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Education for the Future of Software Engineering 

Mary Shaw 

Abstract. The discipline of software engineering is developing rapidly. Its practitioners 
must deal with an evolving collection of problems and with new technologies for dealing 
with those problems. Software engineering education must anticipate new problems 
and technologies, providing education in the enduring principles of the field in the con- 
text of the best current practice. Since changes in the discipline cannot be completely 
anticipated, software engineers must be able to assume responsibility for their own 
continuing professional development. This paper describes significant changes now 
taking place in the field of software engineering and proposes some goals and objec- 
tives for the professional education of software engineers. 

Software engineering is concerned with finding practical solutions to computational problems. 
Over the next few years, software engineering will be required 

• to respond to society's broadening needs and higher expectations for software 

• to deal with constantly increasing expectations for software functionality and perfor- 
mance 

• to gain intellectual control over software development and support. 

The major challenges that arise from these requirements will be to broaden software 
engineering's traditional scope of attention and to increase the scale of systems that can be 
successfully developed and supported. This will require significant changes in the character of 
the problems that we work on and the methods that we use to solve these problems. 

The demand for software is rising more rapidly than our ability to supply the desired capability. 
For example, Figure 1 uses code size to estimate software demand. The growth rate for this 
particular application, onboard software in manned spacecraft, is nearly 30% annually. The figure 
compares this demand growth with the growth of programmer productivity, which is only about 
5% annually. We clearly need to find ways to increase not only the productivity of software 
engineers but also the rate at which their productivity grows. This problem is one of several 
software engineering problems aggravated by increasing system complexity. Software engineer- 
ing education will play a significant role in solving these problems. 

The argument of this paper is as follows. As system complexity increases, the essential charac- 
ter of the most critical problems of software engineering also changes. In order to cope with the 
complexity of large systems and the new kinds of problems that emerge, software engineering 
must move from an ad hoc basis to a technology-intensive basis rooted in sound models and 
theories. The principles we use and teach must transcend current practice; they must be codified 
and teachable. In some cases, such principles can be identified; in other cases we have some 
systematic understanding that is incompletely codified; in other cases we make do with rules of 
thumb while trying to develop sound models and theories. Software engineering education must 



100 MBits   -F 

10MBits 

Code 
Size 

1 MBits 

0.1 MBits 
1960 1990 

Figure 1:  Relative growth of software demand and productivity 

prepare practitioners for future growth by teaching them principles based on sound models in the 
context of the best current practice. 

1. Effects of Scale on Software Engineering 

Software engineering has progressed from solving small problems to solving quite large ones. At 
each stage in this history, the attention of the software engineering community has been directed 
at some set of issues that can be understood as characteristic of the major problems of software 
development at that particular time. Each new generation of systems has been more ambitious 
than the previous, and new problems emerge as a consequence of this increase in scale. A 
significant increase in system scale and a corresponding shift in the character of the critical 
problems seems to take place roughly every decade. 

Each time there is a quantum increase in the complexity of software systems, some different 
aspect of system development becomes the intellectual bottleneck. In the 1960s the problem 
was writing understandable programs, or programming-in-the-small, and the solution was imple- 
mented through high-level languages. In the 1970s the problem was organizing large software 
system development, and the solution was implemented through tools for 
programming-in-the-large. The significance of the distinction between programming-in-the-small 
and programming-in-the-large is that ft is necessary to think about these two kinds of problems in 
essentially different ways; when the distinction was established, the attention of a significant 
fraction of the software engineering community was directed to that new problem. When a shift of 
bottleneck takes place, the problems encountered with smaller systems remain, but the new 
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bottleneck forces the field to attend to a new set of problems in a fashion that may be essentially 
different from the way we thought about previous problems. The earlier, smaller problems don't 
disappear, however; they usually remain as subproblems in the larger systems. 

In the decade since software engineering recognized programming-in-the-large as a significant 
issue, the complexity of software systems has grown by another leap, and another shift is now 
taking place. Software engineers must now deal with complex systems in which software is one 
of many components in a large heterogeneous system and in which the software is expected to 
serve as a surrogate for a human programmer, taking an active role in the development and 
control of software systems. We will describe those new modes of operation as 
program-as-component and program-as-deputy, respectively. This analysis is elaborated in 
[Shaw 86]. 

Identification of these new modes recognizes a change in the character of the problems that 
depend on computational solutions as well as a change in the character of the software develop- 
ment and support process: 

• They are not necessarily amenable to algorithmic solution. 

• They involve judgemental elements such as selecting among competing, non- 
absolute preferences. 

• They depend on problem-specific knowledge that must be consulted dynamically. 

• They are so complex that solutions cannot be specified a priori but must be evolved 
through experience. 

• They involve integration of a heterogeneous set of system components including 
hardware as well as software. They require graceful accommodation of unreliable 
data and other vagaries of physical systems. 

The role of program-as-component arises in large heterogeneous systems. Such systems in- 
clude programs in multiple languages for complex hardware systems; they may have mechanical 
constraints, produce noisy data, or impose real-time constraints on operation. 

The role of program-as-deputy arises when large, creative portions of the program development 
process are delegated to software. This shift has been taking place gradually ever since the first 
symbolic assembler assigned addresses to variables. As time has passed, more and more ex- 
pertise about various aspects of the software development process has been incorporated in 
programs which perform increasingly creative subtasks within the software development and 
management process. 

These shifts reflect only the changes in the technology of software development and support. As 
system scale has increased, issues from several other areas have also become critical. 

• Professional Issues: Software engineering will experience a significant personnel 
shortfall for at least the next 5-10 years. Attention to education, career paths, and 
professionalism will help to take up the slack. 

• Legal Issues: Software is unlike either hard products or books. As a result, neither 
patent law nor copyright law is quite appropriate for software products and tools. 
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Intellectual property law for software must deal with such issues as software protec- 
tion, product liability, impediments to dissemination of new technology, and rights in 
technical data. 

• Economic Issues: Costs of software development arise from many sources, and 
software consumes an increasing fraction of corporate resources. In addition, ac- 
counting rules for software influence corporate decisions about innovation. Software 
engineers often fail to appreciate cost components other than the ones directly as- 
sociated with creating the software. 

• Managerial Issues: Management concerns have interacted with software technology 
ever since we recognized the issues of programming-in-the-large. As systems grow 
larger, managerial issues expand to include improved costing and estimating tech- 
niques, the visibility into software development necessary for effective control, ade- 
quate performance measures for human organizations, and incentives and risk 
reduction measures to encourage more productive software technology. 

Although these areas have not generally been covered in software engineering education, their 
role now requires attention. 

The significance of these shifts is not so much the specific developments I have predicted, but the 
inevitability of some form of change. Progress in software engineering is a fact of life. Systems 
and tools will change continually, but more significantly the underlying paradigms will also change 
as increases in problem scale introduce new bottlenecks requiring essentially new techniques for 
resolution. As a result, our systems must include plans for change and accommodations for local 
inconsistency as changes take place. Software engineers must be educated to anticipate and 
accommodate regular change. 

2. "Engineering" in Software Engineering 

Engineering is the application of scientific and technical knowledge to the creation of effective 
systems that meet practical goals. Engineering disciplines have elements of both synthesis and 
analysis. In software engineering, synthesis includes design, programming, and integration; 
analysis includes requirement definition, evaluation, and measurement. Good engineering relies 
on a combination of underlying scientific principles, technical know-how and experience, and a 
pragmatic concern with effectiveness and utility. Although the field is gradually maturing, the 
description "software engineering" is still more an aspiration than an accomplishment. 

Traditional methods of software development are ad hoc and labor-intensive. They will not be 
adequate to satisfy the increased demands on computing systems and the complexity of the 
resulting systems. Software engineering must move to a technology-intensive basis that draws 
on scientifically-based models and theories; it must be prepared to take advantage of advances in 
these areas as they become available. The education of software engineers is critical to this 
progress, for good ideas achieve practical utility only in the hands of people who use them wisely. 

Over the past two decades a shift to methods based on scientific models has taken place in many 
aspects of programming-in-the-small.  Algorithms and data structures were originally created in 



an ad hoc fashion, but regular use revealed patterns that could be organized systematically and 
in time provide a basis for formal theories. Some of the earliest formal models supported the 
analysis of algorithms. Our understanding of algorithms for certain problem domains is now quite 
well-structured, we can analyze the performance of specific algorithms, and we know theoretical 
limits on performance in many cases. Similarly, a theory to support abstract data types emerged 
during the 1970's. In the late 1960's computer scientists recognized the importance of good 
representations and their associated data structures. Refining this insight to a theory of abstract 
data types took about a decade; it required advances in formal specification, programming lan- 
guages, verification, and programming methodology. Undergraduate computer science students 
should now routinely master algorithmic analysis and abstract data types; it is now reasonable 
(but not entirely realistic) to expect the material to be applied in routine practice. 

Sound theories can also contribute significantly to our ability to construct software systems. For 
example, the compiler for a programming language is a medium-sized system with a structure 
that is now well understood. Whereas in the early 1960's the construction of a compiler was a 
significant achievement, compilers are now often constructed routinely. Good theoretical under- 
standing of syntax developed in the 1960's led to effective techniques for constructing parsers in 
the 1970's, first manually and more recently automatically. Similarly, good theories for program- 
ming language semantics and type structures developed in the 1970's are now leading to 
automation of other stages of compiler construction. 

Although programming-in-the-large has a somewhat shorter history, formal models are beginning 
to emerge for the information management problems in that domain. For example, configuration 
management and version control began on an ad hoc basis with simple tools for organized (and 
often massive) recompilation, but at least a few models of system configuration and remanufac- 
ture are guiding the construction of software tools. The theoretical basis not only shows how to 
manage dependency information to reconstruct a system correctly, it also supports more efficient 
strategies of system reconstruction by avoiding unnecessary steps (e.g., recompilation of 
modules in which the only changes were comments or which depend only on unchanged portions 
of modules that were changed). 

These examples give the flavor of the progress toward sound foundations for software engineer- 
ing. There are clearly many areas in which the models, theories, and methodologies are still 
primitive. However, the power of soundly based theories in at least a few areas offer encourage- 
ment for developing and refining theories in other areas. 

3. In Search of Software Engineering Principles 

A scientist or engineer instinctively attempts to formalize principles in the form of mathematical 
laws, and it would be convenient if software engineering could similarly be derived from a set of 
primitive equations. However, software engineering includes substantial social and organiza- 
tional components - both behavioral and aesthetic - and it studies artificial constructs not con- 
strained by the physical laws of materials. As a consequence, the models and theories of the 
field take many forms. We find good use for 



• formal (mathematical) and informal theories 

• structural and empirical models 

• quantitative and qualitative evaluations 

• synthetic and analytic principles 

• algorithms and paradigms for design and human behavior 

• strong and weak methods 

• deep and shallow systems. 

In general, the foundations of the field - the principles, models, and theories - should be sys- 
tematic, codified, and abstracted from the examples where we learned them. These foundations 
should transcend changes of orders of magnitude in current technology, current problems, or 
current practice. It should be reasonably easy to teach these foundations to others. 

At the current stage of software engineering's development, principles, models and theories are 
not yet available for all aspects of the discipline. Pragmatics leads us to develop and maintain 
software through a combination of principles and ad hoc techniques: 

• principles that transcend current practice and current technology 

• rules of thumb that guide current practice by codifying useful patterns 

• methodologies that mechanize elements of current practice but do not generalize 

• hacks 
Good practice calls for drawing on techniques that lie as high on this list as possible. 

Precise or detailed description of a techniques does not make it a principle. For example, the 
waterfall model for software development (Figure 2) is a methodology, or mechanization of cur- 
rent practice, and not a principle. 

Software engineering education should accommodate the current state of the field by presenting 
the strongest principles available in the context of the best current practice. Respect for the 
students and the state of the field require the material to be presented with honest assessments 
of the strengths and weaknesses of the techniques. In order for the material to be useful when 
current practice is obsolete, the selection of material in a software engineering curriculum should 
favor those areas in which principles have developed; a good curriculum should refrain from 
simply teaching current practice in the absence of unifying principles. 

The position papers for the SEI Education Workshop contained many exhortations about the 
need for principles, but few concrete examples. Discussions during the workshop brought out 
some more examples. I will survey some of the suggestions for the guiding ideas that are 
variously called principles, theories, models, rules, paradigms, laws and methods. 

First, most of software engineering seems to share a few attributes. These are often implicit in 
attitudes and in selection of techniques rather than subjects of explicit discussion. These under- 
lying principles show that software engineering is: 
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Figure 2:  A Non-Principle 

• Reductionistic: We believe that problems in software engineering can be decom- 
posed into successively smaller subproblems and that the solutions to the sub- 
problems can be recombined to obtain a solution to the larger problem. We believe 
that this accounts for the phenomena that we deal with and that no "vital spark" is 
required or lost in decomposition. We also generally believe in reproducability of 
effect - that the same initial conditions and inputs always yield the same result - 
though this tends to break down in systems so large that the initial condition cannot 
be precisely specified. 

• Discrete: The problems and artifacts of software engineering are discrete, rather 
than continuous. We don't deal with infinitesimals or limits. Although we sometimes 
model those effects, we do so with definite limits on accuracy. As a consequence, 
our reasoning relies on case analysis, induction, and abstraction rather than, for 
example, extrapolation and interpolation. 

• Non-universal: We believe in the existence of knowledge extrinsic to software en- 
gineering. We do not believe that software engineering or computer science is a 
universal discipline in the sense that it must eventually account for all phenomena in 
the world. As a result we must deal with transition problems at the boundary of the 
field; these are often also the boundaries between discrete and continuous 
phenomena. 

• Incompletely quantifiable: Although we try to treat software engineering as an en- 
gineering discipline and we use quantitative models and measures wherever pos- 
sible, we recognize that aesthetic considerations must also be respected. This is 
particularly true of the design aspects of the field. 

• Computationally limited: Software engineering is incompletely quantifiable not only 
because of aesthetic requirements but also because of fundamental incompleteness 
of the underlying mathematics. We have not only theorems about undecidability but 
also demonstrations of the intrinsic completeness of testing strategies. 

Some approaches to problems appear consistently throughout software engineering but appear 



to be techniques that generally work rather than underlying principles that dictate what solutions 
must be. These articles of philosophy include: 

• Engineering discipline: As noted above, calling the field "software engineering" is 
still more an aspiration than an achievement. Nevertheless, we find that it is worth 
while to apply soundly-based models and techniques wherever we can. 

• Abstraction: Abstraction is suppression of detail. Good abstraction is suppression of 
detail that is, to the current audience, not significant. We use abstraction not only as 
an approach to managing the complexity of the systems that we develop but also as 
an approach to designing the interfaces to those systems. We believe that a com- 
puter system should allow its user to focus on the user's real problems rather than on 
the operation of the system. 

• Defect prevention: We generally follow a strategy of defect prevention rather than of 
defect removal. This is an approach rooted in utility rather than in principle: it is most 
often less expensive and less nuisance to build systems correctly in the first place 
rather than debug them after the fact. However, this may not always be true; for 
example, the use of rule-based systems to develop prototypes by iteratively adding 
information about a complex application and testing the prototype seems to be ap- 
propriate in many cases. 

• Reusability: Because of the creative effort involved, we believe that it is better to 
reuse system components than to build them from scratch. This is sometimes called 
the "buy-don't-build" philosophy. In fact, this is an observation about economics and 
utility rather than a universal truth. However, when we start designing with reuse in 
mind, we will in effect be constructing theories that explain small application 
domains; the theories will be expressed in whatever form the reusable code takes. 

Some areas of software engineering rely extensively on formal theories. These tend to be the 
older areas in which our understanding of the material has had longer to evolve. Some of these 
well developed theories include formal syntax and semantics, various kinds of logics, the theory 
of computation, formal specification and verification, the theory of algorithms, and type theory. 
Programming languages are often based on these theories, and we now recognize a number of 
programming paradigms. The more traditional paradigms such as applicative or functional pro- 
gramming and imperative programming are being joined by object-oriented programming, 
message-based systems, constraint systems, and rule-based systems. 

In other areas, only certain problems have been treated systematically for long enough to develop 
good models. These models are sometimes structural, as are the queueing-theoretic models for 
performance evaluation. In other cases the models are empirical, as are certain disk scheduling 
algorithms and cost estimation models. In the long run the structural models will best meet the 
test of surviving order-of-magnitude changes in technology or practice, but empirical models are 
welcome aids in the meanwhile. 

Unfortunately, there are many areas of software engineering in which sound models or theories 
have not yet evolved. In these cases the best practice is ad hoc. We should be cautious about 
the role these practices play in software engineering education. On the one hand, they represent 
the best of current practice; on the other, they cannot be expected to be durable. Reasonable 
compromises may involve teaching the nature of the problems without dwelling on the details of 
the ad hoc solutions. 



4. Goals and Objectives for Software Engineering Education 

Software engineering is a part of computer science that draws heavily on mathematics, engineer- 
ing, management, economics, communication, law, cognitive psychology, and design. It inherits 
a dilemma from computer science: changes in problems, technologies, and methods are an intrin- 
sic part of the field, so the student and teacher are always aiming at a moving target. Since we 
are constantly assimilating new technologies, we are always on the leading edge of the learning 
curve for the current technology. This makes it critical for practicing engineers to deal comfort- 
ably with change. 

Software engineers are educated in colleges and universities, in continuing education programs, 
and in in-house programs of individual companies. Although these programs reach rather dif- 
ferent audiences, they address the same body of knowledge. As a result, a unified curriculum 
design may suffice to set agendas, but different organizations and presentation styles may be 
required for different audiences. 

Whether software engineers learn this material at the beginning of their careers or afterward, they 
must be able to function immediately as professionals and to grow as the discipline evolves. 
Since software engineering is becoming a scientifically-based discipline, students must be edu- 
cated in the fundamental principles not only of computer science but also of the other fields that 
contribute heavily to software engineering. 

Following the Carnegie Plan for education [Doherty 50, Paul 75], we can state objectives for any 
software engineering curriculum, whether it be offered in academia or industry, whether it be a 
degree program or continuing education. We need a curriculum through which a student can 
acquire: 

• A thorough and integrated understanding of the fundamental conceptual material of 
software engineering and the ability to apply this knowledge to the formulation and 
solution of real problems in software engineering. 

• A genuine competence in the orderly ways of thinking which scientists and engineers 
have always used in reaching sound, creative conclusions; with this competence, the 
student will be able to make decisions in higher professional work and as a citizen. 

• An ability to learn independently with scholarly orderliness, so that after graduation 
the student will be able to grow in wisdom and keep abreast of the changing 
knowledge and problems of his or her profession and the society in which he or she 
lives. 

• A philosophical outlook, breadth of knowledge, and sense of values which will in- 
crease the student's understanding and enjoyment of life and enable each student to 
recognize and deal effectively with the human, economic, and social aspects of his 
or her professional problems. 

• An ability to communicate ideas to others. 

The focus of the curriculum should be on a liberal professional education with emphasis on 
design and problem-solving skills. Describing the education as "liberal" recognizes the impor- 
tance of exposure to topics outside the student's specialty; at the graduate level this may be 



somewhat more narrowly directed at material related to software engineering than at the under- 
graduate level. Liberal education includes communication skills, both for understanding the work 
of others and for communicating one's own work. Describing the education as "professional" 
recognizes the legitimate motivations of students who value education because they can apply it 
rather than for pure intellectual enjoyment. The "design" component of the education recognized 
the synthetic, creative aspect of the profession. "Problem-solving skills" refers to the ability to 
apply general concepts and methods from a variety of disciplines to all kinds of problems, 
abstract as well as practical, whose solutions require thought, insight, and creativity. Thus 
"problems" can range from the proof of a theorem to the design and construction of a specialized 
computer program and "skills" refers to creative intellectual ability, not merely the ability to per- 
form repetitive routine actions. 

5. A Word of Caution 

The greatest danger to software engineering curriculum designers is lack of imagination. If we 
are too narrow, too shortsighted, or too low in our aspirations, we will deprive the field of the skills 
it needs to satisfy society's requirements for broader scope and larger scale in computer-based 
systems. 
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