. The

extra time and effort spent in doing the latter would be justified by

an increase in accuracy. The purpose of this thesis is to study

these alternatives and compare error propagation in an effort to arrive

at the most accurate way to evaluate K 2' The analysis in this thesis

shows that the question originally posed does not have a unique answer

for all samples under all conditions. One cannot decide a priori

whether the reference values of C i should be used or whether one should

measure the C. each time one measures C The analysis given, how-
13j ijk'

ever, suggests that one should use reference data rather than measuring

each sample, if the reference data are as accurate as those of

McSkimin. If such accurate data are not available, one has no choice.

One must measure the K 2 directly.

Zi'i7
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• :CHAPTER I

INTRODUCTION: GENERALIZED DEFINITION OF

ELASTIC CONSTANTS

The application of a time varying force on a solid material

causes a deformation of the solid and gives rise to stress waves. To

explain the behavior of a material upon application of stress, several

general relations between stress applied and the resulting strail have

been studied. One such relation was put forward by Hooke, according to

which, for a linear elastic medium the stress applied to a material is

* proportional to the resulting strain, where the coefficient of

proportionality is a constant independent of stress, strain and their

time derivatives. Although Hooke's law generalized to anisotropic

media is quite appropriate for description of many phenomena, it fails

totally to explain nonlinear phenomena. Thus, a more general approach

is required. Such a generalized approach was made by Murnaghan (1951)

who started from the definition of the energy of a small volume sub-

jected to a homogeneous strain. This approach later was applied to

crystals of cubic symmetry by Holt and Ford (1967).

If m0 is the internal energy of a unit mass of material in an

undeformed state, i.e., energy of the solid in equilibrium, then for

small deformations we can expand the strain energy in a series

•+." (1 1)
0 1 + 2 3

where I is the first-order perturbation term, etc. In terms of

elastic modr~i one can write the same expansion:

e:
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0 1 ij + ijkZ nij nk2

3! ijkzmn nij kZ mn + (1.2)

where there is a summation over repeated indices which take successive

values of 1, 2, and 3, and where Cij 's are the elastic constants and

nij are the components of a strain tensor. The first term on the

right-hand side of Eq. (1.2), 0', is independent of strain and there-
'C.

fore can be set equal to zero without loss of generality. The second

term, '1, is also set equal to zero, as it corresponds to displacement

without deformation. Equation (1.2) then reduces to:

C. 1 Ck + (1.3)iTi

! Cijkz nij 3k + Cijkzmn nij nkZ nmn (

where Ci j k are the second-order elastic constants and Cijkzmn are the

third-order elastic constants.

The expansion of strain energy in terms of strains can be

substituted into Lagrange's equation to obtain a completely general

wave equation capable of describing both linear and nonlinear wave

phenemona in solids of any crystalline symmetry. Such an equation has

been derived and has been specialized to cubic symmetry. For longitudinal

waves along the principal directions in a cubic crystal the equation

takes the form

" a2u D2u ," 2u u I40 - K 2 2 3K2 + K3 2 a

-- (.4
,.,.. .. , ,., . ,1-,-,i ., ,--. --.. -; . ., < ,... 2; K-. 3-.... ,a,.- .. ,,.. .-. . . ... . . - . . .; : .-.
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where the symbol K2 stands for linear combinations of second-order

elastic constants and K3 stands for linear combinations of third-order

elastic constants as shown in Table I.I. The solution to the nonlinear

wave equation is as follows:

3K2 + K3  k2A 2 a
u = A1 sin(ka -Wt) _ 8K2  Jcos 2(ka - wt)

+ . (1.5)

This solution shows that in a nonlinear solid the propagation of an

initially sinusoidal wave generates a second harmonic whose amplitude

is a linear function of propagation distance a and is proportional to
3K2 + K3

the combination of elastic constants K2  This combination often

is called the nonlinearity parameter. Measurement of the amplitude of

the second harmonic generated as a longitudinal ultrasonic wave propa-

gates along the symmetry directions in cubic crystals has led to values

of the third-order elastic constants of copper, germanium, silicon,

KZnF 3, SrTiO.., and CsCdF3, between room temperature and 77 6K, or even

3 OK.

But in the course of evaluating the third-order elastic constant,

K3, the experimenter must obtain values of the second-order elastic

constants K2, and the accuracy of the K3 is directly dependent upon the

accuracy of K2.

Since the second-order elastic constants of a number of crystals

have been measured, it often is possible to obtain numerical values

for the sample of interest from existing data. But the uncertainties

in the magnitude of K2 depend upon error propagation as well as upon

the experimental uncertainties at the time of the original measurement.

%I
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Table 1.1. K2 and K3 for [100], [110], and [111] Directions

Direction of K K
Wave Propagation 2

[100] C C111

[110] (c + C12 + 2C44) c + +12C2 1 12 4)4( I1l +3C112  12 166)

[11 -C + 2C1  + 4CLC + 6C +12[111] 11 4c44) 911 + 12 c144)

+ 24C 166 + 2C123

+ 16C 456 )

7A%
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An alternative way to arrive at expressions for K2 would be to

measure them at the time the K 3 data are taken. Since

kK- 2 P (1.6)

this medsurement is quite direct-a measurement of the density of the

material and of the velocity v of a longitudinal wave along the

direction for which K 2 is defined. An advantage of this procedure is

that K2 data are taken on the same sample as the K 3 data. But one

disadvantage is that such a measurement would essentially double the

time spent in measuring the third-order elastic constants as a function

of temperature. Since such measurements typically require an

uninterrupted period of at least 36 hours, such an increase in time

would be justified only by an obvious increase in accuracy of the data.

The purpose of the present thesis is to evaluate the alternatives

by comparing error propagation. To do this, measurements were made of

the velocity of propagation in the three principal directions in

germanium, a cubic crystal.

The data are subjected to a detailed error analysis and the

results are compared with the errors propagated when the data of

McSkimin (1963) are used to calculate velocities of longitudinal ultra-

sonic waves in germanium. The comparison is made more significant by

the fact that the sample actually used by McSkimin was available for

the measurements reported in this thesis.



CHAPTER II

THEORY OF ELASTIC WAVE PROPAGATION

The evaluation of the second-order elastic constants from data

on the velocity of an ultrasonic wave in a cubic solid requires the

derivation of the wave equation from the basic definitions. The basic

definition of strain energy (Eq. 1.3) is general enough to allow a

description of nonlinear phenomena; however, for purposes of deriving

the linear form of the wave equation to be. used throughout the remainder

of this thesis, the strain energy can be approximated by including only

the first set of terms. Since these terms contain second powers of the

strain, the coefficients are known as second-order elastic constants.

Truncation of the strain energy expansion in this way also allows one

to make a definition of Hooke's law generalized to anisotropic media.

Although the generalized Hooke's law has limited value since its very

definition prohibits the consideration of third-order elastic constants,

it still is used in engineering applications often enough to justify

its consideration in this thesis.

A. RELATION BETWEEN STRESS AND STRAIN IN AN ANISOTROPIC
SOLID (GENERALIZED HOOKE'S LAW)

To derive Hooke's law generalized to anisotropic media it is

adequate to retain only the second power terms in the strain energy.

Equation (1.3) thus becomes

6

Old, ...................................
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5=1 (2.1)

Now, consider the work done when a strain nij results from a stress

ai .•The work E done by the stress in causing the strain is

E =  n (2.2)
2 -ij 'ij

"o Equating the work done to the strain energy results in

ij = Cijkz nkz (2.3)

This is known as the generalized Hooke's law for an anisotropic medium.

In this form it can be used to describe a medium of any crystalline

symnetry in the linear approximation.

B. SECOND-ORDER ELASTIC CONSTANTS OF CUBIC CRYSTALS

From Eq. (2.3) it appears that there must be 34 = 81 elastic

constants Cijkg* The total number of independent constants, however,

is reduced by lattice symmetries. When the stress tensor aij and the

strain tensor nk are symmetric (i.e., aij = Gji and nkk = n k), the

number of independent second-order constants reduces to 62 = 36. This

reduction is done easily by reindexing the stress and strain components

according to Volgt rotation as follows:

.J.i

UI



8
1 7 11 04 023 032

02 a 22 a 5  0 31 0 13

0 3 = 33 a 6 12 021

and (2.8)

4= nil 123 9 32

. 2 = 22 , n5  T3 = i3

n3  n33  , 6  n12 21

With this notation the linear relation between stress and strain is

written as

.% = na (a, = I, 2, 3, 4, 5, 6) (2.9)

where C are constants and the range of summation now is up to 6 for

the indices a and a. The elastic constants C and C ijk are related.

Some examples of how these are related are shown below:

Cl1 = Cllll

C12 = C1122  (2.10)

C14 : 2C1 12 3  1132

We observe that C.. = C.. and Ci. =C This implies thatijkr jikr ijkr ijrk' sipista

there are only six combinations for the first pair of indices and six

of the second pair. Thus, for a cubic symmetry since,

,b

a h.
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C 1 : C22 : C3 3

C12: 21: 13 : 31 : 23 = C32

C44 = C55  C66

the total number of independent elastic constants reduces to three,

viz. Cli, C12 and C44.

C. RELATION BETWEEN C1 'S AND SOUND VELOCITY

1. Wave Speeds in an Elastic Medium

The linear equation of motion for a wave through an elastic medium

can be derived by using the strain energy Eq. (2.1) in Lagrange's equation.

As given by Green (1973) it is:

P6 C i 2uk (2.11)
Sijkk ax La

where C.. are the second-order elastic constants, u. is the displace-

ment at a time t, and p is the mass density of the homogeneous medium.

qIn the principal directions [100], [110], and [111] in a cubic lattice

the three equations represented in Eq. (2.11) are uncoupled, and to

derive a relation between wave speeds and Ci 's in these directions we
""j

assume a solution to Eq. (2.11) of the form:

ui(xkt )  A0i exp i(wt - kX ) (2.12)

iwhere A0 is the amplitude of the wave, ai are the direction cosines

of the displacement vector, km is the wave vector given by

: k~m

km 'm' (2.13)

. .,

- . . ., '. . . . . ) . .
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where k is the wave number, zm (: i,m,n) are the direction cosines of

the normal to the plane wave, and x is the wavelength. Substituting

Eq. (2.12) into Eq. (2.11) and using Eq. (2.13) gives a set of equations

of the form

[Cijk • £ j - pv2 6l]uk 0 (2.14)

where v, the speed of propagation of the wave, is given by

v= 2/k (2.15)

and ui = ikuk. For a nontrivial solution of Eq. (2.14) to exist, the

*--' determinant of the coefficient must vanish. Thus,

j ijkz z j - pv2 6k 1 = 0 . (2.16)

For simplicity, let Cijkz z 2j z X ik; then (2.16) reduces to2

x Ak- pv 6ikl = 0 . (2.17)

Equation (2.17) is an eigenvalue problem of the form

11 12 131 0 0

2 A 0 1 0 = (2.18)
21 22 23 -pv

A3 1  A 3 2  X3 3  0 0 1

•.,.

whose solution gives the wave speeds. This determinant can be written

in the form

Nkk4'. .. ~*** ~ ~ - 2
• -" - " ' . ' ' .-.-. ' 'r 

-
- ' ' .- - ' .-.. -,, '"- '' " """ - " - """"PW '""',- - ?. - " "". A



1 " Pv A12  2' 13

X 2 1  X22 - pV2  23 0 (2.19)

-31  32 33 - v

The fact that this is a 3 x 3 determinant indicates that there are three

solutions; i.e., there are three independent plane waves, each having

polarization in one of the three orthogonal directions. The speeds of

these waves are the eigenvalues. To determine the eigenvectors we define

the direction cosines a, a, y of the particle displacements. They are

obtained by writing Eq. (2.16) in the form:

A Aa 1 0 Ocia
11 12 13

21 X22 A23  P = v 0 1 0 (2.20)

31 32 A33  0 0 1

where we have used 6ik 0 1 0 The solution of this equation

gives the eigenvectors. To repeat, the solution of the eigenvalue

problem (2.17) for eigenvalues and eigenvectors gives information about

the magnitude and direction of the speed of propagation of the three

possible plane waves through a crystal. It is specialized to the pure

mode directions in cubic crystals in the next section.

2. Wave Speeds Along Pure Mode Directions in Cubic Crystals

The three principal directions in cubic crystals are shown in

Figure 2.1. In each of these directions three pure mode elastic waves

(one longitudinal and two transverse) may propagate, while in all the

other directions waves may be coupled. We now study the behavior of

S,
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the elastic waves along the pure mode directions of cubic crystals

and derive relations between sound velocities and Ci 'S.

a. [100] Direction

For the [100] plane-th.-.direction cosines of the plane wave

normal are x = 1, m 0 0, n = 0. For this direction,

XAlI :Cll

A12 =13 : 23  A21 - .31 : 0
a..

22 A33 -C 44 .

Substitution of these values into (2.17) and simplification leads to:

(C11 - pv 2)(C 4 4 - pv 2)(C 4 4 - pv2 ) = 0

whose three solutions give the magnitude of the three wave speeds:

v1 = 111J/2 (longitudinal)

= v3 = (transverse)

The direction of propagation of these three waves is obtained by

evaluating the eigenvectors , , y from Eq. (2.21) for each of the

speeds v1 , v2, and v3. For velocity-v I, we find a = 1, a = 0, and

= . A comparison of , B, y. with z, m, n shows that the direction

cosines of the particle displacement are identical to the direction

cosines of the plane wave normal; i.e., speed v1 corresponds to a

pure mode longitudinal wave. Similar calculations for c, , y for

speeds v2 and v3 show that v2 and v3 correspond to pure mode transverse

waves and that Iv2I = Iv3 1; i.e., the two transverse waves propagate

at the same speed. This means that the speed of a transverse wave

propagating along the [100] direction is independent of polarization.

S -
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b. [110] Direction

For the [110] plane, the direction cosines of the wave normal

are £ : 1/V2, m 2/i, n = 0. For this direction,

11 =A 22 = (Cll + C44)

~(C.~ + C44
" 12 21 12 44)

(2.23)

13 = 23 = 
3 1 : 32  : 0

33 C44

Substitution of these values into Eq. (2.17) and simplification gives:

2(Cl- C12 ) - "v'] (12(C,, + C12 + C44) - vJ(C44  pvj=0(.4

Solution of Eq. (2.24) gives the magnitude of the three wave speeds:

vl = {(C11 + C12 + 2C44)/2p)
I/2

v 2 = {(C11 - C12 )/2p}112  (2.25)

v3 = {C44/P) I /

3 1/2

The direction of propagation of these three waves is obtained

by evaluating the eigenvectors a, B, and y from (2.21) for each of the

speeds v1, v2 , and v3. Note that in this case v2  v3. For the speed

..- vI we find that a : 1//, B = l2, y = 0. A comparison of a, B, and

y with z, m, and n shows that the two sets are identical, so v1 is a

pure mode longitudinal wave. Similar calculations of , B y for the

speeds v2 and v39 and comparison with Z, m, and n shows that they.are

i pure mode transverse waves.

". 9 . . .- ? -..- . .
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c. [111] Direction

The direction cosines of the wave normal in the [111] direction

are i=m =n 11l/1. For this direction,

~1
A1 = '22 = '33  11- (Cl + 2C44 )

(2.26)
. -. 1

'12 = A13 = A23  A '21 = A31 = A32 : (C12 + C44)

Using Eqs. (2.26) and (2.17), the magnitudes of the three wave speeds

are given by

C11 + 2C12 + 4C44.]112

"; (2.27)

v= v3 = -C + C44  /2
23P

Again, evaluating the eigenvectors for each of the speeds vl, v2, and

v3 shows that for v1 c L = y =

Comparison of a, 8, and y with 2, m, and n shows that vI is

longitudinal. Similar comparisons show that v2 and v3 are transverse

and equal in magnitude.

D. SUMMARY

The relationship between sound velocity and C. 's has been

derived for the three principal directions [100], [110], and [111] in

a cubic crystal. The results are summarized in Table 2.1 where it is

clear that in the [100] and [111] directions the two transverse waves

travel at the same speed, but in the [110] direction their speeds are

',,
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different. For the purposes of this thesis one is interested in the

relationship between Cij 's and sound velocity for longitudinal waves,

as the relationship among the Cij's for longitudinal waves presented

in Table 2.1 are identical with those labelled K2 in Table 1.1,
'I

p. 4. To emphasize this point the results for the longitudinal

waves in the-principal direction are repeated in Table 2.2. These

are the relationships to be analyzed.

kJ"I
0

° ,,q

I

~% C$.
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I

Table 2.2. Combination of Second-Order Elastic Constants
,

Direction of Propagation K2 Mvo2- - = longitudinal

[100] Cl1

2p
Cl1 + C12 + 2C44

[110] 1 2 4

£11 C11 + 2C12 + 4C 44
3 pS

,.,

I• I
'I

'" . .. " ' " % " " ' .,r" .:,'" "" " ' "' "" " " '" 
'  " " " " " " " "" - " -' "" "'" "' " " " " " " ' ' " -" -" -" -" -" -' " " '
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p CHAPTER III

EXPERIMENTAL APPARATUS AND PROCEDURE

The configuration used in the measurement of the velocity of

sound and the related K 2 1s in samples of germanium is shown in

Figure 3.1. Electrical pulses modulated at 30 MHz are generated by the

gated amplifier. They arrive at the transducer surface through the

impedance matching network and cause the transducer to vibrate and

generate a 30 MHz pulse of ultrasonic waves which propagate through

the sample and are received by the capacitive receiver which converts

them to an electrical signal which is amplified and displayed on an

oscilloscope.

A. CAPACITIVE RECEIVER ASSEMBLY

F1 Details of the capacitive receiver are given in Figure 3.2. The

upper end of the receiver assembly consists of a copper electrode 1 cm

in diameter surrounded by a grounded outer assembly that is insulated

from the electrode by a Teflon ring. The electrode is spring-loaded

to make contact with the quartz transducer surface. The electrical

signal is fed to the quartz transducer through the spring.

At the lower end of the assembly is an electrode of 1 cm

diameter placed on a fused silica optical flat. A grounded concentric

copper ring in contact with the optically flat end of the sample

provides an air gap between the electrode and the sample, a separation

b of the order of 10 microns. When the sample is placed in position, it

19
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22I
touches the outer ring. Tha optically flat sample face and the electrode

surfaces form a parallel plate capacitor with air as dielectric,

as shown schematically in Figure 3.2. The capacitance of the parallelI

plate capacitor may be evaluated from

C A

where A is the area of the plates and d is the spacing between the

plates (5p-10p~), since the fringing is negligible. The capacitance is

found to be of the order of 60-120 pF for a spacing of d =5-10 microns

and for detector diameter = 0.92 cm.

B. SAMPLES

Measurement of the velocity of sound was made in the laboratory

on several materials, but in the present thesis the focus is on samples

of germanium single crystals. The lattice structure of germanium is

cubic and there are three directions along which pure longitudinal

ultrasonic waves propagate in cubic lattices: [100], [110], and [111].

The samples allowed measurements to be made along these pure mode

directions. They are sketched in Figure 3.3 with the dimensions

* indicated. The samples were first lapped to a flatness of half a wave-

length of light. The importance of making the samples optically flat

results from the plane wave assumption used in the theory of ultra-

sonic wave propagation. Since we used high frequency (-,30 MHz), which

corresponds to a wavelength of 0.17 mmn for germanium, even a smallI

variation in the surface can produce a significant phase shift and

affect the accuracy of the experiment.
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a : 3.76 cm

ITI

A. Ge 100

a= 1.20 cm

B. Ge 110

a 4.91 cm

q,.

C. Ge 111

Figure 3.3. Dimensions of samples Ge[100], Ge[110], and Ge[lll].
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After the samples were lapped, they were washed thoroughly to

remove any oil that might have impeded the adherence of a copper
-6

coating. The samples were placed in a vacuum of 10 Torr and allowed
0

to outgas for one hour. Then a 100 A coating of copper was sputtered

onto the surface to serve as an electrode. After removal of the

sample from the vacuum chamber, a quartz transducer was attached to

one of the optically flat conducting surfaces by means of nonaqueous

stopcock grease, then the sample was mounted in the measurement

assembly.

The output of the cw oscillator (see Figure 3.1) was applied to

the gated amplifier whose output was tested with an oscilloscope and

applied through an impedance matching network across the quartz trans-

ducer attached to the sample surface. By adjustment of the impedance

matching network, the pulsed oscillator-transducer system was tuned 0

for maximum power transmitted to the quartz transducer whose resonant

frequency was 30 MHz.

The 30 MHz pulsed ultrasonic wave generated by the transducer

travels through the sample and is reflected between the sample surfaces.

When it reaches the lower surface, it causes the sample surface to

vibrate. As a result, the capacitance between the surface and electrode,

as shown in Figure 3.2, changes periodically. This produces an alternating

current which is amplified and observed on the oscilloscope. The

gated amplifier is capable of generating a second pulse train (delayed

in time with respect to the first pulse train). The two pulsed ultra-

sonic waves interfere and give rise to interference maxima and minima.
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For a minimum, the path difference between the two pulses must contain

an odd number of half-wavelengths; viz,

Path difference = (m +1A

where m = 0, 1, 2,.......In taking data an initial frequency in the

range of the resonance frequency was chosen. Then a number of minima

was counted as the frequency was increased, and the final frequency

noted.

If the nth echo of one pulse train overlapped the mth echo of

the second pulse train, the difference m - n = s is the quantity used

in calculating the velocity.

Finally, the length L of the sample was measured with an accuracy

of 104 cm. The velocity of the ultrasound in the sample material was

then determined using the expression:

V 2Ls AF
AQ

where

L =the length of the sample;

- s =m - n (n is the echo number of some initial pulse and m is

the echo number of some other pulse delayed in time with

respect to the first pulse);

'F = frequency difference;

'Q = the number of interference minima.



CHAPTER IV

EXPERIMENTAL RESULTS AND DATA ANALYSIS

The error propagation in determining the K 21 s from expressions

for C. can be evaluated directly from the data; however, in order to
1.)

evaluate the relative magnitude of the propagated error and the error

resulting from direct measurement of the K 21 s it was necessary to set

up apparatus and measure the velocity of longitudinal waves in

crystalline samples. The calculations given in Chapter II show that

the expressions for the K 21 s are related to the measured velocities

by K = pv 2. This chapter describes the means by which experimental2

values of the longitudinal wave velocities were obtained.

A. EXPERIMENTAL DATA

The length and the density of the samples used in the present

experiment, viz. Ge(l00), Ge(ll0), and Ge(lll), are given i-n Table 4.1.

Three sets of data, using 30 MHz transducers were taken for the measure-

ment of velocity of sound in the samples of germanium. For each set of

data, a measurement of frequency F was taken for several values of the

maxima Q. The data are presented in Tables 4.2, 4.3, and 4.4. Plots

of F versus Q are shown for each of the samples in Figures 4.1, 4.2,

and, 4.3. These figures, usually called scatter diagrams, allow one to P

observe directly the scatter of the data resulting from statistical

variations in the magnitudes of the measured quantities. Under ideal

circumstances these variations would vanish and the data in each case

26
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Table 4.1. Sample Densities and Lengths

Sample Length (cm) Density (gm/cm

Ge[100] 3.76 5.323

Ge[ll0] 1.20 5.323

Ge[lll] 4.91 5.323

~-

*4 .. -.. ...-.-...- --. -- •-. ... . . --...-.-...--...-....-..-. ... ....... , .......... -. -'-.. ... ..4.4
' " = , , , "- ".' , .',"-" : ." ". " .- * - .- " - "- ," "-"-' - -- >Z *
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PLOT OF F*Q LEGEND: A 1 OBS, B = 2 OBS, ETC.

33 E w
/

32 A

F

31

C

30

s o G

- 29

28

CU

D
S27C

LL- 

/A

26 F

25
C

24li

0 10 20 30 40 50 60 70

Number of Maxima

Figure 4.2. Scatter diagram of F vs. Q for Ge[llO].

41



33

--- .

PLOT OF F*Q LEGEND: A =I OBS, B = 2 0BS, ETC.

36"-

C34 /

F

33 A
Dr/

B/CN 32 E

1

/( 3o
C ,"

300

29 /A

B/D B/ 
"

28 /E

27D

B/c

26/

25

20 46 60 80 100 120 1140 160

Number of Maxima

Figure 4.3. Scatter diagram of F vs. Q for GeElll]. ,.4I '-,.

p

.4 , ' ,,, , -, - /, . :_, ;; ,' " '":r?""' :,"'"-"-", : :",,"," ",- ".:,, ,. ,.



34

would define a single straight line whose slope in combination with LI

Pand swould give the exact value ofthe velocity inthecorresponding
direction. The purpose of the next section is to define the way one

handles the actual data to arrive at the most probable straight line,

B. DATA ANALYSIS

To calculate the velocity of sound in the germanium crystal

for various crystalline modes one uses the expression

v=2Ls 'F (4.1)

and the observations on L, s (m and n), F, and Q presented above.

The observations on F and Q presented in the scatter diagrams

(Figures 4.1, 4.2, 4.3) suggest that for any interval LQ the corres-

ponding interval AF is not uniform for all values of Q. For example,

if AQ Q2 Q, and AF = F2 - Fl, then for a different 6Q Q4 -Q

~Q2 -Q 1) F 4 - F 3 can be different from AF = F2 - F 1. This is

because the data on F and Q in practice do not have an exact functional

relationship as a result of systematic and random errors in the experi-

ment. It therefore is important statistically to estimate the best

value of AF/,AQ from the data in order to predict the most probable

value of the velocity v. This is the purpose of the present section

which is divided into five parts.

The first part deals with the assumptions, relevant formulae,

and methodology employed in the estimation of SF/AQ. In the secondI

part, ordinary least squares estimates of the slope s = F/LQ are
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presented in the standard format and also in a table. Computations

of velocity are then made and the results are shown in tabular form.

In the third part, the experimental results on velocity in the

germanium crystals are compared with those obtained by McSkimin (1963).

The propagation of errors in the present experiment and propagation of

error in calculating velocity using standard values of second-order

elastic constants are discussed in the fourth part. Lastly, in the

fifth part are presented the conclusions.

1. Assumptions and Methodology

The method of ordinary least squares is used to estimate the

most probable value of the slope a6 AF/AQ from the data. But in

order to do so it is essential to make the (unverifiable) assumption

that the statistical distribution of F does not change from one set

of observations to another. The evaluation of the slope a requires

a specification of the relationship F = f(Q) and the use of statisti-

cal regression analysis [Kleinbaum and Kupper (1978); Johnston (1984)].

In what follows a possible relationship between F and Q is assumed and

a;, a methodology for statistical estimation of 6 is developed.

a. Functional relationship between F and Q. The scatter diagrams

in Figures 4.1, 4.2, and 4.3 show that in observations on each sample

the value of F at a certain value of Q is not consistent. This is due

to the fact that random errors impart bias to the observation on F.

In fact, the distribution of F at the same value of Q depends upon the

statistical distribution of the random error. Thus, there is a whole

probability distribution of values of F for each value of Q. The
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scatter diagrams further suggest that the variation in the mean of

F values at some Q is approximately linear with Q. Thus, a stochastic

linear relationship between F and Q can be assumed. This stochastic

linear relationship would become deterministic if the variance of F

were zero; i.e., if there were no random errors in observations of F.

The stochastic relationship between F and Q for n observations is:

F. i a + IQj + i 1j, . n(42

where the observed frequency F.i is taken to be the dependent variable,

the number of maxima Q is the independent variable, and E is the

stochastic disturbance, a and are the regression parameters. The

values of F.i and Q. are observable but those Of Eiare not. The

purpose of the E.i term is to characterize the discrepancies that emerge

between the actual observed values of F and the values that would have

been given by an exact functional relationship of the form:

F F + aQ. (4.3)

The fact that the magnitude of c cannot be determined exactly means

that the value of F can never be forecast with certainty, i.e., with

probability 1. The uncertainty concerning F. arises due to the

presence of the stochastic disturbances which, being random, imparts

randomness to F..* The randomness in the term c i may be on account of

a variety of factors which may or may not all be quantifiable. Among

those factors are random apparatus or human ones as well as systematic

errors in measurement of F, L, and Q. The net effect of all such
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factors, then, is summarized by a single stochastic variable ci" The

probability distribution of F and its properties are then determined

by the values of Q and by the probability distribution of e. Thus, the

full description of the model in Equation (4.2) also calls for the full

specification of the probability distribution of the error Ei We

make the following statistical assumptions:

1. Ei is normally distributed V-i.

2. ci has zero mean, i.e., <i> =0 i. i.

3. Ei is homoskedastic, i.e., <E:2> = 2 . This means that

2
every disturbance has the same variance a for all observa-

tions whose value is unknown. This assumption rules out, for

example, the possibility that the disturbance could be greater

for higher values of Q than for lower values of Q.

4. E is nonautoregressive; i.e., <e..> = 0 if i $ j. This
J 0 i =j

assumption implies that the expected value of F at any time

in an experiment will be different from the expected value

of F in the same experiment at a different time.

5. Q is a nonstochastic variable with values fixed in repeated

sets of observations such that for any sample size

1 n -2
n i1 (Qi Q) is a finite number where Q is the mean value

of Q.

With these assumptions, we can find the properties of the

probability distribution of Fi for all i. The mean of Fi is obtained by

taking the mathematical expectation value of both sides of Eq. (4.2):

. t
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< <F> + Qi + Ci> (4.4a)

Since the expected value of ti vanishes;i.e., <Ei> 0, then

<F1> = < + bQi> (4.4b)

The variance of F. is1

2Var(Fi) <[Fi - <F >]2>

= [(c + 6Qi + Ci) - ( + >
2 2

<E > = 2 (4.5)
1

Equation (4.4b), which gives the mean value of F for each value

of Q, is known as the population regression line. The slope R measures

the change in the mean value of F corresponding to a unit change in the

value of Q.

Estimation of the values of a and 6 gives the sample regression

line that serves as an estimate of the population regression line. If

a and are estimated by & and , respectively, then the sample

regression line is

i= + 6QI (4.6)

where Fi is the estimate of Fi or the fitted value of Fi. The observed

values of Fi does not necessarily lie exactly on the sample regression
line so that the value of F. and Fi in general are different. This N

i i

difference is called the residual and is denoted by ei. Thus we dis-

tinguish between the following:

44

*4, 4

44~ A ~ ~ '~ 4 . '~ ~ \ '
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F. : a + Qi + Ei (population) (4.7)

F. = + Qi + ei (sample)

In general, the residual ei is different from Ei because a and are1w

different from the true values of a and a. In fact, ei is the estimate1

of the disturbance E. Figure 4.4 is a schematic representation of

this distinction. The slope 8 is obtained from Eq. (4.6):

'A . (4 .8 )

b. Evaluation of intercept a and slope 8. a and are

estimated using ordinary least squares. If each residual ei is

squared, negative signs disappear, and the sum of squared residuals

is a nonnegative quantity. In using the least square principle one

2selects a and a for minimum zei. First, one evaluates

e= Fi - F. : F. - ( + oQi)

a'.

ze 2 = (Fi " - i)2

The necessary conditions for a stationary minimum are:

2

(4.9) .

KZe 2
e, 0 .

-=0.m

,-,-_-~~~~~~~~~~~~~.-.-.... .............----...--....... ' ..- .....-...-....... "..'..-.""--...-'

d C.
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It follows that:

ZF. = n + zI

where n is the number of data points. Since nQi  E Qi, the product

n n n '

Z FQ i  Qi + Z Qi2

In matrix form this becomes

fl n EQI IIE zi i

J Q i i), 11i

Evaluating the elements of the matrix, one obtains

^ 11

-L F -Qi (4.10a)
and n 1 n 1

.- and .

E*Q j -)(Fi - T)

2:- (4.10b)z(QI _ 2.

The quantities ct and are, respectively, the intercept and the slope

of the regression line. The slope is used to calculate the mean

value of the velocity reported in this thesis.
C:'

2. Use of Data in Ordinary Least Squares Estimates
of E and Velocities

a. Computer program. A computer program for evaluating the

regression line is available at The University of Tennessee Computer

Center. This program, SYSREG, presented in Appendix A, was used to

'b
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evaluate the sample regression lines as in Equation (4.7). Values of

a and B evaluated from this regression line customarily are presented

as follows:

F. = & + sQ i R2  (4.11)

(S-) (Si)

where s2 is the estimate of variance of and 2 is the estimate of

variance of . R2 is the coefficient of determination which is a

measure of "goodness of fit"; i.e., how well the sample regression line

fits the observations. R2 indicates the proportion of variation of F

that can be attributed to the variation of Q. It is evaluated from

R= Regression Sum of Squares
Total Sum of Squares

222": ", Z ei

Z ( F i  T ) 2 "

R2 takes on the values: 0 < R2 < 1. A zero value of R2 indicates

the poorest and a unit value the best fit that can be attained.

b. Velocities in germanium. The estimated regression lines

obtained by applying the ordinary least squares estimate to data on

the samples Ge(lll), Ge(ll0), and Ge(l00) are shown in standard form

in Table 4.5. Note that the value of R2 in all the three orientations

is close to unity which indicates that the data are well fit by the

regression lines. The results are repeated in more detail in Table 4.6,
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Table 4.5. Estimated Regression Lines for Ge[l00], Ge[llO], and
Ge[lll]

Sample Estimated Regression Line
Ge(l0) i = 27.8650 + 0.0660 Q + ei 2 0.9986

(0.0133 (0.0002)

Ge(110) F = 24.916158 + 0.1118 Q. + ei R 0.9996

(0.0134) (0.0003)

Ge(lll) Fi = 25.7741 + 0.05694 Qi + ei R R2 = 0.9992

(0.0134) (0.000156)

w

i. .
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where is the intercept of the estimated regression line, Bis the

!slope, S^ and %- are the standard deviations in the measurements of

aand B

3. Comparison of Results with Reference Values

The comparison of the results of the present measurements

presented in Table 4.6 with those of McSkimin (also presented in

Table 4.6) is especially infurmative. The present data present the

scatter resulting from all sources of error, both definable and

undefinable. Among the definable sources of error are systematic

errors resulting from measurement of sample length, resonant fre-

quency, and density. Random errors from repetition of these measure-

ments also enter.

a. Evaluation of scatter of data around the mean. The results

on velocity reported in Table 4.6 give the deviation of velocity values

from the mean for a 95% probability level. The specification of the

probability level gives a more complete picture of the effect of

random errors on the data than usually is given. In Table 4.6 our

estimated velocity in Ge[lll] falls in the interval ± 0.53% of the mean

value of velocity with a 95% probability. McSkimin reported a mean

square deviation of ± 0.02%1. It is apparent that our mean square

deviation is larger than McSkimin's, but the significance of this

statement is somewhat difficult to evaluate without information about

his probability level. Further, whether the difference results from

n 1. 1
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our consideration of all sources of random error while McSkimin

considered only errors resulting from diffraction is equally

uncertain. Comparison of the remaining data in Table 4.6 results in

similar conclusions.

b. Comparison of our mean value of velocity with values

given by McSkimin. It remains to compare the mean value of velocity

in this experiment with the values of velocity given by McSkimin.

Agreement between the two sets of values adds credibility to the

results. We let the three velocities in a germanium crystal as

measured by McSkimin be vill, v110 and v100. Somewhat at random,

we chose the velocity in the [111] direction for our discussion of

the comparison. (The comparison for the [110] and [100] directions

is obtained by using velocity values appropriate to those directions.)

Corresponding to McSkimin's value vll l, we evaluate the slope
" Vlll1

1ll - 2Ls - (4.12)

To test whether the velocity estimated in this study is equal to that

of McSkimin, we have to test whether our is equal to 6lll" There-

fore, we set the null hypotheses,*

Ho: ;:11
H0 aill,

I

*A null hypothesis is a proposition which is considered valid

unless evidence throws serious doubt on it.
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Equivalently,

H0 : I VlI .

The T-statistic for the [111] direction is the function

. B - B111 .

S-

The distribution of the T-statistic about zero, known as the t-distri-

bution, has (n-2) degrees of freedom. In estimating F one has two

unknowns & and B whose presence reduces the numoer of degrees of free-

dom from n, the total number of observations, to n-2. Let the signifi-

cance level (unity minus the probability) be designated A. Then, for

a specified significance level X, the T-statistic lies between the lower

limit and the upper limit of a critical region as follows:

- n_2,Xl2 < < tn_2,x/2 (4.13)

The critical region is shown in Figure 4.5 with the limits specified.

Without the limits the t-distribution would vary from -- to . In that

case the cumulative probability would be unity; i.e., the area under

the density function ff 11. is unity. For a significance level x

the area under the distribution function is the probability

tn2 2I Bl - lf d I= _t _2,,/2

= fi-B1 1 dJ-1l
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which usually is designated as follows:

P = -tn-2,X/ 2 < S < tn-2,X/2 = 1 - A. (4.14)

The subscripts on the limits include X/2 because an area of X/2 is

found on each tail of the t-distribution between t and ,.

n-2,X/2

These areas can be read from t-distribution tables in statistics text-

books [Kleinbaum and Kupper (1978)]. For data in this thesis a value

= 1% is chosen, meaning that the area of the two tails is 0.5% each.

The corresponding critical region and the T-statistic for the three

crystalline modes are evaluated and are reported in Table 4.7.

From the inequality (4.13) we have

illI  - S tn2,X/2 < < llI  + S tn2,x/2 (4.15)

The above inequality gives the lower and upper limits of g for the

chosen significance level x. The corresponding lower and upper

limits of the estimateO velocity v are found from (4.15) by multiply-

ing the inequality by a factor 2Ls:

Vill- 2Ls - tn_2,x/2• S < v < vli + 2Ls tn_2,x/2 S .(4.16)

In terms of a percentage of vill, we have:

Vill I  2Ls tn-2'x/2 SBxl00jVll I <v<Vill1iil
+ 2Ls }x 0 Vll (4.17a)

Vll

................................................................................. 7 -

A -
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or
Vill I  AVll <V < Vll + AVll (4.17b)

where

AV 2Ls t 'i /2 x 100 v ill

Similar results are evaluated for the other two crystalline modes.

The results are presented in Table 4.7, column 7. The associated

probabilities are calculated from (4.14) and the results are presented

in Table 4.7, column 8.

From the results reported in Table 4.7 we find that for x = 1%

or for a probability level 99% the T-statistic does not exceed the

critical region for all the three crystalline modes. As long as the

T-statistic is within the critical region -for a specified significance

level, we do not reject the null hypothesis and conclude that there is

not enough evidence to suggest that is different from all l or that

the equivalently estimated velocity v is different from McSkimin's

velocity vll l. In other words, the deviation of v around v 1 will

be confined to upper and lower limits vill ± AVill for 99% of the

time. Only 1% of the time the deviation of v from v1il will be large

enough so as to fall outside the limits vll 1  AV1 1 . Similar or

better results are obtained for the other two crystalline modes.

Thus we may conclude that the estimates of velocity in our experi-

ment are in agreement of those of McSkimin. The results add credibility

to our experiment and results as well as McSkimin's results.

Io
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4. Error Propagation

.P In this section we compare the relative error in estimation

of velocity in the present study with the error obtained by

recombining values of elastic constants measured by others and using

2
the expression K2 = pv

a. Error propagation in the present experiment. To derive a

formula for the percentage error in the velocity one uses the

expression for the regression line (Eq. 4.7).

F. = cQi + ei (4.18)
F1 6 + ej

where i =1, 2, ... n. After applying a least squares analysis the

fitted value of F. is
1

F C + BQ. (4.19)

The mean values of Fi and Qi also fit the regression line. Therefore,

P we have

S= + , (4.20)

where T and Q are the mean values of the observations taken in the

experiment for a particular crystalline mode. These values are given

Vas follows:

JI
"'a

V V ..
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- in
I Fni=l

and

- n

From Eq. (4.20),

Taking the logarithm of both sides and evaluating the partial

deri vati ves:

) (4.21)

Evaluation of the relative errors requires consideration of the absolute
value of each term:

69 5(T -(4.22)

Since v : 2Ls , the relative error in velocity is: as L andv as.a.d

S are constants. Therefore,

6v -S L (4.23)

v -

N.

V

.. , -- -~ ~ ~
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where the identity S- = S has been used. This formula is used to
cc a

evaluate errors in the measurement of velocity due to random causes for

all three samples and the results are presented in Table 4.8.

The error largely depends upon the value of the mean T. The larger the

value of T, the smaller the percentage error. The error in Ge (111) is

much smaller than the error in Ge (100) because it was possible to

obtain a larger number of measures Qin the Ge (111) sample, and hence

to have a larger value of T. The experimenter does not always have total

control over the value of T, but should always seek to obtain the largest

value possible.

b. Error propagation in use of reference values of C..j. The

percentage error found in the preceding section now is compared with

the error propagated when one takes the values of the second-order

constants from reference sources (McSkimin, 1963) and calculates the

velocity of longitudinal waves in the three principal directions using

the following formulae:

v 200 =C 11/P (4.24a)

V 2 (C C 2C /2p(4.24b)110 =( 11 + 12 +2 44)2

111 (C1 + 2C1  + 4C44)/3p(42c

in which the combinations of second-order elastic constants are

recognized as being the same as the K I s listed in Table 1.1, p. 4).

The relative errors in the velocities are:
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I

Table 4.8. Propagated Error (6v/v) in Present Experiment

Sample Propagated Error (6v/v)

Ge[l00] 0.46%

Ge[llO] 0.33%

Ge[lll] 0.29%

e

I
! .5 -Sa 

°



X, 56
6vlO0 1 3CI 1 

(4.25a)v o 0 T Tc - 1-+ 2 P

6 V110 1 cll + 6C12 + 2 C4 4 1 .p
110_ I' II 2+2 .C . + 5,- (4. 25b)vii - L ll+ C12 + 2C44  2

6Vll 1 6CII + 26C 12 + 46C44  1

Vll I  2 l1l + 2C12 + 4C44  2 p (4.25c)

Using these equations and the values for the errors given in the

reference and assuming an error In the measurement of p as 0.1%, the

propagated errors are calculated and are given in Table 4.9.

5. Correction of Systematic Error

Close examination of the data in Tables 4.2, 4.3, and 4.4

(pp. 28, 29, 30) presented in the scatter diagrams in Figures 4.1,

4.2, and 4.3 (pp. 31, 32, 33) reveals systematic errors in some of

the data. Some of the numbers appear to deviate by more than one

standard deviation resulting from either an extra count or a missed

count in the data taking. Such errors can be corrected by standard

techniques. The data were subjected to analysis by a computer program

to make such corrections. The results are given in Tables 4.10 and 4.11

which can be compared directly with Tables 4.6 and 4.7 (pp. 44, 50),

respectively. Comparison reveals that both the slopes and the standard

deviations S were improved. The slopes were used to calculate present

experiment values of the velocities v which are observed to be in better

agreement with the measured data of McSkimin listed in Table 4.10,'and

the deviations from the mean velocity were reduced. In Table 4.11 it
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Table 4.9. Propagated Error (6v/v) from Standard Sources I.

Sample Propagated Error (6v/v) from Standard Results*

[100] 0.07%

[110] 0.07%

[111] 0.08%

*These values have been calculated using the constants given in

McSkimin (1963):
'

Cll = 12.8528 x 10" ± 0.04%

C22  4.8259 x 10" ± 0.04%

C44 : 6.67966 x 10" ± 0.04%

44

p
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is found that the T statistic still lies within the critical region

for the [100] and [110] values; however, the [111] T statistic now lies

outside the critical region. This probably results from the fact that,

as indicated, the [111] value was obtained from McSkimin's data by

adding certain numbers to give a propagated error which has not been

accounted for in the analysis. An additional possibility is that the

present value of %- of only 0.000053 results in an anomalously large

T statistic. Finally, the variation Av of the present data from those

of McSkimin in all three cases is decreased by the correction of the

systematic error.

The results presented in Tables 4.10 and 4.11 also have been

calculated by including all of the significant figures in the lengths

given in Table 4.1 (p. 27). Tables 4.6 and 4.7 (pp. 44, 50) were calcu-

lated by rounding off the lengths to three significant figures. Although

the change in the velocities resulting from the more accurate value of

length is not great, it was detectable in the fourth significant figure

in the velocity. Hence, the correction is justified.



CHAPTER V

SUMMARY

The analysis in this thesis shows that the question originally

Iposed does not have a unique answer for all samples under all con-

ditions. One cannot decide a priori whether reference values of Cij

should be used or whether one should measure the Ci each time

he measures the Cijk. The analysis given, however, tends to support

the position that on those occasions one has data as accurate as those

of McSkimin his accuracy is greatest if he uses them rather than

remeasuring each sample. If such accurate data are not available, one

has no choice.

|I

L.

61
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APPENDIX A

THEORY OF PULSE SUPERPOSITION TECHNIQUE

The equation of motion for a progressive wave propagating in a

medium is given by

u = Aei(kx 'wt) (A-i)

where A is the amplitude of the wave.

Let us consider two such progressive waves given by

A ei(kx-wt)
" (A-2)

i (kx2-Wt2 )i u2 = A2e

Consider the sample of length z as shown in Figure A.l. The electri-

cal signal applied to the transducer bonded to the sample by means of

stopcock grease causes the transducer to emit an ultrasonic wave which

travels through the sample and is detected at the opposite end of the

sample by the capacitive receiver. The signal is displayed on the

oscilloscope screen. In this process the first pulse is

detected when the ultrasonic wave reaches the end of the sample at

the capacitive receiver. After this, the wave undergoes reflection,

returns and once again is reflected. The second pulse thus seen on

the oscilloscope screen accounts for the signal that is detected

after the ultr-asonic wave has undergone two reflections.

65
4,'

I
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!I

Spring- Loaded
-"-Electrode Button

Transducer

N Sample

Capacitive Detector

0 A0

-~Figure A.l. Cross sectional view of the room temperature apparatus.
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(b)

AVA

'" (b)

(c)

Figure A.2. (a) A typical interference pattern obtained with the
pulse overlap technique; (b) and (c) show the separate
pulse trains which interfere to give the pattern of
(a).
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Since the expression for the velocity of sound is derived upon

the basic assumption that the wave has undergone two reflections

before it is detected, the velocity formula derived below is valid for

all pulses except the first pulse which is detected before two

reflections. Therefore, for the first echo of some initial pulse which

corresponds to the second pulse that is seen on the screen as shown in

Figure A-2, one can write

x, = (x + 21) + 2 (A-3)I

The pulse travels the distance Z, is reflected at the sample surface

and again travels a distance Z, whereupon it is reflected again at the

boundary. After the second reflection, if it travels a distance x, as

shown in Figure A-3, then the total distance traveled is (2? + x). In

addition, since the wave undergoes two reflections, it also undergoes

two phase changes which need to be accounted for. The distance corres-

ponding to one phase change is I- where is the phase change uponk'

reflection. Since two phase changes are involved, the corresponding

distance is given by k Therefore, the total distance traveled by

the wave before the first echo is seen is given by the sum

x, x + 2z

If there are n such echoes, the expression takes the general form

= x + 2nz k rv
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for the nth echo. Similarly, for some other initial pulse (delayed

in time with respect to the first pulse) for the mth echo, we have

x2  x- + 2mz + 2m,

k [

For overlap of echoes we require

x X,

A1 = A2 = A

tl = t2 ..

and:

uu 1  i=(kx-t ) i(kx2- t2)u = uI + u 2  A 1le + A 2e .(A-4) .

Since

A1 :A 2  A

tI = t2

and

x ,

we have

u = Aei(kxwt) [ei(2nk+2no) + ei( 2mkz+2m O )]  (A-5)

Since the delayed pulse started later than the first one, we have

n > m, so that one can write

n -m= s

Ir ..
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Substituting for n in terms of m and s, we have

u = Aei(kxwt) [ei{2(m+s)kz+ 2(m+s) } +ei(2mkZ +2m)] (A-6)

or

Aei (kx -wt) i(2mkz+2m) [ i(2skz +2sf) + 1] . (A-7)

For destructive interference, we have the condition

2skz + 2s = (2q + I)7 (A-8)

where q = 0, 1, 2, 3, or, since k - 27 _ 27fz
,Tv

4Trs fz(A)(2q + 1)n :2s + -v. (A-9)v

If we change the driving frequency so that we go through destructive

interferences, then we have for the beginning frequency fl:

(2q, + 1)Tr + 2s + v (A-10)

and for the final frequency f2:

(2q2 + l)7 = 2s, + (A-li)

Subtracting (A-10) from (A-1I), we have

2(q2 - ql)7 : 4 (2 - fl)

Letting q2 - ql = Aq and f2 - = Af and solving for the wave velocity

v, we have

-I
1 1, II I I !aM
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v : 2sz Af (A-I 2)
Aq

which has been used to interpret data in this thesis.
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APPENDIX B

COMPUTER PROGRAM FOR COMPUTING VELOCITY I
1 //SONIC JOB , ,GROUP= ,USER= ,TIME=(5,O),CLASS=T,

// PASSWORD=
***JOBPARM LINES=5,CARDS=5OO0,ROOM=BIN4
***ROUTE PRINT RMT26

2 // EXEC SASREGION=512K

23 //SYSIN DD *

NOTE: SAS OPTIONS SPECIFIED ARE:
SORT=4

1 OPTIONS LS=72;

2 DATA SOUND;
3 INPUT Q F;
4 CARDS;

NOTE: DATA SET WORK.SOUND HAS 108 OBSERVATIONS AND 2 VARIABLES. 2346 OBS

NOTE: THE DATA STATEMENT USED 0.08 SECONDS.

113 PROC PRINT;

114 TITLE OBSERVATIONS ON F AND Q FOR GE(111);

NOTE: THE PROCEDURE PRINT USED 0.17 SECONDS
AND PRINTED PAGES 1 TO 2.

115 PROC MEANS;
116 TITLE STATISTICAL ANALYSIS FOR GE(111);

NOTE: THE PROCEDURE MEANS USED 0.13 SECONDS
AND PRINTED PAGE 3.

117 PROC SYSREG;MODEL F=Q;

NOTE: THE PROCEDURE SYSREG USED 0.15 SECONDS
AND PRINTED PAGE 4.

118 PROC PLOT;
119 TITLE PLOT OF F VS. Q FOR GE(111);
120 PLOT F*Q:

NOTE: THE PROC7DURE 'LOT USED 0.16 SECONDS -
AND PRINTED PAGE 5.

NOTE: SAS INSTITUTE INC.
SAS CIRCLE
PO BOX 8000 p
CARY, N.C. 27511-8000

.

B i
7:: :

I.,
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OBSERVATIONS ON F AND Q FOR GE(111)1

14:114 THURSDAY, DECEMBER 5, 1985
'B S q F

1 0 25.8

3 20 26.836
14 30 27.403
5 40 27.988
6 50 28.557
7 60 29.128
8 70 29.700
9 80 30.272
10 90 30.832
11 100 31.399
12 110 31.983
13 120 32.546

14 130 33.133

15 140 25. 6814

19 10 26.266
20 20 26.832
21 30 27.1400
22 40 27.974
23 50 28.530
214 60 29.124
25 70 29.685
26 80 30.268
27 90 30.833
28 100 31.398
29 110 31.979
30 120 32.554
31 130 33.105
32 1140 33.701
33 150) 34.261
314 160 34.752
35 0 25.684
36 10 26.266
37 20 26.835
38 30 27.1402
39 40 27.993
140 50 28.553
141 60 29.126
142 70 29.700
143 80 30.269
144 90 30.833
145 100 31.397
146 110 31.989
147 120 32.5147
148 130 33.1140
149 1140 33.712
50 150 314.2146
51 0 25.863
52 10 26.1428
53 20 26.992
514 30 27.568
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OBSERVATIONS ON F AND Q FOR GEC Ill) 2
14:14 THURSDAY, DECEMBER 5, 1985

OBS Q F

55 40 28.144
56 50 28.7114
57 60 29.302
58 70 29.865
59 80 30.1429
60 90 30.995
61 100 31.5641
62 110 32.150
63 120 32.714i
614 130 33.296
65 140 33.817
66 0 25.863
67 10 26.425
68 20 26.996
69 30 27.568
70 40 28.155
71 50 28.744
72 60 29.301
73 70 29.865
714 80 30.430
75 90 30.998
76 100 31.581
77 110 32.1146
78 120 32.717
79 130 33.303
80 140 33.811
81 0 25.792
82 10 26.373
83 20 26.9143
84 30 27.497
85 40 28.068
86 50 28.652
87 60 29.228
88 70 29.801
89 80 30. 376
90 90 30.938
91 100 31.503
92 110 32.085
93 120 32.673
94 130 33.235
95 1140 33.801P96 0 25.792
97 10 26.318
98 20 26.889
99 30 27.481
100 40 28.036
101 50 28.610
102 60 29.183
103 70 29.779
104 80 30.318
105 90 30.886
106 1 C, 31.1452
107 110 32.0143
108 120 32.625
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STATISTICAL ANALYSIS FOR GE( ill) 3
1L4:114 THURSDAY, DECEMBER 5, 1985

VARIABLE N MEAN STANDARD MINIMUM MAXIMUM
DEVIATION VALUE VALUE

Q 108 72.68518519 45.56204.523 0.00000000 160.0000000
F 108 29.91292593 2.59537738 25.68t400000 34&.7520000
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STATISTICAL ANALYSIS FOR CEC 111) 4
14:14 THURSDAY, DECEMBER 5, 1985

MODEL: MODELOI SSE 0.576765 F RATIO 132356.05
DFE 106 PROB>F 0.0001NDEP VAR: F MSE 0.005441183 R-SQUARE 0.9992

PARAMETER STANDARD
VARIABLE OF ESTIMATE ERROR T RATIO PROB>ITI

INTERCEPT 1 25.774174 0.013409 1922.1649 0.0001
Q1 0.056941 0.0001565134 363.8077 0.0001

07

mi

Ua
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PLOT OF F VS. Q FOR GE(111) 5

,14:14 THURSDAY, DECEMBER 5, 1985
PLOT OF F*Q LEGEND: A = 1 OBS, B = 2 OBS, ETC.

FlI
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