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CL9;'ENT PPROSESS

Durin. the past fiscal year, this research orant helped

support activities in four related areas of associative

programming: I, implementation of the ASPPOL compiler 2".

implemen tation o4 the FIF:ST NEXT, FREVIOUS TRUNC and TRUNCA

acode functions and I.'0 stac routines, 7). implementation of tt-e

associative daltabase primitives; and 41. analvsis of new networ[

des ior s f or interprocessor communications in associ ati''e

S_-ocessrs.

A cor' of the ASPPOL compiler has been oiven to Good'ea-

Aeroszee for evaluation for use with their ASPPO SIML computer.

It is felt that this compiler can be auomented with rule based

• constructs that will prov.ide a high performance expert s\ystem

* capatilit'. Many of GAC's customers such as Grumman Aerospace.

NOSC &and NSWC are inte-ested in SLh a caabilitv. Preliminary

stu Ie= performed under :a seperate crant indicate that speeds of

abo0L't 6('C"0 inferences pe second are obtainable.

The following papers were produced

DATA STFUCTLUFES FOP ASEOCIATIkSE COMPUTING (submitted for pLtblication'

AN ASSOCIATIVE MODEL OF DATA fsubmitted for publication)

ON FEFFOFMANCE OF SW-PANYAN NETWOFi'S (submitted for publication'

The ASPROL Programming Language.

The ASPROL/ lang.age developed last year and described in

last years report was implemented on the VSU VAX 780 research

computer. The compiler converts ASPROL statements into a hich

level intermediate form similar to the form described in the

-. .. ../- ~ ~* * ,* * .



or-ini 2 r-.osetl (p. 6. This intermediate code car, be

conertedz into assembl', lanquage code for an',° bit serial SIMD

compute-. The current implementation produces code for the

STAPAN E and the ASPRO computers. (Attached is a copy of the

ASPPOL users cqLide'.

Primitive ACODE and I./' Stac[ Operators

The FIFE;T. NEXT. PFE 1 IOUS TPUNC and TFUNCA primitive ACODE

Coe-ato-s de,.'elooed for mar-ioulating data structures durino the

first %,eFr c.f this effort were implemented and tested on the

STA -:AN E. FIRST returns the acode of the ne'xt lower level in the

hier- arch,. tNEXT returns the next acode at the current le"el c,+

the hie-a -ch 0.  P:EVIOLUS returns the ore,.'ious acode at the

current 1 e, e. TFIUNE returns the acode of the ne-it hioher le el

in the hierhv. TRUNCA returns the acode of the too level of

hierar:-h, .

F:OL'ir- e-F which simulate the I '0 stac ooerations described

ir the ori in = proposal were written. COLLAFSE eliminates the

unUse w r in the I /0 ste __ 'a reser'ed page of the STAr-AN E

mer-,,'.' compactina the data into 9 con tiguous b .ocV.

EXF6 C e 'e--ses t.he process. It causes the contiouous block of

date at the bottom of the stack to be e-'panded to words which are

- idle. The COLLAPSE and EXPAND commands simulate hardware commands

* that facilitate run time memor, allocation in associative

processors.

An Associative Database

An initial design for an associative database was develooed

and the primitive data base operators were implemented on the

A " " - .-



STAPAN E. This database is designed for natural language and

artificial intelligence applications.

Interconnection Networks

A new method for determinina the number of permutations

realized b, SW-Banvan networks was developed.

PLANS

The major emphasis in the ne.:t year will be to integrate the

structure code mechanisms into the ASPROL compiler. As reoo-ted

above. the primitive functions have been designed and

imclemented. but the' have not been integrated into the ASPROL

language. The first step will be to design the formal language

mechanism which will be used in ASPROL and then the lanouace will

be e-Danded to include them.

The utility, Of the structure code concepts in associative

computers and high level lanCuages will be studies. Not only do

structure codes allow dynamic memorv allocation. they promise to

pro\'ide a common data organization which will allow Such diverse

SlanCuages as LISP. FOPTPAN. PFOLOG and ASPFOL to communicate

with each other.

Some effort will be spent on the initial development of a

theorv of associative computing to e.:plain its relationship with

rule based 1 aniuaaes.
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APPENDIX A

ASPROL SYNTAX PRIMER
Version 2.00

ASPROL is a high level language designed specifically
for SIMD parallel processors such as the STARAN-E and ASPRO.
This primer is written to aid users in writing ASPROL codes.
It specifies the correct syntax for writing ASPROL programs.
It is not meant to be a user guide for writing STARAN-E pro-
grams. There is a class offered by the math department:
Parallel Programming and a series of seminar about Parallel
programming. For those interested in programming the STARAN-
E, please consult with Dr. Jerry Potter.

J For those who want to have. a copy of this primer, use
this command on your command level on Vax780 or Vax750

% lpr -1 /user/parallel/asprol/primer

I would appreciate your help debugging this compiler.
Please send me mail about any bugs that you may find. Please

be advised that ASPROL will quit compiling as soon as the
* first syntax error is detected. Please don't be discourage

by this little inconvenience

.1 I. How to compile:

To compile your program:

% asprol -s filename.asp (for STARAN-E code)
or

% asprol -a filename.asp (for ASPRO code)

Either will create 3 files

1. filename.lst
a readable program listing with intermediate code.

72
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2. filename.iob
An encoded intermediate file which is expanded in
pass two to assembly language.

3. Option -s will produce : filename.apl
Assembler code which can be assembled by the STARAN-
E assembler.

Option -a will produce : filename.asm
Assembler code which can be assembled by the ASPRO
assembler.

II. Syntax :

[ Program identification ]
Declaration
Variable association
body

[ end;]

Note:

An "#include filename" may be placed anywhere in the
source program for one level of file indirection. If
the include file ends with an "endasm;" statement, itjmust be followed by at least two blank lines.

A. Program Identification:

option 1: Main Programname
- Generate DFs and DC in assembler.
- Generate ENTRYs for DCs.

option 2: Subroutine Subroutine name
- Generate DFs and ENTRYs for DC.

option 3: none
- Generate DFs and DC in assembler.
- Generate ENTRYs for DCs but no boiler

plate.

IVI,
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example

main program name subroutine routine-name

variables association variable association

declarations declaration

body body

end; end;

B. Declaration : Declaration should be specified in the
following order

1. define(var,constant);
deflog(var,constant);

2. defvar
3. int scalar varl, var2, ... ;

int parallel varl, var2,

real scalar varl, var2, ... ;

real parallel varl, ...;

index scalar varl, var2,....
index parallel varl, var2,

logical scalar varl, var2,
logical parallel varl, var2, ... ;

~1 i~iedefine/deflog

-4 define:

syntax : define(var, constant);

var : regular variable name.

constant : any constant value (including a
previous define).

example : define(ten, 10);
define(decade, ten);

d.4
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def log:

Deflog is used for defining a logical
constant. In ASPROL, this definition is treated as
a scalar constant. The only different between
define and deflog is in its data type. Define is
an integer scalar, while deflog is a define
logical constant (a special data type).

syntax : deflog(var, constant);

var : regular variable name.

constant : either 0 or 1.

example : deflog(true, 1);

2. defvar

If defvar is present in front of an int, real
or logical declaration, the declared variables
will be stored in the ASPROL symbol table and be
treated as regular variables, but ASPROL will not
cause any memory allocation macros to be
generated. This option is provided to allow users
to override the ASPROL compiler memory allocation
so that they can allocate memory manually at
assembly time. The programmer can specify his/her
memory layout by using "asmcode" statement, or by
editing the ".apl" file before assembling it.

example : defvar int parallel A:8[$], C[$];

3.1 int, real, index, logical

syntax: variablename:field width[dimension]

variable-nameI: - letters : A - Z, a - z (no distinction)
1 - 9

- Any variable name should begin with a
letter. Any variable name longer than 6
characters will be truncated.

a example : progl, false, P12345.

i40
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3.2 fieldwidth

int : 2-32 bits (scalar & parallel)

(default 16 bits).
real : 32 bits (scalar & parallel)

(default).
index : 1 bit scalar & parallel .
logical : 1 bit scalar & parallel

Note:

All scalar variable are stored in 32 bit words re-
gardless of declared size.

3.3 dimension:

The maximum' limit for the dimension depends
on the data type. For int, real, and logical data
types, the maximum limit for the dimension is 3.
The first dimension for the parallel mode should
always be a '$'. The index data type is always 1
level deep.

Note :

Indexing of dimensioned arrays ranges from 0 to
size - 1.

example :

int scalar A, B[321, C:8[10,10,10];
int parallel A($], B[$,10,10], C:32[$],

D:32 $,5, 10]

real scalar A, B[10], C[10,10,10];
real parallel A[$], B[$,10], C[$,10,10];

index scalar A;
index parallel A[$);

logical scalar A;
logical parallel A[$], B[$,l0], C[$,10,10],

XX [$1;

a
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C. Variable Association:

This section tells ASPROL which variables are
associated with which variables. All variables used in
this association should be declared in the previous
declaration.

syntax associate varl, var2, var3, ... with varX;

where : varl, var2,... are parallel mode variable.
varX is a logical parallel variable.

example : associate A[$], B[$], C[$], D[$] with XX[$];

D. Body :

1. If statement

if (logparexp) then

body

[else

body

endif;

2. For statement

for index var in (log_parexp)

body

endfor indexvar;

3. Get statement:

get index var in (logparexp)

body

endget indexvar;
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4. Next statement:

next indexvar in (logparexp)

body

endnext indexvar;

5. While statement:

while indexvar in (log_parexp)

body

4endwhile index;

6. Any statement:

any (logpar exp)

body

endany;

7. First statement:

first

initialization4

UI  loop statement

note:

Only simple assignment statements and initializa-
tion are allowed in the 'first' statement. The

I "loop' statement should follow right after the
first' statement.

I
-4,

Nl~.
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8. Loop statement

loop

body

until (scalar condition)

endloop;

note

There may be any number of 'until' statements in aloop -endloop' body.

9. Allocate statement:

allocate index in index variable

body

endallocate index;

note:

index variable is index variable association.
index is an index variable.

10. asmcode - endasm statement:

asmcode (must be typed in the first column)

Staran-E assemble language instructions.

endasm; (must be typed in the first column)

note:

All statements between asmcode and endasmi should exactly follow all rules for Staran-E
assemble language. All ASPROL variables that are
keywords in the STARAN-E assembly language should
be prefixed with a $ charactez.

i



80

example

An x in ASPROL becomes $X in STARAN-E
assembly language. Similarly, y becomes $Y
and r6 becomes $R6.

For more STARAN-E keywords, please consult with
the STARAN-E assemble language manual.

11. stop statement :

The 'Stop' statement is used to stop the
execution of the program. It can be used anywhere
in the program.

syntax : stop;

12 return statement

The return' statement is used in the
subroutine module only. It is used to return
control of the execution to the instruction after
the call statement in the calling module.

jsyntax : return;

13. call statement :

syntax : call subroutinename;

14. setscope statement

setscope logparexp

:1 body

endsetscope;

The setscope statement is used to set the M
register temporarily with the logpar_exp result.
The statements within the setscope - endsetscope
only will be affected by the new M register
setting. After the endsetscope statement, the M
register will be restored to the value before the
setscope statement is used.

)
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15. unary function calls

1. MINDEX :

syntax : MINDEX(par var)

2. MAXDEX :

syntax : MAXDEX (parvar)

3. MINVAL(parvar)

syntax : MINVAL (par var)

4. MAXVAL(par_var)

syntax : MAXVAL (par var)

MINDEX will return a index parallel variable that
has set the responder bit which has the minimum
value on the parvar array.

MAXDEX will return a index parallel variable that
has set the responder bit which has the maximum
value on the parvar array.

MINVAL will return a scalar temporary variable
that has the minimum value of the parvar array.

MAXVAL will return a scalar temporary variable
that has the maximum value of the parvar array.

16. indirect address statement

5 syntax : @(scalarexp):type:length[dimension

" There are 2 different ways to use the indirect
address statement

1. scalar result

syntax :
@(scalarexp) :type:length[indexpar-var]

This statement will return a scalar temporary
variable which has the value in the array
that is pointed to by the result of
scalarexp and indexed by the indexpar_var.
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example : @(A):int:8[xxl
where : A is int scalar variable.

xx is index__par-var.

2. parallel array result

syntax : @(scalar exp) :type:length[S]

This statement will return the array that is
pointed to by the result of scalarexp.

example : @(A):int:8[$]
where : A is int scalar variable.

17. assignment statement :

logpar-var = logpar-exp;

var = expressions;

note

All data types should have the same type for the
left and right hand side.

arithmetic operators:

+ :addition
- : subtraction

: multiplication
: division

*I relational operators:

< .t. : less than
.gt. : greater than

<=, .le. : less than or equal
>=, .ge. : greater than or equal
== , .eq. : equal

.e. : not equal
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logical operators:

! , .not. : negation
.or. : or

L .and.: and
, .xor.: exclusive or

note

If you use parallel variable, you should use $ in
the assignment expression.

ex: varl[$] = var2[$] + var3[$] + 5;

NOTATIONS:

S. .1 :optional
logpar exp : logical parallel expression
logpar var : logical parallel variable
index_parvar : index parallel variable

III. Reserved keywords:

These following identifiers are reserved for use
as keywords and may not be used otherwise:

int real scalar parallel
index logical any allocate
associate define deflog defvar
during end endallocate endany
endfor endget endif endifnany
endloop endnext endsetscope endwhile
else elsenany for first
get in include if
ifnany loop main maxdex
maxval mindex minval next
procedure return setscope stop
subroutine then thenany until
while with #include

The above keywords which are not currently
implemented by this compiler are reserved for future
use. Some keywords may be changed for further
refinement.

*** end ***
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i.Cb Introduction

1.1 Associative Super Computing

Associative Super Computing is a model of computation, where

each datum has its own dedicated processor. Associative computing

e.xploits massive fine grain parallelism in a natural wayl.

Massively parallel associative computers with 16[ processors have

been built, eliminating the need for time sharing a single

central processing unit with a multitude of data elements thus

avoiding the classic memor v - CFU bottlenech. Associative

computinq uses massive parallel searchinq in place of address

calculation, reducing programming comple:i tv. This paper

describes a method for implementing data structures in the

associative computing model which is applicable to all types o4

high level languages.

V i 1.2 Background

The concept of associativity has been present in computer

science for many years (Jac:s.190 7 1 and Findler, 1970N. The most

prevalent realization is associative triples in AI. The

association list and ASSOC function in the LISP language are of

course implemented in conventional hardware. Content addressable

memories are manufactured but are limited in use due to their

relatively high cost. Associative computers were fir-t de'iElopeId

at Goodyear Aerospace in the earl,., IQ9's (Batcher. I7-T). C.

Foster's boo (1076) describes the basic components of elementary

associative computers.

The first higher level languages described that made use o

-:4



the parallel natire of associative computers were extensions of

FORTRAN (Potter. 1 982) and PASCAL (Reeves. 1985N. However, more

recent languages have been described which are based on an

associative model of computation (e.g. Potter. 18Y". Inherent

in these languages is the concept that each association has its
-e

own dedicated processor and that computation is effected by

repeatedl,., selecting associations to be processed. Since there

is no formal mechanism in these I anguages to enable the

specification of a data structure, associative data structures

had to be implemented at the assembly language level (For

;e:ample. Potter.1 0 87- Feed,10 85 and Potter. 1 0 5). This paper

e :pands on the concepts used for assembl language data

structures buil Idino a compl etelv general hierarchy of data

structures which can be used in any higher order language.

2.0 Associative Programming

2. 1 BackIground

The thrust of the associative computing model can be best

ep Dlained by analvzing the fundamental components of a program.

In this section. a program is considered as a message between

proorammer and computer. The messaae contains two major types of

information, the procedural component and the identification

component. The Drocedural part specifies the operations to be

* performed and the order in which the', are to be executed. The

identification component of a program selects the data to be

operated on b., the procedural component. Associative computino

* uses associative addressing for the identification component.

The structure o+ data provides information. Thus in the



record shown in Figure 2.1. the number 5' can be recognized as

the AGE attribute of the patient JONES not by any inherent

property of its own. but by the fact that it is in the second

(AGE) position of the record. College te ts on data structures

often describe information theory as developed bv Shannon~l0 40 J

and others as part of the theoretical background for data

structures. The knowledge that the second element of the data

structure contains AGE data is "information" in the classical

sense that it dispels "uncertainty" about the meaning of the

number 50.

PATIENT JONES

AGE 5C

BLOOD 12'>80
PPESSUPE

Figure 2.1 - A Simple Data Structure

The positional information content of a data structure is

established by two mappings. The first mapping is between the

problem data and the logical data structure based on the

algorithm. The second mapping is between the looical data

structure and the physical organization of the computer memory.

These mappings are established bv the proqrammer and at + .ten

the most crucial aspect of program development.

When a program is ,iewed as a message between a programmer

" and a computer, as illustrated in Figure 2.2, it contains two

* basic types of information. First, the program directs the

comOLter in the procedLtrel eeCUfltIOn of thP fundament] ster-, c14

4
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the aloorithm. Second. the program embodies the positional

information of the data structure by fetching and delivering to

the central processing unit the appropriate data at the

appropriate time. That is, if the algorithm is calculating

hospital i nsur ance premi ums based on age. the program must

deliver the aqe datum not the blood pressure datum to the CPU.

Since this data delivery taslk in.ol'ves the mappinQ relationships

mentioned above, it can be modeled bv an addressing function (AF)

component of the program.

PROGRAMMEF------------------------------->COMUTER
F'F:OGPAM MESSAGE

/ \
/ \

ALGOR:ITHM ADDRESSING FUNCTION
INFORMATION /

/
*/\

/\

PROBLEM logical LOGICAL physical PHYSICAL time CPU
DATA A---T----------- DATADAT--------- -DATAA

mapping STRUCTURE mapping STRUCTURE sharing STRUCTURE

MATRIX TWO ONE SEQUENTIAL

DIMENSIONAL DIMENSIONAL SCALARS

5 : 15.7-4-2,6
---------

(4 2 6) 4 :, 2 : 6 5

4

.6"



Figure 2.' A Conventional Program Message

The addressing function of every program is influenced by

three factors: 1) the mapping between the pr.blem data and the

logical data structure (called the logical mapping), 2) the

mapping between the louical data structure and the physical data

structure in the computer memorv (called the physical mapping).

and 2) the mapping between the physical data structure and the

CPU as a result of the fact that the CFU must be time shared

among the multiple data records in a file.

In the simplest conceptualization, a different addressing

function is required for fetching each individual piece of data

* required bv an algorithm. However, these simple addressing

funct or,s are combined into larger more comprehensive and

compl e:. functions using looping and address modification

(inde :ing) techniques. The loop construct, for e::ample. is used

e tensively to time share the CPU among the manv identical

records of a file. An important aspect of selecting a data

structure for a sequential computer is to picl one which al lows

the addressing functions to be efficiently folded so that the

loop construct can be used.

2.2 Asociat.ive Prooramming is Easy

Since associati.,e computers reduce the ccmple,:ity of addre irFe

functions without recursion and wi thout limitincg the data

structure, they are easier to program than conventional computers

in three wavs. First. since everv data record has its own

dedicated processor. the need for a "time sharina" factor ir, the

6



address function is eliminated. Second. the physical mapping

component of the address function is replaced b\' parallel

(associative searching. Finally,. as described in Sectior -.-

the logical mapping relationship is stored associatively as

Structure Codes with the data elements eliminating the need for

run time calCulations.

For e::ample. in Figure 2.-7 the logical portion of the

address function consisting of the matri': row and column indices

are stored with the data elements. Since the data structure codes

are dependent only on the logical mapLinq. the programming tas

*is reduced to 1) directing the computer in the sequential

e::ecution of the Fundamental steps of the algorithm and 2) the

manipulatior, of the logical data structure codes. The artifacts

of time sharing the CFU and the ph\,sical sequen tial organization

of memory are eliminated.

FFROGRAMMEF: ------------------------ >COMFUTER
PFOG'AM MESSAGE

/ \

/ \

ALGOPITHM ADDRESS I NG
INFORMATION FUNCTION

/

/

FPOPLEM logical LOGICAL
DATA .. .. . .. ATA

map:i nn STF:UCTUE -------

MATF'IX TWO STF:LICTUF:E FPF:OPL'_EM
D I MENS I ONAL COPE DA A

( )

(4 2 6) 4 ' 2 , 6 1. 5

*1 7

.1. ,............
. . . . . . . .. ,," ".. ,, . . "," . ". " ". % • % % , % % ",,. .-".. . . . .. . . . . . . .".. .,.. . . . . . . . . . .-.. . . . . . . . . . . . . . .• ..- - .-



2.i1 4

2. 2 2

:2.7t 6

FIGURE 2.7, An Associative Program Message

7.0 Associative Data Structures

:.I Bac aroLund

Arrays are the canonical forms of data structures. Their

addr functions form a natural hierarchy of comple::ity.

Scalars are zero dimensional arrays. They are represented by the

. clas s of address functions consistinq only of constants. The

class of address functions for one dimensional arrays consist of

coristants plus one variable. Two dimensional arra\'s have two

variable address functions. etc. The most common example of

address functions for arrays, are the row-major and column-major

* ordering functions generated automatically for indexed arrays by

*most hioh order languages such as FORTRAN and FASCAL.

To date, content addressable memories (CAM) and associative

ccMrDuters (AC) have been used almost e>:clusivelv for storing and

retrievino simple obiects. An obiect is often defined as a

location-value pair. Accordingly. an associative object contains

" twc parts. a data element (or value) and the associated value of

the Ic_,,ical addressing function (location) or- Data Structure

" Code. The name of art object serves as its constant address

function. As shown in Figure 7.1. simple sualar variables are

" synonymous with attribute value pairs in associative programming.

st ru cture data

F%

.........................................................................



code :element
--- +------------

attribute value
-----------------

Sage5

size :large

color bl ue

patient 1,ones

Figure 7.1 - Simple Scalar Structure Codes
* _.2 Simultaneous Multiple Data Organizations

Since in the most general case, the ',,alue of an ob,,ect c: ar

, be of an,, composition (Elson,1 0 7 T p. 68). associative trIpIe S

can also be accommodated by constant address functions. Note

that three different sets of structure codes are illustrated in

" Figure .2. one for each part of the associative triple. Since

all memor, locations are searched in parallel, their is no a

priori reason to select one set of structure codes over aF,,

cther. In fact if there are n components in an object (i.e.

values and codes) there are

n-I

n

/ C

I
i~1

corstant address functions, all of which can be used at the

proccammers discretion, intermingled in an,.' order without any

neec! 4cr reorderino. This is impossible in arv sequentioral

cmuter since? in a sequential computer, the data structut us must

be sorted to be efficientl,,, accessed ard data car be orcor i:eH

into only one ordering at a time.

7.7 Data Organization Manipulation.

The structure codes are discussed a- if they were unique

data itens. In reality they are not. liev are ust lite t Ce

+" + .- ' .'v -.. .," , ' "i + . . ."-".+ ..- - _ ., i-i' " " . < <. .- v °.>, ->C],



other data items in an associative obiect in that they can be

* searched for and Manipulated. Structure codes are unique only in

'hat they contain structural information on how one problem data

element relates logically, to the other problem data elements.

StrLUCtUre
codes problem data

str UCtLUr e
problem data codes

Structure:
problem :codes data

---------------------------------- +------------

ob,ect :attribUte:ValUe
---------------------------------- +------------

sofa color red
sofa siz-e big
chair color blue

Figure 7.2 -Compi e: Scal ar Structure Codes

:.4 Cenerali=zed Structure Codes

One dimensional arrays can be stored in CAM's and AcCs by,

LISinQ a Etraiqht -Forward e;'tension of scalar structure codes. The

struICture code consists of the ob~ect name (the constant portion

o-( the address function) and the position of the Value in, the

*construIct 'the /ariable portion of the address function). 7he

v'ariable component for one dimensional arra.s is simply, the

*ordinal position of the data element in the array. Thus, for

*e;'ample, the one dimensional object A ( 1 5 4 7-2) would have

the StruIcture code shoir, in Fi oure

4I .



structure code data
- -- :element

corstant variable
part part

----------------- +------------

object :element value
name position :
------------ 4------

"" A 1 1
A_ 2 5
A -, 4A

, A 4

4A 5-

FiQure - A One Dimensional Array

The structure code for two dimensional arrays is a natural

e;:tension of one dimensional arrays as shown in Figure 7.4. The

e :tension of structure codes to hiQher dimensional arrays is

obvious. The composition and manipulation of these canonical

arra, structure codes to make structure codes for comple

compound data structure is considered next.

structure code data

------------------ :el ement
constant variable
part part
-- -- -----------------------

object :row ;col :value
name position
------ ---------------------------

B 1 1 5 ( 5
B- 1: 2~ 3B=(

B 2 1 7 ( 7
B : 2 2 6

Figure .4 - A Two Dimensional Array

4.0 Examples

4.1 Associative Data Structure References

One dimensional arrays are loqical data structures which are

J1

~%



natural for use with several common problem data structures such

as vectors, lists and strings. Two dimensional arrays are

logical dat a structures which are natural for dealing with

matrices and imagerv. The mapping from these problem data

structures to the logical data structure is the identity mapping.

Consequently, for ease of reading, where no confusion can arise,

the terms vector and matrix will be used interchangeably for ore

dimensional and two dimensional arrays respectively.

It is not uncommon to consider matrices as collections of

vectors. Thus if the constant portion of 'he structure code

shown in Figure -.4 is modified to include "row position." The

constant address "E 1" is shared by two values representing the

vector (5 7) and I' 2" represents (7 6). Similarly, if the

constant portion is modified to include "column position" instead

of .row position." "E 1" represents (5 7) - 1 and 'I -"

represents (- 6) - .

An important property of structure codes is the ability to

reorganize them as illustrated above. The "." operator will be

used to indicate the basis code grouping and can be thought of as

a concatenation operator. The symbol . is used as a place

holder. Thus the code B.I.- represents the vector '5 7). i ..-

re~reaents ( 7- 6)-1, etc.

4.2 Data Structure Code Manipulation

The concept of combining data structures to form mew dat'

structures is common in some languages such a LISP. For e:,ample,

lists can be grouped together to form lists of lists, etc. This

can be done because of the generalized method of data stor ace 4c r

12



lists. However. this capabilit,/ can not be e::tended to other

types of data structures such as aravs because they use an

addressing access function not a content addressable access

-function. In associative computing, the ability to create new

data structures form e':istina data structures at run time is

possible.

In order to describe how the structure codes for two

arbitrary, data structures can be combined to generate the

structure codes for a combined data structure, several

definitions are necessary. Let DSj be a data structure of

dimension r with address function Aj. Then Aj = ajO.aj1 .. ajr

represents the r+l components of the structure code. By

corven tion. the 1th component is the constant portion which is

the name of the data structure. Let Aj(m) stand for the structure

code of A, for the mth element of DSj. Let 01 denote the

constant value C', 0 denote 0.0, 0 5 denote ).0.0. etc. Then

")'' ' denotes the constant zero structure code for a function with

n components. Similarly, let A-(x) denote the first (left

most) n components of a structure code. The depth of a component

is eQuivalent to the number of components to its left.

Then if DSI is the comple: data structure obtained by

.nse~tir, data structure DS with dimension s, as the mth element

c4 i'" with dimension r. at depth d, the address function Ai for

DSl has dimension d+s, and is given by

Al : = for = m

d
Al (:: = A (v) for "=m for all y in DSk.

The data structure insertion operation is denoted by:

?..;.



recelvinQ _data structure :Eelement depthIinserted data structure.

if a complex structure is to be built by a number of insertions.

they ma-/ occur in an, order. i.e. if ml 1= m2. then

(Al :',[ml~dl] Ai ) : :[m2,d2-] Ai = (Al : :[m2,d'2] A-,) ::[ml,dl] Al .

Figure 4.1 gives an example. DSa is an .empty" vector wit h

address function Aa = (1 2). DSb and DSc are both matrices with

the same address function Ab=Ac=1.1. 1.2. 2.1. 2.2'. 1te

composition A=(Aa !:[1.1] Ab) ::[2,1] Ac is shown. Clearly,

arbitrarily complex: hierarchical data structures car, be compo-ecd

from the basic canonical forms.

This approach is completely general. Lists are simply a

special case since thev are "vectors" whose elements are atoms or

other lists. Address function composition can be applied to list

structure codes to generate the Structure codes for any comple.:

nested list.W Figure 4.2 illustrates the structure codes for a

list.

* Structure codes for lists have been developed separate!,, and
described elsewhere (F'otter.198 and Reed, 1985). The thrust of

this paper is to develop a comprehensive approach to addressino
functions and illustrate their generality. The reader is refered

to the above references for details on programming using
structure codes.

A : Val Lie
----- +---------

DSa,: nil DSa = (nil nil)D)Sa',2 nillni

Ab :Val ue

DSb,1.1, 7
DSb:1.2, 14 DSb = (7 14)

14



DSb2.1 7 7 S.
P 'Sb 2. 2: 8

Ac ValLte
------------- .

DSc 1 .1 ' 0

DSc:1.2! 15 DSb = o15
DSc2.1; 6 (6 2)
DSc:2.2 2

OBJECT: VECTOR MATRIX,
---- -: VALUE

NAME :FOSITION: OW:COL:

A 1 1 1 7
A 1 1 2 14

*i 1A2 1 7- ( ( 14) 0 15)
1 2 2 8 A=( ( (

A 2 1 1 (( ( , 8) (6 2)
A2 1 2 15

A 2 21A 2

FigUre 4.1 - A Vector of Matrices

OBJECT VECTOR VECTOR VECTOR
NAME F'OSITION F'OSITION POSITION VALUE
--- ----------------------- +-------------------------

LIST 1 0 ') THIS
LIST C 1 ) IS
LI51 2 1 A
LIST 2 2 2 LIST

LIST = (THIS (IS (A LIST)))

Fiaure 4.2 - A List

4.: S',ynonymous Data Structures

In some applications, it is desirable to viej data

structures in two or more ways. For e::ample. a strinq can be

thought of as a single variable containing a list of characters

or as an arrav of characters. As can be seen in Figure 4. - this

15



dual approach to referencing strings is a natural artifact of

usinq associative addressing techniques. The string as a whole

can be accessed by the structure code S.' - ' while the nth character

in the string can be accessed by S.n. Note that this capability

is due to the parallel associative implementation of structut-e

codes and does not require multiple variable declarations or

eq I.alen ces.

S = " STPlN G

OBJECT
NAME FOS I 1I ON:' VALUE
---- -- ------------ -- -

S 1 A
i" S

S -, S

S 4 T
S F,

e'"S 6 1

S 7 N
S 8 G

S 9 nul l

Figure 4.3 - A String

4.4 Associative Stacl and Queues

Other commonly used data structures, such as. stacis.

queues, and linled storage can also be handled in the associative

- model. Stacks and queues are simply variable length vectors. A

s t a': push is accomplished by addinq a net.j 'larqer- ordinal

poitior, to the vector. A pop is Limpl, the selection of the

largest element of the vector and its removal. Queue and linled

lists can liewise be easily implemented. Howe',er. it should be

emphasized that these data structures are artifacts of

conventional sequential structures, and that if the data to be

st-,c Ied or queued is stored in Eissociat i ,e memot with a time

-" ' ~~- .-.. ',,.. >, - ...-.--.... , -- ...-.. ",'.'.'.,.;.}-.".'



tag. the need for these structures is eliminated.

5.' Conclusions

This paper has presented a unified approach +or representino

arbitrarily comple;: data structures iin content address_-ble

memories and associative computers. This approach to cat

structures in associative computers has the advantages of 1)

automatically ex:tracting fine grain parallelism. 2) eliminatina

much of the compl e::ity of the non-al gor i thmi tic address

computation in program development. ) allowing multiple data

- strLlctures to be associated with each datum. 4) allowing the data

structures themselves to be modified. and 5) allowing information

ex'change between vastly different program languages such a: LISP,

' FROLOG. OFS5. FOFTFAN and PASCAL.

Some areas for future research are:

1) defining arithmetic operations on complex" data structures

as a natural extension of element by element arithmetic of

vectors and matrices.

2) the utilization of multiple distinct structure codes in

the same datum. In general, there can be a different

structure code for every loaical hierarchical data strLcturc-

tc wchi the datum belongs. This aspect ma,' be par-t:,.lariy

u.LSe+LI] tor semantic networis and frames in (ml a1placatior:_.

7 the development of universal opertov- rI the

mari pul ati ons of structure codes. For e:xample, the oper-tc,r

"root" wil 1 generate the structure code for the root of a

tree from the structure code of any of its nodes (bee

Fctter. 0 85. and

.4 17
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4) the investigation of mathematical properties of

*[' addressing functions and structures codes.
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