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STATISTICAL ASPECTS OF THE F/A-18

AGE EXPLORATION PROGRAM

A Technical Report

September,1986

-• Glenn F. Lindsay
Naval Postgraduate School
Monterey, California 93943

ABSTRACT

Selected statistical features of the
Age Exploration Program for F/A-18 aircraft
are examined with emphasis upon sample
number and the impact of inspection errors
upon resulting reliability estimates. The

identification of aircraft populations
targeted by samples of fleet leader aircraft
is also discussed.



SUM1ARY

Implementation of the AGE Exploration Program (AEP)

for F/A-18 aircraft by the Naval Air Systems Command involves

sampling fleet leader aircraft emphasizing inspection of se-

lected structural components. Sample size, and the inter-

pretation of sample results, are the subject of this report.

When the objective of sampling is reliability estim-

ation, one can, in addition to single point estimates,

construct confidence bounds for fleet reliability. These

reflect the quality of the e~stimate in terms of how big

a sample was taken. In AEP inspection to date, the usual

4.
sampling result is that no discrepancies are found, hence

point estimates of reliability are 1.0. The functional

relations and graphs developed in this report permit one

to, for the case of a discrepancy-free sample, place

a lower bound on fleet reliability as a function of

how many aircraft were inspected.

During inspection, some discrepancies may go un-

discovered. When this happens, sampling results over-

state reliability. In this paper a method is developed

to adjust sample size or reliability estimates to account

for the chance of inspection error, and curves are

provided to simplify this adjustment.

6!
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Since aircraft sampled in the Age Exploration Program

are fleet leaders in terms of usage, they are not particularly

representative of the F/A-18 fleet that exists at that point

in time. However, they should be representative of F/A-18

aircraft as those aircraft reach the same usage level that

characterized the sample. Careful identification of this

future population increases future utilization of the relia-

bility estimates from current AEP data.
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STATISTICAL ASPECTS OF THE F/A-18

AGE EXPLORATION PROGRAM

The Naval Air Systems Command has established the Age

Exploration Program (AEP) for F/A-lB aircraft using Reoia-

bility-Centored Maintenance procedures in an effort to reduce

maintenance costs by specifying only maintenance insuring

flight integrity. Among other features of this program,

fleet leader aircraft are sampled on a regular basis, with

emphasis on inspection of selected structural components.

It is the size of this sample and the statistical inter-

pretation of the resulting data that form the subject of

this report.

Since a stated purpose of samplinq in AE:P is the

estimation of fleet reliability, this report first discutsses

reliability estimation, with emphasis on the relationship

between sample size and the goodness of the estimate, when

the measure of effectiveness for the estimate is confidence

interval size. Curves are provided for determining the lower

95% bound on reliability when no diocrepancice are found in

the sample.

The next section of this report considers the effect

of inspection error on reliability estimatiot. Concepts

from signal detection theory are employed to develop
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relationships which may be used so as to partially

compensate for these errors. Curves are provided which

permit adjustment of reliability confidence bounds when

discrepancies may be undiscovered during inspection of tao

aircraft component.

The relationship of sample and population is examined.

Aircraft inspected under AEP are fleet leaders as identified

by several measures of wear and tear, and usage. Identifi-

cation of a population from which these aircraft may be

considered a representative sample is important, since it

is to this population that the reliability estimates will

apply. After suggesting how such a population might be

defined, the report concludes with a brief review of

previous studies addressing AEP sampling.

A. Reliability Estimation and Confidence Bounds

In sampling to estimate the proportion of a popu-

lation's items that possess some stated attribute, the

standard approach is to sample n items, count x possessing

the attribute, and then use the sample proportion x/n

as the estimate of the unknown population proportion. The

n trials or observations are assumed to be independent of

each other, and the chance of the attribute being present

should be the same in each trial.

In addition to the point estimate x/n, one can also
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construct a useful interval estimate which will place

a lower bound on the unknown proportion. This lower bound

is computed from the data in such a way that there will be

"a 95% chance that the bound will indeed be below the unknown

proportion. The result, for example, might say that we are

95% certain that a component's reliability is greater than

0.88, where the lower bound 0.88 was computed from the data

resulting from sampling. The confidence interval method

has the virtue of reflecting the size of the sample, and

thus the accuracy of the estimate.

Applying these ideas to reliability estimation is

quite straightforward. We are concerned with an aircraft

population of finite size, where the unknown reliability

is the proportion of aircraft in the population that do

not possess a discrepancy at a particular inspection site

on the aircraft, such as the stabilator attach fitting.

If we sample (inspect) n aircraft and find x with

discrepancies at the inspection site, then our point

estimate for population reliability is

n-xR - --- -(1)

Statistical work with this kind of estimate usually assumes

that the sample was taken randomly from the population,

and that sampling was without replacement or from an

infinite population.

SWZ
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In application, a difficulty with a point estimate

such as (1) is that the estimate R itself does not provide

any measure of its closeness to the true reliability R.

Finding no discrepancies in a sample of ten items yields

the same estimate of reliability as finding no discrepancies

in a sample of 100 items. In both cases the reliability

estimate is R = 1.0, but clearly we have more confidence

in the latter. Simply knowing that bigger samples give

better estimates (in terms of accuracy) does not offer

guidance regarding how big a sample one ought to take.

To relate sample size to the goodness of the estimate

requires a measure of the effectiveness of the estimate,

and this may be found through the application of confidence

intervals instead of point estimates.

The best-known procedure for developing confidence

intervals for proportions is attributed to Clopper and

I Pearson, and we shall follow their approach.2 We seek a

95% lower bounded confidence interval for reliability.

This means that we wish to use the data from the sample

to construct a lower bound for the unknown population

reliability, and that this lower bound should be such that

we are 95% certain that it is less than the population

reliability R. Thus from the sample data, we wish to find

a lower bound such that the probability that

(Lower Bound < R) is 0.95.
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The value of Lower Bound is to be computed from the

results of the sample, and we shall focus upon the AEP

experiences to date where the sample contains no discrep-

ancies. Thus x = 0, and R = 1.0. From this sample result,

the lower bound is determined by asking how low the

population reliability could be while allowing a 5% chance

of no discrepancies in the sample. This value of reliabil-

ity will be the lower bound.

For reliability R and sample size n, the probability

nof no discrepancies in the sample is Rn. Accordingly,

for a 5% chance of no discrepancies at our lower bound,

we have from the binomial distribution

n
(Lower Bound) 1-0.95

or

Lower Bound = ( 1 -0. 9 5 )1/n (2)

as our 95% lower confidence bound on reliability R when

the sample result is no discrepancies. A similar derivation

could be made when the result is one discrepancy in the

sample, two discrepancies, and so on.

From (2) it is clear that with a discrepancy-free

sample, our lower bound on population reliability R

increases with sample size. This is illustrated numer-

ically by the values in Table 1, showing lower bounds

associated with various sample sizes.

L NO. • • . , . . r - • , , " '• ' '
W+ :+ ++'' + . . + . •..
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TABLE 1. Sample Size and 95% Lower
Confidence Bounds on Reliability When
No Discrepancies are found in the Sample

Sample Size Lower Bound on Reliability

10 0.741

15 0.819

20 0.861

25 0.887

30 0.905

100 0.970

In application, we could say that if we took a

"sample of size 25 and found no discrepancies, we would

be 95% certain that population reliability was greater

than 0.887. Stated differently, we would have 95% confi-

dence that no more than 13.3% of fleet aircraft of this

age will have the discrepancy. A plot showing lower

bounds as a function of sample size for the no-discrepancy

case is given in Figure 1.

", -J

'I
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B. Effects of Inspection Errors on Reliability Estimation

The foregoing discussion of point estimates and

lower confidence bounds for reliability tacitly assumed

that each observation was correct, in the sense that the

determination that an item did or did not possess a

discrepancy was without error. The body of literature

on inspection errors in non-destructive inspection is a

growing one, and there seems to be increasing concern

"that the assumption of error-free performance on the part

of inspectors, inspection hardware, and inspection pro-
csquestionable. 3 , 4 5 , 6

cedures is In this section we

shall discuss the impact of errors on reliability estimates,

and develop a way of adjusting the estimate to partially

compensate for errors in data.

In a trial to determine whether an attribute

is present, two kinds of errors are possible. The

observation may be that the attribute is present when in

fact it is not, or, the observation may be that the

attribute is not present when in fact it is. Error

performance on the part of the inspection process may

be expressed for our reliability estimation case in the

7signal detection theory manner by two measures:

SPd as the probability of a correct detection
of a discrepancy, i.e., the inspection
concludes that a discrepancy is present
given there truly is a discrepancy, and

VU



Pfa as the probability of a false alarm, i.e.,
the inspection concludes that a discrepancy
is present when in fact there is none.

Using these two measures of detection performance,

error-free inspection is described by

Pd= 1.0

and

SP f a = 0

Suppose a population of N items contained A items

with discrepancies and thus N-A good items, so that the

population's true reliability would be

R= N-A
N

If we do 100% inspection (inspect every item in the

population), we will on the average recognize a pro-

portion pd of the A items with discrepancies. Additionally,

we will on the average declare a proportion Pfa of the

good items to have discrepancies. In total, then,

our average count of items with discrepancies would be

pdA + Pfa(N-A)

From this, our statement of observed reliability after
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100% inspection would be

N - (pdA + Pfa(N-A))
" obs 

N

With some direct algebra, we have

Robs = 1 - Pd(l-R) - PfaR

or

Robs = I - Pd + R(pd - Pfa) (3)

Thus from (3) we see that the average value of

observed reliability in 100% inspection is a linear

function of the true reliability R. An example of the

relative importance of the two kinds of inspection errors

is shown in Table 2, for inspection error performance of

the order of Pd = 0.9, and Pfa = 0.1.

TABLE 2. Examples of the Impact of Inspection
Errors on Expected Observed Reliability in
100% Inspection.

Expected Observed Reliability

Pd= 0.9 Pd1ýl.0 Pd= 0.9

True Reliability pfa=0 Pfa=0".1 pfa=0.1

1.00 1.000 0.900 0.900

0.95 0.955 0.855 0.860

0.90 0.910 0.810 0.820

0.85 0.865 0.765 0.780

"0.80 0.820 0.720 0.740C*' "

• , . ., - - . . . - - • • , - -. - • . • . , -.-. •- V. • .. * -. x. --.-.-.. • - .- -' • • .
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Returning to the relationship (3), if we solve it

for actual reliability R, we have

R Pd - (I - RobsR pd (l4b)

Pd - Pfa

It is important at this time to again emphasize

that Robs is an average or expected value. When errors

are possible (pd< 1.0 or Pfa> 0), doing 100% inspection

on the same population several times would probably yield

a different reliability valup each time. Equation (3)

refers to the average result, and it is this average or

expected value that is the argument in (4).

Returning to the effects of inspection errors on

sample results, it is tempting to use the function (4)

as a way of adjusting sample reliability results R

to account for possible errors. If we sample n items

from the population, count x with discrepancies, and

compute reliability estimate R = (n-x)/n , we might

improve the estimate by adjusting it for inspection

errors via

-• Pd ( P-R)
R adj= (5)d 1 d - Pfa

JV

)I

4( p**** '
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Note that this requires prior estimates of Pd and Pfa

if one wishes to adjust the sample reliability estimate

to account for possible inspection errors.

While a seemingly reasonable format to "improve"

estimates, application of (5) can lead to values for

adjusted reliability Radj which are negative, or which

are greater than 1.0. This is because we have replaced the

mean or average value of observed reliability in (4) by

our direct reliability estimate R, which is a random

variable. In small samples from the same population,

R could be very large, or very small. We can generally

say that our adjusted reliability estimate will be in

the range

0 4 Radj 1.0

when

(i -pd) _< _ (1 - pfa)

A case of interest in the Age Exploration Program

is that where pfa is presumed to be small or negligible

because discrepancies discovered by one inspection method

are "confirmed" by a different inspection method. If we

assume Pfa = 0, then with an estimate of discrepancy

detection probability pd' we would from (5) adjust our

reliability estimate by

•,'..,:.;'? r'-: ." ;};-'..'. ." ',".","--- ,€•; . ,'. ::,. t..• a•, .%,m•m,:,.', ,ml• & ,*m . *' .~mkdm, a
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R 1 (1 - R) (6)•"" R~~ad-j=1(6

Numerical examples for various pd s are shown in Table 3,

where we can see the magnitude of adjustment or correction

ft, of reliability estimates that would occur when we feel

that discrepancy detection is imperfect.

TABLE 3. Reliability Point Estimates
V., Adjusted for Discrepancy Detection

Probabilities pd, where Pf= 0

"Reliability
"Estimate

*-•. from Sample Adjusted Estimate Radj

q.'. R Pd=0 .9  d=0 .8 pd=0 .7  pd=0 .6  Pd 0 ' 5

0.5 0.44 0.37 0.29 0.17 0

0.6 0.55 0.50 0.43 0.33 0.20

0.7 0.66 0.62 0.57 0.50 0.40

0.8 0.77 0.75 0.71 0.67 0.60

0.9 0.89 0.87 0.86 0.83 0.80

1.0 1.00 1.00 1.00 1.00 1.00

The same adjustment can be made to our estimate of

reliability using confidence intervals. Figure 2 shows

the lower 95% confidence bounds on reliability adjusted for

.f

ft<
f--. .t-v .. • '''•:''v - .- ' - .f, t-b"""-"• .'''-•, '-'v - .
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various values of discrepancy detection probabilities pd'

for the case where no discrepancies were found in the sample.

Thus if we felt that the chance of finding a discrepancy

in inspection was Pd = 0.8 and had found no discrepancies

in a sample of size 30, we might state with 95% certainty

that the population reliability was greater than 0.88.

In other words, we have 95% confidence that no more than

12% of fleet aircraft at this age will have the discrepancy.

Using Figure 2 it is possible, of course, to make

a reliability estimate beforip the entire sample of 30 is

inspected. After the first ten aircraft were inspected

our lower bound at pd = 0.8 would be 0.68 for reliability.

This estimate and the later one at n=30 are, of course,

not independent.

"Functionally, the curves in Figure 2 show

. Lower Boundad = 1 - 1 - 0 9 5 )1/n (7)

Pd

Figures 3 and 4 provide the same information as

Figure 2 for confidence bounds of 90V, and 99%, respectively.

4".-
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C. Accounting for Finite Populations

The foregoing work assumes that our samples come from

ipopulations of infinite size, or from sampling with

replacement. This was inherent in our tacit use of the

binomial probability distribution. in sampling in the

*.i Age Exploration Program, however, populations will be

finite in size, and sampling is without replacement.

When populations are finite the correct probability

distribution for the number x possessing the attribute

A
5  

out of a sample of size n is the hyperqeometric distri-

bution; this would have involved the use of population

size in our calculations. It has been frequently demon-

strated, however, that when the sample size is less than

10% of the population size, the hypergenmotric is well

approximated by the binomial distribution. 1

Where the sample size exceeds 10% of the population,

"the lower bound value for reliability as computed earlier

in this paper would understate the true value, and thus the

error would be on the conservative side. For example, with a

sample of 30 from a population of 300, the lower bound from

the binomial is 0.9050, while the hyperqeometric value for

the lower bound is 0.9096. For aircraft populations of size

"20, 30, 40, 50, and 100, sample size curves from the hyper-

"geometric distribution are given in the Appendix to this

report.

#.-

.4- a',-, m mi •I, a l I. ..
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D. Characterizing the Sample

Because they consist of fleet leader aircraft, the

samples taken and inspected in the Age Exploration Program

are not representative of the entire fleet of F/A 18

aircraft that exists at the time the sample is taken.

Accordinqly, it is necessary to idlontify or characterize

the population for which reliability is being estimated,

and thus for which the sample should be representative.

Aircraft which are chosen to be in the sample are

selected on the basis of age or usage, as defined by

one or more measures. Two examples of these measures

are cumulative arrestments, and the current value of the

wing root fatigue index. The reliability estimated

from the sample should be applicable to aircraft when

they reach the age range represented in the sample.

Such a population does not exist at a point in time,

indeed, some of the aircraft addressed may not have been

built yet.

The sample in AEP is not a random one. (A random

sample is one taken in such a way that each element of

thie population has an equal chaince f[ beinq in tIhe sample.)

For our purposes, however, we wil l assume that the aircraft

inspected are a representative sample of F/A 18 aircraft

in the age range characterizing the sample. The practice

of using a sample of today's items to make statistical
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inferences about future similar items is widely followed

in agricultural, biological, medical, and even military,

experimental work.

E. Defining the Population for which Reliability is

V. Estimated

SSuppose only one measure of aircraft age is used to

describe the 1987 AEP sample, and for discussion purposes,

suppose that measure is wing root fatigue index. The

sample then can be characterized as having wing root

fatigue index values between I and F2 , and it seems

reasonable that our reliability estimate would then be

"applicable to a population of aircraft which also have

wing root fatigue index values between F 1 and F2 . At some

time in their lives, most fleet aircraft may, as they age,

be members of this population. It is when they are at

that "age" that the reliability estimate will be applicable

to them.

F. Other Studies Seeking Sample Size

This report has treated the purpose of AEP inspection

as estimation of reliability, and the work has centered

upon relating the quality of such ostimrates to the

number of aircraft sampled. U sin(; the cloodness of the

estimate as the measure of effectiveness, procedures were

developed for determining sample size, and also for the
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inclusion of inspection error in finding final sample

size and reliability estimate.

In the past, other measures of effectiveness have

been used to propose sampling procedures and sample

sizes for aircraft maintenance. These are briefly

described and contrasted below.

MCAIR. In their 1983 report from McDonnell Aircraft

Company, Smith and Swanson proposed an initial sample of
8

size 22 for AEP. This satisfied their criterion that if

10% of aircraft have discrepancies, there should be a chance

of 0.9 that the sample will include one or more aircraft

with discrepancies. Use of values other than 10% and 0.9

would have yielded different sample sizes. Their criterion

assumes that a representative sample has come from an

aircraft population having 10% with discrepancies. Since

those in the sample are to be the most severely used

aircraft, it is clear that the sample is not representative

of the group of 450 aircraft to which it was restricted,

but of a population of aircraft with similar usage.

Applied to reliability estimation (assuming pd=0.7),

a sample of size 22 with no discrepancies found would

give us 95% certainty that the reliability wns greater

than 0.82, in a population of similar age and use.

After this initial sample, they suggest a sample from

each of the two remaining sets of 450 aircraft employing
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a procedure called Bayesian. This approach involves

the assumption of a specific probability distribution

for fleet reliability, prior to the actual sampling.

This a priori distribution is then combined with the

actual data from the sample to produce an a 2osteriori

probability distribution of reliability. Their report

does not indicate which a priori distribution they use,

how it is to be combined with actual data, or properties

of the results.

USAF. A different inspection criteria is used by

the United States Air Force in their sample-based

Analytical Condition Inspection (ACI) Program for the

F-15 aircraft. 9  This procedure operates like statistical

hypothesis tests applied as acceptance sampling or control

charts. A double sampling procedure is used.'0 A

sample of size 11 is taken. No action follows if no

discrepancies are found. If exactly one discrepancy is

found a second sample of size 13 is taken, and should it

contain any discrepancies, corrective action follows.

Corrective action also ensues if more than one discrepancy

was found in the first sample. The action, no action,

results of this sampling procedure place it in the realm

of statistical hypothesis testing rather than estimation.

For this program an operating characteristic curve could
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be constructed showing the probabilities of no corrective

1
action as a function of fleet reliability. Using this

data to estimate reliability leads to problems because of

unequal sample sizes, making year to year results not

comparable as point estimates if a second sample is

periodically taken. When no discrepancies are found,

the sample is of size 11 and we would on the basis of this

be 95% certain that reliability is greater than 0.66; this

assumes 70% detection probability in insection. Sample

data will, of course, accumulate from year to year.

NARF, North Island. In the 1982 report 001-82 for

the NARF, North Island, J.D. Hayes employs "the level of

confidence that the sample is analogous to a population

which in fact has at least the specified reliability". 11

This statement, which has been discussed by H1aff12

appears to be a requirement statement by which a sample

size can be deduced. Although the measure of sampling

effectiveness is different, the equations which accompany

the procedure produce sample size curves which, with a

"different interpretation, yield values similar to those

in this report when Pd=1.0.

These three earlier studies may by sumunarized.

MCAIR produced a sample size of 22 to satisfy a stated

probability statement. The Air Force used a method

mirroring statistical hypothesis testing for their

N

%

%5~, .
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sampling procedure, which is directed toward corrective

action rather than estimating reliability. The 1982

NA.\, report employed probability statements to produce

expressions similar to those developed early in this

report. None of the three studies explicitly considered

the effects of inspection error on the data or on the

needed sample size.

G. Concluding Remarks

Deciding on sample size for any empirical activity

requires criteria or effectiveness measures by which

the effects of various alternative sample sizes can be

"compared and judged. In this study we have taken the

purpose of sampling to be that of generating estimates

of reliability, and then used the qoodness of the

estimate (as measured by confidence interval size) as

the criteria.

This permits the user through the fiqures and tables

c iiven in this report to evaluate and compare different

sample numbers. If one wishes to determine a single

number as sample size, an acceptable lower bound for the

reliability estimate must also be given. If we say that

with no discrepancies in the sample, we want to be 951, certain

that fleet reliability is greater than X, then the required

sample size value can readily be obtained from the given

curves.

I°•



25

We have provided for the adjustment of the above

values to account for possible inspection errors. Here,

Figure 2 on Page 15 is probably most useful. The chances

of errors are described by the probability of detecting

an existing discrepancy. Often, in application, error

possibilities are not taken into account because it is

felt too difficult to estimate the detection probability.

In this regard it should be pointed out that not taking

* error into account is equivalent to estimating Pd = 1.0,

and if one feels errors a.re made, one should be able

to formulate a better estimate of Pd"

From an estimation point of view, a crucial part

of AEP sampling is identifying the population for which

the samples are representative. It is hoped that the

work presented in this report will assist in identifying

that population, and will be useful to those who must

interpret and apply the results of AEP sampling.

0'U

.4
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APPENDIX: SAMPLE SIZE

FOR FINITE POPULATIONS

When the population is small so that the sample exceeds

10% of the population, the binomial distribution should no

longer be used as an approximation to the hypergeometric
1

distribution. In this appendix we shall use the hyper-

"geometric distribution to provide fleet reliability confi-

dence bounds as a function of sample size for populations

of size 20, 30, 40, 50, and 100 aircraft.

The hypergeometric probability distribution is(m (-m
.4 .. 1. () (n:x

Prob(xjn,m,N) = ( (8)

where:
N is the number in the population,

m. is the number in the population that
possess the attribute,

n is the sample size, and

x is the number in the sample that
"possess the attribute.

Here, reliability is R rm/N.

26
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Our case of interest is when no discrepancies are

found in the sample. Here, x = n, and the probability

of this from (8) is

m! (N-m)!
Prob(x=nI n,m,N) (9)

((m-n) !N!

For a 95% lower confidence bound, this probability should

equal 0.05 where the bound is m/N. However, we cannot find

exact 95% lower confidence bounds solving

Prob(x=nI n,m,N) = 0.05

for bound = m/N,since both m and N are integer valued.

In a population of size N = 20, for example, m = 0,1,2,

S. . ,19, 20. Thus the number of possible reliability

values for the population is finite, namely N+l = 21

values.

Partial numerical results from searching for 90% and

95% lower confidence bounds for fleet reliability when

fleet size is N = 20, are shown in Table 4. The values in

the table are confidence levels for various lower reliability

bounds and sample sizes. For example, with a sample of size

13 from a population of 20 aircraft, we have

Prob(0.9< Reliability) 0.889,

and
Prob(0.85(Reliability) 0.969
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.<.

TABLE 4. Examples of Probabilities
Computed from the [lypergeometric
Distribution when x=n and Population
Size is N = 20.

m: 15 16 17 18 19
Sample Size R: 0.75 0.80 0.85 0.90 0.95

6 .871

7 .917

8 .949 .898

9 .970 .932

10 .984 .957 .895

11 .992 .974 .926

12 .986 .951

13 .993 .969 .889

"14 .982 .921

15 .991 .947

16 .968

"17 .984

A 18 .995 .900

19 .950

.1*

*."
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Thus, exact 95% confidence bounds cannot in most cases

be obtained.

Figure 5 shows approximate 95% lower confidence bounds

for fleet reliability as a function on sample size, for

populations of size 20, 30, 40, 50, and 100 aircraft. It

can be seen that as population size grows, the number of

possible reliability values grows, and the curves approach

that of Figure 1 in the body of this report, where the

binomial distribution was used. It should be pointed

out again that because reliability has become a discrete

parameter with a finite number of values, the plotted points

rather than the curves are defined. Also, visible irreg-

ularities are present since exact 95% confidence levels

could not be obtained.

Plotted points in Figures 6 through 10 adjust the

fleet reliability bounds from Fiqure 5 to reflect the

possibilities of undetected discrepnncies. Figures 11

through 15 repeat Figures 6 through 10, but for 90 %

confidence bounds rather than 95%.

.~~~~~~ . . . ..
J

z . . ....
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