
Technical Report
CMU/SEI-86-TM-4
ESD-TR-86-210

Carnegie-Mellon University

Software Engineering Institute

Software Support for Heterogeneous
Machines

by
Mario R. Barbacci

May 1986

<ftD* RftV^

Software Engineering Institute
Technical Report

ESD-TR-86-210
SEI-86-TM-4

May 1986

Software Support for Heterogeneous
Machines

Mario R. Barbacci

Approved for public release. Distribution unlimited.

Carnegie Mellon University Pittsburgh, Pennsylvania 15213

This work was sponsored by the Department of Defense.

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
HanscomAFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information
exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl Shingler ^
SEI Joint Program Office
ESD/XRS

Software Support for Heterogeneous Machines

Mario R. Barbacci

Abstract. This paper describes a new research effort carried out jointly between the Software
Engineering Institute and the Department of Computer Science at Carnegie Mellon University. The
objective of the project is to investigate languages, methodologies, and tools for programming
computer systems consisting of networks of heterogeneous processors.

Typical users of these notations (and associated support software) will be the developers of
real-time, computation-intensive applications such as those contemplated under the Strategic
Computing Initiative. In particular, this research is being conducted in the context of the
Autonomous Land Vehicle application, running on the Heterogeneous Machine being developed in
the Computer Science Department.

This paper provides some background on the nature of the problem posed by these applications,
the opportunities presented by the emergence of heterogeneous machines, and the goals of this
project.

Introduction

We are all familiar with traditional numerical computation applications that were concerned with
the accuracy and performance of complex algorithms. They operated on simple data structures
(e.g., scalars and arrays) and were implemented in some imperative language (e.g., FORTRAN).
The appearance of list-manipulation languages in the late 50's gave rise to symbolic computation
applications that were concerned with the manipulation of complex data structures (lists and
plexes of different kinds). They were implemented in relatives of Lisp and derivatives of Algol 60.
The hardware architectures, however, remained relatively constant for several decades, and a
great deal of progress was achieved in the development of useful programming languages and
environments.

We are now beginning to build networks of heterogeneous processors whose users are con-
cerned with allocation of specialized resources to tasks of medium to large size, executing
concurrently.1 Heterogeneous machines (e.g., Figure 1) will have general purpose processors,
special purpose processors, memory buffers, and switches which can be configured in more or
less arbitrary logical networks. In addition, these networks will not be static, configured once and
for all for a given application. The networks will be able to alter their configuration depending on
the needs of a particular application.

The Department of Computer Science at Carnegie Mellon University is building a heterogeneous

'For our purposes, let's assume that a medium size task granule takes in the order of 100 times a basic synchroniza-
tion operation. That is, we are not dealing with the minute level of concurrency provided by array processors (e.g., ILLIAC
IV) or pipelined functional units (e.g., CRAY) but rather with the scheduling and management of larger chunks of
computation, with commensurably larger resource allocation requirements.

machine as a vehicle for research on high-performance computing. Research is also being con-
ducted in vision processing (e.g., landmark recognition) and machine reasoning (e.g., path
planning). These applications will depend on the large amounts of computing power that can be
delivered by the proposed heterogeneous machine. The research described in this paper ad-
dresses the missing link, namely, the development of languages and methodologies for program-
ming the heterogeneous machine to exploit the coarse-grain, task-level concurrency available in
the applications. This work is being carried out at the Software Engineering Institute. Exploring
this task-level parallelism is a new direction in parallel processing.

S»nion

90 g°

•odas

Sctiodular

Control Paths
Data Paths

Figure 1: A Heterogeneous Machine

1. The Nature of the Problem

We expect that users of a heterogeneous machine will rely on libraries of painstakingly developed
procedures to accomplish the common operations in their domain of application. On a high per-
formance engine with multiple functional units, pipelines, and register sets, these procedures can
be very difficult to write. However, this is within the reach of current compiler technology, and
programming these engines is not the showstopper.

The major source of complexity in the applications for which the new heterogeneous machines
are being built (e.g., Autonomous Land Vehicle [DARPA 83]) does not come from the basic data
operations (these are hidden in the node procedures) or the data structures (usually limited to
arrays and records). The complexity comes from the communication patterns between the com-
puting elements required to make effective use of the available resources.

The writers of the application programs (e.g., top of Figure 2) must be familiar with the nature of
the tasks performed by the processors (nodes in the graph) and the contents of the data queues
(links in the graph) in order to program the applications. In general, the tasks will take different
times to complete. The programmer must schedule the arrival of sufficient data to prevent star-
vation of nodes but not schedule so much that queues overflow. Thus, an expert's knowledge of
the application is required to select and connect the right resources to achieve some optimal
performance. Applications might have additional requirements that might not be directly express-
ible in terms of nodes, queues, and links. For instance, one requirement might be that some
operation be performed twice as often as some other operation elsewhere in the graph in order to
obtain some balanced flow of data. These requirements and constraints are part of the program
and must be explicitly indicated.

The efficient use of a heterogeneous machine requires, therefore, support for developing applica-
tion programs organized as multiple, concurrent, cooperating coarse-grain tasks. The tasks in
turn could be more tightly-coupled parallel programs executing on specialized processors such as
systolic arrays. These two programming levels can be separated from each other. The writer of a
library procedure that performs some basic computation [e.g., convolution, histograms, etc.] does
not necessarily know the context in which the procedure will be used. The procedure executes
on a processor that consumes data from input queues and delivers results to output queues. By
the same token, the developer of the application does not necessarily know the details of the
procedures running on the nodes. The procedures are treated like black boxes or primitive
building blocks with predetermined, perhaps nominal, performance characteristics.

2. The Nature of the Solution

Suppose that the application programs are represented as graphs, with nodes representing the
tasks, and links representing data communication. Programming the task associated with a node
involves intra-node concurrency while making the nodes of the graph to work in parallel is
inter-node concurrency. The intra-node concurrency problem has been thoroughly studied, and
there are reasonably mature techniques for writing useful concurrent programs for intra-node
computations on special purpose systems. However, the higher level, inter-node concurrency is
not as mature or understood; this is the area of interest to us.

As illustrated in Figure 2, a compiler for a task-level programming language will translate the
application program into code for a virtual machine. The target "machine language" will consist
of commands to be interpreted by a scheduler node. Typical commands include requests for
data movements, data transformations, down-loading code to the computation nodes, invoking
task, etc. It is the job of the scheduler to generate the appropriate low level control messages
and route them to the processors in the system.

Ideally, neither the language nor the compiler should make assumptions about the structure of
the heterogeneous machine; this knowledge should be left to the scheduler. In practice, the
programmers may need to know something about the hardware to perform application dependent

V

Stttus Inputs
Pricttl ItratRlltM
?ufftr illocino*
rtfflc

2*£
Complltr

\ /

Schedule
Bnntctivitjr

lilt •«•*!
t>*i* lr*atf»rMi1»»i

Scheduler

J Messages
Start Tf •« PI at
Alltcatt O o' sli
tola; •** vat 11 r> 1» «0»t

Figure 2: Compilation and Execution of a Task-level Concurrent Program

optimizations when they choose to do so. We are dealing, therefore, with (potentially) multiple
virtual machine layers, organized in a hierarchy, and implemented by networks of message-
passing "smart" resources such as processors, queues, switches, etc. The programmer will
develop an application by specifying the operations (i.e., messages) to be earned out by the
virtual machine level(s) deemed optimal for the application at hand. The range of abstractions
provided by the virtual machines must be available to the programmer; this has obvious implica-
tions in the language design.

In this project we will address the following questions: How much information about the comput-
ing engines (nodes) and the tasks running on these engines should be visible? How much
information about the machine structure (in contrast to the program structure) should be visible?
How much information about the data and control communication infrastructure should be
visible2?

*We distinguish between the control communication and the data communication networks The control communication
is used by the processors and other resources of the heterogeneous machine to exchange messages of various kinds as
they schedule (or reschedule) the computation tasks. The data communication network, on the other hand, is used to
implement the data flow through the machine, and is likely to have higher bandwidth requirements.

3. Project Goals

The objective is to develop a specialized programming language for writing distributed programs
with coarse-grain concurrency. Suitable constructs will be included in the language for specifying
individual tasks, their attributes, relationships between them, and preferred host processors for
task execution. In general, language features will be designed in concert with the intended users
and the hardware designers. The users will drive the design of the features needed to express
task level programs. The designers will provide information about the hardware capabilities.
Since the hardware design is taking place concurrently with the design of the language, the
former is likely to be affected by the latter (i.e., language features needed to support the applica-
tions might require the implementation of appropriate hardware features).

The task-level, data-flow notation described appears to be a promising start in this direction,
especially for signal processing computations where data continuously flow from input nodes to
output nodes. There is a reasonably large body of literature on this subject, and we are studying a
number of existing language models. Given the nature of the problem, dataflow languages such
as ID [Arvind 78a; Arvind 78b] and VAL [Ackerman 79; Dennis 79] come immediately to mind.
However, the applications are likely to require more flexibility than a pure dataflow model: We
need to specify computations on streams of data as provided in Lucid [Ashcroft 77; Wadge 85].
In addition to the data flow operations, the applications require the specification of task
synchronization, task control, and graph reconfiguration under a variety of conditions. To satisfy
these requirements notations such as path-expressions [Campbell 74a; Campbell 74b] might be
more appropriate.

Programs in the task-level programming language will be compiled into sequences of task invoca-
tion and data communication operations. The first part of the problem to be tackled is the defini-
tion of the basic language concepts: the operators and operands used to program the machines
at the task level, ignoring the languages and support tools needed to program the basic tasks
executing in the computation nodes. The design and implementation of the language and as-
sociated tools will be an iterative process, developing virtual machines to execute the task level
programs. The first version of the system will provide a simple language, allowing for direct
control of the physical resources (the lowest level "virtual machine"). The emphasis will be in
obtaining early feedback from the users. Later versions of the system will incorporate additional
application requirements (e.g.,, perhaps better user interfaces.) and multiple virtual machine
layers. The abstractions provided by these machines will allow optimizations at the appropriate
levels by both the users and the compiler.

4. Conclusions

This effort started in January 1986. In the interim, we have been studying existing language
models that could be suitable as starting points for the development of a task-level concurrent
programming language. At the same time, we have started the design and implementation of a
prototype heterogeneous machine (to be operational by the Fall of 1987) and are building a
simulator to debug both the language and the hardware design.

References

[Ackerman 79]
W.B. Ackerman, VAL - A Value-oriented Algorithmic Language Preliminary Refer-
ence Manual, MIT Laboratory for Computer Science, MIT/LCS/TR-218, June 1979.

[Arvind 78a] Arvind and K.P. Gostelow, Dataflow Computer Architecture: Research and Goals,
Department of Computer Science, University of California, Irvine, TR 113, February
1978.

[Arvind 78b] Arvind, K.P. Gostelow, and W. Plouffe, An Asynchronous Programming Language
and Computing Machine, Department of Computer Science, University of California,
Irvine, TR 114A, December 1978.

[Ashcroft 77]
E.A. Ashcroft and W.W. Wadge, Lucid, a Nonprocedural Language with Iteration,
CACM Vol. 20 No. 7, July 1977, pp 519-526.

[Campbell 74a]
R.H. Campbell and A.N. Habermann, The Specification of Process Synchronization
by Path Expressions, University of Newcastle upon Tyne, Computing Laboratory,
Technical Report 55, January 1974.

[Campbell 74b]
R.H. Campbell and P.E. Lauer, A Spectrum of Solutions to the Cigarette Smoker's
Problem, University of Newcastle upon Tyne, Computing Laboratory, Technical
Report 63, May 1974.

[DARPA 83] Strategic Computing, Defense Advanced Research Projects Agency, October 1983.

[Dennis 79] J.B. Dennis and K.K.S. Weng, An Abstract Implementation for Concurrent Computa-
tion with Streams, Proceedings of the 1979 International Conference on Parallel
Processing, Detroit, Michigan, August 21-24,1979, pp 35-45.

[Wadge 85] W.W. Wadge and E.A. Ashcroft, Lucid, the Dataflow Programming Language. APIC
Studies in Data Processing No. 22, Academic Press, 1985.

6

ICCURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
It. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
1b. RESTRICTIVE MARKINGS

NONE
2*. SECURITY CLASSIFICATION AUTHORITY

N/A
2b. OECLASSIFICATION/DOWNGRAOING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release; Distribution
Unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-86-TM-4

S. MONITORING ORGANIZATION REPORT NUMBER(S)

ESD-TR-86-210
6a. NAME OF PERFORMING ORGANIZATION

SOFTWARE ENGINEERING INST.

Sb. OFFICE SYMBOL
(If applicable)
SEI

7a. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE
6c. AOORESS (City, Statt and ZIP Cod*)

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

7b. ADDRESS (City, State and ZIP Code)

ESD/XRS1
HANSCOM AIR FORCE BASE
HANsrnMr MA ni7^i

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

SEI JOINT PROGRAM OFFICE

8b. OFFICE SYMBOL
(If applicable)

ESD/XRS1

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City. State and ZIP Code)

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO.

11. TITLE (Include Security Clautfication)

SOFTWARE SUPPORT FOR HETEROGENEOUS MACHINES

63752F

PROJECT
NO.

N/A

TASK
NO.

N/A

WORK UNIT
NO.

N/A

12. PERSONAL AUTHOR(S)
MARIO R. BARBACCI

13a. TYPE OF REPORT

FJNAT.

13b. TIME COVERED

FHOM MAY afrro MAY 86
14. DATE OF REPORT (Yr., Mo.. Day)

MAY 86

15. PAGE COUNT

16. SUPPLEMENTARY NOTATION

17 COSATI CODES

FIELD GROUP SUB. GR.

18. SUBJECT TERMS (Continue on revert* if necessary and identify by block number)

19. ABSTRACT /Continue on reverie if necettary and identify by block number)

THIS PAPER DESCRIBES A NEW RESEARCH EFFORT CARRIED OUT JOINTLY BETWEEN THE SOFTWARE
ENGINEERING INSTITUTE AND THE DEPARTMENT OF COMPUTER SCIENCE AT CARNEGIE-MELLON
UNIVERSITY. THE OBJECTIVE OF THE PROJECT IS TO INVESTIGATE LANGUAGES, METHODOLOGIES,
AND TOOLS FOR PROGRAMMING COMPUTER SYSTEMS CONSISTING OF NETWORKS OF HETEROGENEOUS
PROCESSORS. TYPICAL USERS OF THESE NOTATIONS (AND ASSOCIATED SUPPORT SOFTWARE)
WILL BE THE DEVELOPERS OF REAL-TIME, COMPUTATION-INTENSIVE APPLICATIONS SUCH
AS THOSE CONTEMPLATED UNDER THE STRATEGIC COMPUTING INITIATIVE. IN PARTICULAR,
THIS RESEARCH IS BEING CONDUCTED IN THE CONTEXT OF THE AUTONOMOUS LAND VEHICLE'
APPLICATION, RUNNING ON THE HETEROGENEOUS MACHINE BEING DEVELOPED IN THE COMPUTER
SCIENCE DEPARTMENT. THIS PAPER PROVIDES SOME BACKGROUND ON THE NATURE OF THE
PROBLEM POSED BY THESE APPLICATIONS, THE OPPORTUNITIES PRESENTED BY THE EMERGENCE
OF HETEROGENEOUS MACHINES, AND THE GOALS OF THIS PROJECT.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED^ SAME AS RPT. D DTIC USERS D

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED DISTRIBUTION
22a. NAME OF RESPONSIBLE INDIVIDUAL

KARL H. SHINGLER
22b. TELEPHONE NUMBER

(Include Area Code)

412 268-7630

22c. OFFICE SYMBOL

SEI JPO
DD FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE.

SECURITY CLASSIFICATION OF THIS PAGE

