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Chapter 1
Introduction

Visual information is the prime communication medium for humans. Analysis of
this visual information and of its processing is important and serves multiple pur-
poses. Visual information generally consists of images of scenes in the three-
dimensional world projected on two-dimensional surfaces such as paper, film, video
screens or the human retina. Information intrinsically contained in these images ‘s
best characterized by regions with intensities, colors anc texture, and discontinuities
between these regions. On the other hand, scenes are better described by the sets of
objects present in the scene, shapes, surface properties and spatial arrangement of these
objects and the illumination of the scene. Substantial work has been accomplished in

studying the relations between scene properties and image properties. Theories

developed so far have permitted for example, the development of systems for syn-

thesizing realistic images, for enhancing images. and for recognizing objects in images.

In most theoretical analyses of the relations between scenes and images, only one
or a few image properties are related to their correspondent properties in the scene. In
addition, assumptions are made which decouple these relations from other effects. The
decoupled problems are amenable to analysis, and their solutions are often found
valuable outside the simplified context. The present thesis follows this approach by
considering only relations between silhouette shapes in images and object shapes in the

scene.

1.1. Silhouettes

The word "silhouette” 1s generally used in two similar senses. The frst
corresponds 1o portrays or scenes depicted as outlines filled in with black. whereas the
second corresponds t¢ just the outlines themselves; see Fig.1.1. Clearly, these two con-
cepts are closely related, and it is easy to transform one form into the other. For the
sake of clarity, we have decided to use the word "silhouette” for the outline only. and
the expression "hlled-in silhouette® for the outline filled-in with black. More pre-
cisely. the silhouette of an object in an image will refer 10 the curve which outlines

the image region covered by the projection of the object.
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Fig.1.1. Silhouette as a) a filled-in outline, b) an outline. (from [1].)

Among a variety of features which can be identified in an image, silhouettes are
known to convey a strong perceptual content for humans [2, 3]. For example. most of
us recognize without difficulty the various animals represented by filled-in silhouettes
in Fig.1.2. In this thesis, a new theory is developed to relate shapes of silhouettes to

shapes of the corresponding 3-D objects.

1.2. Three Basic Problems

Although the initial motivation for our work came from the domain of machine

vision, relations between objects and silhouettes can be exploited in a variety of con-

texts. A majority of the applications are closely tied to one of three basic problems.

namely silhouette construction, reconstruction from silhouettes and recognition from

sithouettes. These three basic tasks are now outlined as a motivation for the analysis N |

of object-silhouette relations. -

The first problem is that of silhouette construction from a description of the 3-D

shape of the object and the imaging geometry. This construction is required for exam- p

ple for the synthesis of blueprints from 3-D object models. Presently, most synthetic A
renditions are in the form of shaded images. For these. silhouette construction is not 0

explicitly required but can be used for anti-aliasing processing or for outlining areas to }

be covered by surface painting processes. M,

{
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Fig.1.2. Filled-in silhouettes of animals (from [1]).

A

The second problem is that of reconstructing the shape of a 3-D object from 'j:

" silhouette data. It is easy to see that the reconstruction of the shape of a 3-D object

o '
from one silhouette is largely underconstrained. Reconstruction of general shapes is

possible only when multiple silhouettes are available for processing: this occurs in -4

some examples of medical imaging and non-destructive testing, and for vision systems :

where several views of the object are available [4]. ,\

The third problem 1s that of 3-D object recognition from silhouette data. A X

2

A silhouette recognition system would exploit silhouette data obtained from an image, .

o\

I I N S B AT A
“- py "3") SN ’x"" T o L A o)




. SAR e md . EPyeany T Yo VRO T RNy ¢ v
b " ) . " . - zw
.

" -13-

» f
- \
- and compare this with a description of the 3-D shape of a known object. The system ;
L

' must determine if there is evidence in the silhouettes suggesting the presence of the

given object in the imaged scene, and estimate its position and orientation in the scene.

¥ A large number of solutions to this problem have been proposed for the case where the .
'~ .
g viewing direction relative to the object is known a-priori. In that case, the silhouetie bt

can be precomputed up to a rotation and a translation in the image plane, so that the

‘: matching process is greatly simplified. When there is no a-priori estimate of object by
'.),: orientation relative to the camera, the same object can produce very different 3
& silhouette shapes. and the problem is much more complex. 9
' 1.3. Previous Work on Silhouettes :
':‘: Previous approaches to silhouettes are briefly sketched here: they will be dis- ’
= cussed in greater detail in Chapter 2. Most algorithms presented in the past for solv- 3
: ing the problems mentioned in the previous section have been based on the well-
.;{ known relation between coordinates of points in the scene and coordinates of their
projection in the image [5]. In order to relate object shape and silhouette shape. this
relation must be combined with the knowledge of which points of the object in the
:;: scene are projected onto the points of the silhouette in the image. Silhouette analysis -
based on projections of points is satisfactory for the development of many computer s
" graphics algorithms, has helped to develop methods for reconstructing objects from
: silhouettes and methods for recognizing block objects from their silhouettes. How- N
2 ever, there are several drawbacks in the classical formalism. First. the classical -
) method does not explicitly analyze the relation between curved 3-D shapes and their by
silhouettes. Shapes of generalized cones have been related to the shapes ot their ‘
silhouettes [6]. but these relations are approximate and apply 1o simple generalized .
cones only. Second. the classical method does not easily support intuitive reasoning
when several object points are related simultanesouly to the corresponding silhouette
':: points. Third. no intermediate representation has been proposed where information A
3 from different silhouettes 1s readily combined. Finally, the relations between :
: stlhouette points and object points must be supplemented by various ad hoc arguments .
. lo solve different problems. .
K-
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L) Deficiencies of the clossical sithouette theory are most severe for the problem of
[}
‘ recognition, but the other two application areas can also benefit from new results on
P ﬂ silhouette analysis.
‘1
:"3, 1.4. Thesis Overview
' Solving any of the threc basic problems described in section 1.2. requires a good
I g understanding of the relation between the shape of a 3-D object and the shape of its
: " silhouette obtlained for any given viewing direction. In this thesis, we present new
)
s representations for objects and silhouettes, and the relations between these representa-
_' tions for corresponding object-silhouette pairs. Specifically, silhouette curves will be
) .‘N‘
‘ Ca represented by functions on the Gaussian circle, and object surfaces by functions on
L. the Gaussian sphere. The functions describing these shapes are chosen in such a way
‘.‘ e
h - that the relation between object functions and silhouette functions is particularly sim-
K ple. The representation of a given silhouette is simply related to a slice of the
‘ ‘\:
f ) representation of the object on the sphere. The new theory hence relates silhouettes of
‘. objects 1o slices of their representations, and the theorems formalizing these relations
- i have been named "Silhouette-Slice” theorems.
)
4 - The theories presented in this thesis apply to the case of orthographic projection
S only, and are iniually developed for smooth strictly convex objects, such as the super-
‘ ' quadric in Fig.1.3. Although the class of smooth convex shapes is somewhal res-
h - tricted, the theorems will be extended to cover objects with corners, edges and flat
L. components, which include convex polyhedral objects such as in Fig.1.4. As a conse-
A quence, the same theories are capable of analyzing silhouettes of curved objects and of
r =
1
' -
X h
h )
: I'?‘ \—'//
k .
- a) b)
Fig.1.3. Superquadric and its Silhouette for the Viewing Direction V.
b o
)
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a) b)
Fig.1.4. Cube and its Silhouette for the Viewing Direction V.

polyhedral objects. Furthermore, some of the results are applicable to non-convex
objects suca as the torus depicted in Fig.1.5. However, silhouettes of non-convex
objects may contain singularities such as inflections and cusps which are not well
analyzed with the Silhouette-Slice theorems, but which have been studied in detail in
other work (7,8, 9]. Finally. the scope of the results can be extended considerably
when Boolean combinations of objects are considered. Indeed. combinations of simple
primitives such as the superquadric in Fig.1.3 have been shown to adequately model
complex objects {10].

The new theorems allow the derivation of closed form expressions for the

silhouettes of complex 3-D shapes, when these are defined analytically. In addition to

these mathematical relations between silhouette and surface shapes for the class of

a) b)

Fig.1.5. Torus and its Silhouette for the Viewing Direction V.

.Y

IENRN

I." . - n-‘ . - -.. ‘-. i 'Y
C o L ot L e




-16 - ~

) -

i objects of interest, the new theory also provides an elegant qualitative interpretation :

of these relations. The framework of the Silhouette-Slice theorems is well suited to Yy

develop an intuitive understanding of the relations between silhouette shape and #

- object shape. The representations proposed for 3-D shapes can be thought of as inter- c

) mediate representations in which information from silhouettes corresponding 1o _:

different viewing angles is readily combined. Finally, the representations of an object Ed

4 by functions on the sphere can be interpreted as a compact representation for the set of :;

all the silhouettes of the object. ‘:‘

’ :‘
1.5. Thesis Organization

: The second chapter of the thesis reviews some earlier work on silhouettes in the "

context of the three basic problems outlined 1n section 1.2, As object modeling plays

an important role in the analysis of relations between object shape and silhouette ,

shape in general, and in the analvsis presented in this thesis 1n particular. previous _

g work on that subject is also reviewed. E','.

Chapter 3 reviews some basic concepts of analytic and differential geometry. In

addition to the review of classical concepts. a number of original geometrical concepls ‘_

are presented. The first is the definition of an invariant measure of surface curvature. -

The second concept is the definition of local reference directions at each point of the

Gaussian sphere, in order to support the discussion of object functions with vector and i

X tensor values. Finally, a relation is proposed between representations of normals with

gradients in a Monge parameterization on one side and with coordinates on the Gaus- X

;: sian sphere on the other side.

In Chapter 4, the classical approach to silhouette construction is reviewed. This

; approach consists of a two-step process. where the first step is the selection of object :_,

. points which contribute to the silhouette, and the second step is the projection of these :E

points. This approach 1s illustrated in the case of a simple object. a cone. The hy

equivalent formalism is also presented in the dual space of tangents. For both ]

methods. surface normal orientation is shown to be the key parameter to silhouette

N

o . . . . “-

construction with orthographic projection. This conclusion motivates representations
of objects and silhouettes where normal orientation is explicit. ‘
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3 Chapters 5 and 6 present the major developments in this thesis. A set of '
2"; representations is developed for 2-D curves and for 3-D surfaces, with the relation
9%
between these representations for an object-silhouette pair.
S . . , .
o Chapter 5 introduces three different representations for the shapes of 3-D object
-
o surfaces and for the shapes of 2-D silhouette curves, as functions on the Gaussian ;
b sphere and on the Gaussian circle respectively. All three representations are unique
. and uniquely invertible for objects in the class of interest, and are explicitly phrased N
- in terms of normal orientations. A close parallel is followed in the discussion of the
‘;T representations in 2-D and 3-D. ‘
> Chapter o presents three theorems expressing the relations between corresponding ]
4 silhouette circular functions and object spherical functions. A unified proof method is
; " presented for the three theorems corresponding to each of the three representations. .
’ The spherical transforms of 3-D objects are also interpreted as compact representations .
-0 of the set of all their silhouettes.
2 Chapter 7 extends the theories presented in Chapter 5 and 6 to the case of object .
N surfaces with edges. corners and planar faces.
j In Chapter 8, examples of silhouette construction with the Silhouette-Slice
:: theorems are provided. Other applications of the method are suggested, such as a stra- :
L .
" tegyv tor reconstructing objects from sithouette data. and the principles of a recognition
scheme for silhouettes.
. [of
= Finally, Chapter 9 concludes by summarizing the key contributions of this thesis
j:‘ and suggesting directions for future work.
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Chapter 2
Literature Review

In this chapter, previous work on silhouette analysis is reviewed. As no general
framework previously existed for this analysis, much of the work on silhouettes pub-
lished in the literature is found in application areas and considers relations between
object shape and silhouette shape only in the context of particular tasks. Literature is
most abundant for the problem of recognition, but it is also instructive to consider
how silhouetles have been handled in other application areas. The first part of this

chapter examines existing approaches 1o the three basic problems outlined in Chapter 1.

In order to relate silhouette shapes and object shapes, it is necessary 1o base the
relations on some description of the shape of the object surfaces. Therefore, surface
modeling procedures play a central role in any analysis of the silhouette problem. In
addition, one of the key contributions of this thesis is a set of surface representations
for which the relations between objects and silhouettes are greatly simplified. The
second part of this chapter reviews previous work on surface modeling, with special
emphasis on the relations between the proposed representations and the shapes of

silhouettes.

2.1. Literature on Silhouettes
2.1.1. Construction of Silhouettes

Most exémples of numerical evaluation of silhouettes are found in the synthesis
of images in the feld of computer graphics. Several references, such as [11, 12], pro-
vide a good introduction to the field. The synthesized image can take different forms,
such as wireframe diagrams, blueprints. or shaded renditions. In the case of blue-
prints, the output image consists of lines and curves representing creases in the object
surface and silhouettes of the object and of its parts. For this type of output, explicit
silhouette construction is necessary. In the case of shaded images however, explicit
construction of silhouettes can be avoided. as they are implicitly generated on boun-
daries of rendered surfaces. Although explicit construction of the silhouettes is not

indispensable for the synthesis of shaded 1mages. it can be useful for example in the
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elimination of jagged outlines, known as anti-aliasing processing. In the synthesis of
both shaded renditions and wireframe drawings, silhouettes can also be used 1o deter-
mine a-priori which regions of the image will be covered by which objects. With this
information, the rendition can be divided into several processes without risk of
interferences if the processes are run in parallel. Silhouettes can also be useful for the
rendition of shadows. The determination of the shadow of an object on a planar sur-
face is equivalent to the determination of a silhouette of the object for an appropriate
imaging geometry [13]. Results obtained for silhouettes are hence immediately appli-
cable 10 shadows. In summary. the construction of silhouettes is used or has a poten-

tial for use in several facets of image synthesis.

Computer graphics is a relatively mature field, and some silhouette construction
methods are well known. Most of these are based principally on the relation between
coordinates of points in the scene and coordinates of their projection in the image
plane; these relations are nicely illustrated in the context of graphics in [5]). In addi-
tion to the relation between point coordinates. the exact shape of the silthouette
depends on which points of the object are projected onto the points of the silhouette:
this set of object points is referred to as the silhouette generator in this thesis.
Methods for determining the silhouette generator depend on the type of representation
for the objects. In the case of polyhedral objects, the silhouette generator is the set of
all edges touching a face oriented towards the eye position and a {ace oriented away
from the eye position. The selection of this set of edges usually requires a search
through all the edges of the polyhedron. Objects with curved surfaces are often
described as collections of curved surface patches, such as segments of spheres,
cylinders. general quadrics. superquadrics, Bezier patches, B-spline surfaces ... In this
case. the silhouette is a 3-D curve containing all the points where the viewing rays are
grazing the object surface; this curve is twisted in general. For quadrics and some
higher order surfaces, closed-form expressions have been determined for the silhouette

generator and for the silhouette itself. For other surfaces, accurate approximations

have been proposed.
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2.1.2. Reconstruction from Silhouettes

In a significant number of cases, images contain little more information than the
silhouettes of the imaged objects. This arises for example in some nondestructive test-
ing x-ray images. in images of backlit objects, and in some range images [14, 15). It is
of ten desirable to estimate the 3-D shape of the imaged objects in those circumstances.
It is intuitively obvious that a large number of different 3-D objects could have gen-
erated any given silhouett¢, so that reconstruction of a 3-D object shape from the
shape of one silhouette is ambiguous. Several ways have been proposed to reduce or
resolve this ambiguity. e.g. by considering restricted object classes. by using more than
a single silhouette, or by applying regularization methods. Previous work on these

three facets of reconstruction from silhouettes is now reviewed.

Exact reconstruction of a 3-D shape from one silhouette can be guaranteed only
by considering a restricted class of 3-D objects. An interesting class which has been
considered is the class of axisymmetric objects. For these objects, the silhouette con-
strucuion is invertible in the absence of self-occlusions, for known object orientation.
However, the orientation of the object axis is usually unknown a-priori and must be
estimated from the image data. Methods have been proposed for estimating this orien-
tation from the shape of the silhouette of the object base. or from a self -shadow on the
object image [13]). In a recent paper, the author has proposed an alternative method

based on the Silhouelte-Slice theory, for determining the orientation of the axis [16].

A second approach to the reconstruction of object shape from silhouette data is 10
consider the problem as improperly posed and to apply regularization techniques [17].
A unique shapc estimate is obtained by maximizing some smoothness constraint while
matching the observed silhouette. Strong constraints are imposed by the silhouette
observations when object surfaces are assumed 1o be continuous along the silhouette
generator. so that the surface must be tangent to the viewing rays corresponding to the
silhouette. The object surface orientation is uniquely determined at these points by
the silhouette orientation in the image and by these viewing rays. Reconstruction
results obtained with this method seem 1o be in acceptable agreement with the human

perception of shape from silhouette images.

Complete and accurate reconstruction of 3-D shapes from silhouette data is possi-

ble for a large class of objects, when multiple silhouettes are available. A well-known
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solution to this problem consists of first considering. for each projected silhouette, the
object outlined by the corresponding viewing rays. This object. referred to as the
extruded silhouette by some authors. 1s a prism {or parallel projection, a generalized
cone for perspective projection. The orientation of each extruded silhouette in a world
reference frame can be determined from the 1maging geometry for the corresponding
silhouette so that all extruded silhouettes can be combined 1n the world reference
frame. Among all objects with shapes consistent with the measured silhouettes, the
intersection of all these extruded silhouettes is thc ohject with the largest volume.
This maximal volume object can be considered as an estimate of the object shape.

Implementations of this reconstruction procedure are discussed in [4, 18].

2.1.3. Recognition from Silhouettes

Object recognition from image data 1s a major concern in the field of machine
vision. Several books. such as [19.20, 21], provide a good introduction to the field.
Silhouettes are important features in images of objects, so that substantial research has
been accomplished in the area of recognition from silhouetie data. A summary of

some important published research on this topic is sketched below.

Whereas objects in a scene are generally three-dimensional. their silhouettes in
images are necessarily two-dimensional. As a result, object shapes can not be directly
related to the shape of their silhouettes. Several strategies have been proposed 1o cir-
cumvent this apparent mismatch. The first approach consists of precomputing
silhouettes for the known objects and performing the match at the 2-D level. In the
second approach. only planar objects or planar object parts are considered. but their
plane is not required to be parallel 1o the image plane. The third approach consists of
first processing the observed sithouette to estimate the shape of the corresponding 3-D
object. then performing the match at the 3-D level. The fourth approach consists of
devising judicious models for both objects and silhouettes so that the match can be
performed between features of these models. Most algorithms proposed for recogni-

tion from silhouettes can be related to one of the above classes.

Systems which compare the observed silhouette with synthesized silhouettes
must perform matches between 2-D outlines differing by only translations and rota-

tions 1n their plane. Numerous methods have been proposed for performing this
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operation on complete silhouettes [22- 30]. However, these methods require the
knowledge of the correct 3-D object orientation and work well only when this orienta-
tion can be estimated a-priori. Otherwise, a large number of orientations must be tried.
requiring matching and either computation or storage of large numbers of silhouettes
for each object in the data base. These requirements may easily become excessive for

medium 1o large object data bascs.

When only planar objects are considered in the scene. the object outline is related
10 the observed silhouette by an athine transformation. A method has been proposed to
characterize planar objects bv features invariant in affine transformations [31). With
this method, general polyhedral objects can be recognized by building a separate model

for each planar face and matching each of these to image features.

A different strategy consists of first performing an approximate reconstruction of
the 3-D shape of the object using procedures similar 10 those described in tlie previous
section. The reconstructed shape is then matched with known object models. When a
restricted objecy class can be hypothesized or when a large number of silhouettes is
available, accurate reconstruction of the 3-D object shape is possible, and the problem
becomes one of 3-D shape matching. When the approach is applied to a single
silhouette with no constraints on the 3-D shape. the information is insufiicient 10 accu-
rately reconstruct the 3-D shape so that this strategy is difficult to implement. Work
has been done on qualitative estimation of object shape from silhouette data. and on

the use of this information for recognition (see for example [32, 33]).

A number of systems have been reported where nontrivial 3-D object features are
compared 10 2-D sithouette features. Two characteristic examples are described here.
The first example 1s given by the ACRONYM system [34]. where object features are a
collection of generalized cones which describe the object shape. These features have
"ribbons” for sithouettes and the relations between corresponding cone/ribbon parts are
readily evaluated. A parsing mechanism converts each measured ribbon into sets of
inequality constraints on the parameters ol corresponding object cones. These con-
straints are rollected and the matching 1s converted into a decision procedure {or the
large resulting set of inequalities. Success of this approach is partially linked to the
astute choice of cones and ribbons, a set of corresponding features which judiciously

relate silhouette information to object information. The second approach considered
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el
R
-'::j: here consists of extracting edge features from both the silhouette and the object and of
:: performing the match based on these edges. Goad proposes a fast implementation of
:: this procedure [35]). In this case 100. the choice of features is appropriate since relation-
:.:}-,,\ ships between image edges and object edges are straightforward.
:}‘\ In many of the approaches discussed above. the measured silhouetie must be com-
. plete. If part of the silhouette is missing, recognition can be much more complex.
,,.Sf: Missing silhouette parts may be due for example to occlusions in the scene or segmen-
:’}:: tation errors in early processing of the image data. Although recognition of 2-D
Y objects has been demonstrated in cases of partial occlusion, for example in [36], the
e problem of 3-D object recognition from partially occluded silhouette data still requires
.3:\5 substantial work.
"_,. In addition 1o the work presented above which is intrinsically related to applica-

tions, some more general analyses of silhouettes have been presented. Shafer reviews
some basic silhouette construction methods. referred to as "classical” in this thesis, and

draws a number of conclusions for the analysis of silhouettes of generalized cones [13].

In other work. Koenderink has considered the relation between characteristic events on
the silhouette curve and corresponding surface features [7]. His work is the only
reference known 1o the author where relations between shapes of surfaces and shapes

of their sithouettes are analyzed in detail. He independently discovered the dual of

Euler's theorem [33] presented in Appendix 3.




2.2. Literature on Object models

This section gives a brief overview of modeling methods for 3-D shapes and their
consequences for silhouette analysis. Quite different approaches to modeling must be
followed. depending on whether the models are used for synthesizing or for recogniz-

ing shapes. Modeling methods intended for synthesis are used in CAD/CAM systems,

and the theories are covered in texts such as [37. 38). Modeling for recognition is

addressed in texts on computer vision and in a number of articles such as [39, 40). As
models for synthesis pertain 10 silhouette construction and models for recognition per-
lain 1o recognition, both aspects of modeling are addressed here. Since silhouettes
depend only on the exterior surfaces of objects, modeling methods specifying the inte-
rior of objects such as constructive solid geometry or solid patches are not addressed

here.

The synthesis of a complex shape usually starts by breaking up the surface into
simpler parts (surtface patches), then independently describing each part by some
atomic surface element using a limited number of parameters. Basic elements include,
in order of increasing complexity, planar facets, segments of spheres, cylinders, cones,
quadrics. supcrquadrics and parametric surfaces such as Bezier patches or B-spline
patches. In order to determine silhouettes of the synthetic shapes, closed-form expres-

sions are desirable {or the silhouettes of the set of basic element types.

When defining a model for the shape of a given object by the above method, it is
generally attractive to position the element boundaries at some meaningful surface
boundaries. although this is not necessary. It is usually possible to define or closely
approximate the same shape by several different descriptions. In the field of machine
vision however, careful attention is paid 1o the uniqueness of the representatiqn of the
objects. Ditheult issues arise in recognition when the same shape can be described by
diff erent representations,  Therefore, representations used for shape synthesis are usu-

ally not appropriate as such for recognition applications.

In some early machine vision systems. 3-D objects were represented by 2-D views
corresponding to different aspects. The major problem of this method is the large
number of diffe~ent views required for describing each object. Although 3-D represen-
tations are now generally preferred. interesting approaches based on 2-D representa-

tions are stll proposed [41]. Analysis of complex silhouettes such as the ones in
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::::':: Fig.1.2 is dificult because natural objects such as these animals have extremely com-
:': plex and variable shapes. Analysis of their silhouettes requires the combination of an
e, understanding of image processing and geometry on one side, and of representation
ﬂ\::: mechanisms for the structure of complex shapes on the other side. Some authors in
.::‘- the computer vision community have adopted a representation of 3-D objects in terms
y of generalized cones [b, 13. 19, 34, 42]). These models are viewpoint independent and
;_‘}-: are well adapted 1o the representation of complex shapes. When applied to silhouette
d“ analysis. the proposed method is attractive because silhouettes can be approximately
":: predicted by a simple method for a large class of generalized cylinders. There are
_ however a number of drawbacks to modeling with generalized cones. Generalized cone
}’:, models are not always unique and. for complex surfaces, the usual approximations
involved may lead to incorrect conclusions [43].
o A very different modeling approach is taken by Horn with the Extended Gaussian
‘_’.:':j‘.j Image [44]. The Extended Gaussian Image represents a complex shape in one step,
‘_.,_ specitving the shape by a scalar function on the Gaussian sphere. The value of the
4:'-:::: function on the sphere defines the inverse Gaussian curvature of the surface at the
N corresponding point of the object. This representation is known to be complete and
:‘:l unique for convex objects. An algorithmic inversion has been proposed and its imple-
f mentation reported in [45). The Extended Gaussian Image combines information
o related 10 different viewpoints in an elegant way. It has been successfully used in
‘ ,.‘_- recognizing and positioning 3-D objects [46). 1t will be shown in this thesis that the
| ; Gaussian mapping greatly simplifies the selection of silhouette generator points. How-
! _;) ever. the Gaussian curvature of the object is not related to silhouette properties in a
, straightforward way, a fact that makes the Extended Gaussian Image inappropriate
_{ for work on silhouettes. )
T
't?\:-::: 2.3. Conclusion
J\ oy 3. U ‘
Fre To summarize our analysis of the literature on silhouettes, we notice that work
.r:;:zf published on silhouettes suffers from the lack of a basic theory which would summar-
:-:,; ize most of the individual results. In addition, a detailed analysis of the relation
K between complex curved shapes and their silhouettes has not been presented. Finally.

our survey of classical modeling techniques reveals that silhouetle shapes cannot
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usually be related to the 3-D representations. This thesis tries to overcome these
deficiencies by contributing a basic theory of silhouettes for objects with curved sur-
faces. It will be shown that the theory based on curved surfaces can be easily
extended to surfaces with edges, corners and planar faces, so that the same theory can

be used in many situations.

The new theory is based on a set of three new representations for the shape of 3-
D surfaces. and the corresponding representations for planar curves. The new object
representations presented in this thesis retain a basic concept of the Extended Gaussian
Image. namely the description of object shapes by functions on their Gaussian sphere.
The functions used in the representations proposed in this thesis specify points.
tangent planes and complete curvature of the object surfaces. These functions are
easily related to the corresponding functions for silhouettes corresponding to any
viewing direction. Some of the functions on the Gaussian sphere are substantially
more complex than the the function represented in Extended Gaussian liage function

and require the definition of vectors and tensors at each point of the Gaussian sphere.
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Chapter 3
Background

In this chapter, the framework in which the silhouette analysis will be developed.
is reviewed. As silhouettes refer 1o outlines of image projections, the study of
silhouette shapes is equivalent to the study of the shape of closed curves. A Kkey issue
addressed by this thesis is the relation between silhouette shapes and shapes of the
corresponding objects. Opaque objects are completely determined by their bounding
surface so that object shapes are equivalent to shapes of closed surfaces. It will hence
be possible to phrase the relations between object shapes and silhouette shapes in terms
of curves and surfaces. Both curves and surfaces are sets of points which can be
specified by expressions for their coordinates in appropriate frames. These sets will be
analyzed in this thesis with tools from analytic geometry and differential geometry.
Basic concepts from these fields are reviewed here, and notations used throughout the

thesis are defined.

In the first section, geometry of points, lines and planes is reviewed. Coordinates
are defined for these elements and effects of transformations of axes on these coordi-
nates are studied. Specification of the imaging projection is addressed. Relations
between coordinates of points and planes in the scene and the coordinates of their pro-

jections in the image are developed.

In the second section, the geometry of curves and surfaces is reviewed. Represen-
tations in terms of global parametric equations and in terms of local Monge parameter-
izations are discussed. Curvature is defined in terms of a Taylor expansion of the
Monge parameterization. For curves, the resulting definition is identical to the classi-
cal curvature k , which is also the inverse of the radius of curvature p =k ~'. In the
case of surfaces however, our method defines curvature by two new invariant tensors
which are inverses of each other, and wil] be denoted here as the tensor of curvature

and the tensor of radius of curvature.

In the third section, the Gaussian mapping is reviewed, and definitions of
stlhouette and object properties in terms of functions on the Gaussian sphere and on

the Gaussian circle are proposed. Geographical coordinates on the sphere are

-27-



N introduced, and representations of vector and tensor valued functions on the sphere

1R
N are formally addressed. Finally, the global definition of normal orientations on the
A Gaussian sphere is related to local definitions in terms of Monge parameterizations.
PO A
- In our review of concepts of geometry, it will often be useful to develop the
oo
L arguments in the simpler case of two dimensions first, and to use this formulation 1o
introduce the more complicated case of three dimensions. However, for some problems
- i
::C: which are essentially meaningful in three dimensions only. the case of three dimen-
A\l
5
I :j: sions is analyzed first.
: A pragmatic approach is followed through this chapter. More rigorous accounts
A of differential geometry are provided in textbooks such as [47, 48].
B
A
»::,’, 3.1. Geometry of Points
WA
b, L
3.1.1. Coordinates of Points and Vectors
R
545 |
—:{f_ Cartesian Coordinates (x,z) and (x,v,z ) are used for the representation of
- : , - . : :
_}::.- points in 2-D and 3-D respectively; see Fig.3.1. Axis orientation corresponds 10 a
'R
' counterclockwise rotation from Ox 10 Oz in 2-D, and 1o a right-handed trihedron in
o 3-D. Vectors are denoted as = (x = )7 and X=(x y = )7. The notations 1 and
'-\.j':;f 1 are reserved for vectors normal to a curve and to a surface respectively. Unit vec-
IR - —
o tors are denoted as, for example, 1, for a unit vector along X in 2-D. and 1, for a
D)
’ unit vector along 1 in 3-D.
L)
X -_"*: . -
,;n';:_, We have chosen the letters x and - to denote the axes in the plane instead of the
M
‘)"'-j..: usual x and y to emphasize the relation between the vertical axis = in 2-D and 3-D.
e
o z
L -
b 4 :
o <
NN
Do, a <
M
-2 x
% -I‘..‘j X X
oy
N
R »

Fig.3.1. Cartesian Coordinates in 2-D and 3-D.
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3.1.2. Tangential Coordinates

PR o

\ ‘i

Tangential coordinates. also referred 10 as dual coordinates, will be considered for

the characterization of lines tangent to a silhouette and planes tangent to an object.

l"'l')‘[‘

These coordinates are discussed in some delail here since no reference consistent with

A U
-,

our notation could be tound. Additional material and insight can be found in [49].

o .
Ay Xy
]

Curves and surfaces are usually described in terms of their points and the coordi-

nates of these points. However, it is also possible to describe curves and surfaces by

AT A

the sets of their tangents: these descriptions will be referred to here as tangential

~
b~

representations. Tangential representations require the definition of coordinates for

A

lines and planes. As in the case of points, coordinates for a tangent { a line or a plane )

A
'

represent the position of this element relative to a system of axes. One set of coordi-

AR
s

¥

nates used in this text 10 specify tangents is the set of inverse intercepts with the axes.

R
L)

[

¢
-
3
-
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In 2-D, a line intersecting the axes at (1/\,,0) and (O,]/)\}. ) will be given coordinates

A (A, A, ) and a plane intersecting the axes at (1/A, 0,0), (0,1/A,,0) and (0,0,1/X.)

k will be given coordinates (A, )\\ A ) see Fig.3.2. These coordinates for lines and

1 planes will be referred to as Cartesian tangential coordinates in this text. They can be
viewed as coordinates of elements (lines and planes) represented by points in an other
space, which will be referred to here as the tangential space; this space is isomorphic to
the dual space. Elements in the tangential space can be referred to by sets of coordi-
nates or also by vectors in the tangential space, A = (A, A, ) in 2-D and
X= (A A, A in3-D.

It is sometimes useful to consider a different set of coordinates for elements in
tangential space, which will be referred to as polar tangential coordinates. For both
lines in 2-space and planes in 3-space, the polar coordinates specify the distance p to
the origin and the normal orientation. Orientations are specified in 2-D by the polar
angle Y and in 3-D by the longitude ¢ and latitude m; see Fig.3.2. The conversion from

polar coordinates (p ,iy) 10 Cartesian coordinates (A, ,A, ) of a line in 2-D is given by

A, = cosy/p )
. .
i )\y = sinyy/p
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D
O Fig.3.2. Tangential Coordinates.

‘;j The corresponding relations between 3-D Cartesian coordinates (A, A A, ) and polar

ol coordinates (p ,£,m) for a plane are given by

N, = cosécosn/p

i} '.c

A, = sinécosn/p (3.2)

‘;‘a'v'-'.l‘

A. = sinn/p

[ R ]

x

Points of a line with tangential coordinate vector A have coordinates which

satisfy

el

x A, +y A, =1 ,also written X =1 (3.3)

ROy

' The vector A in tangential space defines a line in point space which is perpendicular to

¥, X considered as a vector in point space. Similarly, the equation for points of the plane
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with coordinate vector k= (A, Ay A, ) is given by
x A, ¥ A, +2 A, =1 ,also written N x=1 (3.4)
The equation for points on a line with polar tangential coordinates (p ,\) is given
by

x cosyp+ v sing = p (3.5)

which is sometimes referred 1o as the normal equation of the line. Points of a plane

with polar tangential coordinates (p ,£,m) satisfy the equation
x cosécosn + y sinfcosn + z sinm = p (3.6)

which is referred to as the normal equation of the plane.

3.1.3. Transformations of Axes

Coordinates of points, lines and planes depend on the choice of a system of axes.
The same physical point. line or plane is described by different sets of coordinates in

two sets of axes. Relations between these coordinates are investigated in this section.

Three systemns of axes will be considered in this thesis for the description of
curves and surfaces: these systems will be referred to as global, rotated, and local
axes. The local axes are rotated and translated with respect to the global axes: they
are centered at P. The rotated axes are parallel 1o the local axes but centered at the
origin of the global axes. The three systems are sketched in Fig.3.3, for both 2-D and
3-D space.

3.1.3.1. Transformations for Point Coordinates

Denoting coordinates in rotated axes by the subscript R . coordinates in local axes
by the subscript [, and coordinates in the global axes by symbols without subscripts,

the various coordinates in 2-D are related by

G " o I T B e Bl O O, T, . ,‘ D A ,
257 NN NS "\. \" N W 4 (\_J»,-_‘(_A. TN DENTRES .".r"'( c’ O RO S
d o M B Al 48 3 oy

RS

vy



4 ‘. - - - -, - . . - - Iy - ., Y s y Yy < S Ky . kY 3, ‘l"‘ﬂ"""v'V'Y“r‘W

-32-

- R 'tl

R -
3 s x
}1 R R

et Py

PO X R n
X

Nt
O

y
Fig.3.3. Global. Rotated and Local Systems of Axes

‘ < X COSdJO —Sinl!JO Xp

sl 7 | singg  cosyy, IR
g = RF Oy, R (3.7)

X o cosy, —sinyy

+ .
- 20 sinyy, cosyy,

Ka

t
~

ty

% = %, + RFC(y,) %, (3.8)

) where the symbol R:R ~“ denotes the matrix of the 2-D rotation from rotated to global
Jul axes and KX is the coordinate vector of Py, in global axes. The corresponding relations
fi for coordinates in 3-D are given by

Y X cos§qcosn, —siné, —cosé,sinmny Xp.

sin§gcosn,  cosé, —sinéysinmg YR

sinm, 0 oSN R

P
<

ta

;
:;" X = R}P——U(é’()yn()) ;\?R (3.9)
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x X coségcosn, —siné, —coséqsinng| | x, o

V[ = [yo| * |sinéocosmy  cos§y —sinéesinng| |y o

- 20 sinmg 0 cosMNg z e,
X =%, +RF O£ X, (3.10) -

where the symbol Rf‘o denotes the matrix of the 3-D rotation between the rotated

frame and the global frame, and 3’(‘0 is the coordinate vector of P in global axes. In

PR
v’n .

the above expressions, i, 1s the counterclockwise angle from the global axes to the

'
1

rotated axes in 2-D and €. M, are the longitude and latitude of the orientation of the x)
rotated Oxp axis with respect 1o the global frame in 3-D. a notation consistent with S
angular coordinates introduced for the Gaussian circle and Gaussian sphere in a later
section. :_‘_'.
RS
As is done repeatedly in this thesis, both expanded and compressed notations are
provided for the same equation. The abridged notation stresses the similarity between :_:j:
relations in 2-D and 3-D. whereas the expanded notation is more explicit. '.::_‘
3.1.3.2. Transformations for Tangential Coordinates _
After having considered the transformation of point coordinates between :'-.::
different reference frames, transformations of tangential coordinates are now derived iZ::
for the case ol pure rotations of axes. Coordinates for a plane in rotated axes are
obtained by first writing the equation in global axes for the coordinates of the points ::;:
of the plane. These coordinates are related to the coordinates in the rotated axes using ~.
the transformation discussed in the previous section. An equation is obtained for the N
coordinates of the points of the plane in the rotated axes, from which the tangential ii
coordinates of the plane can be extracted. It will be concluded that the transforma- -.
tions of Cartesian coordinates of planes are identical to the transformations of Carte- ;

sian coordinates of points. The same argument and the same conclusions also apply to

the coordinates of a line in 2-D.

Consider a plane with global coordinates A. This plane contains the points X for

which; see equ. (3.4)

—

AN X=1 (3.11)
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e

SN The equation of the plane of interest in the new axes has the form

Iy =T -

i Ap Xp =1 (3.12)

P g
oot where x,{ has to be determined. Equation (3.11) is transformed into a form more
K-

§ .‘ l‘. . . . N . . .

similar to (3.12) by applying the transformation in equation (3.9) to the point coordi-

+ RN

B nates X.

. - _ —_— .

o FR; GxR =1 (3.13)

SR Identif ying this form with equation (3.12) produces

w

w X2 =X RFC Lalsowritten X=RF O\, (3.14)

B

f- The tangential coordinate vectors for planes hence transform in the same fashion as

':j:- point coordinate vectors. This is not surprising, since the vector A in point space is a

,-.(»
normal to the plane at hand. Transformations of tangential coordinates between

o translated axes 1s less straightforward and s not discussed here.

g 3.1.4. Imaging Projections

. This section describes how the imaging geometry is specified, and how coordinates

-\--

e of points and lines in the 1mage can be obtained from the coordinates of points and

_’_:I;j planes in the imaged scene. For a general perspective projection, the imaging geometry

J"\d‘
is completely defined by the position and orientation of the "camera frame” and by the

o focal length of the "camera”. In this thesis. only orthographic projections are con-

jf:-j sidered; these projections are completely defined by the viewing direction.

,\ It is customary in machine vision to relate the camera frame 10 the reference
frame of a particular object in two steps by considering an intermediate world frame
attached to the scene being analyzed. The "camera" is defined by a system of axes

- X Ve I its position and orientation are specified with respect to the world frame
' Xy Yw Sy and account for the position and orientation of the imaging device relative
| f}ﬁ 10 the scene. On the other hand, each object is described in an individual reference
:Zf:'-} frame, say xg Vo <o : the relation between this frame and the world frame accounts

-f-;:ﬂ for the position and orientation of the object in the scene; see Fig.3.4. The geometry of

y the imaging projection relative to the object is hence determined by the composition of
'~ the transformation from X, vo 29 10 Xy Yy Sy . then o x¢ Ve Z¢ . In this thesis, only
e
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Yo

Fig.3.4. Traditional Definition of Positions and Orientations.

the combination of these two steps is considered, by describing the imaging geometry

directly in the object frame.

For orthographic projections, the imaging geometry is entirely specified by the
viewing direction, which is parallel to the vector ¥ pointing away from the scene
towards the viewer. The vector ¥ itself is referenced by its longitude ¢ and latitude 0

in the object frame: see Fig.3.5.
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Fig.3.5. Relative Orientation of the Object and the Viewing Direction.
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NANES Cartesian coordinates for the unit vector 1. are given by
N\:-‘ —
2 1. = ( coseeosd singcosd sind )7 (3.15)
‘.‘
In the discussions of this thesis. the global frame Oxyz defined in section 3.1.3.
A
"o denotes a frame in which the object is described. hence a frame similar to xp Yo <o -
- The local frame Pyx; y;=; defined in section 3.1.3. is not related 1o the frames intro-
- duced here. It is used to locally define the geometry of of the object in the neighbor-
L |
T hood of Py
Ney
.*:3 Relations between coordinates of points and planes and coordinates of their pro-
Jections in the image plane are now investigated. Points and planes of 3-D space are
.j:::j. referenced to the global object-centered frame Oxyz. A cartesian frame O x =, is
'_:'.r-‘; chosen in the image plane I1. where O , is the projection of the origin O and O .z , is
the projection of the Oz axis. Coordinates in these axes of the projection plane will be
S denoted by a subscript 7. In order to simplify the projection operation. it is useful 1o
:'-::}-;: first consider a rotated system of axes. in which the viewing direction is parallel to one
A v .
'.‘;:'..-', of the axes. This particular rotated frame is referred to as the camera frame here, and
N
' coordinates in these axes are denoted by a subscript C. The system Oxe veZe is
:-j::: chosen so that Ox( is parallel to the viewing direction, Oy parallel to O ,x . and
.
-f:.:.- Oz parallel 10O,z . see Fig.3.6. The coordinates of points in this system of axes are
e
W v
e
.".l‘~
N
'}'. ",
5
N

Fig.3.6. Coordinate Frames in 3-D and in the Projection Plane.
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related to global coordinates by
- Xc cospcosf  singcosf  sind X
' Ye| = | —sing cosp 0 y (3.16)
zc —cosdsing ~singsinf cosf z
' — _ G—C=

Similarly. coordinates of planes in the camera frame are related to global coordinates
. by

Ao cosdcosf  singcosd  sinf A,
y AN | = —sing coso 0 i Ay (3.17)
| AL —cosgsin® ~singsin® cosf l)\“
‘ -x( — Rg} -C X

y Projections are meaningful for planes on]y when they are parallel to the viewing
direction, in which case A, = 0. }For such planes, the projection in the image plane
consists of a line. whereas the projection of all other planes in the scene covers the
entire image plane. This property will be useful when considering the projection of

X surfaces defined in tangential coordinates. Note that a plane is parallel 1o the viewing

direction if
' A = A cosdeost) + A sindeosf + A, sinf =0 (3.18)
In the rotated axes. the viewing direction 1s parallel to the Ox axis. As a conse-

guence. the coordinates 1n the image plane are related to coordinates in the camera

frame by the straightforward expressions

: X
X 010
L = Ve
. 001 e
e
R, = Ly X (3.19) :
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Ao o010 | -
A 00 1] [ ol
)‘zC g
Ar =L e (3.20)
where I3 denotes the 2x3 matrix including the 2x2 matrix in the above expressions. -
Note that the last equation relates coordinates of lines in the image to coordinates of -
planes parallel to the viewing direction in the scene. .
Coordinales of the projected points and lines can be obtained directly from coor- o
dinates 1n the global object frame by combining the above projection operations with <
the rotation from global axes to camera axes in (3.16) and (3.17). o
X, 010 cospeosfl  singcosh  sinB| | x o
. 4
. =loo1 —sing cose 0 y =
iy . . .
—cosgsing —singsind cosO z
—sing cosd 0]
~ | —sinfcosp —sinbsing cosh y i
R, =13 Ry % (3.21) n
A 010 cosgosh  singcosh  sinf Ay "
A
= —sing cosp 0] A,
A n 001 . . . ’
—cos¢sin® —singsing cosf AL .
. A '
—sing cose 0 -
" | —sinfBcose —sinfsing cosh v -
A '
X,=L3;Ry{ N (3.22) 3
A
by
3.2. Curves and Surfaces
In this section, a number of classical results on representations of curves and sur- 3
faces are reviewed. and an original definition of curvature is proposed. In the first ‘
subsection. definitions of curves and surfaces in point space are presented. followed by fi?
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definitions in tangential space and conversions between the two representations. In the
second subsection, the Monge parameterization, a particular specification method for
curves and surfaces, is presented. In the third subsection, curvature is defined in
terms of the coefficients of the second order Taylor expansion of a local Monge parame-
terization. This definition of curvature is equivalent to commonly used definitions in
the case of curves, and provides a new intrinsic dehnition of curvature in the case of

surfaces.

3.2.1. Definitions

Precise definitions of curves and surfaces require careful attention to avoid the
possibility of pathological cases. However, refinements will be omitted here for the

sake of conciseness. A curve in 2-space is defined as the set of points
{P(x,y) | x=x(t),y=y(t);1€T} (3.23)

where T is some domain for the parameter ¢ . A surface in 3-space is defined as the set

of points
{P(x,yv,2) l x=x@,v), yv=y(uy), z=z(u,v); (u,v)eW) (3.24)

where W is some 2-D domain for the parameters &, v'. Note that in both cases, curves
and surfaces are defined as sets of points. Although parametric equations are used 10
define the sets. the sets themselves exist independently of the parametric equations.
Two curves or surfaces are identical if they contain the same points. For example. the

curve
{P(x )1 x=x(t(s)), v=y((s))se (T} (3.25)

where 5 (.) is a monotonic function, is identical 10 the curve defined in (3.23). The
same curves or surfaces may also be specified in different ways, for example the points
can be defined by an implicit equation for their coordinates, £ (x,y ) =0 for a curve
and F (x,y,z)=0 for a surface. The distinction between curve/surface points and
curve/surface equations is stressed here. In a later section. a new representation of
surface curvature is presented, which depends only on the surface defined as a set of
points. In contrast, definitions of surface curvature in most differential geometry text-
books also carry information about the equations used for defining the surface. This

difference is investigated in Appendix 4.
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SR Unless otherwise specified, only smooth curves and surfaces are considered in this
2908
thesis. Smoothness refers here to the existence and continuity of second order deriva-
tives of parametric equations defining the surface. Other important concepts such as
f:‘:f- regularity are not discussed here. Partial derivatives will be denoted by subscripts as
S in X, = 9X/Qu . except when confusion is possible. It can be shown that first deriva-
it ¥
tives of the parametric equations are related to tangent directions. Specifically. &, (2 )
Rl is a vector parallel 10 the tangent to the curve X(z ) at R(z ). Similarly, X, (ug,v¢)
,n‘ﬂ:‘
N and X, (uq,vo) are tangent to the surface X(u,v) at X(ugve). The vector
AN — — — . .
YN n =X, XX,. defines a surface normal. First derivatives of parametric equations are

v hence related to tangent and normal orientations. In a later section. second derivatives

St
pa will be related to curvatures.
n:":-l .
M 3.2.2. Convexity
i} "'J
o As mentioned in the introduction, the silhouette problem is first analyzed in this
> .
b . . . . C o
SAN thesis for convex objects only. For a convex object, the straight segment joining two
D points of the object is completely included in the object. In order to avoid the presence

!-,

‘ of straight components in the object surface, a stronger definition of convexity will be
o required. For a strictly convex object, the open straight segment joining two points of
hs
e the object must be completely included in the interior of the object. even when the
o
'-"'-', two points are on the boundary of the object. Examples of a non-convex object. a con-

l vex object and a strictly convex object are given in Fig.3.7.

}.:'.:: Later in the text, curves and surfaces will be described by equations in terms of
'_:'j:' normal orientations, instead of parametric equations in terms of the generic parameters
5 ‘.-.I‘.

N . !

"-'_-g P
o /—\\ s ~.
::-:‘ ) - \\ / \\\ /—\
/ ) [
S - / / )
? ::‘.:-_ /
o .
- I
25 S—
A
:‘-l' a) b) C)
Xty Fig.3.7. Smooth 2-D Objects: a) Non-Convex, b) Convex, ¢) Strictly Convex.
E ‘
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t.u,v. The parameters chosen for this purpose are the polar angle ¥ of the normal
for curves and the longitude £ and latitude 7 of the normal for surfaces. Representa-
tions in terms of angular parameters are unique and regular for the class of strictly
convex smooth surfaces considered in this thesis. Relations between this type of

parameterization and generic parameterizations are addressed in Appendix 2.

3.2.3. Tangential Space Representations

As indicated in section 3.1.2., it is sometimes useful to define curves and surfaces
by their sets of tangents instead of their sets of points. As in the case of point
specification. both parametric and implicit equations are possible. For example, a curve

can be specified by the set of tangent lines L as
(LA T FN A )=0]) (3.26)
A surface can be specifed by the set of tangent planes P
(PN AN T FON AN )=0) (3.27)

where implicit equations were used in both cases to prescribe coordinates of the
tangents. Conversion from a tangent representation 10 a point representation is now
considered. This conversion corresponds to determining curves and surfaces as the
envelopes of their sets of tangents. In the general case, the sel of lines tangent 10 a
planar curve is a one-parameter family. Points of these lines satisfy equations such as
F (x,v,0) =0 where o is a parameter for the lines. An equation for the envelope of

these is obtained by eliminating the parameter o between

F(x,y,a)=0

(8/90)F (x ,v,0) =0 (3.28)

Similarly, when all the planes tangent to a surface arc given by a two-parameter fam-
ily with equation F(x,y,z,aB)=0. an equation for the envelope is obtained by

eliminating the parameters & and 3 between

Flx,y,z,0,8)=0
(8/9a)F (x,y,z,a,8) =0 (3.29)
(8/3B)F (x,y,z,a,8) =0

The above formalism will be e¢xploited in Chapter 5, for the discussion of a
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representation which explicitly specifies curves and surfaces by the sets of their

langents.

3.2.4. Monge Parameterizations

This section reviews a description of curves and surfaces by explicit equations of
the form x = f (2 ) and x = f (y,z ), which are referred to as Monge parameteriza-
tions. Several features of these descriptions have prompted their use for describing
surfaces in the machine vision literature. These features include a direct relation to
image-plane coordinates and straightforward expressions for surface normals. In our
work. Monge parameterizations will not be used as general object models because of
their strong dependence on the reference frame, but will be used to define surface cur-
vature in local axes. Monge parameterizations in local axes will be related to global
descriptions in a later section. Monge parameterizations have been studied mainly for
surfaces. which are therefore analyzed first. Subsequently, a simple equivalent is

sketched for the case of 2-D curves.

The Monge parameterization for a surface can be considered as a special form of
parametric equations, in which the parameters are two of the three Cartesian coordi-

nates, say y and = ; see Fig.3.8.

<

Fig.3.8. Monge parameterization for a Surface.




-

&,
1

o

-~
r

L g o8 oo (R

s

Yy |

| P

e o
P}

B 0 2 AT A A A e e NN T

-43-

f(v,z)
y (3.30)

[

t)

Viewing these equations as a parametric form X = X(y,z ), a surface normal is easily

obtained as
1 1
=X, XX, = [~f, [ =]|—-m, (3.31)
‘-f: _mZ

where my, = gx /9y and m_, = Qx /Q= are referred 10 as gradients of the surface. In
other work, these gradients are of ten denoted by the symbols p, ¢ ; this notation is not
followed here because of possible confusions. The simple expression for surface nor-
mals in (3.31) makes Monge parameterizations convenient in surface-reconstruction

problems from a single image, such as the shape-from-shading probiem [21].

In the equivalent formalism for 2-D curves, the parametric equations in the planc

X,z have the form

x = [(z
o ~/ ) (3.32)
A normal vector for points on the curve is given by
! : (3.33)
0= = .
—/: -m,

3.2.5. Curvature

In this section, definitions for curvature will be proposed and justified. The

simpler case of 2-D curves is addressed first, followed by the case of 3-D surfaces.

3.2.5.1. Curvature of 2-D Curves

In the case of a planar curve, curvature corresponds to the intuitive notion of
how fast the curve diverges from its tangent. The definition chosen here for curvature
is based on this notion, as it is the first non-zero coefficient of a Taylor expansion of the

Monge parametric form of the curve in a local coordinate frame. Consider the curve C
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,3:‘. around the point P, and the local system of axes Pgx;z; where Pyx; is along the
1%
'; normal at P see Fig.3.9. The Monge parameterization of the curve in these local axes
- has the form x; = f (=, ). Since P is on the curve and since Pz, is tangent to C at
A
o P the Taylor series of f (=;) contains no terms of order zero and one in z;. The first
a9 !
.;:; nontrivial expansion is hence given by
Y
X = =1/ pog] kzl + 0 (:13) (3.34)
D "-,‘
3’ where the term k:lz has been decomposed for similarity with the corresponding
)|
f_;-.' expression for surfaces. The error term O (:13) indicates that the error of the expan-
La
sion is upper bounded by a third order polynomial in z;. The curvature of C at P is
k.:,_:' defined in this thesis as the coefficient X in the above expansion, a choice consistent
W
Z:r: with the intuitive notion of curvature since large values of ¥ imply a fast divergence
ey
“9:. of the curve away from its tangent at P, Note that the coefficient ¥ in the above
. Taylor expansion is identical to the second derivative ale /a.:,2 at the origin, so that
R L . .
ot curvature is formally related to second derivatives of the equations of the curve. This
v definition of curvature is equivalent to the classical definition k =ds/ds, as is
shown in Chapter 5. The inverse of the curvature k is defined as the radius of curva-
v;.,-: ture p=k 1A justification of the definition is now presented by showing that the
§ o
SQ.' radius of curvature of a circle is equal to the radius of the circle. The equation for a
<
\ L] . . .
 ' circle of radius R tangent to =; at the origin is given by
:S_-::
').\." Z
h“f
\.: C
W \
pl o » \
255 \
::::'_’.: Py
e P X
-1"7:“
& /
e

Fig.3.9. Local Axes for the definition of Curvatures in 2-D and 3-D.
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(x, +R¥ +z2=R? (3.35)

Considering only the branch through the origin, then expanding to second order in Z; .

the following explicit equation is obtained.

——
-

x, = =R +[R"=7
ad 2

—R + (R —i)+o =N =14 £+O(:.3 (3.36)
( 5% (- % )

i

Comparing this expression with the expression used to define curvature in equation
(3.34). it is clear that the curvatitre fos the above arclo s given by & = 1/R |, which is

the desired result.

3.2.5.2. Curvature of 3-D Sur{faces

In the case of a surface, curvature is also related to the intuitive notion of diver-
gence rale away {rom the tangent plane. Curvature of a surface will be defined here
in the same way as it was detined for a curve, namely as the coefbicients of the first
non-zero term in the Taylor expansion of a local Monge parameterization of the sur-
face. Specifically. consider the surface I in a neighborhood of the point P see Fig.3.9.
Consider also the local frame Pgyx;v,z; where x; is along the normal at P The

second order expansion of the surface vquation in these axes can be written as

ki1 k2 Y

+0((v,,5,)® (3.37)
ko kaa| |2 Sl

x; =~ [.Vz <t ]

where the error term O ((y, z; )3) indicates that the error of the expansion is bounded
by a third order polynomial in v;, Z;. The above equation will also be written in vec-

tor form as
x, = -122,Kz, + 0(z>) (3.38)

which stresses the similarity with the 2-D equation (3.34). Characterizing the curva-
ture of a surface is more involved than in the case of a curve, as divergence from the
tangent plane may depend on the direction chosen along the tangent plane. In equation
(3.37). there are three independent coefficients in the second order term, thus

emphasizing the added complexity of surface curvatures over curvatures of curves.

Curvature of the surface T at P, will be taken as the set of second order coefhicients of
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GG ) x B . , L
LA (3.37). namely as the symmetric 2x2 matrix K. It is now shown that this matrix is
o
KA % really a tensor by showing that it transforms as a tensor in transformations of axes
[47].
"
-
":f.: Consider a second system of local axes. Pox,; ¥y, y<; y related to the original local
e ="
:‘ . frame Pox; y; =; by a rotation with angle Yy around the Pgx; axis: see Fig.3.9. Coordi-
e nates in the two frames are related by x; = x;, and
ASAS
[ '\.::\ .
NN Y cosy —siny Yiw (3.39)
x;::; =] 7 | sing  cosys Z1y '
- A Taylor expansion of the Monge parameterization of the surface in the rotated frame
A
:'_-;.: is obtained by combining equations (3.37) and (3.39)
TN
W i ki k i
o y cosys siny 11 K12} | cosy —siny| | Yy (3.40)
‘A X,y = —/2 hod . . .
L Yow “tu | | —sing cosys| |k kaof | sing cosy | |z
K1 Kiawl| [ Vew
o =21 vy Ziw k k -
S 12¢ K220 | 21y
where the 2x2 curvature matrix in the rotated axes is given by r
Sy
': ‘n‘ . .
:‘_’I::: k11w K29 cosy sing| [ k11 k12| | cosyp —siny (3.41)
T = . . .
s k12 Kooy —sinys cos| | k1o ko] | simp  cosys
;‘.4 The matrix K transforms as a covariant tensor in coordinate transformations such as
!
o the one studied above, and is therefore a covariant tensor. Therefore, it will be
) P
:::'_‘ referred 10 as the tensor of curvature of the surface at P,. In differential geometry,
' -— ~ . . . .
the name of tensor of curvature is usually reserved for a tensor with 4 indices due 1o
:“\ Riemann which is not directly related 1o K.
S~
::2:.:- The components of our tensor of curvature are related to second derivatives of
o 2 2
b the surface equation; for example, k ;; = 9°x;/9y;” at ¥, = z; = 0. Preserving the
A parallelism with the case of curves, the inverse of the tensor of curvature will be
SN
‘ :‘: defined as the tensor of radius of curvature
.
o2 -1
LN -1 ki ka2 11 712
E-FK'= - (3.42)
K2 Koo 12 Ta2
TN
f j”
DN ~
s
o
AP N A -
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The above definition of curvature by a tensor in local axes is original. Its relation -
with other definitions is discussed in Appendix 4. For a general surface, there exists at .
each point an orientation Y of the axes Py, 4,y in the tangent plane for which the
2x2 tensors R and K are diagonal. In these axes, values on the diagonal of K are . '
- T
referred to as the principal curvatures k; and k ,. The diagonal values of R are =
referred 10 as the principal radii of curvature p; = k ;! and p; =k 5 ' . The Gaussian '
curvature of a surface is defined as the product of the two principal curvatures, {:.
k, = k ki in general axes. k, = detK. The mean curvature of a surface is defined !
N .\‘K

as the mean of the two principal curvatures. k, = Y2(k+k,): in general axes, )
k, = 14trK. Note that in the case of a strictly convex surface and an outward nor- Pt
mal pointing towards positive x;, the curvatures k |, k 5, kK, and k are all strictly ;"‘.1
L e
positive. iy
To illustrate the above definitions, the tensor of curvature is evaluated for a -
sphere of radius R through P, tangent to the Py, Z; plane at Py. The equation of ‘_:l:
this sphere is given by '~.
(x, + R +v2+%=R? (3.43)

Solving for x;, considering the branch through the origin, then expanding to second 4::':'-
order produces i
VERPR

- v - ' 4 . e

x, =~R +JRT=v" == —R+R ~ ==~ ==) + 0((y;,5)%) (3.44) o
2R 2R ]

I~
23
g A I I PCYTI (3.45) 3

=420y = + vo,o ) 3.4 Wy

[.\ ‘] 0O 1/R z Yooy :
. S
LS
The curvature tensor and the radius of curvature tensor for the sphere are thus :ﬁ:
respectively given by :::
-y

- 1/R O 5 R O (3.46)

- O 1/Rj{ * 7 |OR ' t:'_

o

The form of the tensor of radius of curvature, i.e. a unit tensor scaled by the constant NG
R . expresses the fact that the curvature of the sphere is isotropic and that normal sec- ' '
tions all have a radius of curvature equal to R. For the sphere, both principal S
)

o

EN

I

1

IL“

m e P e ey A ) I T P 0 LI Sl SR . " - " RS




V. ¥y Wy g w g e CatA- uhe MAaradd Bhd nd S e e i A A A ad ed and ed Sl oh Bl e sdid Al ted ad - 4 T T \_.h.‘_.~,-x-‘,--y-,-,—,—.,.ﬁ_,.1

-48-

curvatures and the mean curvature are equal to 1/R. Both principal radii of curva-

. _ . -2
ture are equal to R. The Gaussian curvature is equal to R ™ ~.

3.3. The Gaussian Mapping

In this section, the theory of the Gaussian mapping is reviewed, together with its
application 1o curve and surface representations. The Gaussian Mapping is presented
as a mapping between points on a 3-D surface and points on a unit sphere, and also as a
mapping between points on a 2-D curve and points on a unit circle. The images of the
mapping are usually referred to as Gaussian circles and Gaussian spheres, and also col-
lectively as Gaussian images. It turns out that the Gaussian images can also represent
the normal orientations of curves and surfaces. This construction is then exploited to
define representations of curve and surface properties as functions on the Gaussian
images, referred to as Property Circles and Property Spheres. Coordinates used in this
thesis to parameterize the Gaussian circle and Gaussian sphere are also defined in this

section.

Two new concepts are proposed in addition to the classical theory of the Gaussian
mapping. First, local reference frames are defined on the Gaussian images and the
problem of representing vector and tensor fields on the Gaussian sphere is formally
addressed. Second, gradients in local Monge parameterizations of curves and surfaces
are related to normal orientations and their specifications by angles on the Gaussian
sphere. The advantage of the Gaussian sphere over the Monge gradients for represent-
ing normal orientations is two-fold. First, gradients are able to represent only half of
the complete set of normal orientations. In contrast, the Gaussian sphere is capable of
describing all surface normals [44). Second. the representation of surface normals
with the Gaussian sphere does not favdr specific viewing directions as is the case for

the Monge gradients.
The Gaussian mapping was initially developed in the context of 3-D surfaces, see
for example [50]. We will therefore also start with the case of 3-D surfaces, then

show that the equivalent formalism for 2-D curves is trivially obtained.
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3.3.1. Definitions

The 3-D Gaussian mapping is a relation between points on a surface and points on
a unit sphere, referred to as the Gaussian sphere. To each point Py of the surface
corresponds a point P; on the sphere so that the normals at Py and P; are parallel

and have the same direction; see Fig.3.10.

= C

a) b)
c) d)

Fig.3.10. Examples of 3-D and 2-D objects, their Gaussian images.
and the normal orientations at corresponding points.
a) 3-D object. b) Gaussian sphere of a).
c) 2-D object. d) Gaussian circle of ¢).
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Points on the Gaussian sphere will be referenced by coordinates, namely by the
longitude § from the x-axis and latitude M from the Oxy equator; see Fig.3.11. Points
on the sphere are related 1o normal orientations in 3-D through the Gaussian mapping.

Hence, the coordinaies (£,m) can also be used to specify directions in 3-D.
The corresponding unit vector is given by
cosécosn
1, = | sinécosn (3.47)
sinm

The 2-D Gaussian mapping is a relation between points on a curve and points on a
unit circle. Corresponding points on the curve and on the circle have parallel normal
orientations: see Fig.3.10. Points on the Gaussian circle and the corresponding orienta-
tions in the plane are referenced in this text by the polar angle {s measured counter-
clockwise from the x-axis; see Fig.3.11. The polar angle ys can be used as a coordinate

for directions in the plane, namely to refer to directions parallel to the unit vector

cosys

4
« = | siny (3.48)

I

For strictly smooth convex 2-D curves and 3-D surfaces, the Gaussian mapping is
one-to-one. Examples of the Gaussian mapping are presented in Appendix I, when

deriving the transforms of various geometrical shapes.

<

Fig.3.11. Coordinates and local orientations on Gaussian Images.
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3.3.2. Property Circles, Property Spheres :_'-.

In his work on object recognition, Horn defined the extended Gaussian image, a .
representation of surfaces by scalar functions on the Gaussian sphere [44). The basic
concept of the extended Gaussian image is 10 represent a function of surface points in o
terms of normal orientation, then as a function on the sphere, since each point on the
sphere is uniquely related to a specific normal orientation; the name of "property
spheres” was given 10 this type of representations in [51]. In this thesis, three new
representations of 3-D objects in terms of property spheres will be defined. A major
conceptual difference between previously proposed property spheres and two of the i~
new representations stems from the vector and tensor ranges of the new object func-
tions as opposed to a scalar range for the extended Gaussian image. In order to
represent vectors and tensors, it is necessary 1o describe their values in terms of com-
ponents in a system of axes. We propose to use axes aligned with local orientations on
the Gaussian sphere. which are hence different for each point of the sphere and each
corresponding object point. The axes chosen in this thesis are oriented in the directions »
of the unit normal Tn . the unit tangent Tg 1o the parallel and the unit tangent Tn to E
the meridian: see I1g.3.11. The components of those unit vectors in global object axes

Oxy:z are given by

! cosécosm —siné —cosésinm -
1, = | sinécosn| , T§ = cosé |, T,, = | —sinésinn (3.49) :
sinm 0 CcosM

Note that these vectors are functions of the angles £ and 1. At a later stage. it will be

helpful to consider the derivatives

aT <5 aTrz e _' .
—— = cosnl; — =1, -y
o ~ o7 .
—— = —cosnl, + sinnl - =0 (3.50)
8¢ Toam
T, . T . <
__(3 - = —sinnl; ___(3 1 =1, N
0¢ ‘ am b

«
PR I S B 4

The above system of reference frames is singular at the poles of the sphere. -

Unfortunately. the topology of the sphere does not permit the definition of a continu-

ous field of axes at each point. without singularities. For our choice of frames, the
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singularities correspond to multiply defined frames at the poles. These singularities
create some problems. but these can be overcome by requiring special equivalences
between the multiple definitions. For n= £#/2, all the values of & refer 1o the same
point, namely the pole. Compatibility between the potentially different values of a
property sphere function for all £ must hence be ensured. In the case of a scalar func-

tion f (£,m). the consistency conditionbetween the multiple deﬁniiions is simply
f¢,xm/2)= f(0,27/2) forall¢ (3.51)

In the case of vector and tensor felds, the consistency is more complex since the com-
ponents are referred to different axes for each value of € at the poles. The necessary

consistencies for a vector function v and a tensor function T are given by

_ _ | cos€& sing | _ -
vi(é,m/2) = —sing cosé 7(0,7/2) (3.52)

_ cosé¢ siné| _ cosé¢ —siné
= .53)
T m/2) = _siné cosé T(0,7/2) sing  cost (3.53

for the north pole. Consistency relations at the south pole are similar, except that the

transformation matrices must be transposed.

Representations equivalent to the property spheres are now considered for planar
curves. Properties of planar curves expressed in terms of normal orientation can be
represented as functions on the Gaussian circle of the curve, these functions being
referred to as property circles. Three representations of curves in terms of property
circles will be defined in this thesis; they are exactly equivalent to the three new pro-
perty spheres proposed for surfaces. A key contribution of this thesis will be a set of
relations between the 2-1D and 3-D representations when these are applied to an
object-silhouette pair. As in the case of property spheres. non-scalar property circles
rely on the definition of rotated axes for each point on the Gaussian circle. The axes

chosen here are oriented along the unit normal 1, and the unit tangent 1,: see

Fig.3.11. The components of these vectors in the global axes Oxz of the image plane

are given by
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cosys _ —sinys

. — (3054)
n singgf 7 ¢ cosy |’

Il
|

Derivatives of these vectors with respect to the orientation parameter i are given by

1 1.
ol _y 9L =-1, (3.55)

oV B
3.3.3. Relations between Monge Gradients and Coordinates of the Gaussian

Image

In this section. a relation is obtained between two different specifications of sur-
face normals. Specifically, normal orientations can be defined in terms of gradients in
Monge parameterizations, but also by points on the sphere and by angular coordinates
for these points in the Gaussian sphere representation. Relations between these two
representations are described here, first in the case of 3-D surfaces, where both Monge
parameterizations and Gaussian spheres are especially meaningful. A similar formal-

ism is then briefly developed for the case of 2-D curves.

Consider a small surface element AZ in the neighborhood of the point Py, and a
Monge representation of AL in the local axes Pgyx; y; Z; where x; is normal to AZ. Let
the normal orientation T, at P, be defined by the angles £, 7 on the Gaussian
sphere. The normal I’ at a points on AZ can be defined by its coordinates &, 7 on the
Gaussian sphere. but also by its local gradients my;, m,; in the local Pyx;y; Z; axes.
Relations will be obtained between the gradients and the differences {—§,. n—m, in
angles on the Gaussian sphere. for small values of the gradients; see Fig.3.12. The
result is obtained by considering the general form of a normal vector in global axes.
transforming this expression to local axes and comparing with the expression in terms

of the Monge gradients.
A normal vector is defined in local axes by an expression similar 10 (3.31).

1

n, = —my; (3.56)
_mzl

On the other hand, the same normal vector is expressed as a function of angular coor-

dinates on the Gaussian sphere as
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Fig.3.12. Angular Coordinates for Normals on the Gaussian Sphere.

n cos§cosm o

— . ‘0

n = | nsinécosn (3.57) B
n sinm c

where 1 is the length of the normal vector. This last expression for normal orienta- ‘

tion is now expressed in local axes as }f

cos§pcosmg  singcosm, sinmg n cosécosn

n, =Ry *n= —siné,, cosé,, O| | nsinécosn (3.58) a

—cosésinm, —sinéysinm, cosn, nsinm ‘

cosmncosnucos(€ — &) + sinmsinmg
=n cosmsin(§ — €;)

—cosnsinmgcos(€é — €)) + sinmcosn,

For small values of (§—§,) and (n—m,). the above form of the normal in local axes is 3

given to first order by

;S ~r
A

)
K, = | cosnsin(¢—o) 359w
Sin(n—n()) i

P

Comparing components in the above expression with the ccrresponding components in
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(3.56) produces the following first order relations between Monge gradients and global
normal angles

my = —=(§—¢€p)cosng

—

(3.60)
my = = ( T)"ﬂo)

These expressions underline the close relation existing between local gradients and glo-
bal angular orientation coordinates. Note the cosm, coefficient which takes into account

the shortening of longitude units at higher latitudes.

An argument similar to the one developed above can be developed for the Monge
parameterization of curves in 2-D. The relation between the local gradient m_; and

the polar angle s is obtained as

my, = —(Yy—y,) (3.61)

3.4. Summary

A number of tools from geometlry have been reviewed or presented in this
chapter. The combination of these will allow us to develop an elegant theory for the
relations between object shapes and silhouette shapes. Chapter 4 reviews the classical
analysis of silhouette shapes and motivates some of the directions chosen in our
analysis of silhouettes. The main results of this thesis are then presented in Chapters
5 and 6.
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- Chapter 4
: Classical Silhouette Theory

In this chapter. a number of silhouette construction methods are discussed and

illustrated by the simple example of the silhouette of a cone. This chapter aims at the

f double goal of familiarizing the reader with classical silhouette analysis methods, and
of discussing some basic concepts which introduce our original formulation of the rela-

' tion between objects and silhouettes.

First. the well-known silhouette construction based on the silhouette generator is
presented; this is the approach primarily used in the literature, and is very similar to
the methods presented in [2. 13]. In the second step, silhouette construction is investi-
gated with tangential space representations. Finally, silhouette construction is
developed with the Gaussian mapping. These Jast two approaches are not intrinsically

- new, but their application 10 silhouette analysis has not received much attention in the
computer graphics and computer vision communities. Through the discussion of these
silhouette construction methods, it becomes apparent that normal orientations on the
object surface play a prominent role in silhouette construction, and that the represen-

- tation of surface normals with the Gaussian mapping is particularly convenient for

silhouette analysis. This conclusion motivates the development of representations
based on the Gaussian mapping and the development of relations between the

representations of an object and the representations of its silhouettes.

4.1. Silhouette Construction Based on the Silhouette Generator

In this section. we discuss a classical method for obtaining the shape of a
silhouette given the shape of the corresponding object and the viewing direction rela-
tive 1o the object. It is straightforward to see that the silhouette is the projection of a
set of points on the surface of the object. This set is a smooth curve for a smooth con-
vex object, and 1s referred to as the silhouette generator in this thesis; other authors
use different terms such as contour generator or boundary rim. The geometry of the
projection and the silhouette generator are illustrated in Fig.4.1 for the example of a
superquadric. For this example, the silhouette generator is a complex twisted curve.

Marr has shown that the silhouette generator is planar for all viewing directions only
- 56 -
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:;‘ Fig.4.1. Imaging Geometry for Orthographic Projection
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S"j when the object surface is quadratic [2]. The silhouette generator is the set of points
e . .
o~ of the object surface where the projection rays are grazing the surface; for a smooth
7":] object, this corresponds to the set of points where the tangent plane is parallel to the
o6 viewing direction. An equivalent property of the points on the silhouette generator is
-‘.’,j that the normal orientation is perpendicular to the viewing direction. The tangent
b < plane and the normal at one point of the silhouette generator are displayed in Fig.4.1.
Ky

The silhouette of a smooth convex object in orthographic projection can be deter-

31 mined in two steps. The first step consists of selecting which points of the object sur-
.
. face have a tangent plane parallel to the viewing direction, thereby defining the
(> P 2
S\ silhouette generator. The second step consists of projecting the points of the silhouette
::" generator onto the image plane, thereby producing the silhouette itself. This procedure

¢
:." is outlined in the diagram of Fig.4.2.

U
l.'
:: In order to gain better insight into the relation among object, silhouette and
s

. silhouette generator, it may be useful to consider an analogy with shadows. If the
o . . R
-‘_"_ projection is replaced by a beam of light parallel to the viewing direction, the object,
X
M
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;
lea Object Selection ?}’ lhouette Projection Silhouette
enerator
- Fig.4.2. Silhouette Construction with Point Representations.
f:
3 presumed opaque. will cast a shadow on the projection screen. The outline of that sha-
h dow is identical to the silhouette in the previous setup. In the shadow setup, only part
. of the object surface is illuminated by the light beam, as the other part is self-
. shadowed. The boundary between the illuminated and self-shadowed parts of the
. object is identical to the silhouette generator. Light rays emanating from the light
& source graze the object at the points of the self-shadow boundary. Similarly, in the
. case of silhouettes. rays parallel to the viewing direction graze the object at each point
i . of the silhouette generator.
5 4.1.1. Example: Silhouette of a Cone
S The silhouette construction method described above is now illustrated with the
simple example of a circular cone; the geometry of the projection is sketched in Fig.4.3.
The geometry of the cone itself and of its silhouette are depicted in Fig.4.4. The stra-
+) tegy for determining the shape of the silhouette consists of first computing the normal
) orientation at each point of the surface. Then. the surface points with a normal per-
I pendicular to the viewing direction _i.\‘ are determined; these constitute the silhouette
" generator. Finally, the silhouette generator points are projected onto the image plane.
K> producing the desired silhouette. In all the developments. the sets of points are
" defined by parametric equations. Therefore, the final result is a set of parametric
‘ o equations for the silhouette from which the silhouetie shape can be interpreted. i
v
;
s 3
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3
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In a system of axes centered at a distance zZ below the vertex of the cone, with A
2]
the z-axis along the axis of symmetry, the points of the cone can be described by "
. &

u SINTMECosv :

X =X(u, )= | usinngsinv (a.1) AR

2o —UuCosng 0

where u € R*, v €(0,27] are parameters and 7, is a constant, equal to the half-angle b,
¥ Al
of opening of the cone. The choice of positive values for u corresponds to the choice of 3.
N
the lower sheet of the conealiustrated in Fig.4.4a). -'
A vector normal 10 the surface 1s obtained by a formula decsribed in section 3.2., :
W 4
by 7]
-:\:
=X, XX, (4.2) ot
“0

which is proportional 10
X COSV COSTg ;:*
o = | sinvcosn, (4.3) =3
sinm

3

Comparing this vector with the canonic form of a unit normal vector 1, in terms of g
the angles (£,m) on the Gaussian Sphere, oL
cosgcosn
- , r

1, = | sinfécosm =

sinm =

A
11 appears that the canonic orientation angles of the normal are related to the parame- ;
ters of the surface by {=v, nm=mn, Consider now the orthographic projection with a :‘{-
)
viewing direction specified by the angles (¢,0) in object-centered axes. The viewing Byt
"
direction unit vector is given by %)

= ( cosBcos¢ cosBsing sinf )’ (4.4)

L O S R O T DA P SR T
it by ~r W) PRI AEIEA .'
* < “’f"h‘!a‘v‘i ‘Id‘ . g ,( ’\' \\ ,‘. s { :l.

«Aal

-,.\.\.
SRR

A N L A Y Rt e
‘( e, -r o -
l ‘” » > .‘ ) \- “ .-.i. L) n'..“:.. N



.‘;\:‘ SV 8 e ap pa o g o B waa- " - geAdeg ok ek mal ok end b oda o _'-_-—v.-_,-v_—'-T
\‘:‘t‘

i -6l -
.(f‘-:
-:-:. —_—
f:;;: Points of the silhouette generator are the points for which 1,1, =0, i.e.
N
DO . . . .
¢ cosBcosgcosngcosy + cosfsingcosnysiny + sinfsinm, = 0
$s
}f also writtten
.Q
b cos(¢p — v ) = —tanmngytand (4.5)
Al
o This equation has two solutions for v, which will be denoted by
_-. )
& ! vsg1 = ¢ + acos(—tanmgtanf) (46)
e Vg 2 = ¢ — acos(—tanmgtanf) .
s The silhouette generator is hence defined by
b3k .
21, X = u SINTMGCOSVgs;
L
ol y = usinngcosvsg; (4.7)
' Z = Zg—ucosng
j, for u €R*. i = 1,2. These are the equations of two straight lines parameterized in u .
! ;"-. B . . .
.‘n:-j The projected silhouette is obtained by applying the projection operation to the coordi-
v
) nates of poinis of the silhouette generator. The projection transformation for point
8 Pt
QU coordinates was determined 10 be
W
N . x
.ﬁj X —sing cos 0
i 2| = | —sinfcos¢ —sinbsing cosd| |~ (4.8)
e
) *‘_:f-f The result of applying this transformation to the parametric equations of the
L {n",
K .::%1 silhouette generator in (4.7) is
Ay !
T x . = usinn,sin(vgg, — @)
i'l' . . (4.9)
R =, = —usinngsinfeos(ivg;;, — @) — u cosngeosd + = gcosod
g: Y for i = 1,2. The following equations are obtained af ter replacing vgg; by its value in
;_ (4.6),
" v
i.. _-“) ] ., ,
Nj x = *usinn,/1 —tan“ngtan-6
Lt . .
b 05210520 — sin?ngsin®@ (4.10)
bl I, = Zgcos ~u
cosmcoso
&ﬂ
Y
o
0%
\4'
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{ These equations for the silhouette define two lines parameterized in u. These lines g
. =

intersect at the point (x .,z ;) = (0,z ocos@) in the projection plane and are symmetric w1
»

about the O: . axis. The half-angle opening Y, of the two silhouette lines is defined in
4 -l
Fig.4.4b), and can be evaluated as e
3 . +/1 — tan“ngtang Y

tany, = ———————— = sinmMycosnycosh 5 — :
o080 — = €08 Mycos~H — sin“ngsin~f 5,
g

:".
sinng o

= 5 — (4.11) =3

J/€os~6 — sin"ny o)

A simpler expression can be obtained for the sine of 5y, namely
. tanys, sinmy N
Sln\b() = = (4.12) -3
1+ tany, cosf 3
The above relation between the opening angle of the cone 71 and the opening angle oy
of the silhouette is a relation between 3-D object orientation and silhouette slope. It
will become clear later on that this type of relation, obtained here in the context of a e
particular example, is independent of object shape. Furthermore. similar relations will B

be obtained with much less effort in Chapter 6 using arguments on the (Gaussian

sphere. %
o

PQ
It is worthwhile 1o note that the simple example of the cone has interesting appli- =
cations. Indeed, different circular cones can be obtained by choosing different values “.-
\'&.
for the ordinate = 5 and for the opening 7. A large class of axisymmetric objects can Y
. . o
be defined as stacks of sections of such cones. so that a silhouette theory for axisym- !
metric objects can be developed based solely on this simple analysis for the cone. -
1

T

W

l‘-,

NG

oA

."'..

.‘:‘.

DI RU R iy B S
‘F("{*';}-JC"-‘- A aY

20 L L L o Pa A AP B O
JMN&S&A‘L&Z‘:&L& T



2 o AR AR L N - salle-ahe Ay ‘Ale Al AR AR S ke i At Sl fus gt 00 K hdca e pis £on SEERRS

e
.'&“
ooy
J.J
. - 63 -
l" *‘\
ey
'r\_ 4.2. Silhouette Construction in Tangential Space
K-
A N In this section. silhouette construction is discussed with a method based on
Auo tangential representations; these representations were reviewed in section 3.1.2. A
\%.
oy tangential representation describes a 3-D object by the set of all its tangent planes. It
g
-:;:-. is easy to see that only the planes tahgent at the points of the silhouette generator
‘,a .
effectively contribute to the shape of the silhouette. Since the surface normal is per-
»” Al
‘T ndicular to the viewing direction for points on the silhouette generator, the planes
X pe 3 po g p
\".::Z: tangent 10 the object on silhouetle genrator are all parallel 1o the viewing direction.
b This set of planes will be referred to as the silhouette generating planes. The
T silhouette generating planes arc also perpendicular to the image plane, so that their
L]
AT L . . . . o
W }"E projections are equivalent 1o their traces in the image plane. These projections are a set
. _‘::‘ of lines tangent 1o the silhouette, so that this procedure provides a tangential represen-
,*.
- tation of the silhouette. One silhouetle generating plane and its projection are illus-
‘:f. trated in Fig.4.1. The construction procedure in tangential space is outlined in the
) <
:;:{. block diagram of Fig.4.5.
o
o Silhouette construction in tangential space can be more convenient than in point
S space. Indeed, the crucial operation of selecting the silhouette generating planes can be 7
¢
i:‘_ much simpler than the corresponding selection of the silhouette generator points. As a
Lo
:i consequence, even when the object is initially described in point space, it may be
S\
", advantageous to evaluate a tangential description of the object from the given point
._(,: representation first, perform the silhouette construction in tangential space and finally
AN
;«: convert the silhouette representation back 1o a point space representation. The block
o~

diagram of Fig.4.6 outlines this scheme.

YA
ASA0G

: ‘ Object Selection Silhouette |Projection i Silhouette

_ . (tangent | Generating {tangent
o representation) | Planes representation)
e N
T

"

s Fig.4.5. Silhouette Construction with Tangential Representations.
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Fig.4.0. Silhouetle Construction with Conversion to Tangential Representation.

4.2.1. Example: Silhouette of a Cone

Silhouette construction in tanéentia] space is now illustrated with the same exam-
ple developed previously in point space. In order to determine the silhouette of the
cone, the first step is 10 determine parametric equations for the tangential coordinates
of the cone. The silhouette generating planes are then determined as the tangent
planes parallel 10 the viewing direction. The coordinates of the traces of these planes
in the image plane are determined by applying the imaging transformation. This
derivation produces parametric equations for the tangential coordinates of the
silhouette in the image plane. Finally, the shape of the silhouette is interpreted from

these equations.

Equations for the planes tangent to the cone may be obtained by noting that in
general, for a point X, with surface normal I, the tangent plane is the set of points

with coordinate vector X satisfying

ﬁ'o'(i‘—fo):O (4.13)
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The plane tangent 1o the cone at the point with parameter values (u V) is obtained

by applying the above formula to (4.1) and (4.3), which produces
X COSTpCOSV o + ¥ €COSTpSinv 5 + 2 sinng — Z osinng = 0 (4.14)

This equation is compared with the canonic equation of a plane,
x A, + ¥y A, +2 A, =1, to determine the tangential coordinates (A, A, A, ) of

the tangent planes

A, = cotngeosv / =
A, = cotnesinv / z (4.15)
A, =1 /:0

Note that these coordinates are undefined for =y = O since in that case, all tangent
planes pass through the origin. The case of == 0O can be addressed rigorously using
homogeneous tangential coordinates, although this is not done here. The equations
obtained above are a set of parametric equations for the tangential coordinates of the
circular cone. Note that the parameter & does not appear in the parametric equations.
The tangent planes are only a one-parameter family in the case of the cone. as opposed
1o a two-parameter family in general. This degeneracy stems from the fact that the
cone 1s a special ruled surface, for which each tangent plane is tangent to the surface

along a whole line of points.

The sithouetie generating planes are now determined by selecting the planes
parallel to the viewing direction. The vector X determining a plane in tangential space
can be considered as a poini-space vector normal to the plane defined. The silhouette
generating planes have a normal vector perpendicular to the viewing direction and are

therefore determined by

1. =0 (4.16)
cotngeost cosfeosg + cotngsiny cosBsing + sinf = 0 (4.17)
cos( v — ¢ ) = —tanbtanmn, (4.18)

which produces exactly the same two solutions for v as obtained in section 4.1.1.
These solutions are referred 10 as vgs ;. Vgs 2. The silhouette generating planes are

characterized by the rarameiric equations
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A, = cotngcosvss; / Za 3
Ay = cotnesinves; / Z¢ (4.19) ;
A.: = ] /.:O .
for i=1.2. and with V¢, gven by equation (4.6). The projection transformation «;
defined in section 3.1.4. is now applied to the tangential coordinates of the planes in
(4.19) 10 obtain the coordinates A, ~. A. - of the tangents to the silhouette. The pro- _-
jection transformation for tangents was determined to be f-j:
]
: Ay <.,
Ao —sing cos¢ 0
= . . ‘ 2
Ao —sinfcos¢p —sinfsing cosb > (4.20)
)\: ':::
The result oi applying this transformation to the parametric equations {pr the :::'
silhouette generating planes in (4.19) is given by -
A, » = COLMHCOSVg; SiN — COMESinVve; cosp = cotnesin(vgs — o) :
: (4.21)
A, » = —sinfcotngeos(p — vz ) + cosd = 1/cosb

The tangential coordinates of the silhouette take on just two values, determined by

the above equations for Vg; =V, Visg 2. 1 herefore. the silhouette is composed of

two straight lines. The silhouette is degenerate since, in the general case, a parametric

equation for the silhouette tangents would be obtained instead of the fixed values in
(4.21).

The two silhouette lines defined in (4.21) are symmetric about the Ox ,, axis. The
half-angle Y5, between the lines is obtained by noting that a line with coordinates A, .
A.  crosses the axes at the points (1/A, ;,0) and (0,1/X_ ;); see Fig.4.4b). Note that
U, is also the polar angle of the normal orientation of one of the silhouette lines in the

image plane.
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It is given by

UNin _ tanmng _ tanm,
1/\., cosBsin(vsg;, — ) cosf+/1 — tan“nytan-6

Ian\bo =

= it (4.22)
+/cos“8 — sin“n, T

which matches the result oblained previously.

In the above example, it appears that, given an object description in tangential
coordinates, the determination of the silhouette equation can be much simpler than
with point coordinates. When the object is initially defined by a point coordinate
representation. the relative merits of the direct construction method depicted in Fig.4.2
and the indirect method depicted in Fig.4.6 depend on the effort required for convert-
ing the representation. For example, if many silhouettes must be computed numeri-
cally for the same object, the tangential description must be computed only once.

thereby providing a larger potential advantage for the indirect method.
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4.3. Silhouette Construction with the Gaussian Mapping

In this section, we will see that the Gaussian mapping suggests a very simple "'

method for selecting the silhouette generator or the silhouette generating planes. _>
Although silhouette construction with the Gaussian mapping can be related directly to .::11
silhouette construction in point space, it is instructive to introduce it through the dis- I:}F

cussion of silhouette construction with polar tangential coordinates, which is :

presented in the first subsection. Phrasing the construction method developed in the :

previous section for tangential space representations in terms of polar coordinates pro- :\
; vides a relation between normal orientations on the object surface and normal orienta- ‘:

tions on the silhouette: this relation is independent of object shape. In a second subsec-
tion, this relation is re-interpreted by mapping normal orientations on the Gaussian '::'.:

sphere and discovering that the silhouette generator corresponds to a slice of the Gaus- 'h
sian sphere. <

o

‘ 4.3.1. Silhouctte Construction with Polar Tangential Coordinates «.’

ol

A particular case of silhouette construction in tangential space is considered in l:’-

this section. where polar coordinates (p .£.,m) are chosen to represent planes to the 3-D B
object, and polar coordinates (p ) 10 describe lines tangent 1o the 2-D silhouette; *

, these ccordinates are defined in section 3.1.2. First, in order to avoid confusion

Mok

between the perpendicular distance p in 3-D and 3-D. this distance will be represented %

by the symbol p .. for the silhouette in 2-D. ,

i

Consider a description of the surface of a 3-D object by parametric equations for "

the polar coordinates (p ,£,m) as a function of two independent parameters. say u and
V. ‘

foo-

p p(uy) =
El = | §lun) (4.23)

: n n(u v) =
For smooth strictly convex objects and for a regular parameterization in (u ,\' ), the ::-‘.
functions defining the angles (£,m) in terms of the parameters (u,v) are invertible. E:f:

The parameters (u ,v ) in the above expressions can then be replaced by inverse func- \_
tions in terms of (£,n). Examples of this parameter change are presented in Appendix B
1. When this change of parameters is performed in equation (4.23), identities are :_
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obtained for € and m, and an explicit equation is obtained for p,
p=pmn (4.24)

The above representation form is now discussed in some detail, as it will be the basis
for new representations of 3-D surfaces. Equation (4.24) represents, for each point P
of the object with a normal orientation (£,7m), the perpendicular distance p between
the origin and the tangent plane at Py. This explicit equation describes the shape of
the object surface by expressing the dependence of one polar tangential coordinate on
the other two. and can be compared in this respect with the Monge parameterization
= = x (v, ) which expresses onc Cartesian coordinate as a function of the other two.
In both cases. the explicit equations are invariant in transformations involving only
the independent variables. The Monge parameterization is therefore invariant in 2-D
translations of the Ov: plane, whereas the form in (4.24) is invariant with 3-D rota-
tions around the origin. Hence, this last representation elegantly casts a surface
representation in a form invariant with viewing direction. The function p(§,7‘7) is
sometimes referred 1o as the support function, as it describes the distance from the ori-
gin 10 a potential support plane when the object is oriented with the direction (£,m)

towards nadir.

Silhouette construction is now investigated for an object shape described by an
equation such as (4.24). by first considering the selection of silhouette generating

planes, then their projection onto the image plane.

For a plane with polar tangential coordinates (p ,£,7m), the normal orientation is
1, = ( cos¢cosm sinécosn sinn )7 (4.25)
The silhouette generator equation is —i'nrl.\ = 0. more explicitly

( cosécosn sinécosn sinn ) ( coseeos® singcosh sinh ) = 0 (4.26)

cos(§ — ¢) = —tanmtanb (4.27)

This equation defines a set of values for (£,m) which correspond to silhouette generat-

ing planes. The following expression for the one-parameter family of solutions will be

derived in Chapter 6.
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£ (1) = ¢+ m/2 + atan (tant sinf )

N (¢t ) = asin ( sint cosf )

2

(4.28)

=

s‘,’

where t €(0,27] is a parameter. The subscript in €55 ,Mg; emphasizes that these

[ 9% o% o 20 &
b 5 S

expressions apply 1o the silhouctte generating planes. The result in (4.28) can be
justified by inserting the proposed solution in equation (4.27), then performing simple

trigonometric manipulations to obtain an identity; this justification is omitted here.

Once the silhouelie generating planes are determined, the next operation consists
of obtaining the coordinates of their traces in the projection plane. The transformation
of polar tangential coordinates in the projection can be obtained by exploiting the pro-
jection transformation for Cartesian tangential coordinates in (3.22) and by replacing
the Cartesian coordinates in terins of the polar tangential coordinates, as given in (3.1)
and (3.2). The resulting projection equation for polar tangential coordinates is

cosy/p —sing cos¢ 0 cos{sinm/p
sinécosn/p (4.29)
sinn/p

sing/p = | —sinfcos¢p —sinBsing cosd

The above relation applies only 10 planes perpendicular 1o the projection plane, i.e. to
planes determined by (4.27) or (4.28). The following expressions for polar tangential
coordinates of the silhouette can be obtained after trigonometric manipulations. by
replacing ¢ and 71 in the right-hand side of the above projection equation by their
values in equation (4.28).
y= 1t
Pr 4

(4.30)

The first equation above provides an interpretation for the generic parameter ¢ in
(4.28). The second equation can be combined with (4.28) to obtain an explicit equation

for the silhouette in polar tangential coordinates.

oY) = p (€ (W), N (¥))
= p( ¢p+m/2+atan(1any sinh), asin(simp cosh) ) (4.31)

The expressions obtained above for silhouette construction in polar tangential

coordinates are remarkable in several respects. First, equation (4.28), determines the
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silhouette generating planes based on the independent variables (£,m) only. This
result is hence independent of object shape. Selection of the orientations of silhouette
generating planes depends only on viewing orientation and can be precomputed for a
set of viewing angles: the resulting selection procedure applies to any object. Second,
correspondences between the silhouette orientation coordinate ¥ and the object orien-
tation coordinates €. M are also independent of object shape, and are given by equations

(4.28) after replacing the parameter ¢ by the angle .

e = ¢+ m/2 + atan ( tanysing )

(4.32)
Ne; = asin ( sinycosh )

Finally. the normal distance p, for points of the silhouette is related to the normal

distance p at the corresponding point of the object by the trivial relation p ., = p.

4.3.1.1. Example: Silhouette of a Cone

In order 1o apply the method developed in the previous section to the derivation
of the silhouette of the cone, it is necessary first to determine parametric equations for
the polar tangential coordinates of the cone, second to convert these into the form of

equation (4.24), and third to determine an equation for the silhouette with (4.31).

Polar tangential coordinates for the cone are easily determined by comparing

equations (4.15) and (3.2).
A, = cotngcosv /z, = cos§ cosn/p
A, = cotngsinv /=g = siné cosn/p (4.33)
A =1/z = sinn/p
It is clear from the above equations, that
§=\' , n=n() , P=2I ()Sinn() (4.34)

This result shows again that the cone is a degenerate case since N=cst, p =cst and only
¢ is variable, whereas in general, both ¢ and 1 would be variable and p would be a
non-trivial function of (§,m). The tangential coordinates of the silhouette are easily

determined with (4.31) and (4.32).
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Mo (4.35) g
cosf y

Dy = Zosinmg, singg =

3

After conversion of these polar coordinates to Cartesian tangential coordinates using
(3.1), the above results are found to be identical 10 those obtained previously in (4.21)
and (4.22).

T
A,

4.3.2. Silhouette Construction with the Gaussian Mapping

In the previous section. relations between normal orientations on the object sur- Y
face, on the silhouette generator and on the silhouetle were obtained by analyzing
silhouette construction in polar tangential coordinates. These relations are interpreted
in this section by considering normal orientations in the Gaussian sphere and Gaussian !
circle representations. The resulting interpretation is much more attractive visually :
than the one obtained in the previous section, although no new equations are derived. )
Indeed. it is much easier 10 visualize points on the sphere than orientations in 3-D t
space. Finally. the relation between silhouette analysis and the Gaussian mapping is

extended by introducing property spheres and property circles.

The relation in (4.32) betwecen normal orientations in 3-D and normal orienta-
tions in the projection plane has a double interpretation. First, considering ys as a gen-
eric independent parameter, these equations characterize the set of normal orientations
of points on the silhouette generator. for a given viewing direction (¢,8). These nor-
mal orientations arc detined by the polar angles (£,m). Second, it relates points on the
silhouette parameterized with the normal angle ¢ to the corresponding points of the

silhouette generator. {

It is interesting to interpret these relations in representations particularly suited

tor normal orientations, namely the Gaussian sphere for the object and the Gaussian !
.,i circle for the silhouette. The silhouette generator on the object surface is the set of -
Y

sl points for which the normal orientation is perpendicular to the viewing direction. As

the Gaussian mapping preserves normal orientation, the image of these points on the

- '.‘D
NN
vLe,

f_

-y

Gaussian sphere is the set of points for which the normal orientation is perpendicular

to the viewing direction or, in other words, the silhouette generator of the sphere for

the same viewing direction. It is straightforward to see that this set of points is the

great circle perpendicular 10 the viewing direction. In addition, surface normals at the

‘(_,.&
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30 points of the silhouette generator are parallel to the projection plane and remain

unchanged in the projection operation, so that normal orientations on the silhouette are

* g identical to normal orientations at the corresponding points on the silhouette genera-

& o :

j’_::j tor. The consequence is that the great circle of the Gaussian sphere is also a Gaussian f

,‘{. circle for the silhouette. The relations discussed above are illustrated in Fig.4.7. |
- |

In the above discussion, equation (4.32) has been interpreted in terms of the

:& Gaussian mapping. Although this interpretation indicates a relation between object i
':* points and silhouette points, it does not suggest a complete method for inferring the
! shape of the silhouette from the shape of the object. A complete relation is obtained,
:_: however. by combining equation (4.31) with the Gaussian mapping and considering
f.'_ object descriptions by property spheres and silhouetie descriptions by property circles.
;\ Indeed, the support functions p (£,m) and p () represent perpendicular distances to
tangent planes in terms of normal orientations. Mapping normal orientations on Gaus-

:‘_3-_ sian images produces functions defining p and p, on the Gaussian sphere and on the
_f, Gaussian circle. These can be considered as property spheres and property circles as
W

" Viewing

xj‘_: Direction

S
-

Gaussian Sphere

T

-

L)
5' -
. Great
2 Circle
N Silhouette Slice
L Generator s .
-’ v, ™
- e
[N
o F AN . N -
22 N - -
o N Silbhauette Gadssian Circle
. s e
oy o
A ~

Fig.4.7. Silhouettes and the Gaussian Mapping
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defined in section 3.3.2. For these representations, equation (4.31) suggests that the
silhouette property circle function values p, are identical to the property sphere
function p on the slice corresponding to the silhouette. Hence, the silhouette property

circle can be considered as a slice of the property sphere of the object.

In this section, we have interpreted silhouette analysis with polar tangential coor-
dinates by representing the 3-D object by a property sphere for the distance between
origin and tangent planes, and the 2-D silthouette by a property circle for the distance
between origin and tangent lines. The silhouette property circle is identical to a slice
of the property sphere of the object by a plane perpendicular to the viewing direction,

through the center of the sphere.

4.3.2.1. Example: Silhouette of a Cone

Construction of the silhouette with the Gaussian Mapping is now illustrated by
the example of the cone. First, the distance p to the tangent is the constant Z gsinmy
for all points of the cone. As a consequence, the distance p , to silhouette tangents is

simply equal to the same constant everywhere on the silhouette.

The investigation of silhouette normal orientations leads to a more interesting
discussion. As derived in previous sections, the normal orientations of points on the

surface of the cone are determined by
£e(027], m=mn, (4.36)

This set of orientations is represented by the parallel at latitude 7y on the Gaussian
sphere; see Fig.4.8. Considering a projection along the direction (¢,0). the silhouette
corresponds 1o the great circle slice perpendicular to the viewing direction, which is a
Gaussian circle for the silhouette. In the case of the cone, this slice intersects the small
circle n=m, at two points with polar angles ,. #—{y, in the slice plane. The
silhouette is hence characterized by only two distinct normal orientations, so that it is
composed of two lines with those normal orientations. The exact position of these lines
1s determined by the distance p .. to the origin, which was determined previously. The
exact value of the orientation Y, in the silhouette plane can be obtained in terms of 7,

and 0 by resolving the right-angled spherical triangle in bold lines in Fig.4.8.
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b~
‘\,':f The relation obtained with standard expressions of spherical trigonometry is
X sinng = cosf sinyy, (4.37)
yif which is consistent with the results obtained previously with other methods (e.g.
‘ L}
Al equation (4.12)).
SN
B,
b Although the Gaussian mapping does nol provide new numerical expressions for
O the relation between silhouette shape and object shape. it is well adapted to conduct
e
3:.: qualitative prediction of the results. Indeed, the following conclusions can be drawn
,;-i- by considering the Gaussian sphere of the cone and the silhouette slice in Fig.4.8.
L
- First, the intersection points between the parallel of the cone and the great circle slice
7 , . . :
;"b:: are on the opposite side from the viewing direction. As a consequence, the silhouette
)
:‘33: generator on the object is on the same side of the object as the projection plane; this is
l}!' clearly seen in Fig.4.4. Second, by an appropriate choice of the elevation 6 of the
viewing direction, it is possible to give the half angle i of the silhouette any value
: 54 between 7y and 7/2; this is valid for any value of the opening angle ng of the cone
"2 itself. Hence, if a pair of lines observed in the image planc are presumed to be the
- silhouette of a cone. nothing can be determined about the shape of the cone without
! estimating its orientation with respect to the projection plane by some other method.
)
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. Finally, for very large elevations 6 of the viewing direction, namely for 8> 7/2—m,.
the great circle does not intersect the parallel n=7g, and there is no silhouette. 1t is
not hard 1o see that this corresponds to a case where the viewer is "above” the cone so
that its image fills the whole projection plane. Similarly, when 8 <—m/2+mn,. there is

? no intersection on the Gaussian sphere, and this corresponds to the case where the
viewer is "inside” the cone. so that, once again, no silhouette is obtained in the image

. plane.

We have shown in this section that interesting qualitative arguments on
silhouettes can be developed based on the Gaussian mapping. This advantage of

representations with the Gaussian mapping is extremely useful in developing a

[ o

therough understanding of the relation between silhouette shape and object shape.

b 4.4. Conclusion

In this chapter, we have developed a number of silhouette construction methods
- and their illustration on a simple example. Starting from the method used most {re-
quently in the literature, we have gradually progressed to methods based on tangents,
then to methods based on tangent orientations. In the last method, the Gaussian map-
ping was introduced to interpret first a relation between object points and silhouette
N points. and second a relation between object properties and silhouette properties. Both
relations are independent of object shape, and the first is independent of the choice of
¥ object property. The second relation depends on which object property is represented

on the Gaussian sphere. and is independent of object shape only for adequate choices of

]
3

1_1;"

object properties and silhouette properties.

The keys contribution of this thesis are first the formal analysis of the property
o sphere for the distance to tangents introduced in section 4.3.2., and the demonstration
of its relation with corresponding silhouette property circles, and second the develop-
ment of two additional object properties for which the relation between sphere and

circle are independent of object shape.

In Chapter 5. three representations of 3-D objects in terms of property spheres are

proposed and analyzed, together with the corresponding representations of silhouettes
with property circles. In Chapter 6. the relation between these silhouette property cir-

cles and object property spheres is formally developed.
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Chapter §
Representations for Curves and Surfaces
Based on the Gaussian Mapping

In this chapter. three property circle representations of 2-D curves and the
corresponding property spheres of 3-D surfaces are proposed. The advantages of this
type of representation for silhouette analysis were suggested in Chapter 4 and will
become more clear in Chapter 6, when simple relations are developed between each of
the representations for an object surface and the corresponding representations for its

silhouettes.

The three pairs of representations describe three different properties of the objects
being described as functions on Gaussian circles and spheres. The first representation
describes the normal distance between tangents and a reference point; this scalar pro-
perty sphere/circle is named the Support Transform (ST). The second representation
describes coordinates of object points in rotated axes and is named the Vector Support
Transform (VST). The VST has three components for 3-D surfaces, two components
for 2-D curves, and it turns out that in each case, one component is identical to the
scalar ST. Finally, the third representation describes local curvatures and is named
the Curvature Transform (CT). The three representations are collectively referred to
by the name of transforms, in part to emphasize that these representations are com-
plete and therefore uniquely invertible, and in part to preserve the similarity between

our silhouette theory and the Projection-Slice theorem in computerized tomography.

The particular choice of object properties for these three representations is
justified a-posteriori by the existence of simple relations between each transform of an
object and the corresponding transforms of its silhouettes: these relations are demon-
strated in Chapter 6. The existence of such simple relations was suggested for the ST
in Chapter 4. In the case of the VST, it can be expected that simple relations exist
between point coordinates in 2-D and 3-D. Finally, in the case of the CT, the dual of
Euler’'s theorem indicates a relation between silhouette curvature and object surface
curvature. The dual of Euler's theorem is demonstrated independently of the Gaus-

sian mapping in Appendix 3. and it turns out 10 be also a corollary of the relations
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\:_ between the 3-D CT of an object and the 2-D CT of its silhouettes.

’ :}: The definitions of the transforms presented in this chapter are accompanied by
“ o the derivation of conversions to and from Cartesian representations. These relations
‘ $’:’j are useful when evaluating or inverting the transforms for specific object shapes. In
E:j addition, the conversion relations are used in Chapter 6 to develop the relations
o between 3-D transforms of an object and 2-D transforms of its silhouettes.

) ::J In this chapter, all arguments are developed for curves and surfaces which are
:{ outlines of smooth strictly convex objects. It is possible 1o describe these curves and
\: surfaces by equations parameterized with the normal orientation angles ¥ in 2-D,
A (£,m) in 3-D. Only these parameterizations are considered here for Cartesian coordi-
A

nates. Relations between these and other parameterizations are briefly discussed in

S

Appendix 2. Extensions of the representations to include object surfaces with edges

RN
CLA L

and their silhouette curves are discussed in Chapter 7.

5\-5.', The concepts of the three transforms are very similar in 2-D and 3-D, a similarity
}'.Ef. emphasized by the vector notation used in this chapter. As the algebra is more
r:«" straightforward in the 2-D case, we have chosen to discuss the 2-D transforms in the
i first section of this chapter and the 3-D transforms in the second section. The algebra
::::., supporting the discussion of 3-D surface models is more involved than in the 2-D case,
':;E::: but the parallelism of concepts substantially improves readability. In order to
"”f" preserve the similarity of notations, some aspects are presented with considerable
‘_.,-: detail in the case of 2-D curves.
%
\ : S.1. Representations for Planar Curves
‘“ In this section, three property circle representations of 2-D curves are defined.
:3 and their transformations to and from Cartesian coordinates are developed. The
;.'.t“j representations, collectively referred to as transforms. define curve shapes by property
| ;:l': functions on the Gaussian circle. The object properties are represented in a different
_’.‘:_’ set of rotated axes for each object point, so that the rotations of coordinates defined in
equation (3.7) appear in both the direct and inverse transform expressions. Relations
" among the three transforms of the same curve are developed at the end of this section;
these relations are exploited to develop consistency constraints for the ST and the
- VST.
L

s
'x.‘;‘&




S.1.1. Support Transform of a Planar Curve

Definition: The Support Transform of a planar curve is the property circle defining
the normal distance between the origin and the tangent at each object point. This dis-
tance is denoted by the symbol p .

The ST is equivalent by definition 10 a representation of the distance p 1o the
tangent as a function of the normal orientation angle s, and is hence a representation
of 1angents to the curve equivalent to the explicit equation p () for the polar tangen-
tial coordinates. The function p () is sometimes referred to as the support function,

a name which has determined our choice for the name of the Support Transform.

Figure 5.1 illustrates the definition of pg for the point Py on the curve C. Let

Y be the polar angle of the normal at P,. The distance p ¢ is measured along the nor-

ATy Ay By gt Y

mal at P, which is parallel to the Oxg axis of the rotated frame Oxg zp for Y=y

The ST function is hence related to Cartesian coordinates by p o= xp (P). This rela-

tion is given, for a generic point of the curve, by

TR NI

p () = xp () = [1 o]

!

xp (P) B cosy siny| |[x(y)
()] T ll J —sinys cosy| |z (Y)

cosys sim[;) J;Ej;

Yo
Po

] —> X

Fig.5.1. Tangent to the curve C at P, and normal distance p .
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() =& e () =l RE R =(y) = T1x(y) (5.1)

where &; denotes the canonical unit vector (1 0)7. The transformation from ST 10
. ¢
Cartesian coordinates is now derived by first considering the equation for the Carte-

sian coordinates of the points on a tangent line with polar tangential coordinates p (ys).
P
x cosy + z siny = p(Y) (5.2)

The above equation describes a one-parameter set of tangents to the curve, where s is
the parameter. The curve itself is the envelope of these lines and its equation can be
evaluated by eliminating the parameter Y between the equation for the tangent and

the derivative of this equation with respect to \y. These two equations are given by

x cosy + z sing = p(y) (5.3)
—x sing + z cosy = py(¢) '
cosy  siny x )4
—siny cosy| |z| — |py (5.4)

where p, =dp/d . Comparison of these equations with the transformation from

global to rotated coordinates, namely

xR cosyr  sinmys X
Zp —sinys cosys z
R, =Ry *x (5.5)

reveals that the coordinates of points of the curve in the rotated frame are given by

xp () p ()
mw] [ (56)
and that global Cartesian coordinates are related to the ST by
x (W) | cosy —sinyg r(P)
()| T | sing  cosy ? (¥
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g(y) = R C(y) (5.7)

p ()
P.j,(lb)

The following alternate vector notation emphasizes the contribution of the ST along

each local unit vector on the Gaussian circle.

(W) =p 1, +p,(P) 1, (5.8)

5.1.2. Vector Support Transform of a Planar Curve

Definition: The Vecror Support Transform of a planar curve is the property circle
defining the Cartesian coordinates of euch point in a rotated frame oriented along the
normal and the tangent at that point. These coordinates are denoted by n and t for the
coordinates along the normal and along the tangent respectively. The vector combining

these coordinates is denoted by § = [ne V.

The above definition emphasizes that the VST describes object point coordinates.
However, it is easy t¢ see that the first component of the VST is identical by definition
to the scalar ST. Therefore, the VST is a superset of the ST and it explicifly describes
tangents to the curve in addition to poinis of the curve. 1he presence of two com-
ponents in the VST and its relation to the ST justify the name of Vector Support

Transform.

Figure 5.2 illustrates the definition of the VST for the point P, on a curve C

described in global axes Oxz. If y is the normal orientation angle at P. the VST

—> X

Fig.5.2. VST of P as Coordinates in the Rotated Frame.
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defines the coordinates of P in rotated axes Oxg zp for Y=y, The transformation
between VST and coordinates in the global axes is given by the transformation of coor-
dinates between rotated and global axes in equation (3.7). The transformation is a
rotation with an angle Y, for the point P and, for a general point, the normal angle
Y. This angle has a different value for each point on the curve. The transformation

from the VST 10 equations for Cartesian coordinates in the global frame is given by

x () cosyp —sins| | n ()
= () = |siny cosy t(Y)

K(Y) = RF Oy s(y) (5.9)

The following alternate vector notation emphasizes the contributions of the VST along

each local unit vector of the Gaussian circle.
gP)=nP 1, +1(Y) 1T, (5.10)

The transformation from Cartesian coordinates to the VST is the inverse of the above

transformation, namely

n(p)| | cosy siny x (Y)
t(Y)| ~ | —sing cosyr| |z ()

s(y) = R ~R(y) s(y) (5.11)

5.1.3. Curvature Transform of a Planar Curve

Definition: The Curvature Transform of a planar curve is the property circle
defining the radius of curvature at each corresponding object point. This radius of cur-

vature is denoted by the symbol p.

The CT defines the radius of curvature p for each given normal orientation { and
is hence equivalent 1o the intrinsic equation p(ys), a representation which is well
known in differential geometry [$2]. OQur motivation for defining curvature by the
radius p as opposed to the curvature k£ is the simplicity of object/silhouette relations

for this choice of representation for curves and for the corresponding representation

for surfaces.
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The definition of radius of curvature at the point Py of a curve C introduced in
section 3.2.5. is based on the Taylor expansion of the Monge parameterization in local

axes Pgyx; y; Z; oriented along the tangent and normal at Py,
x, = _VZ:; p()-l..":[ + 0 (:[3) (5.12)

where pg is, by definition, the radius of curvature at P, Local axes for the above
Monge parameterization are sketched in Fig.5.3. Note that for a convex curve without

straight segments, p(ys) > O for all .

The transformation from the CT function p(ys) to Cartesian coordinates is now
determined. In contrast with the ST and the VST, the CT defines the shape of the
curve only locally. As a result, it is not possible to determine direct relations between
parametric equations (/) and the CT representation, although a relation will be
obtained between the first difierential d R({y) and the CT. The curve is first con-
sidered in a small neighborhood of the point P and analyzed in the fixed local refer-
ence frame Pyx;=;,. An expression for the differential d X, ({s) in the local axes is

obtained by the chain rule

ds, () = dx(z) dz dm, d (5.13)
()= dz; dm, dy v '

where m,; was defined in section 3.2.4. as the gradient of the local Monge equation.
The first two derivatives in the right-hand-side of (5.13) depend on the particular
curve shape at P expressed in (5.12). The last derivative in (5.13) depends on the

-
-

Xy
- Z ¥
AC ’—'Nl_
Py ™S

.

~N

X

O

Fig.5.3. Local axes for Defining the Curvature of AC at Py.
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i
;:;:l\(: relation between the local gradient and the global orientation angle, a relation dis-
N
R cussed in section 3.3.3. Each of the factors in (5.13) is evaluated in Appendix 6: the
::'“.i resulting expression for d X; is given by
_S 3 dxl
:.f dz, = Po 1 dy + O(lb‘lbo) dy
."‘ g -—
;53;‘ d®, = po 1, d+ 0y dy (5.14)
L)
B
,::: The above expansion is exact for Y = s, which corresponds to the point P
"b"q‘,\
- d®(Yo) =po 1, d
The differential of global coordinates is obtained by applying the coordinate transfor-
E" y mation from X; 1o X. defined in equation (3.8)
e
B dx (Pp) cosy, —singy} [0 —sinys,
E;’, dz (o) | = | sing, cosy, 1| Pod¥= cosyy, | PO dy
* j
; R—G T
o d %(Yo) = Ry (Yo & po d Y = T, o po d P (5.15)
v As the point P, is generic, the above relation is valid for all the points of the curve, so
AT
§:3: that
| Z,‘.
" dx —sinys W) d v
- p
i;'-'" dz COS\[J
Taas)
| ;;; df(Y) =T, p()d y = RES(YP) &, p(P) d ¢ (5.16)
KX
e The above equation is a first-order differential which can be integrated to produce an
‘_ expression for Cartesian coordinates of points on the curve
e
B .
oo x () Xo v —sinys
b, Lt =
K z(y) z +‘-£p(d’) costy dy
26 6 oo
35 R(P) = Ry + f p(YT, (YP) d ¥ (5.17) l
::" : Yo ‘
e For a simple closed curve. the vector function X(y#) must be periodic in Y with a
fa X period of 27. Therefore, the CT function (i) must satisfy the following constraint
: )
i
L}

o N e - o A m e m 8 ma m M e et Rt e e e T I L A R SRR
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-85 -

siny

cosd; dy=0

~f p(y)
0

2m

[ oW T (ydy=0 (5.18)
0

One interpretation of the above relation is that p(iys), considered on a 27 interval,
must have no Fourier series term of order one. The relation in (5.18) has also been
interpreted by considering p(y) as a distribution of mass on the unit circle [53). The
consistency relation is then equivalent 1o requiring the center of mass of the distribu-

tion to be at the center of the unit circle.

Two expressions for the CT in terms of Cartesian parametric equations are now
obtained, the first by multiplying both members of equation (5.16) by 1,, the second
by taking the modulus of (5.16).

d () I d K() |
dy dy

Note that the right side of the above expression is identical to a classical definition for

p(Y) = -1, = (5.19)

the radius of curvature of a convex curve [52].

5.1.4. Relations between the ST, the VST and the CT of a Curve

Relations between the three transforms of a 2-D curve are developed in this sec-
tion. Based on these relations. a number of consistency criteria are developed for the
ST and the VST.

By definition. the first component of the VST is identical to the scalar ST. As a
consequence, the VST is a superset of the ST and is therefore redundant, since the ST is
complete. Comparing equations (5.8) and (5.10). it is straightforward to determine
that

=Py (5.20)

where the first two equations express the relation between the ST and the VST, and

the third equation is a consistency relation for the VST.

Q
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o,
[} Y,
-‘:; In addition to the above relations, a consistency criterion for the ST and for the
:' VST can be obtained by relating these to the CT, then expressing the convexity con-
'k straint p>0 on the CT. The relation between the ST and the CT is obtained by con-
5’: sidering the inverse ST equation
' fW=pW 1, +p, T, (5.21)
:’? and by comparing the differential of this expression with (5.16). The differential of

o (5.21) is easily obtained. using the derivatives of unit vectors in (3.55).

"t g,0)= [p(WYW)+p(P)| T, (5.22)
& Comparing this expression with (5.16), the relation between the ST and the CT is
.“

e determined 1o be

s

o

e p(P) = p () + p (P (5.23)

f-) The corresponding relation between the VST and the CT can be obtained by a similar

e

‘ N argument.

[

"

o p(P) = n () + 1 ,(¢P) (5.24)
‘ For a convex curve, p(y) > O for all Y. As a consequence, the following inequalities
o must apply to the ST and to the VST components:

) pW) +pyy) >0 (5.25)
vl
‘N
e n()+1,y) >0 (5.26)
8
Y It is instructive to consider the relations between each of the three transforms

and derivatives of the support function p ().
:§ p()=p
o — T
& sty)=1[p py] (5.27)
= P(W) = p +pyy
The above relations emphasize the dependence of the ST, the VST and the CT on

.

"' derivatives of p up to orders 0. 1 and 2 respectively: similar conclusions will be
i observed for 3-D surfaces. These relations will be useful in Chapter 7 when analyzing
L

.::‘_ discontinuities of these functions for curves and surfaces with straight edges.
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>, 5.1.5. Examples of 2-D Transforms
! In Appendix 1, the three 2-D transforms are derived analytically for superconics.
Graphs of the transform functions are presented in Fig.5.4 for a superconic with major
2 axis half-lengths a =2.0, ¢ =1.0 and an exponent of n =1.2. The property functions
v,
2 are drawn on polar plots in Fig.5.4, with the origin of the plots offset from the center
n 10 allow the representation of negative values in ? ().
5.2. Representations for 3-D Surfaces
N
o In this section, three property sphere representations for 3-D surfaces are defined.

These representations are extensions to 3-D of the three representations defined for 2-
D curves in the previous section. The representations of surfaces will be referred to
by the same names as their 2-D counterparts, namely the ST for a property sphere

a specif ying normal distances to tangent planes, the VST for a property sphere of object

1
»f
TaTe l

2y

- c) d)

Fig.5.4. 2-D Curve and Polar plots of 2-D Transforms.
a) Superconic with exponent 1.2, b) Support Transform,
¢) Tangential Component of Vector Support Transform, d) Curvature Transform.
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point coordinates, and the CT for a property sphere of curvatures. Transformations to
and from Cartesian coordinates are derived for the three transforms. Relations among
the three transforms are developed and exploited to develop consistency constraints
for the ST and for the VST. In addition to the above relations, relations between the
extended Gaussian image and the three surface transforms are determined. A close
parallel has been preserved with the notation used in the case of 2-D silhouettes, as

this association improves the readability.

5.2.1. Support Transform of a 3-D Surface

Definition: The Support Transform of a 3-D surface is the property sphere defining
the normal distance from the origin to the tangent plane at each point of the object. This
distance ts denoted by the symbol p .

The ST function on the Gaussian sphere specifies the normal distance p to the
tangent plane with the given orientation and is hence equivalent to the representation
of planes tangent to the surface by the explicit equation p=p (¢,m) for the polar
tangential coordinates. In other work, the function p (£,m) is referred to as the sup-
port function for the surface. As illustrated in Fig.5.5, the normal distance p, for the
point Py on the surface element I is the distance between the origin and the tangent
plane at P,. This distance is measured along the normal, and is equivalent to the xp -
coordinate of P, in rotated axcs for é=£,. nM=n. The ST function is hence related 1o

Cartesian coordinates for the curve by

xp (€M)
plEm) =xp = [1 0 0‘ ve (€M)
zp (&)
cosécosmn  sinfcosn sinm x(&m)
=110 O] —siné cosé 0 |y(&m)
—cosésinn —sinésinn cosm z(&m)
x(&m)
= | cosécosn sinécosmn sinm v(&m)
z (&)
p(Em) =€l e (£, =€l RY R, = TR (€M) (5.28)
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Fig.5.5. Tangent Plane II to the surface L at Py and normal distance p,

where €, denotes the canonical unit vector ( 100 )7 . The transformation from ST to
Cartesian coordinates is now derived by first considering the equation for the Carte-

sian coordinates of points on a tangent plane with polar tangential coordinates

p(€&m) & n
x cosécosm + y sinécosn + = sinn = p(&,m) (5.29)

The above equation describes a two-parameter set of planes tangent to the surface.
The surface is the envelope of these planes and its equation can be evaluated by elim-
inating the parameters £,m among the equation of the tangent plane and its derivatives

with respect to £ and 1. The three equations are given by

cosécosn x + sinécosn y + sinn z = p
—sin§cosn x + cosécosn y = p¢ (5.30)
—cosésinn x — sinsinn y + cosn z = p,

where the subscripts in p¢ and p, denote partial derivatives. After scaling of the

second equation by cosT,
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the above equations can be rewritten in the following matrix form.

cosécosn sinécosn sinm x P
~siné cosé 0 y| = | p¢/cosn (5.31)
—cosésinn —sinésinn cosn z P

Comparison of this equation with the transformation from global coordinates to coor-

dinates in rotated axes, namely

xR cosécosn sinécosm sinm x
ve | = —siné cos¢ O] |
e —cosésinn —sinésinm cosn 2
X = Ry R¥ (5.32)

reveals that the coordinates of the surface points in the rotated frame are related to

the ST by

xR l p
Ve | = | pg/cosn (5.33)
<R V4 n

and that Cartesian equations for the surface are expressed in terms of the ST by

x (&) cosécosn —siné —cosésinm p (&)
v | = |sinfcosn cos§ —sinésinn| | pg(€,m)/cosn
(&) sinm 0 cosn (€M)
p(m)
(&) = REC(¢m) | pelém)/cosn (5.39)
p(&m)

The following alternate vector notation emphasizes the contribution of the ST along

each local unit vector on the Gaussian sphere.

X(Em) =pEm) 1, +pEn)/cosn 1+ p(Em) 1, (5.35)
F ey S RS AT il T R b R R raagthol
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5.2.2. Vector Support Transform of a 3-D Surface

Definition: The Viector Support Transform of a 3-D surface is the property sphere
defining the three Cartesian coordinates of each surface point in a rotated frame
oriented along the local normal, parallel and meridian of the Gaussian Sphere. The com-
ponents are denoted individually as n, h and v respectively. The vector combining

these components is denoted bys=(n h v ).

The above definition emphasizes that the VST specifies point coordinates, but it is
easy 10 see that the first component of the VST is identical to the scalar ST, so that the

\'ST is a superset of the ST and defines tangent planes in addition to points.

Consider on the surface I, the point Py with normal orientation Rg(§g Mo), as
illustrated in Fig.5.6. The VST components n g, kg, v for the point P are the Carte-
sian coordinates of P in the rotated axes Oxp ypzp for Py The transformation
between this frame and the global object frame is defined in equation (3.9), for { = £,

and n=m,. This relation is valid for each point of the surface, when ¢ and 7

Fig.5.6. Tangent Plane Il to the surface £ at P,
VST s5= (n g,k v (,)7 and principal orientation vectors.
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<

: represent the corresponding normal orientation. The Conversion from Cartesian
B parametric equations X = X(£,7) to the VST is hence given by
:"a; n(&m) cosécosn sinécosm sinm x(¢,m)
b h(¢Em| = —siné cos§ O |y(&m) .
}j: v(ém) —cosésinn —sinésinm cosn| | z(&,m) ;
TR
. s(¢,m) = R ~KEM X&) (5.36)
>
?‘; The inverse transformation the VST to equations for the Cartesian coordinates is )
&Y
b the inverse of the above 3-D rotation. namely
o x(¢&m) cosécosn —siné —cosésinn| [ n(€,m)
P y(€mn)| = | sinfcosm cos§ —sinésinn| A (€M)
4 (¢ sinm 0 cosm} |v(&Em)
) — —
X(¢£,m) = REC(ENNED) (5.37)
>
- The following alternate vector notation emphasizes the contribution of the VST along
R each local unit vector on the Gaussian sphere.
- REM=nEMT, +r(En) Tg +v(En) 1, (5.38)
!
,;::
144 5.2.3. Curvature Transform of a 3-D Surface 3
100
it
Definition: The Curvature Transform of a 3-D Surface is the property sphere
" defining the tensor of radius of curvature of the surface expressed in axes oriented along
;: the parallels and meridians of the Gaussian Sphere. The components of the tensor are
s
referred 1o as r 1. rya and r s, with the index 1 corresponding to the direction of the
) pardllel. The tensor itself is represented by the symbol R.
?_': This definition of the CT s a natural extension of the CT defined for 2-D curves
:; in section 5.1.3. Other extensions to three dimensions of the 2-D CT are also possible. ;
For example the 2-D extended Gaussian image is identical 1o the CT [53]. but the 3-D
‘!
:'. extended Gaussian image represents a scalar property, namely the inverse of the Gaus-
f-:-&j sian curvature of the 3-D surface [44). Relations between the extended Gaussian image
s and our 3-D transforms are developed in a later section.
‘i:. The curvature of a surface ¥ at the point P was defined in section 3.2.5., based
N on the Taylor expansion of the Monge parametric form in local axes at Py,
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) x, == [.Vz Z l ,0 .0 . | Oz )) (5.39)
' 12 T2 “l
) ~1
x, ==-1~7R, 7, +0(z? (5.40)
"
XS
where x; is along the normal and y;,Z; in the tangent plane at P,. In the above
! expression, ﬁo is. by definition, the tensor of radius of curvature at P, and Z; denotes
o
the 2-vector ( v; =; )7 in the local tangent plane. The surface and the local axes at P
Y i R
i?‘ are sketched in Fig.5.7.

The transformation from the CT representation to Cartesian coordinates is now

)

::Z determined. As the CT representation describes only local properties of the object sur-
face. it can not be directly related 1o Cartesian coordinates, although it will be related

ﬁ to the first differential d X(€,m) of these coordinates. For this purpose. a small surface

element AZ in the neighborhood of Py is analyzed in the fixed local axes Pgx;y, 2; .

An expression for the diff crential is first obtained in the local axes by the chain rule

=

= X

’.

o

»=

y

2 Fig.5.7. l.ocal Axes for the Definition of the Curvature of T at P,
“
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. Dx,(z,) Dz, Dm,
f\ -_—
‘ Dz, Dm, D¢

d§ (5.41)

where expressions such as DX, /DZ; denote Jacobian matrices, fii,; = (myl m,, 7 s
the 2-vector of local gradients, and d € is the vector of normalized global angle
differentials d € = (cosnd € d 1 )T . The first two Jacobian matrices in the right hand
side of (5.41) depend on the shape of the particular surface around P, defined by
(5.39). The last Jacobian matrix in (5.41) depends on the relation between local gra-
dients and global orientation angles, a relation which was discussed in section 3.3.3.
Each of the factors in (5.41) are evaluated in Appendix 6. When inserted in equation
(5.41), they produce an expression for the differential d R, in local coordinates, valid
to first order around P, The expression is exact at Py, and since P is generic. the

differential in local axes at a given point is represented by a similar expression.

dx
l 00 11 T2 cosnd &
wep = no T12 722 dn
dz, 01
d¥, =1;,Rd¢ (5.42)

where I3; is a 3x2 matrix consisting of only zeros and ones. A differential for the sur-

face in global coordinates is obtained by applying the coordinate transformation in

(3.10).

dx cosécosn —siné —cosésinm 00 11 T2 cosnd &
dy| = | sindcosn cos§ —sinésinm 10 - d
d- sinn 0 cosm 01 SRS
dX=RFC I,,Rd¢ (5.43)

In principle. the above differential can be integrated to preduce Cartesian equations for
the surface. As the integration domain is two-dimensional, an integration path must be

prescribed: this question is addressed in the nex! section.

Transformations from Cartesiar equations to the CT are easily ceveloped based

on equation (5.43). Indeed. explicit @xpressions for the partiai derivatives of X can be

obtained from (5.43) as
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X,/ cosn 1 T2 _'g (5.42)
X, Tl |1, .

An expression for determining the CT of a surface given by parametric equations

X(£,7m) is hence

T Taz| 1;Xg/cosn 1, X/ cosn (5.45)
ri2 7 Xy 1,%,

5.2.3.1. Consistency Constraints for the 3-D CT

In this section, consistency constiraints are determined for the CT function defined
on the Gaussian sphere. Equation (5.44) relates first derivatives of Cartesian coordi-
nates to the CT. This expression has a conceptual similarity to the expression for sur-
face reconstruction from needle maps [21]. In both cases, first derivatives of a func-
tion are given on a two-dimensional domain. In the case of the needle map, surface
reconstruction is possible only if the gradient field corresponding to the needle map is
curi-free. The curl-free condition. also referred to as an integrability constraint.
corresponds 1o a zero elevation gain on all closed loops in the image plane, and is
equivalent for smooth surfaces to equality of the mixed derivatives. This condition
guarantees that integration of the Cartesian coordinates is independent of integration
path and is a necessary and sufficient consistency constraint for a needle map. A simi-
lar condition is derived here for the CT by requiring equality of the mixed derivatives
X¢yn and X, These mixed derivatives are first evaluated from (5.44). taking into

account the derivatives of local unit vectors given in equation (3.50).

Xin = BQT;‘(r“ cosn)—ff + (—?;");(r12 cosn)T,, —rjacosn 1,

(5.46)
X = —6—r ~ 7 54 Si 1, + 0 + : 1. — T
nt = 12 228N | 1y Fatrpsinm| l,—rcosnl,

Gl 0¢

The consistency constraints are obtained by comparing individual components of the

above expressions for the mixed derivatives.
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RSy i( rycosn) = 9, sinn
Rty (5.47)
AL —ir22=—i(r12cosn)—rlzsinn

- o¢ on

Y

:*"*C When the above consistency relations are verified, the integral of the differential d X is

O
independent of integration path.

B ..‘L
J}::f A second type of constraint must be satisfied by the components of the CT of a
e
" S: convex object. Specifically, positivity of mean and Gaussian curvatures implies posi-
A

N tivity of the trace ( 7, +: 52 ) and of the determinant (7 {7 35 —7 i3 )
(’L \ 3 ’
e 5.2.4. Relations Between the ST, the VST and the CT of a Surface

| Y
4 D-‘-Q!
: In this section, relations between the three transforms of a given 3-D surface are
b ‘l'\

e developed. From these relations, consistency constraints are determined for the ST
10 and for the VST.

::::,?f By definition, the first component of the VST is identical to the scalar ST. Since
W the ST representation is complete, the above relation indicates that the VST is redun-
2 dant. Comparing equations (5.38) and (5.35), it is straightforward to determine that

o
P2
et n=p
- _
- h = p¢/cosn (5.48)
“f ; vo= p'r)
,‘ .;-::i
)
a-.gﬂ.j h = ng/cosn
Yo '.J *
) . V=N, (5.49)
R ve = 9/dn(h cosn)
A
17
gy where the first group of equations expresses the relations between the ST and the com-
o
N 7 ponents of the VST. The equations in the second set are relations among the three VST
(e components.
Tl
;_1'-' In addition to the above relations, a set of inequality constraints can be developed
-
f-;ﬁ for the ST and VST by relating these representations to the CT, then expressing the
N
convexity of the surface in terms of the CT representation. The relation between the
..‘-, ST and CT is derived by considering the inverse ST equation.
e
[
N
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XEM=pEMT, +plen/cosn T+ p(EMT, (5.50)

and by comparing the derivatives of this expression with (5.44). The derivatives of

(5.50) are easily obtained with the derivatives of unit vectors in (3.50).

X/ cosn p + pgg/coszn —pqptann  pg/cosn+p; sinn/cos*n Tg
X, “p gn/cosn+p, sinn/cos®n p +p - T,,

(5.51)

Comparing this expression with (5.44) produces the following expression for the CT

tensor in terms of the ST function p (£,7).

p + pgg/coszn —pqlann  pefcosn+p, sinn/coszn
Pen/cosn+py sinm/cos?n p + P

(5.52)

For a convex object surface, both the determinant and the trace of R must be positive.

The following incqualities must therefore be satisfied by p (§,n).
2p + pgg/cos’n + p oy, — poytann > 0 (5.53)
(p +pge/cos’n—ptann)p +p ) = (pgy/cosn + pgsinn/cos?n)? > 0
Relations similar 1o (5.52) can be formulated between the VST and CT; these also

allow the development of convexity constraints for the VST. The relation between
\'ST and CT is given by

i1 T2 n +hg/cosm—vtanm vg/cos m+h lanm
= ) ) (5.54)
r 12 T 22 h n n + \’n
The resulting convexity constraints are
2n + hyg/cosn+v,—vtann > 0 (5.55)

(n +hg/cosn—vianm ) n +v, ) —h,(v¢/cosn+htann) > 0

Considering equations (5.48) and (5.52), it can be observed that the ST, VST and

CT depend on derivatives of p up to orders 0. I and 2 respectively. This conclusion is
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\x? identical to the corresponding observation made for the transforms of planar curves.
o,
X 5.2.5. Relations between the Extended Gaussian Image and the CT, VST, ST
(a
R
':: In this section, relations between the extended Gaussian image (EGI) and the three
: £
::: property sphere representations are developed. The EGI is a property sphere for the
2
' inverse of the Gaussian curvature. The Gaussian curvature is the determinant of our
! curvature tensor K and is also the inverse of the determinant of the radius of curva-
i :3 ture tensor R: see section 3.2.5. Hence. the EGI is equal to the determinant of the CT.
5 =
- G(¢£,m) = detR(¢,m) (5.56)
:: where G denotes the EGI function. The CT function is hence a redundant superset of
I:} the EGI. In the case of 2-D curves, the CT is identical 1o the EGI defined in [53]. The
3-D EGI and the 3-D CT can be considered as two different generalizations to 3-D sur-
& faces of the same represeniation for 2-D curves. The ST can be related to the EGI by
8
o combining (5.56) and (5.52).
I G(¢Em) = (p +pyge/cos’n—p tann)(p + Py (5.57)
. — (pgy/cosn + p_£51'n?7/c05277)2 ‘
:_ The above relation should prove useful in combining EGI and ST representations. such
:f-: as for the work presented in [45). Finally, a relation between VST and EGI is obtained
by combining (5.56) and (5.54).
&Y G = (n +hg/cosn—vianm ) n +v,)
g . (5.58)
. — h,(vg/cosm+htann)
b ‘\I
. S5.2.6. Examples of 3-D Transforms
\ In this section. the three transforms of a simple object are derived. These deriva-
~
‘::: tions illustrate the computation of transforms from parametric equations. The object

considered here is a sphere of radius R offset from origin, centered at P (x ,¥ (.2 o)-

Transforms of more complicated object shapes are derived in Appendix 1.
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Parametric equations for the sphere are given by
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o

x = xy+ R cos§ cosn
Yo + R siné cosn (5.59)
2 =zo+ R sinm

y

. The ST of this sphere is obtained by applying (5.29) to the above parametric equations
p(€m) = xcosécosn + yqsinfcosn + zosinn + R (5.60)
In the particular case where the center Py of the sphere is at the origin, the above
. expression simplifies to p (§,1) = R.
The VST of the sphere can be derived by applying equation (5.36) to (5.59).
s x o cosécosn + yq sinfcosn + zosinm + R
sEm) = —x ¢ sin§ + yo cos§ (5.61)

—X g cos€sinn — v sinésinn + 2 cosn

In the particular case that Xy = 0. the VST is given by sSUE,m) = (R 0 0)7.

1t is possible to derive the CT from the parametric equations in (5.59) by different
methods. Indeed. the CT can be determined directly from (5.59) with equation (5.45).
indirectly from the ST with equation (5.52), or indirectly from the VST with equation
(5.54) The indirect derivation via the ST is developed here. Partial derivatives of the

ST can be evaluated as

Py = —xgsinécosn + y, cosécosn
Pgt = —xgcosgcosn — y,sinécosn
Pgn = xosin€sinm — v, cosgsinm (5.62)
pn = —xgcosésinn — y, sinsinn + =, cosn
. Pnm = —Xqcos§cosn + y,sinécosn — 2 sinm

Using the above derivatives, the 3-D CT function is determined as

p t ng/Coszﬂ —pqptann  pefcosn+p, sinn/cos®n
Penfcosn+py sinm/cosn P+Po

11 T2

12 722

RO
O R

(5.63)




_I(X)-

Note that this result is ind~pendent of the position of the center of the sphere. The CT

function is identical to the curvature tensor of the sphere determined in section 3.2.5..

Each 3-D transform contains large amounts of information, so that it is not easily
displayed on one graph. 1n Chapter 8, some 3-D transforms will be represented by

polar plots of their components on meridians of the Gaussian sphere.

5.3. Summary

Three representations for closed curves and the corresponding representations for
3-D surfaces have been defined in this chapter. The motivation behind the study of
these representations is the simplification they introduce in the analysis of relations
between object shapes and silhouette shapes. In the following chapter, three theorems
wil be demonstrated. relating the transforms of a 3-D object to the transforms of its
silhouettes. Specifically, it will be shown that the property circle of the silhouette in
an orthographic projection can be obtained by slicing the property sphere of the object
by a plane perpendicular to the viewing direction and going through the origin, then
appropriately projecting the vector or tensor information onto the slice plane. The
specific object properties represented by the three transforms were carefully chosen to

lead to such simple relations.

Aside from their interest in silhouette analysis, the transforms presented in this
chapter can also be analyzed simply as representations of 2-D curves and 3-D surfaces.

Each of the transforms is now discussed individually in this respect.

In both 2-D and 3-D, the ST is quite similar to the support function. an explicit
equation for polar tangential coordinates. Although this form is known, it has not

received much attention in the graphics and vision fields.

The 2-D and 3-D VST are simply related 10 descriptions in terms of Cartesian
point coordinates. but their relation with the ST and CT is interesting for at least two
reasons. First, the relations between the ST and CT on one side, and the VST on the
other side are quite simple, so that the VST may be used as an intermediate step when
converting the ST or the CT to a description in terms of Cartesian coordinates. In
some applications, when a Cartesian represcntation is required, the VST itself may be

appropriate, thereby eliminating the need for a different Cartesian representation. For

example, it should be easy to synthesrre a shaded rendition of an object for a general
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view-point, based on the VST only. A second interesting feature of the VST is that it
forms with the ST and CT. a range of representations depending on derivatives of p
up to orders 0. 1, 2. Instead of the VST which combines normal and tangential com-
ponents of rotated Cartesian coordinates, it is possible to describe property circles and
spheres describing only the tangential components. These representations would avoid
the trivial redundancy with the ST. but would not be uniquely invertible. For exam-
ple. the VST of a sphere centered at the origin is zero everywhere and does not depend
on the radius of the spher¢. We have therefore preferred the definition of the VST
proposed in this chapter, and its interpretation as a complete description of point coor-

dinates of the object.

The CT representation of 2-D curves and 3-D surfaces will now be discussed.
Forms closely related to the 2-D CT have been proposed by various authors
[23,53,54]). The 2-D CT is closely related to the intrinsic form relating radius of cur-
vature and normal orientation. Intrinsic descriptions of the shape of curves have been
extensively studied in differential geometry and are well known [52]. However, to the
best of the author’s knowledge, equivalent representations have not been proposed for
surfaces. The 3-D CT can be considered as such an intrinsic form for surfaces and
should therefore be of interest when analyzing the shapes of 3-D surfaces. Represen-
tations of surface shapes presented in textbooks of differential geometry usually rely
on two tensors, referred to as the tensor of the first fundamental form and the tensor
of the second fundamental form. The two tensors convey information about both the
shape of the surface and the parameterization used to define the surface. With this
formalism, it 1s not possible to retain a complete description of surface shape without
interfering with the description of the parameterization. The literature on surface
representation in machine vision seems strongly influenced by this description of sur-
faces in terms of fundamental form tensors. Characterizations of surface curvature
by local invariants have also been proposed. These invariants combine information
from the two fundamental tensors and are independent of parameterization. For
example. the extended Gaussian image defines surface shapes by one invariant, the
Gaussian curvature: a description of surfaces by two invariants, the Gaussian and
mean curvatures, has also been proposed [30]. These representations. although inverti-

ble with appropriate boundary conditions, do not carry a complete local
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characterization of surface shape. The 3-D CT representation proposed here is an ‘_:
elegant alternative to the classical shape description methods. It combines a new
invariant curvature tensor function with the parameterization used to represent nor-
mal orientations in the extended Gaussian image. Relations between the CT and classi-

cal descriptions of surface curvature are further addressed in Appendix 4.

The framework developed in this chapter for representating shapes stresses the
similarities between 2-D and 3-D, and suggests straightforward generalizations to :
representations of n-dimensional hypersurfaces in (n+1)-dimensional space. These

generalizations are not addressed here.




of
Chapter 6 A
)
: Silhouette-Slice Theorems =
=
In this chapter. relations between the transforms of 3-D convex object surfaces i_
and the corresponding transforms of their 2-D silhouettes in orthographic projections 3
1 are determined. It turns out that these relations prescribe pointwise correspondences ,.:
between property-function values on the Gaussian sphere of the object and property- ‘
function values on the Gaussian circle of the silhouette. Hence, there are two aspects i:::
10 the relation between 2-D and 3-D transforms. The first part of the relation deter- ]
f mines which values of the 3-D object property sphere directly contribute to the '-jfi'
silhouette, whereas the second part specifies how the values of the 2-D transforms are "
related to the values of the 3-D transforms at the corresponding points. These two :L'
aspects of the relation are closely tied to the selection and projection steps of the clas- .
\ sical silhouette construction method reviewed in Chapter 4. :
The exact form of the relation between the transforms of the object and the k.
transforims of its silhouettes will be determined by applying the classical silhouette
construction method sketched in Fig.4.2 to the surface shape expressed as the inverse
transform of each of the three representations. The first step of the classical method e
will indicate an equivalence of points on the Gaussian circle of the silhouette and R
points on a slice of the Gaussian sphere of the object. The slice is the intersection of ‘
the Gaussian sphere with a plane through the center and perpendicular to the viewing
direction. The second step of the classical silhouette construction will indicate how
transform values on the slice of the Gaussian sphere of the object are related to ‘T:
transform values on the Gaussian circle of the silhouette. Specifically, it will be
shown that the silhouette ST values are identical to the object ST values on the slice. ::::_;
3 and that the values of the VST and CT of the silhouette can be obtained by projecting '_
onto the slice plane the vector or tensor values of the corresponding 3-D transforms on
the slice of the object Gaussian sphere. The relations among 3-D objects, 2-D
silhouettes and their transforms have a strong conceptual similarity with the _
Projection-Slice theorem of computerized tomography. The theorems describing the ;;
relations in the case of silhouettes have been named Silhouette-Slice theorems to 4
N underline this similarity. :iE
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In the first section of this chapter, the relation between Gaussian circles of

4

silhouettes and slices of the Gaussian sphere of the object is demonstrated. Relations

AR i

among angular coordinates on the sphere, the angular coordinate on the silhouette slice
circle and the viewing direction are determined. In the second section, the transforma-

tion between local systems of 3-D axes corresponding to the slice of the Gaussian

¢y 3
oo
L W

sphere and local systems of axes on the silhouette is derived. It will be shown that

this transformation is the composition of two 3-D rotations and a projection, and that 'a
its expression can be substantially simplified. In the third section, relations between -
silhouette property circle functions and object property sphere functions are deter- j
mined by applying the transformation derived in the second section to coordinates of 7
points of the silhouette generator of the object, expressed in terms of the ST. VST and ::?‘1
CT representations. Finally, the results are discussed and compared with the
Projection-Slice theorem of computerized tomography. _j
-
6.1. Silhouettes, Gaussian Spheres and Gaussian Circles 3
The first step in determining relations between silhouette properties and object i
properties is to determine which object points contribute to the silhouette, and which !'
points of the silhoueltle are affected by which points of the object. It is shown in this
section that only the points on the great circle slice of the Gaussian sphere perpendicu- .:::
lar 1o the viewing direction contribute 1o the silhouette, and that the points of the slice =
are related to corresponding points of the silhouette by the Gaussian mapping. g
The following discussion refers to Fig.6.1 which illustrates a 3-D object and its
orthographic silhouette in the image plane. Consider a point P¢; on the silhouette 3:
generator of the object, its projection Pg in the image plane and its image P; on the -
Gaussian sphere. First, by definition of the Gaussian mapping, the normal to the object ‘?
surface at P¢; is parallel to the normal to the sphere at Pj; . Second, since Pg; is on h
the silhouette generator, the normal at Pg; is parallel to the projection plane, so that Sj
its direction is unaffected by the projection operation. Hence, the normals to the
silhouette at Pc. to the object at Pg; and to the sphere at P; are all parallel. The j
N image of the silhouette generator on the Gaussian sphere is thus the set of points of the
i sphere for which the normal orientation is perpendicular to the viewing direction. 2

This set of points 1s the great circle of the Gaussian sphere perpendicular to the

ST
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Silhouette
Generator

Gatssian Circle

Fig.6.1. Relation between the Silhouette Generator and a Slice of the Gaussian Sphere.

RN SN

viewing direction. Individual points of the silhouette and of the slice corresponding to
the same object point. such as P¢ and Pg; . are related by the parallelism of their nor-
mals. Therefore. the slice of the Gaussian sphere of the object is a Gaussian circle for

the silhouette. This conclusion is formalized as follows:

Silhouette-Slice Theorem 0: Fuch grear circle slice of the Gaussian Sphere of a
smooth convex object is the Guussian Circle of the silhouetie of the object in an ortho-

graphic projection on u plane parallel to the slice.

The above theorem s now complemented by trigonometric relations between the
angular coordinates (€,m) of noints on the slice, the angular coordinate Y on the Gaus-
sian circle of the silhouette. and the angles (,8) specifying the orientation of the
viewing direction. Consider the point P; on the slice of the Gaussian sphere
corresponding to the viewine airection V, as illustrated in Fig.6.2. For this point, the
five angles of interest aprear in the spherical triangle AP; C . drawn in bold in the

figure. This triangle 15 also displayed "flattened out”™ with the values of all its

.
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Fig.6.2. Great Circle Slice and Angles on the Gaussian Sphere

S &
\"j
Y elements on the same figure. The sixth element of the triangle ABC is related to the

angle o characterizing the orientation of the slice plane in local axes Pg x; v, 2; at P .

::: Appiying the standard relations between elements of a right-angled spherical triangle i
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in[55] to the above triangle produces the following identities

sin = tan({—¢—7/2) tana (a)
—cos(é—¢) = 1anm tanf (b)

sin@ = tan(é—¢—n/2) coty (c)

sina = t1anm coty (d)

cosyy = tanf tana (e) o.1)

sinn = cosh sinys (f) ’
—cos({—p) = cosa sinys (g)

sinf = cosm cosa (h)

sina = sin(é—¢) cosf (i)

cosy = cosm sin(é—¢) ()

Note that the angles €. ¢. s are defined over the range [—7,+m] and the angles 7, 6
over the range [—7/2,m/2]. The full range of these parameters is covered by relating
the quadrants of the arguments in the tangent trigonometric functions in expression
(0.1)(c).

For a fixed viewing direction (¢,6), the silhouette point with normal orientation
Vs in the image plane corresponds 1o the object point with normal orientation (£,1) for
the values of these angles satistying (6.1). Specifically, (6.1)¢) implicitly relates the
angles Y and €, whereas (6.1)(f) relates the angles ¥ and 7. Explicit forms for these

relations are ziven by

£ =¢(P) =+ 7/2+atan (sinf tany )

‘ ' (6.2)
N = ngs (Y) = asin ( cosh siny )

where the subscripts SG indicate that the angles correspond to points of the slice
which are the images of points on the silhouette generator. In the above expression.
the range of the arcsine is (—7/2,7/2) and the quadrant of the arctangent must be the
quadrant of ¥ when >0 and the quadrant symmetric with respect to the x-axis oth-
erwise. The above expressions can be considered as parametric solutions for equation
(6.1)(b); this equation is equivalent to the equation of the silhouette generating planes
in (4.27). The solutions in (6.2) of this last equation were anticipated in Chapter 4.
The angle a is the tilt of the slice at each point relative to the local axes Pg x;y, =, .
This angle is useful when projecting vectors and tensors defined by their components

in local axes. onto the slice plane.
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g Equations (6.1) and (6.2) can be further exploited to derive expressions for the
- 2%
E. differentials d { and d m in terms of d { on the slice for a fixed viewing direction.
These relations are sketched in Fig.6.3; they will be useful when projecting
e
::-: differentials of Cartesian coordinates expressed in terms of the CT. The differentials
-\\.::: of € and m along the silhouette generator could be evaluated from derivatives of (6.2),
A
o but are evaluated here instead from the corresponding implicit forms (6.1)(¢) and
: r (6.1)(f). For a fixed viewing direction, the differential d £¢; along the silhouette gen-
2%
o erator is obtained by differentiating a form equivalent to (6.1)(c), namely
N —coty = sinf tan(é—¢)
A x: . d
= d:!! = sinf ——,g——
sin®ys cos“({—¢)
":‘1.'1 which can be simplified, using (6.1)(g) and (6.1)(h).
e COSx
dég; = d 6.3
A s cosm Y (6.3)
i
2
'S z
'. >
»
)
!“
'y
%0
‘
3 '1}.‘:

>
24 Fig.6.3. Relation between Angle Differentials on the Slice.
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! The expression for d n¢; is obtained by differentiating (6.1)(f). )
sinm = cosf siny -
5
—cosnd n = —cosf cosyr d -2
This can be further simplified using (6.1)(d). !
{ M
d T)SG = Sina d [0 (6.4) l
As a result, the normalized differential d €, has the following form :2
t
cosnsg d €56 COSag(; 6.5) i
d = = . d 6.5

§SG d nSG S]naSG ‘b , "

i
where ag; refers to the value of a on the silhouette generator. This relation confirms -‘_:
A
: the geometrical intuition suggested by Fig.6.3.
6.2. Projection of the Silhouette Generator o

3 In the previous section, the set of points of the object property sphere which are *-
directly related to the silhouette was determined. In this section, a procedure for :t‘

relating values of the property functions of the silhouette to the values of the pro- -

perty functions of the object is developed. This procedure consists of formally (j_'

! expressing coordinates of silhouette generator points in terms of the transforms of the ;':
object and applying the classical projection operation to these forms. Expressions for
the inverse transforms of the property spheres are simplest when object coordinates .';.
3

are expressed in rotated axes at each point; they are given by

~
r(&m) .

Xp(Em) = | pelém)/cosn B
Po(€M) "
'-.h \

e
n ({.T}) ,:.

— &

Xel(én) = |h(EM| =31¢,7) (6.6) :

’ ( , “

v(éEm) :E

s

e O 0| (ry(&m) ria(€Em) d &/cosn 1 Riem) =

— s = ] — , d -
Re (£ Ol | riaem raaem| | dn 2 R dE

0

)y ‘:‘
o)
3
y . T R Y G, P Yy
i .‘\;Jc‘:ll.ih'." . P ST O S Z

0
\
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‘ t
b,
f'.b The rotated coordinates of points on the silhouette generator are easily obtained from
Wl
" the above expressions by replacing (£,m) by their values on the silhouette generator as
w given in equation (6.2).
Byl
Il p (és6 (W) nsg (P))
R Xe(P) = Pg(fsc; (¥),ns6 (¥))/cosnsg ()
W Pn(gso (Y).nsc (P)) (6.7)
0
‘. . =
P X (Y) = 56 (Ynss ()
:::' dXp(P) = I3 R(Esq (W)imse (W) d Egg
r;: Note that the variables (£,m) must be considered as independent when evaluating
) '
;?::. derivatives p¢, p, for the expression of the ST. However, the differentials d (.dnin
::.:: the expression for the CT must be taken along the great circle slice; their relations 1o
i)
i d s are given in (6.5).
ol
. The projection of points of the silhouette generator is now addressed. Coordinates
e
o of silhouette points can be obtained by first converting the coordinates in rotated
_\'
W frames in (6.7) to coordinates in global object axes by the transformation in (3.9), then
o applying the projection transformation (3.21). Coordinates of silhouette points in glo-
«t
2 bal axes of the projection plane are hence obtained from the rotated coordinates of the 1
o )
" object by
s jct b
" K, (P) = L3 RY "¢ REO(¢ 55 (W),nss (W) Xp (Y) (6.8) ;
o)
::; The operations described in the above equation correspond to the 3-D rotation R_{"
o
:? from rotated to global coordinates, followed by the 3-D rotation R3G ~C from global to
camera axes, and finally the projection I, along the first coordinate axis of the camera
A AN ‘
8 frame. The composition of the two rotations in the above equation is a third rotation s
.
Al which will be denoted by Rf_c and which relates coordinates in the camera axes 10
S coordinates in rotated axes. '
%
$ |
2.
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This rotation is explicitly written as

RFC=R{CREC (6.9)

cos¢pcosd  singpcosd sinb cosécosn —siné —cosésinm
= —sin¢g cos¢ 0 sinfcosn cos§{ —sinésinm
—cosgsind —singsind cosf sinm 0 cosm

cosBcosmcos(é—¢) + sinBsinm)  —cosBsin(§—¢) —cosOsinncos(é—p) + sinbcosm
= cosmsin(é—&) cos{ £—d) —sinnsin(é—¢)
—cosmsinfcos £—¢) + sinmcos®  sinBsin(é—¢p)  sinmsinbcos(é—@) + cosBeosn
When only rotated axes corresponding to points on the silhouetle generator are con-
sidered. the angles in the above rotation matrix are related by the expressions in (6.1).
The expression of Rf_c can then be simplified substantially. After tedious but

straightforward trigonometric manipulations, it can be shown that

0 —sinagg COSag;
R (¢ msg) = | cosy —cosagg sing —sinagg sings

Siny  COSag; COSY  Sinags COSYs
(6.10)
0 0 1 1 0] 0

= Jcosy —siny O O cosag; sinoagg

sinyg cosyp O O —sinog; cosags

This result can also be derived derived through geometrical reasoning on the composi-

tion of the two rotations in equation (6.9). Referring to Fig.6.4, the rotation from

rotated 1o camera axes links coordinates in axes parailel 1o the local orientations 1, ,
1;. 1, with coordinates in the global silhouetle axes X 5, =, Which are parallel to

1,0 T,0- It is clear that these two axes can pe aligned with 1,, 1; by a rotation
around 1, with an angle a. followed by a rotation with an angle ¢y around the rotated

P

l,7 axis.

The transformation from rotated object coordinates X 10 global silhouette coor-
dinates X, in the image plane is obtained by combining the above rotations with the

) projection operator I,3. producing
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!

0] —sinog; COSQg, x

X 010 . e K

. =100 1 cosY —CoSag SINYs —Sinagg Sinys YR
~m

siny  cosag; COSY  Sinags COSY R

cosyp —cosagg sing —sinagg sings) | *X

= | siny cosagg cosP  sinagg cosyp | | IR (6.11)
<R
cosys —simys 1 0 0
T | sing cosy O cosags; Sinagg VR
<R

where the last form was obtained using the factorization of Rf ~C in (6.10). Com-
parison of this form with (3.7) suggests that a simpler expression for the imaging

transformation is obtained by expressing silhouette coordinates in rotated 2-D frames.
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Xp ::
G—R() 0] 0
an— J = — -
Rre =Ry (YR, 0 cosog; Sinogg YR (6.12)
R 2
- This expression is now rewritten for the individual components of the silhouette coor- by
) - (]
dinate vector in the rotated trame. !
N X TR = XR -
\ . (6.13) c.(
Zpr = VpCOSag; t ZpSinag; o
7
. . . . . ¥
This simple expression is a key element in the derivation of the three Silhouette- ]
Slice theorems described in the next section. It formally expresses that for points on =
o
the silhouette generator represented by coordinates in rotated axes, normal components ey
‘w
; are unaffected by the projection operation. Components along the tangent plane are f:,.
o
projected as a 2-vector in the tangent plane to produce the corresponding sithouette £
2 coordinate along the tangent in the projection plane. This relation between rotated .
h coordinates on the silhouette generator of the object and on the silhouette is illustrated ‘:'-_
in Fig.6.5. The orientation involved in the above projection is the angle ag; character-
izing the orientation of the slice in local axes o! the Gaussian sphere. Note the .
. equivalence of the first equation with the relation derived for the normal distance to g
- tangents in Chapter 4, specifically in equation (4.31).
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Fig.6.5. Projection of Rotated Coordinates.
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6.3. Property Circles of Silhouettes

In this section. formal expressions for silhouettes in terms of the 3-D transforms
of the object are obtained by applying the projection transformation in (6.13) 1o the
coordinates of points on the silhouette generator in terms of the 3-D object transforms
in equation (6.2). The resulting expressions are then related to the corresponding 2-D
transforms of the silhouettes to obtain a direct relation between 3-D transforms of the
object and 2-D transforms of its silhouecttes. These relations will be formalized as

three Silhouette-Slice theorems.

6.3.1. Silhouctte-Slice Theorem for the Support Transform

When the imaging transformation for rotated coordinates in (6.13) is applied 1o
the rotated coordinates of silhouette generator points expressed in terms of the ST in
(6.6). the following equation is obtained for the silhouette coordinates in rotated local
axes.

LR Y4

= . (b.14)
ZeR P ¢ Cosagg / cosSNgg + p oy Sinagg

where p and its derivatives in the right hand side must be evaluated at =€ .
N=Msc - S0 that the right hand side is implicitly parameterized in Y through €¢; . Nsg
and ag; . This expression can be compared with the expression for rotated coordinates

in terms of the 2-D ST, namely

R b (6.15)
<R N 6[777/641 '

where the index in p . indicates that this normal distance is relative to the silhouette
in the image plane. The equality between the first components in (6.15) reveals that
the ST function of the silhouette, p (). is identical to the 3-D ST on the slice of the

Gaussian sphere of the object.

- (¥) = P(§SG (\ll)vnsc (Y)) (6.16)
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The identity between the second components of (6.15), and (6.14) is consistent with

the following evaluation of the partial derivative §p /9y

ép_vza_ngadfsc :) d NG _  cosagg
oy oy o dy on dy P COSTsG

where (6.5) was used 1o determine d {/d { and d n/d . The relation between the ST

+p.,)sin0456 (6.17)

ey

of the silhouette and the ST of the object is formalized as follows:

Silhouette-Slice Theorem 1: The 2-D Support Transform of an orthographic
silhouette of a smooth convex object is the restriction of the 3-D Support Transform of
the object surface to the great-circle slice parallel to the projection plunc.

This theorem indicales a silhouette construction method identical to the last

method presented in Chapter 4.

6.3.2. Silhouette-Slice Theorem for the Vector Support Transform

When the imaging transformation for rotated coordinates in (6.13) is applied to
the rotated coordinates of silhouelte generator points expressed in terms of the VST in
(6.6). the following expression is obtained for the silhouette coordinates in rotated
axes.

X R n

= : (6.18)
SR h cosag; + Vv sinogg

where the components (n ,h ,v') must be evaluated for é=€¢; . N=Ng; . so that the
right hand side implicitly depends on { through ;. N and ag; . This expression
can be compared with the expression of coordinates in rotated axes in terms of the
VST, namely

where the indices in the components n ., t, indicate that these correspond to the

silhouette in the image plane.
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This comparison implies that the relation between the 3-D VST of the object and the
2-D VST of the silhouette is given by

ny(P) = n(&ss(P)nss (P)
4 n(lb) = h (§SG (\b)anG (lll))COSO.SG (lll) + v (§SG (lb),ns(; (lb))sinasc (UJ)

(6.19)

The above equation for the projection of the \'ST components has the same geometrical
interpretation as the projection of rotated coordinates illustrated in Fig.6.5. The rela-

tion between the 3-D VST and the 2-D VST is formalized in the following theorem:

Sithouette-Slice Theorem 2: The 2-D Vector Support Transform of an ortho-
graphic sithouctte of a smooth convex object is obtained by considering the restriction of
the 3-D Vector Support Transform of the object surface to the grea-circle slice parallel
to the projection plunc. Tie normal component of the 2-D VST is identical to its 3-D
counterpart on the stice, and the tangential component of the 2-D VST is obtained by

projecting the tungential part of the 3-D VST as a 2-vector onto the projection plune.

6.3.3. Silhouctte-Slice Theorem for the Curvature Transform

When the imaging transformation (6.13) is applied 10 the differentials of coordi-
nates of silhouette generator points in rotated coordinates in terms of the CT represen-
tation (6.b), then combined with the expression for the differentials of the angular
variables on the shce in (6.5). the following differentials are obtained for the

silhouette coordinates in rotated axes

dx ,p 1 0 0 00 ri11 T COSas;
= o
dz .p O cosay; Sinogg o ? Fia 7 sinog dy (6.20)

Combining the first two matrices on the right-hand side reveals that dx ,; = 0 and

that

A TERAN . COSQg(;
dz ,p = | COsog; sinogg

dy
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Comparison of this equation with the expression of the 2-D differential of silhouette
coordinates in terms of the 2-D CT, namely dz p = p(Y)d P, reveals that the CT
function p() of the silhouette is related to the 3-D CT function by

1156 T 128G COSG ¢

— i 21
p(Y) = | cosag; sinagg Foiaso T aass sinog (6.21)

where the dependence of the right-hand side on yr is implicit through ag; and
TiisG = Ti; (€<c Nsg ). The right-hand side of (6.21) is the projection of R along the
direction given by COSag; . Sinog; . As the tensor of curvature is dehned in the
tangent plane, (6.21) exactly corresponds 10 a projection of this tensor onto the trace
of the image plane in the tangent plane. This relation between silhouette curve CT and

object surtace C'T is formalized as follows:

Silhouette-Slice Theorem 3: The 2-D Curvature Transform of an orthographic
silhouctte of a smooth convex object 1y obtuined by considerag only the restriction of the
3-D Curvature Trunsform of the object surfuce to the grear-circle slice parallel 1o the
projection plane, and projecting the tensor-valued object function on the slice onto the

projection plunc.

In addition to relating the property functions for the CT. equation (6.21) indi-
cates a remarkable result relating the radius of curvature of the silhouette 10 the
radius of curvature tensor at the corresponding point of the object surface.
Remembering that og; is the angle between the local v, -axis and the plane of the
slice, the above equation indicates that the radius of curvature of the silhouette is the
projection of the tensor of radius of curvature on the plane of the slice. This result is
the dual of a well known theorcm due to Euler in the geometry of surfaces. Both

Euler’'s theorem and its dual are discussed in more detail in Appendix 3.

6.4. Example: Silhouctte of a Sphere

The Silhouette-Slice theorems are illustrated in this section by the simple example
of a sphere of radius R centered at P(x 4,V (.2 o). as 1llustrated in Fig.6.6. The three
transforms of this sphere were evaluated in section 5.2.6. Although this particular
example could be solved by a number of alternative methods, the approach used here !

provides insight into the mechanisin of analytic silhouette evaluation with the
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Fig.6.6. Projection of a Sphere

T
. o

Silhouette-Slice theorems. More complex illustrations of the Silhouette-Slice theorems

are provided in Chapter &.

The 3-D ST of the sphere is given by

‘.- ‘ll "

p(&m) = xcosécosn + vgsinécosn + z,sinm + R (6.22)
F For a viewing direction (¢h,0). the 2-D ST of the silhouette is obtained from the above
{. expression with equation (6.16), as
- P -0 = xcosé;cosng; + vosing; cosneg + Zosinng; + R (6.23)
f where €g; Mg implicitly depend on (¢,0.5) by equation (6.2). Replacing & ¢; , Ny
by these expressions, performing trigonometric manipulations and rearranging terms
L. produces
. Pr = (—xqsind + v,cosd) cosy
X : : : , (6.24)
N + (—x, sinficoseh — y o sinfising + 2, cosd Isiny + R
ﬁ The coeficients of cosys and sinys in the above expression can be recognized as the coor-
dinates Y o,. = g Of the projection 1n the image plane of P, the center of the sphere.
Iy
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Indeed. these coordinates are related to the 3-D coordinates (x ¢,V q,2 o) by

cosppcosd  singeosh  sinh Xg

X om 010 '
- = 00 1 —sing cosg 0 Yo (6.25)
= O . . .
—cos¢sin® —singsin® cosf| | ;|
The 2-D ST of the silhouette is hence given by
7 () = x_ LcosP + = ppSinfs + R (6.26)

This expression is identical 1o the 2-D ST of a circle of radius R centered af
(X e o )-
The 3-D VST of the sphere 1s given by
x o cosécosm + y,sinécosn + zosinm + R
sén) = —x o siné + v cosé (6.27)
—x o cosésinm — v, sinésinn + = o cosn

The 2-D VST of the silhouette is obtlained from the above expression by applying
equation (6.19). The resulting normal component of the VST is. by definition, identi-

cal to the 2-D ST derived above. The tangential component is given by
t () = cosagg h (€56 nsg ) + sinagg v (€56 Ms6 ) (6.28)

The angles ,m.a 1n the above expression are replaced in terms of ¢,0,y using (6.1) and

(6.2). After trigonometric manipulations. the result is found to be
t (P) = —x . sing + =, COSY (6.29)

where X . = are as defined above. The above result is identical to the tangential

component of the V'ST of a circle centered at (X (-~ o ).

The 3-D CT of the sphere was obtained in section 5.2.0. as

R O
0 R

R= (6.30)

The 2-D CT of the silhouette is obtained {rom the 3-D CT of the object with equation
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N 4
& (W) i R 0| | %00 (6.31) :
p(Y) = | cosag; Sinagg 0 R sinags |~ R . :
. &
‘ which is obviously the 2-D CT of a circle of radius R. Note that the ST is indepen- g
iy dent of translations so that the position of the sithouette cannot be predicted by the by
.S “d
: construction with the CT. The independence of the CT on translations is an advantage
in some applications, a disadvantage in others. Relative merits of the various
‘ transforms and Silhouette-Slice theorems are discussed in Chapter 8 in the context of .
b)
n - i i y ) b Y
N applications presented there. -
6.5. Discussion
o
X In this chapter. theorems have been proposed to relate representations of ::'
- silhouette curves in terms of functions on their Gaussian circles to the corresponding ::
. representations of object surfaces in terms of functions on the Gaussian sphere. Two 2
. additional aspects of the Silhouette-Slice theory will be discussed in this section. e
- .
.‘A < namely its relation with the Projection-Slice theorem in computerized tomography. -
and an interpretation of the 3-D transforms as compact representations of the collec-
H tion of all silhouettes of an object.

6.5.1. Comparison: Silhouette-Slice Theorems and Projection-Slice Theorem 2

LA R
.
~ 5

The formal relations among an opaque convex object, its silhouettes, and their hY

& ]

representations on Gaussian images are sketched in Fig.6.7. The concept of this 3

r
diagram bears a strong similarity with that relating an absorbing object, its line- b
integral projections and their Fourier Transforms, sketched in Fig.6.8. This last set of .

"

relations is important in the field of computerized tomography, and is referred 1o as

the Projection-Slice Theorem to stress the duality between projection in object space

A )

and slicing in transform space. The similarity between this result and the new rela-

593

tions presented in this thesis has suggested the name of Silhouette-Slice Theorems for

the new relations, to stress the duality between silhouette consiruction in the object

| domain and slicing in the model domain. ':-
. In spite of the formal similarity between the Projection-Slice theory and the 'T
i "

Silhouette-Slice theory, there are substantial differences between the two formalisms.

First, the Projection-Slice theorem applies 1o absorbing objects which can be defined by

A
Ui

N
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A Fig.6.7. Block Diagram for the Silhouette-Slice Concept
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3-D _— 3-D Fourier
KRN Attenuating Transform
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o

o

o 2-D ——= | 2-D Fourier
= Line-integral Transform
' Projection | «—— — | of Projection
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" I-

E’( Fig.6.8. Block Diagram for the Projection-Slice Theorem

a real-valued function defined in 3-space, whereas the Silhouette-Slice theorems apply
1o opaque objects which can be described by functions of two variables. or by func-
tions with binary values defined in 3-space. Second. the Fourier transform used in the
Projection-Slice theorem is an integral transform, where each value of the transform
N depends on all the values of the function specif ying the object. On the other hand, the
T transforms of opaque objects defined in Chapter 5 of this thesis are point transforma-

:"5 tions where each value of the transform depends only on the value of a function

)

defining the object at one point.
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- It is possible that a theory of silhouettes comparable 1o the one presented in this

thesis could be obtained by modeling an opaque object as an object with a finite uni-

form absorption coeflicient, to which the Projection-Slice theory applies, then consider-~
ing the limit of the line-integral projection when the absorption coefficient becomes
infinite. This approach to silhouctte analysis would provide a nice bridge between
theories for absorbing objects and for opagque objects, but we have not been able to find

: an appropriate formulation for the limiting argument.

6.5.2. 3-D Transforms as Compact Representations of Silhouettes

The relation between slices of 3-D transforms of objects on the Gaussian sphere
and 2-D transforms of silhouettes leads 10 the interpretation of the 3-D transforms as
indirect representations of the set of all silhouettes of a convex object. Indeed, for any
given orientation of the viewing direction, simple representations of the silhouette,
namely the ST. the VST and the CT, are obtained by slicing the corresponding 3-D
representation of the object. 1t is worthwhile to emphasize that this type of construc-
tion is possible only for selected representations of the silhouettes. It is tempting to
investigate the existence of other 3-D representations of objects, for which a slice
would be related to the silhouette by expressions simpler than the inverses of the ST,
:. VST and CT. For example, one could try to construct a "dual” object, such that a

silhouette of the original object is identical to a slice of the dual object. A simple

counter-example suggests that this construction fails in most cases.

Consider a cube and the silhouettes of this cube obtained for a set uf viewing
directions covering a 180° arc around the cube; this set of directions and one particu-
lar silhouette are represented in Fig.6.9 a). If a "dual” object of the cube exists, it can

be constructed by superimposing the set of silhouettes corresponding 1o the viewing
directions in Fig.6.9 around a center, while keeping their respective orientations. The
resulting object is shown in Fig.6.9b), where the contribution of the particular
silhouette illustrated in Fig.6.9a) is drawn in bold. It is easy to see that this object
does not have the desired property by considering a viewing direction outside the set
used to synthesize this candidate dual object. One such viewing direction is shown in
Fig.6.9a) and the corresponding slice in Fig.6.9b). This slice is quite different from the

actual silhouette, which is a perfect square. As each silhouette of a 3-D object is two-
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' :;;:'h Fig.6.9. Counter-Example of a Direct Representation of all Silhouettes.
-.’» a) Object, a particular silhouette and the set of viewing directions.
b) Dual object constructed from a set of silhouettes, and a test slice.
;&}j
Ny~ dimensional and as the set of viewing directions is two-dimensional also, a "dual”
,,., object whose slices are the silhoueties of the original object is necessarily four-
A
W dimensional, unless special relations among individual silhouettes are exploited.
'- :: The three transforms presented in Chapter 5 are compact representations of the
set of all silhouettes of the object, as they are only three-dimensional as is the object
LY
et . . ‘ : .
Ny itself. In order to obtain this compactness of representations, redundancies among
e
:: individual silhouettes must be detected and exploited. The existence of redundancies
i between the set of all silhouettes of a single object are now discussed, together with
- their impact on the representations of silhouettes and 3-D objects.
.{I‘.
j :’ Redundancies among silhouettes of an object can be expected in the general case
2 X :
. only when relating the contribution of the same surface element in different
. silhouettes. Consider the set S, of all silhouettes for which the point Py on the object
o surface is on the silhouette generator. This set of silhouettes corresponds to all the
o
W
e
"
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viewing directions perpendicular to the normal Ty at P see Fig.6.10. Let Py, be the

-

projection of P on each silhouette S;. We have identified three properties of the

silhouette curves around the points Py,; which have a high degree of redundancy

among the different silhouettes S;. The first two properties are the projections onto

. the normal and tangent at P, of the vector from the origin O ,; to Py,;. The third x

property is the radius of curvature, p, . of the sithouette curve at Pg,,; . Itis straight- e

forward to show that the normal components of the vector O, P, are identical for ]

all silhouettes and that the tangential components of thesc vectors are the result of the :j:'

) vector projection of a single 2-vector in the tangent plane. Finally. the relation ;E:
between the curvatures of the S;'s at Py, is given by the dual of Euler’'s theorem

4 discussed in Appendix 3. This theorem shows that the radii p; depend on the orienta-

tion of the viewing direction as a function specified by only three independent parame- h,

ters. namely the components of the 2x2 tensor of curvature of the surface at P, '

The above argument clarifies the redundancy between silhouettes corresponding \

to different viewing directions. This redundancy is now related to property circles \

and spheres by considering the image Po; of P, on the Gaussian sphere, the property >

sphere value at Py . and the values of the various silhouette property circles at Pos - "]

- It is easy to see that the slices corresponding to the set S; are all the great circles C_'

X :}

Fig.6.10. Set of Viewing Directions for which P is on the Sithouette Generator.
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passing through P,; drawn on Fig.6.11. The relations between property circles
defined on these slices at the point Po; correspond to the relations between silhouette
properties at P, . For the transforms defined in Chapter 5. the ST property func-
tions have the same value on each slice at Po;, the VST tangential functions are pro-

jections of a single 2-vector, and the CT functions are projections of a 2x2 tensor.

We have shown in this section that the Silhouette-Slice theorems provide an
interpretation of the 3-D transforms as compact representations of the set of all
silhouettes of a convex object. In addition, we have shown which type of constraints
must be satished by property circles for constructing compact 3-D representations of
silhouettes. I is conjectured that, aside from higher order properties corresponding 1o
terms of order 3 and higher of Taylor expansions of curves and surfaces, there are no
property spheres and circles representing metric information, other than the ST, VST

and CT, for which the Silhouette-Slice theory applies.

Fig.6. 11. Shices of the Gausian Sphere corresponding to Silhouettes including P,
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6.6. Summary

In this chapter. theorems have been proposed to relate representations of
silhouette curves in terms of functions on their Gaussian circles to the corresponding
representations of object surfaces in terms of functions on the Gaussian sphere. It was
first shown that the silhouette representations are directly related 1o a great-circle
slice of the object representations. In the second step, the silhouette property func-
tions on the Gaussian circle were related to the object property functions on the slice
of the Gaussian sphere. 1l relations are an identity for the ST function and for the
normal component of the VST function, a vector projection for the tangential part of
the V'ST function and a tensor projection for the CT function. It is interesting to note
the correspondence between the projection operations applied to great circle slices,
which are projections of scalars, vectors and tensors, and the observation that the ST,

VST and CT depend on derivatives of p () up to orders 0, 1 and 2 respectively.

The silhouette theory developed in this chapter is applicable 1o smooth strictly
convex objects only. In the following chapter, these results will be extended to objects
with corners. edges and planar faces, and to their silhouettes. In Chapter 8, a number
of examples of silhouetle construction with the three theorems are presented. one of
these examples shows that the results are sometimes valid even for non-convex

objects. Other potential applications of the Silhouette-Slice theorems are also dis-

cussed in Chapter 8.
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Chapter 7
Extensions to Surfaces with Edges and Corners
and their Silhouettes

In Chapters 5 and 6. a theory relating the shapes of smooth strictly convex object
surfaces and the shapes of their silhouettes was developed. In this chapter, extensions
of this theory to more genera! tvpes of objects will be investigated; specifically, object
surfaces with abrupt changes of curvature. edges, corners and embedded straight seg-
ments will be considered. Using limiting arguments, it will be shown that most of the
results developed so far for smooth surfaces can be extended to these types of sur-
faces. In the first section of this chapter, the basic method for obtaining the extensions
is developed. In the subsequent sections, the extensions themselves are analyzed suc-
cessively for the circular transforms of 2-D curves, for the spherical transforms of 3-
D surfaces. and finally for the Silhouette-Slice theorems relating the transforms of the

object to the transforms of its silhouettes

7.1. Extensions of Theories developed for Smooth Surfaces

Extensions of the theories developed so far, to include abrupt changes of curva-
ture are trivial. Indeed. continuity of curvatures, which is identical to continuity of
second derivatives, was exploited only in the derivation of consistency constraints for
the 3-D CT in section 5.2.3.1. Except for these conclusions on consistency, all the
theories developed in Chapters 5 and 6 are valid for surfaces with curvature discon-
tinuities and their silhouettes. The other extensions of silhouette analysis will be
developed with the following argument. Each convex surface £y .whether or not
smooth and strictly convex, can be considered as the limit of a sequence {Zg;} of
smooth strictly convex surfaces. In the presence of edges and corners in Ly, the
sequence {Lg; } could be constructed as dilations [56] of the object with balls with
radu 1/i. For each surface g, . the 3-D spherical transform is well defined and can
be evaluated by the methods developed in Chapter 5. For a given viewing direction,
the Silhouette-Slice theorems apply 1o these spherical transforms and determine the

circular transforms of the silhouettes corresponding to each L. Finally, these

transforms can be inverted to determine the silhouettes Sg; of all surfaces £g;. If the
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::-.it initial object surface L. is smooth and strictly convex, the sequence of 3-D
% o

o transforms of the Ig; converge to the 3-D transform of Zyg. the 2-D transforms
obtained with the Silhouette-Slice theorem converge to the 2-D transform of the
-

N silhouette Sy¢ of Zx¢.and the silhouettes S; themselves converge to Sy -

\.
- Convergence of the above sequences is now investigated in the case where I g
o does not satisly the smoothness and/or strict convexity constraints required for the
’5@; theories developed in Chapters 5 and 6. Although the surface Z ¢ is not smooth, its
"::: silhouette Sy¢ is well defined. and it is obvious that the sequence of silhouettes {S¢; }
-

of the surfaces Ig; converges to the silhouctte Sy¢. However, convergence of the
spherical transforms of the Lg; and of the circular transforms of the Sg; is not

guaranteed. Since the transforms are defined as functions on the Gaussian images of

curves and surfaces. convergence must be analyzed for both the Gaussian mapping
itsclf and for the property functions defined on the Gaussian circle/sphere. Conver-
i’.'_.-.: gence of the mapping is analyzed first. During our analysis of particular discontinui-
-.Q'_ ties, it will become apparent that the Gaussian mapping converges to singular map-
! pings in the neighborhood of each discontinuity. Two basic types of singularities will

be observed. In the first type. one point of the object is mapped onto many points of

( the Gaussian image. In the second type of singularity, many points of the object are
.':_:: mapped to the same point of the Gaussian image. For the first 1ype of singularity. each
;«- point of the Gaussian image of Ly corresponds to a single point of the surface. We
~.:_::_::' will show that in this case. the spherical transforms of X\ are well defined and equal
__ to the limits of the transforms of the Lg;. For the second type of singularity how-
fith: ever. only the CT converges in the space of continuous functions. The limits are func-
.;-j‘.:? tions of class C, for the VST and generalized functions for the CT.

NN

::E'_::t The extension of the class of surfaces of interest has implications also on the
;::.‘ inverse transforms of the circular and spherical functions. The case of the 2-D inverse
o< transforms is considered first. The result of the inverse circular transform is a set of
-’\ equations parameterized with the normal orientation angle W. For a curve with
::‘:\-::: straight segments, a set of equations parameterized with ¥ cannot explicitly define all
e the points of the curve, as is now illustrated by the example of a square with rounded
0 corners.
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This curve is sketched in Fig.7.1a) and defined by the parametric equations

x cosys + sign (cosy)
= < (7.1)
z siny + sign (siny) OSy¢<en
where
1 forx >0

sign(xy )= —1 otherwise

By definition, a curve is the set of points obtained as the image of the domain in
parameter space in the transformations specified by the parametric equations. Hence.
only the four arcs of circle displaved 1n Fig.7.1b) are defined by (7.1). In order to
define the curve in Fig.7.1a) by parametric equations such as (7.1), it is necessary to
consider this representation in a wider sense, namely that the image of the mapping
(7.1) from the parameter space to R? is a set of arcs such as those in Fig.7.1b), and that
thesc arcs must be implicitly joined by straight segments. Equivalent arguments show
that inverse transforms of surfaces for which the Gaussian mapping has singulartities
of the second type also represent surface patches with gaps corresponding to the
straight components. These inverse transforms must also be considered in a wide

sense, with straight segments implicitly bridging the gaps.

p - — —\

/ | / \

» / \ /
. \ -
a) b)
Fig.7.1. Curve with Straight Edges. a) Complete Curve.
b) Points explicitly defined by the parametric equations.
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‘
_.‘;EE In order to make precise conclusions about the limits of the sequences of surfaces,
'\" silhouettes and transforms defined above, several issues must be addressed. For exam-
ple. the 1ype of convergence of the sequences of 2-D curves and 3-D surfaces must be
::_‘; defined and it must be shown that the limits of the sequences depend only on the sur-
J face being approximated. not on the particular sequence {L¢; }. These and other issues
h_‘ are important to develop a mathematical theory, but we have decided instead to rely
"x on inuitive reasoning and to focus on qualitative interpretations of the results.
\ 7.2. Extensions of the Circular Transforms of 2-D Curves
\ In this section, the circular transforms are extended to curves with corners and
edges. In the neighborhood of a corner. a curve is considered as the limit of a sequence
of curves with a rounded corner. as the radius of the corner tends to zero. In the
neighborhood of a straight edge. the curve is considered as the limit of a sequence of
arcs. as the curvature of the arc tends 1o zero. Finally, the ¢xtensions are illustrated
::-_T by dehining a rectangle as the limit of a sequence of superconics of degree n for n —oo.
The rectangle has both corners and straight edges; its circular transforms obtained
. with the sequence of superconics are consistent with the results obtained for indivi-
_‘ dual corners and straight edges.
,.‘ 7.2.1. Circular Transforms for a Curve with Corners
“ The circular transforms are considered here for a corner joining two edges with
Z‘: normals 711, 715 and corresponding normal orientations ;. P,: see Fig.7.2. The corner
36
P2 n,
._: ﬁ?_\ \bz /_,\4
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- Fig.7.2. Curve with a Corner.
3 N . . ~ - .
a)Sequence of curves approximating the corner. b) Gaussian circles.
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is modeled as the limit of a sequence of arcs joining the two straight edges, as the
radius of the arc tends to zero. Each one of these arcs is mapped to the arc [y, Y] of
the Gaussian circle. The image of the corner on the Gaussian circle is hence the arc
[\bl, lj;z] joining the images of the sides of the corner. The singularity of the Gaussian
mapping is of the first type. Each point of the Gaussian circle represents one point of
the object and the sequence of transforms converges to continuous functions. In addi-
tion, the values of the three transforms are well defined everywhere in the limit. The
inverse transforms correctly reconstruct all the points of the original curve. Among
all the transforms, the presence of the corner is conspicuous only in the CT, where the
radius of curvature is zero over the image of the corner on the Gaussian circle. The
length of the null arc representing the corner in the CT is equal to the exterior angle

Y>»—y; of the silhouette corner.

7.2.2. Circular Transtforms for a Curve with Edges

In this section. the circular transforms are considered for a straight edge of length
{ and normal orientation Y. from A to B ; this edge is considered as the limit of a
sequence of arcs joining A and B . when the radius of curvature of the arcs increases
without bound: see Fig.7.3. The image of each arc AB on the Gaussian circle is a
small segment of the circle around Y, as for example, the bold arc in Fig.7.3b). In the
limit, all points of the edge AB map to the single point Y=y, of the Gaussian circle.
As the normal orientation is identical for all points on a straight edge, it is natural

that the limiting process defines the Gaussian image o the segment as the single point

n

Fig.7.3. Curve with a Straight Edge.
a) Sequence of curves approximating the straight edge. b) Gaussian images.
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e
o
'-\_ Y=y, corresponding to this orientation. For an edge then, the Gaussian mapping has a
L singularity of the second type. One consequence is that parametric equations defining
e a curve with edges in terms of normal orientation must be considered in the wide
x sense defined in section 7.1.
::j The effect of the singularity of the mapping is now investigated for each of the
. three circular transforms. In the simple case of a straight edge. it is possible 10 obtain
‘ the resulting transforms without applying the limiting argument. In the case of the
\.E ST. the normal distance 10 the tangent is. by definition, identical for all points on a
oA straight edge. As a consequence, this unique value unambiguously determines the
'“w' value of the ST for Yy=yy,. Examining the tangential component ¢ of the VST next, it
\ can be observed that ¢, by definition the distance between the contact point and the
"' projection of the origin on the tangent, varies continuously along the edge, with a total
7 variation equal to the length ( of the edge. The 7 -component of the VST has hence a
- step discontinwity of height { at Y. Finally, the effect of the edge on the CT can be
: predicted with equation (5.20), p(yY) = p () +1 ,(P). As p (i) is continuous and
R t () has a step discontinuity of height [, it can be predicted that ¢, and therefore p
D have an impulse of height (. This conjecture can be verified by noting that, if s
EZT:E: represents the ar¢ length along the curve,
o "
. s, —s(yy) = fp(d})a'lb (7.2)
2
h:‘:;;f s0 that
::;:: Vy+e
= z=1m1s(wﬁf%-uww1)l=1muf p(Y)d s (7.3)
€—0 €—0y"_¢

Therefore, s (Y) must have an impulse with height [ at us,.

p(P) = 1 S(yy—y,) (7.4)

7.2.3. Example: Transforms of a Rectangle

The extensions of the circular transforms obtained in the previous sections are
illustrated here by the example of a rectangle. considered as the limit of a sequence of (

SuUperconics. 1
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A superconic can be defined by the implicit equation

n n

|
2 =1 (7.5)

O |t

L
S+
la| |

This curve is smooth and strictly convex for 1 <n <oo, and tends for n —soco 10 a rec- ;

tangle with sides 2a , 2b centered at the origin: see Fig.7.4.

Curves Support Transforms

t-component of VST's Curvature Transforms -

Fig.7.4. Circular Transforms of a Rectangle and of a Sequence of Superconics.
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The circular transforms of the superconic are derived in Appendix 1; the property

functions are given by

1/k +1
2 = | lacosy1**1 + Ibsinyl**! (7.6)
k +1
n
§= =p*|. k+1 P k=14 pk+1y ot k=1 (7.7)
t sinys cosy(—a | cosys | +b T Isings1* ™)
k (ab k +1 | : |L’—1
o(y) = (ab) cosys sinys _
24 41 (7.8)
X +1

lacosy!**1 + |bsing %!

where £k = 1/(n—1). The limits of the above transforms are now considered for

n —oo, so that £ —0.

Lling)P(lll)"—' la cosy! + |bsingl (7.9)

ginz)z (¢) = —a siny sign (cosys) + b cosys sign (sinys) (7.10)

oo for y=0,7w/2, 7, 31/2

1 = (7.11
,}‘E}) () 0 otherwise )

It is clear from the above expressions that the ST is continuous. although it has slope
discontinuities at Yy = 0, /2, 7, 3w/2. The expression for ¢ reveals discontinuities
with alternating heights 26 and 2a for the same values of Y. Finally, the CT func-
tion contains impulses at these four values of Y. The strengths of the impulses in the

limit for £ =0 can be determined by integration. For example, the height 2 of the

impulse at Y = O is determined as

+€
h = 1im lim [ p(Y)d ¥

€0 k —0 =,

An 0N

+€ . k —1

" . . -+ I cosys sinys | d
5 = lim lim & (ab )* lf Y sing 4 ¥
N €—0 k —0 Ze k41

' . ' k +1
2 lacosy!* ! + 1bsinygl**!
N
%
X
y
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p. € ‘
3 = lim lim 26k [W* "'d gy = 2b 2
€—0 k —0 0
The height of the remaining impulses can be determined by symmetry, so that j:t
'-“
gimp(\ll) =2a | 8(Y—7’2) + 8(Yy—37/2) ] + 2b I () + &(y—) (7.12) R
) ;
n
The above result confirms that the value of the CT is zero for the segments of the ‘“»‘
¢
Gaussian circle corresponding 1o the corners of the rectangle. The impulses are located ]
at the images of the sides on the Gaussian circle and have strengths equal to the i
lengths of the edges. Parametric equations for the rectangle can be obtained by invert- -
ing any of the circular transforms determined above; the result is given by '
t = a sign (cosy) (7.13) o
v = b sign (siny) '
Note that these equations explicitly represent only the four corners of the rectangle. l::
The limits of the transforms for the rectangle are displayed together with transforms :ﬁ
of the superconics in the limiting sequence. in Fig.7.4. The various discontinuities of
-
the circular transforms of the rectangle are consistent with the relations ¢ = p, N
S
P=p *+ Dy S
P
Sumimarizing the extensions of the 2-D transforms, curves with corners are s
readily accomodated by the formalism developed for the ST, VST and CT in terms of 2
smooth curves. The direct and inverse transforms also apply to curves with straight \
edges, when generalized functions are considered for the CT. and when the parametric -
functions in terms of normal orientation are considered in an extended sense. i
7.3. Extensions of the Spherical Transforms of 3-D Surfaces \
Extensions of the spherical transforms are considered in this section successively ;~

for surfaces with curved edges, developable surfaces, surfaces with straight edges,

corners, and planar faces.

Each non-smooth surface is considered as the limit of a sequence of smooth sur-
faces, and its transforms are defined as the limit of the transforms of the surfaces in

the sequence. It can be shown by arguments similar to the ones exploited for curves,
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that the extension of the forward and inverse transforms is straightforward when the

Gaussian mapping has only singularities of the first type, which is the case for surfaces

with curved edges and corners. Furthermore, it turns out that the extensions are also
straightforward for the ST of surfaces with any of the discontinuities listed above.
Extension of the VST to all these surfaces requires only 1o allow step discontinuities
in the tangential components of the spherical function. The discussion of this section
will therefore emphasize the two remaining aspects, namely the definition of the Gaus-
sian mapping for non-smooth surfaces. and the singularities introduced in the CT ten-

sor when representing straight surface components.

7.3.1. Curved Edges

The first singularity considered here is a curved edge, such as the edge joining two
segments of sphere in the object illustrated in Fig.7.5a). This type of edge can be con-
sidered as the limiting case of a torus patch which smoothly joins the two faces of the
edgc, when the section radius of the torus tends 1o zero. A sample of the limiting
sequence is illustrated in Fig.7.5¢). In this example, the torus patch smoothly "fills"
the gap between the surfaces on each side of the edge. which have normals with lati-
tudes 7y, Ma. As the section radius goes 1o zero, the image of the smooth edge on the
Gaussian sphere is unchanged. In the limit then, each point on the curved edge is
mapped to an arc of points on the Gaussian sphere, namely the great circle arc joining
the limits of the normals on both sides of the edge. For example, the point P, at long-
itude €, on the curved edge in Fig.7.5a) is mapped to the arc between I;(£,,m;) and
1,(€,,m,) on the Gaussian sphere, sec Fig.7.5b). The Gaussian mapping has a singular-
ity of type 1. so that the three transforms and their inverses are well defined. The
presence of the curved edge is not clearly apparent in the ST and the VST of the sur-
face. but the limiting argument can be used to determine that the CT has special
values on the Gaussian image of the corner. In Appendix 1. the CT of a torus patch
with cross-section radius r and principal radius R is determined to be

R + rcosn 0
cosM (7.14)

ﬁL()r':u' = 0 r T’] < n < MNa

The CT value corresponding to the curved edge is obtained as the limit of the above
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c) d)

Fig.7.5. Surface with a Curved Edge
a) Surface with sharp edge. b) Gaussian image of a point on the edge.
¢) Surface with smooth edge. d) Gaussian image of smooth edge.

expression as r —0. namely

R /cosn O

R= o o

n <M (7.15)

In our example, the edge is oriented along the local axis 1;. More generally, the CT
tensor on a curved edge is singular. i.e. its determinant is zero. The principal values in

our example are zero and R /cosn, the second of which is related to but not equal to
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ML

..:,’ the radius of curvature of the edge. In addition to being curved, a general edge may
2]

e also be twisted. However, torsion of a curve is related 10 third order derivatives of
s the equations of the curve (47, 52]. Therefore, the expression of the CT for a twisted
I
'{\ edge is similar 10 that for a planar curved edge.

-‘ "

7.3.2. Developable Surfaces

\-: The case of a developable surface is considered in this section. and illustrated by
W
" the example of a section of cylinder with radius » and length [ : see Fig.7.6a). This
o section of cylinder will be considered as the limit of sections of tor: with constant sc¢c-
} tion radius 7, increasing principal radius R and constant length [ = R(£,—§,) along
{::: the principal axis. One of these torus sections is illustrated in Fig.7.6c). The image of
‘.-"

:".‘- the section of torus on the Gaussian sphere is the area between the :wo meridians with

o

P longitudes &,. £,. shown on Fig.7.6d). As the radius R increases ‘o oo. the longitude
5 A interval £,—¢&, =1[/R decreases 10 zero. In the limit. all points on each generatrix of
P

-:_‘; the cylinder are mapped onto a single point of the Gaussian sphere, and the cylinder

f. surface is mapped to a single nieridian §=¢§q. sketched in Fig.7.0b). The Gaussian

mapping has a singularity of the second type .
~.:‘

‘:.:: The CT values corresponding 1o the torus patch are obtained by the limiting pro-
{: cess
:,,x

. R, = him R

oo cvl R —co, R (£p—t)=1 torus

-

- R +rcosn
cosm
o .
= lim [u(¢=€)) —u(E—=¢,)]

R —oo, R (£y=£)=1 0 r 6 §¢:

.:: where

f ‘_:3' (x) 1 x20

P, < w s =
o * 0 ¢ <0
e, '

™ o
- L 8§~ &)

‘.: cosm (7.16)
:_\' ﬁ =
"y €y 0 r
.&‘
>
R
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o Yy

a) b)

3

<

&

c) d)

Fig.7.6. Developable Surfaces.
a) Section of a Cylinder. b) Gaussian Image of Cylinder.
c¢) Section of a Torus. d) Gaussian Image of Torus.

7.3.3. Straight Edges

A straight edge £ with length { joining two faces with normals T;, I, is now
considered, and defined as the limit of a cylinder patch joining the two faces when the
radius of the cylinder goes to zero. The edge is depicted in Fig.7.7a), and a rounded
surface in the limiting sequence in Fig.7.7c). The image on the Gaussian sphere of the

cylinders in the limiting sequence is the great circle arc I;, T, sketched in Fig.7.7d).
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b)

514

to

d)

o Fig.7.7. Surface with a Straight Edge.
LA a) Sharp straight edge. b) Gaussian image of edge.
¢) Smooth straight edge. d) Gaussian image of smooth edge.

o8 and is defined in the limit as the image of the edge E': see Fig.7.7b). The singularity of
the Gaussian mapping for this edge is complex. as each point and all points on the edge

are mapped to the arc i) TN,.

The behavior of the CT corresponding to this edge is now investigated. The CT of
the edge is determined as the limit of the CT's of cylinders in (7.16), as r —0. As a

) consequence, impulses with strength [ /cosm are introduced in the tensor component
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parallel 10 the edge, at all points of the Gaussian image of the edge. For example, for a
horizontal edge with longitude &, joining faces with normal latitudes M1, M3, the con-
tribution of the edge to the CT tensor is the impulse ridge

R o ol (¥(nm—m)—uln—,)) (7.17)

e cosm

Note that the CT value at the points of the Gaussian sphere corresponding to the

straight edge has one zero eigenvaiue while the other eigenvalue has an impulse.

7.3.4. Corners

The Gaussian mapping and the transform values are now considered for surface
corners. A corner is defined as the limit of a rounded corner when the size of the
rounding becomes arbitrarily small. A polyhedral corner P, is considered first, at the
intersection of three faces with normal orientations W;. N, N3, as illustrated in
Fig.7.8a). The image on the Gaussian sphere of a rounded corner approximating the
corner at P covers the arez between the three great circle arcs W jn,, NM,N3, N3N,
illustrated in Fig.7.8b). The limiting process defines the Gaussian image of the sharp
corner 10 be the same area. The Gaussian mapping has a singularity of the first type, so

that the spherical functions and their transforms are well defined.

—
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a) b)

Fig.7.8. Surface Corner.
a) Polyhedral Corner. b) Gaussian Image of the Corner.
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Among the three transform functions, only the CT has a special value at a corner,

namely the null tensor

00
= 7.18
ﬁcorner 00 ( )

Polyhedral corners with three or more faces are mapped to spherical polygons on the
Gaussian sphere. In general, the image of convex corners is a convex area on the Gaus-
sian sphere. An example of a corner surrounded by a smooth curved surface is given
by the tip of an object similar in shape to a football; the image of the corner on the
Gaussian sphere is an area limited by a small circle. The surface and the Gaussian

image of the corner are displayed in Fig.7.9.

7.3.5. Planar Faces

The discontinuity corresponding to a planar face with normal orientation T, is
now addressed. The image of this face in the Gaussian mapping is first considered. All
points of the face have the same normal orientation T, and are therefore mapped to
the corresponding point of the Gaussian sphere: see Fig.7.10. The Gaussian mapping
has a singularity of the second type on a neighborhood containing the face. The
representation in terms of normal orientations is hence defined only in the extended

sense, as are the inverse spherical transforms.

a) b)

Fig.7.9. Surface Corner.
a) Corner on a single curved surface. b) Gaussian 1mage of the corner.
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/ Fig.7.10. Planar Face. a) Surface element. b) Gaussian Image. ':
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5
The values of the spherical transforms are now considered. First, the normal dis- -
B\ tance between the origin and the tangents is identical for all points on a planar face. ;:'.:
) The ST value 1s hence well defined for the point corresponding to Ny on the Gaussian -
. sphere. However, the tangential components of the VST are measured in the plane of Sl
the face and have therefore a different value at each point of the face. The tangential ~
R

N VST components are hence undefined at Iy and the VST function has step discontinui- Ny
ties at this point of the Gaussian sphere. Considering the behavior of the CT around

. the correspondence with the case of an edge for a planar curve suggests describing -

the planar face by a tensor impulse in the CT. This conjecture happens to be false -

: however, as it is not possible to explicitly define the shape of any face boundary by ;"
only three numbers, the three CT components. It is not possible in general to ade- '

quately describe a planar face locally by the CT function on the Gaussian sphere. _j

The results obtained in this section for the description of non-smooth convex 3-D o

A surfaces by the three spherical transforms are now summarized. At corners and edges M

of a surface. one point of the surface is mapped to many points on the Gaussian sphere.

) The values of the spherical transform functions are well defined, and special values :
are obtained only for the CT. where the tensor is null on a corner. and has a zero -

R

! eigenvalue on an edge. When a straight component is present in the surface. all points

of the segment are mapped to the same point on the Gaussian sphere. This 18 the case G
for developable surfaces, straight edges and planar faces. The ST is well defined at the :

Y

L
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corresponding points of the sphere, but tangential components of the VST have step
discontinuities. In the case of the CT, impulses must be introduced in one eigenvalue
of the CT tensor at points corresponding to a straight edge or a developable surface.
The other ecigenvalue is finite in the case of a developable surface and null for a
straight edge. Finally. the shape of a planar face cannot be modeled adequately by the
CT.

7.4. Silhouette-Slice Theorems

In this section. extensions of the three Silhouette-Slice theorems presented in
Chapter 5 for smooth surfaces are discussed. The appropriate extensions are obtained
in most cases by the limiting process described in section 7.1. Specifically, the
extended theorems describe the relations between the limit of the spherical transforms
of the Zg; and the limit of the circular transforms of the Sg;. When the spherical
transform of Z . is a function in the strict sense, the limiting process defines the cir-
cular transform of the silhouette as the appropriate projection of the great circle slice
of the corresponding spherical transform, exactly as in the case of smooth objects.
This argument shows that the Silhouette-Slice theorems for the ST and VST can be
extended without modifications to cover surfaces with corners, edges and faces. and
also developable surfaces. By the same argument, the Silhouette-Slice theorem for the

CT can be extended to surfaces with corners and curved edges.

The extension of the Silhouette-Slice theorem for the CT to surfaces with straight
edges and to developable surfaces cannot be obtained only by the formal argument
used for the other cases. since the corresponding sequences of spherical and circular
transforms do not converge in the space of strict-sense functions. This remaining issue
concerning the extensions is investigated in a first subsection. The second subsection

considers some corollaries of the extended Silhouette-Slice theorems.

7.4.1. Silhouette-Slice Theorem for CT's with Impulses

In the two cases to be analyzed here, namely straight edges and developable sur-
faces. the 3-D CT was determined in section 7.3. to contain ridges of impulses. The
main issue is then to determine how a ridge of impulses intersecting the silhouette slice

contributes to the CT on the slice. To simplify the analysis. the issue of slicing a ridge
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of impulses is first considered for a scalar function in the Euclidean plane Oxz. Con-
sider a function fu (x,2)on RZ. and a slice of this function along a line through the
origin, with an angle a with the O: axis; see Fig.7.11. The slice points can be

represented by the parametric equations

X =1 sinx
(7.19)
>z =1 Ccosx

where ¢ 1s a metric parameter along the slice axis. When f . is a strict-sense func-
tion. the values of the function along the slice, f,(z ). are obtained by introducing

(7.19)into /. (x,2 ). giving
f.(t)= f..(t sino,t cosa ) (7.20)

A generalized function is now considered for f ... namely a ridge of impulses of unit

height along the x axis.

n 0<:<l1/n

Y () = 1 7.21
fan(x 2 &(=) nh_?;o O otherwise (7:21)

The correct value of the slice is obtained by applying the slicing operation to the

sequence of functions in the above definition.

-
-

Fig.7.11. Geometry of the Slice in the Oxz plane.
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"B FE
4 .‘Elh

2

> n 0<tcosa<l/n

05 f.¢) = lim
h : n—o | O otherwise

) n 0%t <1/n cosa (7.22)
' = lim 0 otherws e
T 7 —o0 erwise
N 1
e f.@) = &t )

COSQx

"_‘._'
:‘j:- The same result is also obtained by formally introducing (7.19) directly into (7.21)
’oe

:‘.: and carefully considering the scaling of the impulse.
oy

- f.(t) = f,..(t sina,t cosa ) = 8t cosa )

] .

RS = — 8([ )

Nl I cosa |

o2 |
ks Hence. the correct resultl of the slice of an impulse ridge can be formally obtained by
ol simply replacing the two variables of the function being sliced by their expressions in
i L .

J.:‘::'_ terms of the parameter on the slice, then applying the scaling expression for the 8(.)
f:"f distribution.

~ ot

. The analysis of the slicing of impulse ridges in the Euclidean plane suggests that

Rt
-r::“_ the result of slicing a ridge of impulses in the 3-D CT function on the Gaussian sphere
b
:.::f.' can be evaluated by applying the equation used for predicting the silhouette CT for a
[r s>
. smooth surface. equation (©.21)

J
s _ 71186 T 1256 Cosasg (7.23)
= | COosa sina . 23

Pl 5G 36 71256 T 2256 SING G

o

n

and considering the change of variables in the impulses present in the components of

R. This procedure leads to the correct silhouette CT function, as is illustrated below

Y

L

for the case of a straight edge with length {. The object axes are chosen so that Ov is

U ek Sl S
4

parallel to the edge. The contribution of the edge to the 3-D CT is given by (7.17) as |

A A
P‘ l’_’]“ /‘ “. .'“ l'.l‘

7
|

S(&) bo (7.24)
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For a viewing direction specified by the angles ¢, 0. the contribution of the edge 1o the
silhouette 2-D CT is given by introducing (7.24) in (7.23).

p(y) = —Z— 8(& 56 (W) cos?agg

oS T).\‘G

The appropriate scaling of the delta function is accounted for by writing

ply) = —° L 84—y costag
COST’SG }ngG i
| dy¢

where Y 1s determined by €¢; (Y,) = 0. The derivative in the above equation was

determined in (6.3) as d ¢ /d Y = cosag; /COSTg; - Therefore,
p(Y) = cosagy S(Y—ys,) (7.25)

Comparing this resuit with (7.4) shows that the predicted contribution of the 3-D edge
to the silhouette is a 2-D edge with length { cOso; - This result is consistent with the
well-known result of, the projection of an edge making an angle ag; with the projec-

tion plane.

The Sithouette-Slice theorem for the CT is now considered for surfaces with
planar faces. As the contribution of planar faces to an object shape cannot be modeled
bv the 3-D CT. the corresponding contributions to the silhouette shapes cannot be
predicted with the CT either. However, planar faces are mapped only to individual
points of the Gaussian sphere. Considering a surface with planar faces as the limit of a
sequence of smooth convex surfaces. the planar faces will prevent convergence of the
sequence of silhouette arcular transforms only when the great arcle slice passes
through some of the points corresponding to the faces. In all other cases. the CT's are
well defined on the shice and the Silhouette-Shice theorem applies without
modifications. The set of viewing directions for which the slice intersects the image of
a face has a measure zero for surfaces with a finite number of faces. As a consequence.
the Silhouette-Shice theorem for the CT apphlies to surfaces with planar faces, for

almost all viewing directions.
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7.4.2. Corollaries of the Extensions

Two particular consequences of the extended Silhouette-Slice theorems are
covered in this section. The first is the relation between the angle of a silhouette
corner and the shape of the corresponding corner of the object. The second is an
expression for the curvature of the silhouette generated by a flat surface with a curved

boundary.

7.4.2.1. Silhouette of a Corner

In section 7.1. and 7.2, it was shown thatl the presence of a corner on a surface
and on its silthouette is apparent mainly in their CT's. Specifically, the 3-D C T of the
object surface is the null tensor in the region of the Gaussian sphere corresponding to
the object corner. so that the 2-D CT of the silhouette has a zero value for the arc of
the slice circle inside the image of the corner. It is clear that whenever the slice
corresponding to the viewing direction traverses the image of the 3-D corner on the
Gaussian sphere. a corner will appear on the silhouette. The size of the null gap on the
2-D CT of the silhouette is given by the arc length of the slice inside the image of the
corner on the Gaussian sphere: see Fig.7.12. As the arc length of the image of the
corner on the Gaussian circle is equal to the exterior angle of the silhouette corner, the

above discussion provides a qualitative procedure for relating corner angles on the

- n
n; 3
e — ﬁ.?. — ‘ﬁ‘

o

a) b)

Fig.7.12. Silhouette of a cube corner. a) Corner.
b) Gaussian image, with a slice corresponding to
the silhouette with the largest exterior corner angle.
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silhouette with the geometry of the 3-D corner of the object. This procedure can be
used for example 10 determine the largest exterior angle of the silhouette corner that
can be generated by a given 3-D corner. This angle is given by the largest arc of great
circle in the image of the 3-D corner on the Gaussian sphere. This argument shows
that a cube corner can generate only right-angled or obtuse silhouette corners: see
Fig.7.12.

7.4.2.2. Curvature of the Sithouette of a Planar Object

In this section. the curvature of the silhouette of a planar object with a curved
boundary is related to the curvature of the object boundary itself. This result pro-
vides an expression for the radius of curvature oi the orthographic projection of a 3-D
curve, as a function of the radius of the curve and the orientation of the viewing

direction.

The problem is Grst analyzed in a system of axes where Oxy is in the plane of the
object and in which ¢=0. In the Oxv plane, the object has a 2-D CT py (€) where € 1s
chosen 1o characterize the normal angle in the Oxy plane. In the Gaussian mapping of
the object considered as three-dimensional. the two faces of the object are mapped to
the poles of the Gaussian sphere, and each point of the boundary to a half meridian
with a longitude € corresponding to the normal orientation of the curve in the Oxy

plane. The 3-D CT of the object can be obtained with equation (7.15)

po (§)/cosn O
0 0

(7.26)

The radius of curvature pg of the silhouette is obtained with the Silhouette-Slice

theorem for the CT, as

_ 2 Po (§SG )
Py = COS"Oxg; —— (7.27)
COSTNsG

It is useful in this case to specify the viewing direction in terms of angles with respect
1o the Frenet trihedron of the curve at each point. The angles €, 6 are chosen for this
purpose: see Fig.7.13. The angle 6 is the angle between the viewing direction and the
osculating plane of the curve, whereas € is the angle between the projection of the

viewing direction in the osculating plane and the principal normal to the curve.
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Q;: Fig.7.13. Planar Curve and
& Angles Specifying the Viewing Direction in the Frenet Trihedron.
M
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.
-l::'-_ Equation (7.27) can be expressed in terms of these angles with (6.1)(h) and (6.1)(i).
ST
e (1 — sin®£cos?f )2
pe = 4 P (€) (7.28)
3 sinf
\-.‘,\
“-f? The above equation expresses the radius of curvature of the orthographic projection of L
> W
O a 3-D curve. in terms of the radius of curvature of the 3-D curve and the orientation
B> 0
of the viewing direction in the Frenet trihedron of the curve. This result can also be
LW}
"J‘.' obtained by a classical method. as is done in Appendix §; it is also valid for non-planar
. xl
it curves, since torsion only affects third order derivatives. When {=0. the viewing
)
"y direction is in the normal plane of the curve and the relation simplifies 10
3 ps = po/sind.
N
K
P

A

Y -. A ~. \{-“‘-"-':\:i
1..3._ \.ﬁ'.'i AT T



E 7.5. Summary

In this chapter, the silhouette theories developed in Chapters 5 and 6 for smooth
surfaces have been extended to cover surfaces with discontinuities, edges and planar
faces. It is remarkable that theories supported by differential geometry of smooth sur-
faces provide correct results when extended to surfaces with sharp edges and corners.
In addition 10 the analvtic expressions for the silhouette shapes, a number of powerful
qualitative relations between silhouettes and 3-D shapes have been derived. These
qualitative relations prove to be useful when developing algorithms for object recogni-

tion from silhouettes. This is brieflv explained in Chapter 8.
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Chapter 8
Examples and Applications

-

This chapter presents a number of examples of silhouette construction with the

v
P

Silhouette-Slice theorems. In addition, applications of the new theories 10 the recon-

._'_1:'

struction of the shapes of 3-D objects from silhouette data are suggested, followed by

the principles of a system for recognizing polyhedral objects from their silhouettes. It

il
»

must be pointed outl that the main results of this thesis are theoretical. Applications

presented in this chapter prove that these theories are useful for solving practical

-3

problems, but they have not been developed in great detail.

-
.

P

\ PN

It is tempting to develop algorithms for solving each of the three basic silhouette

problems by sampling the spherical and circular object functions introduced in

[ 35

Chapter 5, and relating these discrete transforms to Silhouette-Slice theorems for

V'A.-!

discrete transforms. However, sampling questions introduce dificult obstacles in the

development of a discrete theory. First, sampling continuous functions defined on the

sphere is a complex problem which has not been adequately solved. In addition. great
circle slices corresponding to given viewing directions do not typically intersect the

sampling grid on the sphere at sample points. As a result, interpolations between the

—
P

sample values of the spherical transforms are necessary to generate samples of the

oL

silhouette transform 1n almost all cases. The choice of sample points on the sphere

was addressed in [44, 57] for the case of the Extended Gaussian Image. 1t was shown

=

t-l. that the largest number of regularly spaced sample points on the sphere is equal 1o the

. largest number of faces on a regular polyhedron, namely 20. For any larger number

E of samples, an irregular sampling must be considered. In addition to the choice of

V sample points, both the choice of sample values in terms of the continuous function
“ being represented and the interpolation of sample values to recover the corresponding 0
) continuous function must be considered. but these have not been studied in detail. At fa
, this point. the unsolved sampling issues make it difficult to apply the new theories X
directly to the development of numerical algorithms. However, the theories developed E
'- in this thesis provide valuable tools for qualitative reasoning which the examples of N
applications presented in this chapter attempt to illustrate. In addition to the relations X

& between objects and silhouettes. the CT representation for 3-D surfaces presented in
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Chapter 5 is a valuable contribution to the understanding of surface shapes, both for
geometry and for computer applications. Since this aspect of the theory is not directly

related to silhouette analysis, its discussion is relegated 1o Appendix 4.

8.1. Silhouette Construction

In this section, a number of examples are presented to illustrate silhouette con-
struction with the Silhouette-Slice theorems. These examples demonstrate that
numerically correct answers are obtained with the proposed formalism. They further
provide insight into the form of the three transforms and the result of the slicing
operations. In a number of cases, qualitative reasoning with the Silhouette-Slice

theorems is proposed to predict the gross aspect of the silhouette.

As mentioned in the introduction of this chapter, sampling of the spherical and
circular functions raises non-trivial issues. To generate the examples presented in this
chapter, sampling of the transforms on the Gaussian sphere has been circumvented by
using closed-form analytic expressions for the spherical functions. On the other hand.
the circular functions and the corresponding silhouettes must be sampled, at least for
display purposes. The sampling issues have been largely eliminated by using a large
number of samples for the circular transforms of the silhouettes. Our approach 10 the
sampling question is iractable when closed-form expressions are available for the
transforms of the surface shapes considered. It will be shown that accurate
silhoucttes <an be determined by this method for many surface shapes. The
Silhouette-Slice theorem can provide the shape of silhouettes for surfaces for which no
closed-form silhouette expressions are available, for example. for superquadrics. The
three spherical transforms for superquadrics are derived analytically in Appendix 1.
Although 1t relies on analytical formulas. our treatment of the sampling problem is
compatible with the computation of silhouettes for surface models designed with a
CAD system. These surfaces are defined as combinations of a number of surface
patches. where each patch is described by a relatively simple analytic equation. The
silhouette problem can be solved with the proposed method when spherical transforms

can be evaluated analytically for the primitive surface elements.

Although continuous spherical transform functions are used in the examples

presented in this section, silhouette shapes have also been obtained by considering
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. samples of the transform functions on the Gaussian sphere and by relating these to
samples of the silhouetle transforms on the appropriate slice. This discrete formula-
tion of the Sithouette-Slice theorems requires a large number of interpolations between
sample points on the sphere to determine samples of the silhouette circular transforms
on the great circle slice. In addition. sampling effects introduce degradations in the
shapes of the computed sithouettes. These degradations becomne negligible for dense

r, samplings. but the number of samples required to ensure a given accuracy cannot be

quantified because of the lack of a sampling theory for this problem. The sampling
questions are beyond the scope of the thesis, which concentrates on the theories for-

mulated in terms of continuous functions.

Silhouette construction will be illustrated for threc different types of objects,
namely a cylinder. superquadrics, and a torus. In the context of these examples, a
number of qualitative aspects of the theory are discussed. Qualitative aspects of the
circular transforin graphs such as signs, extrema and zero crossings are related to the
silhouctte shape. The effect of the choice of a reference frame on the transforms is dis-
cussed. A qualitative prediction of the shape of silhouettes of polyhedra with the
Silhouette-Slice theorem is presented. This result is then extrapolated to predict the
shape of silhouettes of smooth surfaces which are closely approximated by polyhedra.
- such as some superquadrics. Finally, silhouettes of a torus illustrate the application of

the results to a non-convex object and ratses issues related 10 the extension of the

results 10 these objects.

L. 8.1.1. Silhouettes of a Cylinder

The first example is that of a simple axisymmetric object, namely a cylinder of

v height 2H and radius r, sketched in Fig.8.1. The various transforms of the object are
. also axisymmetric, when the reference point is positioned on the object axis. For a
: reference point at the center of the cylinder, the 3-D VST of the cylinder is given by

7

(rcosn+ Hsinn) 0 ( Hcosn—rsinn) 0° £ n<90°

(8.1)

)
I

T
(r cosn—Hsinm) 0 (—Hcosn—rsinn)] -90° £ n £0O°

hv-\
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Fig.8.1. Cylinder with radius » =2, height 2H =5.

The CT of the Cylinder is given by

_ r /cosn 0
R = (8.2)
0 2HO(n) +r&(n—m/2) +r8(n+m/2)

Except for A and r > which are identically zero. profiles of the components of the
transforms are displayed in Fig.8.2. The profile of an axisymmetric function on the
Gaussian sphere is, by definition, a 1-D function representing the values of the
axisymmetric function for a fixed value of §é. The prohle is defined for
—90” < 1 £ 90", but the profiles were extended 1o the range of —180° £ n < 180°
for display purposes. In this form, the profiles correspond 1o a vertical section of the
Gaussian sphere. These extended profiles are represented by polar diagrams in Fig.8.2.
In these diagrams. the zero value is off set from the center to allow the representation

of negative values.

The cylinder does not satisfy smoothness and strict convexity constraints
required in the theories of Chapters 5 and 6. because of the presence of edges and
embedded straight components. As a result, the ST displays discontinuities in the first
derivative, the v-component of the VST displays step discontinuities, and the CT con-
tains impulses. These discontinuities are all related to the length of the corresponding
straight surface components, as discussed in Chapter 7. Specifically, the discontinui-

ties in the slopes of the ST, the step discontinuities in v and the lateral impulses in r 1,
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Profile of 3-D ST Profile of v-component of 3-D VST

Profile of r |j-component of 3-D VST Profile of r 5,-component of 3-D VST
Fig.8.2. Profiles of the Spherical Transforms of the Cylinder in Fig.8.1.

are equal to the height 2H of the cylinder.

Circular transform functions for silhouettes of this object are obtained by pro-
jecting the spherical function values on the appropriate great circle slice onto the plane
of the slice, according to the Silhouette-Slice theorems developed in Chapter 6.
S:lhouettes and the corresponding circular functions are displayed in Fig.8.3a)-b) for
two different orientations of the viewing direction. The circular silhouette functions
were computed at 200 equally spaced samples of the appropriate great circle slice;

points of the silhouette were generated by inverting the silhouette VST with equation
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Silhouette for 8 = 10° Support Transform

g

s,
PR .

A t-component of VST Curvature Transform

Tty Fig.8.3a). Silhouette of the Cylinder for 6 = 10°, and Corresponding Transforms.
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Silhouette for 6 = 50° Support Transform

N
Y
t-component of \V'ST Curvature Transform
Fig.8.3b). Silhouette of the Cylinder for 8 = 50°, and Corresponding Transforms.
| (5.9) applied to the sample values. The following characteristics can be observed on .

« v ¥

these silhouettes and their circular transforms. The ST is strictly positive every-
where, because of our choice of the origin inside the 3-D object. The angular points in

the graph of the ST correspond to the flat sections of the silhouette. The t-component

¢ Jo

of the VST has values with alternating signs, since it must integrate to O over the 27

-
T 1

interval. The zero crossings of ¢ correspond to points for which the normal goes

¥

' through the reference point. The 2-D CT's of both silhouettes contain two impulses
corresponding to the straight sections on the sides of the silhouette, which correspond

) themselves to the lateral surface of the cylinder. In addition, the 2-D CT of the
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silhouette contains two maxima corresponding to the top and bottom parts of the
cylinder. Note that the silhouette CT's contain impulses related to the lateral
impulses of r,, in Fig.8.2, but none related to the top and bottom impulses in r ,,.
This observation can be justified by considering the 3-D graph of r 5, on the Gaussian
Sphere in Fig.8.4. In the 3-D CT of the cylinder. the lateral surface generates an equa-
torial ridge of impulses. The impulses on the 2-D CT of the silhouette correspond to 1
the intersection of the great circle slice with the equator. as is shown in 1he figure for a
shice corresponding to §=30". As all slices cut the equator, the equatorial impulses
related 10 the lateral surface appear on all silhouettes. However, the impulses of the
3-D CT corresponding to the top and bottom parts of the cylinder are located onlv at
the poles of the Gaussian Sphere. Therefore. they affect only great circle slices through

the poles, which correspond 10 silhouettes with 6 = 0°.

The effect of translations of the reference point on the various surface spherical
transforms and the corresponding silhouette circular functions is now investigated.

The eflect of origin position on the VST is characterized by the expression

n cosécosn  sinfcosm sinm x (&) X0
h| = —siné cosé 0 v = | vo (8.3)
v —cosésinn —sinésinn cosm (&) Zo

where (x(.v(,,Z) are the coordinates of the reference point in fixed object-centered

coordinates. The ST 1s identical to the first component of the VST, and the CT is

Fig.8.4. Graph of the r ;, component of the 3-D CT of the cylinder
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" unaffected by the choice of origin. The effect of the choice of origin on the ST and on %

S

the V'ST components of the sifhouette is illustrated in Fig.8.5a)-d) for the silhouette of a

o,

. the cylinder with 6 = 20°, ¢=0°, and for four excentric positions of the reference g

4:‘

. point. It can be observed in these figures that significant changes of the ST and VST o

o result from the displacement of the origin. Specifically, negative values appear in n , .

‘d

. when the reference point is outside the object. the number and locations of zero- i

q

A crossings of 7 ; and extrema of n ... ¢ - are modified; of course, the numerical values of :§

- the transforms are considerahly affected. j
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Fig.8.5a). Normal and Tangential Components of the VST of a Cylinder Silhouette
with the Reference Point (0,0,—1).
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Fig.8.5b). Normal and Tangential Components of the VST of a Cylinder Silhouette
with the Reference Point at (0,0—4).
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Support Transform t-component of VST

Fig.8.5¢). Normal and Tangential Components of the VST of a Cylinder Silhouette
with the Reference Point at (0,1,0).
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Fig.8.5d). Normal and Tangential Components of the VST of a Cylinder Silhouette
by with the Reference Point at (0,3,0).
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8.1.2. Silhouettes of Superquadrics

In this section, silhouette construction is demonstrated for a subclass of super-
quadrics [58]. The subset of superquadrics considered here is defined by the implicit
equation
n

n n

I
ll =1 (8.4)

o) |r.

=) .
KRR
The parameters a . b, ¢ correspond to the intersections with the coordinate axes. They
hence control the size and elongation of the surface shape. The parameter n , however,
controls the smoothness of the surface. For 1<n <oo, surfaces defined by (8.4) are
smooth and strictly convex. Examples of superquadrics with a =4, b=3, ¢ =2 are
displayed in Fig.8.6 for n = 1, 1.2,4.5, co. Ellipsoids are a special case of superqua-
drics for n =2. In the limit for n —oo, the superquadric becomes a parallelepiped,

whereas the limit for n —1 corresponds 10 an octahedron.

It is possible to evaluate the three spherical transforms in closed form for the
surfaces specified by (8.4), and therefore 10 compute the shape of their silhouettes in
orthographic projections. The analytic computations of the spherical transforms
require relatively tedious algebra and are therefore relegated to Appendix 1. Examples
of silhouettes of the two smooth superquadrics in Fig.8.6 are shown in Fig.8.7a)-d).
As mentioned in Appendix 1, the CT of superquadrics contain discontinuities when
n > 2. These discontinuities are apparent in Fig.8.7d) for n =4.5. They correspond 10
the six slowly curving parts in the corresponding silhouette. Such discontinuities in
the CT of superquadrics with n > 2 present ar. additional obstacle to discrete represen-

tations of the CT.

An example of qualitative predication of the shape of silhouettes with the
Silhouette-Slice theorems is now presented. first for the polyhedra (n = 1, o), then
for the smooth superquadrics (n = 1.2, 4.5). The qualitative shape of silhouettes of
the octahedron and the parallelepiped can be readily estimated with the Silhouette-
Slice theorem for the CT. The CT of the two polyhedra have ridges of impulses on the
great circle arcs which are the images of the polyhedron edges on the Gaussian sphere.
In Fig.8.8. these arcs have been plotted on the Gaussian sphere for the two polyhedra.,

for the same values for the diameters as in Fig.8.6. Slices of the 3-D CT of the
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Lo

L
[

N n=4.5 n=oo

Fig.8.6. Superquadrics witha =4, b=3. ¢ =2.

A

Y R

5 2 ‘s e

el

-

-
i

»

. VS S ALY, P S PN RN AN T rAT AT "‘.) r 1R DS B A :‘f""
Ty, J-‘!.D r"‘%“,ﬁeﬁt‘ﬁ'hlht‘ B "' o .,'l' ,( ;. IA. 8 “ J~ p.' ‘ LY, l-. t : N ‘ Wy ‘F - et

o AT e 07 LUy
‘¢ .‘l :.l » u‘*’!‘:.!.l ":‘3‘:‘!" )

Chd o) MO $5




N A W T W T W T W AT T T W T TR IR I N Tl TR T O RTE T WY R OW Y O U T W W W YW YT W YT Wy

- - e v —y

-168-

|
|
///\ Q 4
Silhouette Support Transform
t-component of VST Curvature Transform
Fig.8.7a). Sithouette and corresponding Circular Transforms for the superquadric
withn = 1.2, for the viewing direction (¢,8) = (10°,10°)
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Silhouette Support Transform

t-component of VST Curvature Transform

:,* Fig.8.7c). Silhouette and corresponding Circular Transforms for the superquadric
e with n = 4.5, for the viewing direction (¢,0) = (10°,10°)
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Silhouette Support Transform

t-component of \'ST Curvature Transform

Fig.8.7d). Silhouette and corresponding Circular Transforms for the superquadric
with n = 4.5, for the viewing direction (¢,0) = (40°,20° )




-172 -

—
m

Parallelepiped, (¢,8) = (10°,10°) Parallelepiped. (¢,0) = (40°, 20°)
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Octahedron, (¢,8) = (10°, 10°) Octahedron, (¢,0) = (40°, 20°)
Fig.8.8. 3-D CT of the superquadrics with n =1 (octahedron) and n =oco ( parallelepiped) ;3
The CT's have ridges of impulses along the lines drawn on the Gaussian sphere. “"‘
Also shown are the great circle slices corresponding to two viewing directions. -
“
polyhedra are composed of impulses so that the silhouettes are polygons with a ﬁ
number of edges equal to the number of great circle arcs sliced by the silhouette great .
circle. Except for special coincidences, the number of silhouette edges is 6 for the '~_
parallelepiped and can be 4 or 6 for the octahedron. The similarity betwen superqua- o

drics with small values of n and the octahedron (n =1), and between superquadrics

with large values of n and the parallelepiped (n =o0) is preserved in the silhouettes.
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As a result, the silhouettes of the smooth superquadrics in Fig.8.6 can be predicted to

be polygons with bent edges and rounded corners, with a number of edges equal to the

numbers for the corresponding polyhedra. It can be observed in Fig.8.7a)-d) that the

silhouettes of both superquadrics contain the numbers of bent edges qualitatively

MR

predicted by the above argument. The presence of these bent edges in the silhouette is

also apparent as maxima in the CT, which are maxima of the radius of curvature.
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i’; 8.1.3. Silhouettes of Tori 1
L4S

The example of silhouette construction for the torus presented in this section

introduces issues arising from the application of the Silhouette-Slice theorems to non-

2. convex objects. [t is clear that each point of the Gaussian sphere corresponds to two i
f: points of the torus surface (see Fig.8.9) except for the poles of the sphere; each pole
B corresponds to an infinite number of object surface points. To determine its
, silhouettes, the torus surface is cut into two parts, which will be called the interior
, ‘?_" and exterior parts, see Fig.8.10. The set of points along the separation line between the
.";'t two parts has a zero measure and 1s not considered here. The Gaussian Mapping is
-
A
N hd |
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/
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oo Torus Gaussian sphere

Fig.8.9. Gaussian Mapping of the Torus.
Both points marked on the torus surface map on the same point of the unit sphere.
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Fi1g.8.10. Interior and Exterior parts of the torus surface.
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one-lo-one for each of t"¢ two parts. The exterior part consists of elliptic surface
points only, so that the Silhouette-Slice theory applies without restriction. The inte-
rior surface points are all hyperbolic however. As the ST and VST do not specifically
depend on surface curvatures. thesc representations and the related silhouette theory
apply without moditications for the interior part. In the case of the CT, the main
difierence is that the tensor R is no longer positive definite. The Spherical transforms

of the torus are given by

n *Rcosn+r
§=|A| = 0 (8.5)
v —( £ Rsinn)

( £R +rcosn)/cosm O
0 r

el
1

(8.6)

where 7 1s the radius of the section, R is the radius of the principal axis, and the posi-
tive and negative signs in the above equations have 1o be considered for the exterior
and interior parts respectively. These spherical transforms are axisymmetric. Polar
plots of the profiles of the non-zero components of these transforms are displayed in
Fig.8.11 for both the interior and exterior surfaces. Transforms for the silhovette can
be obtained by slicing the above 3-D object transforms. The silhouettes are then
obtained by inversc transformation of the silhouette functions. Two examples of
silhouettes are developed for a torus with R=3, r=1, for viewing directions
corresponding to §=340" and 6=25°. The two silhouette parts corresponding to the
interior and exterior parts of the object surface are generated separately, then superim-
posed in the final figure. For the case of 8=40", the silhouettes of both parts and their

transforms are displayed superimposed in Fig.8.12a). The corresponding diagrams are

presented for the case where §=20° in Fig.8.12b).
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DERGE

Profile of 3-D ST (exterior) Profile of t-component of 3-D VST (exterior) ~
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Fig.8.11. Spherical Transforms of the two parts of the torus
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t-component of VST
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Support Transform

Curvature 1ransform

Fig.8.12a). Silhouette of the Torus and Circalar Transforms.
Viewing Direction: 6=40°.
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Silhouette Support Transform

t-component of VST Curvature Transform

Fig.8.12b). Silhouette of the Torus and Circular Transforms.
Viewing Direction: 8=25°.

After the silhouettes are evaluated separately for the interior and exterior paris
of the torus, issues of registration may arise when combining the individual silhouette
parts. When the silhouettes are obtained with the ST or VST, both parts are referred
to the same point in the projection plane and registration is trivial. However,
silhouette parts generated with the CT are not related to an origin. In the case of the
torus, accurate superposition of the two parts was possible thanks to the symmerty of

the surface shape. In the case of a surface in the shape of a distorted torus. the interior

and exterior silhouettes could not be accurately registered.
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The silhouettles evaluated with the Silhouette-Slice theorems correspond to the
projection of all object surface points with a normal perpendicular to the viewing
direction. For a non-convex object, some of these points may be occluded by other
object parts, so that they do not effectively contribute to the silhouette. The set of
silhouette points of a non-convex object determined with the Silhouette-Slice theorems
must therefore be considered only as a set of candidate silhouette points. The
silhouette itself may be equal to this set, as in the example of Fig.8.12a, or may be a
subset of the candidate silhouette, as in the example of Fig.8.12b. Indeed, spurious
silhouette parts appear on this figure. They correspond to the projection of points of
the object surface for which the normal is perpendicular to the viewing direction, but
which are occluded by other parts of the object. When occluded silhouette parts are
removed from the interior silhouette, the result displayed in Fig.8.13 is obtained. Note
that in this figure, there are two segments of silhouettes in the interior of the object.
These must also be eliminated if the silhouette is considered as the set of outline points
in the image plane, but are included in the silhouette if it is considered as the set of
discontinuity points of a range map in the image plane. Note that, in the example of
Fig.8.12a generated for 6=40°, the correct silhouette is obtained directly. It can be
observed that, for 8=40°, the CT of the silhouette part corresponding to the interior
surface has a negative radius of curvature while the Gaussian curvature of the surface
is negative. In this circumstance, all silhouette points generated with the Silhouette-
Slice theorern are truc silhouette points. In the case of §=25°, the CT of the
silhouette contains alternating signs and zero crossings. The curve of candidate

silhouette points has cusps corresponding to the zero crossings. It has been shown by

///_\

— =

Fig.8.13. Silhouette of the torus for §=25°.
The occluded parts have been removed.
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v Koenderink[33] that when candidate silhouette points corresponding to a surface with
} \ : negative Gaussian curvature have a positive curvature, these points are necessarily
; ‘ self-occluded. This property allows us to eliminate the two lateral parts of the inte-
i;if}: rior silhouette in Fig.8.12b. Points on the two remaining longitudinal silhouette parts
-SE:::: cannot be tested for visibility by arguments on local surface shapes. On the other
L hand. the presence of self-occluded silhouette parts suggests the presence of additional
\ silhouette segments for which occlusion occurs due to remote surface elements.
Summarizing our discussion on non-convex objects, each point of the Gaussian
: 3 sphere may correspond 1o several points of a non-convex object. The surface can be
:-_‘ decomposed into parts so that for each point, the Gaussian mapping is 1:1. When
:E., applied to these parts, the Silhouette-Slice theorems provide the correct silhouettes in
E‘_" some cases. More generally, the theorems provide a set of candidate silhouette points
e in which the silhouette points are included. The actual silhouette points are deter-
4\.{ mined by testing the candidate points for visibility. One necessary visibility condition
';‘:: requires corresponding signs for the curvature of the silhouette and the Gaussian cur-
'.:;_ vature of the surface on Iﬁc silhouette generator.
3’_‘: 8.1.4. Discussion
-'C- In this section, silhouette construction has been demonstrated with all three
": Silhouette-Slice theorems. Through simple experiments, we have observed that con-
'." 1 struction with the VST is less sensitive 1o sampling problems than the other two
?:‘_ methods, although accurate results are obtained with the three transforms when
f}“ sufficiently fine samplings are used. We have generated the examples presented in this
Y section with a mixed analytical/numerical method: this strategy can be exploited only
:'_;::: when analytical expressions can be determined for the 3-D transforms of the surface
shapes of interest. The ST and the VST of a surface can be determined in closed form
’Su only for surfaces which can be explicitly parameterized with the normal orientation
T angles (£,m). Although such parameterizations can be derived for several surface
f::j:I shapes, this indicates a limitation of the method. However, it is shown in Appendix 2
:_* that the CT values can be determined analytically for any surface represented by
N parametric equations. Silhouette construction with the CT is hence applicable to a
;i;';ﬂ;c larger set of surfaces than with the ST and the VST.
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.
) In addition to numerical silhouette construction, the Silhouette-Slice theorems
. can also be exploited to predict qualitatively the shapes of silhouettes. Qualitative
. shape features of silhouettes include mainly corners, edges and curvatures. These
. features are best represented by the 2-D CT of the silhouette, and can be easily related
K
“ 10 the corresponding fcvatures of the obyct by the Silhouette-Slice theorem for the CT.
We conclude that the CT should be preferred for prediction of qualitative
silhouette shape. that the VSI is numerically less sensitive than the ST and CT for
) silhouette construction, but that the CT can be evaluated analytically for a larger set
()
of surfaces than the VST.
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2 8.2. Reconstruction from Silhouettes
18 a8
2 :
. ['he formal problem of reconstructing the shape of a convex object from a set of
N silhouettes is addressed in this section, and a strategy for solving this problem with
-:Ij:: the Silhouette-Slice theory is suggested. Due to the lack of a good understanding of
SRS
O3 sampling issues on the sphere, a practical algorithm for applying the proposed strategy
has not been implemented. However, interesting conclusions can be drawn from a for-
:_.' mal analysis of the reconstruction problem.
W
::: The reconstruction problem addressed in this section can be described as follows.
.
A convex object of unknown shape is projected orthographically onto a number of pro-
A3 jection planes II;, and the corresponding silhouettes S; are recorded in each plane.
.’r:::: The viewing directions are referred 1o by their longitude/latitude ¢; . 6, . Given this
:. collection of silhouettes, a method for constructing a description of the 3-D shape of
the object is desired. In addition to devising a reconstruction method, it is useful to
:'."_: determine what range of viewing angles ¢, 6 must be covered in order to obtain com-
SN
N plete reconstruction.
e
" In the first stage. i1 is assumed that all silhouette measurements are referred 1o a
}:5: global frame Oxvz. In each projection plane II,, the silhoueties are measured in
'_‘:_:.: orthogonal axes O ,x .z .. where O - is the projection of the global Oz axis. sec
o Fig.8.14.
r'\
3
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o Fig.8.14 Reference frame for the projection plane
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The scheme of the reconstruction procedure is to evaluate a circular transform
for each measured silhouette, to relate these 2-D transforms to great circle slices of the
corresponding 3-D transform of the object, to use this relation to reconstruct the

spherical transform, and finally to invert this transform for the object shape.

As reference axes are available in each projection plane, the evaluation of the cir-
cular transform of each silhouette is straightforward, and is formally obtained with
equations (5.1). (5.11). (5.19). Each circular transform function p ., (¢). § ().
p; (Y1) 1s related to the great circle slice of the corresponding spherical transform of the
object. which is perpendicular to the viewing direction ¢; . 6, . namely p (£55 .M ).
SEe; My ). R(Egs .My ). The exact relation between the transform value at one
point of the silhouette Gaussian circle and the corresponding value of the transform of
the object on the slice of the Gaussian sphere depends on the particular transform in
question and is given by the appropriate Silhouette-Slice theorem. These relations and
their consequences for the reconstruction of 3-D transforms are now investigated in

sequence for the ST, the VST, and the CT.

In the case of the ST. the silhouette transtorm values on the Gaussian circle are
exactly equal to the object ST values on the great circle slice of the Gaussian sphere.
Therefore. the value of the 3-D ST of the object at one point of the Gaussian sphere is
obtained directly as the value of the silhouette ST on a slice passing through that
point. In order 1o recover the complete ST function on the sphere. it is hence necessary
to process silhouettes obtained from a range of viewing angles such that the
corresponding great circles entirely cover the sphere. One set of such viewing angles is

obtained by turning the observer around the object by a 180° arc, see Fig.8.15.

Fig.8.15. A sufficient set of viewing directions for reconstruction with the ST
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oor
f._::: Reconstruction using the VST is now considered. First, the normal component of
:: the VST is equal to the ST for which reconstruction has been already discussed. The
) . discussion is hence focused on the reconstruction of the horizontal and vertical com-
;.“ : ponents 2, v of the 3-D VST from the tangential component? of the 2-D VST’s of the
f"? silhouettes. The Silhouette-Slice theorem for the VST identifies the value of ¢ ,, on the
;:'J‘ Gaussian circle of the silhouette 10 the projection onto the slice plane of the vector
,'4.__ (h v) at the corresponding point of the great circle slice. Estimating 2 and v is hence
'\c_:,g equivalent 1o estimating a 2-D vector from projections of this vector. and is possible
§':3 when at least two different projections are known. The vector (A v )" can hence be
- reconstructed at a point of the Gaussian sphere if and only if its projection ¢ is given
g‘%‘ on two distinct slices through the point. As a consequence. the set of viewing direc-
fﬁ,‘ tions must provide a coverage of the Gaussian sphere by two distinct great circle slices
:3:"3 al each point, in order to reconstruct the 3-D VST of the inspected object. A set of
Lk viewing directions satis{ ying this criterion almost everywhere is given by the combi-
j : nation of two different sets of measurements similar to those proposed for the ST. An
. example of a sufficient set of viewing directions is given in Fig.8.16.
It can be observed that the 2-D VST of each silhouette specifies two values for
\: each point of the Gaussian circle, as opposed to one in the case of the 2-D ST.
: ‘\ Although these components are redundant, it is tempting to consider that the VST
.
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o

o

e
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Fig.8.16. A sufficient set of viewing directions for reconstruction with the VST

o
It <

'y

*
'\’q"

"

AR

PSS
Ca s

|

oy

1

e e e e e
Ty o Tl g e Tl
- e, WY b tL 0 ot L A L) a8

- N. L Sl R LY -‘_- - '-F » .!" L AL D S
S v » 14 o e S - ,,-.
" G Gt ol e e Y

A,
.

<
oy

T N s RS P T T
- ™ SR b e Y
B et woo»'_‘!'A‘!'.n "ot WOLH Y by




O MY TON TR U TNV IS TN T T

XA

- 185 -

N 4
: captures "more information” about the silhouette at each point of the Gaussian circle. ::
Therefore, it seems counterintuitive thal the reconstruction using the VST requires a W

)
larger set of silhouettes than reconstruction with the ST. This stronger requirement in By

‘ the case of the VST arises because the redundancy of the 3-D VST was not exploited in 0y
’

! the reconstruction method. ’
ut
y Consider now the reconstruction of the object shape through the reconstruction of
its 3-D CT. The relation between the 2-D CT of the silhouette at a point of its Gaus- oy
sian circle and the 3-D CT of the object at the corresponding point on the slice of the D

Gaussian sphere is that the silhouette 2-D CT, a scalar, is the projection on the slice )

r- plane of the object 3-D CT, a 2x2 symmetric tensor. In order 1o reconstruct a 2x2 by
) symmetric tensor from projections, three projections on different axes are required. In Ry
S order 10 reconstruct the value of the 3-D CT of the surface at one point on the Gaus- 2;
WY,

sian sphere then, silhouette 2-D CT's on three different great circle slices through the

point must be used. The requirement on the minimum set of viewing directions is that 7

’ the Gaussian sphere must be covered everywhere by three layers of great circle slices. S
” This requirement is satisfied almost everywhere by three orthogonal 180° arcs of '
viewing directions. such as depicted in Fig.8.17. In this case again. consistency i
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Fig.8.17. A sufficient set of viewing directions for reconstruction with the CT. 0
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constraints on the 3-D CT are not exploited in the above reconstruction strategy. These
constraints could be used 1o relax the requirements on the minimal set of viewing

directions.

A substantial difference between 3-D shape reconstruction with the CT on one
side and reconstruction with the ST and VST on the other side is that the CT is
independent of translations whereas the other two transforms strongly depend on
translations of the origin. 1t was assumed up to now that measurements in each pro-
jection plane are referred to axes O ,X = ... and that each of these sets of axes is accu-
rately related to the global system of axes Oxvz. As silhouette CT’s are independent
of translations of the origin in their plane, the requirement on registration of the
observed silhoueties can be relaxed when reconstruction is performed with the CT.
Specifically. only a reference orientation such as the projection of the global Oz direc-
tion must be known relative to the global axes in each projection plane, in addition 1o
the orientation of the plane itself. Uncontrolled translations of the reference axes in
each projection plane do not affect the reconstruction mechanism. This conclusion can
be exploited to determine an interesting difference between the reconstruction of a 3-D
object from 2-D silhoucttes and the reconstruction of a 2-D object from 1-D
silhouettes. Indeed, in the latter case. reconstruction is ambiguous in the absence of an
origin for each silhouette. Typical examples of this ambiguity are given by ovals of
constant breadth [59]. These 2-D objects have silhouettes of constant length for all
orientations, just as circle. These two objects could not be differentiated by unre-

gistered silhouettes.

In the previous paragraphs, reconstruction of 3-D transforms of an object surface
from silhouettes has been investigated. Although reconstruction of the object itself
merely consists of inverting the reconstructed transform, additional issues may arise
in the case of the V'ST and CT, because of their intrinsic redundancy. It is clear that
for a set of silhouettes which actually correspond 10 the same convex object. con-
sistency of the silhouette circular transforms guarantees consistency of the recon-
structed object spherical transform, in the absence of noise and biases. In practical cir-
cumstances, however, degradations are inevitable so that the reconstructed 3-D spheri-
cal transform is inconsistent in general. When and how 10 exploit the consistency con-

straints in the reconstruction is an open question. These constraints could be forced on
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the reconstructed spherical transform before reconstruction of the object shape, or
they could be exploited earlier. during the construction of the spherical trarsform,

thereby potentially relaxing the requirements on the number of viewing directions.

8.2.1. Discussion

Strategies for reconstructing the shape of a 3-D object from silhouette measure-
ments have been discussed. using the transforms defined in Chapter 5 and the
Silhouette-Slice theorems developed in Chapter 6. In order to develop numerical algo-
rithms for implementing these strategies, sampled circular transforms must be con-
sidered for representation of the measured silhouettes, and interpolation schemes must
be developed for reconstruction of the spherical transforms. As the discrete versions
of the Silhouette-Slice theorems have not been formulated yet, the interest of the stra-

tegies presented in this section is conceptual at this point.

Reconstruction methods based on the three silhouette-slice theorems are now
compared. assuming that satisfactory solutions can be provided for the sampling
issues. When consistency constraints of the 3-D transforms are not exploited, the ST
seems preferable since it is least redundant and requires the smallest set of viewing
directions. For reconstruction using the constraints, the 3-D VST should be preferred,
since it incorporates more measurements from the silhouette. In addition, the inversion
of the 3-D VST is only a set of 3-D rotations. while derivatives must be estimated for
inversion of the 3-D ST, Finally. reconstruction with the CT should be considered

when registration of the origins in the various silhouette planes is absent or imprecise.

Incorporating consistency constraints in the reconstruction of a 3-D transform
could be implemented as an optimization problem where the solution would have to
satisfy the constraints while minimizing the total deviation from the slices
corresponding to the measured silhouettes. The solution could be obtained by iterative
methods similar to the ones used to solve other surface resontruction problems such as

the shape-from-shading problem [21].
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8.3. Recognition from Silhouettes

This section suggests an application of the Silhouette-Slice theory 1o the deriva-
tion of constraints for a system performing object recognition from silhouettes. The
arguments are based on the extension of the Silhouette-Slice theorem for the CT to

polyhedral objects developed in Chapter 7.

It was demonstrated 1n the previous section that a large number of silhouettes
corresponding to different viewing directions are required for accurately reconstruct-
ing the shape of a 3-D object. 1t would seem then that one silhouette contains too lit-
tle information 1o discriminate between different objects. Although some different
objects may produce exactly the same silhoueltes when viewed from selected direc-
tions. shapes of objects of interest are sufficiently different in general so that these
singularities of the problem are rare. As a result, one silhouette is often sufficient to

specif y one object in a set of known objects.

The principles of a system for recognizing polyhedral objects from one of their
silhouettes are now presented. The system is based on a well-known approach in
model-based vision.  Primitive features such as points, edges or facets are first
extracted from the input data. These features are then matched to corresponding
model features. implicitly creating a large matching tree. The tree is explored and
pruned by constraints resulting from the pairing of small sets of measured features to
sets of model features. Finally. the remaining hypotheses are tested more thoroughly
for correspondence with the models. Implementation of this approach has been
reported for recognizing 2-D objects from 2-D measurements, and for recognizing 3-D
objects from 3-D measurements [60]. In the casc of 2-D models and data. powerful
constraints arise from the pairing of two object features 1o t'wo model features. so tha'
the pruning is very effecive. When matching 2-D data such as silhouettes 10 3-D
models. the constraints resulting from the pairing of two primitives are much weaker
since there are six degrees of freedom. In the proposed approach, constraints are con-

sidered for the pairing of three silhouette features to three model features.

The proposed recognition method is based on primitive features consisting of
polyhedral edges. Its scope is restricted to polyhedra or shapes with a sufficient
number of straight edges. For a number of objecis expected in the input images, it is

aszunied that geometric models explicitly describing the edges are available. An
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unknown silhouette is analyzed by first detecting straight edges and measuring their
length and orientation. Pairings are hypothesized between measured edges and edges
of the 3-D models. As the number of potential global matches may be astronomical.
pairings between sets of only three silhouette edges and three model edges are con-
sidered first. Each such set of pairings is tested against a set of constraints, an example
of which is derived later in this section. After discarding the pairings that fail these
tests. additional edges are added to the remaining hypotheses, and further testing is
applied. In a favorable case, a large fraction of the search tree is eliminated by the
constraints, leaving only a few potential interpretations of the data. Each of these

interpretations is then tested in more detail by an appropriate method.

A number of constraints are now derived for the matching of three silhouette
edges to three particular model edges. The derivation of the pruning constraints is
substantially simplified by reasoning with the Silhouette-Slice theorems. First, it is
worthwhile 1o note that position and orientation of a detected object are unknown a-
priori in recognition problems. The ST and VST strongly depend on the choice of an
origin, as was illustrated in section &.1. Therefore. these transforms are not appropri-
ate for recognition applications. The derivations in this section are based solely on the

Silhouette-Slice theorem for the CT.

The contribution of three edges €. € ;. €3 10 the 2-D CT of the silhouette is given
by three impulses at orientations ;. Y. Y3 corresponding 1o the normals of the edges.
The strengths of these impulses are given by the lengths (. {5, {3 of the silhouette
edges. see Fig.&.18. Note that the orientation of the object is unknown a-priori. so that
the reference orientation in the silhouette planc cannot be related 10 the object model.
The angles 10 be considered in the constraints are hence the differences Y;, = Y —y,
and Y53 = P3—Y,. These angles can be directly estimaied from the image, and can be

related to angles in the object mode;.

Consider now a hypothetical match between the three measured edges €. € 5. € 3
and three model edges £, £, £5. The three model edges each correspond to an arc of
great circle on the Gaussian sphere. as illustrated on Fig.8.19. When the silhouette
great circle slice intersects one of these arcs. the image of the corresponding edge is
present in the silhcuette. and has a normal orientation determined by the orientation

of the intersection in the slice plane. The strategy for accepting or rejecting the match
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N Fig.8.18. Three Silhouette Edges and the corresponding CT
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. Model Polyhedron 3-DCT
5 Fig.8.19. Three Model Edges and the corresponding CT arcs
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consists of first deciding il there is an orientation ®. 8 of the viewing direction for
which the slice cuts the model arcs at points separated by the measured angles Y5,
Ya3. When the hypothesis is a_cepted on the basis of these orientations, the viewing
direction is fixed. For this viewing direction then, the lengths [yyy. {y72, [y;3 of the

silhouette edges corresponding 1o the model edges £,. £ ,. £y can be evaluated. For a

LA,
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e _ ‘
} ) S convex object not obscured by other objects. the measured edge lengths ; must match
_tf the estimated lengths [,;, within some tolerance bounds. For non-convex objects, par-
‘;: ! tial self-occlusions may occur, and, more generally, object edges may be partially
3:: 2 obscured by other objects. A better test in those cases is 10 require the measured edges
;’Es e {; 10 be smaller than the estimated !, . within a tolerance bound.
:, E Expressions for the orientations ¢, 6 and acceptance constraints are now derived
: - for three silhouetie edges such as those depicted in Fig.8.18. The derivation is
j - simplihied by considering three model edges perpendicular 10 one another, such as the
R~ ones displayed in Fig.8.19. The case of three right angles arises frequently in man-
P :;3 made parts; e .ensions to include one or two acute or obtuse angles are tractable. Con-
. o sider hence matching the three silhouette edges e; depicted in Fig.8.18 with the three
1 B model edges depicted in Fig.8.19. The great circle slice corresponding to tk~ match is
drawn on Fig.8.19; the angles of interest appear in the two spherical triangles 14 2,
_\ ,’. 2B 3, which are displayed "flattened out” in Fig.8.20. We consider the angles Y1, Y53
; - as positive. In order to match the great circle slice, the silhouetie edges must be such
b that Y, + lb33<7r. The orientation of the corresponding viewing direction is deter-
o . mined by § and = §,—m/2.

2 G X )
> AR =i

R ¥
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A Fig.8.20. Two spherical triangles of interest for deriving the matching constraints.
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Standard relations of trigonometry for right-angled spherical triangles[55) are applied

to the triangles of figure Fig.8.20 to produce

tané, cots, » = cos(7/2—9)
tan(m/2—¢,) cot,; = cos(r/2—0) 87)
sinys; 5 cosa; = siné, '
Sinys, 3 COSO, = cosé,
The angles 0 and ¢, can be extracted from the first two equations above.
tané, = ftany,,colifr ,
v (8.8)

sinf = [ /colfi; ,colfips

The above relations imply the necessary constraints that i, n3<w/2;
Y12+ Yp3>7/2. The predicled lengths of the silhouette edges corresponding to £,
E,. E5are given by

/ ; / Sin§3
s = COSxy = N T
1 1M 1 1M Smllhz
15

g = 1oy cosO = Lay; (1= cotdy, cotypay ) (8.9)
/ ; ; cosé,
;= COSk, = I re—
3s 3\ 3 3\ Sln\b23

These predicted silhouette edge lengths [;¢ must be tested against the measured

silhouette edges [, .

Although the above system has not becn implemented. there are indications that

this type of system has a potential for success.

8.3.1. Discussion

A formal application of the Silhouette-Slice theorems to a problem of object
recognition was presented in this section. thereby illustrating the use of the
transforms and of the theorems in reasoning about silhouettes, and in applying the
intuition 10 practical recognition problems. As object position and orientation are usu-
ally unknown a-priori in recognition tasks. the Silhouette-Slice theorem for the CT

seems the most useful one for recognition, since the CT is independent of origin
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::' location. In addition, many applications 10 recognition are based on qualitative rela-
R ' tions between silhouette shapes and object shapes. These relations are also obtained
o most easily with the CT. The theories developed for the CT are hence the most impor-
,j > tant for applications in object recognition.

o

o 8.4. Summary

o4 :"‘ In this chapter, several applications of the theoretical results of this thesis have
1:‘ e been suggested. Examples shown in the section on silhouette construction are close to
::: bt actual implementations of the Silhouette-Slice theorems to problems in computer
oI graphics. QOther examples presented in this chapter are of a more conceptual value.

Ll 4

This chapter has suggested the wide applicability of the Silhouette-Slice theorems as

reasoning tools in problems of computer graphics and computer vision, and their

:f.
v

potential for developing new algorithms in these domains.
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' Chapter 9
. Summary

9.1. Contributions

In this thesis. a new formalism for relating the shapes of objects to the shapes of

=<2

their silhouettes has been proposed. Three representations of 3-D object surfaces and

Ef' the equivalent representations of 2-D curves have been defined. 11 has been showrn
that the representations of a 2-D silhouette curve are simply related 1o the representa-
.§' tions of the corresponding 3-D object surface. More specifically, object surfaces have
) been represented by scalar, vector and tensor functions on the Gaussian sphere, and
é curves by scalar and vector functions on the Gaussian circle. It has been demonstrated
that a slice of the Gaussian sphere perpendicular 1o the viewing direction is a Gaussian
"E circle for the silhouette. Furthermore, the property functions on the Gaussian circle
" of a silhouette are related by a projection 1o the property function of the object on the
i slice corresponding 1o the silhouette.
R The relations between an opaque object. its silhouette and their transforms is con-
:J ceptually similar to the relations between an absorbing object. its line-integral projec-

tion and their Fourier transforms, which are formalized in the Projection-Slice

theorem of computerized tomography. These similarities have prompted the use of the

.

name of Silhouette-Slice theorems for the new relations presented in this thesis.

y .
>
L

The theory relating property circles of silhouettes to slices of property spheres of

ohjects provides substantial insight into qualitative and quantitative relations between

] 'l_l
o f.

sithouette shapes and object shapes. This insight is useful when reasoning about par-
ticular problems involving silhouettes, and provides straightforward explanations of

known results. Applications of the theories 10 three basic problems have been con-

F:‘l.‘

sidered. namely silhouette synthesis, reconstruction {rom silhouettes and recognition

.
vr)

from silhouettes. The theories have been demonstrated in this thesis for convex

SN

objects and orthographic projections only; in addition, difficult issues remain to be

h)

E N

solved before discrete versions of the continuous transforms and Silhouette-Slice

theorems can be developed. As a consequence, it has not been possible to develop

ji_w direct implementations of the theory into general numerical algorithms for solving the

! - 194 -
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Lo three basic problems. However, methods based on continuous functions have been
‘:.' proposed for applying the results to each of the three problems. Mixed continuous-
. space / discrete-space algorithms have been proposed and demonstrated for the syn-
4): thesis of silhouettes of complex curved surfaces such as a torus and superquadrics. A
) general strategy has been proposed for reconstructing the shape of a convex 3-D object
'5\'?': from silhouette observation. The method consists of first constructing the circular
o transform of each silhouette, then combining these into the spherical transform of the
o object. Finally. the object shape is obtained by evaluating the inverse 3-D transform.
;'_:;: In the context of recognition from silhouettes, several quantitative and qualitative
e relations between object features and silhouette features have been proposed. These
'3'3‘ relations are typically exploited in recognition algorithms as constraints on pairings of
":‘, silhouette features with object features. An example of the use of constraints on edges
ﬁ'g:“ has been proposed in a strategy for recognizing polyhedral objec's from their
e silhouettes.
RS
f The spherical transforms of 3-D surfaces presented in this thesis can be inter-
\, preted as compact representations of the set of all silhouettes of the object. In addi-
tion, these transforms have potential applications for representing surfaces indepen-
:: dently of viewpoint. In particular, the 3-D Curvature Transform is an intrinsic form
‘E for surfaces, which specifies surface curvature as a function of normal orientation.
::: Compared to most characterizations of surfaces in computer vision [39] and in
‘.', difierential geometry [47]. the originality of the Curvature Transform is two-fold.
_E::; First, curvature is completely described by an invariant tensor of curvature, as
'f. opposed 10 two tensors in classical differential geometry, and a partial description by
Y one or 1wo scalar invariants in machine vision. Second. the curvature is described
i;::::f with a canonic parameterization. as opposed 10 generic parameterizations in differential
::E::L: geometry. and 10 image plane descriptions generally used in machine vision.
-
The key contribution of this thesis is a new basic theory for analyzing
A silhouettes. The theory provides useful insight in many questions of relations between
._‘:-g silhouette shapes and object shapes. and also in analyzing complex curved surfaces. A
.'::;:: number of straightforward applications have been proposed or suggested. It is shown
il in the next section that there is substantial room for additional work on the theory
"7 and on its applications. and that this work is promising. :
R
e R e o o T e e T e o
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% 9.2. Future Research
‘ There are several directions in which the present work can be pursued. Most
: promising areas are a careful analysis of the sampling questions, and an investigation
EE' of extensions 10 non-convex objects. These two areas are now discussed with more
detail.
g At this time, 1o the best knowiedge of the author, there is no theory comparable
B to the Shannon sampling theory for the discrete representation of functions defined on
:EE non-Euclidean manifolds such as the sphere. This problem has several facets. First,
) sets of sample points must be defined on the domain of the function. It has been
::'r shown that regular samplings of the sphere are impossible for practical numbers of
a samples. Irregular samplings have been proposed, but they have a number of disad-
E vantages. The second issue is the definition of sample values; a sample value could be
the value of the continuous function at the sample point, or a weighted average of the
".:',’ function values in a neighborhood of the sample point. The third issue is the choice of
’ interpolation algorithms, i.c. algorithms for estimating the value of the continuous
i function from the sample values. at points other than the sample points. The fourth

issue is the characterization of a class of functions for which sampling followed by

interpolation leaves the function unchanged. These four issues are tightly coupled.

e
Pl

and their solution is likely to involve complex arguments. A precise formulation of

the sampling questions would permit the development of algorithms for synthesizing

Y |
.
1

silhouettes. applicable 1o shapes specified both analytically or numerically. The

N development of numerical algorithms for shape reconstruction from silhouettes using
g the circular and spherical transform would also be greatly simplified by solutions of
}:j the sampling question.
) Extensions of the theory to cover non-convex objects are essential for direct
3 applications of the theories to real-world objects. These extensions include principally
the definition of the transforms for non-convex objects in 2-D and in 3-D, and the
:E: analysis of the occlusion problem. One method for defining the Gaussian mapping and
o therefore the spherical transforms for non-convex objects consists of separating the
! object surface into several patches such that each part has a well-defined Gaussian
image. A different method is to consider several Riemann "sheets" on the Gaussian
§ sphere. The same methods are applicable to Gaussian circles of silhouette curves.
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fé When relating Gaussian circles of silhouettes to slices of the Gaussian sphere of the

:’h ’ object, different silhouette parts or sheets on the Gaussian circle must be related to
. their counterparts on the Gaussian sphere of the object. This correspondence is readily
::: preserved in silhouette synthesis, but may raise difficult issues in reconstruction from
::i:: silhouettes. Indeed. when several sheets are defined on the Gaussian circles of

different silhouettes, care must be exercised in preserving a consistent pairing of the

[ "

) { sheets when combining the circles as slices on the Gaussian sphere of the object.

b

R L . _ _ o o A

"'. In addition to issues involving multiplicity of the Gaussian image, silhouette
4, )

-;!‘ analysis is more complex for non-convex objects due to the possibility of occlusions.

When applying the silhouette construction method with the silhouette generator to

e
]
.. ‘l .

::C'_ non-convex objects, a superset of the silhouette is obtained instead of the silhouette
-‘: itself. Indeed. some of the points generated by this method may correspond 1o
. occluded object surface patches so that they do not appear in the silhouette. The set of
': points generated by the silhouette construction method for convex objects is hence a
’.‘_E', set of candidate silhouette points when applied 1o a non-convex object. This set must
then be pruned for occluded points. In the context of reconstruction from silhouettes,
. the occlusions imply that less information may be obtained {rom each silhouette. Asa
-j'.s consequence, a larger setl of viewing directions may be required to reconstruct the com-
.\:_' plete shape of a non-convex object. The question of which non-convex objects can be
"" reconstructed from the set of all their silhouettes has not been answered yet. These
objects have been called "tangible objects"; for each point on the surface of a tangible
t,‘ object. there must be at least one tangent line which does not intersect the surface [61].
1":: Convex objects are a subset of tangible objects, and some non-convex objects are also
- tangible objects. 11 is easy to construct non-tangible objects by considering a long flexi-
ble cylinder and tying "knots” in this object. A simpler and more striking example is
N}: that a torus is not a tangible object, whereas a toroidal object with a square section is.
15
2 In addition to the extensions to discrete transforms and to non-convex objects,
:‘_4- there is clear potential for extending the theories presented in this thesis in two other
':'_: directions. QOne extension would be to consider property spheres of third and higher
':l'f order terms of Taylor expansions of surface equations, and 1o relate these to
corresponding property circles of silhouettes. A different extension is to define
. transforms on hyperspheres S, for n-dimensional hypersurfaces in (n+1)-dimensional
Jagl
s
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space. These two extensinns seem conceptually straightforward, would involve tedi-

ous algebra, and may not be very useful.

Aside from extensions of the theories developed in this thesis, there is a large
potential for applications. Once sampling issues are resolved, algorithms for numerical
synthesis of silhouettes and numerical reconstruction of 3-D shapes from silhouettes
can be developed. The mixed analytical/numerical silhouette synthesis method used
in this thesis 10 generate examples could be extended 1o more surface types by dcriving
a lable of transforms for many known surface patch equations. This project could be

implemented on a system for symbolic algebra such as MACSYMA.

The theory presented in this thesis is rich in potential applications in the areas of
computer graphics and computer vision. The work presented here provides new
insights in the geometry of surfaces which could be useful in understanding
differential geometry. This thesis has provided a new basic theory and provides ample

room for future research.
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Appendix 1
Examples of Transforms

In this append:y . the three transtorins are analytically determined for a number
of curves and surfaces. Speatically. the Support Transform, Vector Support
Transform and Curvature Transform are evaluated for conics, superconics, torus

patches. quadrics, and superquadrics.

In each case. the curve or surface is iirst described by parametric equations for its
Cartesian coordinates. With this form, a normal vector is determined at each point,
then compared 1o the unit vector expressed in terms of the canonical normal angles.
This comparison provides relations between the generic parameters and the canonical
angles, from which canonical parametric equations can be determined, parameterized
with the polar angle P of the normal orientation for a curve, and with the geographi-
cal coordinates (£,m) of the normal for a surface. The transformations in (5.1).
(5.11), (5.19) are then applied to the equations of a curve to determine its three circu-
lar transforms. Similarly. the three transforms of a surface are obtained using equa-

tions (5.29), (5.36), (5.45).
Al.l. Transforms of Planar Curves

Al.l.1. Conics

Conics are curves described by quadratic implicit equations for the Cartesian

coordinates of their points. The general form of this equation in the Oxz plane is
Ax?+2Bxz +C:z*+2Dx +2E:+F =0 (A1.1)

When the quadratic form in the left-hand side is not degenerate, the linear terms can
be eliminated by a translation of axes, and the mixed second-order term by a rotation
of axes. As a result, each non-degenerate quadratic curve can be described by an equa-
tion of the type

2 7

+ X 2= =1 (A1.2)
a C

t

in an appropriate system of axes. Wher both signs are positive, the above equation
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describes an ellipse with half-diameters @ and ¢ along the Ox and Oz axes respec-

G tively: see Fig.Al.1. A set of parametric equations for the ellipse in (A1.2) is given by

S a cost
3 x (A1.3)

n
N
1l

|

3 z| 7 | c sint

Al.1.1.1. Normal Vector

A vector t tangent to the ellipse is obtained as the first derivative of the coordi-

3
)

N nate vector,
2

&4 i —a sint (A1.4)
t=% =1 ¢ cost '

A normal vector is then obtained by noting that, in 2-D, (Zz -1, ) is a vector perpen-

dicular 1o (7, 2. )7.

*
¢ Cost

- ﬁ' — . (AI.S)
a sl

To preserve the similarity with the case of quadratic surfaces in 3-D, the above nor-

- mal vector will be scaled by uc .

ot [ (1/a ) cost

, = (A1.6)
e n l 1/ )sint

L
e
>
i
.G;/

Fig.A1.1. Ellipse with semi-axes a =4, ¢ =2.
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Al.1.1.2. Canonical Parameterization

The normal vector in (Al.6) is compared with the unit vector in terms of the

polar normal angle s

(1/a) cost B cosys
(1/¢) sint = inl sinys

Using the identity cos*t +sin®t = 1, it it easy to determine that

n=

nl = (a’cos*Y + ¢ 2sinzlll)—l/2

and therefore that the relation between ¢ and yr is given by

cost a cosys

= Ifnl (A1.9)

sint C sinys

The equations of the ellipse in terms of the normal orientation s are hence given by

2
a “cos
g=1all - v (A1.10)
¢ Tsinys

Al.1.1.3. Circular Transforms

The three transforms of the ellipse are determined by applying the transforma-
tions in (5.1). (5.11), (5.19) 10 the canonic equation (A1.10). The ST and VST are
given by

2 = %1, = (acosyPy + cAsinfy)2 = 1m17! (Al.11)

s=R{ *x
od .
a*cos*Y + ¢ 2sin?yY - p?

= ifnl - = - " (A1.12)
n 2 7 (c = —a~=) sinycosys

(¢ © —a*) sinyicosy

In order to determine the CT, the derivative &, must be evaluated

—sinys

g, = Ifila’c?
v ¢ cosys
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The CT function is then obtained as

(ac)?
(a3cos*y + ¢ 3sin®y)¥/?

p(y) = g, 1, = (ac ) Inl3= (Al.14)

Al.1.2, Superconics

Superconics are a class of curves which includes conics, and which are described
in centered axes by implicit equations such as

n n

. |- |
+1 X 2= =1 (A1.15)
| 2| [0

D",'l

When both signs arc¢ positive and n is a real number in (1,00), the curve specified by
(A1.15) 1s smooth and strictly convex. It can also be described by the parametric equa-
tions

x a lcost 1* sign (cost )

R = = . . 0t <27 (Al.16)
: b Isint 1°sign (sint )

with s = 2/n. Special cases include an ellipse tor s =1, a rectangle in the limit for
s =0 and a rhombus tor s =2; see Fig.A1.2.

The circular transforms of the superconic are first derived for the first quadrant

of the variable ¢ . so that

acos*t
= . 0Lt £7/2 (A1.17)
bsin®t

Al.1.2.1. Normal Vector

A tangen?! vector is determined by

_ —as cos® "¢ sz
1t=XK, = . —1 (A118)
‘ bs sin* 't cost

The normal vector is then obtained as

bs sin* "l cost
an =  ~1 . (A1.19)
as cos' Y1 sint
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n=4.5 n —oo
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Fig.A1.2. Examples of superconics with half diameters a =4, b=2.

1

< A simpler form is obtained by scaling the above vector by ab cos® 't sin® 7z

(A1.20)

b (1/a )cosz_sz'
5 n=

(1/b)sin*~t
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Al.1.2.2. Canonical Parameterization

The normal vector in (A1.20) is compared to the unit normal in terms of the

polar angle s 10 determine the relation between ¢ and .

(1/a )cos* ™51
(1/b)sin?™%¢

cosys
sims

Using the trigonometric identity cos®z +sin’t =1, it is easy 1o determine (fi| then

(A1.21)

n=

X in terms of 1.

I = NV +D (A1.22)
k k+1.  k
-——a cos” Y
=N k+1 o (A123)
bk +1sme

withk =s5/(2—s)=1/(n—1) and

N = (acosy)* T + (bsing)* *! (A1.24)

Al1.1.2.3. Circular Transforms

It is straighttorward to determine the VST of the superconic by applying the

transformation in (5.11) to (A1.23).

‘Z_I:LT (acosy)* *! + (b sing) *!
s5=N ) k41 L —1 LAl e k=1 (A1.25)
sincosy (—a* *leosut T + b5 Flsingt 7))
The first component of the above equation is also equal to the ST function
X 1
p =N L+ [(a COS\b)k 14 (b sin\b)k +1] = N k+1 (A1.206)

An expression for the ST valid in the four quadrants of the normal angle s is given by

1 1
p =[la cosg!**1 + 16 sing1* *1]4+1 = y 271 (A1.27)

where

N = lacosy!**! + Ibsing X *! (A1.28)
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The corresponding expression for the VST is

- L N’
g§=N **1| , - . - _ (A1.29)
singcosy ( —a* " lcosy 1X =1 + b5 * Ising 1 X 71)

The CT of the superconic is determined by first evaluating the derivative X .

then evaluating the CT function with (5.19). The derivative is given in the first qua-

drant by

] - .
A2 _cost T sin®

=k L4l o k1 (A1.30)
Ry (ab Y™ N sin* "1y cost

The CT function, i.e. the radius of curvature, is given by the following expression

valid in the four quadrants.

_ k (ab )* 11 cosy sing 1X ™1
pY) = 2k +1

lacosy X 1+ 1bsing % *!

(A1.31)

Polar diagrams of the transform functions are illustrated in Fig.A1.3. for a superconic

with n =4.5.
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Superconic Support Transform

t-component of VST Curvature Transform

Fig.A1.3. Transforms of a superconic with n =4.5
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< Al.2. Transforms of 3-D Surfaces

. Al.2.1. Torus

. The torus is an axisymetric surface obtained by rotating a circle of radius r

:Ej around an axis in its plane. The surface generated by the circle is simple when the dis-

- tance R from the center of the circle to the axis is larger than r . Consider a system of

o axes where Oz is along the axis of the cone and Ox is in the plane of the generating
cirle and passes through the center of the circle, as illustrated in Fig.A1.4. Parametric

:'Ej equations for the circle are given, in the Oxz plane, by

- x R +r cos

4 g = _ €osm (A1.32)

N z r sinm

:3 where 7 is the polar angle of the normal in the Ox- plane. Equations for the torus

u itself are easily determined as

- (R +r cosm) cosé

’ X = | (R +r cosn)siné (A1.33)

rosinm

-

where (£,1) are the geographical coordinate angles for the normal vector. The identity

of the parameters (£,m) as canonical angles in the above equations is easily verified by

.
2 '»f‘- N

Y
»
t

'-:.d:'l:

PAZ |

e

Fig.A1.4. Torus generated by Revolution of a Circle
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evaluating a surface normal

cosé cosm
n=X,xXX. =r (R +r cosn) |siné cosn (A1.34)
sinmn

Al.2.1.1. Spherical Transforms

The VST of the torus is easily determined by applying the transformation in

(5.36) to the parametric equations of the torus in (A1.33).

Rcosn+r
S§=Ry*x= 0 (A1.35)
—R sinn

The scalar ST 1s identical to the first component of the above equation, namely
p =R cosm+r (A1.3¢)

In order to determine the CT of the torus with (5.45). it is useful 1o first evaluate the

derivatives X; and —)’c’n

—siné
Xg= (R +r cosn) | cosé
0
. (A1.37)
—cosé sinm
X, = r | —sin¢ sinn
cosn
The components of the CT are then determined to be
S Yg'lg _ R +r cosn
1 cosn cosn
— < (.A1.38)
= xn'1€ =0
o ra =Xyl =r
N
:;:Z_ Some particular features of the transforms of the torus can be observed in the above
|'",,.'*

equations, and it can be shown that these observations are also valid for all axisym-

metric objects. Specifically, the A component of the VST and the r {; component of the

Ay
"L

CT vanish for axisymmetric objects, the n and v components of the VST are identical

~

A

RIS TREAL RN
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“
éf' 1o the n .t components of the VST of the generating curve, here the circle of radiusr .

Finally. the r 5, compone:ut of the 3-D CT is identical to the 2-D CT of the generating

curve ard the r ;; component is equal to the distance of the points of the curve 1o the

rotation axis, divided by the cosine of 7).

LEAR

Al.2.2. Quadratic Surfaces

Quadratic surfaces are sets of points in 3-D defined by an quadratic implicit equa-

tion in Cartesian coordinates. When the quadratic form is not degenerated. the linear

d } »

terms in the quadratic equation can be eliminated by a translation of axes and the

L7

mixed second degree terms can be eliminated by a rotation of axes. As a result, each

l—q

generic quadratic surface can be expressed, in an appropriate system of axes, by an

v
LI

equation of the form

bl 3

[ N
3
4
to

=1 (A1.39)

+ X2 =X =
a b

v e
[
LN

KA

When the signs in (A1.39) are all positive, the surface is an ellipsoid with semi-axes a .

b. ¢ . as illustrated in Fig.A1.S. A sct of parametric equations for this ellipsoid is

e ——
L

given by

a Cosu COsv’
X = | b sinu cosv (A1.40)

(XS

¢ sinv

Al.2.2.1. Canonical Parameterization

In order 1o deternnne the spherical functions of the ellipsoid. the parametric

." equations in {A1.40) will be converted into equations in terms of the normal angles
& (£,m). For this purpose. a normal vector to the surface is first evaluated. A scaled
rgt normal to the surface determined by (A1.40) is easily obtained as

(1/a )cosu cosv
,; n= :bc%‘osti.“ xX. = | (1/b )sinu cosv (A1.41)

(1/¢))sinv

where the particular scale factor was chosen to simplify the final expression. This
expression 1s compared with the expression of the normal unit vector as a function ol

the parameters €. 7. specifically

e T P L T R T e e -,:-,4.','\' ".} RO "'-” % “i\"-\‘ Xt "*"*' «”& o’ '\.‘ ‘.*'\u
Ay Xy e AN .Ek N5 s 2 4 .
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Fig.A1.5. Ellipsoid with semi-axes a =4, b =3, c =2.

(1/a dcosu cosy cosé cosn
(1/b)sinu cosv| = IW| | siné cosn (A1.42)
}k' (1/¢ )sinv sinm

2

ol od . ol .2
hA Using the identity cos“u cos“v + Sin“u cos“v + sin“v = [ and the above equation. it

\] , is easy to show that

: :} — ) 5 > 7 . 9 2 72 . 9 ~12
X Inl = { a“cos~écos n + b “sin“écos“n + ¢ “sin“n

1Y

and 1o determine a relation between the parameter sets (w v ) and (£,1). namely

; COSU COSV’ a cosécosn
o] sinucosv| = Il | bsinécosn (A1.43)
sinv c sinm

Fo The parametric equations can then be expressed in terms of (£,1). as ‘

a >cosécosn
X = Il | b%sinécosn (A1.44)

i c %sinn

S RARLEA R . . ta a <) o
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A1.2.2.2. Spherical Transforms
! The VST of the ellipsoid is easily derived by applying the transformation in
(5.36) to equation (A1.44), producing
S} a *cos*écos’n + b sin®écos®n + ¢ *sin’n
> . ) .
§=R{*X=imi (b® —a*) cosmsinécosé (A1.45)
E (¢ * —a3cos?é —b3sin*¢) sinncosn
N
. The first component in the above equation is also equal to the scalar ST function "
X H
3': 2 (£.m). I1s expression can be sinpliticd as
1
X p =n = |a‘cos*écos?n + b3sin*écos’n + ¢ 3sin®n| T = 1@17! (A1.46)
* .
L Using the above relationship, the expression of the V'ST can be rewritten as
'S
& 2
, p
§= — (b* —a?) cosmsinécosé (A1.47)
r s 3 . .
(¢ —acosé —b2sin?é) sinncosn
. The CT of the ethipsoid will be determined with equation (5.45). For this pur-
N pose, the partial derivatives of X(&,m) are hirst evaluated
»
h"‘
Y, 2 2.
(5?2 2 costmei ; a “cos§cosm —a “sinécosn
- “—a“-)cos nsiné cos . )
' Xg=— a 03 nsinfcosg b3sinécosn| + — | b>cosécosn
J r ¢ *sinm 0
b ,
by —a?siné ( b3cos™n + ¢ 3sin?n)
cosn 2 20l 2l )
= —5 | b cos§ (acos'n+csinn) (A1.48
? i 2 . .
Ky 4 (a*=5b%)c? sinécosésinncosn
»
»-1
[
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o cos’ — bsinE + ¢ a *cosécosn | —a %cosésinm
;;'n = —SINTMCos”N q_cof 3 . < blsingcosn + — |1 =b 2sin{sinn
P c *sinm c 2cosn
X —a *cosésinm
= ;3 —b*sinésinm (A1.49)

(a’cos*é + b3sin*é ) cosn

The components 7 1. 7 2. 7 15 of the symmetric 2x2 CT tensor R are then obtained as

i‘ .T - - By by 3 9
r = i _1_3. ( b2ccos*ésinn + a 3¢ 2sin*Esin®n + a b *cos*n) (A1.50)
cosn p-
’ 12=i’n-_°§= ;3 (a? —b7) sinfcosésinm (A1.51)
rax= i’n'—frl = ";—; (a 2COS:§ + thinz‘g) (A1.52)

A1.2.3. Superquadrics
Superquadrics are generalizations of quadrics 10 a class of higher order surfaces
[58]). A subclass of superquadrics has implicit equations similar to (A1.39), except that
the cxponents, equal to 2 in the case of a quadric, are replaced by a parameter n in the
case of a superquadric. In particular, the supercllipsoid generalizes the ellipsoid and is
defined by the following explicit equation
2!
P —
4]

For n fined to a real value in (1,00). the surface described by the above equation is

n

!
i =1 (A1.53)

b |

l
"

~ o

+
|

smooth and strictly conven. The limiting cases correspond to an octahedron forn — 1
and a parallelepiped for n — oo, as illustrated in Fig.Al.6. The ellipsoid displayed in
Fig.A1.5 1s a particular case of a superellipsoid corresponding to n =2. The part of the

superellipsod surface in the first octant can be parameterized as
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ta
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n=4.5 n=co

Fig.A1.6. Super-ellipsoids with semi-axesa =3, b=3 ¢ =
forn =1,1.2,4.5, co.

x acos’ ucos*v
v| = | bsin®ucos’v (A1.54)

csinfv

t

where s = 2/n. The derivation of the transforms of the superellipsoid is relatively

tedious. It is helpful 10 first read the simpler case of the ellipsoid, or the derivation of
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the 2-D transforms of superconics.

Al.2.3.1. Canonical Parameterization

The spherical transforms of the superellipsoid are now evaluated. As a first step.
the parametric equations in (A1.54) are transformed into a form paramelerized with

the normal orientation angles. For this purpose, the normal orientation is evaluated.

1

be sin® " u cosu sin® Tty cos® v

n=%,xX. = | acsinucos® "y sin® " v cos® v (A1.55)

1 1 1

. — —_ . VYo —
ab sin® " 'u cos® T usiny cos=* Ty

A simpler expression of the normal orientation is obtained by scaling the above vector

-1 . .2s—1

by abc (sinu cosu sinv )* ~cos v . The scaled normal vector is then compared to

the unit normal vector expressed in terms of (£,7).

(1/a )cos* S u cos*™* v cos¢ cosn
n= [ (1/b)sin*“ucos**v| = IWI | siné cosn (A1.56)
(1/c)sin**v sinm

R . . Y 3 . ¥ 3 . Iy
Using the identity cos™u cos™v + sin“uw cos“v +sin"v = 1 and the above equation. 1t

is easy to show that

2_
- - = 2S(\157)
IT1 = | (acosécosn) *™* + (bsingcosn) *™* + (c sinn) *~* o
and
2 s s
a * T cosT £ cos 2= )
3 2 5 S
i’z |Hl 2—s b-—ssin2—.s§(:os2—sn (A]Sg)
2 s
L
¢ =7tsin T

As several manipulations of the above equation will be necessary to obtain the spheri-
cal functions of the superquadric. it 1s helpful to simplify it by introducing the

parameter k = s/2—s = 1/(n—1) and
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N = 1R17% "D = (g cosécosn )* *1 + (bsinécosn ) *! + (¢ sinn )* 1!
(A1.59)
The parametric equations can then be rewritten as
v | a**tcost £ cost n
=N **1 | pX*1sin* ¢ cost n (A1.60)
C* ?lsink 7

A1.2.3.2. Spherical Transforms

The expression of the VST of the superellipsoid is easily derived by applying the

transformation in (5.36) to the above parametric equation, giving

n cos§cosm  sinécosm sinm x(&,m)
§=|h| = —siné cosé o |y(m) (A1.61)
v —cosésinm —sinésinn cosn z(&m)
. (a cosécosn)* *! + (b sinécosn)* *! + (csinp) *!
=N 9 (b* *lsin* V¢ —at *lcos* ~'¢ ) sinfcosécost M

(c* *lain* “In—a’ *lcost *1€cos ~Im—bf *lsin* *1€cos’ ~Im ) sinmcosm

The first component in the above equation also specifies the scalar ST function p (£,7).
Its expression can be simplified as

1
k+1

p =n = | (acosécosn )* *1 + (bsinécosn )* 1 + (csinn ) *!

(A1.62)

Comparing the above expression of p with the expression of N in (A1.59), it is clear

1

that N = pk “1 and therefore that

L o+]

P
s=r" sinfcosécost 1 (54 *1sint I —a* *lcost I )
sinneosm ( ¢* *sin® "ln —a* *lcos! *1fcost Tin—b* *lsin' *1fcost ~In)

(A1.63)
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The third spherical function, the CT, is now evaluated for points in the first
octant of the superellipsoid. In order 1o derive the components of the CT tensor with
(5.45). it is necessary to evaluate the partial derivatives of X(¢£,m). Considering the

expression of this vector in (A1.60), it is useful to first evaluate

A -

—a~p“' = —az/\'—‘ =9 (acosécosm )} *! + (bsinécosn ¥ *!' + (csinm ¥ *! S
o¢ 0¢ oé
_31711
= kN ¥ cod tIn(af tlsinécost € — b* *tlsint €cosE ) (A1.64)
& _ IS
8 - Q nisi_ O oo W41 < o Y+ PRIV BV
pt = N = - | (gcosfcosm Y *1 + (bsinécosn ) *!' + (csinm )
an an an
_2A +1
= AN T cos I lat ticodt tiEsinmeost 4 % tlsint *iEsinncost m— ¢ *lsint ncosn )
(A1.65)
[he ¢ nivatives X = 9N/Q€ and X, = 9X/9n are then evaluated as
a* Tleost £ cost —a* *lsinécos® "1¢cost
X¢ = 9 Pt b* “lsinf fcost | + kp* b* *lsin* ~1¢cosécost
a§ K+l
sin* 7 0
o —a* Plsinécost T1E (b* Hlgint T¢cost Fln + X tlsin® Tln)
CCost - L =
= — b* Tlsin® T1EcosE (a* Tleost TlEcost T}+CL+1 n* *in)
P X *lsingcosésin® neosn (a* Tleost 71 — bk *lsint TIE)
(A1.66)
a* tleost € cost —a* *lcos* Esinncost Tin
X, = 9 l P~ ] b* “lsint €cos* | +kp ™ | —b* Hlsin® gsinneost TIn
on kel & K+l k-1
¢ sin® n ¢“7'sin® T 'ncosn

o . —a* *lcos* Esinm
= — ‘ —b* *lsin* ¢sinm (A1.67)
(a**leos* *1¢ + b5 Hlsin® *1¢ ) cosm
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i .
Y From the partial derivatives above, it is easy to determine the components 7 . 7 ;3.

7 25 of the CT tensor R.

2. T "
T = a4 (A1.68) .
cosm

R

_ k (sinfcosécosn)* !

(abcosn)* *1 + (csinm)* *1(a* *lsin®* ¢ + b¢ *lcosdt 5)] g

pl’l +1
E :
. ri»= xn'lg (Al.()g)
1S !
§"‘ kc* *lsingcosésin® neost 7! . o 41 k- i
" — ¢ éﬂ n T | a* *leost lg — pk +lgink =1
g i h
"-‘ .
L-' —_
T as = Xn'ln (Al.70)
- kc* *1sin® "Incost 7! , 4]
™ - . +717 LI I +1cosk tlg 4 pk Hlgnk +1g
P '
3
¥ ]
' Outside the first octant, some of the trigopnometric functions take negative values. .
i As fractional powers are undefined for negative numbers. it is necessary to scparate ?
the magnitude and sign of the trigonometric functions. The following parametric v
¥
v equations specify the surface points of the superellipsoid in the eight octants. )
4 h
’ J
¢ | a**icosgcosn ¥ sign (cosécosn) \
! X=N **1 I p**isingcosn X sign (sinécosn) (A1.71) L
c**Visinnl* sign (sinn) 4
”. b
. ‘
b where
g N = lacosécosn 1**1 + 1 bsinécosn 151+ | csinn 15%Y (A1.72) -
. -
The ST is given by the following expression valid in the eight octants o
N ]
2 ! |
: _ : . , L +1
p = | l acosécosm I**1 + | bsinécosn 1¥ ¥+ | ¢sinm 1% *! (A1.73)
o
o
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The VST is given by the following vector equation valid in the eight octants.

L +1
P
§=p~ sinécosé | cosn | * sign (cosm) (b* *}Ising 14 71 —a* *1icosé )t 1)

sinncosn | ¢ *Hisinn1* “1 —(a lcosé | Y *Hicosn ! 1 — (b Isiné | )} *icosn !t !
(A1.74)

It can be observed by comparing the previous relations with the corresponding rela-
tions in the first octant. that integer powers and k th powers of the trigonometric
functions retain their signs, and that trigonometric functions raised to the powers
k—1 and k +1 are taken in absolute value. This conjecture also produces valid
answers when applied 10 the expressions for the CT components in (A1.68), (A1.69).
(A1.70).

The spherical functions in (A1.73), (A1.74), (A1.68), (A1.69), (A1.70) can be
used to determine the circular functions of silhouettes of superellipsoids in ortho-
graphic projections. For example, Fig.Al1.7 displays a silhouette of the superquadric

with a =4, b =3, ¢ =2.n=4.5, and the three corresponding circular functions.

In addition 10 the three spherical functions presented in the text, it is also possible

1o determine the EGI function for the superellipsoid with (5.56).

G(§.n)=ruf::—f1:

k2 (Cabe ) *1 | sinfcosésinneos™n 1X 7!

3k +1

: . : . k+1
| a cosécosn 15+ + | bsinécosn 15+ + | csinn 1% *!

(A1.75)

For s £2 and therefore k 21, the EGI is continuous over the whole sphere. For s > 2.
k —1<0 and the EGI has discontinuities along the equator n=0 and along the meridi-
ans é=—m/2,0,m/2,m on the Gaussian Sphere. These discontinuities account for the
fact that the surface expansions around the corresponding points contain only terms of
order larger than 2. For s —co, k =0, the EGI vanishes almost everywhere because of
the factor k2 in the numerator of (A1.75): impulses remain at the six discontinuity

points (¢,m) = (.,,—m/2), (0,—7/2), (0,0). (0,7/2). (O,7). (.,m/2). The strengths
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" Silhouette Support Transform

t-component of VST Curvature Transform
: Fig.A1.7. Sithouette of Super-ellipsoid and corresponding circular functions
" for = 30°, ¢ =40°.
b of these impulses can be evaluated as 4ab for the poles (.,—7/2), (.,77/2), 4bc for the
L points (0,0). (0,7) and 4ac for the points (0,—7/2). (0,7/2). These values
N correspond exactly to the areas of the faces of the parallelepiped which is the limiting

case of the superellipsoid for s —oo, see Fig.A1.6.
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’ ;
; dr () 1 i
& v _ (A2.4) :
dt d Yl )/dt )
l To illustrate the use of derivatives of the formal inverse of (¢ ), an expression for the
{
.. radius of curvature of a curve is determined in terms of a generic parametric equation i
E;‘j such as (A2.1). The radius of curvature can be determined by :
] '
! pz{dx}_{axidzzdxl 1 '
[ | d Y| | dt | dy dr | dy/dt
;
e :
f2 Yt ) = atan| =
x
v -
& -
dy _ x —xZ ;
. di x2+22 l
G
[ l
c- |dX|=(x2+:2)l/3
5 | dt | -
: =2 2233/2 R,
i p= (x...+'v..? (A2.5)
X —XxZ !
X
b "
w A2.2. 3-D Surfaces
' Consider a surface specified by the parametric equations
» ]
x(uv) '
5:,’ X=Xuyv)=[ywy) (A2.6) iy
) Lt
= z(u )
“ The problem addressed in this section is the conversion of parametric equations similar

to the above form, 1o a set of equations X(£,m) for the same surface. where the angles

AL |

(§,n) characterize normal orientation.

First, a relation between the generic parameters (u ,»') and the angles (£,m) is

¥ obtained by comparing the normal vector N =X, XX, with the normal vector )
. expressed in terms of (£,7). 3
; '

0
¢\

- . - . u
G K

Balial)

R P T i R R GRS A W f e el e i w s a N PR
N T S N N e R R S A AR Y SR SN S
\ . ] . » e K - L) . N ‘ B . L] 2! Xy

s "
Q




3

A~
Rt

o . ] b
INRIRARY SOl

.
K

e, .. R R R R R TSR T DO SRR
S A S RS N -'f--f- .).:s'-(.}'\ :: - \:\
o3 & i3 2ol L »’ - b

Appendix 2
Parameterizing Curves and Surfaces
with Normal Orientation

This appendix addresses the issue of converting parametric equations in terms of
generic parameters 1n1o equations parameterized in terms of normal orientation. The

problem is first addressed in the case of planar curves, then in the case of surfaces in
3-D.

A2.1. Planar Curves

Consider a curve specified by parametric equations

)
£ =x%0()= f((:) (A2.1)

where ¢ is a generic parameter. The problem addressed here is the conversion of this
form into an equation X(ys) for the same curve, in terms of the polar angle Y of the
normal orientation. A relation between Y and ¢ can be obtained by considering the

orientation of the tangent vector &, (z ). The relation is given by

Y= atan"f(z ) - Y(r ) (A2.2)
x(t)

where dots indicate derivatives with respect 1o¢. The inverse function of Yz ) is for-

mally written as z (), and is inserted into (A2.1) to obtain the desired result, namely
| = gt (Y) = g(Y) (A2.3)

For a strictly convex planar object, the inverse t (i) is well defined and unique every-
where. However, it is possible to explicitly determine the inverse function { (Y) only
in particular cases. In other cases, there is no closed-form inverse of (A2.2) but
derivatives of x () can be determined using the formal inverse ¢ () and the relation

between derivatives of direct and inverse functions.
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o
he n, Yule T X2y cosé cosm
n= (n { =|zx. —Z2.x, | = IAl |siné cosn (A2.7)
5 n. X Ve TXY, sinm
;3 Explicit expressions for the angles £ and 7 can be derived from the above equations as
n,
n ¢ = atan — =&un) |
’ (A2.8)
nZ
v n= alan—s — =nu )
e (n="+ns)"
[
':1 The formal inverses of the above equations will be denoted by
u =ul¢,
~ E‘f T’; (A2.9)
- vo=a §ﬂ’7 h
For a strictly convex object. the above inverse functions are well defined everywhere,
and can be inserted in (A2.6) to obtain the desired parametric equations
i X=X (v (En)=X¢&n) (A2.10)
In many instances. it i1s not possible to find explicit forms for the inverse equations
o
;: u(€,m). v(£,7m). but the expression in terms of the formal inverses can be used 10
o
determine derivatives of X(&,m). using the relation between derivatives of direct and
! inverse functions.
J
-1
5 o o | |98 om
" u u
2y 6§ 6§ - (‘) 6 (A2.11 )
- Qv ov 98 on
g an o o v
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.‘ The derivatives of X with respect to the angular coordinates are given by
Q"" .
B o ol o¢ on B
,; Xel _|0E 9| |®u| _ o ou| |% (A.12)
f X, fu v | |X. 9 | (X
on oM o ov
" The derivatives in the second matrix can be readily evaluated from (A2.8),
-*i
Y, Y3 ny,nx —ny nx,
L - =
.l‘l' au nx 2 + ny2
v o¢ ny.nx —ny nx.
0 ov nx?+ny?
e 2 ) (A2.13)
o on _ niu(nx®+ny?)—nz(nx nx, +nyny,)
e ou (nx?+ny?+nz?)(nx*+ny?)”
NS on _ n=.(nx 2+ nv) —nz(nx nx. +nvay,)
N = I
o ov (nx?+ny?+nz?)(nx?+nv?)"
LY I-
4
where subscripts in the components of the normal vector have been replaced by
. postfixes 1o avoid confusion with partial derivatives: for example, n, has been
f o replaced by nx .
" An example of the use of the above formulas is the derivation of the radius of
' curvature tensor R from generic parametric equations. The relation between partial
i
w.: derivatives and components of this tensor is given by
\'4’
" X ryicosn 1g +rcosnl,
1= - — (A2.14)
& Xy r121£+r231n

.,

r
vh Y
[ ) '

.
TR
. 0

The unit vectors 1g, 1, can easily be determined in terms of components of the normal

n (A2.7),
—n./n —n.n,/n..n
— —~—
e= | n/n | 1y= | ~non./nn (A2.15)
0 n./n
b b Y 2 7 ] d
wheren = = n.* “+n.“andn., =n-"+n’
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The components of the tensor can then be determined from the derivatives in (A2.12),

as
i.'_.f
= T
cosn
= (A2.16)
7'12=XT"1§
ra=%,1,

It 1s also possible 10 evaluate the tensor R from generic parametric equations by
first evaluating the tensors of the first and second fundamental forms, then applying

an appropriate transformation to these tensors. This method was presented in[62] and

is briefly reviewed in Appendix 4.
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Appendix 3
Duality between Slices and Silhouettes,
Euler’s Theorem and its Dual.

A

In this appendix, the duality between slices and silhouettes of quadratic forms is

T~ reviewed. and an application ol this analysis to curvatures of slices and silhouettes is
< developed. Silhouettes and slices are first derived for ellipses in 2-D and for quadratic
:j surfaces in 3-D. In both cases, it is shown that silhouettes can be obtained in tangen-
™ tial space (dual spacc) by exactly the same operation that produces slices in point
:.:: space. The expressions for slices and silhouettes in the two examples are exploited to
i formulate two different derivations of Euler's theorem of differential geometry and of

~ its dual.

Throughout this appendix, the vector and matrix notation used in the equations

of geometric objects emphasize the duality between equations for curves and surfaces t

-

in point space and their correspondents in tangential space. The formulation also

clarifies the proposed duality between silhouettes and slices of quadratic forms.

vhM

A3.1. Slices and Silhouettes of an Ellipse in 2-D L

In this scction. the slice of an ellipse by an axis through the center is determined

= in terms of the polar orientation angle o of the axis; then, the orthographic silhouette

g of the ellipse on the same axis is also evaluated. The problem is first solved for a=0,

Y so that the axis is horizontal, then extended to different values of a by combining the

- previous result with rotations of the coordinate frame.

::_‘; An ellipse centered at the origin of the Oyz plane can be defined by the following

= implicit equation in point space.

E:: aj ap| |y

- v = =1 (A3.1)
. dqy2 dia z

e

i The equation for the tangents of the ellipse in dual space is derived by first considering

the equation of the tangent at the point Py(y,2 ) of the ellipse.
! - 225 -




bie |
Le- |
) - 226 -
b2
eh ap; arnz| Yo
éﬁ’ [y Pt =1 (A3.2)
B ; @13 A3 <o
" The tangential coordinates of a line, also named dual coordinates. are the coefficients |
)
I A, . A, of the equation of the line written as A, x + A, v = 1. The coordinates of the
O line in (A3.2) are hence given by
-~ A, a a y
- ¥ 11 412 Yo
oy = (A3.3)
o A, @y3 @z} |Zo
kL Conversely, a line with tangential coordinates (A, ,A. ) is tangent to the ellipse iff the
" point P, with coordinates
DO
ooy v ay; a T
y Yo 11 912 z
g = (A3.4)
i <o ax aj; A
\ is on the ellipse. The equation of the ellipse in tangential space. which is the equation
*- - . - . . .
E:‘_.: specifying all the tangents to the ellipse, is obtained by requiring the coordinates of P,
5 Y
;:{; in (A3.4) 10 satisfy the equation of the ellipse in (A3.1).
Se3%
-1 ~1
an ap; @y aga| |agy ap; ,)\y
A AL =1 (A3)5)
o y dyy A2 dyp @ |ay2 an| |A;
-1
ap; a A .
) . =1 {A3.6)
- Yo7 e an A
NN
::';::- The explicit tangential equation of an ellipse is hence a quadratic form with a kernel
\_n.“
N equal to the inverse of the kernel of the quadratic form describing the ellipse in point
| space.
:.';i The slice of the ellipse by the horizontal Oy axis and the silhouette on the same
»
2:-' axis are now determined. As seen in Fig.A3.1, both slice and silhouette consist of 1wo
e &
- points symmetric with the origin, which will be specified by the absolute value of
their y-coordinates, v, and y,,. First, the slice of the ellipse is determined as the
::Q:: points for which = =0, namely |
ay; ay2 Ysti
T = (A3.7)
djyx dan 0

» 3 » - 3 = - -“' -~ ... -h' - . - - - - ~ - -.' - - * h-‘ \
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Fig.A3.1. Slice and Silhouette of an Ellipse on the Oy Axis. 5
- An alternative expression for the half-width yg,.. is given by -
b 1 a;; ay 1 5
— = [ 1 OI g a 0 (A3.8) ‘
.\'.Sl-l‘(‘(’ 12 22 :"
The sithouette on the Oy axis is now determined as the intersection of the Ov
. axis with the vertical tangents to the ellipse. see Fig.A3.1. For these tangents. A. =0 f
& and A, =\, is determined by :
a,; a B DY ,
11 12 vsil »
Wy Ao O ) =1 (A3.9) )
v diy a3 0
[ “
. -1 !
ok 1 ay; ag 1 A
L= [1 o| (A3.10) !
AN aj2 422 0
R Vil .
) .
The coordinates y,;; of the silhouette points are given by v,;; = 1/A ;. so that ‘:
> B .:
: ’ A (A3.11)
c o= £ .
X Fsil [ ] Ol @iy as; 0
.
“
The projections and slices on an axis with a polar angle o are now determined by 5
v f.
K first evaluating the equation of the ellipse in a set of axes Oy .= , obtained by rotating "3
the axes Ovz by an angle a; see Fig. A3.2. N
~ 3
b R
i 3

T e e e .
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Oy, Fig.A3.2. Slice and Silhouette of an Ellipse on a Rotated Axis.

The coordinate transformation between the two systems of axes is given by

Cotts

o v cosa —sina Ya

e i = . (A3.12)
L z Sina  Coso Za

">

An equation for the ellipse in the rotated axes is obtained by inserting (A3.12) into

Ny (A3.1), which produces
SN
B . .
1SRN cosa sina | [911 912 cosa sina{ { Ya
'{"' v - . . =1 (A3.13)

) ATl =sIina cosa| {aqy aas —SIna COsa Za
o

-.:',," The equation of the ellipse in the rotated axes has the same form as (A3.1), but the
o ‘

(,‘_ 2x2 matrix is now the product of the three matrices in the above equation. Slices and
Y

n silhouettes on the Ov , axis can be obtained by applying equations (A3.8) and (A3.11)

.
4

in the rotated axes, resulting in

3
[
PR T R

S S
e

" 1 _ an 4912 COSax
255 — = | cosa sma] . (A3.14)
oY , = di1y dan SING
.\m'ue ~ el
a,, dp2 COS (A3.15)
V. = "OSr SING . .
sl ¢ n ] a 12 a 22 SING

I1 15 useful to consider a particular case where the principal axes of the ellispe are¢

orier.ted along the coordinate axes. let d; and d , be the half diameters along the Ov

St T
Yedn

Yo “r ,(- “n ,‘\. s \ \ ~. . \ . ‘
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and Oz axes respectively. The 2x2 matrix of the ellipse is in this case

ay dq2 1/d{ 0
= 2 (A3.16)
ayy as; 0O 1/d;

The expressions for the abscissas of the slice and the silhouette are given in this casc
by

1 1 5 1 .

B = Zt‘osa+ 5 SIn“a (A3.17)
Vilice 1 2

ys,;_,v =d 12 cos*a + a’zz sin‘a (A3.18)

A3.2. Slices and Silhoucttes of 3-1) Quadrics

In this section. the slice of a quadric by a plane and its orlhograghic silhouette are
evaluated. The expressions of these curves are derived with the same strategy that
was used to determine slices and silhouettes of ellipses. First, the slice and silhouette
on a particular plane. here the Oxv plane, are evaluated. then the result for a general
plane is obtained by cembining the previous result with transformations of axes. Only

the first step is discussed here.

In order to show a different facet of quadratic equations in point space and in
tangential space. general systems of axes will be considered, as opposed to axes with an
origin at the center of the figure used in the discussion of ellipses. In order to describe
quadrics in general axes. it is advantageous to use homogeneous coordinates (x v,z 7 )
for points in 3-D space. Any quadratic surface can be expressed in point space by an

implicit equation of the form

dy; a2 413 A4 x
@2 A2y d23 A2g v
X v -1 l | =0 (A3.19)
43 dp3 d33 d3g <
Qyg 424 433 daa !

The equation of the above quadric in tangential space is obtained by first considering

the equation of the plane tangent to the quadric at the point P v oV = of o). namely

Tl e
PR
P Wl 2




ay3 a)q

day a3 dog

- -

(A3.20)
Q33 d33 434

14 Q34 A3q
The tangential coordinates of the tangent plane at

ai» d;3
dry A3

Q33

Q34

P

; l-v .l' "‘ ‘j ‘l 4" .&

Conversely. a plane with tangential coordinates (XA, AN ) is tangent to the quadric

-

if the coordinates (x oV o= (f o) obtained by inverting (A3.21) satisf{y the equation of

the quadric in (A3.19). Therefore, the set of planes tangent to the quadric is charac-

terized by the equation

l M AL A l ) : (A3.22

It will be useful in the sequel 1o explicitly consider the inverse matrix in the above

equation, namely

'411' W -~ _013 014
A A @j3 )y

23 ¢ ‘ a33 A34

Aa A Q34 daa

The slice of the quadric by the Oxv plane is first considered. Points in this plane
are characterized by = =0, so that the intersection of the quadric and the plane is the

sct of points satisfying




>
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Py

d11 @12 913 s | & y
Q12 Aj2 A3 Aoy y

a3 3 d33 A3y

Q14 A4 Q34 Qyy 4 ]

This equation can be rewritten as an equation for homogeneous coordinates (x ,v,z ) of

.F points in the Oxy plane. .
- :
F 4y 212 Q4 x b
2 x vt ] ay3 a3 axy| |y =0 (A3.25)
e, 14 A24 Qg4 t ]
- 1

The above equation shows that the slice is a quadratic curve in 2-D, also called a conic. )
]
M The silhouette of the quadric in the Oxy plane is now evaluated. For that :
B matter, it is useful to first consider the silhouette generating planes which are in this
E.‘_: case. the planes with A. =0. For the quadric in (A3.19), the tangential coordinates of
) these planes satisfy .
o

An A A Al |[M &
Ay Ay Axz A | N )
2 l A, A, OA, I A A ol =0 (A3.26) ;
. 13 A3 Asz Ay

i’ Ajg Axg Azg Ayl | & ]
L It is easy 1o verify that the trace of a vertical plane (A, ,A,,A,=0,\,) in the Oxy :
; A
e plane is a line with coordinates (A, A ). The silhouette of the quadric is hence a
-~ curve with tangential equation
i An A Al | A X

lx\x_\.n" Ay Aan Aa| [N ] =0 (A3.27)
s Ay Ao Ay M

which is the tangential equation of a conic.
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N The point equation of the conic is then obtained as

Ea M = -1
All Al:’. AN

x
xyt ] A Ay A y| =0 (A3.28)
X Ajg Az A t

In summary. the slice of a quadratic surface by the Oxy plane is a conic: The
::" - matrix of its equation in poinl space is obtained by removing the third column and
'J-':" third row in the matrix of the quadric. The orthographic silhouette of a quadratic
: surface on the Oxy plane is also a conic; the matrix of its equation in tangential spacce
is obtained by removing the third column and row of the matrix of the tangential
D0 equation of the quadric. The matrix of the silhouette in point space is obtained from
B the matrix of the quadric in point space by first inverting this matrix, then removing

the third row and column and finally inverting the resulting matrix.
A particular case is now considered, namely the case of a paraboloid with equa-
A tion
-

l abl |y (A3.29)

- = N 2 v~ -2 = =
x /2(av®+ 2byz +cz”) l}’ z b c -
A '\‘
' i The above equation can be written as a quadratic form similar 10 (A3.19) for the
Y homogeneous coordinates (x ,v,z ,t ).
N 00
0a

t

l 0 b
10

xXy:z =0 (A3.30)

th ¢ =

o n o O
oo -

X%

Aty

The tangential equation of the paraboloid is

[

v

A

X
7,

"

Y
>
»

=0 (A3.31)
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where
-1
A B b
= (A3.32)
B C b ¢
The slice of this paraboloid by the Oxy plane is given by
C 01 x
Xyt ] OaO] |¥] =0 (A3.33)
100 z
which i1s equivalent to
a bl
= 1/ )2 (A3.34)
x /2 [1 0 bl lol ¥

The silhouette of the paraboloid is now determined. From the discussion on
silhouettes of general quadrics, it is known that its equation is quadratic; the matrix of
this equation is obtained by suppressing the third row and third column in the matrix

of equation (A3.31), then inverting the resulting 3x3 matrix.

0O 0 1 x
x vt I 0A 1ol |y =0 (A3.35)
1 0 O t
which is equivalent to
ab 1 (A3.36)
[ 10 b ¢ 0

When the paraboloid in (A3.29) is sliced by or projected on a plane Oxt making
an angle o with the Oxy plane, both the slice and the silhouette are parabolas; see
Fig.A3.3. The equations of these parabolas can be obtained by first applying a rotation

around Ox , similar 10 that in (A3.12). The equation of the slice is then

a b
b ¢

COSx
¢ 2 (A3.37)
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y

Slice Silhouette
Fig.A3.3. Slice and Silhouette of the Paraboloid

The equation of the silhouette is given by

x = - ! — t?
_ ab CcOSxx (A3.38)
(cosa sina| | sino.

A3.3. Euler’s Theorem and its Dual

Euler's theorem in differential geometry relates the curvature of normal slices of
a surface to the principal curvatures of the surface itself. At a point of the surface
with principal curvatures & ;, k ;. the curvature kg ;.. of a normal slice making an

angle a with the first principal direction is given by

Kgice = k jcosia + k psin’a (A3.39)

The dual of Euler’'s theorem relates the curvature of orthographic silhouettes of a
surface to the principal curvatures at corresponding points of the surface. When a
point of the surface with curvatures k ;. kK , is on the silhouette generator. the curva-
ture k; at the corresponding point of the silhouette on a plane making an angle o

with the first principal direction is given by

1 _ _]_cosza + %sinza (A3.40)

ksil k 1 2
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An equivalent formulation of the dual of Euler’s theorem in terms of radii of curva-

ture is given by

P = Picosia + pysinia (A3.41)

Our proofs of these two theorems will be based on the relation between curva-
tures and coefhcients of quadratic terms in the Taylor expansion of Monge parameteri-
zations. Our analysis 1s done for one point on the surface, which is chosen as the ori-
gin of the system of axes: the Ox axis is chosen along the normal of the surface.
Planar curves are also considered in a system of axes centered at the point of interest

and with Ox along the normal. The expansion for a curve is given by
x ==Yk v2+0(v3) (A3.42)

where k is the curvature at (0,0). The equation for a surface is given by

4
—
lad
~
ty &

+0((y,z)?) (A3.43)

where K = k;; is defined as the tensor of curvature of the surface at (0,0). Finally, it
is easy 1o see that second order expansions of both slices and silhouettes depend only

on the second order expansion of the surface atl the corresponding point.

The proposed theorems will be obtained in two different ways. First, the results
of section A3.2 are applied 1o the second order term in (A3.43), then, the curvature of
the slice and of the silhouette are obtained with (A3.42). The second proof is obtained
by considering the two operations of slicing and projecting in a plane parallel to and
close 1o the tangent plane, say the plane x =—e€. The slice of (A3.43) in this plane is
an ellipse so that the results derived in section A3.1 can be applied. This last analysis
of curvatures in terms of a section by a plane parallel to the tangent plane is well

known. The ellipse in question is usually referred to as the Dupin indicatrix.

A3.3.1. Proof by Operations on Quadrics

The second order expansion of the surface at (0,0) in (A3.43) corresponds 1o a
paraboloid to which equations (A3.37), (A3.38) can be applied.

2 LN e T



e alulf
e

"y

s,

l‘l .l.;
{'. ¥
"7*-‘1 !

Jy

-236 -

The slice by a plane Oxt at an angle a with Oxy is the curve specified by

ki ki
ki ki

COSx

x = =2 2 (A3.44)

cosa Sino .
sina

Comparing this expression with (A3.42) reveals that the curvature k ;.. of the slice is

kll kl?.
kl2 k22

= cosa (A3.45)

AlicCy

cosa Sina )
Sinx

This expression reduces to (A3.39) when k ;,=0. The expansion of the orthographic

silhouette of the surface on the Oxt plane is obtained with (A3.38),

X = 1/2 ! — -
_ ki ki cosa (A3.46)
lcosa Sma] .
k 12 k 22 SIna
The curvature of the silhouette is obtained by comparison with (A3.42),
1 ' ki ko COSQ (A3.47)
P = [ Cosa sma] ks kg sino .

This expression can be rewritted for p,;,; =1/&;, in terms of the radius of curvature

-1
tensor R = ﬁ

iy T2 COSQx

(A3.48)

o, = | COSx Sina .
p‘”l l 712 r22 Sino

The above form reduces to {A3.40) when r {,=0.

A3.3.2. Proof by Operations on Dupin’s Indicatrix

The slice of a surface by a plane parallel to the tangent plane at the origin is a
quadratic form when the slice plane is close to the tangent plane. A curve with the
same shape is also obtained by slicing only the second order of the expansion in

(A3.43) at any distance from the tangent plane. Considering the section plane

x = —/2, the slice is the Dupin indicatrix
k 11 k 1‘) xv
- = (A3.49)
V- k 12 k 7 ot ]
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E? The expressions obtained in section A3.1 for slices and silhouettes of an ellipse are now
applied 10 Dupin’s indicatrix. The slice by x = —!/z of the second order expansion of a
\! curve such as in (A3.42) is given by ky* = 1, which indicates that half diameters d in
the plane x = —!% are related to curvatures k by d *=k 1. This relation between

e
A4

half diameters and curvatures. combined with (A3.14) and (A3.15) produces the same

expressions for the curvatures as in (A3.45) and (A3.47).

A number of additional properties of Dupin's indicatrix can be easily shown.

E: First, the surface of the ellipse is given by

4 -~2. =2 =9
S=1Td]d2=7rkl"/<2‘=1rKg' (A3.50)

E}

WY where K, is the Gaussian curvature of the surface. It is interesting to note that diam-

. eters of the ellipse are related 10 curvatures of slices. and that the area of the ellipse is
ﬁ related 1o the Gaussian curvature. A further property of the silhouette curvature can
be easily demonstrated by reasoning on Dupin’'s indicatrix. This property, due 1o
Koenderink [43]). relates the silhouette curvature k. the curvature k,,, of a slice

parailel 1o the viewing direction and the Gaussian curvature kg . The relation can be

i obtained by considering the slice v, ,; of Dupin’s indicatrix in the direction with orien-
- tation (a+m/2) perpendicular 10 the silhouette axis with orientation . The expres-
u sion for v,,; is obtained with (A3.17),
. L= L sinoc + ! cos’a ( )
= s A3.51

;" dr:lu" d ]2 d ?:-,
.’.‘ The product y,..; ¥;; can readily be e’aluated, and the result transposed to curva-
" tures.
-
- Vrad Ysit = d1d 3 (A3.52)
o Therefore.
;:

kr‘ad ksil = Kg (A3.53)
Ny
o
o
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hOW
‘:.} A3.4. Summary
4 )
K In this appendix. we have first shown that silhouettes of quadratic curves and
| surfaces can be evaluated in tangential space in the same way that slices are evaluated
Ll . A 4 4
En in point space. Second., we have exploited the relations between curvatures and qua-
B o™
:;.‘_ dratic forms to derive expressions for curvatures of slices and silhouettes of surfaces.
*Fe

These two expressions can be considered as duals of one another. Finally. we have
20
T shown that the concept of the Dupin indicatrix, proposed initially for the representa-
Sor
3-';} tion of curvatures of slices of a surface. can also be exploited as a representation of
’;-\.':

S

silhouette curvature, radial curvature. Gaussian curvature and of their relations.
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S Appendix 4
; Representations of Surface Curvature

In this appendix. several descriptions of surface curvature are reviewed and com-

8 pared. including the classical method of differential geometry [47], representations
proposed in computer vision [44, 40, 63]. and the representation proposed in this thesis.

\ The various representations will be compared by relating them to the classical

representation of differential geometry in terms of the two fundamental tensors.

Features of representations of surface curvature investigated in this appendix
include expressions for curvatures of slices and silhouettes of the surface, parameteri-
zation of the representation, consistency of the representation, and recovery of the glo-

bal shape of the surface from the description of its local curvature.

Ad4.1. Representation of Surface Curvature by Two Fundamental Tensors

This section reviews the classical definition of surface curvature; further material

is found in any textbook of differential geometry.

Consider a surface X and a specification of the points of this surface by

parametric equations
X =%Xu,y) (A4.1)

The lines u =cst, v = cst define a coordinate chart on this surface, as pictured on
Fig.A4.1. In general, this chart is not orthogonal, its spacing is different in v and v,
and its local shape varies along the surface. At each point, the metric implied by this
, chart defines the expression for the length ds of a small arc specified by its increments
X (du ,dv).

. . o X, X, XX | {4 :
: ds?=daxdx = [dueav| |0 (A4.2) 2
X, X. X. X dv .

u v ¥ v g

The above expression is referred to as the Arst fundamental form, and the 2x2 matrix

on the right hand side, as the tensor of the first fundamental form. This matrix is
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=l

u

Fig.A4.1. Coordinate Charts Defined by the Parameterization

denoted by G and its components by £, F, G, so that

e
> %, X, %, X EF
= = (A4.3)
6=z % = x FG

u G

Denoting the 2-vector of the arc differentials (du dv )Y by ds. the first fundamental

form can be written in compact notation as

ds?=ds’ Gds (A4.4)

The curvature of the surface is related to the rate of deviation of the surface

from its tangent plane. and can be described by the form

— _i’u -Tn,, —1/2(_).(‘“ 'T.'l‘ + i..\' 'Tnu ) du
—dXdl. = ' iy = 7 T 1
dX-d n du d ) _1/2(5('.“_]”‘+X‘..lnu) TRy ln\ av
(A4.5)

—

where 1, is the unit normal vector. The above form is referred to as the second fun-
damental form, and the 2x2 matrix on the right hand side as the tensor of the second
fundamental form. This matrix is denoted by D and its componenis by e. /., g. so

that the second fundamental form can be written as

s
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- e f du
—d X = , Ad.6
axdT, = |du dv| | o] | (Ad.6)
or, in compact form, as
—d%dil, =ds" Dds (A4.7)

It can be shown that the tensor D is also related to projections of the second deriva-

tives of equations of the surtace onto the unit normal

= 4 f i’uu 'ln i'u\' *tn
/ g xu\' 'ln vyt tn

Transformations of the matrices D. G in changes of parameterization are now

investigated. The resulting expressions justify referring to these matrices as tensors,

and characterize the types of these tensors.

Consider a different parameterization (u,,v;) of the surface I discussed above,

where the old parameters (u ,v' ) are related to the new parameters (u 1,v ) by

u =U(U1."])

v (ugyy) (A4.9)
The fundamental tensor C—;] is given, in the new parameterization, by
G, =1 G (A4.10)
where J is the Jacobian matrix of the transformation (A4.9),
Qv
j— 01 _ 0y Oy (Ad.11)
gu,” | O
gui 0V
Similarly, the tensor D is modified as
B,=) D1y (A4.12)

Matrices which transform as in (A4.10) and (A4.12) in coordinate transformations are

| |2

twice covariant tensors. This justifies referring to G and D as tensors.

. v
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A4.1.1. Curvatures of Slices and Silhouettes

When the surface is sliced by a plane perpendicular to the surface at some point, a
curve for which the principal normal is identical to the normal to the surface is
obtained. It is interesting to relate the curvature of these curves to the two tensors of
the surface. Curvatures of normal slices and their dependence on orientation of the
slice completely characterize the local shape of the surface at a given point. For a
curve oriented locally along ds and with a principal normal along the normal Tn 1o

the surface, the curvature is given by

e f du
[du d"l /gl |av ' DE
Ketice = = T = (A4.13)
E F du ds’ Gds

Both tensors D and G contribute to determine the curvature of slices of the surface.
and hence of the surface itself. This is due 1o the fact that D determines the deviation
of the surface from its tangent plane. relative 1o the parameterization in (u ,v ). At
the same time, the metric implied on the surface by this parameterization is described
by G. In order to determine the shape of the surface independently of the parameteri-
zation and the curvature k., . of 1ts slices, it is hence necessary 10 combine the infor-

mation contained 1 both tensors.

The dependence of the curvatures of slices of a surface on characteristics of the
surface 1s formalized 1in Euler’'s theorem. which is analyzed in detail i Appendix 3.
The theoram states that the expression of the curvature in (A4.13) has a niaximum

Value Ky and 4 nnnimum value k5. and that these extrema correspond 1o orientations

, ds which are 907 apart. The extrema of (Ad.13) are investigated in the next section.
N

~

- during the discussion of curvature invariants.

’

It will be shown in a later section that the curvature of a silhouette of the surface
L in a plane parallel 10 the section plane corresponding to ds can be related to the two

tensors at the corresponding point of the silhouette generator, by the expression

. B ,\'_.\__A el e e e T s e e
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E? E F| |du
du d"’ F G dv
! Ket = -1
| o EF| e/ E F| |du
7 ‘7
l . J FGl |/ g F G| |av
ds’ G ds
= g (Ad4.13)
P, ds'GD Gds
o In summary. given the two fundamental tensors and an orientation defined in the
a local parameterization of the surface, it i1s easy 10 determine the curvature of the slice
- or the silhouette of the surface along the given direction. Note however that, when
Y. the orientation is specified with respect 10 a global system of axes. it may be difficult 1o
describe this orientation with the local parameterization.
A4.1.2. Consistency and Inversion of the Representations
. It is well known 1n differential geometry that the six components of the tensors

G. D are no independent; they are related by a series of relations known as the
Mainardi-Codazzi relations. Furthermore, it has been shown (Bonnet's theorem) that
given any set of six functions (£,F,G e,/ ,g ) which satisfy the Mainardi-Codazzi
. relations, it is possible 10 synthesize a surface for which the two fundamental tensors
have the given forms. The reconstructed surface is unique up to a solid translation
g and rotation. The Mainardi-Codazzi relations are hence necessary and sufficient con-
sistency relations between the components of G amd D. These :elations can be found
& in any textbook of differential geometry; their form is relatively obscure for the non-

expert.

Ad.1.3. Parameterization

. When the surface shape is defined by the tensors G and D. these tensors are refer-
enced to the values of the parameters (u ') at the corresponding surface points. If
this representation is used as a model for a known surface in a recognition system,
matching with a measured surface may be extremely complicated if the measured sur-
face cannot be defined in the same parameterization. In order to relate parameteriza-
tions of the model and of measured surfaces. i1 is necessary to define "canonical”

parameterizations. Examples of  proposed  parametlerizations are  Monge
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parameterizations [40]. parameterizations along lines of curvature [63]. and coordinates
on the Gaussian sphere [44]. The advantages of each of these description modes is that
the Monge descriptions are easily obtained from image measurements, the lines of cur-
vature are intrinsic to the surtace itself, and represcntations with the Gaussian sphere

are invariant with viewing direction.

[t 1s possible 10 use any of the above three parameterizations to define surfaces
with the two fundamental tensors. When lines of curvature are used, it turns out
that the tensor D s diagonal. In that case. the shape of the surface is determined by
the five functions £,F ,G ,e,g [63]. The redundancy of the representation is reduced.

but not eliminated.

A4.2. Definition ¢f Curvature by the Shape Matrix and its Invariants

Since the intrinsic curvature of a surface is expressed in the combination if the
tensors D and G. it is tempting 10 develop combinations of these tensors, in order to

describe curvature by a single form. An example of this type of combination is given

by the "Shape Matrix” B (64]

B=G'D (A4.15)

It 1s easy 1o derive the rule tor the transformaticn of B in changes of parameteriza-

tion. from the rules for G and I—_j:
B,=C,'D,=76» 'y’ Dy =7'G 'DJ
B,=1"'BJ (Ad.16)

The above transformation rule determines that B 1S @ once covariant, once contravari-
ant tensor. It 1s casy to show that for this type of tensor. the determinant and the

trace are invariant in courdinate transf ormations

tr (B =1r (3B =0 (JJ7'B) = 1 (B)

det(B,) = detI'BI) = dew™ ! detB ded = detB (A4.17)
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WU
R = ;
) As a result. the eigenvalues of B are also invariant in changes of parameterizations. A
. The relation between the eigenvalues of B and the principal curvatures is now deter- “‘
mined. The principal curvatures k;, K, are defined as the extrema of normal curva- ,.
"h-
N tures o
\ ) Ny
min $TD ds
K12 qax =77 — (A4.18)
; : ds’G ds o
]
) It is clear that the right hand side of the above expression does not depend on scale fac- !
) tors in ds. Therefore, the extrema are also obtained for vectors ds with a fixed scale. W
min =

Kia= ds’Dds; constraint: &' Gds =1 (A4.19) .
= max -3

The above constrained optimization can be solved by introducing a Lagrange multiplier }‘
A t
! for the constraint, -
min - 3
ko=  &TDTE-A|HEH -1 (A4.20) %
= max ]
/ The stationary points of the above expression can be evaluated by eguating its deriva- 3
tive with respect 10 ds” 100. 3

> === |\'
~ 2Dbds-2A8ds=0 (A4.21) )

» ¥
o L , -1 L : ¥

The above expression is left-multiplied by the matrix G . which is nonsingular, to :
yield o

~

4 -1 A,
A G D-x1jd&=0 (A4.22) o
’,\
n i

, The stationary points of the curvature in (A4.18) are hence obtained when ds is an S
= Pl
eigenvector of B It can be verified that these points are true extrema. l.et the nor- e
malized eigenvectors of B be d;. d,. and the corresponding eigenvalues be A, A,. The 3
§.¢

extrema of the curvature are given by "
) _ :ﬂ_
aT ﬁaw aTGBa') aT‘)GA 1& '.\_
o = 12 1.2 _ 9102 1.2 _ Y2 1.2 912 -\ (A4.23) R

1.2 - = = A2 -2
d/,64d,, d/,64d,, d{,G4d,, 22
\}
The tensor B has hence the remarkable characteristic that its eigenvalues are the prin- 0
cipal curvatures. As a consequence. the trace of B is equal to twice the mean .:
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Lk
o
::' ] curvature and the determinant of B is equal to the Gaussian curvature of the surface.
1'.’ '] —
L
o These properties show that B is closely related 1o intrinsic curvature properties of the
7! surface. However, it will be shown in the next section that curvatures of slices and
LA
f:. N silhouettes of the surface with generic orientations cannot easily be determined with
N only the tensor B
"‘ A4.2.1. Curvatures of Slices and Silhouettes
{."i
SeM The curvature of a slice of the surface oriented along the vector ds on the surface
190 Y3
et is given by
e _
o TR 7
P v -3 Dd &' GBE (A4.23)
o o slice = C SE - =
2 &' Cd I G
ey It is clear from the above expression, that when a slice is defined by its contravariant
-;{~_: vector ds. both B and G must be known 1o determine its curvature.
g The curvature of a silhouette of the surface can be obtained by applying to the
above expression. the duality between the curvature of a slice and the curvature of a
silhouette on a plane parallel to the slice. This duality is demonstrated in Appendix 3.
'j:_::.j and it is shown that the radius of curvature of the silhouette depends on the principal
f-ji::-_' radii of curvature of the surface by the same expression that determines the curvature
of the slice 1n terms of the principal curvatures. The dependence of the curvature of
[\ —_
P the slice on the principal curvatures is explicitly obtained by decomposing B in
A %‘" (A4.24) into its diagonal factorization
A%
'y = K] O }
. ds” GL L7 ds |
[ 0 x, {A4.25) ‘
2 Kstice = |
A ‘.:.": aET 6 ag |
NG
SRR =
b Y.n where L is the matrix formed by the two normalized eigenvectors al. 62 of B The
o duality argument determines that the curvature of the silhouette is given by
oY
AN
N0, K. = ds” G ds
TN g =
N V/xy O (A4.26)
&"GL| L7 ds
LK ]/K3
s
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The three factors in the denominator of the right hand side are easily recognized as the

=1

diagonal factorization of B so that
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¥, Ad.2.2. Consistency, Completeness and Reconstruction 3
A number of representations of surfaces based on the shape matrix B or on its j:

invariants have been proposed in the computer vision literature.

First, the extended Gaussian image[44] represents a surface shape by only one

j ]
-P invariant. the Gaussian curvature, parameterized with the normal orientation of the E
R surface. It can be shown that this representation is complete for a closed convex sur- f.
- face. and that its consistency can be expressed globally by three scalar constraints. -
n These constraints are easily formulated when the extended Gaussian imnage is specified ﬁ
o a distribution on the Gaussian image of the surface, specifying the inverse of the f
’ Gaussian curvature of the object. The constraint is then equivalent 1o requiring the :'
center of mass of the distribution to be at the center of the sphere. The inversion of 73
the extended Gaussian image is laborious [45]. Because of the consistency constraints, $
. it is not possible to modify the value of the extended Gaussian image at one point only f
and therefore 10 assess the effect of point values on the global surface shape, but there =
are strong indications that the global shape of the surface is affected by any local :
change of the Gaussian curvature function. Whether or not the above conjecture is .3
- true, there are no simple relations for determining the local shape of the surface from ’“'

only the Gaussian curvature function, and as a consequence. no simple relations for

evaluating the curvatures of slices and silhouettes of the surface. Aside from the

-Pa
v s T
*1:‘4!'

Sl

disadvantages discussed above, the extended Gaussian image has a number of desirable g
i : W

characteristics, such as its invariance with rotations and the ease of computation of a

this representation from experimental range maps or needle maps.
In other work, Besl and Jain have proposed a representation of surface shapes by

the two invariants of the tensor B. namely the mean curvature k,, = Y2(k, + k,) and

the Gaussian curvature K, = KK, [40]. The parameterization proposed for indexing

the values of the invariants arc image plane coordinates, a choice equivalent to a

B
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Monge parameterization of the surface with a base plane perpendicular 10 the viewing
direction. Since this representation specifies moré information than the extended Gaus-
sian image does, 1t is likely that it is complete and redundant, so that consistency con-
straints must be satisfied by the two invariants. However, the parameterization is
different than in the extended Gaussian image. and the uniqueness and consistency
issues have not been carefully addressed in this case. Although the mean and Gaus-
sian curvatures determine the local aspect of the surface shape, they do not determine
the orientation of this shape with respect to a global reference. so that this representa-
tion does not provide simple expressions for the curvatures of slices and silhouettes of
the surface. To the best knowledge of the author, there is no algorithm for recon-
structing the surface shape. given the two invariants as functions of coordinates in the

image plane.

A4.3. Representations Proposed in this Thesis
P P

The Curvature Transform (CT) introduced in this thesis specifies a single tensor
representing the local curvature of the surface, as a function of normal orientations.
The parameterization of this representation is identical 10 the one used in the extended
Gaussian image, but the function represented is more complex. As defined in Chapters
3 and 5, the characteristic represented by the CT is the inverse of the "tensor of curva-
ture” of the surface. expressed by its components in axes parallel to the local axes on
the Gaussian sphere. The curvature tensor K can be defined in terms of second deriva- +
tives of local Monge parameterizations of the surface

O'x: /9y7  §7x:/8v: 0,

K= . , , (A4.28)
0 x;/3vi0=  9°x /9857

S &S

" where x; is along the normal. y, parallel to the corresponding parallel on the Gaussian

i sphere, and Z; parallel to the meridian of the Gaussian sphere. Comparing this expres-
E sion with (A4.8). it can be shown that the tensor K is equal at each point of the sur-
h_:;::z face to the tensor D for a Monge parameterization in local axes at the point. In order
oy

= X X . * *
to define K at a given point P, a change of parameters (u,v') —(u ,vv ) must be

found such that, at P,
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K=1"DJ (A4.29)
G' = J‘TEJ‘ = ]22 (A4.30)

Indeed. the metric of the local Monge parameterization at P, is Euclidean, so that the
metric tensor must be the unit marix I,,. 11 is imiportant to note that the parameteri-
zation by (u" ") applies only to the point P, and that. although the tangent vectors
X _+. X . are along the local directions Tg. Tn' the parameters (u" A7) are not directly
related 10 the orientation angles €. 7 themselves. Assuming that J' is regular. equa-

tion (A4.30). can be modified to
JI17=¢" (A4.31)

Any matrix J salisfying the above equation is the Jacobian of a parametler change
which leads to a Euclidean metric around P, A solution of this equation will be

written formally as

*
The solution of (A4.31) is ambiguous since a product of J by any orthonormal 2x2
matrix is also solution of the equation. The ambiguity is resolved by requiring the
vector X,, 10 be horizontal. The expression for the tensor of radius of curvature is

written formally as

== - /2= - /2
K=G "'Bg" (A4.32)

R=C '@ (Ad.33)

Explicit expressions for obtaining the components of K in terms of the components of

G and D were determined inl62]

- lez2=2/z - +gz.°]
1n= Z
lez (Gz,—F:z. )+ f(Ez 2~Gz ) —gz, (—Fz, +E=.)]
k2= 5 (A4.34)
Z~NEG - F-
- le (Gz, —F:z.)*+2f (Gz, —Fz N—Fz, +Ez )+g (—Fz, +Ez.)?*]
B Z(EG — F?)

., ".rz.f_.»

-.'* "\. \-"
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o
o
:_}: where =, . Z,. denote partial derivatives of =. It turns out that the tensor K is invari-
R
Lo ant in changes of the parameterization (« ,v' ), and that its eigenvalues are identical to
:_._\ the eigenvalues of B It is interesting 1o note the similarities and differences between
N —
‘\:.': the tensors R defined in (A4.32) and B defined in (A4.15). Major differences between
~A = £ =
i K and B are that K 1s symmetric while B is not, in general; as a consequence, K has
e three independent components while B has four components. Furthermore, R is
K —
‘::I-', related 1o Jocal axes on the Gaussian sphere while B is related to local axes determined
«-,'.v
Al by the parameterization.
¢ < - .
N Ad4.3.1. Curvatures of Slices and Silhouettes
T
"o I has been shown during the demonstration of the Silhouette-Slice theorems that ‘
P the radius of curvature of the silhouette is simlpy related to the radius of curvature
f‘ tensor R, which is the inverse of K, by
oy
o _ = | cosx
e P = | cosa sma] R | .. (A4.35)
o sina
aar where a directly characterizes the orientation of the projection plane in the local axes.
-:j';j Similarly, the curvature of a slice of the surface is given by
ey . = | cosa
Koice = | COsa sma] | N (Ad.36)
L
- The above expressions emphasize that the shape of slices and silhouettes of the surface
-_"’n_' ) =
ey are easily determined from only the tensor R specified by the CT.
o A A4.3.2. Consistency, Completeness and Reconstruction
e
"
J 3
-:'.:- In Chapter 5. siumple first order differential equations were determined for
. “l
parametric equaltions of a surface. given its CT. The existence of these equations !
Y implies the completeness of the CT. In addition, consistency relations for the CT were
™
J’. «
i derived simply by requiring equality of the mixed derivatives of the parametric equa-
-
y : tions in terms of the CT. These relations are equivalent to the Mainardi-Codazzi equa-
tions for the representation with the two fundamental tensors, but they are much
v
o A
2, simpler.
2
b l'J‘.
Ry \'f'
e
>%
3 ‘J.'
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AJd.4. Discussion

When comparing the various representations of surfaces reviewed in this appen-
dix. it appears that the Curvature Transform has a number of advantages for describ-
ing surface curvature. The CT has only three independent components, while preserv-
ing completeness both locally and globally. It is easy 1o determine the shape of slices
and silhouettes of a surface defined by its CT. Finally. the consistency relations and
the reconstruction of the surface shape are straightforward for the T representation.
An additional advantage of the CT is the existence of closed-form relations with the
other two representauions proposed in this thesis, namely the Support Transform and
the Vector Support Transform. The major disadvantage of the CT is its limitation to

convex objects.

When choosing a representation for a particular application involving descriptions
of surface shapes. several factors must be considered. An aspect which was not dis-
cussed 1n this appendix is the estimation of the representation from experimental
measurements and the robustness of these estimates. Experiments with the new

representation must be performed before it can be compared with other representations

based on this criterion.
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Appendix 5
Curvature of the Projection of a 3-D Curve

In this appendix. the radius of curvature oi the projection of a 3-D curve is com-
puted in terms of the radius oi curvature at the corresponding points of the 3-D curve

and the orientation of the viewing direction relative to the local Frenet trihedron.

Consider a point O on the curve C, and the system of axes Oxvz oriented along
the principal normal n=x. the tangent =y and the binormal A=z at O see
Fig.AS.1. Including terms up to the second order, the curve can be described around

O by the equations

_ 1 >
« = —
2p,
(A5.1)
y=s
=0

where p, is the radius of curvature at O; The viewing direction V is defined in the
axes Oxyz by its latitude 6 and longitude —€. A rotated system of axes Oxp vp Zp 1S
also considered. such that Oxp 1s along the viewing direction v and Ovg is on the
Oxv plane, see Fig.AS5.1. The projection operation is trivial in the rotated axes, as it

corresponds 10 retaining the vp and Zp coordinates and discarding xp .

\v/’

Fig.A5.1. Curve C | local axes Oxy= and rotated axes Oxg yp Zp .
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) .
E The transformation between the two systems of axes Oxyz . Oxp vp Zp is given by 1
P | -
} XR cosécosf —sinécosf sinf xl
< Ye | = sin§ cos§ 0 y (AS5.2) i
N . . .
~.: e —cosésing  sinésinf  cosf .:' !
;-; | ‘
W For points in the Ovv plane. the projection is obtained by merely applying (A5.2) to )
|
N the x. v coordinates of each point. then discarding the xp coordinate in the rotated 1
. A
3328
. frame. |
b YR siné cosé x (AS.3)
zp | T { —cosésinf sinésinB| |y
j:j Applying the above transformation to the parametric equations of the curve in (AS.110
N produces parametric equations tor the projected curve
2
: s

~ vg = —sing + cosé s
- s (A5.4)
N . s- . .
ks zg = cos§sinf—— + sinésinf s
* “rMo
‘J The radius of curvature is now evaluated at the origin, using the standard expression
’)-? - .« /3
2 (vg + 207
e p= 0 (AS.5)

YRR T YRR
l'
:‘ where the dots stand for derivatives with respect to the parameter of the curve. here
L)
. s . The derivatives in the above expression are evaluated at the origin as
o
)
X . .

. . . . siné .. cosésinf

' ve(0) = cosé, Z4(0) = sinésinf, vp(0) = — .f' Zp(0)= _cosgsind (AS.6)
15 o 3]
A , -
! : As a consequence. the radius of curvature of the projection of the curve around O is
l
4 given by
W . .0 . >
z _ (cos¢ + sin*¢sin®0)¥? (1 — sin®¢ cos%9)3/? 0 (A5.7)
2 s sinf ° sinf © '
>,
5 This result is consistent with that obtained in section 7.4.2.
R
o5
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’ Appendix 6 )
' Evaluation of two Differentials in Chapter §

3) In this appendix. the differentials of locai coordinates of a curve and of a surface

i are evaluated in terms of global angle differentials. providing the expansions of equa-

L& tions (5.13) and (5.41) in the text. A

-

The case of a curve is addressed fir.t: it is illustrated in Fig.5.3 in the text. In

——e
:,‘,JA

X1

fixed local axes, an expression for the differential d R(y) in the neighborhood of Py is
obtained by the chain rule

dXI (:1 ) d:z dm:z

a% ()= d:,  dm., dv

dy (A6.1)

s AP

where m., is the gradient of the local Monge equation defined in section 3.2.4. The

first two derivatives in the right-hand-side of (5.13) are obtained for the particular

Eait ol
A A
B

curve shape at P from (5.12). The last derivative in (5.13) depends on the relation

$
ﬁ between the local gradient and the global orientation angle, a relation discussed in sec- i
tion 3.2.4. y
k- .
t-: Each of the factors in (5.13) is now evaluated.
Parametric equations for the curve C around P, are easily obtained from (5.12),
Uy namely A
. ’
‘ i 0 ! -1 3 s
. - = 1 o) + 0 ( _]/221 Po & ) + O (:1 ) i
P - 0 )
o = 1 <} + O (zl )
¢ R, =51, +0(% (A6.2)
) ]
! "3
3
» J
; X
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% The first derivative of the above equation with respect to the parameter Z; is given by

dxl
Ao dz l 0
1

K —
b =
R d.:[

+O(ZZ)

<t

\-V' d XI /d:Z = TZZ + O (:z ) (A().3)
The derivative dz; /dm.,; is now evaluated. In the neighborhood of P, the local

gradient m.; on the curve C is given by

\\‘ m., = axl /651 = -po—]:l + O(:lz) (A()J)

It follows that

bt z = —pym,; +0(m}) (Ab.5)

j-',’.\ so that

-

dz,

= =-py +0 (m:l- ) (A6.6)
‘\.- d’n:[

\
1
SoY Finally, the local gradient is related 10 the giobal orientation angle Y by (3.61) i
v ma =_(‘~IJ—¢'O)+O((\1J_\IJ0)2) (A6.7) |

!

o so that

e am
b zl
=—-1+0(yYy—yy) (A6.8)

The derivatives obtained above are inserted in equation (5.13) to obtain the differential

) d R, in local axes

dx,
d:[

0]

0
= I]l (—pu) (=1)d Y + O (Y—y) = pg

5% d%, = Po T;( dy+ 0 (\b"\bo) (A6.9)

oy which is the result exploited in the text, in equation (5.14).
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. Ly
‘:jZ' Differentials of coordinates of a surface are now investigated in a local reference R
frame around the point P, This frame is illustrated in Fig.5.7 in the text. An expres- ~
. sion for the differential in the local axes Px; y, z; is obtained by the chain rule .
e . D)_(.l (Z( ) DZZ szl N
o dX; = — ag (A6.10) -
- DZz Dm;: D§ "
? where expressions such as DX, /DZ, denote Jacobian matrices, ., = (myl m_, 7 s .
N the 2-vector of local gradients, and ¢ & is the vector of normalized global angle :
,»;;; differentials d & = ( cosnd € d m)7. The frst two Jacobian matrices on the right b
| ¥ '
hand side of (A06.10) are obtained for the particular surface shape around P from
:;:: (5.39). The last Jacobian matrix in (A6.10) is a relation between local slopes and glo- .
L E
bal orientation angles which can be derived from relations obtained in section 3.2.4. .
I-* Each of the factors in (A6.10) is now evaluated in sequence. 3
Parametric equations for the surface around P are given by
: X 00 I o o) '
‘ X 11 712 ! 3 ,
} v, = 1 O . — 1A 0 l Y & 0 0 - + O ((yl oy ) )
‘ -l 12 722 -
- 01 0 y
()
) 00|y, ) X
v = 10 _ +O((Vt oy )-)
01
R .
o . ,
X, =152, +0(Z7) (A6.11)
h
> - =
t where I35 is a 3x2 matrix whose columns are the canonic vectors €,. €3. I35 is also the 3
- matrix of the injective transformation from the local tangent plane Pgy;z, into 3- .
space referenced by Pyx, v, z;. The Jacobian matrix of the above expression is given )
by :
o
5 b
1o ;
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IRY,
ol
(s
A 0x; 0x;
ot b 9%
o » 9

- 00
av v

oo roniirenl el RE IRA SR
B o 01
% oy 651
A oV 8%
N
e D,
e — =15+ 0(z%) (A6.12)
R '4' D 1
k)
o ‘ . Dbz, .
0N The Jacobian matrix is now evaluated. The local gradient fil,; on the sur-
1_;'-:\ Dm?_\"
'l."n.
K face £ in the neighborhood of P, can be obtained from (5.39)
. o o)
- my 11 712 Y (22)
‘:,.‘. = - + O Z
i m ria T <1 1
>
) _]
] m, = —R, z, +0(z?) (A6.13)
::j::l: This equation is inverted 1o produce
v, ri T [m
- 2
- == 0 0 + O (m )
Vil i 12 Tan m -
e -2
W,
i 7z, = —R,m, + 0(m23) (AG.14)
S0
o The desired Jacobian matrix is then obtained by differentiation.
':\::\
Lo oV oV
'?:_::;: am\-: Bm;z r 10] r 1()2
' = — +0(m3)
- - ) £
% 0= 0= rxoz réz Z
e 0w 0Mmy
e
12
>0 D
RO zz - ,
= —R0+O(mz,r) (A6.15)
Y- Dm:i
N
0,
0"~l
h. t>‘
a:; c"
I A < - 0 - Lt B “ =
[} ’ ~ *' ~ s " mr .. LEF AR .t
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\:., Finally. the local gradients are related to the global angles by (3.61) from which

the following form is derived for the last Jacobian matrix in equation (A6.10).

oy, am).z

cosmgé oM [y \
"y om.,  dmy | i 0 1| TOUWE=Eom=no)7)
: cosngé  9n

b |

— = = —122 <+ O((g-—fo)z) (Ab.16)

O
A

. -
'

where I, is the 232 unit matrix. The expressions obtained above fo: the Jacobian

:flva.'

matrices are inserted in equation (A6.10) and produce an expresston {or the diff erential

d X. in local coordinates, valid 1o first order around P . The expression 1s exact at P .

o
v and since P, is generic, applies to all regular points in appropriate local axes.
‘ dx
5.'. 1 00 11 T2 cosnd &
e —
> dvi| =110
T2 722 dn
i d: 01
d¥, =13, Rd¢ (A6.17)

A differential for the surface in global coordinates is obtained by applying the coordi-

nate transtormation in (3.10) to the above differentials

he |

dx cosécosn —siné —cosésinm 00
- _ e 11 712 cosnd ¢
e dy| = | sinécosn cos§ —sinésinm 10
> : . 12 T22 dmn
o d: sinm 0 cosm 01
K =
el dX=RFfC1;,Rd¢
v which is the result exploited in the text, in equation (5.42).
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