
TR-311

STUDY OF COMPUTATIONAL STRUCTURES

1FOR MULTIOBJECT TRACKING ALGORITHMS

* FINAL REPORT

DTIC

>- DC 1 8 1"

IALPHATECH,
3 NEW ENGLAND EXECUTIVE PARK

BURLINGTON, MA01803/NC.

6171273-3388

86 12 18 088

ALPHATECH, INC.

TR-311i

STUDY OF COMPUTATIONAL STRUCTURES
FOR MULTIOBJECT TRACKING ALGORITHMS

FINAL REPORT

By

T.G. Allen
T. Kurien

R.B. Washburn

December 1986

Submitted to:

Office of Naval Research ~~T
800 N. Quincy StreetL

Contract No. N00014-84-C-0378

iA

ALPHATECH, Inc.
2 Burlington Executive Center

III Middlesex Turnpike
Burlington, MA 01803

(617) 273-3388

This documetnt has been aPPwoved

Sfox public rclease and sale; its
dtrih:- "n is unlixnited.

% %I

2;. S. *%.~

t,.L.,,'io , ,i,, ,/ 7 / - i -F ,- ws ~ - .. 7 T ~ T ' J 5 ~ ~ .

WCLAtY;~ CLASSIFI(AIION OF THIS PGC fE.

REPORT DOCUMENTATION PAGE
la PiPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

r UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY OF REPORT

Approved for public release,
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE distribution unlimited

1 4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

~. TR-311

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
I (if applicable)

ALPHATECH, Inc. j Office of Naval Research

i J 6c. ADDRESS (City; State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

2 Burlington Executive Center 80' N. Quincy Street
HII Middlesex Turnpike Arlington, VA 22217

"j Burlington, MA 01803
8a. NAME OF FUNDING I SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
, ORGANIZATION (if applicable)

Office of Naval Research N00014-84-C-0378
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

*PROGRAM IPROJECT ~TASK fWORK UNIT" 800 N. Quincy Street ELEMENT NO. NO. NO. ACCESSION NO.
I Arlington, VA 22217

11. TITLE (Include Security Classification)

'" STUDY OF COMPUTATIONAL STRUCTURES FOR MULTIOBJECT TRACKING ALGORITHMS

12. PERSONAL AUTHOR(S)

i Allen, Thomas G.; Kurien, Thomas; Washburn, Robert B. Jr.
13a. TYPE OF REPORT 13b. TIME COVERED 14/8414. DATE OF REPORT (Year Month, Day) 5. PAGE COUNT

Final Report FROM_9/l8/85TO December 1986 162

'. %16. SUPPLEMENTARY NOTATION

117. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROU SUB-ROUP MULTITARGET TRACKING, PARIALLEL ALGORITHMS, PARALLEL
I COMPUTERS

'.19 ABSTRACT (Continue on reverse if necessary and identify by block number)

The structure and performance of multiobject tracking algorithms are heavily con-
strained by their current implementation on sequential computer architectures. Near-
optimal algorithms, such as the track-oriented approach under investigation here, impose
prohibitive requirements on sequential processors. These requirements force one to use

~ near-optimal algorithms only in low target density environments and to employ faster but
* less optimal tracking algorithms in the more demanding high density situations. Identi-

fying, enhancing, and exploiting the parallel computational structures in the near-optimal
tracking algorithms potentially allows them to be applied to a wider range of scenarios.

I This report describes research undertaken to determine how parallel computer architectures
might be utilized to implement sophisticated modern tracking algorithms which are beyond
the capability of current sequential processing hardware.

iT20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
C UNCLASSIFIED/UNLIMITED M] SAME AS RPT 0 QOTIC USERS UNCLASSIFIED

:r f 122a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c OFFICE SYMBOL4I 0
-' DO FORM 1473o84MAR 63 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete ,LAS S I F. E

IACAS kl E

1 .7- ... %''V~% %

v~A': -AZ *:.% . q - a --

*ALPHATECH, INC.

ABSTRACT

The structure and performance of multiobject tracking algorithms are

heavily constrained by their current implementation on sequential computer

architectures. Near-optimal algorithms, such as the track-oriented approach

under investigation here, impose prohibitive requirements on sequential proc-

essors. These requirements force one to use near-optimal algorithms only in

low target density environments and to employ faster but less optimal tracking

algorithms in the more demanding high density situations.. Identifying,

enhancing, and exploiting the parallel computational structures in the near-

optimal tracking algorithms potentially allows them to be applied to a wider

range of scenarios. This report describes research undertaken to determine

how parallel computer architectures might be utilized to implement sophisti-

' cated modern tracking algorithms which are beyond the capability of current

sequential processing hardware.

9.

Accemsion For

" " ILTIC TAB

i. ' " Uflariunced El- 3U--Atification

Distribution/ _
0 AvailabilitY Codes

Avail and/or
'Dist Specialii I/U!t

..- .

ALPHATECH, INC.

CONTENTS

FIGURES v

TABLES vii

ACKNOWLEDGMENT viii

SECTION 1 INTRODUCTION

1.1 PROBLEM BACKGROUND I
1.2 RESEARCH OBJECTIVES 2
1.3 APPROACH 3
1.4 RESULTS 6
1.5 OVERVIEW OF REPORT 9

1 SECTION 2 PARALLEL COMPUTER ARCHITECTURES I1

2.1 INTRODUCTION 11
2.2 SIMD COMPUTER ARCHITECTURES 14

2.2.1 Introduction 14
2.2.2 Array Processors 18
2.2.3 Associative Processors. ".... 23

2.3 MIMD COMPUTER ARCHITECTURES 31

2.3.1 Introduction 31
2.3.2 Tightly Coupled Systems 32
2.3.3 Loosely Coupled Systems 34

2.4 CONCLUDING REMARKS 36

SECTION 3 EXISTING PARALLEL TRACKING METHODS AND COMPUTERS 37

3.1 INTRODUCTION 37
3.2 PEPE AND DERIVATIVES 37
3.3 STARAN AND DERIVATIVES 47

3.4 THE AIRBORNE ASSOCIATIVE PROCESSOR (ASPRO) 51
3.5 THE ASSOCIATIVE LINEAR ARRAY PROCESSOR (ALAP) 54
3.6 CONCLUDING REMARKS 59

',4

.° . N

ALPHATECH, INC.
CONTENTS (Continued)

Page

SECTION 4 OVERVIEW OF THE TRACK-ORIENTED MULTIOJECT ALGORITHM 61

4.1 INTRODUCTION 61
4.2 OPTIMAL ALGORITHM FOR MULTIOBJECT TRACKING 62

4.3 PRACTICAL ALGORITHM FOR MULTIOBJECT TRACKING 64

4.4 CONCLUDING REMARKS 70

SECTION 5 ANALYSIS OF THE TRACK-ORIENTED MULTIOBJECT TRACKING ALGORITHM 72

5.1 INTRODUCTION 72
5.2 FUNCTIONAL PARALLELISM WITHIN THE MULTIOBJECT TRACKING

ALGORITHM 74
5.3 DETERMINATION OF COMPUTATIONAL REQUIREMENTS 85

5.4 MEASURES OF PARALLELISM FOR THE TRACK-ORIENTED ALGORITHM 92
5.5 CONCLUDING REMARKS 102

SECTION 6 ADAPTATION OF THE TRACK-ORIENTED MULTIOBJECT TRACKING
ALGORITHM TO ASSOCIATIVE PROCESSORS 103

6.1 INTRODUCTION 103
4: 6.2 TRACK-ORIENTED APPROACH TO ASSOCIATIVE TRACKING 105

6.3 ASSOCIATIVE PROCESSOR IMPLEMENTATIONS OF TRACKING

FUNCTIONS 107

6.3.1 Prediction. 107
6.3.2 Gating and Track Expansion. 108
6.3.3 Updating 110
6.3.4 Cluster Formation 111
6.3.5 Global Hypothesis Formation 131

6.3.6 Pruning 135
6.3.7 Track Promotion 136

6.4 CONCLUDING REMARKS 136

SECTION 7 ADAPTATION OF THE TRACK-ORIENTED MULTIOBJECT TRACKING
ALGORITHM TO MIMD COMPUTERS 137

'. 7.1 INTRODUCTION 137
% 7.2 TRACK-LEVEL FUNCTIONS 138

7.3 CLUSTER FORMATION 142
4 7.4 GLOBAL HYPOTHESIS FORMATION 145

7.5 CONCLUDING REMARKS 149

REFERENCES 150

iv 1

ALPHATECH, INC.

FIGURES

Number Page

2-1 Classification of Computer Architectures [5] 13

2-2 General Configuration of SIMD Processors 16

2-3 Static Interconnection Network Topologies [111 19

2-4 Block Diagram of Massively Parallel Processor [8]. 21

2-5 Generic Associate Processor Architecture 24

2-6 Associative Array Memory 25

2-7 Typical STARAN Block Diagram [15] 28

2-8 STARAN Array Module [15] 29

2-9 Tightly Coupled Multiprocessor System [51 33

2-10 Nonhierarchical Loosely Coupled Multiprocessor System [5.... 35

r 3-1 PEPE Architecture [211 39

* 3-2 PEPE Processing Element [21] 40

3-3 PEPR Control Console Components [21] 42

3-4 PEPE Control Unit [21] 43

3-5 PEPE Correlation Process [25] 45

3-6 PEPE Parallel Process Scheduling [26]. 47

3-7 Block Diagram of the Airborne Associative Processor [401 52

3-8 Custom PE/Flip Network Chip [40]. 52

3-9 The ALAP Memory Array General Organization [43] 55

* 3-10 The ALAP Cell General Structure [44] 56

4-1 Track Splitting to Account for Different Target Dynamics and
Different Measurement Associations 64

V

ALPHATECH, INC.
K FIGURES (Continued)

Number Page

4-2 Representation of Global Hypotheses 65

4-3 Classification of Targets. 69

4-4 Top Level Flow Chart for Track-Oriented Muititarget Tracking
Algorithm 71

5-1 Computational Graph for One Scan of the Tracking Algorithm 77

5-2 Detailed Computational Graph for Confirmed Target Path. 80

5-3 Detailed Computational Graph for Measurement Gating 82

5-4 Representation of Parallelism in Tracking Algorithm 95

5-5 Graphical Display of Parallelism. 96

5-6 Speed-up of Confirmed Path on Abstract Machine 101

f6-1 Associative Processor Track Data Structure 106

6-2 Associative Clustering Example. 114

6-3 Associative Index Clustering. 120

6-4 Position Clustering Example 129

-:6-5 Graph Analogy for Global Hypotheses 133

5.i

J-

%q

-Se P % %
a, p - e.ee.P _e

ALPHATECH, INC.

TABLES

Number Page

2-1 MMP Processing Speed [8] 21

5-1 Computational Requirements for Track Operations (Per Track). 93

5-2 Computational Requirements for Confirmed Target Operations 93

6-1 Track Data Structure. 106

6-2 Target Data Structure for Bit Flag Clustering. 112

6-3 Target Data Structure for Position Clustering. 129

%p

'vi

%C

C,%

ALPHATECH, INC.

ACKNOWLEDGMENT

This research was supported by the Naval Air Systems Command under

Contract No. NOOO14-84-C-0378 with the Office of Naval Research.

Iviii
4

-,

* '4

% ,%

'.

viii

ALPHATECH, INC.

SECTION 1

INTRODUCTION

A1. PROBLEM BACKGROUND

The task of tracking uncooperative targets is a process that has become

* increasingly more difficult for traditional surveillance algorithms. Hostile

targets have taken every action, from stealth composition to terrain follow-
.A

ing, to make themselves less visible to both active and passive sensors. Due

to the improvements in counter-tracking technologies, sensors are no longer

able to provide a clear and unambiguous description of the environment. The

associated tracking algorithms must, therefore, be able to extract and inter-

pret target information from confusing data. Algorithms designed in an era of

less challenging targets will not be sufficient, and so more advanced algo-

FAA. rithms must be employed. Such mathematically involved algorithms, while pro-

viding superior tracking capability, require substantial processing re sources

in order to be implemented in real time. In the research reported here we

examine a solution to this computational burden -- the implementation of -i

advanced multiobject tracking algorithms on parallel computer architectures.

The identification and exploitation of parallel computational structures

in multiobject tracking algorithms are crucial to their successful applicationAr

in many realistic scenarios. The implementation of the optimal or near-

optimal form of such algorithms imposes prohibitively severe computational

requirements on current-day sequential processors. These requirements force

r%

ALPHATECH, INC.
one to use near-optimal algorithms oniy in low target density environments and

temploy faster but less optimal tracking algorithms in more demanding high

target density situations. Exploitation of parallel algorithmic structure

potentially allows one to apply near-optimal tracking algorithms in real time

in high-density, low probability of detection measurement environments where

present tracking methods cannot resolve measurement ambiguities and thereby

fail to track adequately.

1.2 RESEARCH OBJECTIVES

The research described here addresses the issues mentioned above by

investigating the parallelism inherent in a previously developed multiobject

tracking algorithm, that of track-oriented hybrid state estimation [1] - [4),

in order to determine the possible improvements in tracking capability attain-

able with parallel computer architectures. In contrast to the simpler meth-

ods, the track-oriented algorithm can resolve measurement ambiguities through

its multiple hypothesis approach. That is, many different interpretations of

* .*the environment are retained until such time that discrepancies can be

resolved. It is these multiple hypotheses that provide both the improvement

in tracking performance and the increased burden on the data processing hard-

ware that necessitate this study.

The selection of the track-oriented approach over other multiobject

tracking algorithms for this investigation is justified by several factors.

* As mentioned previously, it is an advanced algorithm that provides near-

optimal tracking performance. Additionally, it has the potential for even

better performance on advanced computers than on sequential computers, since

the approximations necessary for application to sequential computers may be

* 2

ALPHATECH, INC.
removed. Another factor is that, as the track-oriented algorithm is a partic-

ular implementation of optimal multiobject tra .ing, and not a specialized ad

hoc approach, analysis of it will provide consiterable insight into the form

and characteristics of the optimal algorithm. These insights may then be

applied to other tracking methods and implementations, especially other multi-

ple hypothesis approaches. Finally, and perhaps most importantly, the track-

oriented algorithm has a large degree of obvious parallelism (filter

operations, track-measurement associations, etc.), and a substantial amount of

non-obvious parallelism (multiple hypothesis functions) that are a significant

portion of the computational load.

It should be emphasized that this algorithm, along with most other state- P

of-the-art multiobject tracking methodologies found in the literature, assume

a sequential implementation in their derivation. Hence, no effort was made to

exploit the parallel nature of the tracking problem. It is felt that by

restructuring such algorithms the computation may be spread out across many

processors, thereby increasing both the algorithm speed and the number of tar-

gets that may be handled. How this may be accomplished for the specific exam-

pple of the track-oriented algorithm is the objective of this research.

* 1.3 APPROACH

The approach taken here was to investigate the computational structure of

the track-oriented multiobject tracking algorithm, determine the intrinsic

parallelism available either directly from the algorithm or by restructuring

the computations, and to explore possible methods for implementing the algo-

rithm on representative multiprocessor computer architectures.

3
1..

I'.

ALPHATECH, INC.
As this research is an initial foray into mltiprocessor applications of

this specific algorithm, it is important that we start with an examination of

the computational structure and extent of the algorithm itself, independent of

any specific computer system. Only by ascertaining the amount of exploitable

parallelism inherent to the algorithm will it be possible to make an informed

analysis of possible hardware configurations. Also, it is crucial that before

any specific applications are considered the algorithm be well analyzed and

understood. It is for these reasons that the work here focuses on the algo-

rithmic side of the problem more heavily than on the computer architecture

side.

An algorithm generally exhibits prallelism at various levels of granular-

ity at which operations can be defined, from the instruction level up to the

program level. We have chosen to investigate the parallelism of the track-

oriented multiobject tracking algorithm at the procedure, or functional,

level. The reasons for this choice of high-level parallelism over lover lev-

els are threefold:

1. We wish to study the parallelism of the track-oriented approach as a
single entity, not merely decompose it into a collection of random
operations that may be implemented in a parallel fashion.

2. Once the high level parallelism has been identified, it will be pos-
sible to exploit the lower level parallel structure through methods
available in the literature (e.g., matrix algebra).

3. The track-oriented approach is known to possess an extremely high
degree of inherent procedure level parallelism, and it is this type

-. of parallelism that distinguishes the track-oriented approach from
other tracking methods.

The methodology employed in examining the structure of the track-oriented

approach is to first decompose the algorithm into its functional units, with

INI
4

% .? %:~ % %V~.Vi % %%~

ALPHATECH, INC.
requirements) of tIhese units. Ln addition to the tasks themselves, the

dependency relations between individual tasks must be formulated. Dependency

relations determine the ordering of the computational tasks, and so define

their dependence or independence. The best expository method found for dis-

playing these characteristics is that of a computation graph. A computation

graph is a directed graph where the nodes represent some task in the algo-

rithm, and the arcs represent dependency relations between source and sink

pairs. By employing computation graphs it is possible to determine the

intrinsic parallelism in the algorithm, independent of any specific computer

architecture. This parallelism is described by measures such as the achiev-

able speed-up and number of parallel tasks for each of the tracking

functions.

Once the structure and extent of the track-oriented approach is well

understood, a reasonable decision on possible computer architectures may be 1

made. In order to assure generality in our results we assume generic computer

configurations and do not investigate specific computer systems. We have

L. chosen two general classes of computer structures to investigate: associative

*processors and multiprocessors. Associative processors are single instruction

stream computers that employ content-addressable memories. This class of

computers has been successfully applied to simpler single hypothesis tracking

approaches in the past, but to our knowledge has never been applied to a

tracking algorithm as complex as the track-oriented approach.

The second class of computer architectures investigated is that of multi-

processors, which are defined to be asynchronous processing units that can

perform different computational tasks concurrently. This is more flexible

classification than associative processors as far as the required algorithm

5%

ALPHATECH, INC.
format is concerned, as the individual processors are not constrained to

lock-step operation. It is this flexibilaty that motivates t he i nclusion of

multiprocessors in this study, for they afford the greatest potential for

exploiting heterogeneous functional parallelism. We will investigate possible

implementation methods for the tracking algorithm on a generic multiprocessor

configuration. These methods result in algorithm structures that take

advantage of the more powerful asynchronous processing capabilities of

multiprocessors.
0

For both of the computer architectures mentioned possible restructurings

of the tracking algorithm that increase the amount of available parallelism

'g~. are investigated. This step is extremely important for the tracking functions

that possess non-obvious parallelism.

1.4 RESULTS

It has been found that the track-oriented algorithm displays an extremely

high degree of functional parallelism for most tracking procedures, and that

those tasks- that appear at first to be inherently 'sequential may be restruc-

tured so as to increase their available parallelism. The functions of pre-

dicting target tracks forward in time, gating sensor returns against predicted

values, and updating the tracks with the selected returns are all inherently

parallel by target track. These tasks correspond to operations on individual

branches of the hypothesis trees. Once the individual branches are complete,

it is necessary to select the likeliest hypothesis toemlyitrcpung

and system analysis. In the standard algorithm (i.e., implemented on sequen-

tial computers), both clustering and global hypothesis selection is inherently

sequential in nature as each possible hypothesis must be evaluated and com-

pared in turn.I
:4' 6

ALPHATECH, INC.
Various measures of parallelism were obtained from the analysis of the

sequential form of the track-oriented multiobject tracking algorithm. A theo-

retical speed-up of 144:1 was determined for an "optimal" parallel implementa-

tion of the algorithm over the same algorithm on a sequential computer. Note

that this does not assume any restructuring of the standard algorithm in order

pto increase the amount of exploitable parallelism. Without restructuring of

the algorithm substantial processor inefficiences will result due to the large

amount of time required to perform the sequential tasks. For example, it was

found that the clustering function has approximately one one-thousandth the

number of parallel tasks that the update function has. Obviously, if the num-

ber of available processors was matched to the exploitable parallelism in the

update task, most processors would sit idle during the clustering step.

An overall measure of the concurrency available within the different

steps of the algorithm is the parallelism ratio. For an algorithm with the

same degree of parallelism at each step the parallelism ratio is I, but for

the unaltered track-oriented algorithm the ratio is .16. The low parallelism

of the clustering and global hypothesis steps, along with their substantial

.•processing requirements, "unbalance" the algorithm. It is for this reason

that a considerable amount of effort is spent attempting to increase the par-

-0 allel nature of these two tasks by restructuring their computations. How this

restructuring is accomplished is highly dependent on the specific computer

architecture under consideration, but it will be shown that the resulting pro-

cedure parallelism is generally quite high.

The track-oriented approach proves to be well matched to associative

processors, as it is a collection of fully parallel functions (e.g., track

prediction) followed by search oriented functions (e.g., global hypothesis

7

~~W'~~2~FP~~ ~ ~ ~~P .P2FT ' 7P. r1. .. PPJr7W X.WWFrXYw-w V

ALPHATECH, INC.
- ~ generation). it wil1 be shown that the various tracking functions can all be

implemented on associative processors, each with a substantial degree of par-

allelism. The functions that display track-level parallelism are the simplest

to implement on associative processors. The two tracking functions that per-

A tain to global hypothesis management, those of clustering and global hypothe-

sis generation, are both studied in detail as they are complicated tasks that

display little obvious parallelism, especially the synchronous parallelism

required in associative processors. Several possible implementations of the

clustering function are presented, with varying requirements on memory size

and varying degrees of achievable speed-up.

Multiprocessors, due to their flexibility, are even more applicable to

the tracking algorithm. The mltiprocessor model that was employed was a

fairly relaxed model without major restrictions on memory, processing, or

interconnection networks. The functions of clustering and global hypothesis

P formation are again substantially restructured to exploit the capabilities of

~ multiprocessors.

In summary, the track-oriented multiobject tracking algorithm, as it is

currently implemented on sequential computers, possesses varying degrees of

inherent functional parallelism. By restructuring the tracking procedures

1/. that display the lowest parallelism, it is possible to enhance the available

parallelism to the level where concurrent processing is quite attractive and
OT

efficient. This is accomplished for both associative processors and multi-

4% processors. However, as should be the case in an initial study, the computer

models employed herein were quite relaxed. A major restriction that was not

considered in this research is the communication required between concurrent

tasks, including access to common memory. More specific computer architectures

8

ALPHATECH, INC.
should be investigated to determine the performance achievable on actual

hardware.

1.5 OVERVIEW OF REPORT

The remainder of this report is arranged as follows:

In Section 2 we provide a brief overview of parallel computer architec-

tures. A description of the relevant parallel computers is necessary prior to

any analysis and design of application algorithms. This discussion is not

meant to be a complete survey, but should provide enough background for the

remaining sections.

Section 3 includes descriptions of existing parallel tracking methods and

computers that have been located in the open literature. As will be seen,

these methods all employ fairly simple tracking algorithms, and are imple-

mented on associative processors.

We next introduce and describe the track-oriented nailtiobject tracking

algorithm in Section 4. We will not concern ourselves with the derivation and

% computational minutiae of the algorithm, as we need only its structure. Far

greater detail is available in the references cited.

In Section 5 we analyze the track-oriented tracking algorithm, independ-

ent of any specific computer architecture. This is accomplished by function-

ally decomposing the algorithm into its component tasks and describing the

actions and processing requirements of each. Determining the inherent algo-

rithm parallelism then allows us to estimate its theoretical performance on

abstract computer architectures. This performance is restricted by the form

of the standard algorithm alone, and so provides a useful baseline measure.

9

ALPHATECH, INC.
Once the algorithmic structure of the track-oriented approach is ana-

lyzed, it may be applied to chosen computer architectures. [n Section 6 we

adapt the track-oriented multiobject tracking algorithm to associative proces-

sors. Due to the single instruction stream nature of associative processors

this restructuring is quite involved, especially for the more sequential

functions.

Finally, in Section 7, the track-oriented approach is adapted to multi-

processors. This is a simpler task than that of Section 6 due to the greater

flexibility afforded by the multiple instruction streams.

4

4

..

4.:

N,

14' V N%

ALPHATECH, INC.

SECTLON 2

PARALLEL COMPUTER ARCH ITECTURES

2.1 INTRODUCTION

41 The classification and description of parallel computers is a necessary

C foundation for the analysis and design of application algorithms. The reason

for this is the specific computer architecture defines the type of computation

that can best be exploited. As will be obvious in the sequel, no two parallel

computers of separate design will support the exact same algorithm structure

to the same extent. Therefore, when considering the creation of parallele

forms of algorithms the computer architecture must first be defined to the

level that sufficiently represents its strengths and weaknesses. This is in

contrast to standard sequential computers, where a given program may normally

be transported from one machine to another with little or no change to the

algorithm itself.

In the research described in this report specific computer architectures

have been avoided in favor of more general classes of computers. As the pur-

pose of this project was to study the adaptation of a known algorithm (track-

W oriented multiobject tracking) to various parallel computer structures it was

not considered useful to concentrate on the details of previously produced

.ftI
machines. Also, many parallel computers have been built to solve a particular

problem, and so should not be arbitrarily assumed to be applicable to any

given situation. Indeed, a more realistic approach for this research was

LC r WV -V -r*~%WF%_IVI T-. P r -1 -6;, 7- - w

ALPHATECH, INC.
found to be to define the computer attributes that best support the algorithm,

instead of fitting the algorithm to a given computer. These attributes must

be chosen from those found to be available to the given computer classifica-

tion, and to this end specific examples within these classifications will be

presented.

The computing system classification scheme most commonly encountered is

Flynn's classification based on the multiplicity of instruction streams and

data streams [6]. Stream here denotes a sequence of items (instructions or

data) as executed or operated on by a single processor. The magnitude of

% interactions between the instruction and data streams gives rise to four

general machine organizations:

Single instruction stream-single data stream (SISD)
Single instruction stream-multiple data stream (SlMD)

-I Multiple instruction stream-single data stream (MISD)
Multiple instruction stream-multiple data stream (MIMD)

These four classifications are illustrated in Fig. 2-1. The single

instruction stream-single data stream organization, also known as sequential

e. computers, includes most conventional computers. *Single instruction stream-

multiple data stream computers include both array processors and the more

specialized associative processors. The multiple instruction stream-single

data stream class has no members, and appears to be of little real use. The

fourth category, multiple instruction stream-multiple data stream computers,

S." includes multiprocessors and multiple computer systems. The two classifica-

tions of interest in this study are SIMD and MIMD computers, and will be de-

u scribed more fully in the subsections that follow.

12

-. J.

N N N A _" A

~~ ALPH-ATECH, INC.

cu Is ru DS MM

~~ (a) 5151) computer

DS CU: control unt
IS VU: processor unitcu MMI: memory module

**SM: shared memciory

SM 0 IS: instruction stream

(b) SIM D computer

*4 Pull

(e) MISD computer

i U, isU

IIs

(I IDI conmptsic R- 3929

Figure 2-1. Classification of Comxputer Architectures [5]

13

ALPHATECH, INC.
2.2 SIMI) COMPUTER ARCHITECTURES

2.2.1 Introduction

In single instruction stream-multiple data stream computers the parallel

[computations are performed in lock-step with the same master instruction being

applied synchronously to separate data sets. This master instructiot, stream

is broadcast by the control unit (CU) to all of the individual processing ele-

ments (PEs). Whether or not a particular PE executes the instruction is

determined by a control mask, which either activates or disables the PE.

Therefore, only a subset of the PEs performs the given computation or communi-

cation, the rest remain idle. To enable synchronous manipulation in the PEs,

the data must be permuted and stored in the memory modules (MMs) in vector

form.

SIMD computers may be subdivided into three basic categories: array pro-

cessors, associative processors, and pipelined processors [6]. An array pro-

cessor is an SIMD computer built around a conventional random-access memory

(RAM), wherein memory words are accessed by their addresses. In contrast,

*associative processors contain an associative memory (AM) which is content

addressable, allowing parallel access to multiple memory words based upon

• their values. Pipeline machines may be considered as time-multiplexed ver-

sions of array processors, assuming the individual elements of a vector are

viewed as multiple data streams.

*' The inclusion of pipelined processors in the SLMD group is debatable.

Some consider pipelining (most often likened to assembly lines in manufactur-

ing) to be in the SISD category as there is actually a separate instruction

for each operand pair, even though the same instruction is repeated over many

operands [7]. Pipelining is a common method of exploiting the parallelism

14
'a-

I.°,

-?

ALPHATECH, INC.
available at the intra-instruction level. This involves decomposing the basic

instruction into several subfunctions (instruction fetch, instruction decode,

etc.) which can then be processed repeatedly in an overlapped fashion. The

CDC 7600 and the IBM 360/91 were two of the earliest computers to employ pipe-

lining of their arithmetic units. More modern machines include the Cyber 200

series and the well known Crays. As discussed in the opening section of this

report, the low level parallelism available from pipelining, while of obvious

significance in achieving system speed-up, is of less interest than the higher

level parallelism imbedded in the algorithm structure itself. For this reason

pipelining will not be considered further so that attention may be focused on

the SIMD computers capable of higher level parallelism - array and associative

processors.

The general configuration of an SIMD processor is shown in Fig. 2-2. One

control unit provides the instructions to Np synchronized processing elements.

Programs are stored in the CU memory, usually loaded from an external host

W. computer. The CU interprets the program instructions, performing control and

scaler instructions which cannot be converted into parallel form within the CU

and broadcasting to the PEs the instructions to be executed in parallel. Par-

ticipation of the PEs in the execution of the parallel instruction is deter-

4." mined by a control mask that either activates or disables the individual PEs.

This selective activation of the PEs enables such features as data dependent

conditional branching, where different sets of PEs follow different program

to paths. Unfortunately, the SIMD constraint that all units process the same

instruction at a particular time precludes the concurrent execution of

asynchronous tasks. in other words, the different tasks must be processed

sequent ially.

15

ALPHATECH, INC.

DATA BUS Ito

CU MEMORY

[. CU

T ' CONTROL

CONTROL BUS

PE PE PE

SALIGNMENT/INTERCONNECTION NETWORK 2

R-3930

V Figure 2-2. General Configuration of SIMD Processors

16

9 ALPHATECH, INC.
Each P. consists of an arithmetic and Logic unit (ALU) with (typically)

its own registers and local memory. Instructions broadcast by the CU are exe-

b cuted in the PEs on different component operands fetched from the memory mod-

ules. The PEs do not decode instructions themselves, but merely accept

.instructions transmitted by the CU. The degree of complexity of the individ-

ual PEs is a crucial determinant of processing capability. In a SIMD computer

the PEs may be able to process either bit operands or word operands, depending

on the design. A string of bits, one from each word, is termed a bit-slice

processor, since each PE is operating on bits taken from the same location of

the operands. Word-slice processing occurs in IMD machines that can process a

%word at a time. The Goodyear Aerospace Massively Parallel Processor (MPP)

IS [8] is an example of a bit-slice arracy processor containing 16,384 bit-

serials PEs. An example of a word-slice array processor is the ILLIAC IV,

capable of handling 64-bit words in each of its 64 processors.

The alignment/interconnection network (A/lN) shown in Fig. 2-2 defines

both the communication between PEs and from the PEs to the Nm memory modules.

The complexity and flexibility of this network differs among architectures.

*Various interconnection networks have been proposed for and implemented in

*" SIMD computers [10], 11] for communicating among the PEs and MMs, and also

between the PEs and iMs. Such networks are necessary for the PEs to cooperate

on a common problem by exchanging or sharing both data and results. Inter-PE

communication is usually of greater concern than processor-memory communica-

tion in SLMD computers as most often each PE is hard-wired to its own local

memory. An example of such a machine is the MPP [8] in which each of the PEs

is associated with a 1024-bit RAM.

ib

17

v,
,,

,b5

ALPHATECH, INC.
The inter-PE network topology can be depicted as a graph whose nodes

represent switching points (not necessarily PEs) and whose edges represent

communication links. Figure 2-3 shows examples of static network topologies

where the nodes are equivalent to PEs. Static network topologies have pre-

defined connections. If two PEs are not directly connected they can communi-

cate only through intermediate PEs in a sequence of steps. Dynamic netwo:ks

allow reconfiguration of the data links for greater flexibility of communi-

cation. Alignment networks get rapidly more complex as the number of PEs

increase, therefore the PEs are usually limited to a small number. A more

general A/IN that allows memory modules to be shared by the PEs through the

alignment network is the Burroughs Scientific Processor (BSP) [9]. The BSP

contains a path-switching alignment networks to connect its 16 arithmetic

* elements to each other and to its 17 common memory modules. The discussion of

interconnection networks is beyond the scope of this report and is provided in

* more detail in the references sited.

2.2.2 Array Processors

An array processor is a synchronous parallel computer that operates in a

- "lock-step fashion in which data items are stored in a random access memory

(RAM). The previous discussion covers the major portions of an array proces-

sor function, with the exception of memory access. The CU broadcasts a global

memory address to each PE. This memory address specifies the location of the

data within the individual PE's memory module. Each PE may offset the broad-

cast address by its own index register so that different locations in differ-

ent MMs can be accessed simultaneously with the same global address. Operand

locations may also be specified by the CU by broadcasting the PE registers to

be used.

18

JV

.1
o

, °
-; = ' .. % % % '= " ' "%% '' ' ' ' "." "% .' - .•% . % ' ".%% ' •" -

AIPHATECH, INC.

(a) Line.ar array (b) Ring (C) Star

(d)p Tree (e) Near-neighbor mesh (f) Systolic array

Qy) Completely connected (h) Chordal ring (i)3 cube

(j) 3-ciihc-coinnected cycl R-3931

Figure 2-3. Static Interconnection Network Topologies [11]

1.9

ALPHATECH, INC.
* An example of an array processor is the Goodyear Aerospace Massively

Parallel Processer designed for NASA to solve two-dimensional data processing

problems such as satellite imagery. The MMP is comprised of 16,384 micro-

processors configured in a 128 by 128 square array. The PEs are bit-serial

processors capable of handling variable length operands. Each PE has a pri-

vate RAM of 1024 bits. Inter-PE communication is accomplished via a nearest-

neighbor topology (c.f. Fig. 2-3e). More flexible routing topologies were

considered but were decided against due to the complexity inherent in such a

large number of PEs.

" The MMP basic structure is shown in Fig. 2-4. The array unit (ARU) con-

tains the 128 by 128 square of processing elements, along with an extra 128 by

4 rectangle of PEs used as spares to reconfigure the ARU in the event of a

'-< ~.' fault. The local memory of 1028-bits per PE can conceivably be expanded to

65,536-bits per PE (i.e., the control unit generates 16-bit memory addresses).

t The ARU is organized with a 1028 planes of 16,384 elements each, and can

handle data of arbitrary precision. Two-dimensional planes were chosen over

other organizations (such as words) due to the MMP's design purpose of two-

dimensional data processing. In general, an array of 16,384 words with n bits

per word is stored on n planes of the ARU. This large number of PEs, along

; ~with the ARU cycle time of 100 ns, gives the MMP a very high processing rate

as shown in Table 2-1.

Inter-PE communication occurs in a nearest neighbor (north, east, south,

' west) fashion. At the array edges links can either be left open or connected

to the opposite edge. These routing choices may be used to change the square
.4 %.

array into such topologies as a one-dimensional line, a circle, or a torus.

.1 Shifts occur in one of the four nearest neighbor directions, and are either

20

ALPHATECH, INC.

14M

PROGRA/N & " ONRLDATA, , r I ----
?,-A£MENT UNIT 1 C OT

Figure 2-4. Block Diagram of Massively Parallel Processor [8]

TABLE 2-i. lMP PROCESSING SPEED [8]

SOPERATION PROCESSING SPEED

~Addition or subtraction:

K. ." 8-bit fixed-point (9-bit result) 6553
S12-bit fixed-point (13-bit result) 4428

-. 16-bit fixed-point (17-bit result) 3343

", 32-bit floating-point 470

] Multiplication:

8-bit fixed-point (16-bit result) 186L
:12-bit fixed-point (24-bit result) 910

F 32-bit floating-point 291

L 22E

iu

_ -7- *

ALPHATECH, INC.
masked (only those PEs with a 1 in their mask register participate) or

unmasked (all PEs participate) operations.

The array control unit (ACU) performs scaler (single data items) arith-

metic and controls the PEs. The ACU is made of three sections that can oper-

ate in parallel: PE control, I/O control, and main control. The PE control

unit controls operations in the processing planes of the ARU; I/O control

manages the flow of data in and out of the ARU; and the main control runs the

main MMP application program and performs all scaler operations.

The program and data management unit (PDMU) is a back-end minicomputer

"- that controls the overall flow of programs and data in the system. It manages

data flow in the array, loads programs into the controller, executes system

test and diagnostic routines, and provides development facilities.

The staging memories reside between the I/O ports of the ARU and the

front-end computer (PDMU or host), and can buffer and re-format arrays of

data. Reformatting is usually required because the PDMU or host typically

operates on an array of data in a word serial mode while the ARU receives and

transmits the array in a bit serial mode. The staging memory has a capacity

U
of 2 megabytes and a transfer rate of 20 megabytes per second.

The MMP was built specifically for image processing tasks, but is suf-

ficiently flexible to be applied to many other large-scale problems. Image

processing applications include feature extraction, pattern classification,

and scene analysis. Other suggested applications encountered are fluid dynam-

ics and database management.

,

22

- -
e .

EW*Mr AM W IYUW ~n

ALPHATECH, INC.
2.2.3 Associative Processors

An associative processor consists of a storage device wherein stored data

items can be accessed or retrieved on the basis of their content (associative

memory), along with the capability to perform data transformations upon more

than one set of arguments with a single control instruction (parallel proces-

sor) [13], [141. As with all SIMD computers, the parallel computations in an

associative processor are performed in lock-step with the same instruction

being applied synchronously to separate operands.

The primary difference between associative memory (AM) and the more com-

mon random-access memory used in other processors is that RAM is accessed via

the word address, while AM allows for the parallel access of multiple memory

locations by specifying the word content, not its locat ion. The main advan-

Ii tage to associative processors over array processors is the ability to perform

search, comparison, and logic operations over all words in the memory array in

tparallel. Note that it is also possible for AMs to be accessed by address as

well as content in some systems, albeit in a slightly indirect manner.

'In order for the AM to accomplish its task it is necessary for sufficient

logic to be available at each word to determine whether that location contains

data that match some globally defined criterion. The complexity of this logic

.. .'*organizes APs into two categories: bit serial and bit parallel. In bit

serial APs one bit of each memory word is acted upon in parallel (word

parallel), with subsequent bits of each word handled sequentially. In bit

parallel APs the processing is performed both parallel by word and parallel by

bit. Bit parallel APs will exhibit higher processing speed, but they suffer

from more complex detection logic than bit serial architectures and are there-

fore more expensive to build.

23

ALPHATECH, INC.
W A generic associative processor architecture is shown in Fig. 2-5. In

a,

itself this schematic differs little from conventional array processors. We

Ican, for the purposes of this study, ignore specific global architecture

K. characteristics and focus on the general associative memory and its operation.

IqISpecific input/output considerations will be presented as they impact the per-

formance of high I/0 algorithms such as multiobject tracking.

1/0 ARITHMETIC

CONTROL MEMORYAND

UNIT LOGIC UNIT

OUTPUT

. NCONTROL SYSTEM

1 INSTRUCTION MEMORY

HOST

"_ _ _R-3933

Figure 2-5. Generic Associative Processor Architecture

Figure 2-6 shows the structure of a basic associative memory. The AM

.. :. consists of W array rows (also called words or cells) with B bits per row. A

contiguous subset of the array beginning at a given bit and having a given

length, in each word, is termed a field. A field with length I is called a

bit-slice.

24

4 oe e,.

ALPHATECH, INC.

14 - C bits

Comparand Register

Comparand Mask

1 4 -B bits -- -

, ,'" _ ;Field/

MR T

,: ////~~~W o r d S Ili c e ;/.1 '//,/////,/////. - - -

.

W words

F1 I I I I I Li Li L liI

R-3934

* Figure 2-6. Associative Array-Memory

For bit serial APs there will be one processing element for each word of

memory, and these PEs will operate on a bit-slice of data at a time. Bit

parallel APs will have a more complex PE for each word and are able to process

the whole array in parallel. The common datum value for use in comparisons is

q - stored in the comparand register. In some systems the comparand contains as

many bits as an array word, in others it contains much less. For large com-

parands it is usually necessary to include a comparand mask register to enable

or disable bit slices of the array that are to be involved in the comparand

operation. This allows for parallel operations in more than one field of a

25

*,Po

5r

- .• -.- .. o j -... . -,* . - .- ,- - .• .- - o.% - ° .*% % " * '*

ALPHATECH, INC.

word. Smaller comparands may not employ a mask, but instead specify the field

to be compared. We will assume the latter case in the sequel.

The three registers beside the array are the Mask (M), Response (R), and

Temporary (T) registers (also called M, X, Y). These are all dimensioned by

the number of words in the array. The mask register is used to enable or

* . disable words to participate in operations (searches, logic, I/O, arithmetic,

etc.). The response register holds the result of the most current associative

*.-. search. The temporary register is a storage device. Any of the registers can

be used in logical operations with each other to alter their values. This

allows, for instance, the results of several searches to be combined in one

register.

The contents of the comparand may be compared with those of the array

words via the following operations (searches):

EQUAL NOT EQUAL
GREATER THAN GREATER THAN OR EQUAL

LESS THAN LESS THAN OR EQUAL
INSIDE OR EQUAL LIMITS OUTSIDE LIMITS

If the result of the search in a particular word is true, the correspond-

*ing response bit is set. In addition to the above, some systems support the

capability of using an array field instead of the comparand (i.e., each word

.* uses the field in that word) as well as the ability to find the minimum or

maximum of a field. As the complexity of these operations increase so will

the computation time.

Logic operations are bit-wise logical combinations of an array field with

other array fields or common register, with the result entered into an array

field. AND, OR, and XOR (exclusive OR) are assumed to be available.

26

.. .

ALPHATECH, INC.
Associative arithmetic functions allow two array fields, or an array

field and the common register, to be arithmetically combined. Most lower

level functions are found on every AP architecture.

Data movement, either within the array or between the array and the

external system (I/O), can be managed in several ways. Data can be input or

Ioutput to the array through the comparand register. On input to the AM the

contents of the comparand can be written to some or all of the words in paral-

1lel depending on the setting of the mask bits. Output to the comparand may be

handled by bit-wise logical OR-ing the fields of all the active (unmasked)

'% words on the data channel, so that the value reaching the comparand is a com-

bination of the output fields. Other systems may only allow one word to be

active at a time on output, so the logical OR-ing does not occur. We will

employ logical OR-ing of the output data later on and so assume its imple-

mentation.

Another method of data I/O is to include, as shown in Fig. 2-5, a data

path directly to the AM. Depending on the design the I/O control unit may be

*"A capable of content addressable input (i.e., input only to words that satisfy

some condition). Also, the data may be manipulated, or "flipped", so that

either one word or one bit per word may be input. This is especially useful

in bit serial APs since they normally operate on a bit-slice at a time, where-

as data usually arrives in word format. Another useful feature is that, since

the control and I/0 are separate units, it is possible to have I/0 and compu-

tation going on concurrently.

II - Data transfers within the array can be thought of as either "horizontal"

shifts (field to field) or "vertical" shifts (word to word). Horizontal

shifts are typically handled in one instruction using the field locations.

27

I

ALPHATECH, INC.

VertLcal shifts in parallel require specialized hardware channels to get the

high bandwidth transfers needed.

An example of an associative processor is the Goodyear Aerospace STARAN

S[15]. STARAN is a bit-serial AP consisting of up to 32 associative array mod-

ules. Each array module contains 256 one-bit processing elements along with

a 256-word 256-bit multidimensional access (MDA) memory. A typical STARAN

block diagram with four array modules is shown in Fig. 2-7. As the array mod-

ules define the processing capability of STARAN they will be described prior

to the system architecture.

HIS &4S CHANNEL

INTERFACE

. CONTROL MEMORYtIi.

4

322

SQOUENTIAL MEMORY DATA INTR

S. CONTROL CONTROL
-" ~ ~~~~(POP-l|_ j - PRIHR0

D A T A E X F X F 1 6 l O T O

." I ARRAY ONTROO

_AAT

F eT c TARE FlBc

U4

, P SJp . . .FLIP

Figure 2-7. ARRYpa SARAN lc iarm[

° ." 28

: .:-

ALPHATECH, INC.
Figure 2-8 shows the STARAN array module functionality. Each array

module contains an MDA memory communicating with three 256-bit registers (M,

X, and Y) through a flip (also called scramble/unscramble) interconnection

network. In effect, each PE in the module contains one bit of each of the

registers. The flip network [16], [17] may shift or permute bits in the

source item such that words and bit-slices, as well as other templates, can be

accessed easily. Permutations of the flip network also allow inter-PE commu-

nication, either by one PE reading directly from another PE's register, or

indirectly from the MDA memory.

S.S

* ISA -. DIS 11

2S

mol

l~lMAT A$I ,Tr

I ADD S C C CO CT;

[" NOWl C C ON TROL SIGNALS5+ R-3936

Figure 2-8. STARAN Array Module [15]

The multidimensional access memory is so named for its ability to accom-

modate both bit-slice access (for associative processing) and word-slice

access (for L/O). The 256-bit wide read and write buses allow simultaneous

access to one bit from each word or all the bits in one word, or a combination

S:"29

,S-%

rd

ALPHATECH, INC.
of the two Lt is also possible to format the data within the MDA in struc-

tures other than 256 words with 256 bits in each word. For example, the data

may be arranged in 3Z records, each of which contains 256 8-bit fields.

, . As shown in Fig. 2-7, each array module may be controlled by the Al , on-

trol or the parallel input/output (PLO) control. Each array module c(in[

L an assignmuent switch that connects its control inputs and data buses to one of

the twi contruls.

The AP control receives instructions from the control memory and can

transfer data to and from the control memory, all over 32-bit channels. Data

may also be exchanged with the array modules, but only over 32-bits of the

256-bit wide array 1/0 ports. The flip network facilitates communication to

any part of the array module. The AP control contains the 32-bit comparand
,.

register, along with other instruction registers, pointers, and counters.

The parallel input/output unit is designed for high bandwidth 1/O and

i inter-array data transfers, as well as performing processing and 1/O in

• *. parallel. I/O ports to the PLO flip network allow any device (parallel-head

disk stores, radar video channels, etc.) to communicate directly to with the

. array modules. Inter-array communication is handled by permuting data between

array module ports. As each array module may be controlled either by AP con-

-trol or by PLO control, it is possible for some arrays to be processing data

while others are performing 1/0.

The control memory holds both AP and PLO control programs. The main pro-

S. rgram usually resides in core memory (up to 32k words) with microprogram sub-

routines stored in bipolar memory.

, . The sequential control handles peripherals, controls the system from con-

sole commands, and performs diagnostic tests.

30

, .

S

. ,' t, ' ' " -" " .'"#,; , .". % - - -. " ," , % . -' . .- - ,. .- , . .- - . - - . . ,_ . . , .

ALPHATECH, INC.
.V External function (EXF) logic serves to synchronize the AP control, PLO

control, and sequential control.

Applications of STARAN include radar tracking, (discussed further in sub-

section 3.3), fast Fourier transforms, and sonar post-processing.

2.3 MID COMPUTER ARCHITECTURES

2.3.1 Introduction

In multiple instruction stream-multiple data stream computers several

processing elements operate concurrently in an asynchronous manner under inte-

grated control to accomplish some desired task. This definition serves to

:-. distinguish MIMD multiprocessors from single instruction stream machines (SISD

* and SIMD) which obviously cannot operate asynchronously., and from multiple-

computer systems or networks which consist of several separate and discrete

* ." computers that are not controlled by a central unit. The class of MIHD com-

puters may be further defined by the following characteristics [18]:

0 A multiprocessor contains two or more processors of approximately

comparable capabilities.

0 All processors share access to common memory.

0 All processors share access to input/output channels, control units,
and devices.

* . 0 The entire system is controlled by one operating system providing

interaction between processors and their programs at the job, task,
step, data set, and data element levels.

One of the most standard classifications of MIMD systems is based upon

how the individual processing elements communicate with each other. The two

architectural categories most often encountered are those of tightly coupled

and loosely coupled systems [5]. In tightly coupled multiprocessors the PEs

communicate indirectly through a shared main memory. In loosely coupled

3 L

-t'

ALPHATECH, INC.

multiprocessors the PEs exchange data directly through a message passing

system. Both of these approaches are discussed further below.

2.3.2 Tightly Coupled Systems

UThe tightly coupled, or shared memory, category may be the most common

Lmultiprocessor architecture. Figure 2-9 is a typical model of a tightly cou-

pled system (TCS). lt consists of p processors, 1 shared memory modules, and

d I/O channels. The units are connected through a set of three interconnec-

tion networks. The processor-memory interconnection network (PMIN) is basi-

cally a switch that can connect every processor to every memory module. This

switch may be either a p by 1 crossbar switch matrix, a multiported memory, or

a multistage network. Shared memory is employed by the individual processors

much like a blackboard: any processor can write information on it, which any

other processor can subsequently read. If a processor wishes to communicate

W with another processor, it simply writes the message into the shared memory.

Unfortunately, a memory module can only satisfy one processor's request in a

given memory cycle. Memory contentions will therefore result whenever two or

more PEs try to access the same memory unit concurrently. To avoid excessive

-,conflicts the number of memory modules is usually as large as the number of

PEs. Also, a small local memory or high speed cache may exist in each PE to
U.' '

*help alleviate this problem. The unmapped local memory (ULM) in Fig. 2-9 pro-

vides this capability.

Models of memory access in tightly coupled multiprocessors used for algo-

rithm development typically take one of three forms: exclusive read-exclusive

write (EREW), concurrent read-exclusive write (CREW), and concurrent read-

concurrent write (CRCW). In the EREW shared memory model all references to a

module in the common memory must be made exclusively. The CREW model allows

32

"*V

4-°. * * 2

So; :-

ALPHATECH, INC.

4: [Interrupt sigiialI interc:onnectlion Input -output
network (ISIN) channels

I] Disk%

P)rocessors • inter-"

, 0 connection
network

• (IOPIN)

Unmapped
local memory (ULM)

Memory map (MM) ...

4

rivate caches (PC)

"" I P/M interconnection
'"_,,.[network (PMIN)

S.. DMA and buffer

Pipcined shared
memory modules

L _ R-3937

Figure 2-9. Tightly Coupled Multiprocessor System [5]

concurrent read operations but writes must be performed exclusively. Finally,

• the CRCW model permits both concurrent read and write operations. While the

EREW model is the most realistic, the CRCW and CREW models are more prevalent
'-.

in the algorithm literature.

As the individual processors must pass data through the main memory, the

inter-PE data communication rate is on the order of the bandwidth of the

concurrent read operations but writes must be performed exclusively. Finally,

the CRCW model permits both concurrent read and write operations. While the

memory. This provides a further inducement to include a high-speed buffer

(cache) between the processor and main memory.

%. 33
', % 39-..

fl ,
5.4.
5.

ALPHATECH, INC.
The second interconnection network in the TCS is the interrupt-signal

interconnection network (iSLN). The ISLN allows each processor to interrupt

the execution of any other processor, thereby facilitating synchronization

between PEs. Note that messages are not sent via the ISIN, only interrupts.

The final interconnection network is the I/O-processor interconnection network

(IOPIN), which permits a PE to communicate with an I/O channel.

Examples of tightly coupled systems include the Carnegie Mellon

University C.mmp [5] and the more recent Butterfly parallel processor by BBN

Laboratories [191. The C.mmp architecture consists of 16 processing elements

*.-. and 16 common memory modules connected via a 16 x 16 crossbar switch. The

-. Butterfly is a 128 processor shared memory system. Processors make memory

references through a Butterfly switch. The switch is a Banyon network that

, *~ uses 4 x 4 switch elements in its implementation.

2.3.3 Loosely Coupled Systems

*I In loosely coupled systems each processor generally has a substantial

-.0 amount of local memory where it accesses most of the instructions and data.

The concurrent processes resident on the PEs communicate through a message

transfer system (MTS). The topology of this interconnection network is the

* ~dominant characteristic in determining the degree of coupling in the system.

Typically, loosely Loupled systems provide good throughput at the expense of

flexible resource sharing, while tightly coupled systems provide flexible re-
-

source sharing at the cost of degraded throughput. Therefore, loosely coupled

systems are usually more efficient when the interactions between tasks are

minimal.

34

dl

x. . *4 7 -771 - - 9'. 70T TT eV

ALPHATECH, INC.
Figure 2-LU is an example of a loosely coupled computer architecture. An

individual computer ,nodule is shown in Fig. 2-10a. This module consists of a

processor (P), local memory (LM), 1/0, and a channel and arbiter switch (CAS).

The CAS is responsible for choosing among modules whenever tow or more attempt

to access the same physical segment of the MTS.

Promemorr
Local bus

(P)

d., Channel
"- ' and

arbiter~switch
..

(a) A computer module

Computer module 0 Computer module N- I

'"...

:'I R-3938 '
' (b) Loose coupling of computer modulese

" ' Figure 2-10. Nonhierarchical Loosely Coupled Multiprocessor System 15]

I'.H

j,, The message transfer system may be a time-shared bus, a shared memory

(system, or any other number o connection networks (c.f. Fig. 2-3). We will

~not discuss interconnection networks here, and direct the reader to the refer-

ences, particularly 20l.

35 %
Thesaernfe,.se aybatm -hare bus, a..shared.,.emory

sysem orayornme fcneto ewrs(~.Fg -) ewl

ntdsusitroncinntok ee*n ietterae oterfr

ALPHATECH, INC. "
2.4 CONCLUDING REMARKS

As the research presented Ln this document Ls an initial attempt at

applying the track-oriented multiobject tracking algorithm to multiprocessor

architectures it behooves us to keep the discussions as general as possible.

Also, as an initial effort, it is felt that the emphasis should lie on the

algorithm far more heavily than any specific computer system. For these

reasons we have restricted our discussions of parallel computer systems to be

both brief and generic. More effort was spent in presenting SIMD architec-

tures as they are more restrictive, and therefore require a more involved

explanation. MIMD architectures are a far more general class. A multitude of

information far more detailed than presented (or needed) here is available in

the references supplied.

36
-.- 5

.".

-°

"'I

a" p

366
"' -4". - l .-.--. i i->.: i->i- x .--- i. .. " i.i. .> :.-> .-- --. .- '- :.-" -- ' " .- >-.> i.:

ALPHATECH, INC.

SECTION 3

EXISTING PARALLEL TRACKING METHODS AND COHPUTERS

3.1 INTRODUCTION

Parallel processors have been applied successfully to multiobject track-

ing problems in the past. The complexity of the tracking algorithms imple-

mented on these computers has been limited, though, most having been developed

in the early to mid-1970s. Tracking methodologies and computer architectures

of two major parallel tracking approaches, PEPE and STARAN, will be discussed

in detail in subsections 3.2 and 3.3, respectively. These two systems domi-

nate the open literature, both in parallel tracking and in associative proc-

essors. Subsection 3.4 contains a discussion of the Airborne Associative

Processor (ASPRO) which, like STARAN, was developed by Goodyear Aerospace for
4..

tracking applications. The Associative Linear Array Processor (ALAP), from

&Z Hughes Aircraft, is described in subsection 3.5. It is interesting to note

* that all of these parallel tracking computers are associative SIMD processors,

* "r. and that all employ single hypothesis (or simple track splitting) tracking

methods.

3.2 PEPE AND DERIVATIVES

A The Parallel Element Processing Ensemble (PEPE) [21]-128J is a highly

parallel experimental associative processor designed to address the ballistic

missile defense (BMD) problem through augmentation of a general purpose

.1 37

.1
*N L

4

4

%T'rvW~CWV K W'- W -W-- W.-ILi W .s~~~ . 2 A k.. ' . T - .

ALPHATECH, INC.
400

N sequential computer. PEPE is a fully parallel, or word-parallel and bit-

parallel, AP. The PEPE architecture allows for overlapped input/output and

V arithmetic functions. In addition, data transfer with external devices may

take place simultaneously with the transfer of data into or out of the PEs.

Its design has evolved from work done at Bell Laboratories in the early 1960's e.

on distributed logic configurations for APs. In distributed logic APs the

comparison logic is associated with each character cell of a fixed number of

bits or with a group of character cells. Such a configuration is more eco-

nomical than word-organized APs, where the comparison logic is associated with

each bit cell of every word [5]. %

A block diagram of the PEPE system architecture is given in Fig. 3-1.

The host computer is a CDC 7600 and the test and maintenance (T&M) computer is

a Burroughs B1700. The PEPE configuration consists of a control system and up

to 288 processing elements arranged in bays of 32 PEs each. Each PE may

simultaneously respond to commands from each of the three control units - the

Correlation Control Unit (CCU), the Arithmetic Control Unit (ACU), and the

Associative Output Control Unit (AOCU). PEs can be added or disconnected

without effecting the operation of the system. This is due to both the con-

tent addressing characteristic of APs (since PEs are activated or deactivated

based on data comparison, not address) and the lack of direct connections be-

tween PEs. If data has to be transferred between PEs it will have to be

* routed through the host [29].

The basic configuration of the PEPE processing elements is shown in Figs.

3-I and 3-2. Each PE consists of 3 units: an Arithmetic Unit (AU), Associ-

ative Output Unit (AOU), and Correlation Unit (CU) sharing an Element Memory

(EM). Each computational unit (AU, AOU, and CCU) contains a one bit activity

38

o° %

i4 _ ,

P

ALPHATECH, INC.

T&M OTT& M T F.M

INPUTIOU TPU T DA T A CONVE RSION UNI TS

PEPE CORRELATION CONTROL UNIT ARITHMETIC CONTR. UNIT ASSOCIATIVE UPT CONTR. UNIT

SEQUENTIAL
PROCESSING
LOGIC DATA IPROGRAM DATA PROGRAM DATA PRGRAM

MEMORY MEMORY MEMORY MEMORY MEMORY IMEMORY

SEQUENTIAL CONTROL SEQUENTIAL. CONTRO SEQUENTIAL CONTROL
UNIT & REGISTERS UNIT & REGISTERS UNIT & REGISTERS

T INTE PAR.

CAALIE CONT PNT ARALLEN.J IT LEL CONTA. AUIT

ARAR.E OUTPUTT
MEMOR CONTROL

CONTROL

CCU PACULE AU.OCU AU

PARALLELL OUTPUT

PROCESSCGONTROL

UNITS FRO FRO

CCU AC AO

A A

UNT

Figure 3-1. PEPE~ ArChitecture [211

39

1.0~

ALHI'A I ttM, INU.

ARITHMETIC CONTROL UNIT CORRELATION CONTROL UNIT

-OUTPUT DATA CONTROL- ELEMENT MEMORY

CONTROL
CONTROl.

ASSOCIATIVE OUTPUT CONSOLE
CON TROL UNIT

* SIGNAL I S

• I DISTRIBUTION I a.
SSYSTEMr

OTUCORRELATION ELEMENT

'"UN T
, - CLEMENT

P: R- 3940

Figure 3-2. PEPE Processing Element [21]

register which is used to determine if the individual PE will respond to a

parallel instruction. Since all three units may operate concurrently, a 288

.- element PEPE can effectively perform 864 simultaneous instructions. If there

:. are PE memory conflicts this number will be lower.

Parallel integer, logical, and floating point operations are carried out

in the AUs, under control of the ACU. Input to the PEs takes place through

the CUs from the CCU. Each CU contains 16 registers which support parallel

integer and logical instructions, and register-to-register correlation opera-

tions. The associative nature of PEPE is due to the ability of each CU to

correlate data broadcast by the CCU with the data in its registers. The AOU

40

r%
* .4°...:.,"-% .,a~*//'* X/- ** * * 5**- P .

- 'fa~~- J P- .- .-.- .- .- - .~ 4 *.

ALPHATECH, INC.
allows data to be output from the PEs to the output control in an associative

manner. The PE memory consists of 1024x32 bit ECL storage. All EMs receive

identical information from the Element Memory Control during execution of a

particular function.

The PEPE control console (Fig. 3-3) contains the ACU, AOCU, and CCU which

provide the instruction execution control for PEPE. The ACU manipulates the

parallel database in the PEs; the AOCU outputs data from the parallel data-

base; and the CCU inputs new data into the parallel database. The control

console also contains functional units to support the following operations:

0 Inter-control unit interrupts
* Error recovery
* Processing element output
0 Element memory conflict resolution
* Maintenance and diagnostic tasks

* Input/Output data conversion.

Figure 3-4 shows the functional configuration of the three control units.

Each unit has its own program and data memory, as also shown in Fig. 3-1.

Programs may consist of a combination of sequential instructions (executed in

the Sequential Control Logic) and parallel instructions (executed in the

Parallel Instruction Control Unit). The ACU has a relatively slow cycle time

of 200-300 ns due to its large (32k) program memory. Because of this the ACU

-P, parallel instructions are routed through a 16-step queue prior to execution.

The input/output units (IOUs) are included in each control unit to pro-

vide for data transfer to and from the host and T&M equipment. In addition to

control unit start/stop and interrupts, the IOUs are capable of block data

transfer to and from the control units initiated by either the host or the

sequential control. The IOUs are also capable of data transfer overlapped

with parallel/sequential instruction execution

41

t:

".

ALPHATECH, INC.

EOUIMENTCDC 7600
EXTERNAL
COMPUTERS

ARTMEI ASSAGNOSTVC CONTROLCONSOL

OOTTUTLELEMENT
UNI CONTROL CONTROL

LELEMNTUNT

URINMII ASSOCIATIVEO

UNITS O OUPUT UNITSMEMOIE

ELEMEN
ASCATV ARITMETI
OUPUNTO UNTT I

v CONTROL

V~~~~~~SGA FITIUeO S-3.TEPECnrlCnoeMopnnsj

L OREATO

LIELEMET UNIT
ARITHETICASSOCATIV
UNITSOUTPT UNIS MEORIE

ELEMENT

42EML

ASOITV AIHEI

I-OTUTUIS'NT

.

ALPHATECH, INC.

TEST & MAINTENANCE

EQUIPMENT CDC 7600

INPUT INPUT PROGRAM DATA
OUTPUT OUTPUT MEMORY MEMORY
UNIT UNIT

INTER-COMMUNICATION LOGIC

SCOUNTL OUTPUT DATA CONTROL

LOI MAINTENANCE CONTROL &
DIAGNOSTIC UNIT

CONTROL UNIT

PRLLLINST RUCTION GUEUE

PARALLEL
INSTRUCTION
CONTROL
UNIT

ELEMENT MEMORY CONTROL

SIGNAL DISTRIBUTION SYSTEM

PROCESSING ELEMENT UNIT R-3942

Figure 3-4. PEPE Control Unit [211

43

L ALPHATECH, INC.
co: PEPE is employed in BK!) radar tracking by dedicating a PE and its memory

to each target currently in track [25], [261. Each PE stores within its EM

the track state estimates (position and velocity), the new raw radar data to

be used in updating the track, and requests for radar service. The PE memory

is divided into identical fields so that the track data is stored in a homo-

geneous manner. This allows the tracks to be processed concurrently.

The important characteristic of the PEPE tracking algorithm is that it is

a simple, range gating algorithm without any sophisticated enhancements. Due

to the lack of time consuming complex computations, and the capability of

parallel 1/0, arithmetic, and associative operations, PEPE can exhibit very

fast execution times along with high throughput.

Raw data is input to the PEs via the CCU. Range gates (upper and lower

bounds on the acceptable measured radar range) are computed for each target in

track and loaded into the corresponding comparison fields. The radar returns

ware then input sequentially by return) but in parallel over the targets. If

the radar range falls within the limits of the range gate of any target the

return is loaded into the raw data buffer of that PE. Figure 3-5 is a flow-

chart of a simple example of the correlation process.

After the data has been input the track estimates are updated. This up-

date will only occur in PEs where new returns have been entered, all others

are deactivated (masked). Since all PE memories are identical in form, the

* track update can be computed in parallel, with processing time independent of

e) the number of tracks. After update the new predicted states are computed for

all targets, and the cycle continues.

In order to exploit as much parallelism as possible in the tracking

*algorithm, data is accumulated for as long as possible. For instance, it is

44

'r 4

ALPHMAfECH-, INC.

INTERIWT ACU

i~jAcfVEELEMENTS
P~REDITPNGE

DI ALL ACTIVE ELENM
If, JTRANGEGAlES

FIN ALLEMO
IADCOREA1O

RELEASE n7ERiUP

ORREIATIOt PROES

1S MUM

MAT

Figure 3-5. PEPE Correlation Process [251

45

.- . 4 -. * ,- .W- - Y V" - -

ALPHATECH, INC.

desirable to update all tracks concurrently, and to do this it is necessary

that each track have been correlated with a return. If data Ls accumulated

for too short a period, only a few of the tracks will have been correlated,

and so PEPE will be operating with a degraded efficiency. Conversely, if the

accumulating period is too long, processing on a track may not be completed

before the next return for that track appears. The optimal solution is shown

in Fig. 3-6. The accumulation interval is set equal to the period of time

between observations on a single target minus the processing time [25].

From BMD benchmark tests run on PEPE, CDC 7700, and CRAY-i involving

multiple tasks (Kalman filter tracking routine and radar pulse scheduler) it

was concluded that PEPE can outperform the other systems with as few as 108

elements [30]. It should be noted stressed that this conclusion was the re-

sult of a preliminary evaluation, and no further information has been en-

countered in the open literature.

Reference [26] discusses the method of implementing BMD data processing

functional requirements on PEPE. These functions include more than just the

target tracking discussed above, such as interceptor control and radar pulse

,U allocation.

A similar algorithm has been proposed for air traffic control (ATC) using

- PEPE-like processors [27],[281. A major difference with the BMD algorithm is

that multiple targets are allocated to each PE in the ensemble. This alloca-

* tion, based on spatial sectorization, is possible due to the predictable

nature of the ATC problem. Also, real time display requirements preclude

saving up scans of data, so the problem is less than totally parallel.

Because of these reasons it is possible to assign targets to PEs such that no

46

* iN t*

ALPHATECH, INC.

TRACK POUC -

ACCUMULATE mc

-TRACK PERIOD -A

ACCUMEXATE =

TRACK PMROD

ACCUMLAM MCESS R-3944

Figure 3-6. PEPE Parallel Process Scheduling [26]

two targets on the same PE will ever correlate with the same return, and so

can be processed sequentially.

3.3 STARAN AND DERIVATIVES

The Goodyear Aerospace Corporation STARAN [15], [31] and its derivatives

have been applied to both passive and active tracking, as well as air traffic

control. STARAN is a bit serial AP containing up to 32 array modules. Each

module contains 256 small PEs and a 256x256 bit Multi-dimensional Access (MDA)

-.% Memory. The PEs communicate with the MDA through a Parallel Input/Output

(PIO) "flip" network which can permute a set of operands to allow inter-PE

communication. The STARAN architecture has been discussed in detail in sub-

section 2.2.3 on associative processors, and so will be omitted here.

The principle multiobject tracking program employing STARAN found in the

open literature is that of the Rome Air Development Center Associative

47

, ,

t ALPHATECH, INC.
I P-AProcessor (RADCAP) Project [32 j-[37]. Specifically, this effort investigated

applications of the RADCAP STARAN to USAF Airborne Warning and Control System

(AWACS) Project data processing functions. The RADCAP test bed facility con-

sists of a four-array module STARAN and various peripheral devices interfaced

with a Honeywell Information Systems (HIS) 645 sequential computer.

The active radar tracking algorithm Implemented on the RADCAP STARAN con-

sists of two phases: association/correlation and Kalman filtering [341.

Association consists of selecting crude range and azimuth gates (i.e., minimum

and maximum acceptable values) for each target in track and then testing the

returns to see if they fall within the gates. The gate size is chosen from

four sizes, depending on the correlation history of the track. Where multi-

object tracking with PEPE performs this search in parallel over the targets

(serially over returns) this implementation carries it out in parallel over

the returns (serially over tracks). This is motivated by the large number of

returns per scan relative to the number of targets, so that a higher order of

* parallelism is achievable by assigning one report to each PE. After the

number of radar measurements have been reduced through gating the remainder of

*the calculations are performed in parallel over tracks. For the test cases

reported in the reference the number of reports surviving the range and azi-

muth association tests was as low as two percent of the number of original

reports.

Correlation, in this algorithm, is a more refined gating method based on

track and measurement accuracies in order to reduce further the number of

returns assigned to each target. Maneuvering targets are proposed to be han-

dled by creating two copies of each track: one that choses reports based on a

non-maneuver gate, and another that assumes that any report that failed the

48

ALPHATECH, INC.
non-maneuver gate is from a maneuvering target and does not employ a gate.

These two tests can be performed in parallel. This allows a much greater

degree of parallelism than first correlating non-maneuvering target returns,

and then correlating the maneuvering targets with the remaining returns. The

non-maneuver track is assumed correct until resolved on a subsequent scan.

It is still possible that more than one return has been correlated with a

track, so a closeness criterion is employed to select the return to be used in

updating. Kalman filter updating and prediction are then performed on all

p. relevant tracks in parallel. The polar range and azimuth radar data is trans-

formed to to Cartesian coordinates and two PEs are assigned to each track

to exploit the decoupled x--y form of the Kalman filter equations, so that

C. twice the parallelism can be achieved.

All of the tracking computation occurs in array module 0 (c.f. Fig. 2-7).

Array module I contains the track history variables and module 2 holds inter-

mediate variables which must be stored temporarily during association/

correlation and filtering. Array module 3 serves two purposes. It acts as an

1/0 buffer for radar returns, transferred from bulk core memory by the PlO

3 Control while Kalman filter calculations are being carried out in array module

0. The radar returns are then transferred in parallel to array 0 to start the

next scan. Array module 3 is also employed as a backup store during associ-

ation/correlation.

No timing results were available from the reference.

* Automatic track initiation for active AWACS tracking on RADCAP is dis-

cussed in [351. The basic concept is to initialize a track for any report

that fails to be associated with an established track. If this new track is

matched to a return in the next scan, it is upgraded to an established track;

7-
49

ALPHATECH, INC.
if not, it is dropped. In addition to dropping newly created tracks. all

tracks are examined to see if any report has been correlated with them in somue

period of time. This Is accomplished by assigning a figure of merit (termed

"firmness") to each established track. The range of firmness is from zero to

seven, with zero used as a space holder and seven implying a track well sup-

ported by radar evidence.

Active tracking is accomplished using radars that measure range, range

rate, and azimuth. Passive tracking employs only measurements of target azi-

muth information obtained from the radiation (i.e., jamming) source. AWACS

passive tracking on RADCAP/STARAN is functionally similar to the active track-

ing discussed [361,[37). Additional parallelism is exploited by not assigning

tracks to PEs, but instead aligning the vectors (states, covariance columns,

y etc.) among the PEs so that calculations may be done in parallel across vector

elements as well as across tracks. This is an attractive alternative as

movements of consecutive blocks of data within the STARAN arrays is fast In

comparison to floating point arithmetic functions. To accomplish this the AM

is divided into 8 32 bit fields, and each field into 4 (the number of states)

p blocks. Each block contains 64 (the maximum number of tracks to be processed

in parallel) 32 bit words. This structure allows, for instance, two 4-

dimensional vectors for each target to be added in one step (excluding data

movement) by suitable data alignment.

A STARAN derivative has also been proposed for application to the ATC

problem [38], [39]. Dynamic data for a track is stored in a contiguous space

within one word of the AM array. This data structure exploits the variable

field length capability of STARAN by using reduced precision variables (e.g.,

N 12 bits for position, 9 bits for velocity, etc.). The algorithm employed for

50

ALPHATECH, INC.
' ?% ATC includes a track quality based on the correlation results to determine

when to drop target tracks. For a two-sensor, 750 aircraft traffic load,

approximately 6.6 percent of the 4 array AP capability would be utilized.

3.4 THE AIRBORNE ASSOCIATIVE PROCESSOR (ASPRO)

Goodyear Aerospace, responsible for the production of both the Massively

Parallel Processor and STARAN, developed an airborne bit-serial associative

processor in 1978 [40]-[42]. The Airborne Associative Processor (ASPRO) has

approximately the same organizational structure and processing capability as

* .~ the three cabinet STARAN in a volume less than 0.5 cubic feet. ASPRO was de-

signed for early warning radar surveillance and command and control applica-

tions aboard the NAVY E-2C Hawkeye aircraft.

The ASPRO architecture is shown in Fig. 3-7. The array unit contains

over 2000 PEs and over 1 Mbyte of memory. Control signals for the array are

generated within the array control. The register and arithmetic section con-

trols the 1/O of array data and generates array addresses. Program execution

* . control executes the application program supplied"by-the control memory, and

also drives the array control and register and arithmetic unit. The control

unit contains the program memory and buffers data between ASPRO and the host

processor.

The array unit consists of 17 array modules, each of which contains 128

PEs and four 32x4k bit arrays of multidimensional access storage. Only 16 of

the array modules participate in an application; the seventeenth is a spare.

Each 4k bit word functions as a working and storage memory for its own dedi-

cated processor. Figure 3-8 shows the layout of the custom design VLSI

PE/Flip network chip, four of which are contained in each array module. This

51

-I*

7.W-~ -7 ~ '~w ~V .k 7 U . 'U' ~ L Ui~U LFU. % 1. U . ,

ALPHATECH, INC.

BUS A MMR U

INST7UCTKONS PRORA N74TOL RGSB

'I PROAMrio

ARRA ARRA UNIT

ARRAY ADDRESS

SEUW

R-394

4-3

Figure 3-8. Custom PE/Flip Network Chip [40]

52

U. FS -

ALPHATECH, INC.
arrangement is very similar to that of STARAN, except that the flip network in

the ASPRO is only 32 lines wide, instead of STARAN's 256. The MDA memory

j allows the register and arithmetic section to input or output a 32 bit operand

in one memory cycle and the set of PEs to access one bit-slice from all oper-

ands in one memory cycle [401.

The PEs in ASPRO are almost identical to those in STARAN, with the excep-

i tion of a one-bit hold register for masked write operations. High level

operations are executed by the PEs on their array data by performing logical

operations on bit slices of data read into the array registers, and then writ-

* *' ing the results back into the array words. The set of operations includes the

basic arithmetic operators (including floating point) and field compares for

all the inequalities. The resolver on each PE/Flip network chip is used after

associative searches to locate one (if any) PE whose data match that of the

search.

The remaining units in ASPRO are similar in function to those of STARAN,

- and so will not be discussed further.

The airborne associative processor was designed to correlate radar

reports from the E-2C with each other and with existing target tracks. Data

* is received by the E-2C from its own radar and from track data received over

"* data links. This data is processed and correlated by the on board computers,

and stored in track files. By selecting display options any of the three

operators may call up a subset of the tracks. The display processing func-

-tions search the track database for the selected data, and output the appro-

priate data to the display buffers. No specific information on how the ASPRO

is employed in multiobject tracking has been located in the open literature.

It is not known, for example, what the division of processing between the

53

...

-""I."".". -"-" ,"." ' - ." ' , "• "• ", . " "C C ' 'LC -- m ,... e e .

ALPHATECH, INC.
ASPRO and the host processor is. It would appear that one use of the ASPRO is

in the parallel retrieval of selected track data,
but other functions have not

been specifically identified in the references.

An interesting related application of ASPRO as a parallel inference

engine is described in [42). Though it is not explicitly stated as such in

the reference, it appears this work is focused towards designing a beyond vis-

ual range identification and
threat assessment knowledge system.

It is esti-

.- mated that evaluating approximately 2000 rule antecedents in parallel will

yield a throughput of over 1 million evaluations per second (this limit on

rule antecedents is due to the number of words in ASPRO). ASPRO is employed

as an inference engine by assigning a bit slice of the array to each state in

the domain in the system. The setting of a particular bit in a word corre-

,4 sponds to that track (word) possessing that state. A rule is constructed by

setting the individual bits that correspond to the facts that describe the

rule. These rules can then be tested by iteratively loading 32 bit sections

of a track and in parallel comparing it to the corresponding sections of the

rules. Conclusions are carried out based on the results of the tests to

update the database or perform some other instruction.

, 3.5 THE ASSOCIATIVE LINEAR ARRAY
PROCESSOR (ALAP)

The Associative Linear Array Processor (ALAP) is a bit-serial processor

developed by the Hughes Aircraft Company [431,[44] ALAP is constructed from

word cells, each containing arithmetic and control logic and one 64 bit word

of shift-register memory. This is in contrast to computers such as STARAN,

where the arithmetic and memory are separate. The ALAP cells are organized in

a one-dimensional array (i.e., a line) as shown in Fig. 3-9. Connections to

54

-'a .'-"""€ '".2:" . -.-. '.2'.'€' '..•'.' ' ''':. . , ¢) >

LALPHATECH, INC.

COMO DAAAD OO tI1

p-"..

DOW:,

.ACE R-3947

Figure 3-9. The ALAP Memory Array General Organization [43]

the cells are by means of three common data and control channels, and a

chaining channel which provides communication between word cells in the line.

All of these buses are bit serial. Two of the common channels permit data to

be input to one or more of the cells simultaneously (data from more than one

cell is logically ORed on the channel). The third common bus allows data to

be output from one or more cells simultaneously. The chaining channel trans-

fers data in one direction only from a cell to its nearest neighbor. The

chaining channel can be used to sort data as it is being input to the array,

to perform interword arithmetic, and other functions. A bi-directional chain-

P ing channel was considered for the ALAP but was discarded in order to keep the

cost of producing an ALAP cell low. The first and last cells in the array may

be left unlinked or linked together under software control to form a ring

structure. All four communication channels are bit-serial in operation.

Figure 3-10 is a simplified schematic of the ALAP cell structure. Data 1,

storage for the cell is held in the 64 bit data register. This data register

is used, along with data available over one of the common input channels (not

shown in the figure) or the chaining channel, by the arithmetic logic. The

state of the arithmetic logic is determined by the settings of the 6 bit flag

55

-. "S.1

S

,', ..'." %*' " ,,- ".- ,.. , ";. , .,.'.. ..' ',Y.2 '
- . ' / , '.# ,,I

",,Z..,,. Z .','.'%rZ.-. .S

ALPHATECH, INC.

Ao~n)(6 BITS)

) CIIAINING

CHAVING AILANOINP~rOUTPUT

LLGIC

ARnMQEMI
LGICa

HVN

I-7I DATA REGISTER
(64 BITS) R-3948

Figure 3-10. The ALAP Cell General Structure [44]

register. The 1 bit head flag allows the settings in the flag register to be

rearranged as the data is shifted (interword flag data communication).

The ALAP memory is employed in instruction execution using the global

mode called "Word Cycle." Word cycle operations consist of shifting the data

registers in a selected subset of the cells, and either combining (arithme-

tically or logically) or replacing the register contents with the data on one

of the three channels. The results of an arithmetic operation may replace the

contents of the data register, or may be output on the chaining channel.

Alternatively, the cell may act as a relay for chaining channel data, passing

the incoming data on to the next cell. The cell control is specified through

global commands, modified by the states of the local flag flip-flops. In this

way different chaining channel actions may take place in different cells

simultaneously.

56

l P"

.~ A * • . h

..... V -~ W ' ~ .~~ '*

ALPHATECH, INC.
The other two global modes are Flag Shift and Fault Isolation. Flag

Shift is the set-up mode, used to set and transfer data among the head flag

S and flag register in each word. Fault Isolation is employed to remove bad

words from the array.

The ALAP is programed for radar data processing in what Is termed a

"block-oriented" manner [44]. Blocks of contiguous ALAP cells are partitioned

under software control, each block containing the data and working space for a

single object under track. Within these blocks the track data is stored in a

standard format so that similar data occupies the same relative location in

all blocks. This is identical to the concept of fields in an associative

array.

Track-While-Scan radar data processing on the ALAP is described in Refer-

ences [43] and [44]. Radar returns are assumed to contain range, range-rate,

and the three direction cosines for each observation, with the observations

grouped into scans (sets). The tracking functions are broken down to track

correlation, association, and prediction. While it is not explicitly stated

in the reference, it is obvious that the approach to tracking described is a

it fairly simple single hypothesis method using the closest return to the pre-

dicted observation value to update the track.

* Track correlation is, in effect, a crude form of gating wherein the five

track parameters are checked against preassigned ranges. All correlation cal-

culations and data manipulation functions are performed parallel by track and

serial by return. If all five observation values pass thie correlation tests

for a track, those values are loaded into the storage area of that track's

S. block of cells (this storage area must be able to contain several radar

returns). The correlation then continues with the next set of observation

57

- ---

ALPHATECH, INC.
parameters. Note that the correlation process may result in a given return

being input into more than one track, and that a given track may have more

than one return that passed its correlation test. Since these two results

conflict with the implicit assumptions that a return can come from at most one

true target, and that a target can produce at most one return, the process of

track association is performed to eliminate both these cases of redundancy.

During the track association function, normalized error values are calcu-

.- lated for each track-observation pair that passed the correlation tests.

Then, for those returns that correlated with more than one track, the track-

observation pair with the smallest error value is kept and all others are

ell deleted. This guarantees that each return has been associated with at most

one track. It is still possible that some tracks may contain more than one

return, and for those cases the return with the smallest error value is again

retained. The first of these eliminations is carried out parallel by track

and serial by observation, while the second is parallel by track and by

V ,observation.

The prediction function determines the expected values of the five track

parameters. This prediction for each track will employ the newly associated

measurement, if there is one. The algorithm used is a modified Kalman filter.

All calculations are performed parallel by track. Additionally, parallelism

7within the prediction equations is also exploited. For example, there are a

total of 47 multiplies for each track within the prediction algorithm, but

they can all be evaluated in just four global multiply operations.

Some approximate timing information is given in the reference for the

three tracking functions. Correlation requires a total of 22 + 24S word-cycle

operations, where S is the number of returns in the scan. For an ALAP clock

58

....

ALPHATECH, INC.
rate of 5 MHz and 200 returns, the elapsed time for correlation is 8.3 msec

(including 30 percent overhead). The computation of the normalized error

value for all correlations requires a total of 146 word-cycles or 1.9 msec.

The association process of forcing returns to be matched (at most) with a sin-

gle track requires 9S + 5C word-cycles, where C is the total number of corre-

19 lations for all of all the observations together. The elapsed time for 200

returns, 100 of which correlate to 2 tracks each, is 46.5 msec. The final

association task of removing all the redundant returns for each track is done

in parallel for all blocks, and requires 41 word-cycles, or 6.8 msec.

Finally, predicting the track forward in time requires 475 word cycle opera-

ne tions, or 7.9 msec. It is estimated in Reference [43] that the crossover

point between the ALAP (assuming a IOMHz clock) and a sequential computer

(with an average instruction execution time of 1.2 5sec), above which the ALAP

requires a longer execution time for the prediction function, is 16 tracks.

3.6 CONCLUDING REMARKS

In this section we have surveyed the signifidant existing parallel track-

ing methods and computers described in the open literature. Several important

observations may be drawn from these systems. The most significant character-

istic of all of these methods is that they employ rather simple single hypoth-

esis algorithms to accomplish the multitarget tracking function. Another

common trait is that the four tracking computers discussed (PEPE, STARAN,

ASPRO, and ALAP) all exploit the content addressable memories in associative

processors. This choice of APs is motivated by the ease in which the gating

of sensor reports may be carried out by employing the parallel comparison

capability of associative processors. Because of this historic concentration

59

MxL_ -XKI -6VW KO TC

ALPHATECH, INC.
on "~s, we also will Investigate their applicability to the specific tracking

algorithm of interest here - that of track-oriented muitiobject tracking,

which generates multiple track hypotheses.

60

ALPHATECH, INC.

SECTION 4

.l*. OVERVIEW OF THE TRACK-ORIENTED MULTIOBJECT ALGORITHM

4.1 INTRODUCTION

A track-while-scan radar illuminates its region of coverage, sector-by-

sector, by either mechanically or electronically steering its radar beam. The

time required to illuminate the entire surveillance area, once over, is

referred to as the scan time (or simply scan); the objective of the tracking

algorithm is to reconstruct target tracks by correlating their radar returns

from one scan to the next.

Target tracks may be reconstructed by correlating returns from all scans

. at one point in time, i.e., in a batch mode. For practical scenarios, involv-

ing several measurements per scan, such batch processing algorithms are diffi-

cult (if not impossible) to implement. Alternatively, recursive target

tracking algorithms, which postulate and update target tracks using measure-

ments in each scan, may be implemented for practical use.

.. The multiobject tracking algorithm under investigation here is a recur-

sive, track-oriented, multiple hypothesis approach formulated within the

framework of hybrid state estimation. The actual derivation and equations are

of nominal interest here, as we are more concerned with the algorithm func-

tionality and parallelism than its minutiae. Therefore only an overview will

be presented; the reader is directed to the references for more detail [1]-[4].

%o%

61

"7"A

F7 - 7 p O-. 7% W. _141W drr _. -IL X.7 :%-p
ALPHATECH, INC.

4.2 OPTIMAL ALGORITHM FOR MULTIOBJECT TRACKING

Factors that make multiobject tracking a complex problem are:

I. Presence of false returns (clutter);

2. Probability of detection of targets Is generally less than I;

3. New targets may be initiated in any scan;

4. Old targets may be terminated in any scan;

5. Old targets do not follow exact straight line paths and may, in
fact, execute maneuvers; ,.

6. Measurements of targets are generally corrupted by noise.

All of these factors may be accounted for by formulating the problem within a

mathematical framework which is termed Hybrid State Estimation. The general

hybrid state model consists of continuous-valued states and discrete-valued

'S states. Using measurements related to the hybrid state, it is possible to

compute an optimal (minimum mean square or maximum a posteriori) estimate of

the hybrid state. Variables in the multiobject tracking can be identified

with the generic model as follows: the state (generally position and veloc-

ity) of all existing targets constitutes the continuous-valued state; the

noisy range, angle, and range-rate measurements from targets and clutter at

every scan constitutes the measurement; indicators for target status (straight

line trajectory model, maneuver model) and measurement status (associated with

target, false alarm) constitute the discrete-valued state.

The hybrid state approach indicates the form of the optimal solution for

the multiobject problem; however, the postulation of all the possible values

of the discrete state (referred to as global hypotheses) and computing their

likelihoods poses a difficult combinatorial problem.

62

- - - - ..- .. - . - - .- -.-- ..- -.--.-.-. .>..%. .-... >- -,. -.. -- -,... < .-., % o -.

dALPHATECH, INC.
1 The track-oriented approach provides a systematic method for attacking

this problem. Rather than representing global hypotheses in the form of a

matrix (as done in [45] and 1461), this approach maintains a set of target

trees and a list of target track (branch) combinations. The root of each

target tree represents the birth of the target and the branches represent the

various measurements it can be associated with in subsequent scans and the

different dynamics that the target can assume. A trace of successive branches

from a leaf to the root of the tree corresponds to a potential track of the

target. The leaf of each trace is unique and is referred to as the track node

of the target tree.

Each element of the global hypotheses list contains a set of pointers to

track nodes. They represent the combination of tracks postulated by the

global hypothesis which that element represents. By assumption, the collec-

tion of pointers in any one such global hypothesis cannot point to two track

nodes that include a common measurement. This implies that there is at most

one return per target per scan.

Global hypotheses can thus be constructed by first associating measure-

,P ments with each existing (parent) track node and then forming combinations of

the resulting tracks. The former step can, in turn, be split to account for

-..~different dynamic models for the target prior to associating it with measure-

-r ments. This is illustrated in Fig. 4-1 where we have assumed that the target

* can either continue in its constant velocity trajectory (S) or be terminated

(X); the constant velocity trajectory is next split to account for associa-

tions with measurements rI and r2 , and the possibility of a missed detection

(D).

63

,°•
,

.5

.,.,-..-,,, ..,. .- -,- . -.-,.-x ,. ..., -..,,,..- ..-..-..- , ,-....-, .. 4,,... * : : % * %. 5' .4. ;",

ALPHATECH, INC.

r2

N' : PARENT "
TRACK
NODE

• " R-2484

Fig 4-1. Track Splitting to Account for Different Target
.N ~Dynamics and Different Measurement Associations

N.

A typical representation of a set of global hypotheses is shown in Fig.

4-2. The dotted line indicates the points where new branches have been grown

for existing target trees using the measurements in the most recent scan.

Note that each global hypothesis can point to at most one branch of each

N' target tree, and that the branches selected must have measurements that are

mutually exclusive.

*4.3 PRACTICAL ALGORITHM FOR MULTIOBJECT TRACKING

The track-oriented approach, discussed in the previous subsection, is a

* . systematic methodology for constructing the optimal solution for multiobject

tracking. However, for all practical scenarios which consist of several

measurements in each scan, the computational requirements (both processing

time and memory) of this algorithm will deplete the resources of any currently

available computer. The reason for this problem is that the optimal algorithm

postulates and retains all possible global hypotheses including ones that are

only remotely probable.

64

NN.

-' - "(-" -' ' v ' *'' '. -. _.'' '. . *' .-: ':, -,* : , , , N , N ,.,4 ...: . .-. .. .

ALPHIA I C-I, INC.

TARGET TREES GLOBAL HYPOTHESES

TARGET 1 HYPOTHESIS 1

" \p

-p.

TARGET 2 -- HYPOTHESIS 2

p.. 5

TARGET 3

R-Z673.

(p.
5"'

Figure 4-2. Representation of Global Hypotheses

65

-.'.

.". % S ' ' p."* . ~ -p ~ .

N.- V.* ~h* VV WMU VM VN VVU 'M VV V" VU .''-~-

ALPHATECH, INC.
~-' In order to construct a practical algorithm, all such unlikely global

hypotheses have to be eliminated. Since the track-oriented approach generates

~ global hypotheses in two stages, such eliminations can be enforced at either

N. the track generation stage or the global hypothesis generation stage. At

either stage, eliminations can be achieved by screening (prior to generation

of hypothesis) and/or pruning (after generation of hypothesis). The key

techniques incorporated in the sequential form of the algorithm are discussed

below.

Gating: Gating is a screening technique that eliminates unlikely associations

of measurements with targets. It is very effective in cutting down the number

of unlikely tracks and has been used in most tracking algorithms in the past.

The gating process consists of constructing a region (gate) around a predicted

target position, and allowing only those measurements which lie within this

region to be associated with the target track.

-. N-Scan Approximation: In the track-oriented approach, target trees are

'branched-out' at each scan by associating measurements in the scan with

existing branches in the target trees. The optimal multiobject tracking algo-

rithm requires that each branch of the target tree be associated with each of

the measurements in the scan, since all associations are possible. In real-

ity, we know that each target should only have one branch corresponding either

to an association with the measurement it generates or to no measurement in

the case it was not detected.

Waiting for information in future scans to resolve measurement associa-

*tions with th e current scan is particularly helpful in tracking crossing tar-

gets. An algorithm that waits N scans to resolve measurement associations in

66
J.

ALPHATECH, INC.
the current scan is referred to as an N-scan algorithm. Note that the optimal

algorithm will use an N equal to the number of scans for which tracking will

be continued (i.e., N->)

The following steps summarize the N-scan algorithm:

I.. Associate postulated targets with measurements for N scans into the
future;

2. Form global hypotheses comprising such tracks with no measurement
assignment ambiguities (disjoint);

*3. Select a set which represents the most likely global hypotheses (in
practice, only one is selected);

4. Drop target tracks not included in the most likely global hypothesis.

Classification of Targets: The process of gating measurements that we have

discussed above is a form of screening that eliminates target tracks during

* . the track generation stage. Another powerful screening technique that can be

used at the global hypothesis generation stage is the selection of only a

group of targets with which to form global hypotheses. This selection of

targets is based on the criterion that the age of the target should be greater

than a given age A. Targets that fulfill this criterion will be referred to

as Confirmed targets.

The number of Confirmed targets will change from scan to scan since tar-

*gets can be initiated and terminated at any scan. Since the set of Confirmed

targets included in any global hypothesis at any scan should be a consistent

set in that there exists no ambiguities in the assignment of measurements to

targets, suitable rules should be formulated for promoting targets to the

level of Confirmed targets. For this reason and also to allow a variable

* value of A, we have found it convenient to define three other groups of tar-

gets. The first of these, having an age exactly equal to A, is referred to as

67

IALPHATECH, INC.
Intermediate targets. It is from this group that Confirmed targets are

selected. An Intermediate target is promoted to the status of a Confirmed

target only if its presence does not cause any measurement assignment ambigui-

ties with the existing targets.

Targets with age one are referred to as Born targets. Each of the mea-

surements received at a particular scan could potentially represent the birth

of a new target. If some of the measurements can be associated with Confirmed

targets, we could rule out the possibility that these measurements represent

new targets; however, since measurements are uniquely associated with a par-

ticular Confirmed target only after N scans (in an N-scan procedure), we

assume that all measurements represent potential new targets.

The remaining targets, with ages between 2 and A-I, are referred to as

i ..Tentative targets. They represent a buffer group through which Born targets

[, have to go through before they get promoted to Intermediate targets. Having

these separate groups of targets makes it convenient for designing suitable

data structures for the target trees. For example., Born targets have just one

branch and one age group. Tentative targets could have several branches and

several age groups. Intermediate targets could have several branches but only

one age group. Confirmed targets should have a data structure similar to that

of Intermediate targets so that Intermediate targets can be conveniently

transferred to Confirmed targets. The different groups of targets and the

order in which each is promoted to the next is depicted in Fig. 4-3. This

form of grouping of targets by age is termed Classification.

P i Clustering: The computational burden in this multiobject tracking algorithm

arises mainly during the formation of global hypotheses. The larger the

68

*%

ALPHATECH, INC.
(C

BORN
TARGETS

TENTATIVE
TARGETS

INTERMEDIATE
TARGETS

CONFIRMED
TARGETS

R-2992

Figure 4-3. Classification of Targets

number of tracks that need to be considered, the larger the combinatorial

problem. Classification of targets is one form of grouping that enables us to

consider only a select number of target tracks while generating global

hypotheses.

Since the purpose of forming global hypotheses is t, resolve ambiguities

in the assignment of measurements to targets, another form of grouping is pos-

sible. If targets lie in different regions on the surveillAnce area such that

no common measurements are assigned to them, then obv' ,,ly there is no need

69

ALPHATECH, INC.
to look for measurement assignment ambiguities among those targets. This

motivates the need for grouping targets, based on geographical locations. We

will refer to such grouping as Clustering. It can be viewed as a decomposi-

*tion of targets into sets that enable processing of each group independently.

** ~ Clustering can be accomplished most readily by first forming subclusters

5during the association stage of the algorithm. For each scan collect the tar-

get numbers of all the tracks that accept a particular measurement. This will

create a subcluster for each return in the scan that was associated with at

least one target. These subclusters may then be combined to form connected

clusters after all returns have been gated. The advantage to subclustering is

".*. that the number of subclusters will always be equal to or less than the number

of measurements, and so reduce the combinatorial problem.

• ,- Figure 4-4 is a top level flow chart of the tracking algorithm. This

level of of detail is sufficient for our needs here. In the following section

we will examine the structure and computational requirements of the track-

g , oriented approach in order to evaluate the effects of possible multiprocessor

implementations.

4.4 CONCLUDING REMARKS

%, In this section we have briefly described the functional structure and

justification of the track-oriented multiobject tracking algorithm. This

• * "algorithm is more involved than the single hypothesis methods examined in the

/previous section, and will therefore present a greater challenge to implement
%

on parallel computers. Prior to such a step, a more detailed investigation of

the computational size and structure of the track-oriented approach must be

4 carried out. And that is the purpose of our next section.

* 70

.°

ALPHA I I-H, INU.

START

INITIALIZE

N

,,.'.,.EACH SCAN TARGET TRACKS

UPDATE CONFIRMED
AND INTERMEDIATE

TARGETS WHEN
.., APPROPRIATE

CLUTERIATENAB " CLUSTERS
d ENABLED

,"N" LUMP ALL

TTARGETS INTO
SINGLE CLUSTER

! PRUNE CONFIRMED

" AND INTERMEDIATE

DTARGETS. PROMOTE
APPROPRIATE
INTERMEDIATE' TARGETS

UPDATE AND PROMOTEI
I APPROPRIATE I
ITENTATIVE AND

BORN TARGETS

r CREATE

BORN
S -" TARGETS

-" ~ ~END -,3

31 3

Figure 4-4. Top Level Flow Chart for Track-Oriented
Multitarget Tracking Algorithm

71

7.0 &J -. 7T7V7%7_3iY - ik- a;a -Y 1%7 w.7%1;-

ALPHATECH, INC.

SECTION 5

ANALYSIS OF THE TRACK-ORIENTED MULTLOBJECT TRACKING ALGORITHM

5.1 INTRODUCTION

An analysis of the track-oriented multiobject tracking algorithm is nec-

essary prior to any discussion of possible implementation methods and comput-

..ers. In the previous section we introduced the algorithm, and described its

derivation and methodology. In addition to these issues, the structure and

extent of the algorithm must be determined before an informed analysis can be

made on appropriate computer architectures. It is the amount of exploitable

|.- parallelism, and the existence and location of sequential (non-parallel) com-

* ... putations, that must be clearly ascertained.
-.

No effort will be made in this section to re-structure the computations

- Ito increase the available parallelism. Such efforts are best made when

.6 considering a specific computer architecture, and will be carried out in Sec-

tions 6 (associative processors) and 7 (MIMD computers). Determining the

amount and type of parallelism, or independence, available in the algorithm

* ' itself allows us to choose the computer system that best matches the structure

of the computations. The alternative approach would have been to make an a

priori decision on the computer architecture to employ, and then "shoe-horn"

the multitarget algorithm into it. Such an approach has obvious drawbacks,

and precludes the choice of an "optimal" matching between algorithm and archi-

tecture. Also, by studying the algorithm first its theoretical performance on

an idealized tailored machine may be investigated.

72

- a.

", P": , ., " . - .2"""' ""' : " ' " " "' "" " " " '" " '" " " ? -", '.""";

ALPHATECH, INC.
~ To accomplish this inquiry the algorithm must first be decomposed into

its functional units, with an explanation of the nature and size of these

units. The nature of the functional units, or tasks, may represent varying

degrees of complexity, from simple calculations on operands (e.g., addition)

to entire programs. In a bottom-up approach, the higher level tasks may be

created by aggregating the more basic functions. Conversely, in a top-down

approach greater resolution of the computation may be obtained by replacing a

function with its component parts. In general, a task may be defined at any

preferred level of abstraction. The decision on the degree of aggregation to

consider in investigating the algorithm structure should be made based upon

the possible classes of multiprocessor architectures to be eventually employed.

For example, if multicomputer architectures alone (i.e., large grain parallel-

ism) are under consideration, it is not necessary to examine the algorithm

* organization down to the operation level. Of course, if vector machines are

3 under study then parallelism at the lowest level must be determined.

In addition to the tasks themselves, the dependency relations between

* individual tasks must be formulated. A dependency relation may be either a

II synchronization requirement (control) or a source/sink relationship (data),

and therefore defines the precedence of the functional units. This ordering

*~. of the comiputational tasks is what defines their dependence or independence.

The size of the individual functional tasks is given by their computa-

tional requirements. The computational requirements of an algorithm may be

specified in terms of operation counts and memory requirements. For a recur-

sive algorithua such requirements computed for one iteration will be represen-

tative of the entire algorithm history, provided that the ag'orithm reaches

some form of steady operation. Such a condition is certainly not achieved for

'I 73

I[;" 11W1 %.~ r 7V P. R' N .7- #.7 - T , i- F - _,i~W T .V ~

ALPHATECH, INC.
the optimal multitarget tracking algorithm since the computational require-

ments grow exponentially with every iteration. However, for the practical

algorithm, which incorporates all the screening and pruning features discussed

Pin Section 4, close to steady-state operation may be established.

In this section the computational structure of the algorithm will be

examined, especially in regard to the parallelism inherent in it. This exami-

nation will be made independently of any implementation method or computer

architecture. The operation count and memory requirements for one iteration

(scan) of the tracking algorithm will also be presented. It will then be pos-

sible to calculate the maximum achievable parallelism and speed-up of the

standard algorithm. Of course, there are other considerations and alterations

that will affect a given multitarget algorithm implementation, and these will

* -be covered in the subsequent sections.

- 5.2 FUNCTIONAL PARALLELISM WITHIN THE MULTIOBJECT TRACKING ALGORITHM

An algorithm generally exhibits parallelism at various levels of granu-

'N - larity at which operations can be defined. The instruction level can be

thought of as the finest level of granularity. By aggregating operations at

each level, coarser levels may be constructed. If the algorithm can be mapped

. .on to a multiprocessor architecture that exploits the parallelism down to the

finest level of granularity, then it would appear that the maximum possible

speed-up can be achieved. Unfortunately, the finer the granularity of opera-
%".

tions, the larger the overhead requirements. For example, if scaler multipii-

cations and additions associated with a function evaluation are distributed

over several nodes, then scheduling these operations at the different nodes

' and synchronization of the data on each arc could require substantial time
*q7

- 74

, .1

rALPHATECH, INC.
8 - [48]. Clearly, there is an optimum choice of the granularity of operations at

which parallelism in an algorithm should be identified.

We have chosen to investigate the parallelism of the practical track-

oriented multiobject tracking algorithm at the procedure level. This is not

'- to imply that we will only consider multiple computer (MIMD) architectures

lthat process independent procedures concurrently. Both MIMD and SIMD comput-

ers will be considered for application in the subsequent sections. But we

Swish to avoid the involved analysis of the algorithm's minutiae that would be

necessary to specify its complete parallelism. Below the procedure level,

-€. .- computations take the form of standard operations, e.g., matrix algebra. Par-

allel algorithms for such standard operat.ions have been extensively studied by

other researchers in the past (see 149] for an example of parallel algorithms

for linear algebra).

* The stated purpose of this research is to study the inherent parallelism

of the tracking algorithm as an single entity, not merely to decompose it into

. a collection of random operations that may be implemented in a parallel fash-

ion. Also, once the higher level parallelism has been identified, it may be

possible to exploit the lower level parallel structure through the methods

* available in the literature. A final reason to investigate only the upper

".. ~levels of parallelism is that the track-oriented multiobject tracking algo-

rithm is known to possess an extremely high degree of inherent procedure level

• I' parallelism, and it is this type of parallelism that distinguishes the track-

1 .oriented approach from other tracking methods.

Parallelism in a computational algorithm can be analyzed and exploited

. only if the flow of data, dependencies among various tasks, and timing require-

ments during the execution of the algorithm are all clearly understood. The

75

ALPHATECH, INC.

21 % best expository method found for displaying these characteristics is that of a

* computation graph [47]. A computation graph is a directed graph where the

nodes represent some task (i.e., set of operations) in the algorithm, and the

arcs represent dependency relations between source and sink pairs. This clear

demarcation of computation and dependency is one of the attractive features of

* F computation graphs. Another critical property of computation graphs is their

* effective hierarchical structuring of the parallel computations. Resolution

of the graph to higher detail is obtained by replacing a node with a subgraph.

Alternatively, more aggregated graphs can be created by combining subgraphs

into nodes. These issues will become obvious in the subsequent discussion on

the multitarget algorithm.

A computation graph, according to [47], can be thought of as "a program

for some conceptual computation in terms of the operations of an abstract

machine." In such an abstract machine there are a sufficient number of proc-

essors and communication channels to allow the program execution to be limited

0 by its structure alone, and not by the computer architecture. The graph nodes

are mapped onto processors and memories, while the arcs are mapped onto logi-

r cal or physical channels. The required capability of these abstract proces-

sors and channels is determined by the level of aggregation of the original

computational graph. We will make the assumption that all computations below

the lowest level of the graph are done sequentially. This is done to specify

% a point at which the computation counts can be determined.

' ~. Figure 5-1 is a computational graph summarizing the steps executed in

one cycle (scan) of the tracking algorithm. The nomenclature and functions

* .* included in the graph were defined previously in Section 4.

76

leip

ALPHATECH, INC.

* .FORM
GLOBAL

TRACKS MEAS. TRACKS CLUSTERS TARGETS PROMOTE

TAARGETS

•CONFIRMED PREDICT GATE UPDATIE

INTERMEDIATE
TARGETS PROMOTE

PREDICT GATE UPDATE TENATIVE
• "TRACKS MEFAS. TRACKS TARGETS

SCAN NEXT SCAN
PROM07E

TARGETS BORN

TARGE73

/ "R-3951

Figure 5-1. Computational Graph for One Scan of the Tracking Algorithm

* .. Multiobject tracking algorithms are, in general, recursive algorithms,

wherein the same sequence of operations is repeated for each scan of data. A

computational graph for the entire algorithm history would merely be a chain

of individual subgraphs, where each subgraph was identical to that of Fig. 5-1.

A more compact representation of the entire algorithm would be to merge the

INITIATE SCAN and INITIATE NEXT SCAN nodes into a single node. This would

create a cyclical graph structure that matches the structure of the algorithm.

The processing for one scan of the tracking algorithm is initiated and

* terminated by the task labeled INITIATE SCAN (and the identically structured

node INITIATE NEXT SCAN). This node represents two functions: the reception

-,.."

-. I - * ' II''"t

S~~~- ,~ 7Y7% ,. - . a *.*

ALPHATECH, INC.

* of a scan of data from the sensors, and whatever processing is necessary to

* achieve the requisite tracking goals. The first function is obvious; a scan

of data cannot be processed before that data is received. The second requires

a more involved discussion.

The tracking operations summarized in the computation graph, while

totally characterizing the multiobject tracking function, do not in themselves

determine a tracking system mission. The target tracks constitute a database

* of information on the perceived state of the target environment, but no action

has been specified to be taken on this information. Simply updating target

- tracks in computer memory accomplishes nothing of value. These estimated

* tracks must be output to a display, threat assessment function, targeting

-. function, or some other mission-satisfying function. It is this requirement

* to output the target tracks that necessitates the terminal synchronization of

the various functional paths in a single scan. In other words, all the proc-

U essing for a single scan must be completed before the next scan is accepted by

the algorithm. Were it not for this requirement there would be no reason to

exclude the possibility of overlapping the processing for several scans of

,. data. For example, there will always exist a sufficiently large enough scan

of returns such that the processing of Confirmed targets will not complete

before the next scan is received. The function of creating Born targets is a

comparatively short task, and will typically have finished its processing.

3. There is no algorithmic reason to not create Born targets in the new scan

while the processing of Confirmed targets in the prev.ous scan is still going

on. It is the requirements of the higher level system functions, which

* .~.require a complet- report of the tracking algorithm's results, that synchro-

nize the scan processing.

78

SWV VWV 7WU rVJ 'jV E V' V W v. w-~ ~4.A' ~~. ~E * . ~ ~ F .~

ALPHATECH, INC.
Once initiated, processing of the tracking algorithm proceeds along five

primary paths during each scan. There is one path for each of the four target

classifications (Confirmed, Intermediate, Tentative, and Born), while the

fifth serves to create new Born targets from the returns in the current scan

* of sensor measurements. The independent structure (within a single scan) of

each of the lower three paths is evident from the lack of common functional

nodes. The upper two paths are not completely independent due to the common

operation of PRUNE & PROMOTE INTERMEDIATE TARGETS. This almost total inde-

* pendence of the four target categories is an important characteristic of the

~ track-oriented approach, due to its obvious potential for parallel processing.

At the hierarchical level of Fig. 5-1 the tasks shown refer to processing

of entire classes of targets. While this is important to display the rela-

~ tionship of the top level functions, nothing in the graph addresses the proc-

essing of either individual target trees or target tracks. To address those

I concerns the paths may be replaced with a more detailed subgraph.

Figure 5-2 is a computational graph for the Confirmed target path alone.

*The Intermediate, Tentative, and Born target paths are all similar through the

first three tasks. It is in Fig. 5-2 that the real opportunities for exploit-

ing parallelism in the algorithm begin to become evident. Where the target

class paths in the upper level computational graph are a series of sequential

functional tasks, in the lower level graph they are shown clearly as a collec-

tion of functions displaying varied degrees of intrinsic parallelism.

The first three tasks in the Confirmed target path, PREDICT TRACK, GATE

MEASUREMENTS, and UPDATE TRACK, are independent across all tracks of all the

targets that were created in the previous scan. This independence is condi-

J. tioned on the operations having access to the required measurement and track

79

% VB

ALPHATECH, INC.

NSPREDICT GATE UPDATE PRUNE
TRACK ME. TPRACKS TARGET

FROM TO
INITATE CANPRUNE & PROMOTEINITATE CANINTEMEDIATE TARGETS

a.-' R-3952

Figure 5-2. Detailed Computational Graph for Confirmed Target Path

t, ~ data. In some computer architectures this may be difficult, unless there is

- either multiple copies of the data or simultaneous read access to the data.

t This concern will be deferred until the subsequent sections on specific imple-

mentation methods.

Beyond the independence of the track processing paths for these three

tasks, they are also functionally identical for each path, only the track val-

ues are different. In the standard track-oriented algorithm under study here,

all tracks are predicted ahead in the same manner, compared to the sensor

returns in the same manner, and updated with the appropriate returns in the

4 same manner. This identical processing has great potential for parallel imple-

mientations, both in multicomputers and in SIMD computers. As the three tasks

possess identical computational structure they are perfect candidates for the

.a~ . ~ kind of lock-step processing distinctive of array and associative processors.

Of course, this is not a unique characteristic of the track-oriented approach.

80
%4 NS.

ALPHATECH, INC.
. All of the parallel tracking methods described in Section 3 exploited inde-

pendence Of the individual target tracks. But those tracking approaches were

* fairly simplistic and, in the nomenclature of Fig. 5-2, would terminate after

UPDATE TRACK.

As we have stated, prediction, gating, and updating are common functions

for all existing target tracks, and so exhibit parallelism at the track level.

Additional functional parallelism exists below this track level for both the

gating and updating tasks. Gating comprises two basic steps for each track:

creating the gates and comparing the returns against these gates. The measur-

-. ement gates themselves are functions of the existing track statistics and the

* measurement error statistics. Assuming that all returns in-a single scan are

of the same accuracy only one set of gates need be calculated for each track.

* All returns in the scan are then tested against this one set of gates. There-

fore, the comparison operation has a functional level of parallelism equal to

the number of returns in a single scan for each track. This gives a total

degree of parallelism of the number of individual tracks multiplied by the

*number of returns in the scan. The computation graph for the gating function

*for a single target track is given in Fig. 5-3.

The comparison section of the gating procedure determines feasible

* ~.*track-return pairs for the current scan. Due to the multiple hypothesis

nature of the track-oriented algorithm more than one return is allowed to be

associated with each existing track. These new track-return pairs form the

basis of the descendent branches in the target trees, and it is these

track-return pairs that undergo updating. The level of parallelism in the

update function is therefore equal to the number of newly created tracks, not

the number of tracks that existed at the start of the scan.

81

ALPHATECH, INC.

" COMPARE
RE7URNS

FROM .
PREDICT TRACKS UPDATE TRACKS

F,,. o

4, 4

R-3953

-.
0

-Figure 5-3. Detailed Computational Graph for Measurement Gating

Through the UPDATE TRACKS function, the computational graph of Fig. 5-2

is characteristic of all target categories, not merely Confirmed targets. The

next three functions in Fig. 5-2 are exclusively Confirmed target operations.

The next functional task in Fig. 5-2 is CLUSTER. As discussed in Section

4, in clustering the target trees are grouped together in such a way that they

form disjoint sets. Disjointness, in this context, requires that no two tar-

get trees from different clusters include a common return. There is a related

requirement that any target tree in a cluster must have a common return with

at least one other target tree in the cluster (unless the cluster is of size

one). The simplest algorithm for creating clusters is to compare each target

tree with every existing cluster; if there is a common return with a single

cluster, the target tree is added to that cluster. If the target tree has

-I returns common to several clusters, those clusters and the target tree are all

merged into one new cluster. If there are no common returns with any cluster,

82

6-'

. .~w~- . -..r "M"7 % VV 7V "W IN~ 'P Vy~ I.~(W~qIWI~~ U UW dVJ L 61V L* WI.XUV I L 1_

ALPHATECH, INC.
a new cluster is started. The clustering then continues with the next target

tree. In practice this approach is modified somewhat to produce better execu-

tion times, but the principle is similar. Regardless of the implementation,

an obvious characteristic of the clustering function is that it is not an

independent, parallel task for each target or target track. This is evident

i PC in Fig. 5-2. The CLUSTER function creates a "bottleneck" in the computational

graph, requiring that all preceding track level tasks have been completed

prior to its initiation.

It is important to note that we are not maintaining that clustering must

be processed completely sequentially. What we are stating is clustering, in

* general, is not independent across targets, and that its current algorithmic

implementation is sequential. In the following two sections we will propose

possible restructuring of the CLUSTER function to enhance its parallelism.

Once clustering of the Confirmed targets is completed, global hypotheses

may be formed. The entire purpose of clustering the targets is to subdivide

OP. the global hypothesis formation task into a collection of independent smaller

tasks. This is done because global hypothesis formation is basically a match-

ing problem between target tracks, and so if all tracks were considered as one

set, the computational burden would grow approximately combinatorially with

the number of tracks. By partitioning the targets into independent clusters,

independent global hypotheses can be formed for each cluster. The sum of the

processing times for the individual clusters will be less than that of the

*full system, due to the replacement of the large combinatorial problem by sev-

eral smaller combinatorial problems.

* . While clustering was originally introduced into the tracking algorithm to

speed-up processing in a sequential computer, it also serves to produce a

83

ri

ALPHATECH, INC.
level of parallelism in the global hypothesis function equal to the number of

clusters (see Fig. 5-2). The global hypothesis formation within each cluster

I is sequential in the standard algorithm.

In the N-scan procedure adopted within the track-oriented algorithm after

the most likely global hypothesis has been formed the measurement association

N scans before is resolved. All Confirmed target tracks that do not include

the resolved return are dropped, and then Confirmed targets with no tracks are

dropped. All tracks for all Confirmed targets may be checked in parallel to

.. determine if they contain the resolved return. A synchronization operation is

4. .then necessary for each target to "clean up" the data storage and to check to

4. see if all tracks have been deleted.

This completes the discussion of the Confirmed target operations. The

next task in the upper level computational graph (Fig. 5-1) is PRUNE & PROMOTE

INTERMEDIATE TARGETS. Intermediate targets that use the same returns as those

S contained in the Confirmed targets, N scans earlier, are dropped. The remain-

ing Intermediate targets are sorted and the most likely ones are promoted to

* the status of Confirmed targets. This promotion must succeed the PRUNE CON-

FIRMED TARGETS function as the number of Intermediate targets promoted depends

* on the amount of available space in the Confirmed target data structure.

In contrast to pruning of Confirmed targets, pruning of Intermediate tar-

gets may be carried out in parallel for each target, not for each track. This

is because all Intermediate tracks in the same target tree have the same asso-

0 0 ciated measurement N scans earlier, due to the age of the Intermediate targets.

Therefore, only one track from each tree need be checked. The promotion of

Intermediate targets is simply a movement of data between the Confirmed and

Intermediate target structures. The specific method of accomplishing this

84

L ALPHATECH, INC.

transfer is highly dependent on the implementation employed. For instance, in

FORTRAN the data must be copied into new arrays, while in a language like

PASCAL only the pointers need be altered. Since the new Confirmed targets typ-

ically must be numbered and inserted into the correct data location (either in

an array or a list), promotion will be assumed to be a sequential function.

The functions PROMOTE TENTATIVE TARGETS and PROMOTE BORN TARGETS do not

depend on the status of the respective higher target category's available

memory. The oldest Tentative targets are updated into the Intermediate group,

while all the Born targets are updated into the Tentative class. Both of

Teremaining function in the tracking algorithm computational graph is

CREATE BORN TARGETS. Born targets are created for each return in the sensor

scan by inserting the return values into target storage. No further proces-

P sing is necessary. This function is obviously parallel over all returns, and

is independent from all other target tasks.

This completes our discussion of the functional parallelism within the

track-oriented multiobject algorithm. In the next subsections the computa-

tional requirements of each of the functional tasks will be analyzed.

5.3 DETERMINATION OF COMPUTATIONAL REQUIREMENTS

The screening and pruning features incorporated into the tracking algo-

rithm will be referred to as algorithm parameters. These are cho' en essen-

tially on the basis of the anticipated scenario. For example, the number ofj

* Confirmed targets accommodated by the algorithm should correspond to the maxi-

mum number of targets anticipated within the surveillance region; the number

6 85

%-%

L ALPHATECH, INC.
of tracks permitted for each target should take into account the clutter dens-

M"h

ity, the proximity of other targets, and the probability of detection for tar-

gets. Similarly, the number of targets and tracks per target permitted for

Intermediate, Tentative, and Born targets should be based on target birth and

death distributions and clutter distribution.

Algorithm parameters provide a limiting influence on the computational

requirements. However, the actual requirements in a particular scenario

become a complex function of these algorithm parameters in addition to thle

scenario parameters (which is defined by parameters such as the statistical

distribution of the targets and clutter). Rather than relating these require-

ments to these scenario parameters, and also accounting for-the influence of

r the algorithm parameters, we have chosen to determine bounds on the require-

ments that are automatically imposed by the algorithm parameters. Specifi-

cally, data structures defined for storing target tracks and global hypotheses

limit the computational requirements during an iteration of the algorithm.

The resulting bounds allow us to ignore the effect of the scenario parameters

in determining computational requirements. However, it should be noted that

the choice of algorithm parameters has to be based on anticipated scenario

parameters, and this choice forms a crucial step in the algorithm design.

Algorithm parameters bound both the operation counts and the memorye

requirements since they restrict the number of targets, the number of tracks
%4

per target, and the number of global hypotheses. From the discussion provided%

in Section 4, it can be seen that there are several such algorithm parameters.

We will discuss the pertinent ones below.

Classification groups targets according co age. This grouping allows

V
86

4. .~ .A . &. J L .*J d A...& ~ ~

ALPHATECH, INC.
dgroups. Confirmed targets, having the greatest age, are assigned a data

structure which reflects the number of anticipated targets within the surveil-

lance volume. The number of tracks permitted for each Confirmed target

Aaccounts for the associations with returns (correct or incorrect) received in

each scan.

At the other extreme, Born targets, having the smallest age, are assigned

a data structure which can accommodate all returns obtained in any scan as

potential targets. Tentative and Intermediate targets are assigned data

structures which allow .,ae true targets to rise from Born to Confirmed

category. The total number of tracks permitted may be summarized as follows:

Nc - Number of Confirmed targets

.J Bc - Number of tracks per Confirmed target

Ni - Number of Intermediate targets

Bi - Number of tracks per Intermediate target

Nt - Number of Tentative targets

Bt - Number of tracks per Tentative target

Nb - Number of Born targets

Bb - Number of tracks per Born target (-l by definition)

In addition to maintaining tracks, the tracking algorithm also maintains

global hypotheses. The number of global hypotheses that can be formed in any

scan is an exponential function of the number and length of Confirmed target

tracks; this number is limited by the data structures defined for storing

global hypotheses and past history of the tracks. The maximum number of

'l iglobal hypotheses is limited to NGH and the stored history of each target

track is limited to NSCANs in the past.

87

~ -- *b-*.--*.V-'~~-~ ~-v~%.

ALPHATECH, INC.
Clustering enables groups of Confirmed targets to be processed independ-

ently. The number of subclusters, NS, and the number of targets in each sub-

cluster, NTS, limit the processing requirements for clustering. The number of

Connected clusters (NC) and the number of targets per Connected cluster (NTC)

limit the processing requirements for global hypotheses formation.

The flowcharts (Figs 5-1. and 5-2) identify steps of the algorithm which

require major computational effort during each iteration or scan interval. We

* will estimate the computational requirements for each of these steps. For

this analysis we will confine attention to floating point muiltiplications

(divisions are treated as mltiplications), floating point additions (subtrac-

tions and floating point comparisons are treated as additionis), and integer

number comparisons to determine the operation counts. Further, we confine

attention to target track storage needs since it forms the major portion of

the memory requirements.

Memory requirements for working space and program storage are not

included due to their dependence on the specific implementation and coding

method used.

The prediction step in Fig. 5-1 involves predicting tracks of all tar-

gets. The set of operations is identical for all target tracks and involves a

Kalman prediction* (time update) which requires

3 (d3 + n2) multiplications

2

and -(d
3 - n) additions

2

*The Kalman filter can be implemented either in the normal form or the factor-
ized form. The computational re quirements of both are about the same [50]
and the requirements specified here correspond to the normal kalman filter.

88

ALPHATECH, INC.
where n is the number of states modeled in the Kalman filter. Storage space

required for each track is

P State n 32 bit words

Covariance n(a+l) 32 bit words

2

Likelihood 1 32 bit word

Measurement Indices (NSCAN+l) 16 bit words

Missed Detection Count 1 4 bit word.

Since the prediction step involves a 1:1 transformation for each track, target
Ii..

tracks computed during the prediction step may be stored in the old track

location. Additional storage is thus not required during this step.

Update of each track can be perceived to have two stages. First, all

returns are screened (gated) against the track and a fixed number of them are

selected for association with the track. Next, the track is updated using the

selected returns. Setting up the gate for each track requires

m(n2 + 2n) multiplications

m(n2 + n - I) additions

where m is the number of measurements in each return. If Nr denotes the num-

ber of returns per scan, gating of returns for each track (calculation of mea-

surement residual squared and comparison to gate) requires

mNr multiplications

and 2mNr additions.

.5

89

"- '_ _"7

P -. X

ALPHATECH, INC.
The second stage of actually updating each track with each selected

return represen.s a Kalman measurement update* requiring

M(3n2 9n + 1) .L- :iplications
2

m

and - (3n2 + 5n) additions.
2

Computation of the track likelihood involves

3m multiplications
and m additions.

Assuming each existing track gets associated with an average of R returns in

each scan, the number of operations per track gets multiplied by this factor.

Updating each existing track with R returns represents a 1:R transformation

for storage requirements. Generally, R is greater than unity and so addi-

tional storage has to be provided during this step.

After updating of all tracks, the next step is to prune the unlikely

ones. There is no pruning for Born and Tentative target tracks, i.e., all

updated tracks in these groups get promoted to the next higher group. On the

other hand, Intermediate targets are promoted only if it does not create a

conflict in the most likely global hypothesis of retained Confirmed targets.

Hence, this step has to await the completion of Confirmed target pruning.

Further, if promotion of targets from one group to the next moves tracks into

locations used by the higher group (to minimize storage requirements), then

this has to be done sequentially.

*We have assumed that the measurements in each return are updated sequen-
tially, i.e., as m scalar measurement updates as opposed to a vector update.

90

" "•e e. r. e'

IALPHATECH, INC.
Pruning Confirmed targets involves the formation of global hypotheses and

,A' elimination of tracks not included in the most likely one. If target

3 clustering is used, the formation of Connected clusters from Current clusters

requires, at the most,

NTS (NS (NS-1))

16 bit word comparisons.

After the Connected clusters are formed, the formation of one global

hypothesis requires*

NTC (NTC+1)(2NTC+l) NSCAN
6

16 bit comparisons and

(NTC-1)

multiplications. The upper bound on the number of global hypotheses per

connected cluster is given by

Min { (Bc + I)NTC , NGH}

so the total number of global hypotheses is the above multiplied by the number

of connected clusters, NC.

Target tracks not included in the most likely glo I hypothesis are

pruned away. The operation count for this stage of the pruning process

requires only a few comparisons per track and we have chosen to neglect it.

*This is based on the assumption that it takes two tries to find an allowable
combination for the second track added, three for the third, etc.

91

%V.

-" " -".'.i Y> :" 2.' ' -?:- .'>?-? ' "" '.--'-'-_Y "--'-- -'-.- ": ';;'; ';- % ,;')'- ') -; - :- -:.'. I-

ALPHAIECH, INC.
Based on the steady-state assumption, the pruning step represents an R:1.

transformation in terms of storage requirements. Hence, we can expect the

number of tracks per Confirmed target to reduce back to BC-

Promotion of Intermediate targets is conditioned upon the available room

in the Confirmed target data structure and can take place only after the prun-

ing of Confirmed targets. Promotion of Tentative and Born targets to the next

higher group is independent of the processing of the higher group. As men-

tioned earlier, storage requirements provided for each group dictates the

sequence of operations. As in the case of Confirmed targets, the operation

count for pruning and promotion of targets, and for the creation of Born tar- p

gets is negligible and, for this preliminary analysis, we have chosen to

ignore it.

Tables 5-1 and 5-2 are collections of the computational requirements

given in this section. The first gives the computational requirements per

track for the track operations (prediction, gating, and updating), while the

second is the requirements for the Confirmed target functions of clustering

and global hypothesis formation.

5.4 MEASURES OF PARALLELISM FOR THE TRACK-ORIENTED ALGORITHM

In order to provide a more concrete understanding of the relative compu-

tational loads of the various functional tasks a representative example will

be given. We assume the following requirements for arithmetic operations:

NTime for 32 bit multiplication 4 units

Time for 32 bit addition 2.6 units

Time for 16 bit comparison 1.3 units

92 p

ALPHATECH, INC.
TABLE 5-1. COMPUTATIONAL REQUIREMENTS FOR TRACK OPERATIONS (PER TRACK)

MULTIPLICATIONS ADDITIONS INTEGER COMPARISONSS3 (3 n2)3 3

PREDICT -) 1
2 2

GATE (SETUP) m (a 22) m (D 2 n-)

GATE (COMPARISON) Nr m Nr * 2m

UPDATE (STATES) m (- n29 *a +I) Im(3n2* Sn)
2 2

UPDATE(LIKELIHOOD) 3m m - R-3949

TABLE 5-2. COMPUTATIONAL REQUIREMENTS FOR CONFIRMED TARGET OPERATIONS

MULTIPLICATIONS ADDITIONS INTEGER COMPARISONS

CLUSTER NTS [I NS (NS - I) 1

GLOBAL HYPOTHESIS HOC (NTC- I) - HC r NTC (NrC+ 1) (2NTC+ 1)]
L 6J

R-3950

Further, assume the following algorithm parameters for the multitarget

•* algorithm:
n f 4 Nt 30
m = 3 Bt 3

Nr = 100 Nb =100

. Nc = 100 NTS = 2

c = 6 NS = 50
R = 1.5

NTC = 4
Ni = 20 NC - 25

Bi = 3
NGH = 100

93

: '-7.:' 'K ' [I C= ' . 3 ,5,r' . ' '
°

' ,:- " ' - ' -' ' " " ": " ". - ?

ALPHATECH, INC.
The computational requirements for the various steps identified in Figure 5-1

may then be evaluated as:

Predict Confirmed Tracks: 600 * 714 time units

Predict Intermediate Tracks: 60 * 714 time units

Predict Tentative Tracks: 90 * 714 time units

Predict Born Tracks: 10 * 714 time units

Gate Confirmed Tracks: 600 * 3,196.2 time units

* Gate Intermediate Tracks: 60 * 3,196.2 time units

Gate Tentative Tracks: 90 * 3,196.2 time units

SGate Ten Tracks: 90 * 3,196.2 time units
Gate Born Tracks: 100 * 3,196.2 time units

Update Intermed Tracks: 60 * 825 time units

Update nt rmedate Tracks: 60 * 825 time units

* Update Tent ate Tracks: 60 * 825 time units

SUpdate Born Tracks: 90 * 825 time units

Clustering: 1 * 3,185 time units

Global Hypotheses Generation: 25 * 16,380 time units

In order to define the relative magnitude of the processing loads, we will

normalize the requirements for each step by the required time of the shortest

step (that of Kalman prediction of one track). With this normalization, the

computational requirements are shown in Figure 5-4. Processing each group of

Stargets is shown in separate paths since they can be processed concurrently.

The operations of predicting, gating, and measurement updating are dis-

played as being carried out parallel by track, sequential by return. For the

gating stage, it is conceivable that all returns can be screened concurrently

for all tracks. Even for the next task of updating each track with selected

,- 94

.4 .-

ALPHATECH, INC.

,o CONFIRED TARGET ROCESSUNG

* r- N>%X. XXX~~X I tTERMEDIATE TARGEt PROCESSING

TENTATIVE TARGET PROCESSING

% F BORN TARGET PROCESSING

. -- t I I NXXNXXX\\\XXXN

4q- . TIME UNITS R-3955

%

Figure 5-4. Representation of Parallelism in Tracking Algorithm

returns, it is possible that all such updates can be done concurrently. We

have assumed a lower degree of parallelism due to practical considerations (to

avoid requiring too many processors and copies of the necessary data).

The maximum number of tasks is contained in the path processing Confirmed

target tracks. As the Confirmed target path is the critical path in terms of

both the number of parallel processes and the required execution time, and as

the functional tasks in the Intermediate, Tentative, and Born target paths are

subsets of the tasks in the Confirmed target path, by concentrating on the

Confirmed target path we will address the relevant issues in the track-

oriented algorithm.

We assume the algorithm under investigation can be subdivided into N

.',. functional steps denoted si (i - 1 to N), the ith of which can be further

Idecomposed into wi parallel tasks. The functional steps take a time ti to

95

*q' f, , .' o_/ ' , " -d . " ""I. . * . "' "". '-" , . .* .""""""•""" •"•"."•"* •"•. ' -* " 1 ' .

~.pM a " " "" " " . " " ' ' ' , -% % % % '

ALPHATECH, INC.
complete, assuming full parallelism. This is illustrated in Fig. 5-5 for the

simple case of two functional steps. Obviously, these definitions are consis-

tent with both the computational graph approach and Fig. 5-4.

parailci
tasks

.4-p T
IN T

W1 S

t tit

Figure 5-5. Graphical Display of Parallelism

For the Confirmed target path of the track-oriented algorithm the number

of functional steps N is equal to 5, where:

sI = PREDICT TRACKS

s2 GATE MEASUREMENTS

s3 = UPDATE TRACKS

s4 = FORM CLUSTERS X

s5 FORM GLOBAL HYPOTHESES

The parallelism and processing requirements of the tasks are functions of

the specific algorithm parameters mentioned previously. Using the values from

the example of Fig. 5-4 gives:

96

%,.

ALPHATECH, INC.
= 600 t= 714 time units

w 2 = 600 t2 = 3196.2 time units

w3 = 900 t3 - 825 time units

w4 = 1 t4 = 3185 time units

w 5 = 25 t5 - 16380 time units

We define two ratios to characterize the relative size of the functional

steps in the algorithm: the relative parallelism, pi, and the relative compu-

tational requirement, cj, where

Pi Max wi (5-1)

ti" 9: ci =
ci Max ti (5-2)

The relative parallelism ratio is a measure of the comparative processor

requirements of the individual steps. The relative computational requirement

is a similar measure for the processing time.

For the given example, these measures are:

P1 = .67 cl - .044

P2 = .67 c2 f .195

P3 1 c3 - .050

P4 = .001 c4 .194

P5 .028 c5 1

The measurement update stage is the most demanding in terms of the number

of parallel tasks, while the clustering task has approximately one one-

thousandth of the update task's requirement. With respect to the computation

97

J,** ~ ~* -~---*A

ALPHATECH, INC.
times the global hypothesis task har by far the greatest requirements. These

'I,..

measures are not surprising given Fig. 5-4. The relative parallelism and com-

putational requirements may be interpreted as the relative "height" and

"width" of the individual steps. UPDATE TRACKS is the tallest step, while

FORM GLOBAL HYPOTHESES is the widest.

.* A useful measure of the parallel nature of an algorithm is its parallel-

ism ratio. We define a parallelism ratio p as [29]:

P total (time * number parallel tasks) for each task

maximum number of parallel tasks * total time

N
witi

T
Max (wi) t i

i t=l (5-3)

The parallelism ratio is a measure of the variation of the concurrency

available within the different steps of the algorithm. For an algorithm with

the same degree of parallelism at each step, p = . With the assumption that

the number of processors in the abstract machine is equal to the maximum num-

ber of processors required, the parallelism ratio can also be interpreted as a

;easure of the utilized computer power. Continuing with the example of this

section, the parallelism ratio is:

P - .16

The reason for such a low parallelism ratio is obvious from Fig. 5-4.

The measurement update step displays a high level of parallelism (900 parallel

tasks), while the clustering and global hypothesis steps have relatively low

98

ALPHATECH, INC.
levels of parallelism (I and 25 parallel tasks, respectively). The low paral-

lelism of the cluster and global hypothesis steps, along with their substan-

Ptial processing requirements, "unbalance" the track-orientee algorithm. It is

for this very reason that a considerable amount of effort wJI. be spent in the

-'a next two sections to attempt to Increase the parallel nature of these two

tasks.

One of the advantages of the computational graph methodology is that it

is readily extended to the concept of abstract machines. Most references dis-

cuss such topics as achievable speed-up and processor utilization with respect

to given computer architectures. By assuming a sufficient number of proces-

sing elements and communication channels, and unrestricted access to all nec-

ON ~ essary data, these same concepts can be applied to the .algorithm itself. The

* resulting measures will then represent characteristics of the tracking algo-

rithm alone.

Mapping of an algorithm onto a multiprocessor architecture is equivalent

to graph isomorphism provided that both the algorithm and the architecture are

represented as graphs [51). A graph for the tracking algorithm has been

derived previously in this section. Rather than deriving the graphs for spe-

* cific computer architectures, we assume that a flexible architecture that can

be tailored to the requirements of the algorithm is available.

-~ The speed-up of a fully parallel algorithm implementation over a purely

sequential implementation (assuming that both the abstract and sequential

* machines have identical processor speeds) may be expressed as:

99

-a.

a W6,-;2 .0

i ALP iATECH, INC.
- time to process on abstract machinenmax time to process on sequential computer

N

witi

- T
=I t

i-I (5-4)

For the above values the theoretical speed-up for the Confirmed target

path is:

'1max -144.1

That is, given our assumptions, an "optimal" parallel implementation of

the Confirmed target path will operate 144.1 times faster than the same algo-

i rithm on a sequential computer.

Equation 5-4 has an underlying assumption that there is a sufficient num-

ber of processors available to fully exploit the inherent parallelism of the

algorithm (- Max (wi)). While this is certainly necessary to study the maxi-

mum achievable speed-up of the algorithm, it is also interesting to determine

the speed-up when less than an optimal number of processors are involved.

-'N AWhenever an individual algorithm function has fewer processors available than

-" ." it has parallel tasks, those tasks must be partially processed sequentially.

For instance, if a function has two parallel tasks but only one processor, the

two tasks must be processed one after the other. The number of sequential

partitions for a function with wi parallel tasks on P processors may be

expressed as

- 100I :

9

. u uL 2 ltW ~~ L; . ; ,L :i. L 4 ' ? rW . W7W -i: T E:,W. W~kJ W' c -. r ,W2j er .U. -s- i- -* . - .- - :

ALPHATECH, INC.

where the notation [xi is defined to be the unique integer satisfying

x 4 {x < x +

The algorithm speed-up can now be given by

N
N witi

i, Ft(5-5)

For P greater than Max (wi) the above speed-up equation reduces to that

of Eq. 5-4. Figure 5-6 shows the Confirmed target path speed-up (for the

example) on the abstract machine for values of P between 1 and 1000. Above

P - 900 there is no further benefit in adding processors to the machine as the

maximum level of parallelism in the algorithm itself is 900 parallel tasks.

The algorithm exhibits almost linear speed-up at the lower end of the graph,

but this falls off as more processors are added. It must be emphasized that

i~ 160

140

120
* S

P 100.
E
E 80
D

*~ ~ *5 60
. - P

40

20

%! 0 100 200 300 400 S00 600 700 800 900 1000

5 *NUMBER OF PROCESSORS t-3 s

Figure 5-6. Speed-up of Confirmed Path on Abstract Machine

10 1 .

ALPHATECH, INC.
the speed-up displayed in this section only pertains to the abstract machine.

The major omissions from this abstract model are those of communication con-

straints and memory access concerns. Instead of viewing these results as act-

ual performance measures, they should be considered bounds on the performance

of more realistic computer systems.

5.5 CONCLUDING REMARKS

As evident in the preceding discussions, the track-oriented wailtiobject

tracking algorithm is far more computationally complex than the simple single

hypothesis gating techniques previously employed on parallel computers (c.f.

Section 3). The required number of calculations is far greater, as is the

amount of synchronization functions (clustering and global hypothesis genera-

* tion). The standard algorithm structure as described here displays varying

levels of parallelism, from the track parallel functions of predicting, gat-

ing, and updating, to the totally sequential function of clustering. Without

restructuring of the algorithm substantial processor inefficiencies will

Z. result due to the large amount of time required to perform the sequential

tasks. This is not to say that the algorithm cannot be restructured. It can.

How it can be successfully altered to exploit the available parallelism in an

appropriate system will be shown in the subsequent sections.

102

ALPHATECH, INC.

SECTION 6

ADAPTATION OF THE TRACK-ORIENTED MULTIOBJECT TRACKING ALGORITHM
TO ASSOCIATIVE PROCESSORS

6.1 INTRODUCTION

In the previous sections we have introduced both associative processors

and the track-oriented multiobject tracking algorithm. We now combine the

two. The selection of an associative processor (AP) as the initial multipro-

cessor architecture to investigate is motivated both by its historical appli-

cation to tracking systems and, more importantly, by its pertinence to the

given problem.

As was evident in the discussions in Section 3, most of the surveyed

parallel tracking methodologies proposed or employed associative processors.

z These included the Goodyear Aerospace STARAN and ASPRO [15), [40], and the

Parallel Element Processing Ensemble (PEPE) [21). The inducements that drove

these earlier applications are twofold: each object under track is processed

in a lock-step, parallel manner, and all sensor reports may be compared

(gated) with all target tracks simultaneously. These two generic tracking

features imply an SIMD computer and an associative memory, respectively.

Another important feature of these simple algorithms is that, for the

most part, they are single hypothesis approaches. Because there are no

multiple hypotheses to appraise there is no need for such sequential,

synchronization-type functions as clustering and global hypothesis formation.

Therefore the entire tracking algorithm is functionally parallel by track.

103
V

ALPHATECH, INC.
Since there is an obvious distinction between the simpler tracking

methods previously implemented on APs and the track-oriented algorithm, the

relevance of APs to our approach may be of some question. The track-oriented

* approach contains many of the same functions that proved amenable to associa-

tive processing in the earlier algorithms - prediction, gating, and updating.

* Therefore, the only concern with the appropriateness of APs is how well they

* can handle the functions specific to the muilti-hypothesis nature of the

algorithm - track expansion, clustering, and global hypothesis formation.

In the previous section we described these tasks and how they are currently

implemented on sequential computers. The standard algorithms are completely

sequential, and so should be restructured to exploit the capabilities of the

AP. It is how successfully this restructuring is perfo rmed that will deter-

mine how appropriate associative processors are to the track-oriented

* approach.

In this section a generic associative processor architecture will be con-

sidered for application to the track-oriented iultiobject tracking algorithm.

The track-oriented multiobject tracking algorithm is well matched to APs, as

it is a collection of fully parallel functions (predict, gate, and update)

followed by search oriented functions (cluster and global hypothesis genera-

tion). It will be shown that the various tracking functions can all be

implemented on the AP, each with a substantial degree of parallelism. The

functions that display track level parallelism are the simplest to implement

on APs. Clustering and global hypothesis formation are more involved as they

must be restructured to exploit the specific characteristics of SIMD computers

and associative memories.

1.04

V V%

a W7 -4 -1W1 W aK

ALPHATECH, INC.
6.2 TRACK-ORIENTED APPROACH TO ASSOCIATIVE TRACKING

.A

The general approach of the associative track-oriented multiobject

tracking algorithm is to operate on all appropriate tracks simultaneously

whenever possible. If this is not possible, the computations should be

Z- restructured to take full advantage of the AP strengths. The primary

advantage of APs over standard SIMD computers (e.g., array processors) is the

capability to perform searches in parallel in each processing element. Since

the functions of clustering and global hypothesis formation are essentially

searches (one to form intersections, the other to determine disjointness) they

appear to be well suited for APs.

The AM configuration of Fig. 2-6 will be used, along with the necessary

control, memory, and I/O. The distinction between bit serial and bit parallel

will not be made as it merely introduces a scaling factor into the operation

counts (assuming uniform field widths). We will operate under the premise

S that communication between PEs (rows) should be kept to a minimum, and there-

fore all information for a single target track will be stored within one AM

array word. This will preclude the exploitation of fine-grain parallelism

q(i.e., across vector elements) in the algorithm.

The assumed data structure required per target track (of all classifi-

cations) is given in Table 6-1, and illustrated in Fig. 6-1, where

n f number of states modeled/track

NR = number of returns/scan

NSCAN = number of scans in N-scan procedure

This identical structure will be duplicated in each row of the AM that con-

tains an active track. The rational behind and usage of these fields will be

explained fully in the sequel. They are provided here so that the algorithm

105

.4

ALPHATECH, INC.
TABLE 6-1. TRACK DATA STRUCTURE

Field Type Number Required

States Real n

Covariance Real n(n + 1)/2

Likelihood Real 1

Target Number Integer 1

Target Age Integer i

Cluster Number Integer 1

Measurement Flags Bit NR(NSCAN + i)

Update Flag Bit 1

de:Active Track Flag Bit I

-' o

F,. I REALS INTEGERS I BITS IAl+ *#. I I I I il
J ,n n(n+1)/2 1 1 1111 NR(NSCAN+1)

STATES MEASUREMENT FLAGS
. I

COVARIANCE JL ACTIVE TRACK FLAG

LIKELIHOOD UPDATE FLAG

TARGET NUMBER J L CLUSTER NUMBER

~Figure 6-1. Associative Processor Track Data Structure

,, 106

,,-. -

Al, '.%

I'

ALPHATECH, INC.
processing may be viewed in a unified manner. Beyond these specified fields,

additional fields will be necessary per track for working space.

Only the upper triangular covariance elements are stored to reduce

storage space. The target age is used to specify the track classification

(Confirmed, Tentative, etc.) instead of using a bit flag for the individual

types. The AP will then be able to select all tracks of a specific class with

one associative search based on age.

The measurement flags are bit vectors, one bit for each return in the

NSCAN + 1 (the additional scan is the current one) scans of interest. If a

specific measurement is included in a track its corresponding bit flag is set

to I and all other bit flags for that scan are set to 0. An alternative

scheme would have been to insert the measurement numbers into (NSCAN + I)

integer fields, but this procedure would not allow the use of bit logic opera-

tions on the measurement sets. It should be noted that the storage necessary

for bit flags will exceed that of the measurement indices for many realistic

systems. The problem of weighing computational speed against memory require-

ments can only be evaluated for a specific system where their relative impor-

tance is known.

The update and active track flags are employed to signify that a track

has accepted a return for updating and that the array word contains an active

track, respectively.

6.3 ASSOCIATIVE PROCESSOR IMPLEMENTATIONS OF TRACKING FUNCTIONS

6.3.1 Prediction

Prediction (propagation) of states is a totally parallel process for each

track, depending only on the local track information and the (assumed) common

state model. The active track flag is set for all currently live tracks and

107

.'

ALPHATECH, INC.
defines the words to participate in the prediction step. The operation count

derived in Section 6 applies, except that here it is for all tracks, not Just

one. This Kalman prediction requires a total of

3(n3 + n2) multiplies
2

A (n~ - n) additions

6.3.2 Gating and Track Expansion

Associative memories are well suited for gating, and it Is probably for

this reason that previous parallel trackers used APs. We will assume that all

b returns in a single scan have identical accuracies. This allows one gate to

be computed for each track and then used for all measurements in the scan

(this same assumption was made in Section 5). Setting up the upper and lower

measurement bounds for all tracks requires

m(n2 + 2n) multiplies

m(n2 + n + 1) additions

I square root

The square root was avoided in the previous section by gating on the

square of the measurement residual, not the measurement itself. The computa-

tional penalty for using the square root is much less here, as it is computed

for all tracks in parallel.

108

%r

ALPHATECH, INC.
Once the gates are set up the actual comparisons can be made. Before

gating, the update flags on all active tracks are set to 0, signifying that no

measurement has been associated with that track. Next the active track flags

are used to mask out all the empty words. This gating mask will remain con-

stant throughout all measurement gating operations. The returns are loaded

into the AM comparand register one at a time, and tested to see if they fall

within the gate limits of each track in parallel. This requires

NR * 2m associative searches

" p.to gate all returns in the scan.

After each measurement is gated it must be loaded into those tracks that

satisfied the comparison test (the results of the test will be stored in the

response register, which can then be used as a write mask). Two methods may

be used to create new branches with the associated returns. The first is to

buffer all measurements that are associated with a track into local word

storage, and then create the new branches after the entire scan has been

gated. The second method is to create new branches after each return has been

tested. We will adopt this second method as it does not require a measurement

buffer within each AM word. If a return has passed the gate test for a track,

that track is copied into an open (not active) word along with the associated

return, its update flag is set to 1, and the corresponding measurement bit

flag is set to I. The return is not inserted into the original track. This

jcopy operation is best handled by an I/0 control, as in STARAN [15], that can

write an entire array word in parallel by bit, and in parallel with the AP

-' '. control.

109

ALPHATECH, INC.
The gating then continues with the next return. Note that since the

gating mask was set prior to any track creation, these new tracks will not

participate in the gating. At the end of the scan there will be a collection

of new tracks along with the original tracks which have no associated returns.

These original tracks will be specified as missed detection extensions of the

original tracks, and so will not be included in subsequent Kalman updating.

Born tracks are created after each return is gated by inserting the

return into an empty array word, setting the measurement bit flag, and ini-

tializing the target number and age.

6.3.3 Updating

This operation occurs in three steps: process all active tracks with

the update flag set to 1 and with age greater than 1 (Kalman update and like-

* lihood); process all active tracks with the update flag set to I and with age

equal to 1 (initialization); and process all active tracks with the update

flag set to 0 (likelihood only). The operation counts in Table 5-1 may be

used, giving

m(3n2 + 9n + 1) multiplications

lm(3n2 + 5n) additions

for Kalman update of all states for all tracks, and

3m multiplications

m additions

to update all track likelihoods.

110

h ALPHATECH, INC.
6.3.4 Cluster Formation *

Forming clusters differs from the previous functions in that it is not

Iparallel over tracks. However, APs do offer advantages over RAM SIMD proces-

sors if the data is structured properly. In this subsection we will describe

treapproaches to associative clustering. The first employs the measurement

bit flags introduced earlier. The second method presented attempts to avoid

the large storage requirements of the bit flag approach by using the return

0 . indices (numbers) instead of bit flags. It will be shown that this method

entails some prohibitive computational levels, and is provided in defense of

and as a motivation to the bit flag approach. The final method described is

motivated by an AM configuration with a limited number of bits per word. Due

to this assumed memory constraint a rigorous clustering will be impossible;

therefore a relaxed clustering tenet will be adopted.

BIT FLAG CLUSTERING

In order to exploit the unique capabilities of the AP, the data should be

configured in such a way that the maximum number of returns may be processed

in parallel. The concept of measurement bit flags was introduced in sub-

section 6.2. This approach is considered the optimum of the three to be

* presented, but may suffer from large data storage requirements in some

scenarios.

Clustering occurs over Confirmed target trees, not on individual tracks.

Therefore a temporary target data structure must be created. As with tracks,

* we assume one array word per target, thereby requiring NCT (= total number

of Confirmed targets) words. The necessary fields per target are given in

Table 6-2.

#a *&.k.a : .Y 'ma_ .Za]

U ALPHATECH, INC.
TABLE 6-2. TARGET DATA STRUCTURE FOR BIT FLAG CLUSTERING

Field Type Number Required

Target Number Integer I

Cluster Number Integer 1

Measurement Flags Bit NR(NSCAN + I)

-i The first step is to collect all the measurements included in each Con-

Afirmed target tree. This is done by activating all tracks for a particular

'- Confirmed target, and then performing a parallel write of the track measure-

ment flags (the communication channel is assumed to OR the flags, forming

their union). This will require NCT parallel searches (compares) to create

the confirmed target database. Next, the flags for the first target are

loaded into the comparand register and a parallel associative logic bit-wise

ANY* search is performed over all targets to see if any target has common mea-

surements with the first. If there are any responders other than the original

target, their measurement flags are combined and the process is repeated. The

iterations stop when there are no new responders over the previous search.

These targets are then labeled with the same cluster number, and masked out of

all subsequent searches. The process is restarted with the next available

target, until all targets have been included in a cluster. These cluster num-

* *. bers are then copied back into the track words via NCT parallel searches.

p.,

- *We will define an ANY search to be true if any two bits occupying the same

position in the comparand and the field are both 1. This search does not
appear to be standard, but should be simple to implement.

112

,,' . 5.5.•.-. .- . * .P . *. . -.'-.......-. .5.. ' .. . -. '. ,- .-. . ..- .

ALPHATECH, INC.
The maximum number of operations required to cluster the targets is:

3 * NCT associative searches

2*NCT searches are necessary to create the target data structure and to
write the cluster results back into the track words. These searches are not a

function of the actual cluster operations, and so do not vary from scenario to

scenario (except with the number of Confirmed targets). During cluster forma-

tion, a worst case of NCT ANY searches occurs when there are no common returns

between Confirmed target trees. This assumes that the Comparand register is

large enough to hold an entire bit flag vector. If this is not the case then

the vector will have to be partitioned into manageable fields. Processing the

bit flags in sections will introduce a scaling factor into the operation

counts for the clustering calculations.

A simple example of associative clustering is given in Fig. 6-2. In

this example there are four Confirmed targets. The N-scan level is set at

two, so three scans (NSCAN plus the current scan) of measurement flags must

" be retained. For this example there are three returns in each of the sensor

scans. Target #1 has associated with it return #1 in the current scan,0=

returns #1 and #3 in the previous scan, and no returns in the oldest scan.

The other three targets are similarly configured. Prior to the first step in

the clustering procedure the response and mask registers are cleared and two

"" registers, either in the control system or the host, are initialized to one.

The first of these registers will hold the number of the cluster being formed

and the second will store the number of minimum number of search responders

known to exist.

113
-a,

.- . -".'.y a-; , . . . % • - "_ : > "' .

K ALPHA I :CLl, INC.

STEP 1.
1 00.1 01-000 CompdReiste

~0 0 ,0000 0 cbflluwll Mask

TARGET # CLUSTER # MASURENT FLAGS M R T

1 0 1 0 0 I1 0 1 0 0 0 1

2 0 001 10

0 00 00 1 1 00-. I I . JL43 0 0 1 0 0 0' 0 1

STEP 2, 3.
1 0 1 10 110 Co"-araaRegiter

0 00.0000 Coqfaraw Mas

TARGET # CLUSTER MEASURENIENT FLAGS M R T

1 1 1 0 0 I 0 0 0 0 1

2 0 0o~lo 10

03 0 00 0 1 1 0 0

4 0 0,0100 00

STEP 4..
SP0 1 0 0 1 000 1 ComparandRegister

0 00! 00 00 Coasparand Mask

TARGET # CLUSTER # MEASUREMENT FLAGS M R T

I I 1 0 0 1 I 0 0 0

2 1 O 0 1 1 0 0 1 C, 0 1=

3 0 0 1 0 010: 0 1

4 1 0 1 0 0 0 0 1 0 0
"___ _____ 100 100

R-3958

Figure 6-2. Associative Clustering Example

114 4

7 ,

4'4

..
4.-%

+ + .p + . . . + . .. + - % - I - .% . + . . + - + . .

F7 K nX 3,KXW I'

I ALPHATECH, INC.
During Step 1. the measurement flags for the first Confirmed target are

loaded into the Comparand register. and a parallel ANY search is performed in

the measurement flag field for all words. Targets #1 and #2 both contain

return #1 in the previous scan and so both respond to the search, as evident

by the Response register. Since the number of responders has increased above

one the response counter is updated to two and the processing continues for

cluster #1.

In Step 2 the responders to the previous search (targets #1 and #2) write

their measurement flags in parallel to the Comparand, forming the union of the

flags. The other words are excluded from this operation by copying the

Response register into the Mask register and then inverting it. Once the new

comparand is formed, the Mask register is cleared, and the ANY search is

repeated. Again a new responder is encountered as targets #2 and #4 have a

common return in the oldest scan. The response counter is therefore incre-

mented to three.

In Step 3 the first, second, and fourth targets' measurement flags are

written in parallel to the comparand. Notice that this produces the same%

*result as in Step 2 as Confirmed target #4 does not add any new returns to

the cluster. After another ANY search there are again three responders, as

expected. Since the number of responders matches the response counter the

processing for the first cluster terminates. The Response register is then

2 copied into the Mask register, inverted, and used to copy the cluster number

from the global register into the appropriate array locations.

Since Confirmed targets #1, #2, and #4 have already been included in a

cluster they will be masked out of all subsequent clustering operations. This

step is not strictly necessary in forming the clusters as, due to the cluster

115

d".

ALPHATECH, INC.
r) disjointness, any targets previously clustered will not respond to any new

searches. It is necessary to maintain a list (i.e., register) of clustered

targets to determine the next (if any) unclustered target with which to

initialize a new cluster. For this example target #3 is unclustered, and so

forms the basis of the second cluster.

In Step 4, the cluster counter is incremented to two and the response

counter reset to one. The measurement flags of Confirmed target #3 are

written to the Comparand and employed in an ANY search. There is only one

response to the search, and so processing stops. The cluster number (2) is lt
..

then copied into the Cluster field of the third target. Since there are no

unclustered targets available to start a third cluster, the clustering func-

tion terminates.

The primary shortcoming in employing measurement flags for clustering is

the large number of bits required. In many realistic scenarios with high

clutter rates the number of returns per scan (NR) will be in the thousands.

So, combined with a typical N-scan level (e.g., 3), a requirement of ten

thousand bits per track is not unreasonable. The number of bits per word in

STARAN and ASPRO are 256 and 4096, respectively, and so preclude the imple-

mentation of this method. It is expected that word lengths of 16k to 32k are

imminent, with larger values still to come. Therefore, the measurement flag

approach is considered feasible in the near future, if not for existing

systems.

INDEX CLUSTERING

In the track data structure of Table 6-1 and Fig. 6-1, we assume that the

number of the returns associated are stored in NR(NSCAN + 1) bit flags. This

approach was not the first considered. An equivalent method to record the

116 "

F,.

ALPHATECH, INC.
returns associated with the track is to simply store the return indices (i.e.,

numbers) in NSCAN + I integer fields. Because the indices are stored as the

binary representation of integers in integer fields, it will not be possible

to operate on more than one return index at a time. This restriction pre-

cludes the highly parallel searches and set formations employed in the pre-

vious method. In the bit flag approach a given bit in a specified location

could be interpreted independently of any other bits. This is not true in the

present method. The smallest logical unit in the measurement index method is I,

the integer field, or index.

As the returns are entered into the track database, they should be

numbered such that there are no duplications within the last NSCAN + I scans.

If the return indexing is reinitialized for each new scan, then both the scan " ,.-.

number and the return number will be necessary to determine a specific return P

(e.g., return #5 in scan #2). A continuous numbering scheme will allow a -p--

single index to be employed. As only a limited number of scans are retained,

and since only the current set of returns need have distinct measurement

indices, the enumeration may be restarted periodically. This period will

be at least

(Max NR)(NSCAN + 1)

where (Max NR) signifies the absolute maximum number of returns that could

ever be associated with any target in a single scan. This reinitialization

should only take place between scans to avoid the computational penalty in

testing to see if the period has been reached as each return is added.

If the AM supports variable width integers the required number of bits

for all scans of interest is given by

'-

P-3 Ry - . F V -,3.w-~

,. T ZT

ALPHATECH, INC.
[.]ogj2[(Max NR)(NSCAN + 1)] (NSCAN + 1) bits

For all values of the term in brackets above 2, the number of bits necessarypm
in this method will be less than the number required in the bit flag method.

P

For example, if the maximum number of returns per scan is 1000 and the N-scan

level is 3, 3000 bits will be required in the bit flag method, while only 36

bits are needed for the index method. If variable fields are not supported,

then

NSCAN + 1 integers

are required.

In terms of track storage, there are obvious advantages to this approach.

Unfortunately, the recording of associated returns is not an end in itself,

but rather a means to facilitate the clustering of Confirmed targets, and

eventually the formation of global hypotheses. We therefore must examine the

possible clustering uses of the measurement indices. It is in this light that

the current approach proves ineffectual. ,

The first step in clustering is to create the Confirmed target data

structure. Since the associated returns are represented as numbers, a list of

return indices must be created for each target. These lists are merely the

collection of all returns associated with some branch in the target tree.

This can not be accomplished by forming the (bit) union of the individual tar-

get track fields, as was done previously. It can also not be accomplished by

merely copying the values out of each of the target tracks in turn. If this I

were to be done it is quite likely that the same return index would appear in

9. the target list several times. Therefore a method of deleting or avoiding

duplications in the target list must be employed.

11 >4%

**W - V L V V VT= ' R- -L
.

- - K I

ALPHATECH, INC.
A possible method is to add the individual track indices to the target

list one at a time, completing a scan for all tracks before advancing to the

next scan. Prior to insertion in the list, all other tracks for the same tar-

get are tested to determine if they contain this same return. Those that do

dre masked out of any subsequent additions to the list for this scan. This

will require one parallel search for every distinct return in the target tree,

for each target. An undesirable result of this approach is that the list does

not have an ordered structure. That is, the indices are shuffled. This may

be overcome by searching for the minimum report index in all available tracks

each time a new index is to be added.

An important characteristic of the Confirmed target's list of returns is

that it could have as many as NR(NSCAN + 1) entries, corresponding to all the

returns in all scans. This is highly unlikely, but it does point out the fact

that the list does not have a predetermined length.

Figure 6-3 shows the data for the same example as in Fig. 6-2, except

here the returns are represented using their indices. This example illus- A

trates the primary difficulty in employing return indices - the index lists

are "packed." Because the indices are appended to the lists as they are

created, it is impossible to specify which field a specific index will occupy.

Since the AP can only search over one AM array field at a time, it will be

necessary to search over many fields to determine if a return is included in
'V.

any of the target trees. In the example shown, index #7 occupies the third

measurement index field in target #2, and the second index field in target 114.

The basic approach to index clustering is simply to form the aggregate

of all targets having common indices. This is no different than the bit flagC.:_

approach, but its implementation is constrained to look for common list

119

10

ALPHATECH, INC.

I Comparand Register

(unmasked) _jComparand Mask

TARGET # CLUSTER # MEASUREMENT INDICES M R T

1 0 1 4 6 0 1 0

2 0 3 4 7 0 0 0

3 0 2 5 8 9 0 0 0

4 0 3 7 00 0

R-3959
Figure 6-3. Associative Index Clustering

elements one index at a time. That is, return indices will be loaded into

the comparand one at a time, and all targets will be searched to determine if

they contain the identical index. Because the array fields must be processed

sequentially, it behooves us to search as few fields as possible. If the

measurement indices had been randomly ordered in each target list, then all

fields of each target would have to be examined. 'As -the indices are ordered,

it may be possible to reduce the number of feasible locations in which to

look.

Let

vit index to be compared,

fij measurement field j of target i,

1 4 1 4 NCT

eij = index in fj-

Si set of indices for target i,

Ni = cardinality of set Si

120
°'- .

ALPHATECH, INC.
There are total of N distinct indices in all targets, with the value vj

corresponding to the measurement index. While it is not necessarily true that

as in our example, we will operate under the assumption that it is the case.

This requires a renumeration of the indices.

We will make the second assumption that all indices in set Si are ordered

within the set, i.e.,

if

VM , vn C Si, and

eij Vm, eik = Vn, then

j < k > m < n

We wish to compare all the elements of one word, or set, to all other

words in order to determine the intersection of a target index list with all

other targets. This would appear at first glance*to be trivial on an AP, but

it is not. Complications arise due to the "packing" of the words. Because of

the packing field j (of any word) will, in general, not contain value j. So

if we are attempting to find all matches with the value found in a particular

field of word i we must search in other fields as well.

An important assumption made at this point is that the value of the index

that is being searched for is not known, but the field in which it was found

is known. The relevant question is "In what fields fkl must you search to

find a value identical to the one in field fij?"

121

-' ,- U . . :

UU ./ U

• A !", ' ," -. '.. .'-.-' '.... r,,' ',,...,, .- . .' . -.. '. .,, . .•, ." '' .,, ,..-,-. ,.- '..'.-..,,...,....c,

.-

ALPHATECH, INC.
It can be shown that

fij may contain vj to v[j + (-N.)]

and

vi may be in fi,Max[j - (N-Ni),i} to fi,Minlj, Ni }

The minimum value of eij is vi . The lowest field of word k this value

may be in is

fk,Maxfj - (N-N 0111

The maximum value of eij is v[j + (N-N.)] The highest field of word k

this may be in is

fk,Min{j + (N-Ni),Nk }- k

Therefore, the range of fields that must be searched in target k is

fk,Max{j - (N-N),I} to fk,Min{j + (N-N),Nk .
k i k

An associative search occurs in the same field in all words (unless

masked). Because of this the first field searched must be the smallest for

all words, and the last the largest. Let

Nmin = Min { Nk }

Nmax = Max { Nk }

The range is now (field numbers)

L47 Max{j - (N-Nmin),lI to Min{j + (N-Ni),Nmax}

122

',@. .

#4 .

ALPHATECH, INC..

or,

Pij - Min{j + (N-Ni),Nmax} - Maxtj - (N-Nmin),l} + 1 (6-1)

parallel associative searches must be done to insure that all fields that

could contain a value matching eij have been checked. Checking all fields in

word i requires

pi [IMintj+(N-Ni),Nmax) - Max{j-(N-Nmin),l) + Ni (6-2)
j.1

searches. Doing this for all words gives

NCT N
p I I I [Min{j+(N-Ni),Nmax} -Maxjj-(N-Nmin),l1 + Nil (6-3)

i=l j=l

total parallel searches.

There is an inconsistency with the above equation in that it assumes that

all indices in all targets will eventually be employed as the comparand in a

search. This obviously allows a multiple number of searches for the same

index value. In practice, once a measurement index (and its associated tar-

gets) is added to a cluster it should be deleted from all target lists. This

is done by using the search response register to create a mask to clear the

appropriate fields. The effect of deleting indices is to shorten the index

lists of the targets. Therefore, the value of Ni should be interpreted as the

remaining number of indices in the list for target i, given the processing for

all previous targets in the specific cluster. It should also be noted that

P:

this number, as well as the total number of searches, is highly dependent on

the ordering of the targets within the AM.

123
-"%.

i . --- . - , _ , . , - - . / / . - - . , - - . . . , . . - . - . - - . ., • , ' , , . . -, - . ' - . [

ALPHATECH, INC.
As Eq. 6-2 is inspected closely, it becomes evident that there is only a

substantial savings in searches when (N-Ni) and (N-Nmin) are small. This

occurs when each list contains almost all possible elements, thereby narrowing

down the set of values that could have been in the field and the set of fields

in which to search. The limiting case arises when all lists contain exactly N

indices. We may generalize this to conclude that as the number of reports per

target increases (keeping the number of reports fixed) the number of required

searches decreases. And as the number of reports per target increases, the

number of clusters will decrease. That is, the targets have more common

reports. Therefore, the greatest savings in searches occurs for scenarios in

which clustering itself provides the least benefit.

A second method to reduce the number of required searches is to employ

the value of comparand to determine the feasible fields in which to search.

If we let

V..

be the value of the index found in fij, then the fields to be searched are now

Maxtvt- (N-Nmin),l} to MintvLNmax}

and so,

N

p = I [Min{vtNmax} - Max(v-(N-Nmin),l}] + N (6-4)

* parallel searches are required. This value will be less than that of Eq. 6-3

as the uncertainty in the index value has been removed. The value is also

independent of the target ordering. For scenarios in which there are many

reports associated, but with few associated with any one target, Eqs. 6-3 and

124

ALPHATECH, INC.
6-4 both reduce to searching all measurement index fields. Such scenarios

either have many clusters or loosely connected targets within the clusters.

In such cases it appears advantageous to simply search all fields without

attempting to determine the best search strategy, and so avoid the computa-

tional penalty. Obviously, if all fields are to be examined,

p =(6-5)

searches are required.

We have described the search portion of the Index clustering method, but

have up to this point omitted the overall processing scheme. The following is

a step by step breakdown of the suggested implementation, assuming the target

data structure has already been created (c.f., Fig. 6-3). Any of the three -

search strategies mentioned may be employed.

1.0 Clear the M, R, T, and Comparand Mask registers.

Initialize a cluster counter (register) to 1.

Initialize a current target indicator (register) to 1

2.0 Loop over all index fields in the current target.

2.1 If the current field is empty, go to 2.0.

2.2 Load the index in the field into the Comparand.

2.3 Determine the fields over which to search, using any of the
methods given,

2.4 Loop over feasible fields.

2.4.1 Perform associative EQUAL search on the current field
for all targets.

2.4.2 Logical OR the R register with the T register.

2.4.3 Copy the R register into the M register, invert, and use
to clear the current field in all words (including the
current one).

125

ALPHATECH, INC.
3.0 Insert the current cluster number into the current target's

field. Clear the bit flag in the T register corresponding to
this word.

4.0 If there are any bits set in the T register, then set the target p
indicator to the target number corresponding to the first bit
set in the T register. Go to 2.0.

5.0 If there are no bits set in the T register, then the current
cluster is complete. Using the values stored in the Cluster
number field, determine the unclustered targets. If there are
any still unclustered, set the target counter to the first
available target. Go to 2.0.

6.0 If there are no remaining unclustered targets, stop.

A worst case of N*Nmax parallel EQUALS searches are necessary for the

index clustering, while the bit flag clustering method has a worst case of NCT

ANY searches. Based solely on the number of searches, the bit flag method isfrim
superior. The number of Confirmed targets will be much less than the number

of returns in the NSCAN + 1 scans of interest.

k POSITION CLUSTERING

Both bit flag clustering and index clustering suffer from fairly large

data structures: bit flag clustering can involve substantial flag vectors in

NM.4

both the track and target data structures, while index clustering can have

large index lists within the target data structure. An alternate approach to

clustering will be suggested here in an attempt to alleviate these storage 4%

problems. We will not study this particular approach in great detail, and

present it mostly as an example.

The purpose of clustering is to divide the global hypothesis formation

function into smaller, independent functions. The precise solution to this

problem is to create clusters with disjoint sets of associated sensor returns.

A more relaxed solution is to form clusters of targets such that any two tar-

gets in separate clusters have a low probability of having a common associated

126

06.

ALPHATECH, INC.
return. This view is motivated by a standard illustration of clustering in

which it is stated that targets in grossly different sections of the environ-%

ment need not be considered together in forming global hypotheses. There-

fore, if targets can be grouped in distinct regions in space, then the globalV

hypotheses can be formed independently within these groups. It could be that

these groups contain common returns, and so the overall global hypothesis

formation is done under incorrect assumptions, but the effect of this will be

small. Note that we are not stating that the return indices (or bit flags)

can be totally eliminated; they are still necessary for global hypothesis

formation. What we are eliminating is the associated return lists within

the target data structure needed in the first two methods. K

The position clustering algorithm partitions the x-y parameter space into

disjoint spatial regions. Targets in separate regions will have a low proba-

bility of containing a common associated return. As we have stated, it will

be possible for targets in different regions to have a common report. It will

W also be possible that a target may be completely independent from all other

targets in the cluster. These inaccuracies are tolerated in order to reduce

the target word size. Note that we will only consider the partitioning of the

x-y space. This approach can be extended to include all state parameters

(e.g. , height, velocities, id, etc.), though we will concentrate on the more

intuitive planer positions.

The first step to creating these connected regions is to create a region

for each target tree. Target trees themselves have no states with which to

work; state information is associated with the tracks within the tree. But

clustering must occur over targets and not tracks, and so aggregate target

regions must be formed. This could be done by employing the state estimatee

127

PS

J. e.,. r. r r r r d r% Ir 'r % %N W

p%
k~ic A-

ALPHATECH, INC.
for each track and determining the region that includes all the track esti-

mates for each target. Such a method ignores the uncertainties in the track

estimates. A more attractive approach would be to determine the target region

that includes all track error ellipses of a preset size (e.g., 3 sigma). This

resulting target region is then simply be the union of these individual track

ellipses. Unfortunately, a collection of ellipses is too involved to reasona-

bly manage. Therefore, the target region will be defined to be the smallest

rectangle that encloses the track error ellipses. Each target region can then

be characterized by four parameters--the minimum and maximum values for x and

y. By employing rectangles we will simplify the computations at the expense%

of enclosing more of the x-y space than is truly necessary.

Figure 6-4 is an example of these rectangular target regions for two

targets. The shaded regions represent the track individual uncertainties. 5

Ellipses are not strictly required for track uncertainties as we will only

employ the extreme x and y values on the ellipses, and so rectangular track

regions may be used.

Once the target regions are formed, all intersecting regions should be '

p combined into clusters. Again, we will force the resulting regions to be

rectangular. As shown in Fig. 6-4, these cluster regions (demarcated by the

dotted lines) contain more space than in the original target regions. A

consequence of this excess space could be that targets that do not actually

intersect are combined. This will not create any errors per se, but will

cause targets to be processed in the same cluster that need not be processed

together, increasing the computation time.

Table 6-3 contains the fields necessary for the target data structure.

128

to F.,

{i ALPH.A, I-t;H, ,N.

y h.

^h -'

Al
E Y I r..

P Al

Al Al Ah Ah
1 2 1 2 .

Track Uncertainties for Target 1

(Track Uncertainties for Target 2TrackUnceraintis foi Targt 2 R-3960 !p

Figure 6-4. Position Clustering Example

TABLE 6-3. TARGET DATA STRUCTURE FOR POSITION CLUSTERING

Field Type Number Required

Target Number Integer 1

Cluster Number Integer 1

Region Boundaries Real 4

129

• 4 " " ,'% " . 4 ° ." o " ° ,f" ° -. o , .. - . . - o.£, . , . ° ,. • ° " -" " , -m- o €-" ,-"."."o"-",, "• ."W2 ,

ALPHATECH, INC.
To create the target data structure, it is first necessary to form the

individual track regions. For each track calculate ,in parallel

h x + yaxx

;l x YOXX

;h y + yoYY

where

y = "size" of uncertainty region

oxx = variance of x estimate

'-e 0YY = variance of y estimate

This calculation will require

4 multiplies I

4 additions

The results should be stored in four temporary fields in the track words.

Once the individual track regions are formed they must be combined. This

is efficiently handled in the AP by searching for the maximum values in the

xh and yh fields, and the minimum values in the xI and 91 fields, for each

target in turn. These results are the boundaries of the target regions, and

so should be stored in the target data structure.

-4 The next step in position clustering is to form the interconnected

cluster regions. We will employ a method functionally similar to the bit flag

clustering algorithm, but instead of searching for set intersections, we are

130

C." '

ALPHATECH, INC.
searching for region intersections. On each iteration of the algorithm, the

first available unclustered target is employed, and all intersecting targets

with this region are found. These individual regions are then combined, and

the resulting boundaries stored in the target structure, overwriting the ori-

ginal target boundaries. The targets combined are then masked out of all sub-

sequent searches. This new region is now employed again to see if it has any

intersecting targets. If there are, the processing continues as before. If

not, the processing for this cluster terminates and the current cluster number

is inserted into the appropriate cluster field.

6.3.5 Global Hypothesis Formation

Clustering of targets allows the formation of global hypotheses to be

divided into independent sections. Unfortunately, the SIMD nature of APs

forces clusters to be processed sequentially, not concurrently. Clustering is

useful, though, as we have replaced a large combinatorial problem with several

smaller ones. In section we will discuss the global hypothesis formation for
r,

a single cluster. '.

The formation of global hypotheses for a single cluster is basically an

exhaustive search for all disjoint track combinations. Disjoint is defined to P

mean no two tracks in a candidate hypothesis are from the same target tree or

include a common return. The search capability of the AM can determine the

allowable additions to a partial hypothesis in two steps - one to eliminate

all the tracks belonging to the same target tree as the last track added to

the hypothesis, and one to eliminate all tracks having common measurements

with the last track. This assumes that a mask (running list) of allowable

tracks is updated every time a new track is added, and stored for future use.

131

=V

ALPHATECH, INC.

Global hypotheses are equivalent to directed graphs, where each level of

the graph corresponds to a target and the nodes at that level are the track

nodes of that target. The allowable paths are determined by the previous

nodes (i.e., the associated track measurements) on the path. The value placed

on visiting a node is the negative log of the likelihood. We employ the logs

of the likelihoods so that the overall likelihood can be accumulated by addi-

tion instead of multiplication, and the negative of the log so that the global

hypothesis function becomes a minimization problem.

Figure 6-5 Is an example of one hypothesis in such a graph. The exist-

ence of an edge between any two nodes means that the path is allowable based

on the previously visited nodes. The source and sink nodes are inserted

merely to complete the graph, and have no value.

A possible global hypothesis generation scheme will be presented here.

The bit flag method of storing associated returns will be employed. A depth

first search will be used, which will require that each level (target) have

associated with it a mask of allowable descendant tracks based upon disjoint

measurements and nodes that have already been traversed, and a partial

hypothesis score (likelihood). In this way the track masks need not be

reconstructed from scratch whenever a new path is considered, but instead can

be computed in one step from the mask at the level above and the new track.

A track mask and partial likelihood will require

NCT*Bc Bits %

* '~ 1 Real

for each target, where Bc is the number of branches per Confirmed target.

Actually the above overstates the memory requirements as target i only needs

132

-~ ~- .* ***. *-****-~.*~*?.*,

ALPHA I LUM9 INk.

TARGETS -

X11 X21 31

TRACKS ---------

SOURCE
NODE ND

x15 3

-s Feasible Paths =Likelihood of track j for target
0- -4 Current Path iR36

R-3961

Figure 6-5. Graph Analogy for Global Hypotheses

the tracks for target i + 1 through NCT (i.e., its descendents). Addi-

tionally, the current best hypothesis must be stored. This will consist of

the hypothesis likelihood and NTC track numbers.

The first step in the algorithm is create the first candidate hypothesis.

The return bit flags for the first track of the first target are used to

determine all feasible (disjoint) tracks that can be combined with itself.

This track mask, along with the likelihood of this track, are stored within

the target data structure. Next, the first feasible track of the second tar-

get is activated. The bit flags for this track are loaded into the Comparand,

and the allowable tracks for this track alone are found. By forming the

133

- '-S * - - -. 5 - --5. . . - - -

1*- W I- -7- ,A -. - .- -k%-)FIt)A *WV -,

.1*

ALPHATECH, INC.
logical AND of this mask and the one for the target preceding it, the disjoint

tracks for the pair may be found. This mask, and the sum of the previous

partial likelihood and the current one, are stored in the present target's

data structure. This processing continues until a track from the last target

has been added. Once this last track is added, a full hypothesis is complete

and becomes the best hypothesis found so far.

After the first hypothesis is evaluated the last track added is deleted

from the candidate hypothesis and the next allowable track from the same tar-

get is considered. The best (highest combined likelihood) global hypothesis

found is stored and compared to subsequent hypotheses. This continues until

no more allowable tracks exist for that target, when the algorithm backtracks

to the previous target's tracks. When all legal track combinations have been

formed, the process stops. Bounding techniques should be employed in practice .-"
"4.

to limit the breadth of the graph and the depth of some searches.

Two associative searches are required at each step of the global

hypothesis process: one to activate the next target to be added (associative

EQUALS) and one to determine the feasible additions based on measurements

(associative logical ANY). Once these searches are performed they do not

have to be repeated at that target level until all completions of the current

* partial hypothesis have been formed. The formation of global hypotheses

requires, at most,

NTC-1

- = Bc*(Nc - 1) (6-6)

134

.Parr.-

* 1**

ALPHATECH, INC.

searches of each type. This bound is loose, as the underlying assumption is

that all possible track combinations from different targets are allowable.

But if this were true the cluster formation process would not have combined

the target trees. A better approximation is to assume that the addition of a

track to an existing partial hypothesis reduces the allowable tracks per tar-

get by an average fraction f. Therefore, the required number of searches of

each type is now

NTC-l 1 1- (I-f)NTC- 67

SBc*(l-f)i-1 Bc* (6-7)"i=l c L.]

The value of f is highly dependent on the scenario. For instance,

targets flying in formation create many tracks with conflicting measurement

assignments, causing f to be quite large.

In addition to the searches, the individual likelihoods must be combined

to form global hypotheses. This will take

NTC 1 -JTC

BT F - (6-8)S Bc*(1f)i-i = Bc*(-8

i=lLJ 5c-f

additions assuming the partial hypothesis likelihoods are stored.

S.- This global hypothesis procedure is similar to that proposed in [52]

for 0-1 integer programming on APs.

6.3.6 Pruning

- Confirmed target tracks not included in the most likely global hypothesis

NSCANs in the past are pruned away. Again, the AP handles this easily by

performing searches on the measurement flags corresponding to the oldest scan

(the more recent scans can be masked out) for each confirmed target. If a %

135
5."

ALPHATECH, INC.
-- I track contains a conflicting return its active track flag is set to 0, making

that word available.

6.3.7 Track Promotion

The promotion of targets to higher classifications is merely a matter of

incrementing the age of all tracks by 1. Also, the measurement f lags for the

% tracks must be shifted over by one scan to eliminate the oldest group and make

room for the next scan.

6.4 CONCLUDING REMARKS

The intrinsic parallel structure of the track-oriented multiobject

tracking algorithm makes it quite applicable to implementation on associative

processors. In this section we have given possible mappings of the tracking

algorithm onto the specific computer architecture of associative processors.

The choice of Al's over other computer designs was based upon their past and

present use in tracking systems. While these other applications employed much

simpler algorithms, the AP' architecture has been shown to handle the track-

oriented tracking approach quite well. The primary concern with Al's is in the

clustering and global hypothesis formation functions, as these are the most

sequential portions of the algorithm. We have presented several methods of

structuring the data and computations in order to exploit the capabilities of

the Al'. In the next section we will consider the more general architectures

of MIMD computers and how the tracking algorithm may be implemented on such

systems.

136

ALPHATECH, INC.
4.b.

SECTION 7

ADAPTATION OF THE TRACK-ORIENTED MULTIOBJECT
TRACKING ALGORITHM TO MIND COMPUTERS

" 7.1 INTRODUCTION

In the previous section we discussed possible implementation methods for

the track-oriented multiobject tracking algorithm with regard to associative

processors. The choice of associative processors was made based upon their

historical application to the tracking problem. While it was shown that APs
r

can be employed efficaciously, we do not contend that they are the optimal

choice in computer hardware. In fact, it is impossible to select a single

best architecture. While some architectures may appear more suited to the

tracking problem than others, various factors must be considered in the deci-

sion. Considerations such as cost and relative speed must be appraised. For

instance, it may be that the high end pipelined computers (e.g., Crays) will

out perform most multiprocessors, even though the multiprocessor seems better

matched to the problem at hand. Such factors are out of the scope of this

research.

In this section we will examine how the track-oriented tracking algo-

rithm can be restructured to exploit the capabilities of MIMD computers. The

computer model we will consider is one of a RAM MIMD machine wherein all

processing elements can access the required data without conflict. This can

be accomplished either with shared memory or global memory configurations

with parallel read access, or by local PE memories that contain the required

137

r

L ALPHATECH, INC.setowwilinethtmerqrd
data. As was done in the previoussetowwilgnrtetmeeqrd

for data manipulation and concentrate on the arithmetic execution require-

ments. Also, in keeping with one of the basic assumptions of this research,

we will only consider functional, or large grain, parallelism here. This

model is extremely relaxed, without major restrictions in memory, processing,

or interconnection networks. In an initial study such as this it is desirable

to examine parallelism limited only by the application itself. Such work can

then lay the foundation for more realistic hardware restrictions.

In the remainder of this section we will present restructurings of the

tracking algorithm that are suited to MIMD computers. Possible problems and

concerns germane to MIMD applications will also be presented. The majority of

the discussion will concern the functions of clustering and global hypothesis

formation. As has been obvious in Sections 5 and 6, the track functions of

predicting, gating, and updating can be handled concurrently by target track.

It is the synchronization tasks of clustering and global hypothesis formation

that present the greatest challenge.

L%

7.2 TRACK-LEVEL FUNCTIONS

The term "track-level functions" is defined to be those functional tasks

*that display a natural parallelism at the track level. As was shown in Fig.

* 5-2 and discussed in subsection 5.2, these functions are those of predicting

V.the track ahead in time, gating the returns for the current scan, and updating -

the target tracks with the associated returns. In this subsection we investi-

gate the application of MII4D computers to these functions.

Prediction of the track information is an independent computation for a

each track, assuming that the necessary state transition and noise matrices

138

a %

ALPHATECH, INC.
are available to each process. As such values are typically "hard-wired" into

the code itself there are no access contention concerns. The only data

required is the individual track state estimate vector and covariance matrix.

The result of the prediction function is new state estimates and covariances,

which may be inserted into the same memory locations that the input data occu-

pied. Therefore, there are no write contention problems.

The total time to predict all tracks is given by

Nt
Tp t (Npe (7-1)

where

tp = Average time to predict one track forward in time

Nt = total number of tracks to be predicted

= Nc*Bc + Ni*Bi + Nt*Bt

Npe = Number of available PEs

Equation 7-1 takes a form much like a step-function, .wherein discontinu-

ous increases in execution time occur at multiples of Nt. An increase of one

track above Nt will result in an increase in execution time of tp. This is a

standard characteristic of multi-processor architectures, and points out the

'- need to match computer and problem size.

The next track-level function is that of gating sensor returns against

the predicted track values. Gating differs from prediction in that the compu-

tations are not a function of the track data alone. In fact, the total possi-

ble parallelism in gating is determined by the total number of tracks and the
.

, .

%.. 139

.5

ALPHATECH, INC.
total number of returns. Ignoring for the moment problems of write conten- %

tion, the total time to gate all returns against all tracks is %

T t * F Nt* NR]Tg tg* 1 (7-2) %
~pe %

where

tg Average time to gate one return
against one track

The processing assumed in Eq. 7-2 is that each processor will perform all

the required gating tasks for one track-return pair. These functions include

both setting up the gate bounds and performing the comparison with the return.

Under this assumption (and given that all returns in the scan are of the same

accuracy) the identical gate set-up computations for a single track will be

repeated NR times by NR processing elements. Another method would be for a

single PE to compute the gate bounds and communicate the results to NR - 1

other processors, or store the results in memory to be accessed by the other V.

PEs when needed. Such a method requires

[N 1 + Nt*NR
Tg = tsu* Ft* p (7-3)

where

tsu = Average time to set-up gate bounds
for one track

t c Average time to compare one return
against one set of track bounds

Note that

tg = tsu + tc (7-4)

i~i 140

r"
.. 4. -. . - -. , , '

ALPHATECH, INC.
And so, given a sufficient number of PEs, Eqs. 7-2 and 7-3 will produce the

same execution time. But in the event that

Npe < Nt *NR

the second method will require less computation time as the common gate set-up

calculations are done only once.

A possible concern in the gating function is that, implicitly, it is in

this step that the target trees are expanded. If there are enough processors

to assign one track-return pair to each PE, the problem of how to determine

the labels of the resultant branches arises. Recall that new target tracks

are only created for returns that pass the gating tests (we are ignoring

missed detection branches as they are an insignificant addition to processing

requirements). In conventional computer applications of the track-oriented

algorithm, new tracks are simply numbered sequentially as they are created.

In MIMD computers, it is not feasible for each PE to independently assign a

track label to its track(s), as the PE is not aware of the results of other

PEs. It may be possible for new track labels to be assigned based upon the

existing track label and the return number. This will undesirably allow for

track labels on empty tracks since not all track-return pairs are associated.

* Alternatively, all resultant new tracks can be communicated to a central PE

4 that inserts them into memory locations.

It is important to note that this is not truly a write contention issue.

Write contention refers to two or more PEs attempting to simultaneously update

the same variable in the same memory location. Here the problem is one of

bookkeeping to avoid writing different variables to the same memory address.

141

% "."e %q,.

ALPHATECH, INC.
The final track-level function is updating the individual tracks with the

appropriate return values. Updating is functionally similar to prediction in

that the track estimates and covariance are changed and then allowed to over-

write the original values in memory. The update calculations depend upon the

individual track data and return value. The total time necessary to complete

updating of all tracks is

PrUr t (7-5)
T~u tue..

where

. tu Average time to update one track

7.3 CLUSTER FORMATION

-I.. The function of cluster formation differs from the track-level functions

in that it is not parallel by track. In fact, the algorithm currently

employed in sequential computers displays little if any functional parallel-

ism. In this subsection we will discuss possible. restructurings of the clus-

tering algorithm that promote MIMD computer applications.

Clusters can be formed most economically by first forming subclusters

during the association (gating) stage. Subclusters are basically clusters

formed on the basis of one scan of data. For each return in a scan all tar-

gets which accept the return for update are grouped together into a single

subcluster. Since different tracks in a single target tree may be updated

with different returns, the same target will appear in several subclusters. A

target may also be included in subclusters in each of the NSCAN + 1 scans of

interest.

142

ALPHATECH, INC.
The purpose of clustering is to combine all subclusters that have common tar-

gets. This is in contrast to the definition of clustering used in the AP

applications of the previous section, where the content addressing capability

of AMs made clustering directly from the associated returns more attractive.

Clustering may be viewed as constructing an interconnection matrix, M,

where its elements are given by

mij = I1 if Ci n cj 0 (7-6)

0 else

and

Ci Subcluster i (set of targets)

,I (i < NS

M is obviously symmetric with l's on the diagonal, so we therefore need only

consider the region above the diagonal. To determine the interconnections it

is necessary to compare each subcluster CI with all other subclusters Cj where

j > i, thereby finding each row in the upper triangular section. This

requires

NS
[(NS -i)' " i= 1 -

set compares. Note that

NS iNS) NS(NS - 1)S(NS -i) = [oS =
22 -

.i=14

).4

'5" ";

.-,'i

-, o - .=' %-= -% . ' % -% - " % %,." "- .. .-..-°. .."., % h ..-. ,% % ,. -.- . % %'%' .. ,°"

.l WM. I

ALPHATECH, INC.
which, given a worst case of NTS compares per set (NTS is the number of Con-

firmed targets per subcluster) is the same as the operation count in subsec-

tion 5.3. Also, as in subsection 5.3, we will ignore the actual merging of

the subclusters and concentrate solely on determining the subclusters to be

merged.

Computing each full row of the interconnection matrix determines all

subclusters that have a common target with the subcluster corresponding to

that row. Computing a single element of the matrix determines whether those

two subclusters are interconnected. Given both sufficient data availability

and sufficient processors, each element of the matrix may be computed inde-

pendently from all others. The results may then be combined to form M.

If the smallest divisible unit of computation is the determination of a

- single element in the interconnection matrix, then the total number of opera-

tions that are required is at most

NTS F NS(NS - 1)]

16 bit comparisons. Equivalently, the time required to complete the relevant

section of M is

* Tc = tc [Npe (7-7)

where

tc Average time to compare two different§. subclusters

An important characteristic of MIMD computers that has not been explicitly

mentioned is their asynchronous nature. This capability will prove very

important in clustering, as the subcluster set comparison operation halts

144 ""
0.

t, ,, t./',(.. . 3te.. 2.,t'., ,, ,* p *

ALPHATECH, INC.
whenever a match is found. Therefore, some operations will stop after one

comparison while others will go through all targets in the sets. Because of

the asynchronous control of the processing new tasks (e.g., another set comn-

pare) can initiate immediately upon completion of the previous process without

having to wait for the other PEs to finish.

7.4 GLOBAL HYPOTHESIS FORMATION

Global hypothesis formation is the selection of target tracks, one from

each target tree in the cluster, that are disjoint (no common reports) and

satisfy some optimization criteria. The optimization criteria we employ is

that of minimizing the negative log likelihood of the composite hypothesis.

In the current sequential implementation the basic algo-rithmic structure is to

,- form all disjoint sets of tracks and compare the scores. Actually, this pro-

cedure is abbreviated somewhat by employing branch and bound techniques,

though we will not discuss them here.

The first observation about forming global hypotheses is that each clus-

termaybeprocessed independently. Doing so gives a required time to com-

plete of

Tgh =tgh* FNeN](-8

where

tgh Average time to create global
hypotheses for all clusters

NC =Number of clusters

Ngh =Number of PEs required to process one
cluster

145

ALPHATECH, INC.
We make the distinction between the number of available processors, Npe, and

the number of processors required for global hypothesis formation, Ngh,

because generally more than one PE will be employed in a single cluster.

The question now is how to structure the global hypothesis operations to

exploit the MIMD capabilities. In the previous section we introduced a graph

model for global hypothesis formation where the connectivity of the graph was

dependent on the current active path (c.f. Fig. 6-5). Using this analogy our
task becomes one of partitioning the graph such that independent searches may

be carried out. Simply subdividing the graph by targets or tracks will not

accomplish this as global hypotheses will in general cross over these bounda-

ries. That is, a global hypothesis will contain branches that appear in sepa-

rate subdivisions of the graph. Due to the path dependent nature of the
or.

connectivity it is not possible to simply combine the best partial hypotheses

found in each subdivision, and so all partial hypotheses from each partition

would have to be stored. After the processing in each subdivision is com-

pleted the results could conceivably be combined by testing each partial

hypothesis for disjointness. Such a method is considered inefficient and will

require a large amount of memory space to store the partial results.

A better approach is to realize that no matter how the computations are

*. distributed, there will have to be some sort of synchronization between proc-

esses in order to determine the optimal hypothesis. With this in mind, we

look to create optimal conditionally independent global hypotheses and then,

after all such best hypotheses have been formed, select the minimum. Condi-

tional independence is most simply illustrated by an example. Let the number

of processors equal the number of branches on Confirmed target #1. We may now

divide the global hypothesis formation problem into Npe C = Bc) subproblems,

146

% P

.kLW WVLP_'rk' VV WV rV "W R -r .4 I-

ALPHATECH, INC.
where subproblem I is to find the best hypothesis given that It must include

branch i of target #1. Since the optimal solution must contain a branch of

target #I, one of the Npe partial solutions must be the optimal one.

This approach is not constrained to use the first Confirmed target in the

cluster; any target may be employed. If the number of PEs is greater than the

number of branches than several variations may be considered. The first is to

simply ignore the extra PEs. This gives a total time requirement of

Tgh [B

Tgh = B pe (7-9)
-pB

There is an implicit assumption in the above equation that the individual

conditional hypotheses all require the same amount of time to compute. This

may not be the case, as the processing time is a function of the number of

possible conditional hypotheses in each PE, which will obviously vary. Never-

theless, the average time is considered an acceptable estimate.

A second method of employing processing elements is to form more than Bc

ki conditionally independent subproblems. This is a more difficult approach than

the first. The number of conditionally independent subproblems based on the

tracks of one Confirmed target is Bc. If the tracks from two targets are com-

bined then

(Bc) 2 (l - f)

subproblems may be formed, where the approximation is made that the addition

of a track to an existing partial hypothesis reduces the allowable tracks per

target by an average fraction f. This will produce a total required time of

147

Y":.

° ~~~~~~~~~~~~~~~~...........-... ° o .. o..-°--°°-. " " "'. . ." " ". , :',:.'. " . " . . ." :. " ""- ". '. .'"" " , ' . ","'.".'"B" -'." '""'

ALPHATECH, INC.

gh - tsu Bc)(___f)-

Tgh= (Bc)L(.fL Np(c) e~f1 + tsj, Npe > Bc (7-10)

where

L lg(Npe) + Ig(1-f)]-
L I B) + lg(-f) c (7-11)

tsu = Average time to set up subproblems

For Npe < Bc, Eq. 7-9 holds. L is the number of target branches upon which

the partial hypotheses are conditioned. Note that for Npe = Bc, Eqs. 7-9 and

7-10 are equivalent. A major concern with creating more than Bc conditionally

independent subproblems is that an increasingly complex- set-up must be accom-

plished first. In the extreme case with an unlimited number of PEs, each dis-

joint candidate hypothesis must be identified before the subproblems may be

created. But if this is done prior to the parallel portion all that remains

for the PEs to calculate is the likelihood sums. That is, practically all the

global hypothesis formation has been done sequentially in set-up, and so Csu

will approach Tgh. This set-up time may be avoided at the cost of wasting

processing power by not determining the disjoint candidate hypotheses ahead of

time, but just assign candidate hypotheses to PEs whether they are disjoint or

not. The individual PEs must then test to ensure that the basis of their con-

ditional hypothesis is sound. If the basis tracks for a particular hypothesis

are not disjoint, processing will halt and the PE will sit idle.

A final method of handling the subproblems with Npe > bc depends upon the

ability of some MIMD architectures to dynamically allocate tasks to the proc-

essors. Such a configuration would alleviate the problem of PEs sitting idle

mentioned above. Whenever a PE completes its assigned task it reports that it

148

v'1
'

'S

ALPHATECH, INC.
has finished to its controlling process, which may then assign it a new task.

This suggests a hierarchical arrangement of processors. The higher level

processors will take whatever subproblem is assigned to them, and divide it

further for implementation on their slaved processors. Unfortunately, such

L~. asynchronous control is difficult to accurately investigate at the level of

generality we are interested in here.

7.5 CONCLUDING REMARKS

The adaptation of the track-oriented multiobject tracking algorithm to

MIMD computers is a complicated task that, in actual applications, will be

heavily driven by the specific architecture to be employed. In this section

we have described possible implementation methods and discussed relevant

issues that arise in such systems. The analysis provided here will hopefully

form the basis of further study into restructurings of the tracking algorithm

for fully defined systems. Once such issues as processor capabilities, memory

configurations, and communication networks are well understood (as will happen

when working on a real, physical computer), the functions studied here may be

derived and examined in far greater detail.

149

ALPHATECH, INC.

REFERENCES

1. Delaney, J.R., A.S. Willsky, A.L. Blitz, and J. Korn, "Tracking Theory

for Airborne Surveillance Radars," ALPHATECH Technical Report TR-142,
Burlington, Massachusetts, February 1983.

2. Washburn, R.B., T. Kurien, A.L. Blitz, and A.S. Willsky, "Hybrid State
1% Estimation Approach to Multiobject Tracking for Airborne Surveillance

Radars," ALPHATECH Technical Report TR-180, Burlington, Massachusetts,

October 1984.

I. 3. Kurien, T., A. Blitz, and R. Washburn, "Optimal Maneuver Tracking Using
Passive Sensors," Proceedings of the 6th MIT/ONR Workshop on C3 Systems,
Cambridge MA, June 25-29, 1983, pp. 164-171.

4. Kurien, T. and R.B. Washburn, "Multiobject Tracking Using Passive
Sensors," Proceedings of the 1985 American Control Conference, Boston MA,
June 19-21, 1985, pp. 1032-1038.

5. Hwang, K., and F.A. Briggs, Computer Architecture and Parallel ,

Processing, McGraw-Hill Book Company, New York, 1984.

6. Flynn, M.J., "Some Computer Organizations and Their Effectiveness," IEEE

Transactions on Computers, Vol. C-21 No. 9, Sept. 1972, pp. 948-960.

7. Zakharov, V., "Parallelism and Array Processing," IEEE Transactions on
Computers, Vol. C-33 No. 1, Jan. 1984, pp. 45-78.

8. Potter, J.L., ed., The Massively Parallel Processor, The MIT Press,
Cambridge MA, 1985.

9. Kuck, D.J., and R.A. Stokes, "The Burroughs Scientific Processor (BSP),"
L IEEE Transactions on Computers, Vol. C-31 No. 5, May 1982, pp. 363-376.

10. Siegal, H.J., "Interconnection Networks for SIMD Machines," Computer,
Vol. 12 No. 6, June 1979, pp. 57-65.

11. Feng, T., "A Survey of Interconnection Networks," Computer, Vol. 14 No.

12, Dec. 1981, pp. 12-27.

150

.P

~ % ~ 0.

ALPHATECH, INC.
12. Batcher, K.E., "Design of a Massively Parallel Processor," IEEE

Transactions on Computers, Vol. C-29 No. 9, Sept. 1980, pp.--3-840.

13. Foster, Caxton C., Content Addressable Parallel Processors, Van Nostrand

Reinhold Company, New York, 1976.

14. Yau, S.S. and H.S. Fung, "Associative Processor Architecture--A Survey,"

Computing Surveys, Vol. 9 No. 2, March 1977, pp. 3-27.

15. Batcher, K.E., "STARAN Parallel Processor System Hardware," Proceedings

P of the National Computer Conference, V. 43, 1974, pp. 405-410.

16. Batcher, K.E., "The Flip Network in STARAN," Proceeding of the 1976

International Conference on Parallel Processing, Aug. 24-27, 1976,

pp. 65-71.

17. Bauer, L.H., "Implementation of Data Manipulating Functions on the STARAN

Associative Processor," Proceedings of the Sagamore Computer Conference,

K Aug. 20-24, 1974, pp. 209-227.

18. Enslow, P.H., "Multiprocessor Organization--A Survey," Computing Surveys,

Vol. 9 No. 1, March 1977, pp. 103-129.

19. Crowther, W., et. al., "Performance Measurements on a 128-Node Butterfly
5, Parallel Processor," Proceedings of the 1985 International Conference on

Parallel Processing, pp. 531-540.

20. Wu, C. and T. Feng, Tutorial: Interconnection Networks for Parallel and

Distributed Processing, IEEE Computer Society Press, Silver Spring,

Maryland, 1984.

21. Evensen, A.J., and J.L. Troy, "Introduction to the Architecture of a

288-Element PEPE," Proceedings of the 1973 Sagamore Conference on

Parallel Processing, August 22-24, 1973, pp. 162-169.

22. Crane, B.A., et. al., "PEPE Computer Architecture," Proceedings of the

Sixth Annual IEEE Computer Society International Conference, San

Francisco, CA, Sept. 12-14, 1972, pp. 57-60.

23. Dingeline, J.R., H.G. Martin, and W.M. Patterson, "Operating System and

* Support Software for PEPE,' Proceedings of the 1973 Sagamore Conference

* on Parallel Processing, Aug 22-24, 1973, pp. 170-178.

24. Wilson, D.E., "The PEPE Support Software System," Proceedings of the
Sixth Annual IEEE Computer Society International Conference, San

Francisco, CA, Sept. 12-14, 1972, pp. 61-64.

25. Bergland, G.D., and C.F. Hunnicutt, "Application of a Highly Parallel

Processor to Radar Data Processing," IEEE Transactions on Aerospace and
Electronic Systems, Vol. AES-8 No. 2, March 1972, pp. 161-167.

151

ALPHATECH, INC.
26. Cornell, J.A., "Parallel Processing of Ballistic Missile Defense Radar

Data with PEPE,- Proceedings of the Sixth Annual IEEE Computer Society

International Conference, San Francisco, CA, September 12-14, 1972,
pp. 69-72.

27. Heimerdinger, W.L., et al, "Architectural Considerations in Interfacing a
Parallel Processor to the Air Traffic Control System," Proceedings of the
1974 Sagamore Computer Conference, August 20-23, 1974, pp. 372-382.

28. Schmitz, H.G., and C. Huang, "An Efficient Implementation of Conflict
Prediction in a Parallel Processor," Proceedings of the 1974 Sagamore
Computer Conference, August 20-23, 1974, pp. 383-399.

29. Baer, J., Computer Systems Architecture, Computer Science Press,
Rockville, Maryland, 1980.

30. Blakely, C.E., "PEPE Applications to BMD Systems," Proceedings of the

1977 International Conference on Parallel Processing, August 23-26, 1977,
pp. 193-198.

31. Davis, E.W., "STARAN Parallel Processor System Software," Proceedings of

the National Computer Conference, V 43, 1974, pp. 391-396.

32. Batcher, K.E., "STARAN/RADCAP Hardware Architecture," Proceedings of the
1973 Sagamore Conference on Parallel Processing, August 22-24, 1973,

pp. 147-152.

33. Feldman, J.D., and O.A. Reimann, "RADCAP: An Operational Parallel
Processing Facility," Proceedings of the 1973 Sagamore Conference on
Parallel Processing, August 22-24, 1973, pp. 140-146.

34. Summers, M.W., and D.F. Trad, "The Evolution-of a Parallel Active
Tracking Program," Proceedings of the 1974 Sagamore Computer Conference,

August 20-23, 1974, pp. 238-249.

35. Stanke, Z.C., "Automatic Track Initiation Using the RADCAP STARAN,"
Proceedings of the 1976 International Conference on Parallel Processing,
August 24-27, 1976, pp. 187-188.

36. Prentice, B.W., "Implementation of the AWACS Passive Tracking Algorithms
on a Goodyear STARAN," Proceedings of the 1974 Sagamore Computer Confer-
ence, August 20-23, 1974, pp. 250-269.

37. Katz, R., "Analysis of the AWACS Passive Tracking Algorithms on the
RADCAP STARAN," Proceedings of the 1976 International Conference on
Parallel Processing, August 24-27, 1976, pp. 177-186.

38. Eddey, E.E., and W.C. Meilander, "Application of an Associative Processor

'r. to Aircraft Tracking," Proceedings of the 1974 Sagamore Computer
Conference, August 20-23, 1974, pp. 417-428.

152

ALPHATECH, INC.
39. Boyd, H.N., "An Associative Processor Architecture for Air Traffic

Control," Proceedings of the 1974 Sagamore Computer Conference, August

20-23, 1974, pp. 400-416.

40. Batcher, K.E., "Bit-Serial Processing Systems," IEEE Transactions on
Computers, Vol. C-31 No. 5, May 1982, pp. 377-384.

WN 41. DiGiacinto, T., "Airborne Associative Processor," AIAA Computers in

Aerospace Ill Conference, Oct. 26-28, 1981, pp. 202-205.

42. Reed, B., "The ASPRO Parallel Inference Engine (P.I.E.) A Real Time

Production Rule System," AIAA/ACM/NASA/IEEE Computers in Aerospace V

Conference, Oct. 21-23, 1985, pp. 459-464.

43. Finnila, C.A. and H.H. Love, "The Associative Linear Array Processor,"

IEEE Transactions on Computers, Vol. C-26 No. 2, Feb. 1977, pp. 112-125.

44. Love, H.H., "Radar Data Processing on the ALAP," Proceedings of the 1976
International Conference on Parallel Processing, Aug 24-27 1976,

pp. 161-167.

45. Bar-Shalom, Y., "Tracking Methods in a Multiobject Environment," IEEE

Transactions on Automatic Control, Vol. AC-23, August 1978, pp. 618-626.

46. Reid, D.B., "An Algorithm for Tracking Multiple Targets," IEEE

* Transactions on Automatic Control, Vol. AC-24, December 1979,pp.

843-854.

47. Browne, J.C., "Formulation and Programming of Parallel Computations: A
Unified Approach," Proceedings of the 1985 International Conference on
Parallel Processing, pp. 624-631.

48. Gajski, D.D., and J.K. Peir, "Essential Issues in Multiprocessor
Systems," IEEE Computer, June 1985, pp. 9-26.

49. Heller, D., "A Survey of Parallel Algorithms in Numerical Algebra," SIAM
Review, Vol. 20 No. 4, October 1978, pp. 740-777.

50. Bierman, G.J., Factorization Methods for Discrete Sequential Estimation,
Academic Press, New York, 1977.

51. Bokhari, S.H., "On the Mapping Problem," IEEE Transactions on Computers,
Vol. C-30, No. 3, March 1981, pp. 207-214.

52. Morefield, C.L., "Solution of Multitarget, Multisensor Tracking Problems

on Associative Processors," Proceedings of the Fourteenth Annual Allerton

Conference on Circuit and System Theory, Monticello, IL, September 29-

October 1, 1976, pp. 1074-1083.

op:.
Ie.

153

r;7a

