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CUEFRENT BERDOGREGS

~ = During the past fiscal vear, thie research orant helped
Lh support activities in four related areacs of associative

; prograzmming: 1\,r implementatiorn of the ASFFOL compilerj :‘.Q
; implemertation o0f the FIRST} NEYTJ PREVIOUS) TRUNC and TRUNCA

v acode functions and 1’0 stact routines) 2), implementation of tre
Q! associative database Drimitivesj and 4‘5‘aga1vsis cf new network
'§ desicgre for irnterprocessor communiczations in aseocizati e
F processors.

o A cors of the ASFFDOL compiler has been oiven to Good e:zr
if Asroscace for evaluation for use with their ASFRD SIMD computer.
?i It is 4felt that this compiler can be augmented with rule baced
T constructs thet will provide a high performance e:pert evetem
;i cap=abilit., Many of GAC e customere such as Grummarn Aerocpace.
3: NOSC  amd NSWCT are inte-ested 1n such a capabilitwy, Freliminary

) stuc:ez performed under =z sererate crant indicate that sceede of
,é about 6000 1nferencesz pe- second are obtainable.

K

. The following papers were preoduced

:3 DATA STFUCTUFES FOF ASCSOCIATIVE COMFUTING ‘csubmitted for publicztior
LE AN ASSOCIATIVE MODEL OF DATA feubmitted for publication)

“ ON FEFFOFRMAMCE OF SW-BAMYAM NETWOFHE (csubmitted for publicstiorn)
g The ASFROL Frogramming Language.

: The ASPFde lang..age developed last yvear and described in
‘g last veares report was implemented on the ¥SU VAX 780 research
'f computer.' The compiler convertes ASFFOL statements into a hioh

d

level intermediate form similar to the form described in the
2
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or:2ins! proooesl ‘D. 6V, Thie intermediate code car be
converted 1nto assemblyv larguage code for any bit serial SIMD
computer. The current implementation produces code for +the
STARAN E 2nd the ASFRO computeres. (Attached i1 a copy of the

ASFFOL users cuide).

Primitive ACODE and 1’0 Stacl Operators

The FIFST, NMNEXT, FREVIOUE, TRUMC and TFUNCA primitive ACCLDE
coeraters  develooed for marioulating data etructures durina the
firect vezr cof thice effort were implemented and tested on the

STARAMN E. FIFST returne the acode cf the ne:t lower level in the

hierarch, . MEXT returne the ne:t accde at the current le' el c;
the taerarch.. FREVIOUS returne the previous acode &t the
current le el. TEUMC returme the acode of the nevt higher le el
1n the hierarchy. TRUNTA returns the acode of the topo level of

hierzrch ..

Fouvtiresz which ei1mulzte the 1/0 etacth oceratiorne described
1m the eori12:n2] propeoeal were writter. COLLAFSE eliminates the
unueed wordz an the 1/0 stzct (2 recserred page of the STARAMN E
Srea o memor compacting the data into =2 contiquous bloct.
ExXFerMD re erzes the procecss. It cauees the contiguous bleoch  of
datz a2t the bottom of the stach tcoc be erpanded to worde which are
1dle. Tre COLLAFSE and EYFAMD commandes simul ate hardware commandes
that facilitate run time memorv allocation in  associative

processores.

An Associative Database
An initial design for an ascociative database was developed

and the primitive data base operatore were implemented ornn the
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STAFAM E. Thie databacse is designed for natural language and

artificial intelligence applications.

Interconnection Networks
A new method for determining the number of permutations

realized bv SW-Banvan networke was developed.

PLANE

The major emphzacsics in the next vear will be to integrate the
etructure code mechanisme into the ASFROL compiler. As reported
above, the primitive functione have been decsigned and
implemented, but thev have not been integrated into the ASFROL
languace. The 4ircet setep will be to design the formal 1languaaqe
mechaniem which will be used in ASFROL and then the language will
be e:panded to include them.

The uwutility of the structure code concepte 1in acssociative
computeres and high level languages will be studies. Neot only do
structure codecs allow dynamizc memor: alleocation, they promice to
provide a common data organization which will allow such diverse
languages ac LISF, FOFTFANM, FFOLOG and ASFFOL to communicate
with each other,

Some effort will be epent on the initial develooment of a

theorv of acssociative computing to explain ite relationship with

e et
rule bacsed lanqguages. S
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APPENDIX A

ASPROL SYNTAX PRIMER
Version 2.00

ASPROL is a high level language designed specifically
for SIMD parallel processors such as the STARAN-E and ASPRO.
This primer is written to aid users in writing ASPROL codes.
It specifies the correct syntax for writing ASPROL programs.
It is not meant to be a user gquide for writing STARAN-E pro-
grams. There is a class offered by the math department:
Parallel Programming and a series of seminar about Parallel
programming. For those interested in programming the STARAN-
E, please consult with Dr. Jerry Potter.

For those who want to have.a copy of this primer, use
this command on your command level on Vax780 or Vax750 :

$ lpr -1 /user/parallel/asprol/primer

¥
3{
.fi I would appreciate your help debugging this compiler.
L Please send me mail about any bugs that you may find. Please
_ be advised that ASPROL will quit compiling as soon as the
o first syntax error is detected. Please don "t be discourage
,ﬁg by this little inconvenience !
-
La
‘rJ I. How to compile:
fi’ To compile your program :
R
S % asprol -s filename.asp (for STARAN-E code)
" or
> % asprol -a filename.asp (for ASPRO code)
4 )::.
o Either will create 3 files :
NS
. i"'
' 1. filename.lst :
) a readable program listing with intermediate code.
5
e
%)
b) l‘-.‘
) 72
Aﬁ.
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wa 2. filename.iob :

5N An encoded intermediate file which is expanded in
E' pass two to assembly language.

R 3. Option -s will produce : filename.apl

Assembler code which can be assembled by the STARAN-

R E assembler.
LS
J} Option -a will produce : filename.asm
4 Assembler code which can be assembled by the ASPRO
oy assembler.

'4.:-. II. Syntax :

™

)

:,. [ Program identification ]
7 Bed%araflon

vVariable association

3 ‘-. bOdy

. [ end; ]

3

~

3
: : Note:

- An "#include filename™ may be placed anywhere in the
g source program for one level of file indirection. 1If
oy the include file ends with an "endasm;" statement, it

must be followed by at least two blank lines.

E )
w R
oK)

-

- A
’ 3
'

A. Program Identification:

“

-

e option 1: Main Program_name

‘¥ - Generate DFs and DC in assembler.
AN - Generate ENTRY s for DCs.

D

option 2: Subroutine Subroutine_name

::fjl - Generate DFs and ENTRYs for DC.

>

g option 3: none

ﬁf - Generate DFs and DC in assembler.

. - Generate ENTRYs for DCs but no boiler
y plate.

:f’

s
2 v s
'

‘.‘-

PELEEP
‘-i%'v}u,‘;
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X
!

Y example :

’,

)
J:. main program_name subroutine routine_name
i)
K . .

variables association variable association

# . .
0 declarations declaration
'n’

. . .

;. body body
- end; end;
3 Pl
N B. Declaration : Declaration should be specified in the
s following order !

) 1. define(var,constant)

24 deflog(var,constant)

' 2. defvar

3. int scalar varl, var2, ...;
int parallel varl, var2, ...

.
,
.
’

“e

real scalar varl, var2, ...:
" real parallel varl, ...;
ig
%‘ index scalar varl, var2, ....:
) : index parallel varl, var2, ...:
L)
. logical scalar varl, var2, ...;
s logical parallel varl, var2, ...:
&
,f..
B
A 1. define/deflog
R define:
"-
e
7 syntax : define(var, constant);
, var : regular variable name. ]
|
A constant : any constant value (including a
::' previous define).
- example : define(ten, 10);
A define (decade, ten);
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deflog:
Deflog is wused for defining a 1logical
constant. In ASPROL, this definition is treated as

The only different between
Define is
define

a scalar constant.
define and deflog is in its data type.
an integer scalar, while deflcg is a
logical constant (a special data type).

syntax : deflog(var, constant);

var : regular variable name.

constant : either 0 or 1.

example : deflog(true, 1);

defvar

If defvar is present in front of an int, real
or logical declaration, the declared variables
will be stored in the ASPROL symbol table and be
treated as regqular variables, but ASPROL will not
cause any memory allocation macros to be
generated. This option is provided to allow users
to override the ASPROL compiler memory allocation
so that they can allocate memory manually at
assembly time. The programmer can specify his/her
memory layout by using "asmcode" statement, or by
editing the “.apl” file before assembling it.

example : defvar int parallel A:8($], C[$]:

int, real, index, logical

syntax: variable name:field_width([dimension]

variable_name :

A -2, (no distinction)
1 -9
- Any variable name should begin with a
letter. Any variable name longer than 6

characters will be truncated.

- letters : a - 2

example : progl, false, P12345.

B

P ST Y
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3.2 field_width :

int : 2-32 bits (scalar & parallel)
(default 16 bits).
real : 32 bits (scalar & parallel)

(default).
index : 1 bit scalar & parallel .
logical : 1 bit scalar & parallel .

Note:

All scalar variable are stored in 32 bit words re-
gardless of declared size.

3.3 dimension:

The maximum’ limit for the dimension depends
on the data type. For int, real, and logical data
types, the maximum limit for the dimension is 3.
The first dimension for the parallel mode should
always be a “$°. The index data type is always 1
level deep.

Note

Indexing of dimensioned arrays ranges from 0 to
size - 1.

example :

int scalar A, B[(32}, C:8{10,10,10];
int parallel A(S$}, B($,10,10], C:32(S],
D:32[$:5,10]:

real scalar A, B[10}, C[10,10,10]);
real parallel A[S$], B[$,10], C[$,10,10]);

index scalar A;
index parallel A[S];

logical scalar A;
logical parallel A[S$]

, B[$,10], C[s,10,10],
XX[S}];

IEY TUN
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C. Variable Association:

This section tells ASPROL which wvariables are
associated with which variables. All variables used in
this association should be declared in the previous
declaration.
syntax : associate varl, var2, var3, ... with varX;
where : varl, var2,... are parallel mode variable.

varX is a logical parallel variable.

example : associate A[S]), B[S$], C[$], D[$] with XX[S$];

D. Body :

1. If statement :
if (log_par_exp) then
gody
[else.
Body
endif;]
2. For statement :
for index_var in (log_par_exp)
gody

-

endfor index_var;

3. Get statement:

get index_var in (log_par_exp)

body

endget index_var;
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a9 4. Next statement:

]:‘_. next index_var in (log_par_exp)
: body

N .

,5& endnext index_var;

5. While statement:

o

O while index_var in (log_par_exp)
o .

Iy body

A\ .

-\.;\:‘ endwhile index;

S—

. n

:::‘ 6. Any statement:

o

S any (log_par_exp)

’ body

N endany;

:-:::-. 7. First statement:

! first

,J initializations

'.:j?] loop statement

o note :

N

:}_Z Only simple assignment statements and initializa-
4, tion are allowed in the ’first” statement. The

“loop” statement should follow right after the
“first” statement.

L 4
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Loop statement :

loop

body
until

endloop;

(scalar condition)

note :

There may be any number of “until” statements in a

“loop -endloop” body.

Allocate statement:
allocate index in index_variable
body

endallocate index;

note:

index_variable is index_variable association.

index is an index wvariable.

asmcode - endasm statement:

asmcode (must be typed in the first column)

Staran-E assemble language instructions.

endasm; (must be typed in the first column)
note:
All statements between asmcode and endasm
should exactly follow all rules for Staran-E

assemble language. All ASPROL variables that are
keywords in the STARAN-E assenmbly language should
be prefixed with a “$° character.
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& example :

assembly language. Similarly, y becomes $Y

’ An x in ASPROL becomes $X in STARAN-E
)
M and ré becomes $R6.

. For more STARAN-E keywords, please consult with
the STARAN-E assemble language manual.

! 11. stop statement :

The ’Stop” statement is used to stop the
l execution of the program. It can be used anywhere
X in the program.
Ky syntax : stop:
).
"a 12 return statement :

The ‘return” statement is wused in the

) subroutine module only. It is used to return
control of the execution to the instruction after
the call statement in the calling module.

i syntax : return;

13. call statement :

syntax : call subroutine_name:;

e 14. setscope statement :

' setscope log_par_exp

'..‘- body

N endsetscope:

- 1
" ) The setscope statement is used to set the M

] register temporarily with the log_par_exp result.

. The statements within the setscope - endsetscope

only will be affected by the new M register
setting. After the endsetscope statement, the M
register will be restored to the value before the
setscope statement is used.

N
A

v m AL e
SN N

- "h
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unary function calls :
1. MINDEX :
syntax : MINDEX (par_var)
2. MAXDEX :
syntax : MAXDEX (par_var)
3. MINVAL (par_var)
syntax : MINVAL(par_var)
4. MAXVAL (par_var)
syntax : MAXVAL (par_var)
MINDEX will return a index parallel variable that
has set the responder bit which has the minimum
value on the par_var array.
MAXDEX will return a index parallel variable that
has set the responder bit which has the maximum

value on the par_var array.

MINVAL will return a scalar temporary variable
that has the minimum value of the par_var array.

MAXVAL will return a scalar temporary variable
that has the maximum value of the par_var array.
indirect address statement :

syntax : @ (scalar_exp):type:length[dimension]

There are 2 different ways to use the indirect
address statement :

1. scalar result

syntax :
@ (scalar_exp) :type:length[index_par_var)

This statement will return a scalar temporary
variable which has the value in the array
that is pointed ¢to by the result of
scalar_exp and indexed by the index_par_var.
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example : @(A):int:8[xx]
Y where : A is int scalar variable.
Y Xx is index_par_var.
; 2. parallel array result

! syntax : @ (scalar_exp) :type:length($]

This statement will return the array that is
pointed to by the result of scalar_exp.

example : @ (A):int:8[$]
where : A is int scalar variable.

L g e

17. assignment statement :

log_par_var = log_par_exp;
. var = expressions;
note :
All data types should have the same type for the
4 left and right hand sigde.

arithmetic operators:
addition
subtraction

multiplication
division

~N b+

. relational operators:

less than

greater than

less than or equal
greater than or equal
equal

not equal

.1t.
.gt.
.le.
.ge.
.eqg.
.ne.

tia

nnnn
- - - - - -
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logical operators:

.not. : negation
.0r. : or

- m O wn N

&& .and.: and
- «XOr.: exclusive or
note :

If you use parallel variable, you should use $ in
the assignment expression.

ex: vari[S$] = var2($] + var3[$] + 5;

NOTATIONS:

(..}
log_par_exp
log_par_var
index_par_var

optional

logical parallel expression
logical parallel variable
index parallel variable

° as o0 0y

III1. Reserved keywords:

These following identifiers are reserved for use
as keywords and may not be used otherwise:

int real scalar parallel
index logical any allocate
associate define deflog defvar
during end endallocate endany
endfor endget endif endifnany
endloop endnext endsetscope endwhile
else elsenany for first
get in include if
ifnany loop main maxdex
maxval mindex minval next
procedure return setscope stop
subroutine then thenany until
while with #include

The above keywords which are not currently
implemented by this compiler are reserved for future
use. Some keywords may be changed for further
refinement.

*kk ond Rt
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1.0 Introduction

1.1 Associr1ative Super Computing

Ascsociative Super Computing 1€ & model of computation. where
each datum has 1ts own dedicated processor. Associative computing
explolts mascsive fimne grain paralleliem in & natursl way.
Massively parallel associative computers with 16v processores have
been built, eliminating the need for time <charirg a <inale
central processing unit with a multitude of data elementes thus
avoiding the classic memorw - CFU bottlenect. Ascsociative
computing uses massive parallel! cearching in place of address
calculation, reducing programming complexity. Thie paper
describes a method for implementing data structures in the

ascsociative computing model which 1€ applicable to all tvpes of

high level languages.

1.2 Baclground

The concept of ascsocirativity has been precsent in computer
science for many years (Jacts.1971 and Findler, 1970) The most
prevalent realication 1 associlative ¢triplee in ARI. The
associ1ation list and ASSOC function i1n the LISF language are of
courcse 1mplemented in conventional hardware. Content addreccsable
memories are manufactured but are limited in use due to their
relatively high cost. Reseociative computerse were fi1rct develoned
at Goodvear Aerospace 1in the early 1970 (Batcher, 1977), C.
Foster's bool (1974) describec the basic components of elementary
ascoctiative computers.

The first higher level languagecs descraibed that made uce of

ST N A ;.; RIS




the parallel nature of aszociative computers were e:xtensions of
FORTRAN (Fotter ., 1982) and FASCAL (Reeves., 1985). However, more
recent languages have beern decscribed which are based on an
associrative model of computation ‘e.q. Fotter. 1987, Inherent
in thecse languages 1= the concept that each ascsociation has ites

own dedicated processor and that computation 1 effected by

repeatedlv celecting associations to be procesced. Since there
15 no formal mechaniem in these languages to enable the
specirf:caticn of a data structure. assoclative data cstructures

had to be 1implemented at the acscsembly language level (For

e:.ample. Fotter.,1987, Feed, 1985 and Fotter.198%). Thie paper
e:pands on the concepts used for assembly lanqguage data
structures building & completelwv ageneral hierarchy of data

structures which can be used in anv higher order language.

-~

2.0 Associative Frogramming
2.1 Raclkground

The thrust of the acscscciative computing model can be bect
e'plained bv analvzinag the fundamental componente of a program.
In thic cection. & program ic concsidered as & message between
programmer and computer. The message contains two maj;or types of
information. the procedural compornernt and the identificatiocn
component. The procedural part specifies the operations to be
performed and the order 1n which the. are to bte evecuted. The
1denti1ficaticon component of a proagaram selecte the data to be
operated on bv the procedural component. Ascspciative computinag
uses associlative addrescsing for the i1dentification component.

The ctructure of data provides 1nformation. Thus 10 the
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r'v
S
kﬂ
oG record <hown 1in Figure Z.1. the number 50 can be recognized as
NS
>
. the AGE attribute of the patient JONES not by anv inherent
5
A \'
Y property of its own, but by the fact that it 1€ 1in the <second
} (AGE) position of the record. Colleqge te:ts on data structures
\"',
R often decscribe information theorw as developed bv Shannonl1949]
n
and others as part of the theoretical backtground for data
y structuresc. The Fknowledge that the second element of the data
i structure contains AGE data is "information" in the clascsical
! sense that 1t dispels "uncertainty" about the meaning of the
X number S0,
N
] o s e
4 FATIENT : JONES !
:t, AGE ' S0 g
R\ "'. e e :
- ELOOD L120/80
- FRESSUFE !-~—-—--—-~ !
- Figure 2.1 - A Simple Data Structure
Y
-’-
b The positional information contert of & data structure 1¢
i}- established bv two mappinges. The firset mapping 1s between the
I: problem data and the logical data structure based on the
}
v’ algorithm. The second mapping is between the logical data
~ structure and the physical organizatiorn of the computer memaor .
’}: These mappings are ectahlished bv the programmer and are often
y the most crucial aspect of program develcopment.
- When a program ics viewed as a meccage between a programmer
f: and & computer, as illustrated i1in Figure 2.7, it contains two
3 bacsic types of information. First, the program directe the
:} computer 1in the procedural e ecution of the fundamentz]l cters of
.
‘.
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the algorithm. Second. the program embodies the positional
information of the data structure bv fetching and delivering to
the central processing unit the appropriate data at the
appropriate time. That 1€, 1f the algorithm is calculating
hospital 1nsur ance premiume  based on  age. the program must
deliver the age datum not the blood pressure datum to the CFU.
Since this data delivery tash involves the mapping relationchips
mentioned above, 1t can be modeled bv an addrescsing function (AF)

comporent of the program.
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INFORMATION / \
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FROBLEM logical LOGICAL phyeical FHYSICAL time CFu
DATA  ———m————— -DATA  —mme————— *DATA  emm———— “DATA

mappi1ng STRUCTURE mapping STRUCTURE sharing STRUCTURE
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Figure 2.7 A Conventional Frogram Messaqge

The addressing function of every program is influenced by
three <factors: 1) the mapping between the pr.blem data and the
logical data <cstructure f(called the logicel mapping). o the
mapping between the logical data structure and the physical dats
cstructure 1n the computer memorv (called the phveical mapping) .,
and T) the mapping between the physical datxs structure and the
CFU as a result of the fact that the CFU must be time <shared
among the multiple data records in a file.

In the simplect conceptualization, a different addressing

function ie required for fetching each individual piece of data

required bv an algorithm. However . these <simple addrescsing
furctiorne are combined 1nto larger more comprehenclve ard
comple: functions uwsing looping and addrecss modi1fication
(1nde:1ng) techniqgues. The loop construct, for e:ample. i1s used

e:tensively to ¢time share the CFU among the manv identical

records of a fi1le. Ar important aspect of selecting a dat

n

cstructure for a sequentiel computer 1s to piclt one which allows
the addressina functions to be efficiently folded so that the

loor construct can be ucsed.

2.7 fAccocratirive Froaoramminmg 1s Easvy

Since ascoci1ative computere reduce the cocmplenrty o4 addr ec

furctions without recurci1on and without limiting the data
structure. thev are eacier to program than conventional computercs

1N three wavs. First, cince every data record hacs ite own

dedicatecd proceccor. the need for a "time sharing" factor 1rn the

mn
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address function 1€ eliminated. Second. the physical mapping

component of the addrecss function 1 replaced bv parallel
(associ1ative) searching. Finally, as descraibed 1n Sectior T.0O
the logical mappi1ng relationship 1< stored assocratively as
Structure Codecs with the datzs elemente eliminating the need Afor
run time calculations,.

For e:xample. 1in Figure Z.7. the logical portion of the
addrese function consisting of the matri:: row and column indices
are cstored with the date elemente. Since the data structure codec
are dependent only on the logical mapping. the proaramming tasit
1s reduced to 1) directing the computer in the sequential
erecution cf the fundamental steps of the algorithm and ™ the
manipulation of the lcocgical data structure codec. The artifacte
of time sharing the CFU and the phveical sequential organization

of memory are eliminated.
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FIGURE 2.2 - An Acssociative Frogram Mecsage
2.0 Associative Data Structures
7.1 Baclaground
Arravys are the canorical forms of data structures. Theair

e
G
a
=
10
n
0

functions form a natural hierarchy of comple:i1ty.

n
]
T
—
LU
3
tn

are terp dimensional arravyes. They are represented by the

class of address functions consisting only of constants. The
clace of addrecs functionce for one dimensional arrays consist of
constantse plucs one variliable. Two dimencsional arrave have two
variable addrese functione, etc. The mocst common example of

address functions for arravs, are the row-ma,or and column-major
ordering functions generated automatically for indexed arrayes by
most high order lanqguages such as FORTRAN and FASCAL.

To date. content addreccsable memories (CAM) and acssociative
computers (AC) have been used almost exclusivelv for storing and
retrieving simple ob,ects. An object i1 oftern defined as &
location—-value pair. Accordingly, an associative obj ect contains

twoe parte, = data element (or value) and the accociated value of

the logical addrescsi1ng function (location? ot Data Structure
Code. The name of an ob,ect serves as ite constant addrece
function. As chown 1n Figure 2.1, csimple scalar variables are

syrnonymous with attribute value paire 1n associ1ative programming.

cstructureidata
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. code relement
L e
v attributeivalue
S e
4
N age VS0
) size ‘large
* color ‘blue
- patient i jones
‘.~
v Figure Z.1 - Si1mple Scalar Structure Codes
i T.2 Simultaneous Multiple Data Organizations
- Sinmce 1 the most general cace, the wvalue of an ob,ect oazan
. be of anv composition (Elson,1972 p. &8 . associative triplec
-
can aleo be accommodated bv constant address functione. Note
- that three different sets of structure codees are 1llucstrated 1in
. Figure Z~.Z. ore for each part of the associative triple. Sirnce
all memory locations are searched i1n parallel, their 1€ nNo a
t
1} priora reason to <celect one et o4 ctructure cocdec over Ar,
' cther. In fact 14 there are n componente 1n an ob,ect (1.e.
valuee and codec) there are
D n-1
. = — o —
- \ n
"
O / C
X - 1
. 1=1
L, comnstant addrecse functions. all of which can be used &t the
prog-ammers discretion, intermingled 1n anv order without any
neec fcr reordering. This 15 i1impossible 1n ariv csequentional
*
¥ computer c1nzZe 1n a sequential computer, the dats structures must
- be <cortec to be efficrerntl]ly accecesed arnd data cam be oraznized
-
1nto onlv one ordering at a time.
<
- . .
’ 2.2 Data Orgamnization Manmipulation.
The structure codes are discussed @< 1f thev were unigue
;j data 1teme. Im reality they are not. The, are ,ust lite the

- "N\:$.;‘,.~:\";“. - ‘~«' N
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other data i1teme 1n an ascsociative obiect 1in that they can be

) searched for and manipulated. Structure codes are unique only 1in
) ‘hat they contain structural 1nformation on how one problem data
\i. >
e element relates logically to the other protlem data elements.
s
A
N
structure |

-, codes ! problem data
{ istructure
- problem data i codes
" istructure!
. problem | codecs : data
o e —mm——————— b ———————
- ob,ect Jattribute:value
S e e e e t—m—————— mmm—m———

sofa : color \ red

sofa . size ¢ big
- chealr : color i blue
;Z Figure 2.2 - Comple:: Scalar Structure Codes
— Z.4 Generalized Structure Codecs
‘-
g One dimensional arrays can be stored in CAM's and AC'e by
o
l using a etraight forward e:-tencion of scalar structure codecs. The
A
o structure code concsicsts of the ob,ect name (the constant portion
N of the addrecz function) and the position of the value 1n  the
<
- concstruct the varitabtle portion of the addreccs furmcticon). The
y variable component for one dimencional arrave 1 simply  the
; ordinal posi1tion of the data element 1m the arravy. Thus, for

e:ample, the one dimensional ob,ect A = (1 & 4 I ) would have
the structure code shown 1n Figure 7.7
1o
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structure code i data

[
S ettt e ‘element
g ) constantivariable !
¥
b part ipart .
———————— +—_—_—--_——+——-—-—_—_
ob,ect ielement ivalue
: name ‘position !
L e ———— +—_———— e ——— e — -
ﬁ; A : 1 : 1
¥ A : o S
A : = ' 4
g A : 4 ] Z
A ' bl : 2
Fiqure 2.2 - A One Dimensional Array
; The structure code for two dimensional arrays 1s a natural
&
: e:tension of one dimencsional arrays as shown in Figure T.4. The
extension o0f structure codes to higher dimensional arrays 1i¢
1 obvious. The composition and manipulation of these canonical
-
L. array structure codese to make <ctructure codes for comple:x:
i compound data structure ics considered next.
&
l
3 structure code idata
g @ e relement
constantivariable !
o part ipart i
. e ——————— o ——————
S object irow icol !value
”) name iposaition
———————— et —
E : 1 1 7 S ( 9 T
- E H 1 2 il E = ( )
. E o281y 7 « 7 &)
N E N 20 6
Figure 2.4 - A Two Limensional Array
‘i
' ™y e
) 4.0 Examples
§ 4.1 Associative Data Structure Feferences
b, One dimensional arrave are logical data structures which are
~
3

11

b
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natural for use with several common problem data structurecs such

- as vectors, lists and straings. Two dimensional arraye are
logical data structures which are natural for dealing with
matrices and 1mageryv. The mapping fraom these problem data
structures to the logical data structure 1¢ the identity mapping.
Consequently, for ease of reading. where no confucsion can ari1se,
the termes vector and matri:;: will be used i1nterchangezbly for one
dimencional and two dimencsional arrave respectively.

It 1€ not uncommon to consider matrices as collectione o4
vectore. Thus 1f the constant portion of ‘he structure code
shown 1n Figqure 2.4 i1c modified to include "row position." The
constant addreses "E 1" is shared by two values reprecenting the
vector (S 7)Y and "R 2" represents (7 &), Similarly, 1¥ the
ccnstant portion 1 modified to 1nclude "column position” i1nctead

of row pocsition.,” "B 1" reprecentse (S 7Y and “R ¢
represents (2 &)~—*,
Ar important property of structure codes 1 the ability to

reorganize them acs i1llustrated above. The "." operator will be

used to i1ndicate the basis code grouping and can be thought of as

a concatenation operator. The svmbol, ey 1€ used as a place
holder. Thue the code B.1.7” reprecente Lhe vector (S 7)Y, k.77
reprezente ( T 46)Tr  etc.

4.7 Data Structure Code Manipulation

The concept of combining data structures to form new d=tea
q etructures 1s common i1in some languages such a LISF. For e:xample,
liste can be grouped together to form liste of lists, etc. Tt e

can be done because of the generaliced method of data ctorage for




_A
f's
iy X & 4 iy

-
»

- A -
x L3

BN
(U RS A R R |

¥
a

T AT~

[SURT AN A

LN

liste.
types of
addressing

function.

data

However,

data

accecses

In

structures

thais capabi1lity can not be e:tended to other

structures such as arave because they use an

function not a content addressable accesc

ascsociative computing, the abilitv to create new

form eii1sting data structures at run time 1¢g
possible.

In order to describe how the structure codes for two
arbitrary data cstructures can be combined to qgenerate the
structure codes for & combined data structure. cseveral
definitions are necessarv. Let DS; be a data cstructure of
dimension r with address function Aj. Then A; = aj0.ajl..a;r
represents the r+1 components of the structure code. By
converntion, the Oth component ie the constant portion which 1¢

the name cof the data structure.

code of A,
constant

0" denotecs

n components.

most)

1€ equivalent

Then 1 f D31 is the comple: data estructure obtained by
1ncert:irmg data structure DSE with dimension €, as the mth element
cf D2, with dimension r, at depth d. the address function Al for
DS1 haes dimension d+cs, anmd 1S given by

Al (Y = A, ) 8= —r for '=m

d
Al (=) = A,CH.Ab(y) for x=m for all vy in DSk,
The data structure 1nsertion operation is denoted by:

.‘4\" ACRERLS

AN

o, o

A s

value 0,

the constant

n components of a structure code.

Let Aj(m) stand for the structure

for the mth element of DS;. tet O denocte the

0= denote 0.0, 03 denote 0.0.0, etc. Then

sero structure code for a function with

Similarly, let A" (x) denote the firet (left

The depth of a component

to the number of components to i1te le+t.
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receiving_data_cstructure! (felement.depthlinserted_data_structure.

4 D)

If a comple: structure 1s to be built by a number of insertions,

a4, 0,

they may occur 1nm any, order, i.e. 1f mil '= m2Z, then

(ARl 11Iml,d1] A)Y 1Im2,d23 A; = (A1 1 1Im2,d2Y A, 1ilml,.d1] AL,

P
St N W s A

Figure 4.1 gi1ves an example. DSa i1 an empty" wvector with

(1 . DSb and DSc are both matrices with

address function Aa
. the <ame address function Ab=Ac=(1.1., 1.2, 2.1, 2.2, The
- composition A=(Aa 111,11 AbY VILZ2 11 Az i shown. Clearly,
arbitrarily comple: hierarchical data tructures can be composed
from the basic canonical forms.

This approach is completely general. Lists are simply a
special case since thev are "vectore" whose elemente are atoms or
a other licste. Addre=ses function composition can be applied to list
- structure codes to generate the structure codecs for anv comple:

nested list.¥ Figqure 4.2 i]luétrates the structure codes for &

list.

SEHYLS5S

¥ Structure codecs for listes have beern developed <separately and
described elsewhere (Fotter,1987 and Reed, 1985). The thrust of
this paper ics to develop a comprehensive approach to addressing
functions and illustrate their generality. The reader is refered
to the above references 4{or details on programming uel1ng
structure codes.

B e 'y

a Al

1Aa i Value

DS&:1 | nmi1l DSa
DSaiZ | nil

(nil nmi1l)

tAb 1VYalue

———t e —————
DSbi1.1: 7
Dsbii.2 14 DS = 7 14 )
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-
b
]
y DSb:iZ.1i T « 3 8 )
' DSb:2.2! 8
L)
~
> iAC IValue
A —_——tm— b ————
DSciti.1! ©
DSci1.2i 1% PSSk = ¢ © 15
. DSci2.1! 6 (& 2
53 DSc:2.20 2T
{9
e
5 OBJECT! VECTOR | MATRIX:
3 : P ' VALUE
3 NAME {FOSITION:ROW!COL :
A P, e tm————— e ——————
o
A 1 1 1 7
A 1 1 = 14
;~ A 1 = 1 e ( « 7 14} (e 1€ 1}
. A 1 2 2 8 A= ) ( ) )
o~ A ~ 1 1 °© «C 8 6
; A 2 1 z 15
» A 2 o1 2
A . 2 2 2
; Figure 4.1 - A Vector of Matrices
5 ORJECT VECTOR VECTOK VECTOR
- NAME FOSITION FOSITION FOSITION VALUE
—————— R e ittt SR e T
LIST 1 O Q THIS
LIST 2 1 0 IS
. LI1ET b = 1 A
- LIST Z 2 2 LIST
» LIST = (THIS (IS (A LIST)))
5 Figure 4.7 - A List
“e
s
¢
4 4.7 Svnonvmous Data Structures
1.5
In <come applicatione, 1t 1= desirable to view dat s
-
28 structures 1n two or more waye. For e:ample, & string can be
. thought of ac & single variable containing a list of characters
or as an arrav of characterc. As can be seen 1n Figqure 4.7, this
i+
:v‘: l S




- dual approach to referencing stringe 15 a natural artifact of

K us1ng assoclrative addressing techniques. The string as a whole
Y

L
L can be accessed by the structure code S.™ while the nth character
¥ 1n the string can be accessed by S.n. Note that this capability
‘.‘N
;?: 15 due to the parallel ascsociative 1mplementation of structure
; .f:'
- codecs and does not requare multiple variable declarations or
Ny equivalen <
K ‘» X 1Cec.

s

e
o

"G - u . S

o S = "A STFING

Y ORJECT ! :
.", - NAME FOSTITI0ONMIVALUE

_-.: ——————— ————— o —————

3- S 1 A

el S 2

3 e G
¢ S 4 T

'~"_‘_.) S ) 2
| :__.: S & I
. - S 7 N
' S 8 G
S e null

}? Figure 4.7 - A String
o

- 4.4 Assocrative Stact and Oueues
O Dther commonly used data structures. such as, stacks,
i- queues. and linled cstorage can also be handled in the acsociative

. mcdel . Stacle and queues are simply variable length vectors. A
?. staci push 1€ accomplicshed bv adding a new “larger) ordinal
‘e .

:' poci1tion to the vector. A pop 15 c1imply the selection of the
2y

pe largect element of the vector and 1ts removal. Oueue and linted
. -

o listse can lilewice be eacsi1ly 1mplemented. However, 1t stould be
\.'

;ﬂ emphaci1:-ed that these data structures are artifacts of
- conventional ceequential structures, arnd that 14 the data to be
;: stacled or aqueved 15 stored 1n ascociati.e memor . with a time
o

NS

S 16




tag. the need for these structures ic eliminated.

5.0 Conclusions

This paper has presented a unified approach for representing
arbitrarilwv comple:: data cstructures 11 content addrecsable
memoriec and asscci1ative computercs. Thie approach to data
cstructurec 1n  acscsociative computers has the advantages of 1)
auvtomatically extracting fi1ne grain parallelism, 2)Y eliminating
much of the comple:ity cof the non—-algorithmitic address
computation 1mn program development, &) allowing multiple datsz
structures to be associated with each datum., 4) allowing the data
structures themselves to be modified. and S) allowing informat:on
e 'change between vacstly different program lamguages such as LISF,
FFROLOG. DOFSS., FOFTRAN and FASCAL.

Some areacs for future research are:

1) defirmning arithmet:ic operations on complex data structures

as a natural e:tensi1on of element by element arithmetic of

vectores and matricec,

Z) the utilication of multaple digtinct structure codes 1n

the <came datum. In qeneral. there can be a different

structure code for every logiczl hierarchical datza structure

to which the datum belonqges. Tris aspect mav be partionlarly

use+u] +or csemantic mnetworle and frames 1n Al applicataicne,

o the devel opment of univereal opetr atorc Loy the
mariapul #sti1orne o+ structure codecs. For ecample, the oper=tor
"root" will generate the structure code for the roct of a
tree from the structure code of any of 1te nodec (See

Fcrter, 1985, and
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the investigation of mathematical properties of

addressing functions and cstructures codes.
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