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1. INTRODUCTION AND TERMINOLOGY 1
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1. Introduction and terminology

In this paper, all graphs will be finite, loopless and will have no
parallel lines. Let G be a 2-connected planar graph with tV(G) = p
points. Suppose G has some fixed imbedding 4 : G -* 'R2 in the plane.
The pair (G, 0) is often called a plane graph. A cyclic coloration of
(G, 4) is an assignment of colors to the points of G such that for any
face-bounding cycle F of (G, 0), the points of F have different colors.
The cyclic coloration number X,((G, 0)) is the minimum number of
colors in any cyclic coloration of (G, 4').

This concept was introduced in Ore and Plummer (1969) and was
actually first formulated and considered by them in its planar dual form.
That is to say, what is the smallest number of colors necessary to color
the faces of a plane graph in such a way that no two faces with a
common boundary point receive the same color. It was shown that if G
is a 2-connected graph with imbedding 4' in the plane, then X,(G, 0) -

2 2p*(G, 0), where p*(G, €) represents the number of points in any longest
face-bounding cycle in (G, 4). Let us henceforth denote the set of points
in the cycle bounding face F by aF.

Recently, Borodin (1984, 1985) has announced an improvement of
this upper bound to 2p*(G, 4) - 1, although the proof is not presented

:0 in either paper.
The main result of the present paper is to show that if (G, 4) is a 3-

connected plane graph, then x,(G, 4) p*(G, 4')+ 9. Moreover, we-show
that if p* is sufficiently large or sufficiently small, then we can improve
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this bound on Xc somewhat.
Before proceeding further, several remarks are in order. When we

speak of an imbedding 0 of planar graph G in the plane, we mean a
topological imbedding in the usual sense (see White (1973)) and would
remind the reader that when G is 2-connected, every face is bounded by
a cycle. Moreover, since parallel lines are not allowed in this paper, each
such bounding cycle must have size at least three.

The main results in the present paper are concerned with 3-connected
planar graphs. These are just the family of "3-polytopes" by a celebrated
theorem of Steinitz (1922). (For more on graphs and polytopes the reader
is referred to Griinbaum (1967).) We would also remind the reader that
since we assume that our graphs are 3-connected, by yet another classical
result, this one due to Whitney (1932), there is essentially only one way
to imbed them in the plane. Thus from this point on when we refer to any
3-connected planar graph, we can ignore commenting upon which par-
ticular plane imbedding of the graph we are talking about. Accordingly,
we will shorten the notation (G, 4)) to simply G. Note that Tutte (1963)
proved that the face-bounding cycles of a 3-connected planar graph are
exactly the non-separating induced cycles of the graph.

For any terminology not defined in this paper, we refer the reader
to Harary (1969) or to Lov.sz and Plummer (1986).

2. Some preliminary results

There are two principal tools we shall need to prove our main result.
The first of these is the so-called theory of Euler contributions initiated
by Lebesgue (1940) and further developed by Ore (1967) and by Ore and
Plummer (1969). Let v be any point in a connected plane graph (G, 4).
Define the Euler contribution of v, 4)(v), by ..

degv degv 1
(v) de1

2 E "
i

where the sum runs over the face angles at point v and xi denotes the
size of the ith face at v.

We shall require several simple lemmas. (For proofs see Ore (1967) or
Plummer (1985).) The first lemna is essentially due to Lebesgue (1940).

2.1. LEMMA. [f(G. 0) 1,- a 2-connected plane graph, then E, (P(v) =
2.
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2. SOME PRELIMINARY RESULTS 3

2.2. LEMMA. Let (G, 0) be a 2-connected plane graph. Then for all

v E V(G, 0), D(v) _< 1 - degv/6. 0

It follows from Lemma 2.1 that there must exist a point v in any
-.s 2-connected plane graph (G, q) with (D(v) > 0. Let us agree to call any

such point v E V(G, 0) a control point. (This terminology was first
used in Plummer (1985), in which the author studied the extension of
partial matchings in planar graphs.)

It is well-known, of course, that any plane graph has points v with
degv < 5. We would like to emphasize, however, that Lemma 2.2 tells
us ttat in any 2-connected plane graph we must have control points with
degree < 5. Moreover, for any control point v, we have the inequality

deg v 1 degv
-- 2 -1. (1)Xi: 2

Since we are assuming that G is 2-connected without parallel lines,
each xi >_ 3 and so inequality (1) yields the following three diophantine
inequalities:

degv = 3: E =IXi 2

degv = 4" -. _1 ->' 1

Vdegv = 5 1 Ti 2i :>3

The solutions to these inequalities are listed next for convenience. E[

(Note that for the sake of conciseness, we list each solution in monotone
non-decreasing order, although other cyclic orderings of faces of these
sizes about a point are certainly possible and must be considered. (See
Ore and Plummer (1969).) The number A listed in each case is the total
number of points different from v on the union of the cycles bounding / ::orks
the faces containing v. <or

' J-



degv-3 (3, 3, x) x=3,... A=x

(3, 4, x) x=4,... A =1+x
(3,-,x) x ----5, A --2+x
(3, 6, x) x----6, A=3+x
(3, 7, x) x = 7,...,41 A 4 + x

(3, 8, x) x = 8, ... ,23 A= 5 + x
(3, 9, x) x = 9, ... ,17 A= 6 + x
(3,10, x) x= 10, .. ,14 A=7+x
(3, 11, x) x = 11, 12,13 A = 8 + x
(4,4, x) x-4,... A-2+x
(4,5, x) x-5,...,19 A-3+x
(4, 6, x) x-6,...,11 A=4+x
(4,7, x) x 7,8,9 A---5+x
(5, 5, x) x-5,...,9 A-4+x

(5, 6, x) x-6,7 A=5+x

degv--4" (3,3,3, x) x-3,... A= 1+x
(3,3,4, x) x=4,...,11 A-2 + x
(3, 3, 5, x) x 5,6,7 A-3+x
(3,4, 4, x) x-4,5 A=3+x

degv = 5: (3, 3, 3, 3,x) x -3,4,5. A= 2+x

The second tool we require has to do with the concept of a contrac-
tible line in a 3-connected graph. A line e = uv joining points u and
v in a 3-connected graph G is said to be contractible if upon identify-
ing the points u and v and deleting the loop uv and any parallel lines
formed thereby, we have a graph which is again 3-connected. We denote
the resulting graph by G o e or G o uv. Thomassen (1980) proved that
every 3-connected graph with at least five points has a contractible line.
Recently, Ando, Enomoto and A. Saito (1985) have sharpened this result
by showing that, in fact, any such graph must have at least [p/21 such
lines. Actually, they obtain more precise information as to the location
of these contractible lines and it is these results which we shall use in
obtaining our main result. We state them here for the sake of complete-
ness.

The first result is Theorem 2 of the paper of Ando, et al.

2.3. THEOREM. Let G be a 3-connected graph with at least five
points. Then each point of degree 3 is incident with a contractible line.0

The second result is Corollary 5 of their paper.
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3. THE MAIN RESULTS 5

2.4. THEOREM. Let G be a 3-connected graph with at least five
points. Suppose v E V(G) and deg v > 4 and suppose further that no
line incident with v is contractible. Then at least three neighbors of v
have the properties that each is of degree 3 and each is incident with
exactly two contractible lines. U

*, 3. The main results

We are now prepared to prove our main theorem.

3.1. THEOREM. Let G be a 3-connected plane graph with maximum
face size p*(G). Then x,(G) p*(G) + 9.

PROOF. The proof proceeds by induction on p = V(G)I. Since G is
3-connected, p >_ 4. If p = 4, then G = K 4 and we have xc(K 4 ) = 4 <
12 = p*(K4) + 9.

So suppose p > 5 and that the result holds for all 3-connected plane
graphs having fewer than p points. Let G be any 3-connected plane graph
with p points. The reader should note immediately that contracting any
line in such a graph G cannot result in an increase in p* nor can it
destroy planarity.

Now by Lemmas 2.1 and 2.2, graph G has a control point v with
deg v < 5.

Suppose first that v is incident with a contractible line e = uv.
Then by the induction hypothesis, graph G o e has a cyclic coloration
in < p*(G o e) + 9 < p*(G) + 9 colors. Such a cyclic coloration of
G o e induces a partial cyclic coloration of G in which only point v is
not colored, where u.gets the color of the new contracted point [uv] and
all other points keep their colors. Now appealing to the list of solutions

4. presented in Section 2, we see that (U aF,) - v, where the union is taken
over all faces F around v, has A < x + 8 different points. Thus in the
partial coloring of G we have used at most x+8 < p*(G)+8 < p*(G)+9
colors on (U aF) - v. Thus we can extend the partial coloration to a
valid cyclic coloration of G in no more than p*(G) + 9 colors, as there
are > (p*(G) + 9) - (x + 8) > 1 colors available for v.

Suppose next that v is not incident with a contractible line. Then
by Theorems 2.3 and 2.4, deg v is 4 or 5 and at least three neighbors
of v have degree 3 and are incident with a contractible line. Let a be a
neighbor of v of degree 3 incident with a contractible line e, where we
may assume that a is not on the x-face. By the induction hypothesis.
the graph Go e has a cyclic coloration in < p*(G o e) +9 < p*(G) + 9



colors, inducing a partial cyclic coloration of G in which only a is not
colored. If the three faces F1, F2 and F3 around a have sizes Yi, Y2 and
Y3 respectively, then (aF1 U BF 2 U aF3 ) - a has at most Yi + Y2 + Y3 - 6
points.

Relabeling faces F 1, F 2 and F 3 if necessary, we may suppose that F1
and F 2 are faces at v. Then we may assume from the listing in Section
2 of the five possible cases that Y1 + Y2 < 8. Hence the partial cyclic
coloration may be extended to a valid cyclic coloration of G in no more
than p*(G) + 9 colors, as there are > (p*(G) + 9)- (y, + Y2 + Y3 -6)
(p*(G) + 9) - (Y3 + 2) > 7 colors available for point a. 0

In the next theorem we show that if p*(G) is sufficiently small, we
can improve the bound of Theorem 3.1.

3.2. THEOREM. Let G be a 3-connected plane graph. Then:

W~ p*(G) :5 10 -, xc(G) 5 p*(G) + 8 < 18,
(ii) p*(G) :_ 9 - Xc(G) :_ p*(G) + 7 < 16,

4', (iii) p*(G) _ 8 -- xc(G) : p*(G) + 6 < 14, and
(iv) p*(G) 7 - xc(G) p*(G) + 6 < 13.

PROOF. One simply modifies the proof of Theorem 3.1 by replacing
the induction hypothesis of that theorem by the sharper bound listed in

each case in the statement of the present theorem.
That these bounds cannot be sharpened by this inductive method,

is illustrated by extremal face configurations (3,10,10) for case (i), (3,9,9)
for case (ii), (3,8,8) and (4,7,8) for case (iii), and (4,7,7) and (5,6,7) for
case (iv). E

Note that if we try to push the approach used in the proof of
Theorem 3.2 further to include cases where p*(G) !5 6, the bounds we
get in each case turn out to be just the same as those given by Ore
and Plummer (1969), namely 2p*(G). But the bound of Borodin (1984,
Theorem 2; 1985, Theorem 3) is already one better in each of these cases.
In fact, Borodin has also shown (1984, Theorem 1) that if p*(G) = 4,
then x,(G) _< 6. Finally, if p*(G) = 3, then x,(G) _ 4 = p*(G) + 1,
by the Four Color Theorem. (See Appel and Haken (1977) and Appel,
Haken and Koch (1977).)

In contradistinction to Theorem 3.2, we finally show that if p*(G) is
sufficiently large, then we can also improve the bound of Theorem 3.1.V -



3. THE MAIN RESULTS 7

3.3. THEOREM. Let G be a 3-connected plane graph. Then:

(i) p*(G) > 14 - x(G) <_ p*(G) + 8,

(ii) p*(G) > 15 - x (G) < p *(G) + 7,
(iii) p*(G) _18 -* x,(G) _ p*(G) + 6,
(iv) p*(G) 24 -- x.(G) p*(G) + 5, and
(v) p*(G) 42 - xc(G) :5 p*(G) + 4.

PROOF. The proof is again by induction on p = IV(G)I.
(i). First suppose that p*(G) > 14. Then the smallest applicable

value for p is 14. But then every point can be colored differentl using
only 14 < p*(G) < p*(G) + 8 colors.

Now suppose that p > 15 and that the conclusion is true for all 3-
connected plane graphs with fewer than p points. Let G be a 3-connected
plane graph with p points. Let v be a control point in G. (Recall that
by definition of control point and by Lemma 2.2, deg v < 5.)

First suppose that v is incident with a contractible line e. There are
*. two cases to consider.

(a). Suppose that p*(Goe) = p*(G). Then p*(Goe) > 14, and by the
induction hypothesis we can color G o e in no more than p*(G o e) + 8 =

p*(G) + 8 colors. Now checking all solution configuration possibilities at
control point v present in the list in Section 2, we see that in all cases but
one, A < x+7. The one exception is the case (3, 11, x), where x = 11, 12
or 13 and A = x +8. But since p*(G) >_ 14, in this case z < p*(G).
Thus the coloring of G o e in p*(G) + 8 colors can be extended to a valid
cyclic coloration of G in p*(G} + 8 colors, as claimed.

(b). Therefore we may assume that p*(Goe) = p*(G) - 1. Then the
induction hypothesis does not apply, but by Theorem 3.1 we can color
G o e in < p*(G o e) + 9 = p*(G) + 8 colors. But then proceeding as in
Case (a), a cyclic coloration of G in p*(G) + 8 colors is obtained.

So now suppose that there are no contractible lines at control point
v. We will mimic the corresponding part of the proof of Theorem 3.1
at this point, contracting lines as in that proof. However, again we have
two cases to consider.

(c). Suppose p*(G o e) = p*(G). Thus p*(G o e) > 14 and we
may apply the induction hypothesis to color G o e in no more than

p*(G o e) + 8 = p*(G) + 8 colors. By inspecting the proof of Theorem 3.1,
we find that a cyclic coloration of G in p*(G) + 8 colors can be obtained.

(d). So suppose that p*(G o e) = p*(G) - 1. But then as in Case (b)
above, we can obtain the desired cyclic coloration in p*(G) + 8 colors of
G o e, and hence of G, as in Case (c). This completes the proof of part



(i) of the theorem.
(ii). Next suppose that p*(G) 15. The proof for the smallest

applicable value of p (p = 15) is again trivial.
Proceeding as in the proof of (i), if e is a contractible line as in any

of the cases of part (i) and p*(G o e) = p*(G), we can apply the induction
hypothesis and complete the proof as in case (i).

If p(G o e) = p*(G) - 1, we proceed as in part (i), except where we
invoke Theorem 3.1 there, here we invoke part (i) of the present theorem.

The proofs of parts (iii), (iv) and (v) are handled similarly. M

In the case of Theorem 3.3, we note that we cannot immediately
push this inductive method of proof further to obtain proofs that if the
lower bound on p*(G) is even larger, then we can reduce the upper bound
on XC(G) even more. The reason becomes apparent when we peruse the
list of solution configurations of Section 2 once more. We see there that
any attempt to go down to x,(G) < p*(G) + 3 is blocked by solution
configurations (3, 6, x), (4,4, x) and (3, 3, 3, x), because in these three
configurations the possible values for x are not bounded above.

4. Concluding remarks

We do not claim that the bounds we have obtained in the theorems
of Section 3 are best possible. The triangular prism R 3 has 6 points,
p*(R 3 ) = 4 and X,(R 3 ) = 6. So for this 3-connected planar graph, we

have X, = p* + 2. The authors are indebted to one of the referees for
pointing out that R3 is only one of an infinite family of 3-connected
planar graphs for which X, = p* + 2. This family is shown in Figure
4.1. In fact, the authors conjecture that Xc - p* + 2 for all 3-connected
plane graphs.

A second infinite family of graphs shown in Figure 4.2 (and due
to this same referee) shows that we cannot weaken the hypothesis of
Theorem 3.1 by replacing 3-connectivity with the condition that mindeg G
> 3. In fact, there exists no constant k in this case such that , p< + k.

The triangular prism R 3 with the three lines joining the two triangles
replaced by disjoint paths of equal lengths gives an infinite family of
graphs with X, = 3P* It seems not to be known if the theorem of Ore
and Plummer (1969) can be improved to obtain X,(G, 0) p'(G,o) for
all 2-connected plane graphs (G, €).

A non-planar analogue to the problem studied in this paper can be
considered for general 3-connected graphs by the result of Tutte (196;3)
mentioned in the Introduction. In other words, one might color points

M,

,., -



4. CONCLUDING REMARKS
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in such a way that each non-separating induced cycle has no two points
_ with the same color. However, the theory of Euler contributions is no

~longer available as a tool.
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