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MODAL TEST AND ANALYSES 

MULTIPLE TESTS CONCEPT FOR IMPROVED 
VALIDATION OF LARGE SPACE STRUCTURE 

MATHEMATICAL MODELS* 

Wada, B. K. 
Kuo, C-P 

Glaser, R. J. 

Jet Propulsion Laboratory 
California Institute of Technology 

Applied Technologies Section 
Building 157, Room 507 
4800 Oak Grove Drive 
Pasadena, CA 91109 

For the structural dynamic analysis of large space structures, the technology 
in structural synthesis and the development of structural analysis software 
have Increased the capability to predict the dynamic characteristics of the 
structural system. The various subsystems which comprise the system are 
represented by various displacement functions; the displacement functions are 
then combined to represent the total structure. Experience has Indicated that 
even when subsystem mathematical models are verified by test, the mathematical 
representations of the total system are often In error because the mathematical 
model of the structural elements which are significant when loads are applied 
at the interconnection points are not adequately verified by test. A multiple 
test concept, based upon the Multiple Boundary fconditlon lest (MBCT), is 
presented which will increase the accuracy of the system mathematical model by 
Improving the subsystem test and test/analysis correlation procedure. 

* The research described In this paper was carried out by the Jet Propulsion 
Laboratory, California Institute of Technology, under a contract with the 
National Aeronautics and Space Administration. 

INTRODUCTION 

Historically, «ost new designs of aircraft 
and space structures have been partially 
verified by full-scale dynamic ground tests 
prior to its initial flight. Even with the 
recent advances In coaputers and finite element 
codes, which allow solution of large complex 
structures, structures with dynamic 
characteristics which are significant to 
mission success have been tested at areat 
expense. An example Is the full-scale modal 
test of the Shuttle. Often, modal tests 
performed on large structures reveal errors or 
omissions In the system analytic*! model which 
had been verified by tests at the subsystem 
level. The major source of errors has been at 
the Interconnection between the subsystems. 
This paper addresses an approach to obtain 
better test verified mathematical models at the 
subsystem level to obtain a better systems 
mathematical model using modal synthesis [1,2] 
methods. The work 1$ of current and future 
Interest because many large space structures 
currently (Space Station) under Investigation 
must depend on validation of the models through 

subsystem testing. System testing of the Space 
Station Is not feasible because of the large 
potential errors in ground testing, and the 
unavailability of the total system at one time 
and in one location. 

The approach Is based upon an extension of 
the Multiple Boundary Condition Tests (MBCT) 
[3,4] approach developed for obtaining good 
dynamics data on a large flexible antenna rib 
built by Lockheed Missiles and Space Company 
(LMSC) as a part of a wrapped rib antenna 
effort sponsored by NASA/JPL- Modal test 
approaches considered for the rib revealed the 
potential difficulty In obtaining valid results 
using the traditional state-of-the-art test 
approaches. The MBCT takes advantage of the 
flexibility of the large structures, which 
makes the existing standard modal test 
procedures very difficult, If not impossible, 
to implement on the ground. To demonstrate the 
feasibility of testing a flexible rib to obtain 
data required for the MBCT approach, a series 
of static and dynamic tests were successfully 
performed on a single rib. 
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Since the parameters of the mathematical 
model in the vicinity of the test supports may 
not be adequately tested in a single test 
configuration, the system should be analyzed 
and tested with a variety of constraint 
conditions and constraint locations. This will 
provide the data necessary to upgrade [5,6] all 
the mass and stiffness parameters of interest 
in the structural model. Additionally, the 
increased quantity of test data to estimate any 
given mass and stiffness parameter will improve 
the parameter estimates used for the 
mathematical model. This Is the technical 
reasoning behind the MBCT approach. 

In the MBCT approach, the increased number 
of test data improved the estimate of the 
mathematical parameters. The approach to be 
presented is to increase the number of the 
estimates of the significant structural 
parameters when the subsystem interfaces are 
loaded by performing a larger variety of tests 
at the interface. The standard approach Is to 
statically load the subsystem Interfaces at 
which the subsystems are Interconnected to 
obtain the interface stiffness and to determine 
the internal load distribution. Additional 
estimates of the structural parameters that are 
significant to the interface stiffness and the 
Internal load distribution can be obtained by 
performing a series of simple modal and/or 
static tests which loads the Interfaces of the 
subsystem. The number and type of tests are 
detenninad by the number of estimations of the 
significant structural parameters necessary to 
obtain the required accuracy. The paper will 
Include a computer simulation to illustrate and 
validate the approach. 

MODAL SYNTHESIS 

Development of a system structural dynamic 
model by combining various subsystems 
represented by an appropriate set of 
displacement functions has been an effective 
and reliable approach. Future space structures 
such as Space Station, will rely upon a 
mathematical model of the total system which Is 
comprised of test verified subsystems. The 
size of the total structure and the evolution 
of the structure over many years will preclude 
the availability of the structure for dynamic 
ground testing. Even If the structure were 
available for test, the ability to reliably 
test the structure Is questionable. Nodal 
synthesis of subsystems has been used to 
accurately define the total system dynamic 
characteristics; however, special procedures 
must be used to test and update portions of the 
mathematical models which are affected by loads 
at the Interconnection points of the 
subsystems. A orief review of modal synthesis 
U presented for clarity. 

Figure 1 Illustrates the subsystems 1,2... 
Interconnected at the various attachment 
points. In most cases, the displacement 
functions used to represent each subsystem wist 

include more than a set of rigid body and 
normal modes to properly represent the dynamics 
of the entire system. Various types of 
displacement functions which can be used are: 

(u) . q>]J   ♦   qjwj   + qX   + ^ 

"H qjW} <Ml + *IK (1) 

wherer 

M i 

[♦] RE 

[*] u 

rigid body modes 
constraint modes 
normal modes 
attachment modes 
quasi-static modes, displacement 
functions corresponding to a 
combination of the six rigid body 
accelerations to a structure 
imposed modes, displacement 
functions arbitrarily selected as 
important and significant to 
describe the system dynamics of 
the structure 
relative modes, subset of imposed 
modes where displacement 
functions representing relative 
motions on the subsystem are 
defined. 
user defined modes, any other 
displacement function which the 
engineer may consider to be 
Important. 

Superscript 1 Is used to represent subsystem 1. 

FIGUU I 

Effective test procedures have been 
developed to measure normal modes to verify the 
terms In the mathematical model which are 
significant to the normal modes. Many of the 
errors In development of the system modes are a 
result of Inadequacies of the test program to 
verify the terms In the mathematical model 
represented by displacement functions which 
should be Introduced to account for the 
influence by the various subsystem on the 
others through the Interconnection points. 
Although most of the displacement functions 
shown In Eq. (1) are In this category, emphasis 
is usually placed In the validation of [*U 
through modal testing of subsystem and very 
little emphasis Is piaced In test validation of 
the portions of the mathematical model 
associated with the other displacement 
functions. 
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A description of the substructure 
combination Into a system dynamic equation Is 
Illustrated In References 1 and 2. 

TEST VERIFICATION OF MATHEMATICAL MODEL 

As mentioned previously, the use of modal 
test results to verify the mathematical model 
of the subsystem verifies only a subset of the 
significant terms of the mass and stiffness 
matrices. Modal test data can be used to 
verify the mass terms corresponding to joints 
with large relative deflection In the 
experimental modes and the stiffness terms 
corresponding to structural members which are 
loaded by the experimental modes. Often the 
structural members which are Important for 
loads transmission through the subsystem 
Interconnections are not experimentally 
verified. The objective of the paper Is to 
present a technique to v.rlfy these structural 
members or the elements in the stiffness matrix 
which represent these members. 

Several methods can be used to establish 
the elements of the stiffness matrix or 
structural members which have been verified by 
a modal test and the structural members which 
are significant In the dynamic characteristics 
of the total structural system. One obvious 
selection Is to determine by analysis and/or 
test those members which transmit the largest 
forces during the modal test. However, the 
magnitude of force, as a measure of Importance, 
can be misleading because a very flexible 
member may have a small force and yet 
contribute significantly to the final system 
dynamic modes. A parameter which has been 
valuable in the analysis/test correlation 
effort and promises to be valuable In the 
mathematical model updating process Is strain 
energy. In fact, strain energy Is directly 
related to the stiffness matrix and kinetic 
energy Is directly related to the mass matrix. 
The other advantage of strain energy and 
kinetic energy Is that they are algebraic terms 
which can be summed In any manner defined by 
the engineer. Thus the total number of 
quantities to be identified can be reduced to 
an arbitrarily small manageable quantity. 

Although the following discussion will be 
based upon stiffness matrices, In practice the 
objective will be to Identify errors In 
parameters which define the physical structural 
element from which [K] Is derived. 

The subsystem stiffness matrix can be 
subdivided Into three submatrlces: 

[■t]| • Uli • W\ ♦ (»I, (?) 

where 

IKK total stiffness matrix of 
subsystem 1 

[K]?. - subset of the total stiffness 
"   matrix of subsystem 1 which are 

verified by modal tests 
[K]: - subset of the total stiffness 

1   matrix of subsystem 1 which are 
significant to the system modes 

.   but not verified by modal tests 
[K]1 - subset of the total stiffness 

u   matrix of subsystems 1 which are 
relatively unimportant to the 
system modes. 

A similar set of equations can be written 
for the mass matrix. An outline of a procedure 
which can be used to establish the above 
submatrlces Is: 

(1) The [K]T IS the total mathematical model 
representation of subsystem 1 and it is assumed 
to be complete. Namely, the model is an 
adequate discretization of the structure. 

(2) The [KÜ is defined as the stiffness matrix 
of all structural members of subsystem 1 that 
contains 10% or more of the strain energy In 
any of the significant modes (the strain energy 
of the structural members are most likely 
evaluated by analysis and may be partially 
verified directly during the modal test). The 
stiffness elements of [K]J are assumed to be 
updated and verified by using the subsystem 
modal data and the analysis/test [5,6] 
correlation procedures. 

(3) The [K]| Is defined as a subset of the 
stiffness matrix from all structural members of 
the mathematical model representing subsystem 1 
which contains 3X or more of the strain energy 
of any significant node from the original 
system dynamic analytical model. The system 
dynamic model is created by combining the 
various subsystems usirg modal synthesis 
methods. The [K]t Is determined from the 
members which meet the.above criteria minus 
[K]A . The ritrlx [K]| Is mathematically 
determined. Mathematically, the 
characteristics of the subsystems should be 
varied within anticipated Inaccuracies to 
determine If additional structural members 
should be Included in the definition of [K]| . 
Especially if small changes In the subsystem 
characteristics might Introduce a new mode 
shape such as a non-symmetric mode which didn't 
previously exist. 

(4) The [K]1 Is the stiffness matrix developed 
from structural members that are excluded from 
tKlftind (K]J. 

Similar procedures can be used for the mass 
matrix elements. In the establishment of a 
mathematical modal to correlate with the modal 
test data for the Galileo program, the criteria 
to retain all mass degrees-of-freedom which 
correspond to 10X or more of the kinetic energy 
In any of the modes selected for correlation 
gave very favorable results. 
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As stated before, the objective is to test 
verify and update the mathematical terms 
relevant to describing the overall dynamic 
characteristics of the total system. Current 
methods have been developed and the need has 
been established to verify and update [K]j| . 
Many of the problems have arise? because the 
need to validate and update [K]| have not been 
specifically identified. The primary objective 
of the paper is to identify and to define a  . 
test and test/analysis procedure to update [K]i 
to represent the structure. 

TEST VERIFICATION [K]| 

The test verification of th? structural 
members which contribute to [K]| is obtained by 
loading the subsystem i at the interconnection 
points. The approach used is an extension of 
the Multiple Boundary Condition lest (MBCT) 
[3,4] approach. The MBCT has been proposed to 
verify the mathematical models of structures by 
ground tests of structures which can't be 
ground tested because of its sizes and/or 
flexibility by conventional test methods. The 
MBCT approach obtains a number of test data 
from a number of various test conditions 
established by varying the boundary conditions. 
Any number of estimates for stiffness and/or 
mass terms of interest can be obtained at the 
discretion of the engineer. By this method a 
"good" estimate of the stiffness and mass terms 
can be obtained. 

For the verification of [Klj , the 
principal objective will be to apply a number 
of static and/or dynamic forces at the 
interconnection points to obtain a multiple 
estimate of the terms of [K]| . In most cases 
the boundary conditions will not be changed. 
The multiple set of forces applied during the 
test should be designed to load each structural 
member comprising [K]| to a significant strain 
energy level by at least one set of forces. A 
pre-test analysis should be performed to 
establish the sets of forces which meets the 
above criteria and provides the required number 
of estimates. 

Examples of the type of loads that can be 
applied at the Interconnection point I as shown 
in Figure 2 are: 

(1) Any number of static force and moment 
loads. 

(2) Any number of modal tests using various 
combinations of test masses (M(test)) and test 
structure (l(test)). 

For multiple Interconnections, loads may be 
simultaneously applied to the various 
Interconnection points. 

The above procedure describes a method by 
which a test verified model of [K)| can be 
accurately obtained. Subsystem tests with 
validated [K]^ and [K]| values can then be used 

with confidence as a building block for the 
total system. 

TEST 

STATIC LOAD 

EXAMPLE 

DYNAMIC TEST 

FIGURE 2 

The sample problem selected to illustrate 
the approach proposed in this paper is shown in 
Figure i  The two-dimensional truss structure 
is comprised of two subsystems, 1 and 2 which 
are Interconnected at joints 15 and 16. Errors 
in the mathematical model are in members 25 and 
27 (the area of member 25 is in error by 100% 
and the area of member 27 is in error by 100%) 
and the objective is to locate and correct the 
errors. The resonant frequencies of the 
structure. In Hz, with and without the errors 
are listed in Table 1. 

Since the errors were defined in the 
example problem to be in subsystem 1, the 
mathematical updating procedure is limited to 
subsystem 1, Usually the tests and 
test/analysis updating are performed on all 
subsystems. 

The results from a modal analysis of 
subsysteii 1, shown in Figure 4, for the 
structure with and without errors in members 25 
and 27 are listed In Table 2. 

The members with 10% or more of the strain 
energy 1n any of the first three modes from the 
subsystem modal test are Indicated by bold 
lines in Figure 4. Since errors in these 
members can be detected and updated using the 
standard modal test methods [7,8], those 
elements will be assumed to be correct at the 
subsystem level. Note that errors in members 
25 and 27 cannot be detected and corrected r om 
a subsystem modal test as evidenced by the 
small difference In the frequencies shown in 
Table 2.    The stiffness matrix represented by 
the members shown in the bold lines in Figure 4 
1s [K] l 

The members with 3% or more of the strain 
energy in the first three (3) modes of the 
total system of Figure 3 are indicated by the 
dashed lines. The accuracy of these members 
are significant to the final system modes. 
Thus the other members are relatively 
unimportant. These members are shown as 
unhlghlighted lines ^n Figure 4. The stiffness 
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SUKYSTIM 1 SUKYSTEM 2 

V-MASS 

O - G*ID rOINT NUMKR 

—»x   □ - IllMENT NUMIM 

.»J4*B- 

FIOURE 3. SAMPLE HOHEM TOTAL SYSTEM 

TABLE 1 

Systen Frequencies, With and Without Errors 

Node No. Correct Structure Structure with Errors 
(Hzl 

4.044 4.030        • 

15.209 14.748        | 

27.054 26.133 

30.077 29.701 

35.832 35.809 

i 

A25 
A27 

.00645n; 

.00194B' 
A25 - .00323in, 
A27 - .00097«/ 
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TABLE Z 

Frequencies, Subsystem 1 With and Without Errors 

Node No. Correct Subsystem 1 
Structure  m  

Subsystem 1 
Structure with Errors  m  

6.195 

21.003 

31.125 

41.313 

57.108 

6.195 

21.000 

31.111 

41.266 

56.955 

A25 
A27 

.00645m; 

.00194™' 
A25 - .00323m, 
A27 - .000971^ 

T 
.MMm 

I 
\ 

\ 
.«CM* 

I 
I 
i 

B« TEST MASS 

#°MASS 

Q-GtIOrOINTNUMin 

O'tLCMENTNUMin 

•■ X 

.f144m 

riOUK 4. SMSVSTEM I 



TABLE 3 

Test Vs Members Which Are Significantly Loaded 

Member Load/Test 
1 2 3 4 5 

21, 22. 23 
9. 10 
25 

' 27 

X 
X 

X 

X 
X 

x 

X 

TABLE 4 

Comparison of the Member Areas, Original vs Estimated vs Theoretically Correct 

Member Original 
Math Model 
Wlth-Error 

(mz) 

Estimates of 
Correct Value 

(m2) 

Theoretical 
Correct Values 

(m2) 

% Error 

21.22,23 
9,10 

25 
27 

.00129 

.00258 

.00323 

.00097 

.00137 

.00202 

.00530 

.00195 

.00129 

.00258 

.00645 

.00194 

+ 6.45 
-21.6 
-17.89 
+ 0.97 

matrix associated with the members identified 
as significant In the system modes but not 
Identified In the subsystsm 1 modal test Is 
[K]{ . (Members with only the dashed lines, 
namely 21,22,23,25,27,9, and 10). The 
objective is to apply various sets of loads at 
the Interface joints, 15 and 16, In order to 
Identify and correct the potential errors In 
[K] I. Since the members which represent [K]| 
are four different types of members, (21,22. i 

and 23 are Identical; and 9 and 10 are 
identical) only four members parameters have to 
be updated to match with the test data. 

The sets of loads applied to subsystem 1 at 
the Interfaces are: 

(1) Modal test with a "test" mass at Joint 15 

(2) Modal test with a "test" mass at Joint 16 

(3) Force at Joint 15 In the x and y direction 

(4) Force at Joint 16 In the x and y direction 

(5) Force at Joint 10 In the x and y direction 

The members with more than 10X strain energy In 
the above sets of loads are In Table 3. 

Note that all of the loading conditions are 
relevant to the Identification of the [K]] 
matrix, and at least one member type has 

significant strain energy from the set of five 
(5) loading conditions. 

Using the system Identification procedures 
which combine the static and dynamic test 
results, the re-estimates for the members, 
after only one Iteration, are shown in Table 4. 

Using the estimates of the correct values 
in the overall system analysis, the results are 
as shown In Table 5. 

A comparison of the procedure proposed In 
this paper indicates that the model can be 
updated at the subsystem level with sufficient 
accuracy to give good system dynamic 
characteristics. The accuracy of the solution 
will improve as the number of iterations to 
update the subsystem model is increased. 

CONCLUSION 

The sample problem shows that the proposed 
procedure can be used to systematically test 
verify the subsystem models to the accuracy 
required to provide confidence in the final 
system model without a system test. At this 
time, the procedure doesn't appear to be 
limited in its application. 

Additional work Is in progress to establish 
the validity of the arbitrarily selected strain 
energy criteria for the identification of the 
significant elements and possible procedures to 



TABLE 5 

Comparison of Frequencies, Correct Structure vs Estimated Structure 

Modo No. Correct Structure 
 m  

Estimated Structure  m  
4.044 
15.209 
27.054 
30.077 
35.832 

4.041 
15.015 
26.814 
30.097 
36.222 

A21,22,23 
A9, 10 - 
A25 - 
A27 - 

.00129m' 

.00258m, 

.00645m, 

.001941/ 

A21,22,23 
A9, 10 - 
A25 - 
A27 - 

.00137m, 

.00202m, 

.00530ra, 

.00195m6 

minimize the change in the "accurately modeled 
members" as the errors in the other members are 
identified. 
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Discussion 

Mr. Plnson (NASA Langley Research Center): I 
endorse What you are saying, Ben, because I 
think a systematic approach to multiple 
component testing Is something that Is badly 
needed. I think the question of directly 
addressing the Interface problem Is really at 
the heart of the matter. One of the things that 
Is not addressed, and maybe It should not be 
addressed In this particular environment even 
though 1 think It is pertinent. Is the question 
of v*»en these tests are run. Typically, you 
don't get access to full scale hardware until 
way after CDR, and the spacecraft Is about to 
fly. Unless you uncover a major "show-stopper" 
at that time, you will not really Influence much 
other than to say, "Well, I have to go back and 
readjust my math model." I think you would like 
to establish that confidence early In the 
program. One way to do that Is through the 
judicious use of models, which I noticed you 
didn't mention in your talk. I was wondering if 
you would comment on getting that confidence 
early in the program, and how you go about doing 
that. 

that you Intend to attach to it to acconnodate 
the differences in the final model versus rtiat 
you thought the model would be. So, I think 
this approach will be very Interactive. 

Mr. Wada: I think there are certain pitfalls 
with the method that 1 used because you have to 
use the overall system dynamic models to 
determine vftiich elements are Important before 
anything is ever built. I think this Is vAiere 
perturbation methods, etc. really have to be 
incorporated - where you have to look at the 
overall system models and begin to perturb 
certain members. You have to say, "Look, this 
member may not be as stiff as it might finally 
be In the final situation," and run through 
fifty different conditions to really get an idea 
as to what the different possibilities are. So, 
you can't run Just one system model, and say, 
"Yes, these are the important members," because 
the final design may not be the design due to 
changes during the program itself. However, I 
think If you run enough cases, you can begin to 
Identify those members that might be 
important. That is the only way I know, Larry, 
of trying to handle some of the problems that 
you have. 

Mr. Plnson; What about the dynamic 
characteristics of the joints, or the Influence 
of joint slop ou the dynamic characteristics of 
the joints or their adjacent members? 

Mr. Wada: But the problem Is you only know that 
after you have the model thai: you will fly, and 
if you can get at the model you will fly.  1 
think some people feel you can predetermine the 
dynamic characteristics of joints or the 
Influence of joint slop on the dynamic 
characteristics.  Some people might feel, "Well, 
that will be very difficult to do," and the only 
way you will really know is once the entire 
structure has been built. However, 1 think this 
procedure requires getting at the flight 
structure. You might possibly attach another 
subsystem to the flight structure once it is 
flown; you may have to redesign the subsystem 
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This paper presents a new nulti-input/multi-output 
modal parameter identification method that makes direct and 
simultaneous use of multiple frequency response function 
data with respect to multiple reference locations to 
estimate a global set of modal frequencies, damping ratios, 
mode shapes and modal participation factors. By employing 
the singular-value decomposition technique, the rank of the 
frequency response function matrix, i.e. the approximate 
number of effective model in the frequency range of 
interests, is determined. A minimum-order system matrix is 
calculated by principal component decoiq>osition and 
generalized inverse techniques. Modal parameters are then 
extracted by solving a standard eigenvalue problem. 

INTRODUCTION 

Experimental modal analysis has 
been widely involved in dynamic design 
engineering. The accuracy and 
consistency of modal data bases derived 
from parameter identification are 
becoming increasingly important for the 
purpose of finite element model 
validation, structural modification and 
experimental/analytical modeling. 

With respect to modal testing, the 
trend in recent years is to apply 
multiple input excitation III and to 
measure multiple response functions. 
The frequency response functions 
estimated from the multi-input/multi- 
output technique are generally more 
accurate and consistent because of 
uniform distribution of the excitation 
energy and hence more uniform response 
level. Another attractive benefit of 
multiple input excitation is that the 
total test time can be reduced. 

In the area of modal parameter 
identification, great progress has been 
achieved in the past few years. Multi- 
input/multi-output parameter estimation 

methods in the time domain have been 
developed to take full advantage of 
redundancy amd consistency with respect 
to multiple input or reference 
locations, such as the Polyreferense 
Complex Exponetial method !2J , the 
Eigensystem Realization Algorithm 131 
and the Direct Parameter Estimation 
technique !4!. The nulti-lnput/multi- 
output methods not only improve the 
quality of the parameter estimation, 
but also have the ability to handle 
closely spaced modes, repeated roots 
and high damping cases. The user 
interaction and judgement is also 
reduced. 

Several shortcomings, however, 
still exist in the time domain multi- 
Input /mult 1 -output modul parameter 
identification methods. One of the 
major problems is In the determination 
of the number of effective modes for a 
measured data set. The second problem 
is how to distinguish between 
computation modes and actual modes of 
the structure to be identified. 
Computation modes for the time domain 
estimation algorithms are necessary for 
unwanted effects,  such  as  noise. 

11 



leakage and nonlinearity. Most time 
domain method? employ impulse response 
function data calculated from measured 
frequency response function and hence 
introduce another source of error — 
so-called "time domain leakage"   (51. 

This paper presents a new 
frequency domain multi-input/multi- 
output modal parameter identification 
method. The new method (called the 
Frequency Domain Poly-Reference method, 
FDPRj makes direct and simultaneous use 
of a measured frequency response data 
set relative to all reference locations 
to identify a global set of modal 
parameters. By employing the singular- 
value decomposition technique in the 
frequency domain, the rank of the 
frequency response function matrix, 
i.e. the number of effective modes in 
the frequency range of interest, can be 
determined easily. Therefore, the 
shortcomings of the time domain 
polyreference methods mentioned above 
can be avoided. As a result, user 
interaction and judgement will be 
further      reduced. The        principle 
component response analysis technique 
is then used to calculate a minimum 
order system matrix. Modal parameters 
— modal frequencies, damping ratios 
and mode shapes — can be determined by 
solving an eigenvalue problem. Modal 
participation factors is calculated by 
a least square approach. Analytical 
frequency response function can then be 
synthesized from the identified modal 
data base. 

After discussion of the theory and 
algorithm of the frequervcy domain 
polyreference method, three application 
examples are given to demonstrate the 
features of the method, such as the 
ability of extracting accurate and 
consistent modal parameters with noise- 
contaminated measured frequency 
response data, and the capability to 
handle very closely spaced modes and 
repeated-root cases. The first example 
uses noise-contaminated simulated data 
from an assumed system. The second 
application example processes the data 
from impulse testing of a circular 
plate. Experimental results for a more 
complex structure — an aircraft are 
shown as  the third example. 

THEORY AND ALGORITHM 

Basic Equations 

For    a    linear,    viscously    damped 
multi-input/multi-output mechanical 

structure, one      can      derive the 
relationship between inpulse response 
functions and modal parameters as 
follows   (61, 

H(t)  -  <l>eA,r (1) 

where 

H(t) (mxl) inpulse response 
function matrix, m and 1 are 
the number of measurement 
coordinates and reference 
locations, respectively 

4>        (m>e2n) mode  shape matrix,    n 
is the number of modes, 

A        (2nx2n) diagonal     eigenvalue 
matrix, 

r        (2nxl}    modal    participation 
factor matrix. 

In the Laplace domain,  one obtains, 

H(s)  « <J>[sl-A]"1r (2) 

where 

H(s) - L[H(t)], transfer function 
matrix. 

Eigenvalue problem 

In the frequency domain, 
"displacement" and "velocity" frequency 
response function (FRF) matrices with 
dimension of mxl can be expressed, 
according to the above basic equations, 
as 

-1. 
H(jtw)   -<t>[sl-A]   r+ R2 

-1. 
H(]ui)  -<l>A[sI-A] T+ R2 

(3) 

(4) 

where A is nxn diagonal matrix, whose 
elements are the eigenvalues with 
positive imaginary part, $ is 
corresponding m*n eigenvector matrix, 
and T is nxl modal participation factor 
matrix (for simplicity, the same 
notations are used). The influences of 
complex conjugate modes are expressed 
by residual terms Rj and R?, 
respectively. The following matrix 
equation can be derived. 

LH{JUI)J  L^AJ 
Q(ju.) (5) 

where,  for the purpose of  simplicity, 
residual terms are omitted and 

Q{j««) - [sl-A]"^ 

For the most practical 
applications, the number of measurement 
coordinates is larger than the number 
of modes  in  the  frequency  range of 
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interest,   i.e., matrix, 

m>n 

UAJ Therefore, the matrix L<t>Aj has 
at least m more rows than columns. 
There must exist an mxm nontrivial 
matrix A such that 

[Aiiir*]. (6) 

The Equation (6) can be placed in 
the form of a standard eigenvalue 
problem, 

A^ » ^A (7) 

The matrix A is referred to the 
system matrix (in physical coordinates) 
and contains information characterising 
the complete set of modal parameters of 
the structural system. Due to the 
possibility of repeated roots, the 
eigensolvers from the EISPAC library 
171        were chosen for this 
implementation. The desired modal 
frequenciesU)and damping ratloslf) are 
determined from the eigenvalues(X] of the 
system matrix A, 

«r - ^Re(X,)2+ Im(X,)2 (8) 
(r'1,2,...n) 

f,  - Reu,)/-, (9) 

Calculation of System Matrix, 
Singular Value Decomposition 

According to Equation (5), one can 
obtain another matrix equation as 
below. 

A H(jui) . fUju.) (10) 

For discrete frequencies ut« , where 
1-1,2,...^, Equation (10) can be 
arranged as, 

A H(lu.,):H(iui2): :H(j«.p) . 
fl(j««, ):fl(        0 l(]u.,):...:ft(j<up)   (11) 

or simply, 

A D - V (12) 

where D and V are nulp displacement and 
velocity frequency matrices, 
respectively. It     is    noticed       that 
matrix D usually is singular, thus 
Equation (12) cannot be solved by the 
normal equation least square approach. 
A singular-value decomposition 
technique  181   is  then  employed. 

D  - P S QM 
(13) 

where P, Q are mxm and  Ipxlp unitary 
matrices, Z is an mxlp singular - value 

V.0   jo 

o      ! o 

(U) 

The system matrix A can then be 
calculated by the generalizes inverse 
technique   18), 

V D+ (15) 

where the  superscript "a"    stands    for 
complex conjugate    and transpose,    and 
the    superscript    "+" for    generalized 
inverse.      Assume that the  system has a 
rank of n, 

D+ Q.^P? (16) 

Matrix £, is an nxn diagonal 
matrix whose elements are equal to 1/d, 
(r>l>2...n) and Pj , Q, are mxn and Ipxn 
matrices, which are constructed from 
the first n columns of P and Q 
respectively. 

In the FDPR algorithm, the only 
data needed Is FRF matrix D 
(displacement, velocity or 
acceleration). There is a sinple 
relation between "velocity" and 
"displacement" FRF's. 

H(jiii) - ]<I»H(JIU) -X (17) 

where X is the initial condition. 
Therefore, one has the following 
equation, 

DJl-XE (18) 

where 

[x 0 1 
j 

1 0 \J 
E  - [M. ..l] 

The system matrix A can then 
calculated by following augmentated 
matrix  equation. 

[A:X]
[E 

[D:n] (19) 

Principal Component Response Analysis 

It can be observed that the system 
matrix has the dimension of mxm. One 
has to solve an mxm eigenvalue problem 
to obtain n eigenvalues and 
eigenvectors. > In order to reduce the 
size of the eigenvalue problem, 
principal component response  technique 
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is    used    to    derive    a      minimum-order 
realisation system system. 

Let Dp represent the frequencey 
response matrix at n response 
coordinate (principal coordinate) and 
related to matrix D by a linear 
transformation. 

Dp  « T D 

It  can be proved that 

T - P,H 

(20) 

(21) 

Matrix P„  is the singular vector 
matrix,    which minimizes simultaneously 
all  singular value of e, where 

e - D-'fr - [l- P,P,M] D 

where 

"& « P, Dp   - P, Pj 

If matrix D has rank n,  the norm of  the 
error 

ID DK-'&W- Z    d( (23) 

will be equal zero. When the measured 
frequency response function matrix D is 
contaminated with noise and/or there is 
some nonlinearity in system, the 
singular values might be trancated 
after n values, the remaindlng 
singular values being neglectiblely 
small. In many cases, n is equal to 
the number of effective modes in the 
frequency range of interest. But, in 
case that the effect o.' the residual 
modes (modes outside the frequency 
range of interest) is large, the rank 
of D can be greater than the number of 
effective modes. And in case that some 
modes are not independent from other 
modes, the rank of D can be less than 
the number of effective modes. In this 
case, higher order deviation must be 
considered to get good results. 

Calculation of  Modal  Participation 
factors and Synthesis of Analytical FRF 

After identifying eigenvalues 
(modal frequencies and damping) and 
eigenvectors (mode shapes), modal 
paticipatlon factors can be calculated 
from equation (3) by a least square 
solution. The analytical frequency 
response function can then be 
synthesized from the identified modal 
data base and compared with 
experimentally measured data sets. 

ANALYTICAL EXAMPLE 
(NUMERICAL SIMULATION) 

In crder to evaluate the accuracy 
and -sffectiveness of the frequency 
domain polyreference method, the 
capability of handling closely spaced 
modes or repeated roots and the 
sensitivity to random errors, a 
numerical simulation of a four degrees- 
freedom sytem with two reference 
locations vas conducted. 

Frequency response functions were 
synthesized. Random uncorrelated 
noise, with zero mean value and peak 
value equal IK a specified fraction of 
the maximum peak value of the FRF was 
then added to these measurements. 

Tables 1 and 2 show the identified 
modal frequencies and damping ratios 
with 1,2 and 5* noise-contaminated 
"measured" data. The results indicate 
that the algorithm is quite robust in 
the presence of random noise. The 
identified modal parameters, including 
modal frequencies, damping ratios, mode 
shapes and modal participation factors, 
can be utilized to synthesize 
analytical FRF's. Figure 1 shows the 
synthesized FRF compared to the 
"measured" one with 5* random noise. 

Table 1. Identified modal frequency for 
various noise levels 

Noise(X) Modal   frequencies   (Hz) 
12               3               4 

0.0* 
1.0 
2.0 
5.0 

5.000 
5.005 
5.011 
5.053 

10.000 
10.003 
10.003 
10.003 

10.500 
10.505 
10.502 
10.503 

15.000 
15.001 
14.996 
14.934 

♦Theoretical data. 

Table 2. Identified modal damping  (%) 
for various noise levels 

Noise(X) Modal  damping   (X) 
12              3               4 

0.0* 
1.0 
2.0 
5.0 

3.000 
3.005 
3.007 
2.938 

3.000 
3.000 
2.995 
2.989 

3.000 
2.994 
2.997 
2.992 

3.000 
3.017 
3.009 
3.048 

•Theoretical data. 

As a check of the estimated modal 
vectors. Table 3 gives modal assurance 
criterion (MAC) values between the 
'heoretical modal vectors and the 
estimated ones from the simulated FRF 
data with 5X random noise. The result 
is almost perfect. 
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Table 3. MAC values between theoretical 
and identified mode shapes 
(with 5% noise data) 

i 2 3 4  | 

1 
2 

L4 

0.99989 
0.00001 
0.00003 
0.00000 

0.99980 
0.00002 
0.00000 

0.99996 
0.00002 0.99997| 
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Fig.l Frequency Response Function with 
5% Noise and Synthesized Result 

180 

Q 

-100 

ANALYTICAL 
SYNTHESIZED 

0.0 
FREQUENCY (HZ) 

25.6 

Fig.2 Synthesized Result  for Broad 
Band Case 

Table 4. Identified modal frequency and 
damping in the repeated roots 
case,  (with 5% noise data) 

1 2 3 4 

Freq. 
Damp. 

5.080 
2.968 

10.002 
2.913 

10.005 
2.996 

U.976 1 
2.973 | 

To illustrate the capability of 
handling repeated roots, the third 
modal frequency Is changed from 10.5 Hz 
to 10.0 Hz, equal to that of second 
one. Table 4 shows the results in the 
case of 5* noise added to the FRF data. 
In order to demonstrate the capability 
of processing broad-band FRF data, the 
third model with modal frequencies of 
0.5, 10, 10 and 20, Hz was generated. 
Figure 2 shows the result of curve 
fitting. 

CIRCULAR PLATE APPLICATION EXAMPLE 

A circular plate structure was 
utilized as a test article to 
demonstrate the capabilities of the 
frequency domain polyreference modal 
identification method. Impact test was 
used to acquire FRF data. There are 36 
measurement points and 6 reference 
locations. All of the 216 FRF's were 
employed simultaneously for modal 
identification. 

1222.849 HERTZ 

1223.877 MEBTZ 

Fig.3 Typical  Repeated Roots Mode Shape 
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Table 5. Identified modal frequencies 
and damping ratios, compared 
to FDPR method 

Mode 

No. 

FDPR method PRCE m« thod 

Freq. Damp. 
(JO 

Freq. Damp. 
(Hz) (Hz) (%) 

1 362.6 0.884 362.4 0.880 
2 363.9 0.921 363.7 0.960 
3 557.1 0.535 557.0 0.512 
4 761.1 0.707 761.2 0.664 
5 764.2 0.338 764.2 0.345 
6 1222.9 0.347 1223.1 0.336 
7 1223.7 0.319 1224.0 0.320 
8 1328.7 0.463 1328.0 0.491 
9 1329.3 0.438 1328.8 0.420 

Table 5 shows estimated modal 
frequencies and damping ratios, 
compared with the results obtained by 
the Poly-Reference Conqplex Exponential 
method. Nine modes, including four 
pairs of nearly repeated modes, were 
identified in the frequency range. 
Figure 3 shows a pair o7 mode shapes 
with nearly  repeated modal  frequencies. 

The two methods give approximately 
the same results. But the frequency 
domain polyreference method has no 
computational mode while the time 
domain counterpart found 7 
computational modes. 

Synthesized FRF's were generated 
from the identified modal data base. 
Figures 4 and 5 show the two sets of 
synthesized FRF's compared with the 
experimentally measured ones. 

AIRCRAFT APPLICATION 

The third application example is a 
large complex structure — an aircraft. 
Usually, an aircraft structure will 
have a number of very closely coupled 
symmetric and ant 1-symmetric modes, 
that may be difficult to detect with 
standard experimental modal analysis 
methods. The aircraft was tested using 
random uncorrelated dual inputs for 
various symmetric configuration of the 
two input locations and all response 
data were processed to FRF's. The data 
sets contain FRF's at 78 measurement 
coordinates for two random inputs, 
symmetrically located at the wingtips. 
The FRF's were processed for the zoom 
range from 4.25 Hz to 16.75 Hz with a 
frequency resolution of 0.0244 Hz. 
Table 6 shows the identified modal 
frequencies and damping ratios of 7 
modes in the frequency range from 7.5 
to 13.7 Hz. One can observe that the 
results compare very well with the 
results of the PRCE method, which are 
also given in Table 6. Again, the time 
domain method needed much more 
computational  modes. 

Figures 6 and 7 show a pair of 
mode shapes with closely spaced modal 
frequencies    around    8,9    Hz. It    is 
observed that the mode of 8.896 Hz and 
9.039 Hz are very similar: the first 
one is an antisynnetrie mode (the 
wings move out of phase) and the second 
one is a symmetric mode (the wings move 
in phase). Figure 8, 9 show the 
synthesized FRF's (driving point and 
cross point) in comparison with 
measured FRF data  sets. 
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Table 6.   Identified    modal      parameters 
using FDPR,  compared to PRCE 

No.  of 
Modes 

Frequency(Hz) Damp. Ratio(X) 

FDPR PRCE FDPR PRCE j 

1 8.896 8.883 0.606 0.63l| 
2 9.046 9.039 0.671 0.669 
3 10.069 10.065 0.967 1.069 
4 10.115 10.078 1.169 1.167 
5 12.782 12.785 0.814 0.820 
6 13.204 13.228 0.625 0.740 

|     7 13.245 13.254 0.808 0.71ll 

-', 

CONCLUDING REMARKS 

A frequency domain polyreference 
modal parameter identification method 
has been developed and implemented in a 
mimi-computer environment. Based on 
the above discussion of the theoretical 
formulations, algorithm and application 
examples,  this nev method shows some 
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inherent advantages. Common to other 
nulti-input/mult;-output methods, some 
of the advantages are: 

(1) The ability to extract an accurate 
^nd consistent modal data base by 
simultaneouly processing multi- 
input /nulti -output FRF data sets; 

(2) The elimination of parameter 
combination schemes for building 
a composite modal model with 
respect to different reference 
locations; 

(3) The ability to determine very 
closely spaced and repeated modes. 

Compared to time domain methods, 
this frequency domain technique has 
some important features: 

(1) Further reduce user interaction 
and judgement, because there is 
less need to distinguish between 
computational and actual modes; 

(2) Further increase the accuracy of 
the estimation by direct using 
FRF data, eliminating the "time 
domain leakage" error source 
introduced by the inverse Fast 
Fourier Transform; 

(3) Have the flexibility of choosing 
measured FRF data, such as band 
selection, frequency domain 
weighting function, and FRF data 
with unequal frequency steps. 
The frequency domain polyreference 
method shows promise for use with 
future multi-input digital swept 
sine excitation techniques, which 
may become attractive since all 
channels en be sampled 
simultaneously and processed in 
parallel, and the time required 
fot FRF measurements can be 
reduced drastically [9J. 
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Discussion 

Hr. Ewlns (Imperial College of Science and 
Technology)t    How many excitation points or how 
many columns of the response matrix were 
measured for the circular plate? 

Mr. Kanda; Six reference points were tried, but 
the data were actually corrected using the 
hammering technique. 

Mr. Ewlns; So, you used six times 36 frequency 
responses? 

Mr. Kanda: Yes. 
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MODAL PARAMETER IDENTIFICATION USING 

ADAPTIVE DIGITAL FILTERS 

B.H. Wendler 
Engineering & Test Division 
TRW Space & Technology Group 
Redondo Beach, CA 90278 

Recent advances in the use of adaptive digital filters has 
shown promise in their application as stochastic models of 
dynamic structures. Certain classes of digital filters allow 
modeling the structure as a set of Z-transform filters. The 
filter model can be analyzed using 2-transform methods for 
frequency, damping, and modal residues to define mode shapes. 
The Auto Regressive Moving Average (ARMA) filter formulation as 
selected for study. A closed solution for computing the ARMA 
residues is demonstrated. 

INTRODUCTION 

Many dynamic structures require 
some kind of experimental characteriza- 
tion to validate a dynamic model or 
design capability of the system.  In 
general, norm^' modes of the system are 
desired where each mode is orthogonal to 
each other with respect to the inertia 
of the system. This implies that the 
modes form a linear independent set for 
describing the structure. Various 
techniques have been introduced over the 
years to accomplish this. Techniques 
have focused on using a Fast Fourier 
Transform (FFT) processor to describe 
transfer functions of the structure or 
sine dwell techniques which oan adjust 
the force patterns on the structure to 
mechanically isolate a mode at reso- 
nanca. Various papers in the literature 
discuss random normal mode testing (1-3J 
or sine dwell testing [4-5], each of 
which have merit and varying complexity 
in their application. Results from 
using various types of techniques have 
shown some nonduplication of results for 
the sama structure (6). 

The need for accurate estimates for 
model parameters is also being driven by 
new processes being introduced to update 
analytical lumped parameter models by 
various techniques. The following 
equation demonstrates that if the 
residue (R) and the damped frequency W, 
are known, then the stiffness for a 
one-degree-of-freedom system is simply: 

k - -j (wd/2R) 

where 

For accurate multi-degree-of-freedom 
estimates, accurate estimates of the 
structures residues are required [7]. 
Residues are usually normalized against 
some value and presented as modal 
coefficients in almost all the com- 
mercially available modal testing 
systems. 

These Issues keep advancing the 
modal parameter identification state of 
the art. Recent applications with 
digital adaptive filters for identifying 
structural characteristics have been 
successful in determining system 
stability and divergence properties 
18-10]. The filters were considered 
adaptive in that as the poles of the 
system moved, the filter coefficients 
changed to reflect the current system. 
Figure 1 is an overlay of power spectral 
density plots using the FFT approach and 
a lattice filter adaptive model. The 
filter model was analyzed for its poles 
(frequency and damping) and accurately 
identified a high frequency aileron mode 
suspect of being a flutter mechanism. 
Actual test results have successfully 
shown that pole information can be 
determined from the time difference 
equation modeling approach.  Complete 
characterization of a dynamic structure 
requires pole and residue information. 
An investigation was initiated to 
determine a scheme to solve residues 
using the difference equation modeling 
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Fig. 1 - Overlay of an FFT periodogram over a lattice 
forward/backward PSD estimate 

approach. A closed form solution for 
residues was derived from this 
investigation. 

This paper summarizes the theo- 
retical approach and some preliminary 
results from the approach. Frequency, 
damping, and residue data then form a 
system characterization of a dynamic 
structure in a nomenclature familiar to 
a structural dynamicist. 

ANALYTICAL APPROACH 

The formulation for the direct 
computation of modal residues from 
rational function transfer functions 
follows. Many deterministic discrete 
time-processes in practice can be well 
approximated by a rational transfer 
function model (111. One of the most 
general linear modals is the auto- 
regressive moving average (ARMA) model. 
Here the driving input sequence jx } and 
output sequence JY } can be modele3 by 
the linear difference equation: 

M 
£ 

k-o 
k n-k 

N 
I 

t-1 
a.Yn-. (1) 
1 n-t 

where 

M ■ order of zeroes 
N « order of poles 

b, a ■ linear coefficients 
k l 

The difference equation r n be written 
as a system function via  3 Z-transform 
technique. The ARMA function is 
rational fraction series as: 

H(2) 

M 
I 

k-o 
V 

1+1 a z 

(2) 

t-1 

For lightly damped structures, the 
order of zeroes equals the pole order 
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where M«N. Then the transfer function 
in the Laplace domain can be written as 
a summation. 

M  / R      R  \ 
1(S) *     Z     (—i- + —L.) (3) 

where 

Laplace root -iun + ]« 

R. = residue 

u) = natural frequency 

uifl = damped frequency 

* = indicate conjugate 

i = viscous damping 

The denominator of Eq. (2) multiplied by 
z , can be written as a complex 
polynomial equal to the product sum of 
its roots: 

1 + 
M 

k-1 
akz 

M 
n 

k-l 
(z-zk) (4) 

Setting the variable z to zi to solve 
for a particular residue, it can be 
observed that all residues, other than 
R. at k^i, drop out of the formulation 
(they are multiplied by (^-Zi.) in the 
numerator).  This leaves Eq. x?) with: 

1  *  K M-r 
f t    Vk 

r=o 

RkUk-2 !>• \^  (iMü)- 

(7) 

«V2.*' 

To solve the fraction in Eq. (7) as z 
approaches zk, note: 

limit z-z. limit d(z-zk)/dz 

z*zk  Inz-lnz. z+zk d(lnz-lnzk)/dz 

(9) 

■ z. 

Therefore the residue R at i=k equals; 

where 

z, *  roots of the series 
k 

Also the Laplace descriptor in the 
Z-transform rational fraction expansion 
is: 

s » T 

where 

T - sampling period 

ln(z) (5) 

Therefore substituting Eq. (5) into (3) 
and setting the left hand (LH) resultant 
equal to Eq. (2) multiplied by z /z , 
then substituting the LH side 
denominator by Eq. (4), the resulting 
equation is: 

T 

M 

^ b z. r"o r k 
M-r 

(zk-z1)....(zk)....(zk-zM) 
(10) 

Eq. (10) shows how the residues can 
be solved directly by knowing the moving 
average filter weights and the pole 
roots. Further the residues do not have 
any influence from other residues giving 
theoretically an uncontaminated 
estimate. 

The autoregressive formulation (AR) 
is similar where it can be shown that: 

2 ,M        a     z  
(zk-z)....(zk)....(zk-zM) (11) 

where 

J: b. Z 
k-o K 

M-k 

k»l 

or 

H 
I 

k-1 

(z-zk) 

1    M 

* k'o bkZ 
K"0 

iml yinz-lnzk       Inz-lnz^ 

M-k 

Inz-lnz. 

(6) 

Rk (z-z.)....(z-zk).., ,(z-zM) 
+ (*) 

o  ■ Mth order predictor error 

A variety of numerical schemes 
exists for solving the model order and 
the linear coefficients (11). A simple 
least squares approach was utilized for 
this paper.  An adaptive formulation 
could have been used where nonstationary 
phenomina are expected. 

EXPERIMENTAL INVESTIGATION 

Use of a digital filter stochastic 
model has several advantages.  Properly 
used, they are a noise separation 
process where harmonics are identified 
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out of signal with random noise.  Unlike 
FFT or other time averaging processes 
which try to minimize noise, the AR and 
ARMA processes can run the risk of not 
modeling certain weaker harmonics or 
introduce noise roots into the model. 
System order then can be important. A 
popular way to determine the system 
order is to observe the AR predictor 
error for convergence. Since the model 
does not improve after all the harmonics 
are identified, then the order can be 
observed. 

For this paper, the number of roots 
were limited due to computer size, 
therefore, a simple visual check of the 
fit of the ARMA or AR PSD to an FFT PSD 
was utilized.  It is important to note 
that the FFT process does not always 
produce a true PSD, thus its application 
was not for a standard, just a data 
point. 

The experimental data base con- 
sisted of vibration response data from a 
FLTSATCOM spacecraft modal test.  Figure 
2 shows the spacecraft mounted to a 
large inertia mass. Modal testing 
called for both random and some dwell 
test using multiple shakers for input. 
Modes were checked for orthogonality 
with respect to the inertia matrix. 
Results of the test are documented in 
Ref. [3].  In general, all the modes 
below 40 Hz had excellent orthogonality 
(less than 10% off diagonal terms). The 
residue and pole data form a reliable 
data base. 

A separate mini-run was made with 
an initial four shaker setup using one 
shaker for random excitation and mea- 
suring 8 key reference locations.  Data 
were digitized at a 256 samples-per- 
second rate. Over 30,000 samples per 
channel were collected along with the 
force input. 

Digitized data were reduced via an 
experimental program designed to solve 
for the rational function linear 
coefficients using least squares where: 

[0] = 

X(o)  X(-l) • Y(-l)- 

X(l)  X(o) • Y(o)• 

x(P-i) • • • Y(p-2): 

fb 

(12) 

Hcf 
'i3 
-a 

({y} 

yo 

yP-1 

P - number of data samples used 

The least squares is any 
simulataneous solution for |c}: 

[U]T [U] |c} - [U]T {■;} (13) 

The pole series wa 
gated for its root by w 
coefficients into an M 
Hessenberg matrix and u 
algorithm [12]. Poles 
Z plane and transformed 
domain with a direct so 
closed formed solution 
Eq. (10) was used once 
known. A standard FFT 
algorithm was used to f 
response functions. 

s then investi- 
riting the 
order upper 
sing the OR 
are solved in the 
into the Laplace 

lution. The 
for residues in 
the poles were 
butterfly 
orm frequency 

Fig. 2 - Spacecraft installation at 
the test site 

Figure 3 is a magnitude plot of the 
transfer function for response 16 over 
the random source. Response 16 has some 
of the largest responses out of the 
eight accelerometers monitored.  The 
figure overlays the FFT periodogram with 
the ARMA PSD estimate. Some peaks match 
well, other have discrepancies in 
describing the peaks.  Eleven averages 
were used to form the periodogram.  The 
same amount of data were utilized with 
the ARMA model. ARMA modeling focused 
on the 32 Hz and below area (1/2 fmax 
from the decimated sampling rate).  The 
roots are listed in Table 1 showing the 
two closely spaced modes at 16.9 and 
17.2 Hz. 
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TABLE 1 
Residue Listings for 8 References Transducers 

Mode 
No. 

Frequency 
(HE) 

Damp 
%C/CR #9 »10 

Modal Residues 
#11         #12         #13 #14 #15 #16 

1 16.91 0.75 -.025 .001 -.193 -.099 -.333 -.019 .048 1.000 

2 17.26 1.38 .265 .001 .131 .365 -.001 .445 .031 1.00 

3 21.18 0.53 .0 .0 .177 .073 .065 -.115 .305 1.000 

4 24.18 0.28 -.262 .205 .308 .140 1.0 -.933 .270 .785 

5 25.01 0.47 -.128 -.030 .242 -.099 .036 .355 .330 1.000 

6 25.49 0.81 -.113 .078 -.147 .464 .023 .122 .132 1.000 

7 26.24 0.68 -.145 .001 -.037 -.104 -.047 -.064 .078 1.000 

8 27.21 0.81 -.451 -.726 .252 -.687 -1.0 -.565 .256 .200 

9 28.24 0.87 .517 .039 .569 -.427 -.017 .118 1.000 .712 

10 28.90 0.73 .158 .003 -.125 -.076 .040 .043 -.402 1.000 

11 30.83 0.27 .064 .002 -.054 1.000 -.073 -.152 .001 -.004 

u.w- 

0.35- - 

0.30- - 

CN   0,25- 
o 

UJ 

§ 0.20. 
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i 
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s 0.15- 
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Fig. 3 - Magnitude transfer function plot for response IS 
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Also listed in Table 1 are the 
residue results for 11 modes identified 
by test between 15 and 31 Hz.  Modal 
results are listed for the polyreference 
[13] approach using burst random.  Poly- 
reference results were spot checked by 
sinedwell test and found to be accurate. 
Table 2 lists the results using the QR 
algorithm to solve for the roots and Eq. 
(10) for the residues. Frequency and 
damping estimates compare favorably with 
those in Table 1. For weakly excited 
modes, a convergence on a root did not 
occur, thus no residues were solved for. 
Mode 3 was a relatively well excited 
isolated mode and the modal coefficients 
compare favorable for that condition. 

Another run at calculating the 
residues was made by forcing the poles 
in Eq. (10) to equal those solved for in 
Table 2. The numerator weights in Eq. 
(10) were reestimated with the asso- 
ciated poles. Residues for each root 
were then tabulated for Table 3. 
Results again were inconclusive for the 
higher modes, however, the lower modes 
compare favorably.  It was noted that 
the resulting autoregressive filter 
weights were all positive when the roots 
were set to the 11 values in Table 2. 
whereas the original coefficients for 
the responses include several negative 
weights. 

CONCLUSION AND RECOMMENDATIONS 

Modeling via a difference equa- 
tion/adaptive digital filters is under- 
going extensive research by linear 
systems researchers. Several algorithms 
exist even for the ARMA model used in 
this paper. The poor consistancy of 
residue estimates for the higher fre- 
quency modes shows the modeling order 
needs to be larger than 17 conjugate 
pairs for 11 actual mode pairs and that 
an algorithm with strong LH plane (poles 
with frequencies greater than fmax 
divided by 2) estimation capability 
would have been desirable in this case. 

Results prove tnat a closed form 
solution for residues from a rational 
function exist. Transfer functions can 
be matched using a rational function, 
and accurate estimates of frequency and 
damping can be made even for closely 
spaced modes which require multishaker 
applications to currently identify. 

The issues suggesting use 
digital filter stochastic model 
vastly different than those usi 
complex exponential via an FFT 
Little in the use of a digital 
has been published by mechanica 
users. This paper attempts to 
feasibility of the concept and 
the concept was not validated. 

of a 
are 

ng the 
process, 
filter 
1 system 
show the 
although 
the 

TABLE 2 
ARMA Data with 34 OOF Model 64 Samples/Second 

Mode 
NO. 

Frequency 
(Hz) 

Damp 
%C/CR #9 #10 

Modal Residues 
111   »12   #13 #14 #15 #16 

1 16.96 .85 - - -.220 .309 -.242 -.010 .016 1.0 

2 17.23 1.75 .246 .002 .050 .526 - .379 - 1.0 

3 21.20 0.56 .037 0.0 .182 .074 .065 -.109 .332 1.0 

4 24.20 0.73 -.209 0.0 1.0 .105 -.136 .689 - .142 

5 25.06 0.76 -.504 - 1.0 - - .198 .394 - 

6 25.55 0.97 - .169 - 1.0 - - - - 

7 26.33 0.98 -.169 - - - .004 -.113 - 1.0 

8 27.16 4.26 - -.033 - -.695 -.167 - 1.0 - 

9 28.05 1.42 - - 1.0 - - - - - 

10 28.83 0.53 -.558 - - .426 .075 .070 -.472 1.0 

11 30.78 0.95 - - -.274 1.0 -.087 -.149 .102 - 
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TABLE 3 
ARrfA Model with Fixed 17 Conjugate Root Pairs 

Node 
No. 

Frequency 
(Hz) 

Damp 
%C/CR «9 #10 

Modeal Residues 
»11   #12   #13 #14 #15 #16 

1 16.9 0.85 -.004 .001 -.162 -.070 -.305 -.010 .051 1.0 

2 17.2 1.7 .226 -.002 .109 .296 -.033 .366 .027 1.0 

3 21.2 .56 -.080 .008 .190 .038 .030 -.176 .484 1.0 

4 24.2 .74 .118 -.043 .194 .125 .160 -.021 -.189 1.0 

5 25.1 .73 .170 -.010 .158 .208 .190 .084 -.202 1.0 

6 25.5 .98 .213 .032 .091 .278 .225 .185 -.184 1.0 

7 26.4 1.0 .163 -.023 .191 .181 .174 .049 -.216 1.0 

8 27.2 4.2 .215 -.014 .205 .239 .187 .112 -.286 1.0 

9 28.1 1.4 .125 -.024 .168 .167 .181 .015 -.171 1.0 

1Ü 28.8 .56 .036 -.187 .446 .139 .155 -.243 -.480 1.0 

11 30.8 .95 .173 -.053 .287 .174 .170 .018 -.298 1.0 

feasibility was demonstrated.  Further 
research into the modeling accuracies 
using a complete data base of a properly 
instrumented structure needs to be made. 
Then orthogonality can be estimated to 
check the line r independence of the 
modal estimates of each mode. Work is 
progressing on using other formulations 
of the rational function where the poles 
are initially estimated, then the moving 
average coefficients adjusted.  This 
enables a residue to be estimated on 
every root and transfer function of the 
system. 
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SAFE/DAE:    MODAL TEST IN SPACE 

T. E. Nesman and D. K. Reed 
Marshall Space Flight Center 

Huntsville, Alabama 

INTRODUCTION TEST ARTICLE DESCRIPTION 

In September of 1984, NASA performed a 
series of experiments on orbit with a large solar 
wing attached to the Space Shuttle orbiter. 
These experiments, the Solar Array Flight 
Experiment (SAFE), mark the first tests of a 
large space structure in space.    Extension, 
retraction, and dynamic tests had to be per- 
formed in space due to the fragility of the solar 
array.   Due to the extendable and retractable 
design of the solar array, accelerometers and 
associated wires could not be used; therefore, 
remote sensing, the Dynamics Augmentation 
Experiment (DAE), was added to the SAFE pro- 
gram.   The DAE uses a remote sensor based on 
star tracker technology to measure the dynamic 
response of the solar array.   The DAE sensor 
tracked 18 targets on the solar array during 
free-decay response to a transient excitation. 
This paper is an overview of the SAFE/DAE, 
highlighting analysis results from the remotely 
sensed data.   Modal parameter estimates from the 
remotely sensed data were computed using the 
complex exponential and poly reference tech- 
niques. 

BLANKET 

MAST 

The primary objectives of SAFE were to 
demonstrate extension/retraction of the solar 
array and to verify electrical, thermal, and 
dynamic characteristics.    The solar array main 
components are a blanket and mast.   The mast 
and blanket are joined together only at the top 
and bottom of the mast as shown in Figure 1. 
The mast is made of three fiberglass longerons 
which are held together with battens and cross- 
ing tension wires.   The mast can be extended 
and retracted by coiling it into and out of a 
cylindrical canister. Figure 2.    The blanket is 
constructed of thin plastic (Kapton) hinged 
panels.    The solar array blanket can extend to 
105 feet in length or can fold "accordion-like" 
into a box 7 inches high.    For this mission, 
only a few top panels held active solar cells; 
the rest of the blanket held aluminum sheets 
designed to simulate the mass and thickness of 
solar cells.   The array could be extended to 
70 percent or 100 percent of its full length, 
i.e., 71 feet or 105 feet, respectively. 

RETROREPLECTOR TARGETS 

EMITTER 
REMOTE SENSING 
RECEIVER 

DATA PROCESSING 
It RECORDING 
INSTRUMENTATION 

Figure 1.    SAFE dynamics augmentation experiment. 
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Figure 2.   Solar array extension mast. 

The DAE primary objectives were to deter- 
mine the solar array's dynamic characteristics 
using remote sensing.   A remote sensing system 
was developed by Ball Aerospace for NASA. The 
DAE consisted of 18 "pop-up" targets on the 
mast and blanket, infrared lasers to illuminate 
the targets, a sensor that "looked" at the tar- 
gets, and the supporting electronics to track 
18 targets and digitally record their displace- 
ments on magnetic tape, Figure 3.   The target 
positions before the first dynamic experiment, 
DAE 1, are shown in Figure 4.   Target motion 
was recorded in two directions parallel and 
laterally perpendicular to the longitudinal axis 
of the orbiter.    Sensor operation was limited to 
the dark side of an orbit because of the sun- 
light, earthlight, and associated reflections. 

PROCEDURES AND RESULTS 

Testing 

In January of 1984, performance tests of 
the sensor were run at Marshall Space Flight 
Center.   These tests verified the target "zones 
of operation," target tracking accuracy, and 
the sensor's dynamic range.   After these tests, 
the acquired data had to be converted into a 
format compatible with our software.   The solar 
array was flown on STS-41D, which lifted off 
in the morning of August 30, 1984.   The solar 
array went through a rigorous schedule during 
mission 41-D.   The solar array extension and 

retraction history pertaining to the DAE is shown 
in Table 1.   Six DAE tests were conducted over 
three days:   one out-of-plane, two in-plane, and 
three multi-modal.   These tests are named for 
the type of motion the excitation is to produce: 
out-of-plane, motion out of the plane of the 
blanket; in-plane, motion in the plane of the 
blanket and; multi-modal, this test was designed 
to excite as many modes as possible.   All DAE 
tests were performed on the dark side of an 
orbit with the solar array at 70 percent deploy- 
ment (orbiter safety required 70 percent deploy- 
ment for dark side dynamic testing).   Each test 
consisted of a quiescent period; then commands 
to start the sensor and recorder; next, excita- 
tion using the orbiter vernier reaction control 
system (VRCS); and last, the free-decay 
response of the array.   The thrust time his- 
tories are superimposed on target responses for 
three of the six DAE's in Figure 5.   Short 
duration pulses of the VRCS were intended to 
excite the array and to leave the orbiter in a 
favorable attitude and stable orbit.   Overall 
operation of SAFE was very successful.   The 
only structural variation noted was a slight 
twist of the array upon deployment, and the 
blanket curved slightly about the mast during 
the dark side of the orbit.   After the flight, 
the tape recorders were returned to MSEC for 
data processing and format conversion.   Post 
flight analysis revealed the sensor package 
worked better than expected.   The twist in the 
array moved a few targets out of their tone of 
operation, but this deviation did not prevent 
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Figure 3.   Dynamics augmentation experiment. 
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Figure 4.   Target numbers (1-5 represent 
base of array). 

TABLE 1 
Solar Array Extension/Retraction History 

Extend 
DAE 1 Sept. 1. 1984 Out-of-Plane 
Retract 
Extend 
DAE 2 Sept. 2. 1984 Multi-Modal 
DAE 3 Sept. 2. 1984 In-Plane 
DAE 4 Sept. 2. 1984 Multi-Modal 
Retract 
Extend 
DAE S Sept. 3. 1984 Multi-Modal 
DAE 6 Sept. 3. 1984 In-Plane 
Retract 

i 

the sensor frcm tracking all targets successfully. 
Modal parameters were estimated from the target 
displacement data. 

Measurements 

Modal analysis is typically performed using 
acceleration responses.   This is particularly 
useful when modes encompassing a relatively 
wide frequency range are sought.   The accelera- 
tion amplitude of higher order modes will be 
maintained while the displacement amplitude is 
severely attenuated.   Because of the remote 
sensing requirement, displacements were mea- 
sured for the DAE modal analysis.   Three x and 
y displacements of target 19 are shown in Figure 
5, where x is out-of-plane, y is in-plane, and 
the units are centimeters.    The thrust time 
histories in Figure 5 are reconstructed from 
telemetry data, however, the pulse amplitudes 
are not shown to scale and the duration and 
occurrence of each pulse is approximate.    These 
excitations were executed manually by the astro- 
nauts.   Due to the manual excitations, pre-test 
underestimation of array clamping, and thruster 
constraints to minimize orbiter rotation, the 
optimum levels were not obtained.    This is par- 
ticularly obvious from the in-plane or y-direction 
where the free-decay response levels are close 
to the quantization level of the OAE sensor. 

The sensor was placed at the base of the 
array to minimize ranging errors, therefore, 
target displacements were obtained in only two 
directions.    The modal analysis is therefore 
performed under the assumption of negligible 
longitudinal motion.    An additional constraint 
was that the input force would not be measured. 
All measurements on the structure, therefore, 
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Figure 5.   VRCS pulses/target 19 respsi se vs. time. 

must be obtained simultaneously to preserve 
both the amplitude and phase with respect to 
each measurement. 

Complex Exponential Technique 

The complex exponential parameter estima- 
tion technique provides frequency and damping 
values for one excitation.   This technique "fits" 
the complex exponential form of the impulse res- 
ponse function using the method of least squares. 

The software used for the analysis of the 
solar array data was developed by University of 
Cincinnati [1] for use on the HP5451C Fourier 
Analyzer.   The input typically requires a fre- 
quency response function (FRF) at each response 
point.   The inverse Fourier transform of each 
FRF is curve fit using the complex exponential 
algorithm to provide estimates of frequency and 
damping.   The residues are determined in a con- 
ventional manner, i.e., from the least squares 
curve fit of the FRF. 
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Since the excitation is not known, the 
solar array data was analyzed by substituting 
the Fourier transform of the tree decay response 
of each measurement for the FRF.   In this case, 
the impulse response function is replaced by 
the free decay response of the solar array. The 
residue estimates are obtained from the Fourier 
coefficients of each response. 

Using the complex exponential technique, 
four out of the first five mode shapes were 
obtained.   Figures 6 through 9 show the first 
out-of-plane bending, first torsion, second 
out-of-planzs bending, and second torsion of the 
cantilevered solar array.   The in-plane bending 
modes were not detected in the response data. 

MI ou'-ar-ni« ■ 
mm i. mat m-0-^m 

Socdbüi: 
Figure 6.   First out-of-plane bending. 
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Figure 7.   First torsion. 
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Figure 8.    Second out-of-plane bending. 
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Figure 9.   Second torsion. 

Polyreference Technique 

The polyreference technique is an advanced 
algorithm developed by Void et al. [2] and is 
similar to one that is used by Ibrahim [3].   It 
has been shown [4] that both the complex expo- 
nential and the Ibrahim technique are special 
cases of the polyreference technique.   Th? 
details of these' algorithms are explained in the 
literature; however, some important points are 
included in the following. 

Similar to the complex exponential tech- 
nique, this algorithm makes use of the unit 
impulse response or free-decay response time 
history.    In this case, however, responses from 
several locations on the str „ture and from 
multiple excitations are used simultaneously to 
extract modal parameters.   For modal synthesis, 
modes relative to any exciter location are com- 
plete and equally accurate.   Each mode is scaled 
to a unit impulse at the corresponding excitation 
point.   In the case of the solar array on-orbit 
displacement data, the scaling is superfluous. 
Since the excitation tor each DAE is not mea- 
sured, the free-decay responses are combined 
to form modes whose amplitude depends on the 
response only. 

The polyreference technique is useful 
when closely spaced modes or repeated roots 
are encountered.   Also, when analyzing linear 
systems, this technique will help overcome noise 
when free-decay response data is used.   The 
polyreference algorithm could not be applied to 
any combinatin of DAE's, because the frequen- 
cies and damping varied significantly from test 
to test. 

Nonlinear Analysis 

Detailed analysis was required to determine 
the nonlinear behavior of the solar array.   The 
free-decay response time history of each mea- 
surement could not be analyzed as a complete 
record because variations in frequency and 
damping were noticed from beginning to end. 
Piece-wise linear analyses were performed by 
assuming frequency and damping do not change 
significantly over a short time.   Several differ- 
ent analyses of this type were performed to 
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describe the nonlinearity throughout the free- 
decay response time history. 

One way to illustrate the nonlinearity is 
using frequency spectra.   By weighting a por- 
tion of a time record and then Fourier trans- 
forming, the frequency variation is shown as 
the weighting window is moved across the 
response time record.   Superimposing these 
spectra, we see the frequency shift increase as 
amplitude decreases (Figure 10). 
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■''IA    /'A 
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Figure 10.   DAE 1 target 6X spectra. 

Consider now curve fitting in the time 
domain.   By taking a short portion of a time 
record, a least squares complex exponential 
curve fitting technique will provide estimates 
of frequency and damping, and by fitting all 
of the measurements together, a global estimate 
is obtained.   This can be repeated across 
selected time periods of the records to map 
changes in frequency and damping.   A modified 
verUon of the polyreference software was 
developed by the University of Cincinnati to 
restrict analysis to a selectable portion of the 
response time record.   This technique was 
applied to portions of individual DAE response 
time records to obtain frequency and damping 
estimate's.   There is a trade-off between fre- 
quency bandwidth and time resolution for this 
type of analysis.   A review of the mode shape 
variation with frequency variation shows only 
slight changes in shape that can most probably 
be attributed to noise.   Two modes are illus- 
trated in Figures 11 and 12 where the frequency 
has changed, but the shape is essentially the 
same.   Modal analysis of the DA£ data produced 
the parameter estimates in Table 2.   The 
algorithms used in the analysis sometimes over- 
estimate damping with noisy data, howevor, the 
values in Table 2 were consistent with "logarith- 
mic decrement" and "half power point" damping 
estimates.   Damping decreased and frequency 
increased as the response amplitude decreased. 
This is not unusual for structures of this type 
where the impact of joints cause increased 
damping and preload causes a frequency shift. 
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Figure 11.   First out-of-plane bending- 
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Figure 12.    Second out-of-plane bending. 
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TABLE 2 
DAE Parameter Estimates 

Mode Frequency Hz Damping 

1 0.059 - 0.071 12 - 1.5% 

2 - - 

3 0.089 - 0.098 6 - 1% 

4 0.120 - 0.140 4 - 1% 

5 0.172 - 0.210 2.4 - 1% 

CONCLUSIONS 

Remote Sensing 
I 

One of the objectives of the DAE is to 
determine if remote sensing can be adapted to 
on-orbit dynamic testing of large space struc- 
tures (i.e., space station, space platforms, 
large antennae).   Advantages of this type of 
measurement system are:    (1) very little mass is 
added to the structure being tested (low 
frequency/small amplitude accelerometers gen- 
erally have large mass; (2) no contact between 
structure and sensor (i.e., no accelerometer 
wires) - this was a key issue for the SAFE; 
(3) the sensor was quite accurate (1 mm reso- 
lution).   Limitations of the DAE sensor are: 
(1) sunlight, earthlight. moonlight and asso- 
ciated reflections would confuse the sensor; 
(2) only measures deflection in two directions; 
(3) this particular remote sensor required pre- 
flight target locations with respect to the sensor, 
whereas these target locations were stored in 
firmware, not easily changed.   Considering the 
limitations of the DAE remote sensor and the 
relatively small deflections of the solar array, 
the data are quite good.   The data have very 
few dropouts and no known nontarget reflec- 
tions. 

Solar Array 

The SAFE solar array is an interesting 
structure for modal analysis.   Four modes were 
successfully extracted from the remotely sensed 
data.    Distinctive features of the solar array 
are: 

1. Large and flexible. 

2. Very low natural frequencies. 

3. Nonlinear dynamic characteristics. 

4. Thermal sensitivity. 

5. Retractable and deployable. 

This structure is typical of future large space 
structures in some ways.   Remote sensing and 
modal analysis in space may be required to 
verify analysis for many of these structures. 

Description 

Out-of-Plane First Bending 

In-Plane First Bending 

First Torsion 

Out-of-Plane Second Bending 

Second Torsion 

The nonlinear bohavior of the solar array is 
probably typical of future large space struc- 
tures.   Thermal sensitivity of the array serves 
as a reminder of the harsh environment in 
space that can significantly affect structural 
dynamics. 
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Dlscussloii 

Voice;    Did both the frequency and the damping 
shift with time? 

Mr. Nesman:    Yes. 

Voice: How do you explain the changes In 
damping? 

Mr. Hesman; The damping was related to the 
amplitude of the excitation. Each test did not 
excite the same amount of response. However, if 
you line up the amplitude and the damping from 
test to test, there is a correlation. For 
example, on the first test the amplitude was 
almost 20 centimeters peak-to-peak, initially. 
On the third test it was only about five 
centimeters peak-to-peak. Well, if you went on 
the first test to where the amplitude was about 
five centimeters peak-to-peak, and computed the 
damping around there, you would get the same 
answer as you did on the third test, or close to 
it. 

Voice; Could you tell us a little more about 
the wobbling of the array? 

Mr. Hesman; All of these tests were on the dark 
side of an orbit. Photographs of the light 
side, rtien it was In the sun, showed the array 
was flat. When it was on the dark side, it 
curved. 

Voice: No one knows why? 

Mr. Nesman: 1 don't know why. Nobody has 
satisfactorily explained it yet. 

Voice: Was It thermal curvature? 

Mr. Nesman; It is thermal. However, that 
should have been anticipated, in my mind, but it 
wasn't. It still hasn't been explained 
adequately. 
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TESTING TECHNIQUES 

RANDOM VARIATION OP MODAL FREQUENCIES 

EXPERIMENTS AND ANALYSIS 

Thomas L. Paez 
Linda J. Branstetter 

Danny L. Gregory 

Sandia National Laboratories 
Albuquerque, NM 

When a mechanical system is subjected to a dynamic 
environment it executes dynamic response, and the 
character of the response depends on the features of the 
excitation and the structural system parameters. In order 
to predict the structural system response, it is necessary 
to know both the excitation and structural system 
characters. The modal frequencies are among the most 
basic system properties and are often used in dynamic 
analysis. Frequently, one or more structural parameters 
is random, and this causes the modal frequencies to vary 
i-andomly. This investigation shows how random variation 
i». modal frequencies can be estimated using a combination 
of experiments and analysis. One experimental and three 
numerical examples are presented. 

Introduction 

The purpose of dynamic structural 
analysis is the prediction of system 
response.  Before a structural analysis 
can be performed the parameters 
describing the characteristics of a 
system and the loading on the system 
must be known.  In many situations/ the 
analytically or experimentally deter- 
mined modal charac'-eristics of a 
structure are used ^o perform a dynamic 
analysis.  Regardless of the type of 
analysis performed/ correct prediction 
of response depends on accurate deter- 
mination of the system parameters.  In 
the case of modal analysis the para- 
meters of interest are the modal 
frequencies.  Response is particularly 
sensitive to these frequencies when the 
excitation signal content varies rapidly 
with frequency.  In other applications, 
frequency shifts are often used as a 
diagnostic tool in evaluating structural 
damage.  In these cases measured change 
in modal frequencies must be attributed 
to either inherent structural randomness 
or actual damage.  In view of this, it 
is important to understand and 

accurately account for factors that 
affect variation in modal parameters. 

Experiments have shown that the 
modal frequencies of structures vary 
randomly.  Specifically, experiments 
with nominally Identical structures and 
experiments with a single structure 
tested at different times show random 
variation in modal frequencies.  Some 
sources that cause this random variation 
are variation in material properties, 
variation in the character of Internal 
joints, randomness in structural 
dimensions, and variation in boundary 
conditions.  These random variations may 
be incorporated in a dynamic analysis as 
randomly varying structural parameters. 
It is desirable to statistically 
characterize these parameters. 

The purpose of this investigation Is 
to establish an analytic technique for 
the estimation of the second order 
statistical moments (mean, variance, 
covariance) of modal frequencies when 
one or more underlying structural 
parameters are random variables. (The 
moments of the underlying random 
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variables are assumed to be known from 
experiments.)  The results of a simple 
laboratory experiment are summarized to 
show that the analytic technique yields 
accurate results in a particular case. 
The analytical investigation summarized 
here shows that the moments of modal 
frequencies can be defined in terms of 
some simpler measure of structural 
characteristics.  For example, in the 
experiment« the mean and variance of the 
fundamental frequency are defined in 
terms of the mean and variance of a 
structural stiffness parameter.  The 
advantage in having this capability is 
that in many situations, it is relativ- 
ely easy to find the moments of a simple 
structural parameter experimentally 
(possibly through static experiments). 
These moments can be used analytically 
to establish the moments of the modal 
frequencies.  In many situations it is 
difficult to establish the mean and 
variance of modal frequencies without 
using such an analytic technique, and 
it is always more difficult and time 
consuming to find modal frequency 
moments from experiments alone. 

Other investigators have studied 
parts of this same general problem.  In 
particular, several applied mathematics 
studies have considered the random 
eigenvalue problem.  These studies have 
sought to establish the probability 
distribution and/or moments of linear 
systems.  Reference 1 pursues the type 
of investigation in a general mathe- 
matical framework; references 2 and 3 
pursue the problem in a structural 
engineering framework.  It appears that 
no experimental investigations have 
considered the random variation of modal 
frequencies. 

The following section shows how the 
second order moments of a structural 
system can be evaluated approximately. 
Then some examples are presented.  The 
first example shows the results of a 
sequence of experiments in which the 
fundamental frequency of a cantilever 
beam is evaluated repeatedly.  The 
fundamental frequency varies randomly, 
and its mean and variance are estimated 
from measured data.  In the same 
example, the mean and variance of an 
underlying random variable (base 
stiffness of the cantilever beam) are 
estimated from data, and it is shown 
that these moments can ba used in the 
analytic framework developed here to 
estimate the mean and variance of the 
fundamental frequency.  Good agreement 
exists between the experimental and 
analytical results.  Two other numerical 
examples are presented to show how 
random variation occurs in higher modal 
frequencies and how random variation 

occurs when more than one underlying 
variable is random.  Finally, a 
discussion and conclusions are 
presented. 

Analysis of Random Variation in Modal 
Frequencies 

A complete characterization of the 
potential for random variation in modal 
frequencies is important because it 
establishes a description of possible 
levels of structural response.  For 
example, consider the case where one 
mode of a structure is excited, and 
assume that the excitation is a 
stationary random process.  If the 
structural modal frequency has an 
average value of m0  and a range of 
likely values spanning the frequency 
interval from (i>0 - Au to (<)0 + Au, 
then the mean square response of the 
structure can vary greatly from one 
trial (in which a structure is excited 
and its response is measured) to 
another.  The situation becomes more 
complicated when more modes of response 
are excited, but an understanding of the 
random variation in modal frequencies is 
still important. 

A method for estimating the 
statistics of the modal frequencies of a 
structure is developed in the follow- 
ing.  First, consider the deterministic 
modal analysis problem.  Every struc- 
tural system is an assembly of con- 
tinuous structural elements.  The motion 
of each structural system is governed by 
a set of coupled, partial differential 
equations involving the mass and 
stiffness characteristics of the 
structure.  The unforced form of these 
equations can be solved to establish a 
sequence of frequencies where the system 
will execute harmonic response.  These 
frequencies are the system modal 
frequencies, and the configurations that 
the structure assumes while executing 
motion at the modal frequencies are the 
mode shapes.  Alternately, the structure 
can be spatially discretized, or the 
partial differential equations governing 
motion can be discretized to obtain a 
sequence of ordinary differential 
equations governing structural motion. 
The unforced form of these equations can 
be solved to establish the modal 
frequencies and mode shapes of the 
structure.  Whichever approach is 
chosen, the modal frequencies are 
established (in most cases) by numerical 
solution of a transcendental equation or 
a polynomial.  The modal frequencies can 
be- denoted 

fl • B^aj.a,....), 1-1,2.3,...(1) 
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where gj is a function that cannot 
usually be written explicity» even for 
simple structures! and the aj« j = 1« 
2i..r are the structural mass and 
stiffness parameters upon which the 
modal frequencies depend.  Because the 
functions gj in Equation 1 cannot be 
written explicitly/ the equation must 
simply be interpreted as an expression 
of the fact that the modal frequencies 
can be computed when the structure 
parameters are given. 

When the mass and stiffness 
characteristics of a structure are 
random« then the parameters a.:  used 
in Equation 1» are random variables. 

Consider this case and denote the mass 
and stiffness random variables Aj> j - 
!> 2r../N. The modal frequencies can be 
expressed 

Pj = g1<A|,Ai,...), 1=1,2,3....(2) 

where the frequency variable has been 
capitalized to indicate that it is 
random.  The Fj/ i = 1» 2,   ..., are 
random variables because of their 
functional dependence on random 
variables Aj» j = 1» 2,...fN.  The 
objective of this analysis is to find 
the second order statistics of the 
?i.     This can be done» approximately, 
by writing the gj using Taylor series 
expansions about the means of the random 
variables Aj.  Then Fj can be 
expressed 

ECPj) «■ g1(ui,y»,....PN) 
N M  3*' 

+Z:E 
J=lk^l3aj3ak 

,N, 

p1k 0J0k 

ak! '"k 

1=1.2.3. ..CO 

is the where oj   r   j  = 1/... 
variance  of   the  random variable Aj/ 
and p jit is   the correlation coefficient 
between   the  random variables Aj  and 
Ak.     (Note  that pjj =  1.) 

The variance  of  F^  can be 
obtained  by  subtracting  the  mean  from 
Equation  3,   squaring  the  result/   and 
taking  the  expected value.    When 
Equation  3   is  truncated   following  the 
quadratic   terras,   the   result  is 

N    N 

1 j=lk=l\3a 
Cii 

^laj=vV3ak|vv 
pjk aj ok 

^E EE Efäi-är-       ) j = lk=l^lin=lVaj3ak a.=y./ 

ba.&a )0Jak0 
\   t    in a.=y. /   J   "^ 

'3 "y 
^^k 

£am(pjk0im 

ra    m 

N     3g. 1 

N    N    3^. 

*E E sa.Sa J-ll^l^J^k 
ak"l,k 

(ArPj)(Ak-Pk) 

+ . 1-1,2,3,...(3) 

where Wi   is   the  mean  value  of   the 
random variable  Aj.     When   the  series 
in  Equation  3  is  truncated  following a 
finite number of  terms,   the  resulting 
expressions  can  be  used  to approximate 
the  moments  of  the  modal  frequencies. 
For  example,   when   the  series are 
truncated  following   the quadratic  terms, 
and  the   random variables Aj, 
j  >• 1/...,N are  assumed  to  be  normally 
distributed,   the mean  of Fj   is 

+ Vkm + Pjm'W» 1=1.2.3.. 
(5) 

where it has again been assumed that the 
random variables Aj, j = 1,...,N, are 
normally distributed/ for ease in 
computation of the fourth order 
moments.  The technique developed here 
does not depend on the normal distri- 
bution assumption; any joint distri- 
bution of the Aj can be incorporated 
in the moment equations for the Fj. 
Finally, the covariances between pairs 
of modal frequencies can be obtained by 
subtracting the mean values from 
Equation 3 and taking the expected 
values of products like 

(Fij - ECFi,]) (Fi2 - E[Fi2]). 

The covariance between the modal 
frequencies F^ and Fj2 ^a 

39 

S&S^^^^SSc^^^^&SK ./oT^V •r^^f« *■ 



CovCF^.P^) •= 

f f M \fe|    ] 
pjk ai 

N N N  N / 92g1      \ 

ak=llk 

(^a,=JaJW 
m^jk^n, 

a„=P„ 

+ P j£pkm ^m13^^ 
1=1.2,3,.• 

(6) 
Some numerical examples presented later 
in this paper show how moments lika the 
mean, variance and covariance of modal 
frequencies given in Equation 4/ 5 and 6 
can be computed in specific cases. 

The moments of the modal fre- 
quencies based on Equation 3 can be 
evaluated when two types of information 
are available.  First/ it is required 
that a method for evaluating the 
functions gi  and their derivatives be 
available.  Secondi it is required that 
the moments of the underlying random 
variables/ Aj/ be available.  Consider 
first the functions gi and cheir 
partial derivatives.  It is generally 
true that the g^ functions cannot be 
written explicitly.  However/ when 
parameter values/ a-*,   j = 1/.../N are 
specified/ Equation 1 can be solved 
numerically to obtain a modal 
frequency.  Because of this,   it is 
possible to numerically approximate the 
derivatives of the gj using/ for 
example/ finite difference formulas. 
The central difference formulas for the 
first and second derivatives of g^ 
with respect to aj and the second 
partial derivative of gj with respect 
to aj and a^ are/ 

3a, 

8'% 
3iJ 

v  - 2Fj{g1(a1....JaJ+Ej....) 

-gj/ai.... »a^-e^,. 
J J 

(7a) 

-2g1(a,J...vaj,...) 

■♦•g^ai,... .a^-e,,...)} 
'i    3 

3Vak 

TjÄr{Si(a"-- 

-gi(ai,.. 

,aJ+ej" 

'aJ~£J"- 
,aj+Ej,. 

.aj-Ej,. 

.jak+€k,...) 

,ak+ek....) 

.Jak-ek,...) 

.,ak-ek,...)} 

(7c) 

where ej and ej^ are small/ positive 
increments in the va 
A^/ respectively. E 
derivatives in Equat 
requires/ respective 
four evaluations of 
tives can be approxi 
mentioned above/ g^ 
evaluated. Recall th 
to obtain the deriva 
differencing procedu 
functions g^ are not 
form. 

lues of Aj and 
valuation of the 
ions 7a/ 7b and 7c/ 
ly/ two/ three and 
gj.  The deriva- 
mated because/ as 
can be numerically 
at it is necessary 
tives through a 
re because the 
known in closed 

The moments of the random 
variables/ Aj/ are also required as 
input to the calculation of the moments 
of the Pji.  It is assumed that at 
least the first and second order moments 
of the Aj are available/ and usually/ 
these would be obtained through exper- 
iment.  However/ higher order moments 
are required when terms beyond the 
linear ones in Equation 3 are retained. 
For example/ Equations 4,   5 and 6 were 
developed by including quadratic terms 
in the expression for Fj/ and the 
fourth order moments of the Aj were 
required in obtaining the results in 
Equations 4/ 5 and 6.  In general/ when 
terms up to degree n are retained in 
Equation 3/ the moments of the Aj up 
to order 2n ar^ required in the 
analysis.  Higher order moments of Aj 
can be obtained in one of two ways. 
First/ they can be obtained directly 
from the data; however/ higher order 
moment estimates tend to have limited 
confidence when they are based on 
limited data.  Second/ when the 
probability distribution of the data ia 
available/ the highar moments can be 
obtained from the definition and the 
statistical parameters of the distrib- 
ution.  (The parameters can be obtained 
from the first and second order 
momenta.)  A typical approach would be 
to assume that the data come from a 
normally distributed source.  This was 
the assumption used in obtaining 
Equations A,   5 and 6/ and it is an 
approach that usually yields reasonable 
results. 

(7b) 
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One matter not yet considered is 
the number of terms retained in the 
series for F^» Equation 3.  Several 
factors affect the number of terms 
retained, but most important, enough 
terms must be retained to render the 
series, Equation 3, an accurate 
approximation of gj.  The accuracy 
of the approximation is especially 
important ever the range of the most 
probable values of the random variables 
Aj.  Further, the number of terms 
retained determines the order of partial 
derivatives of the function gi that 
must be approximated and the order of 
the moments of the Aj that must be 
estimated.  Estimating higher order 
moments of the Aj may not be a 
problem, but approximating high order 
derivatives of the gj may be a problem 
especially if the numerical evaluation 
of gi  is a time-consuming process. 
For this reason, the series of Equation 
3 will usually be truncated following 
the linear or, at most, the quadratic 
terms.  The examples presented later in 
this paper show that this yields good 
accuracy. 

Examples 

The examples described in this 
section summarize two types of results: 
experimental and analytical. The 
experimental results first demonstrate 
that randomness occurs in relationships 
between quantities that measure struc- 
tural parameters, structural loads and 
structural responses.  Second, the 
experimental results provide a standard 
to which the results of an analysis can 
be compared. The results of the 
numerical analyses demonstrate the 
applicability (in a specific case) of 
the analytical technique developed in 
this study, when compared to the 
experimental results.  The numerical 
studies also show some applications of 
the analytical technique. 

Example One - Experiment 

The physical system studied in the 
experimental investigation is a simple, 
base-supported, cantilever beam, shown 
In Figure 1.  An aluminum mass is 
attached near the free end of the beam* 
the mass is a pair of aluminum bars. 
The beam is attached to a fixture by 
placing one washer above and one below 
the base of the beam, passing an 

0.794x10" m (5/16 in) screw 
through the washers and beam and into 
the fixture, and then applying a torque 
to the screw.  The torque in the screw 
establishes a preload, and this causes 
the base of the beam to be connected to 
the fixture with varying stiffness. 

The fixture is attached to a Ling 330 
vibration exciter through which the 
input is applied.  The beam and washers 
are made from 6061-T6 aluminum, and the 
screw is steel. 

The characteristics of the beam, 
its end mass and the washers at its base 
are given in Figure 1. 

_0.3239 m 
(12.75 inf 

1.905x10 2 m 
(0.750 In) 

WASHERS 
'   -SCREW 

S 
MASS 

BEAM 
~C3- 

1.270x10"2 m FIXTURE^ 
(0.500 in) 

Beam 

thickness = 0.635xl0"2 m (0.250 in) 

width = 5.062xl0~2 m (1.993 in) 

material density = 0.267'txl0~* kg/m' 

(0.09662 lb/In») 

End mass - 0.0892 kg (0.1967 lb) 

Washers at support 

thickness = 0.635xl0~2 m (0.250 in) 

outside diameter = 2.5'J0xl0~2 m 

(1.000 in) 

inside diameter = O.SS'JxlO"2 m 

Figure 1. 

(0.3^0 in) 

Cantilever beam of Example 
One. 

The random excitation is controlled 
on the fixture, near the base of the 
beam, using a closed loop control 
procedure, and using an Endevco 2222B 
accelerometer to measure the envi- 
ronment. The response is measured 
near the end of the beam using an 

Endevco 2222B accelerometer attached to 
the mass.  The accelerometer mass is 
small compared to the mass attached to 
the beam. The response is continuously 
monitored while the input is 
applied. 

A general experimental procedure 
was established and repeated several 
times to generate the data for this 
study.  The procedure includes the 
following steps.  (1) Sandwich the base 
of the beam between washers, and pass 
the screw through the washers and beam 
into the fixture.  Apply a torque to the 
screw using a calibrated torque wrench. 
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and increase the torque until a 
pre-established level is reached. 
(2) Attach a Kaman KD-2300-6C 
non-contacting/ eddy current displace- 
ment transducer to the vibration fixture 
as shown in Figure 2.  Apply an 0.2522 
kg weight near the end of the beam/ as 
shown in Figure 2.  Note and record the 
voltage change (related to displacement) 
that occurs during application of the 
load.  Remove the 0.2522 kg weight and 
the displacement transducer.  (3) Apply 
a band-limited white noise excitation to 
the system.  Define the excitation so 
that it has lower and upper cutoff 
frequencies of 10 Hz and 120 Hz, 
respectively/ and a one-sided spectral 
density of 0.0091 g /Hz.  During the 
excitation continuously monitor both the 
input and response. Use these to 
estimate the input spectral density 
and the input/response cross spectral 
density; then use the spectral densities 
to estimate the frequency response 
function of the structure, use the 
computer program SMS MODAL4 (Reference 
4) to estimate the first modal 
frequency, f i / of the structure.  This 
completes the experiment. 

Following the experiment/ another 
structural parameter is estimated. 
This is the base stiffness of the beam 
structure.  Figure 3 shows a schematic 
model of the beam tested.  It is assumed 
that the stiffness of the beam (ex- 
cluding the base spring) is known, and 
that the base spring stiffness/ s, is 
unknown.  The value of a  is important to 
the overall stiffness of the structure/ 
and the presence of the spring at the 
base of the beam arises from the fact 
that the preload in the screw retaining 
the base of the beam is finite.  The 
value of s can be inferred from static 
analysis and the overall stiffness of 
the structure. The overall stiffness 
can be obtained from the Information 
gathered in step (2)/ above, simply by 
computing the ratio of the applied 
static load to the displacement.  Denote 
the load of step (2) as P and the 
displacement as D; then s can be 
computed using the formula 

Pzx 

Px2(x-3z)/6EI-D (8) 

Figure 2 defines x and z as load 
application and measurement points.  El 
is the beam stiffness. 

Nineteen experiments were run 
following the procedure described 
above. Torque was controlled, and the 
information leading to preload and 
static displacement under static load 
were measured. Then the parameters s 

DISPLACEMENT      MASS 
a  TRANSDUCER -^ 

77y7rr?7% 

A 

Figure 2. System used to measure base 
stiffness 

S. TORSIONAL BASE SPRING 

Figure 3. Simplified beam model. 

and f were estimated. 
listed in Table 1. 

The results are 

The ultimate objective of this 
example is to show that some simple 
experimental results can be used along 
with analytical procedures to predict 
random variation in the fundamental 
frequency.  Several statistical analyses 
are possible using the data generated in 
the experiments described above, but 
only one analysis, useful in the 
following investigation/ is pursued. 
Specifically/ the mean and variance of 
the base stiffness corresponding to one 
torque value (1.808 N-m or 16 in-lb) and 
the natural frequency corresponding to 
the same torque value are estimated. 
The other data generated in the 
experiments are used later. 

Standard formulas can be used to 
estimate the mean and variance of a 
random variable/ given that measured 
realizations of the random variable are 
available.  In the present application, 
the mean and variance of the base 
stiffness random variable, S, and the 
fundamental frequency random variable, 
F, corresponding to the 1.808 N-m (16 
in-lb) torque are sought.  These are 
estimated using the data in Table 1; the 
results are 

5 - 1755 N-m/rad (12088 in-lb/rad) 

Ö» - 1.970x10» (N-m/rad)' 

(1.513X107 (in-lb/rad)') 

F - 32.02 Hz 

e^ - 0.06HP Hz* 

(9a) 

(9b) 

(9c) 

(9d) 
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where a bar over the variable refers to 
a mean estimatei and the square of 8 is 
a variance estimate. The corresponding 
standard deviations are 

•s - W N-m/rad (3929 in-lb/rad) 
(9e) 

0.2535 Hz (9f) 

The mean and variance of the base 
stiffness random variable, S, estimated 
here correspond to the moments of the 
random variable A, in Equation 3. These 
are used as input to the analysis of 
this experiment presented in the next 
section. The mean and variance of the 
fundamental frequency random variable, 
F, are the moments that can be estimated 
using the analysis method developed 
here. The analytical estimates are 
obtained in the following paragraphs. 

Table 1. Experimental Results 

Base 
Rotat. 
Stiffness Fundara. 
N-m/rad  Frequency 

(in-lb)(in-Vb/r) Hertz 

Torque 
Test N-m 
No 

1 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

1.13 
(10) 
1.36 
(12) 
1.58 
(14) 
1.81 
(16) 
2.03 
(18) 
2.26 
(20) 
2.49 
(22) 
2.71 
(24) 
2.94 
(26) 
3.16 
(28) 
1.81 
(16) 
1.81 
(16) 
1.81 
(16) 
1.81 
(16) 
1.81 
(16) 
1.81 
(16) 
1.81 
(16) 
1.81 
(16) 
1.81 
(16) 

2928 
(25918) 
3250 
(28767) 
4033 
(35699) 
4304 
(38095) 
5544 
(49073) 
6370 
(56386) 
7635 
(67575) 
6267 
(55468) 

13089 
(115849) 
7950 
(70367) 
5036 
(44577) 
4304 
(38095) 
4908 
(43440) 
4614 
(40835) 
5795 
(51291) 
4785 
(42359) 
4846 
(42893) 
4506 
(39879) 
4453 
(39417) 

30.57 

30.92 

31.78 

31.65 

32.66 

32.79 

33.09 

32.77 

33.51 

33.01 

32.19 

31.87 

32.19 

31.73 

32.53 

32.00 

32.09 

31.92 

32.00 

Example One - Analysis 

In this analysis the formulas of 
Equations 4 and 5 are used to estimate 
the mean and variance of the fundamental 
frequency of the beam used in the 
experiments described above. This 
implies an assumption that the variation 
of modal frequency can be accurately 
approximated by including three terms in 
the series expansion, Equation 3.  The 
torsional stiffness, S, Is taken to be 
the underlying random variable, A.  (In 
the present application there is only 
one underlying random variable, Aj, 
and this is denoted A.)  The moments of 
torsional stiffness are given in 
Equations 9a, 9b and 9e. 

The fundamental frequency of the 
beam is evaluated using a simple finite 
element program. The beam parameters 
and a spacial discretization are first 
specified, and the program is then run 
to obtain the fundamental frequency.  In 
this application the 32.39 cm beam was 
divided into 192 elements with two 
degrees of freedom (translation and 
rotation) at each node.  Figure 4 shows 
a curve of fundamental frequency versus 
base stiffness for the results obtained 
experimentally and using the finite 
element program.  The curve defines the 
function gi(A).  Good agreement is 
evident, and this is required in order 
for the analysis to yield statistical 
results comparable to the experiment. 

BASE RQTATONAL STtFTNESS 
(SX10-»ln-lVHd) 

Figure M. Frequency versus stiffness. 
Data and analysis (solid 
line). 
A 16 In-lb torque 
o other torque values 
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In this example  the  mean and 
variance of  the  fundamental frequency 
are aatimated when the torque value on 
the base support bolt is 1.808 N-m  (16 
in-lb).    In that case the mean and 
variance of  the random variable A are 
4755 N-m/rad and 1.970xl05   (N-m/rad)   . 
The  function gi(A) and its approximate 
derivatives are obtained using  the 
finite element program.    They are 

g(w) - 31.92 Hz (10a) 

^fi^l  - S-OHyxlO-"' Hz/N-m/rad (10b) 

\*m*    (5.703xl0~s Hz/in-lb/rad) 

W   ■ 
|a-p 

-1.892X10"7 Hz/(N-m/rad)» (10c) 

(-2.1115x10"» Hz/(in-lb/rad)2) 

where e « os. These results are used 
in Equations 4 and 5 to show that the 
mean and variance of the fundamental 
frequency are 

Example  Two 

The  numerical  analysis  summarized 
in  this  section  considers a  structure 
similar  to  the  one  in  Example One.     It 
is a uniform cantilever beam whose 
rotation  is  finitely  constrained at  the 
base.     Figure 5  shows a  schematic of  the 
beam.     The  beam length  is   taken   to be 
0.305  m(12  in),   its area   is 
3.226x10"  mz(0.50  in2)  and  its 

El   constant  is  68.88  N-m2   (24000 
Ib-in   .)       The  beam material  density  is 
0.2768xl0H   kg/m3   (0.10   lb/in3). 
The stiffness of  the  base spring  is 
taken   to be a  normally distributed 
random variable with mean  value 4519 
N-m/rad   UOOOO   in-lb/rad)   and  variance, 
2.042xir   (N-m/rad)Z 

(1.6xl07(in-lb/rad)2). 

S. TORSIONAL BASE SPRING 

E[F]  - 31.90 Hz (11a) 

V[P]  - 0.0512  Hz2 (lib) 

The standard deviation  of   the 
fundamental  frequency  is 

ap - 0.2264  Hz (lie) 

These results are the analytical analog 
of the experimental results given in 
Equations 9c, 9d and 9f. 

The results of this example show 
that although it is possible to evaluate 
the mean and variance of a modal fre- 
quency random variable experimentally, 
an easier method is available. This 
easier method combines the use of 
experimental results with analysis. 
Some simple, static experiments are used 
to characterise random variation in an 
underlying variable, base stiffness. 
Than that information is used with 
analysis to characterize random 
variation in a modal frequency. The 
results of the analysis compare well 
with the experimental results. 

Figure 5.  Cantilever beam of Example 
Two. 

The characteristics of the first 
five beam modal frequencies are 
considered in this example. They are 
deterministically evaluated through an 
analysis of the partial differential 
equation of the continuous beam.  The 
values of the first five modal 
frequencies and the first and second 
derivatives of these modal frequencies 
with respect to base stiffness are 
listed in Table 2.  The values and 
partial derivatives are all taken at the 
mean value of base spring stiffness. 

The quantities given in Table 2 and 
the structural parameters specifiad 
above can be used to approximately 
evaluate the means, variances and 
covariances of the modal frequencies 
through application of Equations 4, 5 
and 6.  The means and variances of the 
modal frequencies are listed in Table 
3.  The covariances between modal 
frequencies are not listed because the 
mode frequencies are nearly perfectly 
correlated with one another.  That is 

Cov(P1.Fj) - mPjmFj))'5    (12) 
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Table 2 

Modal frequencies and their approximate partial 
derivatives for the beam of Example Two. 

Mode 
No. 

1 

2 

3 

4 

5 

Modal 
Frequency 
hz 

48.27 

306.41 

865.93 

1710.1 

2844.8 

First Partial 
Derivative 
hz/N-m/rad 
(hz/in-lb/rad) 

8.982xl0"4. 
(1.015x10, 
4.205xl0"J. 
(4.751x10, 
9.186x10  , 
(1.038xl0r3 

1.419x10  , 
(1.603xlo:3 

1.885xl0"';, 
(2.130xl0~3 

Second Partial 
Derivative 
hz/(N-m/rad)Z 

(hz/(in-lb/rad)'!) 

2.873x10"® 
(3.667xlo;10) 
3.680x10"' 
(4.697xl0~y) 
1.203X10"6- 
(1.536xl0"B) 
2.388xl0"bD 
(3.048xl0"8) 
3.748x10 b

0 
(4.784xl0"8) 

Table 3 

Means and variances of modal frequencies 
for cantilever beam of Example Two 

Mean of   Variance of 
Mode  Frequency Frequency 
No.   hz        hz2 

48.28 

306.45 

866.05 

1710.3 

2845.2 

0.17 

3.62 

1727 

41.3 

73.0 

The reason is that the high order terms 
In the representation of  f^ are 
small; therefore the modal frequencies 
are linear functions of one random 
variable, and this makes their co- 
variance high. 

Figure 6 shows a plot (on a log-log 
scale) of modal frequency standard 
deviation versus mean modal frequency. 
The points shown here nearly fall along 
a straight line; this implies a power 
law relation between modal frequency 
standard deviation and mean modal 
frequency.  The standard deviation of 
mo.5al frequency clearly increases with 
meat modal frequency implying an 
increase in absolute random variation of 
higher frequency modes.  However, the 
coefficients of variation of the modal 
frequencies can be computed, and these 
decrease from nearly one percent to 
about three-tenths of one percent. 
This shows a decreasing tendency in 
normalized random variation with 
increasing frequency.  The coefficient 
of variation for modal frequencies is 
shown In Figure 6. 
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Figure 6. 

102      10'     lO" 
Frequency, Hz 

Standard deviation and 
coefficient of variation of 
modal frequency versus mean 
modal frequency. 

Another scale by which modal 
frequency variation must be measured 
considers the differences between modal 
frequencies.  When the standard devi- 
ation of model frequencies becomes large 
compared to the difference between modal 
frequencies, then it may become diffi- 
cult to distinguish modal frequencies. 
A measure of the magnitude of modal 
frequency variation relative to modal 
frequency spacing may be defined as 

STETF 
/WF^) 

I+1^
F
I-I» 

1-1,2., 
(13) 

This quantity is plotted in Figure 7 for 
the data in Table 3.  Note that 
ECP0] « 0 is the zeroth, or rigid 
body, frequency.  In this example ».£, 
the ratio of the magnitude of modal 
frequency standard deviation to mean 
modal frequency spacing, tends to 
increase with frequency, but it is much 
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lower than one at the first four modal 
frequencies.  Therefore, there is no 
problem with confusing modes here.  The 
circumstances under which rj will tend 
to increase with frequency and under 
which rj will tend to be large can be 
determined as follows. 

.01 

■H 
u 

.001, 

Figure 7 

10z     103 

Frequency, Hz 

Modal frequency standard 
deviation - modal fre- 
quency spacing ratio, r., 
versus frequency. 
Data (open circles) 
Equation 17 (line) 

Note that the modal frequencies of 
a beam increase as a quadratic function 
of the mode number.  (See Reference 5, 
for example.)  In the case of a 
cantilever beam/ for example, the modal 
frequencies are, approximately, 

q (2i-l)2, i=l,2,, (11) 

where q is a constant that depends on E, 
I, m and 1.  Note also that the standard 
deviation of modal frequency is 
approximately a power law function of 
frequency, therefore. 

/WF^)  - Cf02. 1=1,2, (15) 

Using Equations 14 and 15 in Equation 13 
yields the result 

(21-1)2C2 

rq 
(l-'s) 

. i-1.2,. 
(16) 

For higher modes this can be accurately 
approximated as 

Q i20'"1. 1=1,2., (17) 

This expression establishes the relation 
between the modal standard deviation - 
modal spacing ratio rj, and the mode 
number, i.  It is correct, in general. 
Cor beams because the beam modal 
frequency is always a quadratic in mode 
number.  The quantity tends to increase 

with mode number (and frequency) when 
2C2-1 is positive, and this occurs when 
the slope of the standard deviation of 
modal frequency versus frequency curve 
has a value greater than 0.5 (on a 
log-log graph).  The ri tends to be 
large when Q is large, and when this 
occurs depends on the values of Ci, C2 
and q (Equation 16). 

Equation 17 wa 
Figure 7 by (1) not 
from Figure 6, (2) 
number is approxima 
the square root of 
for Q at the fourth 
curve is plotted in 
accurately represen 
variation past the 

Example Three 

s fit to the data in 
ing that C2 = 0.73, 
noting that the mode 
tely proportional to 
f, and (3) solving 
mode.  The entire 
Figure 7, and it 

ts the observed 
first mode. 

This example considers a system 
identical, in every respect but two, to 
the structure used in the previous 
example.  In the present example, in 
addition to admitting randomness in the 
support spring, randomness is also 
admitted in the area moment of inertia, 
I, and the area, A.  The area moment of 
i.-u-rtia is taken to be a normally 
distributed random variable with mean 
9.990x10"  m  (0.0024 ink ) and variance 
of 6.387xl0-21m8(3.686xl0-8 in8).  The 
area is taken to be a normally 
distributed 
random variable with mean value 
3.226x10,m2 (0.50 in2) and variance 
1.665xlO-10 in* (0.0004 in").  The 
modulus of elasticity of the beam 
material is taken as 6.895xl0r" Pa (10? 

psi). This yields a mean El constant 
identical to the one used in the 
previous example.  Five levels of 
correlation between the area moment of 
inertia and beam area are considered in 
the example.  These are correlation 
coefficients of 0.0, 0.25, 0.50, 0.75 
and 1.00.  The analysis used in this 
example includes only terms up to the 
first derivative in Equation 3; there- 
fore. Equations 4, 5 and 6 are modified 
by elimination of their final term. 
This means that variation of the modal 
frequencies is modeled as a linear 
function of base support stiffness, area 
moment of inertia and cross sectional 
area, in the vicinity of the mean values 
of these variables.  The analysis is 
executed for the first two modes of the 
beam. 

Table 4 lists the modal 
frequencies, first partial derivatives 
of modal frequencies with respect to 
base stiffness, first partial deriva- 
tives of modal frequencies with respect 
to area moment of inertia, and first 
partial derivatives of modal frequencies 
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Table 4 

Modal frequencies and their approximate first partial 
derivatives with respect to base stiffness, s, area 
moment of inertia, I, and cross sectional area. A, for 
the beam of Example Three. 

Mode f. 
No.  hi 

df./ös 
hzJ'N-m/rad 
(hz/in-lb/rad) 

1 48.27  8.892x10 ' 
(1.015x10, ) 

2 306.41  4.205xl0~J. 
^.TSlxlO"') 

hzTW . 
(hz/üT) 

sf./aA 
hz^n«2 7 
(hz/in ) 

in 4 
.416x10 "   -7.481x10 j 

(1.006xljj)  (-4.827xl(p 
1.534x10 -4.749x10" 
(6.384x10')  (-3.064x10') 

Table 5 

Means, variances and covariances for modal frequencies 
of the beam of Example Three. ( PIA is the correlation 
coefficient between the area moment of inertia, I, and 
cross sectional area. A.) 

Mean      Variance of Frequency hz 
Mode Frequency        for 
No.  hz IA      IA     IA 

1 48.27      4.83   2.96   1.10 

2 306.41    191.40  116.29  41.18 

Covariance between f. and f_ hz 

P "0 
IA 

30.36 

for 
PIA.0.5 

18.53 6.69 

with respect to cross sectional area. 
All these are evaluated at the mean of 
base stiffness, area moment of inertia 
and cross sectional area.  The quan- 
tities in Table 4 can be used in the 
abbreviated forms of Equations 4, 5 and 
6 to obtain the means« variances and 
covariances of the modal frequencies. 
This was done and the results are given 
in Table 5. 

The random variation that occurs 
here is substantially greater than what 
occurs in the previous example.  This 
indicates that randomness in area moment 
of inertia and cross sectional area can 
influence overall randomness to a 
greater degree than base stiffness when 
the moments of these random variables 
are those given above.  In fact, the 

area moment of inertia has the greater 
Influence of the two because its 
variance is the greater in value.  When 
beam dimensions vary randomly, the area 
moment of inertia will normally display 
greater random variation than cross 
sectional area because moment of inertia 
is a function of dimension to the fourth 
power, whereas area is a function of 
dimension squared.  Because the 
randomness in area moment of inertia 
dominates the result» the coefficient of 
correlation between beam modal frequen- 
cies is near one.  This result occurs 
because all modal frequencies are 
approximately linear functions of one 
random variable. 
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discussion/ Conclusions and 
Recommenda t i on s 

This investigation shows through 
simple experiment and analysis that 
random variation occurs in the modal 
frequencies of a structure» and that 
this randomness can be accurately 
described using a combination of 
experimental information and numerical 
analysis.  Clearly« practical physical 
systems are more complicated than the 
system testad in this investigation. 
However/ the fact that randomness occurs 
in this system shows that randomness can 
occur in other» more complicated 
systems, and how it can occur.  Most 
important» this Investigation shows that 
the degree of randomness in modal 
frequencies can be quantified» and this 
study demonstrates a technique that can 
be used to quantify random variation in 
modal frequencies. 

The numerical examples presented in 
this paper show what may be trends in 
the random behavior of simple struc- 
tures.  First, while the absolute random 
variation in modal frequencies increases 
with the mean modal frequency, the 
coefficient of variation decreases 
slowly as frequency increases.  Second» 
the magnitude of random variation in 
modal frequency can become greater than 
the spacing between modal frequencies as 
frequency increases.   Third» the random 
variation in modal frequencies is very 
sensitive to random variation in dimen- 
sionf.» especially as they relate to area 
moment of inertia in a beam.  Third, 
when one source of random variation 
dominates the others» the modal 
frequencies are strongly correlated to 
one another. 
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Further investigation into random 
variation in modal characteristics 
should be pursued. Specifically, 
variation arising from randomness in 
inaterial properties, and the character 
of internal joints, from nonlinear 
structural response behavior, and in 
more complicated structures must be 
studied. 
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Discussion 

Mr. Tustln (Tustln Institute of Technology); I 
am not surprised at your results. Many years 
ago when people were starting to do random 
vibration testing with peak-notch networks, they 
found this all the time. They could not take 
the Item off the shaker, put It back, and get 
the same equalization that they had done 
before. We have forgotten about this though 
with our automatic equalizers; that has covered 
up these changes. 

Mr. Paez: That Is one of the reasons we are 
starting to pursue this Investigation; (there 
are a lot of other reasons, too) because It Is 
Important In analysis and understanding how this 
variation can occur. We have seen It many 
times, too, because we do a lot of testing.  In 
the past we have not paid much attention to It 
because we thought It would be very difficult to 
analyze. So, we thought we would try to pursue 
an analysis and see If we can understand the 
sources of this variation. 

Mr. Shin (Naval Postgraduate School)! As you 
did a very, very good study for the random 
variation of the frequencies, as a by-product, 
you can also get damping. I think with damping 
the randomness concerned Is more severe than 
anything else. Did you study that? 

Mr. Paez: We pursued some preliminary studies 
on that, and they are not included In the 
paper. As a matter of face, we also looked at 
random variation In mode shapes because that Is 
another thing that Is Important to us. One of 
the underlying motivations for doing this was 
under certain circumstances we might have 
trouble testing with single point control 
because It may be difficult to control a system 
at a single point. We thought this might 
provide a motivation for using average control 
on structural testing. If there is random 
variation in mode shapes - certainly that might 
be one reason why it is difficult to control a 
system at one point. That might give us a 
motivation for doing average control on 
structural testing. However, there certainly is 
a randan variation In the modes. In my opinion, 
that Is probably more difficult to tie down 
analytically than the random variation in modal 
frequencies. There is also random variation In 
mode shapes, and that is something that needs to 
be pursued later. 
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STRUCTURAL DEGRADATION OF IMPACTED GRAPHITE/EPOXY LAMINATES 

Dahsln Liu 
Metallurgy, Mechanics, and Materials Science Department 

Michigan State University 
East Lansing, MI 48824-1226 

and 

C. T. Sun and L. G. Malvern 
Engineering Sciences Department 

University of Florida 
Gainesville, FL 32611 

Graphlte/epoxy laminates fabricated from Hercules' AS4/3501-6 prepreg tape 
were studied. The Investigations Included three different symmetric laminations 
of cross-ply plates: 3-layer, S-layer, and 15-layer. Each square specimen was 
clamped around four edges and Impacted at the center by a blunted steel impactor, 
9.5 mm In diameter and 25.4 mm In length. The delamlnatlon areas caused by 
Impact were measured by ultrasonic C-scan and x-ray radiography. The fundamental 
vibration frequency and damping coefficient of each cantilever plate before and 
after impact were measured by an FFT analyzer. After these nondestructive tests, 
every Impacted specimen was subjected to a three-point bend test for the 
measurements of residual stiffness and residual strength. Results show the 
possibility of using the changes In damping coefficient and vibration frequency 
as nondestructive evaluations for damaged composite plates. 

INTRODUCTION 

Because of their high stiffness and high 
»tiength to weight i'atlos, fiber reinforced 
composite materials have been used In 
structures where weight reductions are highly 
desired. However, the stiffness and strength 
of a fiber-reinforced composite material Is 
dependent on the fiber orientation. If two 
adjacent layers In a composite plate have 
different fiber orientations, the material 
properties will be mismatched in the in-olane 
direction as well as in the through-the- 
thlckness direction. These material property 
mismatches and the low strength of the matrix 
will increase composite materials sensitivity 
to delamlnatlon. In addition to the material 
property mismatch, some types of loading such 
as nonunlform bending and impact which generate 
high interlaminar shear stresses will 
accelerate the formation of delamlnatlon. 

Most composite materials are vary 
sensitive to Impact loads. The failure modes 
of Impacted composite plates can be classified 
into fiber breakage, matrix cracking, and 
delamlnatlon. In high-velocity impact, the 

penetration-Induced fiber breakage is on« of 
the major damage modes. However, delamlnatlon 
has been found to be the major failure mode In 
a composite plate subjected to subperforation 
Impact [1]. For some other research on 
low-velocity Impact, see [2-7]. It Is believed 
that In low-velocity Impact most of the 
impacting energy added to a composite plate 
transforms into fracture surface energy and 
damage In the material adjacent to the 
delamlnatlon. Although the degree of the 
material property mismatch between two adjacent 
layers is constant in a laminate, the 
Interlaainar stresses decrease as the Impacting 
energy propagates from the impacting zone to 
the edge of the laminate. Therefore, the area 
of the delamlnatlon Is determined by the 
loading condition, as well as by the degree of 
the material property mismatch. 

Since delamlnatlon is the major failure 
mode in this study, it Is useful to develop a 
relationship between the delamlnatlon area and 
the impacting energy [8]. However, the 
accuracy In measuring the delamlnatlon area by 
nondestructive tests such as ultrasonic C-scan 
and x-ray radiography is dependent upon the 
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sensitivity of each method. In addition, the 
effects of fiber breakage and natrtx cracking 
are not considered In the relationship between 
the delamlnatlon area and the Inpacting energy. 
Therefore, a method which can measure the total 
damage will be very useful for the evaluation 
of an impacted composite plate. The changes in 
stiffness [9], vibration frequency (10], and 
damping coefficient [11] have been used as 
nondestructive evaluations for damaged 
composite materials, these measurements were 
extended to the investigations for damaged 
composite plates in this study. 

transducer. This non-contacting eddy-current 
displacement transducer was mounted on an 
independent support and was about 2 mm from the 
specimen surface on which an aluminum foil was 
attached for a better signal recording. Figure 
2 shows the overall arrangement of the 
vibration and damping measurement. The 
histories of the applied force and the 
displacement of the plate were recorded and 
processed by a Fast Fourier Transform analyzer 
and thus different modes of vibration 
frequencies and damping coefficients could be 
obtained. 

EXPERIMENTAL TECHNIQUES 

1.  Impacting Test 

In this study, three kinds of symmetric 
cross-ply plates were fabricated from 
graphite/epoxy prepreg tape AS4/3501-6 
manufactured by Hercules [12]. They were: 
IOio/90io/Oio].[06/906/06/906/06], and 
[02/902/02/902...]30. these will be called 
3-layer, 5-layer, and 15-layer respectively. 
Each specimen dimension was 152 mm by 132 mm 
and thickness of 3.8 mm. The specimen was 
clamped around four edges by two aluminum 
holders. The specimen-holder was then fixed on 
a steel frame in front of an air gun and was 
subjected to an impacting load. The impactor 
was a circular steel cylinder which was 9.5 mm 
in diameter and 25.4 mm in length. The 
impactor mass was 14 gm, and it had a blunt 
end. Depending upon the air pressure used in 
the test, the inpacting velocity ranged from 20 
m/s to 100 m/s. This range of impacting 
velocity did not cause any perforation of the 
specimen. Also, the delamlnatlon caused by 
this kind of impact did not propagate to the 
specimen's boundary and Interact with the 
specimen holder. Both the impacting velocity 
and the velocity of the Impactor rebound from 
the specimen were measured by two photocells 
mounted on a frame close to the specimen. The 
kinetic energy applied to a specimen was 
defined to be the difference of the kinetic 
energy of the impactor before and after Impact 
and was used as a measure of the impact, the 
experimental set-up for the impacting test is 
shown in Figure 1. 

2•  Vibration and Damping Measurements 

In measuring the vibration frequency and 
damping coefficient, each specimen was clamped 
along one edge by a steel holder having seven 
bolts on it. A torque wrench was used to apply 
27.1 N-m (20 Ib-ft) torque to every bolt in 
order to keep each specimen similarly clamped 
before and after Impact. A small Impulsive 
load was then Introduced on the centerllne 
perpendicular to the clamped edge with an 
Instrumented hammer. For a better measurement, 
this load should be applied to the specimen as 
close to the clamped edge as possible. The 
hammer had a force transducer on it for 
recording the load, and the displacement 
history of the free edge opposite to the 
clamped side was measured by a second 

3«  Delamlnatlon Heasurements 

Both ultrasonic C-scan and x-ray 
radiography were used in the measurement of the 
delamlnatlon area. A small hole with diameter 
of 1,4 mm was drilled at the center of the 
Impact area. As a penetrant lothalamate sodium 
was applied to the delamlnatlon area through 
this small hole by a syringe. For better 
penetration several shots of penetrant were 
required while one side of the hole was blocked 
by a piece of tape. A long period of time was 
necessary for the penetrant to dry before the 
specimen was photographed by x-ray. In 
addition to x-ray radiography, ultrasonic 
C-scan was also used for the delamlnatlon 
detection. Because of good resolution, x-ray 
was able to show the delamlnatlon area on every 
single interface for 3-layer and 5-layer 
specimens. However, the ultrasonic C-scan only 
gave Information of projected delamlnatlon 
area, and did not resolve overlapping 
delaminations. 

4.  Stiffness and Strength Determinations 

After an Impacted specimen had been 
investigated by the FFT analyzer for vibration 
frequency and damping coefficient and by 
ultrasonic C-scan and x-ray radiography for 
delamlnatlon area, the specimen was tested for 
residual stiffness and residual strength. A 
three-point bend test was conducted.  Since the 
residual strength In compression Is more 
sensitive to delaralnatton than when in tension, 
the bend tests were arranged so that the front 
half, which includes the Impacted surface, was 
In tension while the bottom half, which has 
relatively larger delamlnatlon area than the 
front half, was in compression. Residual 
stiffness and residual strength were determined 
from the load-displacement curve. 

EXPERIMENTAL RESULTS 

1.  Vibration Frequency and Damping 
Coefficient 

Before each specimen was impacted, the 
fudamental vibration frequency and the 
corresponding damping coefficient were 
measured. Since the specimens used in this 
study were rectangular cross-ply plates, the 
material properties were symmetric with respect 
to the centerllnes of the specimens. The 
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specimens were selffer In the direction 
parallel to the surface fiber direction, 
0-degree direction, than perpendicular to the 
surface fiber direction, 90-degree direction. 
The vibration frequency and damping coefficient 
were measured for both 0-degree and 90-degree 
directions. Results shown In Figure 3 are 
plots of vibration frequency and damping 
coefficient versus the flexural stiffness Du 
In the 0-degree direction, where the higher the 
flexural stiffness, the higher Is the vibration 
frequency. However, the damping coefficient 
does not have a monotonlc relation with the 
flexural stiffness. 

It Is also interesting to Investigate the 
relationship between the vibration frequency 
and the damping coefficient. Both measurements 
before and after Impact are shown in Figure 4. 
The open symbols represent the Information 
before Impact while the solid symbols represent 
the measurements after Impact. The data points 
In the upper part of the figure are more 
scattered than those In the lower part. It Is 
believed that the measurements for the higher 
vibration frequencies are more sensitive to the 
condition of the clamp than those of the lower 
vibration frequency. However, it is not clear 
why the data points in the lower part of Figure 
4 are grouped into three curved bands. 

necessary for the determination of such a 
relation. 

3.  Relations between Kinetic Energy and 
Vibration Frequency and Damping 

The vibration frequencies measured before 
and after impact on a specimen are not the 
same. The relationship between the percentage 
of change in vibration frequency and the 
kinetic energy applied to a specimen Is shown 
in Figure 7. All three kinds of plates 
(3-layer, 5-layer, and 15-layer) are shown in 
the same figure. The open symbols are for 
0-degree measurements while the solid symbols 
are for 90-degree measurements. The data 
points obtained from 3-layer specimens are 
concentrated on the left hand side of Figure 7 
and form a very steep band. For a 3-layer 
specimen, a small Increment in kinetic energy 
will result In a very high percentage change in 
the vibration frequency. The data points of 
the 15-layer ones are located in the lower part 
of the figure and form a horizontal band. The 
vibration frequency does not change 
significantly in a 15-layer specimen even 
though the kinetic energy is increased 
remarkably. Generally speaking, the data 
points of 5-layer specimens are located between 
the 3-layer and 15-layer ones. 

2.  Projected Delaminatton Area and Total 
Delamination Area 

Figure 5 shows the projected delamination 
area versus impacting kinetic energy. Raw data 
obtained from C-scan is presented with the 
least-squares from both C-scan and x-ray. 
Linear relationships have been found between 
the kinetic energy and the delamination areas 
obtained from both C-scan and x-ray. The 
result from C-scan show a higher sensitivity in 
detecting the delamination area than that from 
x-ray. Under the same kinetic energy, a 
3-layer specimen suffers a larger delamination 
area than a 5-layer specimen, and the 5-layer a 
larger area than a 15-layer. The kinetic 
energies which are required to initiate 
delamlnations in all three kinds of cross-ply 
plates are less than 3 joules. This shows that 
the graphite/epoxy used in this study is very 
sensitive to Impact. 

The total delamination areas, which are 
defined to be the summations of the 
delamination area at every interface In a 
laminate, obtained from x-ray radiography for 
both 3-layer and 5-layer specimens are shown in 
Figure 6. In order to keep the delamination 
from reaching the boundary of the specimen 
holder, lower Impacting velocity was used for 
3-layer plates than for 5-layer plates. Thus 
the plot extends to much smaller total 
delamination areas for the 3-layer plates than 
for 5-layer plates. There is no sufficient 
data for the 3-layer plates to determine if a 
single curve can represent the relation between 
the total delamination area and the kinetic 
energy. Larger size specimens would be 

The change In damping coefficient before 
and after Impact is shown In Figure 8. In many 
cases, the damping coefficients Increase after 
impact, however, in some other cases it 
decreases. We believe that the increase In 
damping coefficient after impact Is caused by 
the energy loss due to the friction between the 
newly generated surfaces In a dclamlnated 
specimen. However, it Is not clear why in some 
cases of low kinetic energy the damping 
coefficients decrease after Impact. Despite 
the changes In sign. Figures 7 and 8 have a 
similar trend. Compared with the measurement 
of vibration frequency, the measurements of 
damping coefficient are very scattered. This 
may result from the difficulty In measuring the 
damping coefficient which Is very sensitive to 
the boundary condition and the contact time of 
the applied load. 

4.  Relations between Delamination Area and 
Vibration Frequency and DampInj 

The change In vibration frequency Is also 
plotted versus projected delamination area 
evaluated by ultrasonic C-scan. The 
least-squares fits for all three laminations 
are shown In Figure 9. However, raw data Is 
presented only for the 15-layer specimens. The 
3-layer one has a steeper slope than the other 
two laminations. This Indicates that the 
sensitivity of the vibration frequency, as a 
nondestructive evaluation for delamination, is 
dependent on the lamination of a specimen. For 
plates with a constant thickness, the fewer the 
layers, the bigger the change is In vibration 
frequency. In addition, for all three cises 
the vibration frequencies change about 1Z or 2X 
even whtn there Is no delamination. This 
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decrease in vibration frequency Is believed to 
be caused by the matrix cracks resulting from 
inpact. 

In Figure 10, good correlations are found 
between the change In danplng coefficient and 
total delanlnatlon area for both 3-layer and 
S-layer specimens. The change in the damping 
coefficient of a 3-layer specimen is more 
sensitive to delanlnatlon than that of a 
S-layer specimen. The results point out the 
possibility of evaluating the damage by 
measuring the change In damping coefficient in 
an Impacted composite plate, even though the 
decrease is not completely understood. 

5.  Residual Stiffness and Residual Strength 

After having been investigated by the 
nondestructive tests such as the measurements 
of the vibration frequency and damping 
coefficient and the measurements of the 
delanlnatlon areas by ultrasonic C-scan and 
x-ray radiography, each specimen was 
destructively tested for the evaluations of 
residual stiffness and residual strength. 
Every specimen was loaded to failure by a 
three-point bend test. A non-impacted specimen 
of each lamination group was used as a control 
specimen. The ratios of the residual stiffness 
and residual strength of Impacted specimens and 
the control specimens are plotted versus the 
applied kinetic energy and results are shown in 
Fig. 11 and Fig. 12. In both figures, the 
3-layer one has the highest reduction rate 
while the 15-layer one has the lowest. 
Compared with the reduction in strength, the 
reduction in stiffness has a lower rate In all 
three kinds of laminations. 

CONCLUSIONS AND DISCUSSIONS 

1. In a composite laminate subjected to 
subperforatlon Impact, the thicker the adjacent 
layers, the larger is the projected 
delamlnatlon area on the Interfaces. This Is 
believed to be caused by the fact that the 
material property mismatch between two adjacent 
layers is much higher In thick-layer plates 
than in thin-layer plates. Thus, the Increase 
of the thickness In each layer will result in 
the Increase of delamlnatlon area and the 
decrease of strength. Accordingly, for 
specimens with a constant thickness, the higher 
the number of the layers, the smaller Is the 
delamlnatlon area. However, the thicker the 
specimen, the larger Is the projected 
delamlnatlon area. 

2. In a subperforatlon Impact, the 
projected delamlnatlon area has an 
approximately linear relation with the kinetic 
energy. Since delamlnatlon is the major 
failure in this study, the projected 
delamlnatlon can be used as an Indicator of the 
Impact damage. However, the relationship 
between the projected delamlnatlon area and the 
kinetic energy is dependent on the stacking 
sequence of the specimen. It would be useful 

to find a parameter which Is independent of the 
stacking sequence of the specimen. The total 
delanlnatlon area may be a potential one. 

3. The vibration frequency always 
decreases after impact. Such decrease is 
approximately linear with the kinetic energy 
added to a specimen and to the delamlnatlon 
area caused by this kinetic energy. The 
relationship between the change in vibration 
frequency and the kinetic energy and 
delamlnatlon area indicate the feasibility of 
using the change in vibration frequency as a 
nondestructive evaluation for damaged composite 
plates. However, the change In damping 
coefficient may either increase or decrease 
after Impact. The damping coefficient 
Increases when the total delamlnatlon area is 
large enough, while it decreases when the total 
area is small. The scattered results are 
caused by the difficulty in the measurement of 
the damping coefficients. As mentioned 
previously, damping coefficient is very 
sensitive to the boundary condition. For the 
larger total delamlnatlon areas, the change in 
damping coefficient has similar trends with the 
kinetic energy and delamlnatlon area as those 
shown in the study of vibration frequency. 
Because the percentage change in damping is 
larger, the relationship between the change in 
damping coefficient and total delamlnatlon area 
could be used as a nondestructive evaluation 
for the damage of a composite plate. 

4. Compared with the plots of 
delamlnatlon area versus kinetic energy, (see 
Figs. 5 and 6) the data points in the figures 
of the vibration frequency and damping 
coefficient versus kinetic energy (Figs. 7 and 
8) are very scattered. The changes of 
vibration frequency and damping coefficient are 
affected by all kinds of failure modes such as 
delamlnatlon, matrix cracking, and fiber 
breakage in a laminate. Each kind of failure 
mode makes a contribution to the structural 
degradation. The Interaction among these three 
failure modes also affects the measutements of 
vibration frequency and damping coefficient of 
a damaged composite plate. In this study, only 
the linear relationship between the projected 
delamlnatlon area and the kinetic energy has 
been obtained. The effects of matrix cracking, 
fiber breakage, and the interactions among the 
three failure modes on the damping coefficient 
may be responsible for the decrease In the 
damping coefficient after impact. 
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OPDATINO RAIL  IMPACT TEST METHODS 

Robert A. McKlnnon 
U.S. Army Combat Systems Test Activity 

Aberdeen Proving Ground,   Maryland 

Rail Impact tests are conducted to verify that materiel 
will not be degraded by the shock anH vibration 
environment associated with rail transport.    Presently, 
there are several rail impact test procedures and each 
produces different test results.    The objective of this 
study was to determine the most appropriate test method, 
Instrumentation and data analysis techniques to be used 
for rail impact tests. 

DEVELOPMENT    OF 
IMPACT TESTS 

A METHOD    FOR CONDUCTINO RAIL 

The primary objective of this study was 
to develop a realistic and repeatable method 
for conducting rail impact tests. This was 
due to the existence of several different 
methods plus the need for repeatable results. 

Exiatln^ Hail Impact Testing Proeedurea 

The existing rail Impact test procedures 
were found to have been developed to test for 
three distinct objectives. These objectives 
are; 

a. To be reasonably sure the test item 
will be operable after rail shiment. 

To     test 
system. 

the    tledown    (restraint) 

o. To insure the test item will remain 
on the ralloar during rail shipment. 

Table 1 gives a brief suamary of the nine 
rail impact test procedures researched during 
this investigation. There is no way to be 
certain that these are the only existing 
procedures; however, any procedures not 
included in this table probably would only be 
slight variations of the procedures listed. 
Each of the test procedures listed have their 
own objectives. Some of the procedures were 
developed for certain items, while others are 
more general in nature. The ntaber of impacts 
required varies fron four to twelve. The 
largest variable is the nmber and weight of 
the buffer oars or hammer cars. None of the 
test procedures listed requires both a hammer 
car and buff«* car, as does the procedure 
developed In this report. 

Develotment      of      a     New    Rail    Impact    Test 
Procedure 

This new procedure was developed by 
examining existing rail Impact test 
procedures, analyzing their purposes, and 
reviewing actual railroad procedures. All of 
the variables were taken into acoount 
individually and collectively and were 
examined as follows: 

a.    Buffer car or hammer car. 

The decision to use buffer oars and a 
haoner car is based on the real world rail 
Impact environment. Actual rail Impacting 
occurs during the process of making up trains. 
This process takes place in either a flat yard 
or a hmp yard. A flat yard is one in which 
car movements are accomplished by a loccaotlve 
without material aid from gravity. A hump 
yard utilizes s*avity to expedite switching of 
oars. The train of oars is pushed up an 
incline to a hump, at which point one or more 
oars are successively uncoupled while moving 
and allowed to roll down the incline from the 
hmp into the classification yard. The hiap 
must be of sufficient height to Impart enough 
velocity to overcome the rolling resistance of 
each car and permit It to reach the farthest 
point In the yard. Thus, if the distance from 
the hmp to the farthest point is 1000 m (3280 
ft) and the rolling resistance of the 
slowest-rolling car under adverse weather 
conditions is 5 9 per kg (10 lb per ton), 
which equates to a 0.51 slope as shown in 
Figure 1, then a mlnlmm hmp height of 5 
meters (16.4 ft) would be required. Another 
requirement Is that the decline from the hmp 
must be steep enough and long enough to 
separate the cars a sufficient distanoe to 
permit operation of switches and to clear the 
switches ahead of the following car. 
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Usually the hvnp height is from 5 to 6 meters 
(16 to 20 ft). IWo or three sets of car 
retarders are provided for controlling the 
speeds of the cars onto the classification 
tracks. The retarders are set so that each 
oar will roll the desired distance and couple 
to a standing car without what the railroads 
consider to be an overspeed Impact, which Is 
any speed ©-eater than 6.4 km/hr (4 mph). 

Rolling Resistance - 5 gm/kg 

1000 gm 

of smoke resulting from the heat of friction 
between the plates and wooden floor. This 
sliding was observed on high-speed films of 
rail Impact tests. In analyzing this undeaired 
test configuration, shown in Figure 2, these 
sliding plates are found to have a pronounced 
effect on the test results. 

0 00000 

Buffer Load 

w 
•f~> 
O    O 

<  
Direction of Movement 

Figure 2.    Test conditions. 

Addressing the moving oar first,   the following 
parameters are assigned: 

1000 m 
0.5Z slope 

W    = weight of car =    222,410 N (50,000 lb) 

WL = weight of load = 142,342 N (32,000 lb) 

Speed   at   the instant of   Impact : 12.(ft 
km/hr (6 mph) or 3.57 a/see (12 ft/sec). 

Figure 1.   Hixnp yard diagram. 

The use of a two-car buffer string is 
based on experimental evidence that, according 
to Appendix B, Reference 1, for all 
arrangements tested, any additional oars would 
have negligible effect on the forces 
transmitted to the test item. This was 
determined through studying the 
force-versus-time records (from       the 
instriManted coupler and tiedowns) made during 
impact and reported in the reference. 

The total weight of the two buffer oars 
was selected to be 1,112,000 N (250,000 lb). 
This weight is the load specified by the 
Association of American Railroads (AAR) and 
must be used in tests witnessed by the AAR to 
approve a tiedown procedure for a particular 
item before active rail shipment can occur. 
The weight on the buffer oars should be 
equally distributed between the two oars even 
though having the rail car weights differ 
should not affect the test results, providing 
each oar and its load is configured as a 
single mass. However, since the question of 
equal-weight oars is often raised, equal 
distribution of the weight would avoid any 
concerns. 

As mentioned above, the weights added to 
the buffer oars should be rigidly seoired to 
aaon ralloar. A factor that affects the 
repeatability of rail Impact testing is an 
unsecured buffer car load. Under actual 
tasting, an unsecured buffer load of several 
steel plates has been observed to slide on the 
ralloar almost 1 meter,  accompanied by a trail 

First, assuming there is no relative motion 
between the load and the car before, during, 
or after Impact, the kinetic energy (KB) at 
the instant of impact is given as: 

KEo =  1/2 x Mo V2 == 1/2 » (Wp t Wfc) x V2 

8 

z 1/2 X f222t4lQ M ♦ ltgr?>^ jOxn.ST m/seo)' 
9.81 m/sec2 

s 2.370 x  105J (1.75 x  105 ft-lb) 

If, however, at Impact the load slides 
relative to the car, this results in a 
frictional force developing between the load 
and oar (Figure 3). 

Direction of Load Movement 
<  

A WL 

ÜÜ" 00 

Direction of Car Movement 

Figure 3 ■     Frictional force. 

The   friction Is calculated from the free 
body dias*«m of Figure 4 for the load. 
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Direction of Load Movement 
<  

free body diapaa. 

F. = uN where u is the coefficient of 
sliding friction, which in 
this case is assumed to be 
0.5 (oast iron on oak) 

F. = 0.5 WL n 0.5 Z 142,342 N 

Ff s 7.11 x lO* N (16,000 lb). 

This analysis can be extended to the 
buffer cars of Figure 2. With a total buffo* 
weight of 118,843 kg (262,000 lb), the weight 
of the load on the third car shown is: 

1,165,000 N 
~ 667,000 M    (3 oars at 222,400 N each) 

436,000 N (112,000 lb) 

Calculating the frictional force during 
sliding: 

Ff J uH = 0.5 (498,000 N)  = 
249,000 N (56,000 lb). 

The corresponding work,   based on this 
plate moving 76 mm (3 In.) at impact,   is: 

Hf ; Ff x d = 249.000 N X 0.076 ■ 
s 18, 920 J (14,000 ft-lb). 

The   work of friction of this plate sliding is 
equal to 

Wf : Ff x distance traveled. 

Assvme the plate slides 0.6096 meters (2 
ft) (which has been observed in actual impact 
tedts): 

Wf * 7.11 x 10* N X 0.6096 m « 

4.33 x lo" J (32,000 ft-lb) 

According to the oonservation-of-energy 
theorem the total energy present if the load 
alldea has to equal the total energy present 
if it did not slide, or: 

KSQ s KK ♦ Vf 

where 

KEQ > actual kinetic energy of the 
erstem 

KB ■ actual kinetic energy of the oar 

Vf > work (kinetic energy) of friction 

n « KB,, - Wf 

. 2.370 X 10^ J - 4.33 x lo" J 

« 1.94 x 105 J (1.43 x 105 ft-lb) 

This value of KB represents only 82f of 
Be; thus, at Impact, the energy of the system 
under the sliding load oondltlon la 18 less 
than if the load did not alide. This is an 
appreciable difference which will certainly 
oauae disparity in data from similar tests. 

For convenience, it is assumed the 
compressed couplers do not absorb any of the 
energy of the Impact. This certainly is not 
true, but the amount they do absorb should be 
close to being constant; thus, for this 
illustration,  this will be assumed to be zero. 

With no sliding of the load, KE0 > 2.37 x 
105j (151,354 ft-lb) as calculated above. 

With a sliding load: 

KB = KB0-Vf > 1.94 x 105 J - 18,920 J 

KB . 1.75 x 10^ J (1.29 x 105 ft-lb) 

This figure represents a 101 loss In the 
energy content of the Impact due to friction, 
ccabjcing these two numbers, a total of 29 of 
the total energy is expended in friction. 

The above-described conditions therefore 
become a contributing factor in the large 
spread of data taken from rail hwp tests 
conducted under the same conditions of impact 
speed and buffer load configuration. This 
condition of plate sliding will certainly not 
be the same each time. The plat', tea be 
restrained by a high board on the floor, or 
some other type of restriction, so that it 
will not alide on Impact and not cause angr 
difference in the energy of impact between 
tests. 

The coupler shanks between the two buffer 
oars should be completely compressed. Ulis 
will eliminate another friction-related 
problem (aimllar to (the one diacussed above) 
which will cause results to become 
nonrepeatable.     The cocpi«"    shanks shall not 
be     held   in   the     L 

railoara brakes. 
oompressed   state   by   the 
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The hanmer car weight Should be 731,000 N 
(165t 000 lb), which Is based on the 
requlrenents of MIL-S-55286 and HIL-S-52059B. 
The weight should be rigidly mounted on the 
car for the same reason discussed for the 
buffer cars. Hie hammer car, like the buffer 
cars, should be equipped with standard draft 
gear, which will provide the worst case 
environment. The hammer and buffer oars 
should be reinforced, especially in highly 
stressed areas, to insure that damage does not 
occur to these cars during testing, since 
damage to these cars will affect test 
repeatability. 

b.    Test speeds and nunber of impacts. 

The rail Impact test speeds selected were 
9.6, 11.3 and 12.9 km/hr (6, 7, and 8 mi*). 
These speeds are based on actual rail impact 
speeds measured In three independent studies. 
The studies cover a total of 16,216 impacts 
and are summarized In Table 2. the data for 
this table were found in Reference 1 of 
Appendix B. 

track.      This Information is 
control computer. 

entered into the 

The approximate wheel load is measured by 
a track device. This reading is also entered 
into the computer in order to limit the {mount 
of retardation so that the wheels will not be 
forced out of the car retarder during the 
retardation process. The car speed is measured 
as it approaches each retarder, and this 
information also goes into the computer. When 
the operator initially pushes the button for 
the desired track, the computer is given the 
total rolling resistance to the farthest point 
on that track. The rolling resistance is 
based on the slope of the downgrade. A wheel 
trip on each track corrects this value for the 
distance taken up by the number of cars that 
have already been placed on that track, from 
all these data, the control computer 
determines the speed the car should have as it 
leaves the last retarder in order to roll to 
the desired point; and it then controls the 
retarder to slow the car to that speed. 

TABLE 2.    RAIL IMPACT SPEEDS 

Speed Range 
kn/hr    (moh) 

Percent 
of apacta 

Below 9.7 (6) 65.9 

9.7 to 11.3 (6 to 7) 18.1 

11.3 to 12.9 (7 to 8) 8.1 

12.9 to IK.5 (8 to 9) 4.2 

111.5 to 16.1 (9 to 10) 2.11 

>16.1 O10) 1.3 

This indicates that 92.If of the rail 
impacts were below 12.9 km/hr (8mph). For 
this reason (and others contained in the 
following discussion), the maximuD speed of 
12.9 km/hr was selected. Rail Impact speeds 
greater than 12.9 kn/hr may be used to 
evaluate the safety factor in either the 
tiedown design or the design of the test item. 

As more rail hump yards are modernized 
and computerized, the rail impact speeds will 
probably decline. In a fully automated or 
so-called pushbutton hunp yard, the operator 
pushes a button corresponding to the track 
onto which a car is to go. When the car is 
uncoupled, it rolls down the hunp and is 
weighed, if desired, on an electronic, 
unooupled-ln-motion, track scale. Also, the 
car's rolling resistance is determined from 
the   change   in   speed over a   given length of 

Another reason for the 12.9-kn/hr (8-mph) 
maximus speed is that the AAR-approved 
tiedowns are only designed for 12.9 km/hr. 
Therefore, at speeds greater than 12.9 km/hr 
there is a greater chance of a tiedown 
failure. 

A comparison of the energy of the system 
was made with the two types of impacts: (1) 
test item into buffer cars; and (2) hammer car 
into test item and buffer cars. The amount of 
energy input to the system with a 734,000 N 
(165,000-lb) hanmer car at a speed of 12.9 
km/hr (8 mph) was calculated from: 

KE =  1/2 nv   . 

Since      12.9     kn/hr 
resulting KE is: 

KE 

3.57    m/sec,     the 

2 1/2 (7^4.000 N)2X (3.57 n/seo) 
9.61 m/sec 

KE = 477,000 J (352,000 ft-lb). 

Using the same formula, the amount of 
energy input to the system with a 133,400 N 
(30, 000-lb) test item secured to a 222,400 N 
(50,000-lb) railcar and impacting into two 
buffer cars at a speed of 12.9-kn/hr is 
230,500 J (170,050 ft-lb). 

This shows that unless the mass of the 
test item plus the mass of the test railcar is 
greater than the total mass of the hammer car, 
the hanmer car impact will be more severe. 
Therefore, in most cases the two impacts will 
be conducted in order of increasing severity; 
yet the primary reason for the 2-impact 
sequence is that it best simulates actual rail 
impacting. 
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The rail impact test should be conducted 
in both directions in order to eliminate the 
possibility that if the test item is more 
fragile in one direction than the other, this 
fragility will not go unnoticed. An example 
of this would be equipment mounted to a 
surface of (such as a shelter wall) facing one 
end of the rail car. During impacts in one 
direction, bolts and similar components will 
be in tension. These same components will be 
in compression in the opposite direction. By 
testing in both directions, deficiencies due 
to both tension and compression will be 
discovered. 

The rail impact test speeds should be 
within i5% of the nominal speed as compared to 
some procedures where either a minimum speed 
must be obtained or the impact must be 
repeated. The i5% tolerance should reduce 
overspeed impacts and the total ninber of 
impacts performed: nominal speeds are 
specified so that the railroad crew can either 
exceed or fall short of the desired speeds by 
the allowable 5$; otherwise, by specifying 
only a minimum speed, only exact and overspeed 
impacts would be allowed. Aqy underspeed 
impacts would have to be repeated. 

It is the author's experience that an 
experienced railroad crew can accomplish 
speeds within +3$ , An inexperienced railroad 
crew or ramp operator should practice 
attaining the correct Impact speed on a 
different section of track without impacting 
any rail oars. 

The three sets of impacts in each 
direction will give the tester/ evaluator an 
adequate sample of data. The rail Impact test 
procedure simulates the events in a total of 
six rail hump yards. Trains pass through rail 
switching yards each time the rail car is 
switched frcm one railroad to another, and six 
impacts are not considered unrealistic for a 
cross-country trip. (An exact number of 
impacts occurring in a cross-country trip 
cannot be stated since it is dependent on the 
routing of the shipment.) 

The new procedure specifies that all 
buffer oar air and handbrakes be set. Figure 
5 shows the effect of the brakes set and not 
set on the impact coupler force. The slope of 
the curve with the brakes set is steeper than 
the curve with the brakes released, indicating 
that the coupler force increased faster as the 
speed increased with the brakes set. The 
brakes being set represents or approximates 
the worst real-world case in which the brakes 
are set on rail oars and/or the rail cars are up 
against a stop. 

friction forces which restrain the buffer 
cars. In order to control the repeatability 
of the tests, periodic checks should be made 
of both brake systems (air and hand) for 
deterioration. If any deterioration is found, 
corrections should be made prior to further 
testing. 

Data Reouired from Rail Impact Tests 

Inpact aEfifiA- 

The rail impact speed should be recorded 
for each Impact. The speed can be measured by 
any one of several techniques, such as 
electronic timers or radar. It is the 
author's experience that, of those two 
methods, the electronic timers are more 
accurate. The speed should be measured 
accurately to 0.15 km/hr (0.1 mph), as close 
to the point of Impact as possible. An 
accurate speed measurement is required so that 
data from different impacts can yield valid 
comparisons. 

Coupler force. 

The coupler force should also be recorded 
for       each       Impact. This       gives     the 
tester/evaluator a known input to the test 
railcar. With this value, along with 
information about the railcar (including its 
transfer function), the tester/evaluator can 
calculate the forces in the tiedowns which 
restrain the test item. From these forces, 
other information, such as stress on the test 
item,   can be calculated. 

The railcar loaded with the test item 
should be equipped at both ends with 
instrumented couplers capable of measuring 
coupler force. With impacts occurring 
successively at alternate ends of the railcar, 
having two instrumented couplers will greatly 
decrease total test time. The instrumented 
couplers are commercially available and 
consist of strain gages installed on the 
shank. A calibration Is performed to develop 
a force-versus-strain curve. From this curve, 
coupler force can be obtained from strain 
data. 

Initial  tiedown loadings. 

Tha amount of tension in the tiedowns 
should be specified in the tiedown design. 
Prior to rail Impact testing, each tiedown 
should be tightened to that specified tension. 
The tiedown configuration used should be the 
AAR-approved procedure, if it exists, since 
this is the only configuration in which the 
item can be shipped. 

Variations in rail Impact data can also 
be caused by different degrees of brake wear 
on the railcars. Variations in the brake wear 
on   different cars will have   an effect on the 

In    the    event that the    cable tension is 
specified,   the tension should be measured 
recorded    follcwing   tiedown so    that the 

conditions      can    be   repeated   in   any 
additional    rail    impact tests   which the item 

not 
and 
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maf encounter.    In addition to cable tensions, 
the entire blocking and       bracing 
deaign/conflguratlon   and procedure   should be 
docwented. 

The AAR tiedouns are designed to restrain 
the test lt«a at Impact speeds up to and 
Including 12.9 ka/hr. In the event of a 
tledown failure, a decision must be made as to 
whether the test should be continued without 
repairing the failure or repairing the failure 
and restarting the test. 

Adaitlonal data. 

In addition to the above-mentioned data, 
additional data such as acceleration may be 
recorded If more information about the test 
item is needed. The locations for these 
measurements should be selected after 
carefully considering why the data are needed 
and hew the data will be used. In order to 
get a better description of what happens when 
the test item is rail impacted, shock-response 
spectrum analysis can be used. Shock-response 
spectrum analysis is defined as a plot of the 
peak responses of an infinite number of 
single-deyee-of-freedom systems to an input 
transient. In the classical definition, the 
systems are undamped. Sometimes the systems 
are also termed "massless" to indicate that 
they do not load the Input. In assuming no 
damping, the Intent is to obtain a 
conservative estimate of the damage potential 
of the transient; it is, in fact, on the high 
side of reality because all systems have some 
degree of damping. 

It is general practice when designing 
equipment to withstand a shock environment to 
assume that failure will occur in a particular 
component because the maximum allowable stress 
level is exceeded in that component. The 
shock-response spectrum provides the designer 
with some readily usable Information about the 
input transient. It describes the effect of 
the transient rather than the transient 
itself. Some individuals feel this is wrong 
from the standpoint that several different 
configurations of transients can produce the 
same shook-response spectrum. While this is 
true, the designer needs to know the effect 
regardless of the Input configuration. If the 
effect is known, it can be related directly to 
the system to determine if it will pass or 
fall. 

load     can 
readings. 

be     extracted   from   the   strain 

DISCUSSION OF DATA COLLECTION TECHNIQUES 

Collection of IMnaot Speed Data 

The rail impact speed can be measured by 
several methods. These methods include 
electronic timers or radar. Whichever method 
is used, the speed should be accurately 
measured to 0.15 km/hr. 

Collection of Coupler Force Data 

The coupler force can be measured by 
strain gaging a coupler shank and calibrating 
the coupler by developing        a 
strain-versus-force curve. In order to 
expedite testing, the test item car should be 
equipped with an instrumented coupler at both 
ends. A 1-channel on-slte recorder should be 
acquired or developed to record this coupler 
force data. 

CoUcctlgn of Additional Pata 

Accelerometer data should be recorded on 
magnetic tape so that a permanent record can 
be maintained. The data can be transferred 
from the rail car to its permanent storage 
medlin using any of a variety of techniques. 
These techniques include a direct cable link, 
FM-FM Telemetry or pulse code modulation (PCM) 
telemetry. When using these techniques, the 
data should be low-pass filtered above the 
highest frequency of Interest. Rail impact 
testing generally excites frequencies in the 0 
to 100 Hz range. If test item components are 
sensitive to higher frequencies, the filtering 
levels should be increased to include these 
frequencies. 

Additionally, if a digital data 
acquisition system is used the data should be 
sampled at a rate of at least four times the 
filtered frequency to eliminate aliasing of 
the data. 

Generally,      aliasing occurs   from    the 
presence   of   signals which are only slightly 
above the Nyquist frequency (1/2 the sampling 
frequency). 

The forces In the test item tledowns can 
be measured by Installing a load cell in each 
tledown. These load cells are commercially 
available and can easily be Installed in the 
tledown system. During past rail impact 
tests, the author has used eyebolts with 
strain gages Internally Installed. Similar to 
the calibration technique used for the 
instrumented couplers, a strain-versus-load 
curve   was    developed.      F^om this    curve,   the 

66 

^B^M^^^^3&^:&^ 



If the data are to be used in Fourier 
transfora applications (power spectral density 
(PSD) analysis; shock-response spectrun 
analysis), the resolution characteristics of 
the Fast Fourier transform (FFT) oust be 
considered. The frequency resolution of the 
FFT is: 

F = fs/2H 

where 

fs s sampling rate Is samples/sec 
H = FFT size. 

This relationship indicates that the 
resolution degrades with increasing sampling 
rate. For these types of applications, a 
sampling rate on the order of 3.5 to 4 is 
appropriate. Larger transform sizes on the 
other hand, will enhance resolution. 

SUMMARY 

The resulting rail impact test procedure, 
while not exactly like any of the researched 
test procedures. Is essentially a ccmprcmise 
between all of the different techniques. The 
reason for this approach Is that the proposed 
procedure tries to duplicate actual rallyard 
impacting. The facilities and equipment 
necessary for conducting the test includes: 

a. A    straight   level    section   of track 
(mlnimun of 6 0 meters). 

b. A device for setting the rail cars in 
motion: either an inclined ramp or a 
locomotive. 

c. TWo 56,70O-kg (125,000-lb) rigidly 
loaded,   standard draft gear buffer cars. 

d. One 71», 800-kg (165,000-lb) rigidly 
loaded,   standard draft gear hammer car. 

e. One standard draft gear rail car on 
which the test itec is securely fastened. 

f. A speed measuring device. 

g. TWo   rallcar couplers Instrunented to 
measure coupler force. 

The rail Impact test procedure Is as 
follows. The first Impact consists of 
impacting the rallcar on which the test item 
is securely loaded into the two stationary 
buffer cars (with the air and handbrakes set 
and the coupler shanks compressed) at a speed 
of 9.6 km/hr (6 mph) +5$. At the conclusion 
of    this   first   Impact,    the    three   cars are 

reposltionsd; the coupler shanks connecting 
all three cars are compressed; and the air and 
handbrakes on all three cars are set. The 
second Impact consists of the hammer car 
impacting the test item car (which is coupled 
to the two buffer cars) at a speed of 9.6 
km/hr (6 mph) £S. This two-impact procedure 
is then repeated at 11.3 km/hr (7 mph) £H and 
at 12.9 km/hr (6 mph) ±5J. At the conclusion 
of the sixth impact the test car is turned 
around and the six-impact sequence is 
repeated. Rail impact test speeds greater 
than 12.9 km/hr may be used to evaluate the 
safety factor in either the tledown design or 
the design of the test item. 

During each of the impacts, the Impact 
speed and coupler force should be recorded. 
To reduce test time, each end of the test item 
car should be equipped with an instrumented 
coupler designed to measure the coupler force. 
The tiedown system should not be adjusted 
(cables tightened or loosened) once the test 
begins. In the event of a tiedown failure, a 
decision should be made by the project 
director as to whether the test should be 
continued without repairing the failure, or 
repairing the failure and restarting the test. 
Prior to testing, the tension in the tiedown 
system should be measured and set to the 
tension specified in the tiedown procedure. 

Speed and coupler force data are required 
on all tests as previously discussed. Any 
additional data requirements should be 
carefully thought-out ahead of time, and only 
the necessary data should be collected. This 
will reduce the test setup, data analysis and 
report time frames. 
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APPENDIX A - ABBmiATIORS APPENDIX B - REFER BICES 
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: power spectral density 
= pulse code modulation 
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MACHINERY DYNAMICS 

PREDICTION OF NATURAL FREQUENCIES OF FLEXIBLE SHAFT-DISC SYSTEM 

P. Br&nand, G. Ferraris, M. Lalanne 
I.N.S.A. 

Laboratoire de Mficanique des Structures 
U.A.  C.N.R.S.  862 

20, avenue Albert Einstein 
69621 Villeurbanne - France 

Today the dynamic behavior of rotors must be predicted with the 
greatest care. This work deals with the influence of disc flexi- 
bility on the natural frequencies of rotors. 
The rotors considered here are made of a shaft, symmetric bearings 
and flexible disc. The kinetic and strain energies of the element 
are calculated, the finite element method is used and the Lagrange's 
equations applied. 
The solution of the equations is performed through a modal method. 
The application is an industrial gas turbine. Its natural frequen- 
cies as a function of the speed of rotation are obtained, which 
gives critical speeds. 

INTRODUCTION 

In industrial applications related to ro- 
tordynamics discs are taken as rigid. When they 
are thin this hypothesis can introduce an error 
as the interaction disc-shaft can then be mis- 
represented. 

It is thus interresting when calculating 
the behavior of rotors to be able to consider 
the disc as flexible or at least to have an 
idea of the influence of its flexibility. 

Dopkin and Shoup |I| have presented results 
on a symmetric rotor in steady state motion 
using transfer matrices. Hagiwara et al |2| 
have also used the transfer matrix method and 
have dealt with the unbalance response of an 
impeller-shaft system. In those two papers the 
effect due to the initial stresses has not been 
introduced. 

Chivens and Nelson ]3| have performed a 
parametric study of the dynamic behavior of a 
simply supported rotor. Their equations include 
the centrifugal effect and are solved by the 
Laplace method. They have shown that the influ- 
ence of the flexibility is more significant on 
the backward whirl than on the forward whirl. 

Wilgen and Schalck \b\,  using a Rayleigh- 
Ritz technique have also made a parametric stu- 
dy of the critical speeds and instabilities. 

Klompas |5| has calculated the behavior of 
a rotor on disymmetric bearings. He has shown 
that excitation forces created in the disc give 
new critical speeds and instabilities. He has 
extended his work to multirotors with linear |6J 
or nonlinear |7| hydrodynamic bearings. 

Sakata et al |8J have calculated, using a 
Runge - Kutta - Gill method, the transient vibra- 
tions of a rotor subjected to a sudden unbalance. 

Palladino and Rossetos |9| have used the 
finite element method, built a specific beam 
element taking into account analytical solutions 
of the disc and studied several examples. 

Loewy and Khader |l0| used also finite ele- 
ments for the rotor containing disc-blades assem- 
blies which are modelled through a substructuring 
method. The displacements of the shaft and the 
lowest modes are the generalized coordinates used 
for Lagrange's equations. The application to an 
industrial example shows the influence of the 
gyroscopic (Coriolis) and flexibility effects of 
the disc. 

In what follows a method of analysis of ro- 
tors having a flexible disc is presented. The 
shaft is modelled as a beam including, torsional 
and longitudinal motions. The disc is an axisym- 
metric thin plane structure having rigid body 
and axisymmetric motions. Strains include second 
order terms to take into account the stiffening 
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due to the initial stresses. The finite element 
method is used for obtaining the expression of 
the strain and kinetic energies of the element, 
the Lagrange's equation (appendix 1), are then 
applied. The bearings are symmetric and have 
stiffness and viscous damping characteristics. 
The order of the systems to be solved is grea- 
tly reduced through a modal method. The results 
show the coupling between the bending of the 
shaft and the axisymmetric motion with one no- 
dal diameter (n = 1) of the disc. They show 
also two couplings, which to our knowledge have 
not yet been shown, one between the longitudinal 
motion of the shaft and the bending of the disc 
(n = 0) and another one between the torsional 
motions of the shaft and of the disc (n = 0). 
The industrial gas turbine presented has alrea- 
dy been studied with the disc considered rigid 

(2 

Reference frames 

Kinetic energy 

The expression for shaft elements of length 
L is given by the addition of three terms : 

2T 
SI 

0 
p(S(u »2 + v" + w02) 

(I) 
+ iv e°2 + IT ^'2 +  Iy ß°2)dy) x       z 

mass kinetic energy 

EQUATIONS ÜF THE SYSTEM 

The development of the equations is detail- 
led in |12|. 

The axes X Y Z (Ro) are an inertial frame 
while the axes xj Y zj are fixed to the rotor 
in undeformed position and rotate at constant 
angular velocity (ß). The axes x y z (R2) are 
fixed to the cross section of the deformed rotor 
(fig.l). The R2 system is related to the Rl sys- 
tem through a set of three angles ß, ij/, 9 
(fig,2). All the equations are written in RI. 

Fig.2 : Angles of rotation 

n pS(u°w - w<,u)dy 'S2 - " J0 

gyroscopic (Coriolis) kinetic energy. 

(2) 

2T S2 fi' 

X 

p(S(u2 + w2) 

(3) 

Iz ^
2)dy 

supplementary kinetic energy. 
with u, v, w components in Rl of the neutral 
axis displacements. 
p, mass per unit volume. 
S, cross-sectional area. 
X ,1 , diametral area moments of inertia of the 

shaft cross section. 
I , polar moment of inertia of the shaft cross 
y section. 

The kinetic energy of the disc (fig.3) is 
given by the addition of three groups of terms. 
The first group corresponds to the rigid body 
motion. 

Fig.3 : Disc coordinates 

2T. DR.  " VUV + VV + WV>  + hx eV 

+  ^Z ^D2 +  ^Y ß0D2       > 

mass kinetic energy. 

TDR2 " n(mD(u°DWD " ""DV + ^X ^D ^D 

+ ^DY ' V *0D V   . 
Coriolis kinetic energy. 

2TDR3 * ^SS2 + WD2) + ^X *D2 + ^Z eD2 

" ^Y (*D2 + eD2» 

supplementary kinetic energy. 

(4) 

(5) 

(6) 
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with ; 

EL., mass of the du'C 
I ,1 V,I 7, mass moment of inertia of the 
DX ui iw disc with re8pect t0 x Y Z. 

The second group of terms corresponds to 
the axisynmetric motion : 

2T, 
DAI 

(V) 

mass kinetic energy 

p(u0 2 + u0.2 + u0 2) dV 
r    *    y 

TDA2 " « 
(V) 

P(u% ur - "'r11^ dV ' 

Coriolis kinetic energy. 

^DAa " ft 

(V) 
P(ur

2 + u^2) dV 

supplementary kinetic energy. 

2 
TDA4- ^ 

P r u 
J(V) 

dV 

(7) 

(8) 

(9) 

(10) 

centrifugal forces kinetic energy. 

The third group comes from the coupling bet- 
ween rigid body and axisymmetric motions. 

DC1 
(V) 

p(u0n(u
0 sin $ + u° cos $) 

+ w,,
D(u

0
r cos $ - u". sin (ji) + v0D u

8 

+ r u0 (^'j) »in $ -  6^ cos i)i) 

+ r ß'D u^) dV . 

mass kinetic energy. 

(H) 

T  ■ n 1DC2 (V) p(u0D(ur C0S * " u(t. 8in ^ 

(12) 
- w° (u sin $ + u. cos $) 

- u_(u0 cos 41 - u". sin iji) 

+ wD(u
0
r sin $ + u° cos *) + 2r B'p ur)dV , 

Coriolis kinetic energy. 

2 
TDC3 ■ " 

(V) 
p(un(u sin (>i + u. cos 1(1) 

+ w_(u cos 4 - u. sin $) 
D r       9 

+ r u (6D cos ^ - «Kj »in i}1)) dv • 

(13) 

supplementary kinetic energy. 

The axisymmetric displacements are then ex- 
pressed by developments in Fourier's series and 
written as : 

u " u  + T (u  cos nit + u  sin nd) r   ro    ,  rn    v   rn 
n-1 

u. - u. + £ (u. cos n(j) + u, sin n(|)) 
*   ^  n-1 *" it>n 

00 

u ■ u  + £ (u  cos niji + u  sin ni(i) 

(14) 

y  yo n-1 
yn yn 

It is also convenient to define 

it     t      t-t t-ti 
K   %   *\    "l    ••• %   \ 1 

where 

KV K'DVDVDI (15) 

u     u*    u_ if      n i 0 1  rn   (pn   yn1 ' 

u     u,    u if     n > 1 1 rn   (jin   yn' 

The expressions (14), (15) can be used in 
the several terms of the disc kinetic energy (4), 
(13). An integration for the polar coordinate (t> 
in the interval 0,2 ir give, when Lagrange's equa- 
tions are applied, the mass, Coriolis, supplemen- 
tary stiffness matrices and the vector of centri- 
fugal forces. In appendix 2 the mass matrix M_ 
of the disc is presented. The Coriolis and sup- 
plementary stiffness matrices, not presented here, 
lead to important conclusions, which are the sane 
as those shown by the M- matrix. A coupling appears 
between the rigid body motion degrees of freedom 
and the Fourier coefficient terms when n - 0. 
This shows a coupling between the longitudinal 
motion of the shaft Vn and the bending u  of the 
disc and another coupling between the torsion of 
the shaft 6. and the disc u. . 

u 90 
A coupling appears between the rigid body 

motion degrees of freedom and the Fourier coef- 
ficient terms when n • 1. This shows a coupling 
between the shaft bending u-, w-, 6-, tk. and the 
disc displacement u ., u ., u.,, u,,, u ., u .. 

rl' rl  (Jil  <(il  yl* yl 
There is no coupling between the shaft and 

the disc for n > 1. 

The centrifugal force vector only has com- 
ponents for n - 0. 

Strain energy 

The strain energy of the shaft includes two 
terms. The first one is the classical strain 
energy, the second one is the strain energy due 
to a constant axial force F. 

(16) 

Th« sir expressions are : 

2US1  " ES  (g)    dy + 
rL             .2    2 

n E(I' ^ 0            3y 

a2« 2             fL         as 2 

+ I    M  ) dy +        GJ  (If)    dy 
x    3y^                  JO          dy 

with  : 
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G, «hear modulus 
E, Young*• modulus 
J, area moment of inertia about the longitudinal 

axis. 

2U, S2 i: <> 2 * (|)2) «* (17) 

3u . 3u., 3u . 8 u . 3u . '5ÜT auT 
rl  (|)1  yl ■ yl — — —   rl  (j)!  yl 

STir   3r  -2 url u(|.l uyl 3r  3r  3r 3r' 

32u 1 * 

3r' 

3u  3u, 3u  3 u _ 
rn "(|in "yn   yn 

urn u$a Uyn "SF" ""5r~ ^F 3r' 

The strain energy of the disc is caused by 
the axisymmetric motion and includes two terms. 
The first one is the classical strain energy, 
the second one is the strain energy due to the 
initial stresses a , o .,, or.. Their expres- i,, i   orr  o«4  orm 
sions are |13| :      TY 

2D, Dl I (V) 1-V 
3u 

E   3ur 
-2  {^> + 

1   2  1  ^ 2 

7ör ^^ 

3(j) 
Su^ 2 

3u> 3u* r __5 
r '5ir Sij) 

2     *  . v  r  #  - V 3ur 

r r 3r 

3u 2 
1-v , d). A 1-v  2 ^ 1-v , r. 

2r2 *   2r2 * -y (ir' ' ^2 > T 2? ^ 
,-v       %,1-v^^     l-v       3ttr 

" IT u<|i 1r        r   3r   34)   " TT" U(|) ?i~ 
, 32u 2  .  32u 2  .  »H, 

+ y
2((-/) ^(3/) *-T(^) 

or ,   r   _     s. 
3u 3^ 

3u 2 (18) 

r4 >2 

„»«»«.     32u  . 32u   , 3u 

+ 2 
l-v 3'u 2 

(3^ 
+ 2 

1-V 

r 

r' 

with v, Poisson's ratio 

3u 2 

<3/> 

3u 32u 

3u   3u, 
2U, D2 I(v/|(Vr*w4ir-^-^ 

3u 2 

* aorr ^J * T CTo0 ^ 

3u 
(19) 

2    3u 3u 
+ Taor^^dV ' 

The relationship between initial stresses (a 

"W 0or*) ■nd di8PUc«B»nt l» : 

orr 

'o# 

Tor((p 

l-v' 

3u /3r+v(3u./3*+u )/r r     9   r 

(3u./34+u )/r*v3u /3r 9   r     r 

(l-v) (r3u./3r-u. ^/S«)/2/r 

(20) 

It is convenient to define : 

_ ,. 3u  3u. 3u  3 u ,. «it  1 ro  60  yo   yo 
lSD ' " |uro V uyo "ST ~5r "ST -TT 3r 

url %\  uyl 

3u  3u. 3u  3 u        rn  qm  yn   yn 
urn % uyn 3r  3r  3r  3r2 

(21) 

and using (14), (15) with equations (18), (19), 
(20) the new expressions of strain energies are 
obtained and show no coupling between Fourier's 
series 0, 1, 2, ... 

Finite element 

The shaft element is a beam element with 
two nodes, with six degrees of freedom by node. 
Classical shape function have been used, cubic 
in y for bendings linear in y for both longitu- 
dinal and torsional motions, (fig.4). In addi- 
tion : 

M 

vK "  ü*4 
Fig. 4 

3w 

Beam finite element 

* - -1^       (22) 

The thin disc element has two nodes with 
also six degrees of freedom by node. Classical 
shape functions are used, cubic in r for u , 
u _ linear in r for u , u , u. , u^ .  yn yn rn* rn' (jm' ijm 

In a compact form the degrees of freedom 
are : 

' e1 

with 

Kl' 

\< -C < < C^1 
n  n 

IV  ■ lUD VD WD 6D *D ßDl 

3un, 

(23) 

3u" l,n  n  n    yl n  n  n    y2| 
lUrl U*l uyl - -ST ur2 V uy2 " -5rl 

(n ^0) 

jr"n T-n 
|T"it       i-n    -n    -n yl -n   "n    -n y2| 
ldnl    ■ lurl \\ uyl " "ST ur2 V u

y2 " TTI 

(n >,  1) 

It has been shown, appendix 2, that the cou- 
plings exist for n - 0 and n » 1. The application 
of Lagrange's equations is much easier if the use 
of multipliers can be avoided, therefore the axi- 
symmetric degrees of freedom are written in Rl. 
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For n « 0, the axisynmetric degrees of 
freedom u8 , u'^,  u" , - au" /Sr are expressed 
(fig.5) as a function of theyfollowing degrees 
of freedom. 

M 

Fig.5 : n ■* 0, shaft disc connection 

u' + r. u  + V- 
y  D 

au" 
(24) 

3r 

For n • 1, the axisynmetric degrees of 
freedom u 1, ..., 3u l/3r are expressed (fig.6) 
as a function of theyfollowing degrees of free- 
dom : 

Fig.6 : n - 1, shaft disc connection 

1    ^  1 
u " "D + u$ 

w1 - wD + u^ 

-1     ^ - 1 
u ■ uD + ur 

1   1  ß v - u - r6_ 
y    D 

3u 1 

-1-1 v - u + ril' 
y   'D 

-1 w 
- 1 
u. ä1 

*D + 
8u 

3r 
(25) 

Equations 

The expression of the kinetic and strain 
energies of the shaft and disc elements are, 
using (24), (25), a function of generalized in- 
dependent coordinates. Through the Lagrange's 
equations one gets the general equations for the 
system : 

(26) too 

a a n n  "en   gn   sn' n 

where matrices are functions of n. 

For n " 0, (26) gives the coupling between 
longitudinal or torsional motion of the shaft and 
the symmetric motions of the disc with no nodal 
diameter. 

For n » 1, (26) gives the coupling between 
the bending of the shaft and the axisynmetric 
motion of the disc with one modal diameter. 

For n J 2, (26) gives the axisynmetric mo- 
tion of the disc with n nodal diameters and no 
coupling with the shaft. 

The solution of (26) requires two steps. 
First of all for n « 0, it is necessary to solve 

(K, 
Kgo-M80) 60 (27) 

This solution gives the initial displacements 6 
and stresses. Then, it is possible to solve the 
eigenvalue-eigenvector problem : 

M 680 
n n 

+ C 68 + 
n n (Ren + Kgn + Msn>6n (28) 

The number of the degrees of freedom is 
highly reduced through a modal method based on 
the behavior of the rotor at rest. Then, the QR 
algorithm is used. It is thus possible to have 
the evolution of the natural frequencies, then 
the critical speeds, as a function of the speed 
of rotation Q. 

APPLICATION |12| 

The equation and the corresponding computer 
program have been at first tested with simple 
applications and examples from (1), (3), the re- 
sults obtained were satisfactory. 

The rotor of an industrial gas turbine, in 
the case of symmetric undamped bearings, has been 
calculated. In figure 7 the shaft finite element 
modelisation is shown, four finite elements are 
used for the disc considered as flexible. The re- 
sults shown in what follows are compared with 
results already obtained for this rotor, the disc 
being supposed rigid, (11). 
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bearing 1 
i I ■' i 

Bearing 2 
-i—I I |« 4 I * I 

Fig.7 : Rotor of the gas turbine 

Cas n - 0 (figure 8} 

The natural frequencies with the rigid disc 
are independent of the speed of rotation and are 
represented by 1, 3, 5. The natural frequencies 
with flexible disc are represented by 1, 2, 4. 
The type of motion observed is in table 1. 

F(HZ)M 

1000 _ 

Frequency 1 2 3 4 5 

Shaft T L L T T 

Disc R-F F R F R 

Table 1 
with T,L, respectively torsional or longitudinal 

motion 
R.F, respectively rigid or flexible disc. 

500 

• —  ~ — ^ — —^ — — p»—  ».y—  M-—„1 tJ 

© 

(D 

(D 

.£_ 
x -L 

10000 20000 
J • 

30000 

Q{rpm) 

Fig.8 : Case n - 0, natural frequencies versus speed of rotation 
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It can be observed that the lowest torsio- 
nal frequency is not influenced by the flexibi- 
lity of the disc and that the conclusion is 
nearly the same for the second torsional fre- 
quency 4, 5. The first frequency corresponding 
to the longitudinal motion is reasonably affec- 
ted by the disc flexibility. 

Case n ■ 1 (figure 9) 

This is the most practical because of exci- 
tations and particularly the unbalance exitation 
give a force component in bending. The frequen- 

1500 

cies corresponding to ,ne rigid disc are presen- 
ted in 2, 4, 6, 8, those corresponding to the 
flexible disc are presented in 1, 3, 5, 7. 

Due to the operating speed the practical 
interest is in the evolution of the lowest fre- 
quency 1, 2. The flexibility of the disc decrea- 
ses the corresponding critical speed of 3,5 %. 

F{H2) 

1000 _ 

10000 20000 »000 

Q (rpm) 

Fig.9 : Case n - 1, 

CONCLUSION 

The equations of rotors composed of a shaft 
and a flexible disc have been presented through 
kinetic and strain energies expressions and use 
of Lagrange'§ equation« and have been solved 
using a modal method. The shaft and disc cou- 
pling, which exists only for n ■ 0 and n - I, 
have been studied. 

An industrial gas turbine has been presen- 
ted and the evolution of the natural frequencies 
calculated. It has been shown that in the case 
considered, the critical speed due to unbalance 

natural frequencies versus speed of rotation 

is slightly decreased. 

In the future, it will be probably necessa- 
ry to consider the discs as flexible. Unfortuna- 
tely, it is difficult to include flexibility in- 
fluence in a computer program dealing with rotor- 
dynamics. 

At this time, it is suggested to perform 
the calculations at rest with a classical finite 
element computer program. The disc is supposed 
to be rigid or flexible and then the flexibility 
influence, if it exists, can be roughly estimated. 
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APPENDIX 1 

The Lagrange's equations may be written as 

4-(- dt V3q 
3T . 

■H—; 
3T 
3q. 

3U 
3q. 

(29) 

with 
T, kinetic energy 
U, strain energy 

q., i'" generalized independent coordinate 
Q-, i"1  generalized force, such as this due 

to the bearings. 

APPENDIX 2 

Mp-Tipr 

*; 
^ 

ro 
'I $0 
i° yo 

rl 

yi 

ipn 
a u 

rn 

in 
Ü0 

yn 
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Discussion 

Mr. Eshleaan (Vlbration Institute): It looked 
like the flexibility effect «as small compared 
to the gyroscopic effect In that case. Did you 
try It with a smaller diameter disc that did not 
have a gyroscopic effect? 

Mr. LaLanne; No. 

Mr. Eshleman: Do you think the rotor you 
analyzed Is a typical Industrial rotor? If It 
Is, It seems there Is probably no reason to 
worry about Its flexibility. However, I have 
heard of other people worrying about the 
flexibility of the disc. 
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IMPLEMENTATION OF ACTIVE FORCE CONTROL FOR ROBOTS 

SUBJECT TO DYNAMIC LOADING 

R. Hollowell, R. Guile, P. FitzPatrick, S. Foley 
United Technologies Research Center 

East Hartford, CT 06108 

A force control servo for robotic machining was designed and studied 
based on structural and servo dynamic tests. Results of the studies 
indicate the feasibility of robotic chamfering using force control and 
the need for considering robot structural modes in stable force control 
design. An autoregressive moving average identification technique was 
used to develop a procedure for model parameter identification from 
digital sampled impulse response data. A gain scheduling technique is 
described for achieving stable force control during light metal cutting, 
while compensating for varying robot structural modes. 

INTRODUCTION 

Automation of light machining processes 
such as chamfering and deburring is desirable 
because these processes are repetitive, error 
prone, and in some cases hazardous. 
Anthropomorphic robots are attractive candidates 
for achieving this automation because their 
dexterity and large work volume make them 
especially versatile machine tools. However, an 
articulated structure results in a robot having 
high structural compliance and poor positioning 
accuracy relative to traditional machine tools, 
characteristics that complicate the problem of 
programming a robot to perform light machining 
tasks.  In particular, part misorientation 
relative to a taught robot path will result in 
either too little material removal or excessive 
interference between the tool and the part, 
possibly resulting in part damage. A number of 
researchers have described approaches to using 
compliantly mounted tools to accommodate part 
misorientation (Ref. 1,2,3,4). Experience has 
shown that with light cutting forces, the tool 
compliance can couple with robot compliance 
resulting in tool chatter and unsatisfactory 
metal removal. 

Development of active tool force control is 
expected to overcome some of the problems of 
passive compliant mounts. Previous work on 
active force control is summarized by Whitney in 
Ref 5. For active control, instrumentation 
measures the force between the tool and part, 
providing feedback to a controller that 
regulates the cutting force at a desired level. 
To implement such a strategy for precision 
chamfering, an articulated machine tool was 
developed which provides an additional degree of 
freedom (DOF) that can be controlled to regulate 
force. The requirement imposed on the robot 
controller is that the robot degrees of freedom 
be controlled to maintain proper alignment of 
this force control motion normal with the local 

part surface. Important features of such a tool 
include the ability to compensate for: 

1, Inaccuracies of the robot and workpiece 
positioning. 

2. Configuration dependent dynamic 
characteristics of the robot arm. 

The tool and control algorithm mist maintain 
material removal rate tolerances and control 
stability sufficient for the manufacture of 
precision aerospace parts. 

This paper discusses the role of dynamic 
analysis in the design and implementation of an 
electro-mechanical feedback control system for 
robotic machining. First, servo system and arm 
structural models are described, and the dynamic 
testing and analysis used to validate and 
identify those models is reported. Then the 
implementation of active force control using the 
modelled tooling is discussed, closed loop 
cutting performance is assessed, and 
requirements for a second generation tool are 
identified. Finally, a strategy for designing 
and implementing a stable force controller that 
compensates for changing robot dynamics is 
discussed. 

DYNAMIC SYSTEM MODELLING 

The research was conducted using an ASEA 
IRb-6 five axis articulated robot with an Si 
controller as shown in Figure 1. The tooling 
consists of a six axis force and torque sensor, 
a dc servo mechanism, a 30,000 rpm, 3mm collet 
pneumatic deburring spindle, and associated 
support structure. The spindle has a single 
degree of rotation relative to the support 
structure, and is driven by the servo motor 
through an elastic belt and a high ratio worm 
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gearset. A resolver and tachometer attached to 
the motor shaft provide feedback to ASEA joint 
axis electronics, making the servo mechanism 
essentially a sixth robot axis. The support 
tooling assembly is attached to the force sensor 
which is attached to the robot tool mounting 
flange. 

Figure 1. ASEA IRb-6 Robot, Six Axis Force 

Sensor and Sixth Axis Spindle Drive System 

A linearized model of the sixth axis servo, 
given in Figure 2, was developed to understand 
the transfer function based force feedback 
control strategy implemented in the machining 
studies. The joint position commanded by the 
robot computer is compared to the resolver 
feedback, and the difference is converted to an 
analog velocity reference. This reference is 
input to a conventional velocity servo to 
produce motor velocity, while the motor position 
is geared to produce tool position. The loaded 
servo mechanism is not adequately modelled with 
linear elements because of the non-linear 
friction, backlash, and lack of back- 
driveability in the worm gearset. Figure 3 is a 
block diagram of the loaded mechanism showing 
the implemented force control algorithm, with 
the worm gear represented as a single block. 
The tool position is referenced with respect to 
the position of the workpiece surface, and the 
resulting workpiece-tool interference acts 
through the effective spring rate of the tool 
support and robot arm to yield the normal force 
acting between the workpiece and the cutter. 
This normal cutting force is calculated from the 
force sensor measurements and a known kinematic 
relationship, although the measurements are 
bandwidth limited due to the compliant structure 
separating the force sensor and the cutting 
forces. 
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A lumped nass model containing identifiable 
physical parameters was developed to aid in the 
assessment of closed loop cutting performance 
and to serve as a basis for a complete model of 
the second generation tool, that will be 
designed to achieve control stability. Figure 4 
shows a single axis two DOF lumped mass model 
and corresponding bond graph representation 
characterizing the dominant dynamic response of 
the robot arm (Ml.Kl.Cl) and tool {M2(K2,C2), 
subject to a force input. The bond graph (see 
[6]) method of modelling and analysis lends 
itself to building state variable models of 
systems incorporating electrical, mechanical and 
hydraulic components. In a mechanical system 
bond graph model> energy is stored as kinetic 
energy in the masses (across element) and 
potential energy in the springs (through 

■j) BLOCK DIAGRAM 

,X. 

b) BOND GRAPH 

o III- 
b 

i i 

Figure A.  Block Diagram and Bond Graph 
of Two Mass Dynamic System 

element). The model state variables are the 
velocities (potential) of the masses and the 
force» (flow) in the spring», and are »elected 
based on system causality constraints.  In this 
model, energy enter» the gygtem in the form of 
tool cutting force» Fs, i» dissipated by »ystem 
damping and exits the system to ground. The 
first order matrix differential equation 
resulting from a systematic analysis of the bond 
graph is: 

1 M 

0      0      to 

k 

K 
' 

r       T 

0 

0 

0 

(1) 

This matrix equation is reduced to yield a 
transfer function relating the acceleration A?. 
of aass M2, to the force input Fs. 

^(XVM 3 /V!i .XV.V 

\  M1M2 /     vu 

(2) 

DYNAMIC SYSTEM ANALYSIS 

This program of dynamic analysis was 
conducted to assess the phenomena observed 
during preliminary closed loop machining 
studies, so to develop mechanical and control 
design specifications for the second generation 
tool. Analog frequency response testing 
supported open loop transfer function analysis 
of the joint servo model. Computer based 
impulse response testing and data analysis was 
used for assessing cutting performance during 
active force control debarring teals. The 
computer based data acquisition and analysis 
tools that have been developed will be used for 
bond graph parameter identification, and 
implementation of a microprocessor based 
adaptive state controller fur the second 
generation tool. 

The open loop frequency response of the 
motor velocity servo was measured using a wave 
generator to excite the servo and a phase gain 
meter to compare the input signal to the 
responses from the tachometer and resolver. The 
Bode plots in Figure 5 and 6 compare the 
experimental data to the frequency response 
predicted by the block diagram model in Figure 
2. The Bode plot of the tachometer response 
shows poorly damped poles at 8 Hz, and a lack of 
phase and gain correlation below 5 Hz. This low 
frequency deviation is attributed to nonlinear 
hysterisis in the worm gearset, which was not 
included in the analytic model. The resolver 
response also reveals the 8 Hz poles, and the 
high frequency attenuation is attributed to the 
lowpass filter in the resolver electronics. 

S* 

0 1 l 10 100 

fBEOUENCV u — Ml 

Figure 5.  Bode Plot of Tachometer 
Response Referenced to Input 
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 DATA 

FREQUENCY, u — Hz 

Figure 6.  Bode Plot of Resolver 

Response Referenced to Input 

The acceleration response of the spindle 
housing subject to impulse loading was measured 
using a strain gage accelerometer and a 
piezoelectric impulse hammer. Impulse response 
tests were performed with the robot and tool in 
the configuration shown in Figure 7, which was 
the configuration nominally assumed in the 
closed loop cutting experiments, to characterize 
the structural model in directions normal and 
tangent to the surface being cut• The analog 
data was conditioned with a 50 Hz fourth order 
low-pass filter, and was sampled and stored at 
200 Hz using a Digital Equipment PDF 11/73 
minicomputer. The digital data was transferred 
to a Vax 11/780 computer and analysed using the 
CTRL-C [7] signal processing and control system 
design software. A high order discrete transfer 
function autoregressive moving average (ARMA) 
model [8] was identified from the input force 
data, the output acceleration data, and the time 
history. The discrete model was converted to a 
continuous transfer function model, which was 
reduced to the form of Equation 2 by selectively 
removing poles and zeros. The bond graph 
parameters (Ml,tl,Cl,Hi,t2,C2)  were explicitly 
determined by equating the coefficients in 
Equation 2 to the coefficients of the reduced 
transfer function. The identified parameters 
were substituted into matrix Equation 1, and the 
output predicted by the state model was compared 
to the experimental data. 

Figures 8 and 9 show good correlation 
between the experimental and simulated response 
for the tangential and normal cutting 
directions. The tangential axis response is 
clearly dominated by an 8 Hz mode, and a second 
order model adequately describes the system. 
This mode represents the lunped response of the 
tool structure and the robot fourth joint servo. 
The normal axis response shows coupling between 
an 8 Hz mode and an 18 Hz mode, and a fourth 
order model is required to adequately predict 
system behavior. The higher order effects seen 
in the data are attributed to the bandwidth 
characteristics of the accelerometer. The 
estimated bond graph parameters for the second 

and fourth order models agree with engineering 
estimates, and are listed in Table 1. Figures 10 
and 11 compare data from a single impulse test 
to the response simulated using the previously 
developed model. The close correlation is 
additional proof that the bond graph model is a 
good representation of the dynamic system. 

NG DIRECTION SC NOSMAL CUTTING Oift£CT;o^ 

Figure 7. Robot Arm and Tool System 
Being Characterized thru Forced 

Response Testing 

Figure 8.  langential Axis 

Multiple Impulse Response 
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Table 1. Bond Graph Parameters 

Figure 9. Normal Axis 
Multiple Impulse Retpona« 

o i     at u 3 

TIME — S 

Figare 10. Tangential Axis 

Single Impulae Response 

Figure 11. Normal Axis 
Single Impulse Response 
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IMPLEMENTATION OF ACTIVK FORCE CONTROL 

A physical prototype aystem for actively 
controlling the cutting force normal to the edge 
being machined was implemented using the tooling 
previously modelled and analysed. The objective 
of these preliminary closed loop tests vas to 
show the feasibility of maintaining a consistent 
chamfer when the workpiece is displaced and 
misaligned relative to the programmed path of 
the robot. The control strategy, represented by 
the block diagram in Figure 4, uses the position 
of the cutting surface as input, and the normal 
cutting force as output and the controlled 
variable. The force sensor output is sampled 
every 6 as by the FDP 11/73 minicomputer and 
compared to the desired normal force to generate 
a discrete force error. This force error is 
processed by a discrete PID controller whose 
output is transmitted via a digital to analog 
converter to the sixth axis velocity servo. 

The discrete PID controller is part of a 
versatile, user-oriented computer program that 
samples the force sensor, calculates the servo 
control signal, and communicates with the robot 
computer. The menu driven program first prompts 
the user to select the controller gains and 
aaturation limits desired for the deburring test 
run. The software then initiates the 
pre-programmed robot deburring sequence, which 
begins wi'h the pneumatic spindle being 
activated and the robot moving the spindle 
slowly toward the workpiece. Contact with the 
workpiece is detected by sensing when the fore« 
signal exceedes a preset force level. At this 
point, an adaptive feature of the robot is 
caused to be executed, transforming the 
programmed cutting path of the robot to reflect 
the shifted contact point. This adaptive path 
transformation feature compensates for gross 
displacement of the workpiece relative to the 
programmed path of the robot. After contact, the 
software controller continuously generates servo 
control signals while the robot executes the 
spindle motion, adjusting the spindle position 
to correct for misalignment of the workpiece 
relative to the transformed cutting path. If 
the normal cutting force exceeds a preset 
maximum force level, the controller commands the 
robot to stop its program execution and move 
away from the woikpiece, thereby preventing 
permanent damage. 
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Active deburring sinulations were conducted 
to «elect PID controller gains and to assea« the 
capabilities and limitations of the existing 
tooling. The test plate was carefully aligned 
relative to the straight robot path, and the 
derivative and integral gains were set to zero. 
The proportional gain was increased until 
cutting performance, as indicated by the normal 
force history, began to degenerate. The 
derivative gain was then increased to achieve 
the best damping, again determined by visual 
inspection af the normal force history. Finally 
the workpiece was misaligned relative to the 
robot path, and the integral gain and saturation 
limit were increased until the desired normal 
force was maintained over the entire programmed 
path, with a mlümum of force fluctuations. 

The normal force error from controlled and 
uncontrolled cutting tests are shown in Figure 
12. The dc trend of the uncontrolled force 
history is evidence of misalignment of the 
workpiece from the path of the robot. The 
controlled force history exhibits damped force 
fluctuations relative to those present in the 
uncontrolled force history, and the dc trend has 
been successfully removed. Visual inspection of 
the tool while cutting, revealed that structural 
tool vibration in the direction of travel 
(tangential cutting direction) is excited when a 
burr is encountered, and is coupled with 
structural vibration in the normal direction. 
The observation that coupling between tool 
structural characteristics in the normal and 
tangential directions is detrimental to cutting 
performance is supported by testing and analysis 
reported by Asada (9]. The observed motion of 
the servo actuator to control inputs was 
characterised by rapid oscillatory response 
followed by periods of no motion, indicating 
that non-linear friction (stick-slip) was a 
major source of the fluctuations seen in the 
closed loop tests. Some closed loop tests 
resulted in unstable 8 Hs force oscillations, 
indicating that the poorly damped servo aode was 
exciting the tool structural modes. 

—. aosio IOCV 

TIME - s 

Figure 12. Normal Force Error Comparison 

for Uncontrolled and Controlled 
Cutting Tests 

Preliminary specifications for the design 
of the second generation tool were developed 
based on the servo and structural model 
analysis, and the assessment of closed loop 
cutting performance. The first design 
requirement is that the structural stiffness of 
the spindle support in the normal cutting 
direction should be an order of magnitude less 
than in the tangential cutting direction, as 
suggested by Asada. This would prevent the 
dynamic coupling exhibited by the present 
tooling. The second desired feature of the tool 
is that the servo mechanism should be simple and 
capable of being modelled with linear elements, 
so that a bond graph of the entire system may be 
developed. This design characteristic would 
eliminate the stability problems caused by the 
nonlinear elements in the existing servo 
mechanism. The third and most important 
requirement of the second generation tool is 
chat the controller be designed to avoid 
exciting the robot arm or tool dynamic modes. 
The controller must satisfy this specification 
to gaurantee stability, which is required for 
the machining of aerospace parts. 

FORCE CONTROL STRATEGY WITH COMPENSATION FOR 
CHANGING ROBOT DYNAMICS 

The results of the preliminary closed loop 
deburring studies suggest an alternative 
controller implementation to achieve reliable 
and stable force control using a closed loop 
spindle manipulator mechanism. The observation 
was made that interactiona between robot arm 
dynamics and tool dynamics yields unsatisfactory 
performance. Moreover, the dynamic response of 
the tool mounting plate to force inputs varies 
with changing arm configuration, wrist 
orientation, and the direction of the applied 
forces. A strategy for designing a stable 
controller that compensates for chaniiog robot 
arm dynamics in real time is described. The 
strategy is based on bond graph modelling of the 
manipulator mechanism and arm dynamics, 
experimental identification of arm model 
parameters for several discrete regions of 
operation, and state variable control theory. 

A complete state variable model of the 
spindle manipulator mechanism should include the 
dynamics of the support (robot arm), actuator 
and associated electronics, spindle, and the 
process. Ideally, the state control law is 
based on knowledge of enough state« to insure 
controllability, hence stable force control. 
Since it is impractical to measure all of the 
states that would be required for control- 
lability, a state mocel observer will be 
constructed so that the unmeasured states are 
estimated from kncwledje of the actuator 
position and the cutting forces. This state 
estimator and controller «ill be implemented 
with a microprocessor to achieve stable force 
control for a specific arm configuration and 
cutting force direction. The adaptive strategy 
is to experimentally identify, using the impulse 
response analysis previously described, the 
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robot arm dynamic parameters for several 
discrete regions of input force direction and 
arm configuration. The observer and controller 
values will be updated as the process changes 
from one region to the next. This gain 
scheduler will be implemented with a second 
processor that retrieves the experimentally 
determined parameters from memory and 
communicates with the robot computer, the 
off-line programt and the microprocessor acting 
as the observer and controller. This strategy 
for stable force control will be implemented 
with a second generation machining tool 
currently under development. 

CONCLUSIONS 

A robot mounted one degree of freedom 
spindle manipulator was used in machining 
studies to demonstrate the feasibility of closed 
loop control of the normal cutting force. A 
model of the manipulator servo was developed and 
experimentally verified as an aid for designing 
the closed loop force feedback control 
algorithm, and for assessing closed loop cutting 
performance. A two degree of freedom lumped 
mass model of the manipulator support structure 
and robot arm was developed to serve as a basis 
for the design of a stable force controller. 
The supporting analysis showed that the model 
parameters are explicitly determined using an 
autoregressive moving average model estimation 
technique. The analysis characterized the 

dynamic tool and robot modes in directions 
normal and tangent to the cutting surface, 
information used in the assessment of tool 
behavior during closed loop tests. 

Machining tests conducted using the spindle 
manipulator showed that closed loop force 
control substantially improves cutting 
performance relative to passive compliance, when 
the workpiece is misaligned relative to the 
programmed cutting path. Analysis of closed 
loop test results led to the development of 
several preliminary specifications for the 
design of the second generation machining tool. 
A force control strategy that compensates for 
changing robot arm dynamics is described, and 
will be implemented in the next tool to achieve 
control stability. 
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Discussion 

Mr. Hanagud (Georgia Institute of Technology); 
Whenever you 'iave a feedback system for 
vibration con:rol, depending on the type of 
feedback, thero may be Instabilities associated 
with that. Did you filter or selectively filter 
the signal btfore you fed It back? 

Mr. Hollowell: We had a PID control law; the 
way we designed It, because we did not have a 
complete model, and the PID control had several 
limits, was to begin by setting all of the gains 
to zero and increasing the proportional gain 
until the system began to go unstable. Then, we 
put in the derivative term to damp it. 
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SUMMARY 

Linear restraining spring potential energy storage 
elements and flexible vibration isolator support systems have 
been investigated as passive devices to control the highly- 
nonlinear motion of a planar four-bar mechanical linkage. 
Specific design/performance indices considered for the spring- 
restrained, flexibly-supported linkage were: 

(1) Shaft angular speed variation over time 
(2) Internal reaction force magnitudes 
(3) Forces transmitted to the base of the linkage 

mechanism. 
The design study was based upon the numerical solution 

in the time domain of the state vector equation for the four- 
bar mechanical linkage system.  The state-vector equation was 
developed using Lagrange's form of D'Alembert's principle. 
Three different linkage systems were considered as follows: 

(1) Four-bar linkage, rigidly mounted without 
restraining spring (Model 1) 

(2) Four-bar linkage, rigidly supported with 
restraining spring (and damper) (Model 2) 

(3) Four-bar linkage, flexibly-supported with 
restraining spring (and damper) (Model 3) 

Frequency responses of the shaft angular velocities, etc. were 
also obtained using the Fast Fourier Transform of the time 
domain results. All computer program simulations were written 
in FORTRAN 77 and performed on an IBM 3033.  They were also 
checked out against one another (Model versus Model) and 
against previously published experimental results. 

For the four-bar linkage systems considered, the results 
indicate the following: 

(1) Tension restraining spring elements produce 
angular speed fluctuation results (with a well 
defined minimum) which are superior to those 
for compression and tension-compression springs. 

(2) Adding a damper in parallel with a restraining 
spring element: 
(a) Degrades tension spring element, angular 

speed fluctuation performance. 
(b) Can improve compression spring element, 

angular speed fluctuation performance, which 
at best is, for realizable damper values, 
less than that with the tension spring. 

(c) Has little effect on tension-compression 
spring element, angular speed fluctuation 
performance behavior. 
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(3) The use of flexible vibration isolator support 
systems along with restraining spring elements 
can considerably reduce the internal reaction 
forces on the pin connection bearings and the 
forces transmitted to the base of the mechanism. 
As for example, the peak forces transmitted to 
the base of the mechanism can be reduced by 
factors of 12.4 and 64.0 respectively (Model 3 
versus Model 2 - 12.4, and Model 3 versus 
Model 1 - 64.0) 

(4) The force magnitude reductions in (3) can be 
obtained with little Increase in the minimal 
fluctuation of input crank shaft speed, which 
is obtained for the restraining-spring, 
rigidly-supported four-bar linkage system. 

INTRODUCTION 

Reduction of the variation in input 
shaft speed and in bearing and founda- 
tion interaction force magnitudes are 
important goals in the design of advanced 
mechanical linkages.  Such reductions 
can lead to longer useful bearing and 
linkage member lifetimes, reduced ma- 
chinery noise levels, as well as to 
high speed/high precision advanced manu- 
facturing applications. 

Past methods of balancing high- 
speed cyclic (four-bar, etc.) linkage 
systems have dealt with either balancing 
the shaking force and the shaking moment, 
or minimizing the input torque fluctua- 
tion.  The work relevant these cyclic 
linkage balancing methods can be summa- 
rized as follows: 

* Balancing of the shaking force 
and the shaking moment:  This 
method employs redistribution of 
the masses of the moving links or 
counterweighting the linkage so 
that the centroid of the system 
remains stationary (Berkof 1-3, 
Lower and Tepper 2-3).  This 
technique is limited by the fact 
that perfect balancing of the 
shaking moment obtains only when 
the shaking force is completely 
balanced. Furthermore, techni- 
ques which completely force and 
moment-balance linkages do not 
eliminate variations in the input 
torque.  These input torque vari- 
ations can result in (a) the cost 
of a larger motor to supply the 
increased peak input torque 
required, and (b) shorter system 
life due to greater bearing force. 

* Minimization of the input torque 
variation:  This torque minimiza- 
tion is obtained by the internal 
redistribution of the masses in 
the mechanism.  Here after assum- 
ing constant speed of the driving 
link, the designer synthesizes 
(i.e., finds) the mass, mass mo- 
ment of inertia, and the locations 

of the center of mass of the links 
to reduce the peak input torque. 
See Ogawa and Funabashi (4), 
Hocky (5), and Berkof (6) for the 
development and initial investi- 
gations of this method. Elliot 
and Tesar (7) and Lee and Chang 
(8) have considered the trade-off 
among the shaking force, shaking 
moment, and the input torque to 
obtain the optimum dynamic link- 
age response. 

* Reduction of the driving shaft 
speed fluctuation about the steady- 
state rotation speed: The attain- 
ment of this reduction in driving 
shaft speed fluctuation has been 
considered in several different 
ways as, e.g., (a) Tuning the 
flywheel as per the optimum 
choice of flywheel inertia and 
connecting shaft stiffness (Mahig 
9).  Costs associated with this 
method are a larger (more massive, 
stiffer) linkage and the extra 
masses for the counterweight or 
flywheel,  (b) Using an optimally 
chosen spring mechanism instead 
of the flywheel mass in (a).  The 
spring mechanism is attached to 
a moving link and the mechanism 
frame. See the initial work done 
Genova (10) regarding this con- 
cept.  Benedict and Tesar (11) em- 
ployed this technique to optimize 
a soap stamp and indexing machine 
using the concept of influence 
coefficients, (c) Using more gen- 
eral force device systems (such 
as defined by-spring constants, 
damping coefficients and force 
device attachment points) to 
drive a mechanism to have a de- 
sired motion-time response. Hal- 
ter (12,13) and Carson)(13,14) 
designed such force device systems 
using a nonlinear programming 
technique to minimize an objec- 
tive function consisting of the 
least-square error of the gener- 
alized force plus penalty func- 
tions to constrain the range of 
the force device design parameter 
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values. Carson (15) found that 
springs attached between non- 
adjacent links produced superior 
results as compared to those be- 
tween adjacent links. He also 
pointed out that absorbers 
(spring plus damper force device 
systems) always dissipate or 
waste energy and other alterna- 
tives should be considered.  It 
should be noted that considerable 
reduction in weight and more 
practical sizing of the complete 
linkage as well as a more nearly 
constant drive shaft speed can be 
obtained by applying synthesized 
(i.e., optimally chosen) force 
elements. The minimization of 
the fluctuation in input shaft 
speed is important to the proper 
design of any high-speed mecha- 
nism. This is because the bal- 
ancing procedures are based upon 
the assumption of constant input 
shaft rotational speed. 

* Flexible support of mechanical 
linkage: Allen (17) has applied 
the bond graph approach to a four- 
bar linkage with a flywheel and 
elastic drive shaft with a sim- 
ple spring-damper/vertical vibra- 
tion isolation system.  He assum- 
ed a constant angular velocity of 
the drive shaft relative to the 
frame link and demonstrated that 
the input torque variation for 
the mechanical linkage can be re- 
duced with respect to observations 
made in an accelerating reference 
frame. 

Related experimental work has been 
done by Tacheny, Hagen, and Erdman (16). 
Here they presented an experimental tech- 
nique relevant how to gather the time 
response data for the position, velocity, 
and torque of a four-bar linkage in de- 
tail. They also experimentally showed 
the effect of adding a spring to a coup- 
ler link on a four-bar mechanism. 

Other references in the literature 
have shown that force devices can be 
employed in improving the function of 
specific mechanisms. Van Sickle and 
Goodman (18) used a compression spring 
force to increase the speed of the me- 
chanical linkage in a circuit breaker. 
Bishop and Wilson (19) presented a meth- 
od to control the velocity and accelera- 
tion of a spring-driven rotary paper- 
cutting mechanism by the use of a pneu- 
matic cylinder to obtain an acceptable 
paper-cut quality as well as a reduction 
in the impact force, noise, and vibra- 
tion. 

Most design synthesis techniques 
for linkage mechanisms are based upon 

the usual assumption that the members of 
the linkage are mounted on a rigid frame. 
This rigid frame mounting can become a 
troublesome problem when inertial-shak- 
ing forces and moments transmitted to 
the base of a mechanism cause unneces- 
sary vibration.  Such vibration may 
result in motion innacuracy over time, 
shorter life of the linkage members and 
revolute-pair bearings, as well as the 
generation of excessive noise levels. 
The most effective method to eliminate 
such machine-produced vibration is to 
mount the machine-mechanical linkage 
system in this case, on a flexible sup- 
port or vibration isolation system. A 
flexibly supported mechanical linkage or 
machine system is also useful when the 
machine is mounted on vibrating founda- 
tions and must be isolated from external 
disturbances. 

A current design trend is to con- 
struct a machine or mechanical linkage 
system with minimal weight to satisfy 
requirements for high speed operation 
and/or to minimize input power consump- 
tion.  Using extra balancing masses or 
more massive linkage members can result 
in larger machine size, increased mater- 
ial costs, and greater bearing forces. 
These considerations motivate the design 
synthesis or selection of force devices 
such as spring and/or damper systems. 
Their use can be much more desirable in 
mechanism design than adding a massive 
counterweight or flywheel. 

This paper reports an investigation 
of (1) linear restraining spring poten- 
tial energy storage elements and (2) 
flexible vibration isolator support sys- 
tems—as passive devices to control the 
highly-nonlinear motion of a planar four- 
bar linkage. The remainder of the report 
is organized as follows.  First, a brief 
discussion is given of the deve.i' "tent 
and solution of the state vecto   jua- 
tion for the four-bar mechanical • nkage 
system. Next, numerical solution results 
are presented and discussed for a design 
study of three different linkage systems. 
These simulation study results compare 
the design performance for the spring- 
restrained, flexibly-supported four-bar 
linkage with those for the rigidly-sup- 
ported linkage with and without spring- 
restraint elements. A conclusions sec- 
tion summarizes the force magnitude and 
velocity fluctuation reductions possible 
in a spring-restrained, four-bar linkage. 
The paper ends with recommendations for 
future work. 

DEFINING THE MECHANICAL LINKAGE SYSTEM 

Figure 1 depicts the flexibly-sup- 
ported, spring-restrained four-bar me- 
chanical linkage mechanism which is con- 
sidered ''.n this iaper.  Here the links 
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FIGURE 1 - A flexibly supported and synthesized-spring-restrained 

four-bar mechanical linkage(Model 3) 

of the mechanism are rigid with in-line 
distributed mass. The crank is assumed 
to be driven by the constant input torque 
T«. Gravity loading acts downward on 
the mechanism and damping is always pres- 
ent during its motion.  In this study, 
the damping torques of the revolute pair 
bearings ( P,Q,R,  and S) and the damping 
forces of the support system (C, , Cw, 
c2x» c2y') are assumed to be linearly 
proportional to their appropriate rela- 
tive-angular and fcranslational veloci- 
ties. The fordes in the support system 
springs (Kix, Kiy, K2x« K2y) and the 
restraining-spring (K5) are also consid- 
ered to be linearly proportional to the 
appropriate relative displacements across 
each spring. A, B, C, and D in Fig. 1 
represent the horisontal and vertical 
clearance distances between the base and 
the bearings P and Q at their initial 

static equilibrium state.  L5 is the 
free length of the restraining spring of 
stiffness K5. 

FORMULATING THE EQUATIONS OF MOTION 

Unlike rotating machinery, machines 
with floating links are characterized by 
generalized inertia coefficients which 
vary continually as the system undergoes 
changes of configuration. This results 
in a high-nonlinearity ot the governing 
differential equations of motion for 
such inertia-variant machines. There 
are a number of ways to formulate equa- 
tions of motion for the dynamics of 
tk^chanisms, namely: 

1. vector methods (Newton's Law) 
2. D'Alembert's principle 
3. Lagrange's equations with and 

without multipliers 
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4. Hamilton's equations 
5. virtual work 
6. energy methods. 

Paul (20) summarized the numerous meth- 
ods and approaches to solve the general 
dynamics of mechanisms problem in an ex- 
cellent review.  In this study, the 
method of Lagrange's form of D'Alembert's 
principle (20, 21, 22) is used to set up 
the equations of motion. 

KINEMATIC CONSIDEPATIONS 

Thirteen Lagrangian coordinates r^ 
(variable lengths, variable angles in 
Fig. 1) can be used to define the con- 
figuration of the spring-restrained, 
flexibly-supported four-bar mechanical 
linkage. These are: 

(M      US'      Us       & 
^10' '11' ^12' r\l    ) 

\     -I"!*  *i #  le / «1 / O , C r "ir "o' "O* 

e3' e4' e5 ) (1) 
Eight explicit sceleronomic constraint 
equations can be expressed in terms of 
the Lagrangian coordinates J^..  These 
length and angle geometry constraints 
follow from the configuration depicted 
in Fig. 1. A detailed suir-mary of these 
constraints can be found in Hong (26). 

Since the flexibly supported mech- 
anism is a five degree of freedom system, 
five of the Lagrangian variables can be 
selected as primary variable (or gener- 
alized coordinates) q. as per: 

(q1,q2,q3,q4,q5) - ( ^, J^, ^, i^,/^) 

first and second derivatives of the pri- 
mary variables. Hong (26) gives detail- 
ed derivations of these equations. 

DIFFERENTIAL EQUATIONS OF MOTION 

The principle of virtual work states 
that the net work of the active forces 
and the inertia forces must vanish dur- 
ing any small incremental admissible mo- 
tion of the system defined by virtual 
displacements which are consistent with 
the constraints on the system. Applying 
this principle to a link i which is act- 
ed upon by: 

* inertia forces, -M.x., and M.y., 

and an inertia torque, -Jft. . 

* active forces X. 
tive torque T. 3 

Y., and an ac- 

and which undergoes virtual displacements 
( /x., /y., f*\) •  yields the Lagrange 
form of D^AlemBert's Principle: 

(Xi-Mixi) Jxi +   (Yi-M/y.) /y.  + 
& 

(T.-j.e.) ^e. 

Substituting 

(4) 

/x. - x./t, /y. = y.^t. ie. = e/t 
ii    ii    i   (5) 

and using the relations between the first 
and second derivatives of x,,y. 6. and 

q , lSsS5 into equation 4 gives for 
arbitrary vyrtual displacements of the 
variables, iqs =  qs it, a set of 5 sec- 
ond order differential equations of 
motion of the form: 

(a,b,c,d,e2) (2) 

The remaining Lagrangian coordinates are 
considered as the secondary variables 
^. That is, 

^l'^2'^3'^4'^5'''6'^7'^8''  n 

(r'y )r2, Vy Vy /^0, Z^, J^j, r^) 

(l1'li»l5.91f «2' >3. e4. e5 ) 
(3) 

Successive differentiation of the eight 
constraint equations allows the first 
and second derivatives of the ^ second- 
ary variables to be expressed in terms 
of the appropriate first and second de- 
rivatives of the primary variables qj. 
Similarly, the translational velocities 
and accelerations of the center of mass 
of each link as well as the link angular 
velocities and accelerations can also be 
defined in terms of the appropriate 

i-1 

in which 

1 

V^ Qr -£ tr.  CJk ^j q*K 3-1 k-1 

J^.^ir] 

+ v.. v. ) + ir   i] ir' 

+ vM v. ) + 
ir   k  ir' 

ir + Yivir + T ÄrJ (6) 

Detailed derivations of the terms in 
Eq (6) can be found in Hong (26). 
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Introducing the state vector 
(w.), I< j S 18 in accordance with the 
definition: 

(Qj/ 93' q3' q4' q5)sB(wl' w2' W4' V5) 

Uy  V <lr  44» 45) = (w6# w7, Wg, w9. w10) 

i*V   *2,   *y   *A.   *5,   *6,   07» 08) = 

(W11' W12' w13' w14' W15' w16' W17' W18^ 
(7) 

allows the state vector system of dif- 
ferential equations to be written in 
explicit form as: 

*j " W5+j 

'5+j 

(j-l,"-,5) 

'lO1 " 

DrOl^-^feeWs^] 
(j-l, ,5) 

'10 + 1 

,5) 

J^kijW5+j   
(i"1'' ,8) 

(8) 
Equations (8) constitutes a standard form 
of a state variable system of differen- 
tial equations of order 18 as per: 

dw. 
w18, t) 

(1-1, . . ., 18) 

Given the Initial values 

w w i (0) lo 

(9) 

(10) 

then the initial value problem defined 
by Eqs (9, 10) can be solved numerically 
using the digital computer. 

EVALUATION OF INTERNAL REACTION FORCES 
AT BEARINGS 

The method of virtual work can be 
applied to find the internal reaction 
force at each bearing. Here the linkage 
system in fig. 1 can be considered as an 
assemblage of members in "static equilib- 
rium" under the influence of the known 
effective forces: 
Xi - Xi - m^ 

"l^i 

Ti " Ji9i 

(i - 2, 3, 4) 

which are applied at the center of mass 
of each linkage member. Figure 2 shows 
these forces (Ec[. 11), the two rectangu- 
components X , Y of the internal force 
acting at the revolute bearing P and the 
consistent, necessary virtual displace- 
ments  v   v   a   fl 

P' yp'  2'  3' 

Applying the principle of virtual 
work to this - hinge pin P", bearing P, 
and two degree of freedom (ö.,©,) with 
respect to ( XOY ) system gives: 

w = (x/xp+Y/yp)+ x*/Z2+y*/Y2 + 

T^e2+X3«fx3+Yyy3+T3^e3 = 0 (12) 

Substituting the virtual displacement 
relations 

/xt- at2/e2 + at3/e3 

(13) 

(11) 

/yt-   bt2/e    +   bt3/e3 

in which, 
t - p, 2, 3 

into Eq. (12) yields for arbitrary 
( 6., 9.), equations of the form 

_ _ _ _    • *.   *    *_   *_ 
ap2Xp+bp2V "T2_X2a22'Y2b22'X3a32_Y3b32 

ap3V5p3V "r3'X2a23"Y2ß23"X3a33"Y3533 
(14) 

which can be easily solved for the inter- 
nal reaction X , Y . 

P  P 
This procedure can be repeated to 

find the rectangular force components 
X., Y at bearings t»Q,R,S. Detailed de- 
rivations and computer implementations of 
these results are given in Refs (26,27), 
respectively. 
MODEL VALIDATION WORK 

Figures 3 a-c depict the three dif- 
ferent mechanical linkage systems consid- 
ered in conjunction with the flexibly- 
supported, spring-restrained four-bar 
linkage design studies reported herein. 
These three linkage systems can be de- 
scribed as follows 

(1) Four-bar linkage, rigidly 
mounted without restraining 
spring (Model 1) 

(2) Four-bar linkage, rigidly sup- 
ported with restraining spring 
(and damper) (Model 2) 

(3) Four-bar linkage, flexibly sup- 
ported with restraining spring 
(and damper) (Model 3). 
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TABLE I. THE KINEMATIC AND DYNAMIC PARAMETERS OP MODELS 

1, 2, AND 3 

Nedtl 1 MxUl 2 Nodtl 3 

K 0.280 0.280 0.300 
Ungth ■•2 0.087 0.087 0.087 

(■) 

';. 
0.308 0.308 0.308 
0.183 0.18} 0.183 

i.d) 
l.tT-C) 

0.300 0.300 
0.100 0.*00 
0.500 0.500 

MM "2 
*3 

"  0.M6 ' 
1.150 

0.680 
1.150 1.150 

«i 1.000 1.0*0 1.0*0 
MiM MMIlt J2 0.0027 0.0027 0.0027 
öf tntptt»" ü 0.017 0.017 0.017 

(XCi2) 0.015 0.015 0.015 
Ctnttr of cs* 0.049 ■ 6.61.* 6.U$ 
fnvlty COj 0.15* 0.15» 0.15* 

(■) CO 0.099 0.099 0.099 
Vlteeui daaplng 

:; 

0.100 0.100 ö.löo 
«etffleltnt of 0.100 0.100 0.100 
rtvelut* btarlngi 0.100 0.100 0.100 

(NMe/a) c. 0.100 0.100 0.100 
* 5.41« 
1 0.010 

Dttlgn 
paraMUrs 

e 
0 
B 
r 

0.185 
0.200 

0.010 
0.010 
0.1(5 
0.200 

0 o.»e3 0.»8J 
'Tittmlon     T-Cit« nslon-eeap raitlwi     Ci OMpTMlU« 
"wlUi n*p»et to tl u nnMr »f MU of • ■oft link 

D«sired motion i constant shaft angular speed of 
11 rad/sec 

Input torque i 2.64 Nm 
Initial conditions 

alblcld •Cm i  &l5l6,d - 0 m/sec 
O2 ■ 90 degree i %2  "^rad/sec 

I'AvB.C.D • x,y direction support clearances 

#E - Restraining spring attachment point distance 
along connecting link from point R (input crank, 
connecting link}. 

PiG ■ x.y location of restraining spring fixed point P 
(support, input crank). 
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The measured data results from the 
experimental work of Tacheny, Erdman, 
and Hagen (16) were used to validate the 
spring-restrained four-bar linkage 
models (a) With rigid support (Model 2 
above) and (b) With flexible support 
(Model 3 above). Here the initial con- 
ditions for the four-bar linkage systems 
were "identified or backed-out" from the 
experimental conditions described in 
this reference (16). Then the state 
vector system of equations was solved in 
the time domain using single and double 
precision software implementations (IMSL 
and the authors' Runge-Kutta-Fehlberg 
4-5th order (TRKF45)) of numerical inte- 
gration prcedures. The authors' TRKF45 
numerical integration software gave 
superior results and because of the 
greater flexibility it afforded was used 
for the design studies work. Frequency 
responses of the shaft angular veloci- 
ties, etc. were also obtained using the 
Fast Fourier Transform (authors' FFT32 
software package) of the time domain 
results. All computer program simula- 
tions (Models 1-3, etc.) were written 
in FORTRAN 77 and performed on an IBM 
3033. Hong and McLauchlan (27) give 
complete listings and documentation for 
these software packages. 

The solution results for MODEL 2 
were found to be in excellent agreement 
with the dynamics response results given 
in Tacheny et al (16) and also in refer- 
ences (13,23). The spring-restrained, 
flexibly-supportad four-bar mechanical 
linkage (Model 3) results were also 
compared with the results of the other 
two. Indeed, a consistency check was 
run using restraining spring of stiff- 
ness approaching zero and flexible 
support stiffness approaching infinity. 
Here the shaft speed and internal 
reaction force, etc. results were found 
to approach the corresponding results 
for the rigidly-supported, four-bar 
linkage with-and without- the restrain- 
ing spring element. 

RESTRAINING-ELEMENT, SUPPORT-SYSTEM 
DESIGN STUDIES 

Table I summarizes the kinematic 
and dynamic parameters used for Models 
1,2 and 3 of Figure 3. These parameters 
defin» the four-bar linkage plus the 
restraining force element and flexible 
support system-cases considered in the 
design study work discussed in this 
section of the paper. These cases 
examine the impact of the 

(a) Restraining force-passive 
element spring (with, without 
damper) attached to the con- 
necting link 

(b) Flexible support, vibration 
isolation system upon the 

(1) Shaft angular speed variation 
over time 

(2) Internal pin-connection reac- 
tion force magnitudes 

(3) Forces transmitted to the base 
of the linkage mechanism. 

Figure 4 shows typical input shaft, 
angular speed results for Models 1,2, 
and 3. Here a maintenance torque of 
2.64 Nm (see Table I) was found which 
is sufficient to overcome the linear 
viscous damping torques at bearings 
P,Q,R,S anü drive the input crank at a 
nominal angular speed ft=llRad/sec. 
These results show the significant 
improvement in reducing the input shaft 
angular speed over time, which is 
possible with the synthesized, i.e., 
optimally-selected, restraining spring 
element. Detailed comparison of the 
angular speed results for Models 2 and 
3 indicate that the behavior over time 
may be altered only slightly. The peak- 
to-valley fluctuations also show minimal 
if any increase with the change from 
rigid support (Model 2) to the flexible 
support system (Model 3). 

Figure 5 presents results for the 
input shaft, angular speed fluctuatiJpn 
performance indice number (NE-lSEVlAVE) 
as a function the restraining-tpring 
stiffness number (NK-K.L.Le/T.! . Here 
the type or regime of spfing fcrce 
behavior (a) tension only, (b) tension- 
compression, or (c) compression only is 
parameter. These results indicate that 
the tension restraining spring elements 
produce angular speed fluctuation 
results which 

* Have a well defined minimum 
* Are clearly superior to those 

for compression only and tension- 
compression springs. 

The impact of passive linear 
damping in parallel with the linear 
restraining spring force element (see 
Figure 1) is shown in Figures 6 a-c. 
Here the normalized angular speed 
fluctuation performance indice NE is 
plotted as a function of the damping 
number (NO cßrkVZ/K$  for a range of 
(a) tension only, (b) tension-compres- 
sion, or (c) compression only restrain- 
ing spring stiffness values. The re- 
sults plotted in Figures 6 a-c indicate 
that adding a damper in parallel with 
a restraining springi 

(a) Degrades tension spring ele- 
ment, angular speed fluctua- 
tion performance. That is, 
the performance indice number 
NE can be greatly increased 
with increasing danping at 
equal to or greater than the 
optimum stiffness, number values 
(Fig. 6a). Very little im- 
provement obtains with increas- 
ing damping at somewhat less 
than the optimum tension-only 
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Figure 7 - Comparison of the frequency responses of input shaft angular 

velocity of Models 1,2 and 3 

TABIE 2 SUMMARY OF MAXIMUM FORCE MAGNITUDE (N) AI EACH 

PIN CONNECTION BEARING AS WELL AS THE FORCE 

TRANSMITTED TO THE BASE OF THE MECHANISM 

MODEL 1 MODEL 2 

RIGID SUPPORT  RIGID SUPPORT 
NO RESTRAINING «KITH OPTIMAL 
SPRING RESTRAINING 

SPRING 

MODEL 3 

FI£XIB1E SUPPORT 
WITH OPTIMAL 
RESTRAINING 
SPRING 

BEARING P 
(SUPPORT, 
INPUT CRANK) 

BEARING Q 
(SUPPORT, 
OUTPUT CRANK) 

BEARING R 
(INPUT CRANK, 
CONNECTING LINK) 

BEARING S 
(OUTPUT CRANK, 
CONNECTING LINK) 

TRANSMITTED 
FORCE 
MEASURE 

11192.3 

38.2 

83.1 

11120.7 

11202.8 

2139.^ 144.1 

49.8 39.1 

82. S 67.2 

2112.9 148.2 

2173.5 175.1 
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Figure 11(a) - Linkage configuration 
of Model 1 at each of 
the corresponding number« 
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Figure 11(b) - Linkage configuration 
of Model 2 at each of 
the corresponding 
frtimbers 

Figure 11(c) - Linkage configuration of 
Model 3 at each of the 
corresponding numbers 

102 

Batafri^iirfEgiftij^iPiw^itf 1%^ ,„ ^,, 



stiffness number values. 
(b) Can improve compression spring 

element, angular speed fluctua- 
tion performance. Examination 
of Figures 5, 6c indicates how- 
ever, that the values of NE are, 
at best, for realizable damper 
values, somewhat greter than the 
best obtainable with the ten- 
sion-only spring. 

(c) Has little effect on tension- 
compression spring element, 
angular speed fluctuation behav- 
ior. Figure 6b shows that the 
performance indice NE is reduced 
only slightly with increasing 
damping. 

Figure 7 shows the Fast Fourier 
Traneforios (FFT's) of the angular speed 
fluctuation results shown in Figure 4 
for Models 1,2,3. These results show 
that the nominal angular speed value 
(11 Rad/sec) is the peak "bias" or 
fundamental value as a function of fre- 
quency. The time-domain fluctuations 
shown in Figure 4 are the higher fre- 
quency amplitude components in Figure 7. 
These higher frequency components define 
the magnitude of the angular speed fluc- 
tuation (SE)1» considered in the defini- 
tion of the dimenslonless performance 
indice number NE. Comparing Figure 7a 
with Figures 7b,7c shows the reductions 
possible in the higher frequency - angu- 
lar speed fluctuation components possi- 
ble with the optimal tension-only re- 
straining spring system. 

Typical pin connection reaction 
(i.e., bearing force magnitudes are 
shown in Figures 8,9 for three systems 
(Models 1-3) depicted in Figure 3. 
These time domain results are for bear- 
ings P,S at which the maximum peak 
reaction forces occur. Figure 10 gives 
a corresponding set of results comparing 
the forces transmitted to the base of 
the mechanism with Models 1-3 as func- 
tions of time. 

The tiiive points labelled (1,5,9,13) 
in these figures at which the largest 
or primary peak magnitudes occur for 
Model 1 (rigid support with no restrain- 
ing spring) correspond to the linkage 
positions (1,5,9,13) depicted in Figure 
11. The secondary or lesser maximum 
tine points (3,7,11) for Model I are 
also indicated in Figure 11. Similarly 
the relative minima over time points 
(2,6,10) and (4,8.12) in Figures (8-10) 
are shown in Figure 11. 

Examination of the force magnitude 
plots in Figures 8-10 in conjunction 
with .he linkage configurations depicted 
in Figure 11 indicates that 

(I) Primary maximum force magnitude 
values occur when the input 
crank and connecting link are 
in-line and their angular 
velocities have th» «ame sign 

(CCW). Here the output crank 
position is at its maximum CCW 
or positive value. 

(2) Secondary maximum force magni- 
tude values occur when the 
input crank and connecting link 
are in-line (or nearly so) but 
their angular velocities have 
differing signs (input crank 
CCW, connecting link CW). Here 
the output crank position is at 
its minimum CW or negative 
value. 

(3) Significant reductions are 
possible In the internal reac- 
tion forces on the pin connec- 
tion bearings and the forces 
transmitted to the base of the 
mechanism-wlth the use of flex- 
ible vibration isolation sup- 
port systems along with re- 
straining spring elements. 

Table 2 summarizes the maximum force 
magnitude at each pin bearing as well as 
the force transmitted to the base of the 
mechanism. Examination of Table 2 indi- 
cates that 

(a) Peak bearing forces at worst- 
case bearings P,S can be re- 
duced by nominal factors of 
14.3 and 75.0, respectively 
(Model 3 versus Model 2 - 14.3 
and Model 3 versus Model 1 - 
75.0). 

(b) Peak forces transmitted to the 
base of the mechanism can be 
reduced by factors of 12.4 and 
64.0, respectively (Model 3 
versus Model 2 - 12.4, and 
Model 3 versus Model 1 - 64.0). 

Overall consideration of the angular ve- 
locity fluctuation results (Figure 4) 
with the force magnitude results 
(Figures 8-10 and Table 2) indicates 
that the force magnitude reduction dis- 
cussed above can be obtained with little 
Increase in the minimal fluctuation of 
input crank shaft speed. This minimal 
input crank shaft speed fluctuation is 
that obtained with the restralnlng- 
spring, rigidly-supported four-bar link- 
age system. 

COMCLUSIOWS 
Linear restraining spring potential 

energy storage elements and flexible 
vibration isolator support systems have 
been investigated as passive devices to 
control the highly-nonlinear motion of a 
planar four-bar mechanical linkage. This 
investigation was based upon the nmreri- 
cal solution in the time domain of the 
state vector equation for the four-bar 
mechanical linkage system. The state- 
vector equation was developed using 
Lagrange's form of D'Alembert's princi- 
ple. 
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Three different linkage systems 
were considered as follows 

(1) Four-bar linkage, rigidly 
mounted without restraining 
spring (Model 1) 

(2) Four-bar linkage, rigidly sup- 
ported with restraining spring 
(and damper) (Model 2) 

(3) Four-bar linkage, flexibly- 
supported with restraining 
spring (and damper)(Model 3). 

Frequency responses of the shaft angular 
velocities, etc. were also obtained 
■ising the Fast Fourier Transform of the 
time domain results. All computer pro- 
gram simulations were written in FORTRAN 
77 and performed on an IBM 3033.  They 
were also checked out against previously 
published experimental results. 

Specific design/performance indices 
considered for the spring-restrained, 
flexibly-supported linkage were 

(1) Shaft angular speed variation 
over time 

(2) Internal reaction force magni- 
tudes 

(3) Forces transmitted to the base 
of the linkage mechanism. 

For the three four-bar linkage 
systems considered, the design study re- 
sults indicate the following: 

(1) Tension restraining spring 
elements produce angular speed 
fluctuation results (with a 
well defined minimum) which are 
superior to those for compres- 
sion springs. 

(2) Adding a damper in parallel 
with a restraining spring ele- 
ment: 
(a) Degrades tension spring 

element, angular speed 
fluctuation performance. 

(b) Can improve compression 
spring element, angular 
speed fluctuation perfor- 
mance, which at best is, 
for realizable damper val- 
ues, less than that with 
the tension spring. 

(c) Has little affect on ten- 
sion-compression spring 
element, angular speed 
fluctuation performance 
behavior. 

(3) The use of flexible vibration 
isolator support systems along 
with restraining spring ele- 
ments can considerably reduce 
the internal reaction forces 
on the pin connection bearings 
and the forces transmitted to 
the base of the mechanism. As 
for example, the peak forces 
transmitted to the base of the 
mechanism can be reduced by 
factors of 12.4 and 64.0, res- 
pectively (Model 3 versus Model 
2-12.4, and Model 3 vesus Model 1 
64.0). 

(4) The force magnitude reductions 
in (3) can be obtained with 
little increase in the minimal 
fluctuation of input crank 
shaft speed, which is obtained 
for the restraining-spring, 
rigidly-supported four-bar 
linkage system. 

RECOMMENDATIONS 
Recommendations for further work 

based upon the results reported in this 
paper are as follows: 

(1) Force magnitude and angular 
speed fluctuation behavior 
for more diverse linkage con- 
gurations should be investiga- 
ted by altering the link 
lengths, masses, mass moments 
of inertia, etc. Here the 
application to an overall me- 
chanical linkage as, e.g., 
slider crank mechanism or six- 
bar mechanical linkage aspects 
for cutting, shearing or punch- 
ing operations, can be investi- 
gated. This work can include 
the effect of system excitation 
via the support frame. 

(2) Optimization techniques, such 
as the steepest descent or the 
Box-Jenkins random search 
methods, should be applied to 
search the design space for the 
optimal robust design parame- 
ters, i.e., the best spring 
constants and/or damper coef- 
ficients as well as their best 
placements. Such optimal de- 
sign work should also concen- 
trate on different design or 
performance indices and con- 
straint-problem structures. 
Examples here could be minimum 
speed fluctuation subject to 
constraints on pin and founda- 
tion interaction force magni- 
tudes. 

(3) Flexible link member character- 
istics should be included for 
high speed and low mass/volume 
mechanical linkages. This is 
because mechanisms designed 
using the assumption of rigid 
link members may not operate 
properly at higher speeds 
because of elastic deformations 
of the links, resonances in the 
linkage, etc. The problem of 
elastic effects on the dynamic 
response behavior of link mem- 
bers may be solved by utilizing 
extended finite-element or 
finite-difference techniques. 

(4) Active force control should be 
considered to define optimal 
time domain, etc. shock reduc- 
tion and vibration performance 
for the mechanical linkage 
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systems. Best realizations of 
the optimal control in terms of 
actual passive or perhaps semi- 
active elements can then be 
obtained. 

(5) The feedback control of input 
shaft torque, etc. should be 
investigated to track the de- 
sired motion of output shaft 
angular velocity, etc. That 
is, to see if this can be done 
while lainimizing or constrain- 
ing peak input shaft torque. 
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APPENDIX 

Comment regarding Eq.(1) in the 
text: Note that although 91 is inclu- 
ded in the Lagrange variables( "i,IS 
i-13) given in Eq.(1), it is redun- 
dant since 92 = 92 ~ öl 'see F^ure 

1). ©' was, however, taken as a 
primary variable (or generalized 
coordinate)(q.,liii5) for conve- 
nience. 9, 9,- also in the set of 
Lagrange variables- were both taken 
as secondary variables (^1,1^118) 
and carried through in the analysis. 
This was done both for design usage 
convenience and insight, as well as 
for a consistency check on the 
analytical/computer model results. 
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Discussion 

Mr« Eshleaan (Vibration Institute); Is the 
software available, or Is it In the thesis? 

■Mr. MeLauchlan; It is In the thesis, but it is 
stored on tape. There is a user's manual that 
goes with it. Right now, the tapes are on 
Wilbur-formatted tape, an IBM computer 
arrangement, so I need to translate them to the 
ASCII format. But once that is done, the 
software will be available. Incomplete listings 
of the program are also available. 

Mr. Kshleman; It seems it would have many 
applications. Did you rule out zones of 
Instability? If you lined the springs up right, 
could you get an instability? 

Mr. MdLauchlan; that has to do with the 
stiffness and with the A, B, C, D, X, and Y 
clearance parameters. Yes, that has to be 
done. So, that is also an important design 
aspect. That is something the dynamic portion 
and the initial condition portion, which I did 
not really talk about, can do for you in tens 
of actual design. That is an important aspect. 

Mr. Eshleman; I could see «Aiere you would want 
to have an inertia and maybe an elastic 
connection on your driving torque. Have you 
thought about including that in the future? ■ 

Mr. MeLauchlan: Yes. 
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This paper is concerned with experimental determination 
of overall damping in a rotating turbine disc-blade 
system. A test s-'in rig has been designed and fabri- 
cated. Nozzle Passing Excitation is simulated by 
electromagnets. Transient excitation of rotating blades 
is caused by suddenly shutting off the excitation to the 
rotating blades.  Frequency analysis of the transient 
blade response gives the necesary information about 
the modal damping in several modes. The variation of 
modal damping with the speed of rotation and strain 
amplitude is obtained.  

INTRODUCTION 

Blade damping is an important para- 
meter in the fatigue design of blades. 
The main damping mechanisms are the in- 
terfaoial damping at the root, material 
damping and the gas dynamic damping. The 
possible contributions from these me- 
chanisms are infinitely variable and 
therefore difficult to predict and test. 
Some of the early investigations in the 
estimation of blade damping are by 
Shannon [1]. Hansen et al. [2] descri- 
bed a rotating test rig for estimating 
turbine and compressor blade damping 
properties. They used half power method 
for determining the overall damping. 
Material and aerodynamic damping were 
determined both by theoretical and ex- 
perimental means.  Root damping was obt- 
ained both by theoretical and experi- 
mental means. Root damping was obtained 
by subtracting the aerodynamic and mater- 
ial damping effects from the overall 
damping. Goodman and Klumpp [3] investi- 
gated certain slip damping properties of 
rivetted sandwich beams.  Grady [4,5] 

tested several dummy IP blades in disc 
attachments using a pull-test machine 
and used a dynamic shaker to excite the 
blades to specific force levels. Wagner 
[6] conducted a program of damping tests 
on rotating steam turbine blade groups 
in a test-turbine using axially directed 
water jets for impulse excitation.Jones 
and Muszynska [7-10] made a series of 
theoretical and experimental investi- 
gations on damping. They developed a 
simple two mass analytical model to repre- 
sent the vibrational behaviour of a jet- 
engine compressor blade in its fundamen- 
tal mode allowing for slip at the blade 
attachment interface. Some more recent 
investigations are given in references 
(11-13).  State-of-art papers by Rao [14], 
Rieger [15] and Srinivasan [16] can be 
referred for a detailed review. 

The investigations [3-13] have bro- 
adly shown that the blade damping co- 
efficient decreases with increase in 
centrifugal load and increases almost 
linearly with the blade tip displacement. 
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In the present work the modal damping 
values in first four modes of a rotating 
turbine blade with a T root are deter- 
mined experimentally and their varia- 
tion with speed of rotation and strain 
amplitude is established. 

THE TEST RI6 

The rig shown in Fig.l and P.l ess- 
entially consists of a disc with two 
blades, mounted on an overhung rotor 
supported on two journal bearings and run 
by a 30 KW thyristor controlled motor. 
The disc is run in vacuum to reduce the 
motor torque and remove the effects of 
air resistance and thus the aerodynamic 
damping. The disc material is 28CrMoNi 
V49V steel. The rotorshaft made out of 
AISI 4340 steel (40NiCrMoI) carries a 
shrunk weight to balance the overhung 
disc. Multi-surface, non-circular jour- 
nal bearings (Sartorious, Germany) are 
used. Oil is supplied to the bearings 
by a 0.5 HP pump through paper filters. 

The blades made of 40Ni3 steel are 
tapered, twisted, having an asymmetric 
aerofoil cross-section, with a T-root. 
The disc carries corresponding slots in 
which the blades are assembled with two 
spacers on each side and two segments. 
Figs. 2 to 4 and P2 show the relevant 
features of the blade assembly on the 
disc. The two blades are fixed di- 
agonally    opposite to each other for 
reasons of balancing.  Fig. 5 depicts 
the blade cross-sections at different 
points along the blade length. 

Nozzle passing excitation of the 
blade is simulated by providing electro- 
magnets around the periphery of the 
outer plate of the vacuum chamber.Twelve 
electromagnets oriented and placed at 
equiangular locations,(See P.2 and P.3) 
are connected in parallel and energised 
by a 12 V D.C. source, the overall curr- 
ent being monitored through a rheostat 
and an ammeter. During the rotation of 
the disc, the electromagnets cause exci- 
tation forces on the blade periodic with 
nozzle passing frequency, which in this 
case is equal to number of magnets times 
the angular frequency of the rotating 
disc. The electromagnets give a dis- 
tributed excitation along the length 
of the blade. 

INSTRUMENTATION 

The instrumentation, see Fig. 6 
and P.4 , employed for the measurement 
of damping values, includes a tri-axial 
set of semi-conductor strain gauges 
(at 120° angles) fixed at a point on 
the blade near its root. The lead wires 

from the strain gauges are taken to 
the slip-ring through a hollow shaft 
which holds the disc on one end and su- 
pports the slip ring on the other. The 
slip-ring unit (from IDM, England),with 
twelve channels has electrodeposited 
silver rings and two brushes per ring 
made of silver graphite and is designed 
to pass small signals with minimum noise 
and error. Using dummy strain gauges, 
half-bridges are formed with each of the 
gauges in the tri-axial set. The sig- 
nals are taken through a four channel 
amplifying bridge (Vishay Model 2300) 
and recorded on a tape recorder (Racal-7)• 
The rotational speed was measured by 
a photosensitive pick-up. 

DAMPING MEASUREMENT 

For the measurement of modal damping, 
the rotor is run at a constant speed 
with the electromagnetic excitation on. 
kt  an instant of time, the electro- 
magnetic excitation is suddenly switched 
off, so that the transients are set up 
in the blade. The entire process of the 
initiation and decay of transient res- 
ponse of the blade caused due to shutt- 
ing-off the magnetic excitation, is rec- 
orded through one of the strain gauges 
(Gl) of the tri-axial set. The recording 
is repeated for several rotor speeds. 
From the decaying part of the recorded 
overall signal (P.5), the response for 
a particular blade natural mode is 
filtered through a tunable filter (with 
minimum available band width of 6.5%) 
and played on a dual trace oscilloscope. 
Fig. 7.  The instant of the initiation 
and decay of the transient is caught 
and frozen on the screen. P.5 shows a 
typical overall signal on a highly com- 
pressed time-base. P.6 to P.9 show the 
filtered signals obtained for the first 
four blade natural modes. P.10 shows 
a typical decaying signal on an enalrged 
time base. 

The transient vibratory response sig- 
nals were obtained for the first four 
blade natural modes for rotor speeds 
upto 1000 rpm. The equivalent viscous 
damping values are determined for diff- 
erent amplitude value.i, cycle by cycle, 
for decaying part of each signal, using 
the formula 

2itz 

1-C 

In — 
x2 

where x. and x, are successive strain 
amplitudes on a decaying signal (see 
P.6 to P. 10) . Modal damping ratios c 
thus obtained as functions of strain 
amplitude (x.) at different rotor speeds 
are plotted for the first four modes 
in Figs. 8 to 11.  Fig. 12 shows the 
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Fig.7   FREQUENCY ANALYSIS OF STRAIN SIGNAL 
FOR MODAL DAMPING 

P.l THE RIG P.2  EXPOSED VIEW OP THE ELECTRO - 
MAGNETS AND THE INSTRUMENTED BLADE 

P.3  SIDE VIEW OF THE RIG: ELECTRO- 
MAGNET HOLDERS MOUNTED ON THE 
CASING, SLIP-RING 

r.4  INSTRUMENTATION 
DC - DC Battery;CRO-Dual Trace 
oscilloscope; TR-Tape Recorder; 

SGB-Strain Gauge Bridge Amplifier 
4-channel Vishay Model 2300; 
PH-Photosensitive pick-up for 
speed measurement; GA-General 
purpose amplifier; EH-Electromagnet 
holders ; CS-Casing which encloses 
disc and blades 
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P.5 TYPICAL OVERALL SIGNAL ON A HIGHLY COMPRESSED 
TIME BASE 

^"^Ki 

P.6 DECAYING TRANSIENT SIGNAL, I MODE, 
700 RPM, 20 mv/cnt 

P.7  II MODE, 700 RPM, 20 mv/cm 

P.8 IIT MODE, 700 RPM, 5 mv/cm 

P.9 IV MODE, 700 RPM, 5 mv/cm 

P.10  DECALYING SIGNAL ON ENLARGED TIME BASE 
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average damping ratios c  for the 
first four modes as a function of 
rotor speed only, obtained by using the 
following formula for the entire decay 
of the signal 

2,r ? av 
/. 

^ In -S 
n   x_ 

1-? av 
where x and x are the initial and 
final strain amplitude values over n 
cycles of decay in the damping signal. 

RESULTS AND DISCUSSION 
From Pigs. 8 to 11, it can be ob- 

served that the modal damping values in 
all the four modes show similar trends 
of variation with the strain amplitude 
and speed of rotation. As is well est- 
ablished in    literature, the re- 
sults show that the damping values pro- 
gressively decrease with the speed of 
rotation. However an interesting feature 
revealed by the results is the exis- 
tence of a threshold speed, at which the 
model damping values start decreasing 
rather rapidly. For the case under 
study, the threshold speed is about 
400 rpm, see Fig. 12.  It can be obser- 
ved that below this rpm, the variation in 
modal damping with the strain ampli- 
tude, particularly in 1 mode, is neg- 
ligible, indicating a predominantly root 
damping effect.  For rotational speeds 
700 rpm and above, the root damping 
effect appears to be negligible and the 
modal damping values increase with the 
strain amplitudes. The strain ampli- 
tudes are quite small, since the gauges 
were located very close to the root. 
From Fig. 12, it is observed that for 
all rotationux speeds, the modal dam- 
ping value.* are slightly higher in 
higher modes,  Below the threshold speed 
of 400 rpm, the modal damping values 
range from 3 to 5 per cent. 
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Uacuaslon 

Mr. McLauchlan (Texas MI Onlverslty); Did they 
do anything to characterise the aerodynamic 
daaplng? 

Mr. Hanagud; Ho, because I don't think there is 
any Indication from «hat I have here that they 
did that. However, that Is the significant 
part. Gasdynanlc effects change the blade 
frequencies quite significantly. Then later, 
the bulk of the Instabilities we get In the 
problea depend on the blade frequencies. So, I 
think that Is a bigger contribution, but In one 
way It Is significant that they have some other 
parts isolated. However, X frankly think I 
might be prejudiced, but you need a system 
identification technique to get the aerodynamic 
effects into that. Do the tests, pick up the 
signals, and then use either the time domain or 
the frequency domain system identification. You 
should be able to get that. 
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A NEW APPROACH FOR GEARBOX MODELLING IN FINITE ELEMENT ANALYSES 

OF TORSIONAL VIBRATION OF GEAR-BRANCHED PROPULSION SYSTEMS 
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S8o Paulo, Brazil 
formerly with the Directorate of Naval Engineering 

Brazilian Navy 
Rio de Janeiro, Brazil 

and 

V. Prodonoff, Ph. D. 
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Rio de Janeiro, Brazil 

A new modelling procedure for use in analyses of torsional 
vibration of gear-branched propulsion systems is presented. 
The method has evolved from considerations on the use of 
constrained finite element equilibrium equations. It is 
shown thet the process of modelling gearboxes can be 
carried out through a simple modification of the mass, 
stiffness and damping matrices of the elements situated 
immediately after every brancn. Starting with a develop- 
ment valid for straight-geared systems, the procedure is 
then extended to account for gear-branched systems and 
idler gears. An example is included in order to show a 
practical applicaticn. 

INTRODUCTION 

The traditional method used in analy- 
ses of torsional vibrations of gear- 
branched systems consists of: 

- Establishing a model of inertias and 
stiffnesses for the system; 
- Substituting this model by that of an 
"equivalent system" which has no gears. 
This is done by selecting one of the 
branches as the basis and suitably 
modifying the inertias and stiffnesses 
of the other branches; 
- Calculating the dynamic behavior of 
the equivalent system; and 
- Obtaining the actual displacements in 
branches other than the primary one, 
through a modification of the calculated 
results. 

A new procedure has been devised for 
application in analyses done by finite 
element techiques. This method has been 
developed fioa consicsrations on the 
application of coistralnt equations to 
describe gear meshes. 

In the next sections the effect of cons- 

traint equations on the shape of the 
finite element eouilibrium equations is 
first reviewed. The method proposed is 
then introduced for modelling straight- 
? eared systems. With minor modlficatiors 
t is extended in ordsr to cope with 

gear-branched systems and finally the 
consideration of idler gears is shown to 
present no difficulties. An example is 
included at the end, in order to show a 
practical application of the method. 

CONSTRAINED FINITE ELEMENT EQUILIBRIUM 
EQUATIONS 

The displacement-based finite element 
equilibrium equations that govern the 
behavior of a structure or continuum can 
i e shown to be 

[M]{x}  ♦  [CHx}  ♦  [KHx}  =  (R) (1) 

When some nodal point displacements are 
subjected to constraints, i.e., when 
they can be expressed in terms of the 
independent nodal point displacements, a 
new vector (x) containing only these 
independent displacements can be related 
with the original vector (x) via a 
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rectangular transformation matrix [ij: 

{x} » [T]{x) (2) 

Using (2) in (1) and pre-multiplying 
the result by the transpose of [T] one 
obtains 

[«]{!} 4 [t]{h * [RHx) = {R}             (3) 

where 

[M] = [T]T[M][T], (4.1) 

[C] = tT]TtC][T], (A.2) 

[K] = [T3T[K][T] and (4.3) 

(R) = [T]T{R}. (4.4) 

In practice the global mass matrix 
[M] is assembled as 

tM] « l  [M]. 
i   1 

(5) 

th «here [M], is the mass matrix of the i 
element expressed in global coordinates, 
and the summation goes over all elements 
in the assemblage. In the same manner 
the structure damping and stiffness ma- 
trices and the load vector are obtained. 
The transformation (4) can therefore be 
carried out on the element level piior 
to adding the element matrices to obtain 
the global matri.es and load vector. 
Problem (3) is then solved in order to 
obtain (x) and thus {x}. 

ANALYSIS OF STRAIGHT-GEARED SYSTEMS 

A general straight-geared system is 
shown in flg.1. In this case the 
inertias J and J+l correspond to a wheel 
and a pinion having a speed ratio q, 1. 
e., their angular displacements are 
related by 

'M •q.x J 
One can then write 

{x>nx1 

where 

CT]nx(n-1)-{5)(n-1)xl 

(6) 

(7) 

N»«l*     ■ 

OMMIlt» 

{x}1 

[T] 

[T21] 

l X *     Ä « • • i XJ,XJ+1,XJ+2' .xn}; (8) 

[I] jxj ![0] 
I Jx(n-J-I) 

^gi^ixj ii^l5iD:J:12. 
[0] (n-J-l)xj 1CI3 (n-j-1;x(h-j-1) 

(?) 

{0 0 0 -q);  and 

IX/       SE    l*"!    Xä««,XI 'J^ ■v. 

(10) 

(11) 

As it can be noticed,the displacement 
x. 1 does not appear in (11), but it can 

calculated by (£). 

The following considerations are 
applicable indistinctly to the mass, 
damping and stiffness matrices. In order 
to simplify the presentation, they will 
be simply denoted [A] when unconstrained 
and [A] when transformed according to (4). 

The contribution of the i  element, 
when i $ j-1, can be expressed in global 
coordinates as 

[A^ 
^I1^xj_ 

[0] 
.j^jxl. 

IxJ. ![0] 1x1 

■ 
i 
i 

i 

t0](n-J-1)xJ !C0](n-J.1)xl| 

i^Ij5iC:J:l>. 
i^hiJiDrJ:!!. 
![o] (n-J-l)x(n.J-l) nxn 

where 

[A,,] 

| ID i(t) " lu-D 

'•'H * SJ)* 

• •I   » ,:-H NoO* 

CltMMt« 

(12) 

(13) 

Flg.l - General Straight-Geared System 
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and "a", "b 
nonzero value 
are placed in 
correspond to 
freedom. As s 
mass, damping 
the elements 
analyses are 
for example, 
matrix [K] , 
c= -GJ/H ahd 

"c" and "d" are the only 
s of the contribution. They 
the rows and columns that 
the element degrees of 

hown in Appendix 1, the 
and stiffness matrices of 

used in torsional vibration 
of order 2x2. Considering, 
the element stiffness 
one has a = GJ/H, b=-GJ/)l, 
d= GJ/Ä. 

By carrying out transformation (4), one 
obtains by simple partitioned matrix 
manipulation: 

[AL ^IIlJxL 
[0] (n-j-l)xj 

J;°^x(n-J-1) 
[0], 

(U) 

'(n-j-DxCn-j-l) 
(n-l)x(n-l) 

It can be seen that the nonzero 
components remain unchanged after the 
transformation. 

The same occurs when the i  element 
is such that i ^ j+1. In this case 

[AL 

[0] hL 
[0] 1*L .Jf^lxl 
C0](n-j-1)xj  ![0](n-j-1)x1 

[0] 
^iO::J:ll. 

[0] 
I^ljlll. 

[A333(n-j-1)x(n-j-1) 

(15) 

nxn 

where 

[A33] 

J + 2 
i 
0.. 

0...0 

0.. .0 

0...0 

0...0 

0. . .0  0  0 

0. .0' 

0. .6 
0. .0 

0. .0 

0. .0 

0. •0 

n 

i*2 

1- i (16) 

and therefore 

[A 'i ["AM i 
[0] I 

(n-j-Dxj! 

[0] 
JüiQlJllL 

[A33:l(n-j-1)x(n-j-1) 

(17) 

(n-l)x(n-l) 

An important modification occurs in 
the element number i when i = j. For 
this element one has 

[Ali = 

;[OL 

^^Ixj i^?231x1 j 

[0:l(n-j-1)xj ;CA32](n-j-1)x1  • 

[0] 
MDrirll. 

^23^x(n-j-1) 

[A33:i(n-j-1)x(n-j-1) 

(18) 

nxn 

where 

[A22] = [a]; 

[A32]
T= {c 0. 

[A233 = {b 0. 

.0}; 

.0}; and 

[A33] = 

d 0... 0' 
0 0...0 

0 0. 

(19) 

(20) 

(21) 

(22) 

and therefore 

[A], 

I 
0. .0  0 

H2 

0    0. 
?■ 

.0' 

.1 

4-1 

6. .6  0 6  6. .0 

0. .0 aq2 -bq 0. .0 -j 
0. .0-cq d    0. .0 -J+2 

0. .0    0 0    0. .0 

,0 0 

(23) 

0  0. . .Oj'H-i-l 
(n-l)x(n-l) 

As regards the global load vector, 
one has 

{R}
T={R1R2...Rj|Rj+liRj+2...Rn}nx1  (24) 

and therefore 

{R)'={R1R2. •Rj-1 Rj'q-Rj+i: 

Rj+2---
Rn} (n-l)xl 

(25) 

These results allow one to assemble 
all matrices and the load vector needed 
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I 2   ii.    j-l        j        j»2     j+3   ...     n-l n Nodti 

H-+fH- 
(i)    .. i     (j-D   (j)  (j + D   ... 

I ... I 2 I .II 

(n-2) Elemente 

I Element     type« 

Fig.2 - Substitute Model for the Straight-Geared System 

to solve the problem (3). 

It is easy to see that the same data 
would have been generated by considering, 
from the beginning, that the system of 
fig.2 replaces the one of fig.1,provided 
that the element matrices in local coor- 
dinates are given by 

[A]. = 
a b 

c d 
(26) 

when  i ^   j and by 

[A].   = 
aq2 

-cq 

-bq" 

d 
(27) 

when i = j, and that the load vector is 
given by (25). 

Those who are familiar with the use 
of computer codes having finite element 
libraries will notice that it is very 
easy to append into the code a new 
element subroutine according to these 
specifications. This is the essence of 
the rr.ethod proposed. 

H' 
-1,0 

ANALYSIS OF GEAR-BRANCHED SYSTEMS 

The procedure outlined in the last 
section can be extended in a quite 
straightforward manner in order to 
account for gear-branched systems. 

Starting from one extremity of the 
original system, the degree of freedom 
corresponding to the first (master) gear 
encountered is kept as an independent 
variable. All other gears meshing with 
it will have their angular displacements 
eliminated from the vector {x}, since 
these are not independent variables. The 
first node after the slav« gears will 
then be connected to the master gear via 
elements type 2, i.e., elements having 
matrices given by eq. (27). The speed 
ratios to be used in (27) are the 
quotient between the speed of the slave 
gear and the speed of the master gear. 
The procedure is repeated in case further 
branches are encountered, as illustrated 
in fig.3. 

Original Model 
  Modified Model 

Fig.3 - Example of Application of the Method in Case of a Gear-Branched Systen 
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CONSIDERATION OF IDLER GEARS EXAMPLE 

Idler gears are often employed to 
change the sense of rotation of the 
driven shaft. They are used, for example; 
in some recent twin screw CODOG light 
frigates and corvettes fitted with a 
single gas turbine, in order to have the 
propulsion shafts turning in opposite 
directions. 

The method described in the last 
sections can still be used for modelling 
gearboxes fitted with idler gears, 
provided that the inertia of these idler 
gears is added to the inertia of the 
master gear after being corrected by the 
square of the speed ratio, as usually 
done in the traditional method. 

For example, supposing that m idler gears 
are fitted between one master and one 
slave gear, their characteristics being 
as shown on table 1, one can consider 
that an equivalent master gear with a 
polar moment of inertia 

JM = ih   <" (28) 

is in direct mesh with the slave gear and 
then use the method proposed in the last 
sections with the following modifications: 

(a) Element type 2 matrices become 

[AL 'i 
aq (-D^bq 

(-D^cq 

(29) 

(b) The load vector becomes 

{R}: {R^j. .R^Rj-M^.q.Rj^ 

RJ+2...Rn } (30) 

In order to show a practical applica- 
tion of the method proposed, one can 
consider the system of fig.4, taken from 
ref. [1]. It is desired to find natural 
frequencies and modes of vibration of the 
system. 

TABLE 1 
Characteristics of the gears 

Gear 
Nß of 

Teeth 

Polar Moment 

of Inertia 

Master 

9l 

9m 

Slave 

zm 

zgi 

gm 

Jm 

Jgi 

Jgm 

Js 

The element mass and stiffness 

matrices in local coordinates, before 

applying the transformation (4), are 

calculated according to the Appendix 1 to 

give: 

(31) [M]^ 10       0 

0       15 

[K]1   = 
40,000 

-40,000 

-40,000' 

40,000 

CM]2= 

"15       0" 

0         5 

(32) 

(33) 

Nod« Intrtloof Otort 

I 10 
30 
S 
10 
IS 
s 
18 

Eltmant 
00 

I 40,000 
2 SO, 000 
3 200,000 
4 300, 000 

TM  IMMMfiMl «IM« them 
in COMMMII mill*. 

Fig.4 - Example of a Gear-Branched System 
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[K]2= 
" 50,000 

L-50,000 

[M]3= 
' 10 0' 

. 0  15. 

[K]3= 
" 200,000 

-200,000 

[M]4= 
' 5 0" 

. 0  15 

[K]4= 
' 300,000 

-300,000 

- 50,000' 

50,000 

-200,000" 

200,000 

-300,000 

300,000 

(34) 

(35) 

(36) 

(37) 

(38) 

Considering only the independent 
degrees of freedom, vector {x}is given by 

{x}T {x1 x2 x3 x5 x7} (39) 

and therefore the contribution of each 
element in global coordinates is calcu- 
lated according to (26) and (27) to give 

(40) 

10 0 0 0 0' 
0 15 0 0 0 

[R]^ 0 0 0 0 0 
0 0 0 0 0 

, 0 0 0 0 0 

" 40 -40 0 0 0" 
-40 40 0 0 0 

CR], = io' 0 0 0 0 0 
1 0 0 0 0 0 

0 0 0 0 0. 

"0 0 0 0 0' 
0 15 0 0 0 

[H]2 = 0 0 5 0 0 
0 0 0 0 0 
0 0 0 0 0 

ro 0 0 0 0" 
— 0 50-50 0 0 
[K]2 = 10' 0 -50 50 0 0 

0 0 0 0 0 
0 0 0 0 0_ 

"0 0 0 0 01 
• 0 40 0 0 0 
[Mjj . 0 0 0 0 0 

0 0 0 15 0 
0 0 0 0 0 

0 0 0 ( D 0" 
0 800 0 »0( J 0 

[K]3 = 10' 0 0 0 ( J 0 
0 400 0 20( 3 0 
0 0 0 ( ) 0 

0 0 0 0 o" 
0 45 0 0 0 

tH]4 = 0 0 0 0 0 
0 0 0 0 0 
0 ( D 0 0 15 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

[KL 103 
0 0 0 0 0 
0 2,700 0 0 900 
0 0 0 0 0 
0 0 0 0 0 
0 900 0 0 300 

(47) 

1ne global mass and stiffness matrices 
are obtained by adding these contributions: 

[H] 

[K]=10' 

10 0 0 0 0 
0 115 0 0 0 
0 0 5 0 0 
0 0 0 5 0 
0 0 0 0 15 

[40 -40 0 0 0' 
-40 3,590 • 50 400 900 

5 0 -50 50 0 0 
0 400 0 200 0 
0 900 0 0 300 

(48) 

(49) 

The natural frequencies and modes of 
vibration can be found by solving the 
eigenvalue problem 

[K] {x} = ü)1 [fl] {x} (50) 

However, as the system considered is 
semi-definite,one must eitheir emplöyspedal 
algorithms or the traditional methods in 
combination with the shifting technique 
described in ref. [2] to solve this 
problem. 

The results thus obtained are in close 
agreement with those reported in ref.[1], 
as shown in tables 2 and 3 below. The 
mode shapes are plotted in fig. 5. 

TABLE 2 
Comparison of Eigenvalues 

Mode no. 1 
Calculated Ref. [1] 

1 
2 
3 
4 
5 

0 
4,105.3 
10,080 
14,654 
49.711 

0 
4,105 
10,080 
14,650 
49.700 

CONCLUSIONS 

A new technique for modelling gear- 
branched systems has been developed 
through the use of finite elements and 
constraint equations. It has been shown 
that a simple modification of the 
matrices of the first element after every 
pair wheel-pinion leads to the same 
results obtained through the traditional 
procedure, in which the original system 
is transformed in a system with no speed 
reductions. 
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TABLE 3 

Comparison of Eigenvectors 

Modes 
Amplitudes               1 

(1) (2) (3) (4) (5) (6) (7)  1 

1 Calculated 1,00 1.00 1.00 -2.00 -2.00 -3.00 -3.00 | 

Ref. [1] 1.00 1.00 1.00 -2.00 -2.00 -3.00 -3.00 1 

2 Calculated 1.00 -0.0263 -0.0446 0.0526 0.0760 0.0789 0.0993 

Ref.[1] 1.00 -0.0262 -0.0445 0.0524 0.0760 0.0786 0.0990 

3 Calculated 1.00 -1.52 190 3.04 12.5 4.56 9.19 

Ref.[1] 1.00 -1.52 190 3.04 12.4 4.56 9.20 

4 Calculated 1.00 -2.66 5.72 5.33 -53.8 7.99 29.9 

Ref.[1] 1.00 -2.66 5.73 5.32 -53.2 7.98 30.0 

5 Calculated 1.00 -11.4 2.88 22.9 -8.38 34.3 -23.1 

Ref.m 1.00 -11.4 2.88 22.8 -8.26 34.2 -23.1 1 

I      ^  f ^/    i 

w'« 10,080 5 

Tig.5 (contlnue.1) - Mode 
Shapes of the Example 

Fig.5 - Mode Shapes cf the Example 
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The main advantages afforded by the 
use of this new method are: 

(a) The nodal displacements are directly 
calculated, thus allowing time savings 
in stress calculations; and 

(b) Its adoption in finite element 
computes codes having element libraries 
is easy and straightforward, requiring 
only the appendage of one subroutine 
into the master program. 
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and this corresponds to a consistent 
matrix scheme. In case of a massless 
shaft representation one takes p = 0. 

The element stiffness matrix is given 
by 

[K]e = 
GJ -1 

-1 
(52) 

and the viscous damping matrix by 

[c]e = (53) 

In case of structural damping conside- 
ration one can add to [C] the structural 
damping matrix 

[C]: W-[K]e (54) 

when the excitation is harmonic with 
frequency ft. According to ref. [3], one 
can use ß = 0.05 for solid steel shafts. 

APPENDIX 1 - FINITE ELEMENT FOR TORSIONAL 
SYSTEMS 

As one can notice, all these matrices 
are of order 2x2. 

A finite element that can be used in 
torsional vibration analyses is shown in 
fig. 6. 

J. 

P I? 
A 

Fig.6 - Finite Element for a 
Shaft in Torsion 

pJoa 

[M] 

Its mass matrix Is given in general by 

Jc 

P 

V—r 

pj i 

PJ01 pJ0i 
(51) 

APPENDIX 2 - NOTATION 

This superscript indicates that the 
matrix or vector is expressed in the 
constrained coordinate system 

[A] Mass, damping or stiffness matrix 

[C] Damping matrix 

[I] Unit matrix 

[K] Stiffness matrix 

[M] Mass matrix 

[0] Null matrix 

{R} Load vector 

{x} Vector of nodal displacements 

C.,C2 Viscous damping coefficient 

G Modulus of Rigidity 

J  Shaft polar moment of inertia 
o 

JpJj Polar mass moment of Inertia 

I      Element length 
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q Ratio between the speed of a slave 
gear and the speed of the master gear 

z Number of teeth of a gear 

ß Structural damping coefficient 

9 Angular displacement 

p Mass density 

u Natural frequency of vibration 

Ü Harmonic forcing frequency 
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ISOLATION AND DAMPING 

A GRAPHICAL METHOD 

OF DETERMINING THE RESPONSE 

OF THE CASCADED TWO DEGREE OF FREEDOM SYSTEM 

George M. Hieber 
Rieber Engineering 

Watchung, NJ 

There are many occasions when a designer has to install a load onto an 
existing base structure. If the dynamic characteristics oC the load 
and of the base structure are known individually, the question is: 
what will happen to the dynamic response of the load when it is 
connected to the base to form a new system? Assuming the new system 
results in a configuration that can be modeled as a two degree of 
freedom system, there are graphical methods available to determine the 
resulting system fremiencies but no quick way to estimate the response 
amplitude of the load without setting up and solving the appropriate 
equations. 

A method is presented here where the maximum reponse of the load can 
be obtained graphically.    The graphical approach has three advantages: 

(1) Results are obtained quickly. 
(2) Trends are apparent. 
(3) Provides Insight into system operation. 

The graphics are valid for Qs from 4 to 400. (For both load and base 
subsystems.) The ratio of load weight to base weight can range from 
less than 0.001 to 10. The ratio of natural frequencies of load to 
base (before installation of load) can range from 0.1 to greater than 
10. 

The results of this investigation show that two widely held points of 
view regarding two degree of freedom response should be moderated 
somewhat. 

First, when two single degree of freedom systems with similar resonant 
frequencies are connected in series (cascaded), it is often assumed 
for conservatism that the response of the upper system (the load) will 
be Qi x Q*, where Q, and Q« are the maximum transmissibllitles of each 
single d&gree of freedom system before connecting them together. 

As shown in this report, the above assumption is usuallly excessively 
conservative. Second, it is shown that the use of the Octave Rule can 
also be unduly restrictlvei that is, the rule of thumb that requires 
designing the upper system (load) to have a resonant frequency an 
octave higher than that of the resonant frequency of the lower system 
(base) In order to prevent excessive response of the load. As a 
matter of fact, in some cases, designing the load to have a resonant 
frequency below that of the base may be a more attractive option. 

IMTRODOCTION 

Nhen designing equipment to 
withstand shock and vibration, the 
engineer frequently encounters a 
situation where a load must be 
installed on a base, resulting In a 
"piggyback" or cascaded assembly. The 
problem isi if both the load and the 
baa« are considered to be single 
degree of freedom dynamic systems, 
each with a predictable response, what 
will be the response of the load when 
the assembled system Is subjected to 
vibration? 

The  purpose   of   this   monograph   is 

to present a graphical method by which 
the maximum response of such a 
cascaded load can be simply estimated 
(to within 10«). sstlmiting the 
vibration response to a reasonable 
degree of accuracy during the design 
phase will go a long tvay towards 
Improving ruggedness and reliability 
of the product. A simple computer 
program was used to solve for the 
response of the cascaded two degree of 
freedom system with various ratios of 
weight, resonance, frequency and 
damping. The lesults of these 
computations have been used to develop 
the  graph   is  shown on  these  pages. 
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BACKGROUND 

Throughout this monograph, the 
ter« 200F (two degree of freedom 
system) will be restricted to that 
type of two degree of freedom system 
which is composed of two single degree 
of freedom systems connected in 
series, or cascaded together. This 
type of 2D0F system is shown in Figure 
1. 

Representative Examples 

System 1 

f-   «   Higher   resonant   frequency  of 
system, Hz 

System 2 
Starter Motor 
Relay 
Power Supply Nodule 
Feed Horn 
Piggy-Back  Trailer 

Engine 
Printed CKt. Bd, 
Chassis 
Antenna 
RR Flat Car 
Vehicle Suspension Seated Driver 
Instrument Panel  Instrument Package 

NOMENCLATURE 

Subsystems as isolated entities 

fj-3.13 J*ii   base subsystem resonant 
1*1 frequency, Hz* 

Qj, base subsystem maximum transmlssl- 
bility     'i^yi/Vo Bax 

fj ■ 3.13J k7', load subsystem resonant 
7 Wj     frequency, Hz 

Q2> load subsystem maximum transmissl- 
billty T2"y2/yi max 

k ■ stiffness, lb/In 

w ■ weight, lb. 

c ■ damping,   lb-sec 
in 

oe  ■ critical damping   lb-sac/ln 

J   ■ c/cc-fractlon of critical damping 
(non-dimensional) 

Q ■  l/2f     (non-dimensional) 

Assembled  2D0F System 

f^   ■   Lower    resonant   frequency   of 
system, Ht 

* Strictly speaking, these formulas 
solve for the undamped natural 
frequencies. The frequency at which 
the greatest motion occurs (maximum 
transKlssibility) is called the 
resonant frequency, which Is slightly 
lower than the natural frequency. For 
damping ratios of 0.1 or less, 
however, the difference becomes 
insignificant and the terms can be 
used   interchangeably. 

Q2T   " Maximum  transmisslbillty   (Tj)  of 
load at  t^ 

^2s   "  Maximum   transmisslbillty   (T2) 

condition can 
load becomes 
in general it 
conservative 

of  load at  fH 

Rj    «    Ratio    of    Isolated    resonant 
frequencies,   £2/*! 

Rw       =  Ratio of  weights,   w^/wj^ 

Tj   -   2D0F   Transmisslbillty   of   Wj^ 
(base) 

T)   »   2DOF   Transmisslbillty   of   w, 
(load) 

Some misunderstandings exist 
regarding the effect of cascading 
systems together. For Instance, some 
designers believe that a good 
conservative approach is to assume 
that if two systems having the same 
Isolated resonant frequency (f^ - f2> 
are stacked together, and subjected to 
an Input vibration at the 
aforementioned resonant frequency, the 
load weight would vibrate at an 
amplitude equal to the product of the 
maximum responses of the isolated 
systems. Although this 
be approached If the 
infIniteslmally small, 
leads to excessively 
design and erroneous Interpretation of 
the system dynamics. The reason that 
the above Interpretation is erroneous 
is that when two single degree of 
freedom systems are cascaded, a two 
degree of freedom results. This two 
degree of freedom system has two 
natural frequencies (resonances), 
neither of which is equal to the 
resonant frequencies of the Isolated 
subsystems. This phenomenon is shown 
graphically   In  Figure   2. 

Figure 2a represents the 
transmisslbillty plot of a single 
degree of freedom system with a 
maximum transmisslbillty of Q**, of 
10. Assume that two systems, vibrated 
one at a time, generate this same 
transmisslbillty plot,  and that each 

** Q is a tern which is used to 
identify the transmisslbillty at 
resonance, and Is used Interchangeably 
with the term maximum 
transmisslbillty. Damping causes Q to 
be slightly different (less) than the 
maximum transmisslbillty at the 
resonant frequency, but for the low 
damping usually encountered in 
structures, the difference becomes 
Inconsequential. 
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has a resonant frequency of 100Hz. If 
R£ » 1.0, Rw » 0.1, and the systems 
are cascaded, the resulting 
transmlsslbillty plot of W2, T^, looks 
like Figure 2b. Note that there are 
two resonant frequencies, one at 
86.2Hz and the other at 115.4Hz. 
There is no resonance at lOORz. In 
addition, the maximum Qjj, - 25.1, not 
100, so Q2L does not equal Q^xC^. 
Although it is not wise to cascade 
subsystems   with   identical   resonant 
frequencles    if is    very    small 
compared to w^ the situation is not 
the "bugaboo" some designers 
anticipate. 

The theory behind this has been 
used In the design of dynamic 
vibration absorbers for many yeirs. 
If In the above example, subsystem 2 
was to be used as a vibration absorber 
for subsystem 1 and some disturbance 
Is ocurring at 100Hz, the motion of w^ 
at 100Hz would be greatly subdued from 
what it was before the addition of Wj, 
whereas the motion of w* at 100Hz 
would be at a transmlsslbillty of 
T^"9.3,  as shown on Figure  2b. 

However, this investigation is 
not concerned with the design of 
vibration absorbers (when the 
excitation is confined to f^), but 
rather it is concerned with 
determining the worst case motion of 
wj as an element in a 2DOF system, 
which occurs when the excitation  is  at 

The response of a 2DOF system 
involves two transmisslbilltiest that 
of     wj     and     that     of     w,. The 
transmlsslbillty of wi does not 
Interest us here, as the maximum 
transmissibilltles of w^, Q1L and Qig, 
will never exceed the Q^ of w^ as an 
isolated subsystem. In other words, 
if the response of the subsystem 1 was 
acceptable as an isolated subsystem, 
then the addition of subsystem 2 will. 
If anything reduce the w^ response. 
This is due to the vibration absorber 
effect  as  mentioned  above. 

Although the system designer may 
find it relatively straightforward to 
set up the equations and solve for the 
®2L of the 2D0F system, it is 
preferable to have a solution 
available in a form where trends are 
obvious, so that iterative 
computations are not necessary. 
Figure 3 provides such a solution. It 
is a set of curves which can not only 
be used to easily obtain Q2L» but it 
is also quite apparent how changes in 
the weight ratio Rw and in the 
frequency ratio Rf can affect the 
result. 

The curves are drawn for R„ ■ 10 
w       0.001, and for  Rf ■  10  to Rf * 

Actually,     results    can    be 
to R 
0.1 
obtained   for Rw < 0.001,   because   the 
curves for the smaller ratios become 
collnear with that for 0.001. Also, 
values for Rf> 10 are collnear with 
those of Rf - 10, so valid results can 
be obtained for Rf > 10. If the 
damping for both subsystems Is 
similar, (Qj^*^), extensive computer 
results show that QJI, response can be 
matched within St for values of Q 
within from  4  to  400. 

In order to determine Qj^ and f. , 
it la necessary to first determine the 
dynamic characteristics of each 
subsystem     by     Itself. If     the 
subsystems are available, the resonant 
frequencies and Qs can be measured by 
testing one subsystem at a time. If 
t;he subsystems are not available, 
these characteristics must be 
estimated. 

EXAMPLE 1 

A.       GIVEN: 

W!   -   0.68   lb.   f1   -   140Hz     Q1   -   30 

Wj   -   0.15   lb.   f2   -   200Hz     Q2   -   30 

FIND: Q2L   &   fL 

Rv-Wj-0.15-0.22   Rf-la-200   -   1.43 
Vl   0.68 fi   140 

Turning to the transmlsslbillty 
of wj, we concentrate on the peak, 
Q2L' at the lowec resonant frequency, 
f^. The reason Is that so long as the 
damping of both subsystems is 
approximately the same (Qi^Qji,), Q2L 
will always be a higher peak than Q2H» 
as  shown   in   the  computer   anslysls. 

As  a  matter  of 
be   obtained   once   f^ 
Figure     3     by    using 

interest,  fH 

expression fH  ■ 

can 
is   picked" from 

the     simple 

Referring  to Figure  3,  Rw  »   0.22 
i  Rf   -   1.43 

!CA   -   1.7   and  Kf   ■   0.87 

When using the graphs, the 
characteristics of the base subsystem 
fl and Q^, are always used as a 
reference. 

Thus,       fL     - Ktti 

Q2L  '  KAQl 
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0.1 at as 04 as        a*      a.7     a«    a)   i.e 

FlOURf 3- K^ ■ jr»1, AND Kf ' 
F. 
y. VERSUS VARIOUS R|ANORW 

1             In order  to ua«  this «othod,  the 
following  steps  ace  takent 5.       Compute   maximum   transmlsalbllity 1 

of   wj  at   fLi   Q2L  "  "A0!"     lt  Ql   " Q2' 
1.       Calculate  or  measure  the  resonant Q2L is the correct answer, and no more 
frequencies   and   maximum    trans- steps  need  to be  taken.                                   1 
mlsslbllltles   of   the   isolated   sub- 
systems, fj^ fji Qi» «nd Qj« C.        If   Ql  i  Qj,   cither   figure   4  or 

' Figure    5   must   then   be   used,    as 
2.        Compute   frequency   ratio   R(   • explained   in   the   text,    to   obtain   a 
f2/fi  and  weight  ratio Rw   •  WJ/WJ^. correction   factor,   C^   or   CH.      The 1 

corrected   Q2t   Isi     Q2L  -   (CLotH)RAQl. 
3.        Enter   Figure   3   and   determine 
where  Rw und  Rf   intersect.     Prom   this 
point  of   intersection   read  KA and Kp, 

7.       If  in doubt. Figure S can be used 
to see  if  there  is any liklihood that i 
Q2H could be greater   than Q2L.     This 

4.        Compute   system   lower   resonant is   unlikely,    but   should   be   guarded 
[  frequency   fL  ■   Kffi» against.                                                                    1 
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so, *th 0.87  x  140  -   122Hg 

and    Q21, ■ f^ifix - ^*7 x ^ " li 

B.        GIVEN: 

chosen and the interpolation is 
accomplished by the line construction 
shown on the Figure. In this case, CH 
is  found  to be  1.1,   so: 

7  lb,   f!  -  87H«,   Qj^ 

25   lb,   £2  -  35HS,  Q] 

18 

18 

FIND: 

Rw  - 

Q2L  »   fL 

25 
7 

-   3.57 Rf  ■   35 
87 

0.4 

Referring  to Figure  3,   RH - 3.57 6 Rf 
> 0.4 intersect at "B", where 

KA ■  1.8 and  Kf 0.315 

so, 

and 

-   0.315  x   87   -   27.4H« 

'21. -   1.8 x  18 32.4. 

HANDLING   DIFFERENCES   IN  DAMPING 

Figure 3 is the main result of 
this investigation, but, as mentioned 
before, is valid only if the damping 
ratio of the load subsystem is the 
same as that for the base subsystemi 
in other words, if Q^ - Q,. if Qj is 
substantially different from Qj, 
either by circumstances or by design. 
Figures 4 and 5 can be used to obtain 
a correction factor for Q2L' and can 

also be used to observe trends. 
Figure 4 is to be used if R* >1, and 
Figure 5 if Rf<l. Either Figure may 
be used if Rf - 1. The Rf ■ 1 curve 
Is dashed at values of RH smaller than 
0.1, as those combinations are not 
recommended by design besause very 
large Q2L can '•ault> The Rf curves 
are drawn to show the correction 
factors, Cj, and C^, for systems where 
Q, and Q2 differ by 128tl. This is 
the result of changing the difference 
in damping ratios between the 
subsystems by factors of 2, 4, 8, 16, 
32, «4 t 128. The smaller factors can 
be obtained by interpolation using 
divisions proportional to those shown 
on   the  graphs. 

Assume that in previous 
examples A, O2 i> increased 5:1 
compared to Q., that is, if Q2 
increases from 30 to ISO, what will be 

1.43 
A 

0.22. 
»f   " 

would 
1.14, 

the affect on Q2i,7 Since Rf 
(Rf >1.0), Figure 4 is used 
vertical line is drawn at RH - 
As estimation is made for where 
1.43 would lie; this latter line 
intersect Rw ■ 0.22 at a CB ■ 
which is the correction factor for the 
Q2J, response if Wj ■ 128 Q1. But (^ 
is only 5 Q1, so it is necessary to 
interpolate.    A nearby Q2/Q1 scale is 

EXAMPLE A' 

®2L  " cHxKAxQl " 1*1 x 1'7 x 30 * 56.1 

If the same Q2/Q1 ■ 5*0 ratio 
is obtained by lowering Q^ from 30 to 
6, rather than by raising Q2 from 30 
to 150, as was done above, a different 
answer appears.  Although the factors 

and C, remain the same, the n 1  a iiu  v> a 

reference value of Qj has been changed 
from 30 to 6: 

'2L - 1.1 x 1.7 x 6 11.2. 

If the relationship between 
subsystem damping is changed such that 
Q2/Q1 " I/*' tl>e lower part of Figure 
4 i^ used. The intersection of Rw - 
0.22 and Rf ■ 0.4 is at a value of C^ 
for Q2/Q1 " 1/128, but as Q2/Q1 " 
1/5, graphical interpolation is used 
as shown to obtain C, 

EXAMPLE A* 

0.71. 

I' Q2/Q1 " ^/s by reducing Q2 from 30 
to 6, 

Q2!. - 0.71 x 1.7 X 30 - 36.2. 

It Q2/Q1 " I/* by increasing Oi from 
30 to ISO, 

Q21, - 0.71 x 1.7 x 150 - 181 

EXAMPLES   B*   AND   B* 

Assume that in Example B, the 
damping ratio of the load is changed 
so that O2/Q1 " <• To find the 
resulting OjL' 'i^ure 5 is used, 
because Rf ■ 0.4 (Rf<l.0). A 
vertical line Is drawn at Rw - 3.57, 
and an estimate made of the location 
of     the    curve     Rf     -     0.4. The 
intersection of the curve Rf ■ 0.4 
with the line Rw ■ 3.57 Is at a point 
on the C^ scale which would be the 
correction factor for QJI, if Q2/Q1 " 
128. But      since     Oj/Qi      ■      4, 
interpolation is used as shown to 
obtain C^  -  2.2. 

EXAMPLE  B* 

I' Qj/Cx ■ 4 by increasing O2 ttom 18 
to 72 

02L ' cLxKAxQl " 2'2 x 1-8 «IB - 71.3 

If Q2/Q1 " 4 by decreasing Q^ from 18 
to 4.5, 
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{2h »   2.2   x   1.8  x  4.5   -   17.8 

If, on the other hand, the 
relationship between subsysem damping 
Is changed to Q2/Q1 = 1/4» the lower 
part Of Figure 5 Is used. An estimate 
Is made of the location of Rf - 0.4. 
The Intersection of the Rf » 0.4 curve 
with the Rw = 3.57 line is at a point 
on the vertical scale which would be 
Cr if 02/^1 " 1/128. Since Q2/Ql = 

1/4, Interpolation is used to obtain 
CL  ■   0.31. 

EXAMPLE  B" 

If Q2/Q1 " 1/* by decreasing Qj from 
18 to 4.5, 

Q^T, = 0.31 x 1.8 x 18 = 10 

Of  Q2/'1i  "  1/4  by  increasing  Qj^   from 
18  to 72, 

Q21 0.31  x  1.8  x  72   =  40.2 

SYSTEM    RESONANCES    VS. 
SUBSYSEM  RESONANCES 

As indicated earlier, the 2DOF 
resonant frequencies are always unique 
— they are not the same as the 
isolated resonances of the subsystems. 
(As a matter of interest, however, if 
fj and f2 differ from one another, the 
lower system frequency f^ is always 
lower than the lower of f-^ and f2; 
conversely, the higher system 
frequency fH is always higher than the 
higher of fj^ and f2. In any event, 
knowing the positions of fr s f» with 
relation to t^ & f2 can be helpful if 
it is necessary to reduce the 
magnitude of Q2L. if t^ » f,, then 
Q21 can be reduced by increasing the 
damping (and thereby reducing the Q) 
of either subsystem. But if f^ / f2. 
then whichever subsystem resonant 
frequency is closer to f^ should be 
altered, as it is that subsystem which 
has   the   greater   effect   upon  Q2L" 

In Example A' & A", a change in Q 
by a factor of Stl has the following 
effect  on  Q2L: 

Increase  Qj 

Q2L  51-*56.1 
(■•-105%) 

Decrease g, 

Q2L     51-*36.2 
(-29%) 

Increase  gj 

Q2L  51-*181 
(+255%) 

Decrease  Q^ 

'2L 51—11.2 
(-78%) 

In this example, fj - 140Ez, £2 " 
200Hz, and f^ - 122Hz, so altering the 
damping of subsystem 1 has a more 
dramatic affect on Q21, than does 
altering the damping of subsystem 2. 
The reason is that f^ is closer to f^ 
than   is  f2. 

In example B' & B", a change in Q 
by a factor of 4:1 has the following 
affect  on  021,' 

Increase gj Increase Q, 

Q 2L 32.4-»«71.3  Q,r   32.4—40.2 
(+120%) (+24%) 

Decrease Qj   Decrease Qj 

Q2L 32.4 — 10   Q2L 32.4 — 17 
(-69%) (-47%) 

In this example, f^ « 87Hz, f2 " 
35Hz, f^ ■ 27.4 Hz, so altering the 
damping of subsystem 2 has a greater 
effect on Q2t, than does changing the 
damping of subsystem 1, because fj is 
closer to f^ than is fj. 

ASSURING  THAT  C^  IS   NOT  GREATER 
THAN   Q2L 

The assumption herein is that the 
lower resonant frequency, f,, is the 
critical frequency, because the motion 
of »2 is always greater at this 
frequency than at the higher node 
resonance fH. However, if the 
subsystem resonances are not equal (f^ 
/ f2)r and the subsystem with the 
higher frequency has much less damping 
than the other subsystem; that is, if 
tl> f 2, and Qj^» Q2 

or,  if f2>fi» an(3 Q2»Ql 

It is possible to have a motion at fg 

greater than that at £,• If this 
happened, and the likelDiood is not 
realized during the design phase, then 
of course a failure could occur during 
vibration because the real critical 
situation was ignored. 

To guard against this, Figur« 6 
can be used. The lower half is used 
for systems where Rj<1.0. 

(Acceptable Q2/Q1 ratios are to 
the upper right.) 

The upper half is used for systems 
where Rf >1.0. 

(Acceptable Q2/Q1 ratios are 
to the lower right.) 

For instance, assume Rf » 2.0. 
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If Rw » 0.01, find the place on the 
graph where Rw = 0.01 Intersects Rf > 
2.0. This point is at Q2/Qi»4.2, 
which means that if Q2H is to be kept 
less than Q2L» ^2 n,ust never be 
greater than 4.3 Q^. As an example if 
Ql - 12, Qj nut be less than 4.3 x 12 
=  50.4.     If  so, Q2g  will  be  lower 
than Q2L. If Rw = 0.25, Figure 5 
shows that Qj/Ci must not be greater 
than 70, so If 0-^ = 5, & Qj remains 
less than 350, the resonant peak at fH 
will always be less than that at fL. 
Note that for larger W2; i.e.,Rw> 
0.3, regardless of Rf, the second mode 
peak will not exceed the first mode 
peak, Q^L» even if the Q of the higher 
frequency sybsystem is 100 times that 
of the lower frequency subsystem. It 
can also be seen that for small W2; 
i.e., Rw<0.1, as Rf departs from 1.0, 
either to a higher or lower ratio, the 
system becomes more tolerant of large 
differences between Q2 & Q^, without 
allowing   Q2q   to  exceed  Q2I,- 

Note that for Examples A & B, the 
results are well within acceptable 
limits (B is off the graph) so that 
QJI, is definitely the critical 
response  for   both   examples. 

RECOMMENDED RELATIONSHIPS BETWEEN 
ISOLATED   RESONANCES,    f1   AND   fj 

Because of the concern described 
earlier that Q2L coul(3 possibly equal 
Ql and Q2, a quideline called the 
Octave Rule has been established. 
This rule states that in order to 
prevent cascaded systems from 
responding with extraordinarily high 
Qs, the isolated resonance frequency 
of system 2 should be twic- as high as 
the isolated resonance of system 1 — 
in other words, the resonant frequency 
fj should be an octave above fj. The 
idea behind the Octave Rule is the 
unrealistic but conservative 
assumption cf no loading; that is, the 
addition of a load to a base will not 
result in two new natural frequencies, 
but that the isolated natural 
frequencies will remain unchanged upon 
connection of the two subsystems. 
Under such a situation the worst case 
would be if f^ « f2» whereupon the 
response at the load when excited at 
the natural frequency would be Qi x 
Q2» obviously an undesirable result. 
To prevent this problem, the Octave 
Rule requires that f2 a 2f1, whereupon 
the response of the load will be T^ x 
Q2 at the natural frequency of the 
load.     This would be   1.33  x Q2a 

Although the use of this Octave 
Rule can be helpful in leading to 
rugged    design,     it    should    not    be 

applied indiscriminately. There 
are occasions when it could result in 
unnecessary cost and weight penalties. 
As a matter of fact, it may well be 
that going in the opposite direction, 
that is, designing system 2 (the load) 
to have an Isolated resonant frequency 
lower than that of system 1 (the base) 
could prove to be easier and cheaper, 
and yet, still result in a 
sufficiently   rugged   design. 

For example. Figure 7a shows the 
response of W2 when R£ » 2.0, and 
Figure   7B   when   Rj   =  0.5. 

In both cases, the weight ratio 
is the same; Rw = 0.1, and Q^ ■= Q2 = 
10. A comparison of Figures 7a & 7b 
shows that when Rf = 2.0, Q21, ■ 13.5 
at   f,   = 94.5Hz  and  when Rf   •=  0.5,   Q2L 

^.7 7   ef. =    49.5Hz. When    the 
systems of Rf «2.0 and 0.5 are excited 
by sinusoidal vibration, therefore, 
there is practically no difference in 
the maximum response. The tradeoff is 
allowable displacement versus the 
stiffness requirement: the 
displacement per G of the system at 
49.5Hz resonance is four times that of 
the 94.SHZ resonance, but the 
stiffness requirement for subsystem 2 
for Rf » 0.5 need only be 1/16 as 
stiff as that for R£ « 2.0. This may 
be a compelling reason in itself to 
choose the lower resonant system for 
design. At least designers should be 
cognizant  of   this   additional   option. 

Another consideration of the 
cascaded two degree of freedom system 
is its response to random vibration. 
With random excitation, motion exists 
at all frequencies throughout the 
spectrum simultaneously, so total RMS 
response must be measured, which is 
the sum of the motion at all 
frequencies. 

In equation form, the response of 
a  system  to  random  excitation   is: 

'rm% )IJr(f) wcodf 
This total RMS response is 

obtained by squaring the 
transmissibillty plot, multiplying it 
by the input spectral density plot 
point by point along the frequency 
axis, summing the results, and taking 
the   square   root. 

If we assume that the spectral 
density, Wjfj Is uniform throughout 
the applicable frequency r nge, the 
computation is eased, as the equation 
becomes: 

Jfws |//w V(f)df 

135 

• * O O *_w ** V •" 

a>Ä^^^^^&Ä^^ 



100 

10 

logT2 

1;0 

0.1 

■"^ ■ 

mm 
 1—1   l_L_Lil 

Rf-2.0 j- 
F^-ai - 

- Q ,402-10 ' 

j \ 1 
1 

■ 1 
_i / 

Mil 1 
^ \ 

i \ 

j I A 

_ -- y 
/ \j ' 

1 

I 

100 

10 

logT2 

1.0 

10 
0.1 

it 
B, = 0.5 

,40,= 

:! H 

u 10 

r-i- pUU 
_xtt t\- 1 

/ y ^1 
y 

r i   ...i— 
\ i 1 
\ 

100 1000 '0 100 

log f log f 

FIGURE 7 - RESPONSE OF CASCADED TWO DEGREE OF FREEDOM SYSTEMS 

1000 

To compute relative responses 
among different systems, It is then 
merely necessary to determine the area 
under the appropriate transmissibility 
squared plot, and compare the square 
roots of the results. 

The above process can be used to 
compare the responses of the Rf • 1.0, 

0.5 and R^ 
random vibration. 

2.0 systems to 

Figure 8 shows linear plots of T2 

vs. frequency of the three systems. 
The use of linear plots rather than 
log plots makes it easier to compute 
and to visualize the response of 
systems to random vibration. The 
results show that the random response 
of the Rf » 2.0 system is 0.56 that of 
the Rf - 1.0 system, and the response 
of the Rf - 0.5 system is 0.45 that of 
the Rf ■ 1.0 system. These results 
show that a system design of f2 lower 
than that of fj^ can provide a good 
alternate solution to the cascade 
design problem for both random as well 
as for sinusoidal excitation, even if 
W2 is significantly less than Wj^. 

CONCLUSION 

A method is presented herein 
where the maximum response of a 
cascaded 2D0F system can be determined 
to reasonable accuracy, using 
graphical methods. The advantage of 
the use of graphs is that trends can 
be   easily   observed. 

It is noted that good design 
practice does not necessarily require 
that the load (subsystem 2) be 
designed to have a higher resonant 
frequency than the base (subsystem 1). 
Rather, as it is shown, a satisfactory 
design may properly be one where f, is 
lower   than   fi. 
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APPENDIX:    DERIVATION   OF   TRANSMISSIBILITV  EQUATIONS 

MASS i:     M.Y, *ct(%.*z) + kt(X-Yz) *c,()f,-)f0) * MV^) =0 

MASS f:     mX + ^(t-X) *■ kr(^- Y.) = O 
RearranqiMg,     -cz'i; -iqY, ♦ wtVt 4-^v; * k^ « 0 ® 

IF INPUT IS   y0=   YoeJwt,  SOLUTIONS   CAN  5E 

Y.« Y.e^wt**.) - Y.e^e'*. = V^e^ , vMtre ?.= Xe^' 
Y,» YteKwt*^ . y;ei«teJ<k c 7aei^  wlierC ^ ^j^ 

SUBSTITUTINS  IN 0 ANO <D, 

-»vil«
,-*kl*kl. ♦jwCc,^       -(k^jwcv')   ]   Y,| = k+jwc.yj 

SOLVING  FOR Y, AND ^ 

0 p 

D '        D 
wViere. 

D« w.«t««*-[M(*(in*ml.)ki4-c,cl]u)%k,lcl*jw(k1^4.|tlcl-[K*»i^4«lcl'Jtt)x 

FlNALLX THE TRANSMISSIBILITIES   ARE 

T.'^ 
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For the temperature shift function for a particular damping 
material to be obtained, it must be implicitly defined by a set 
of complex modulus data. Historical procedures have been marginal 
because frequency ranges have not been adequate. A new procedure 
for such data is proposed based on the slope of the temperature 
shift function, on a fractional model of complex modulus and on 
apparent activation energy considerations. 

INTRODUCTION 

For many viscoelastic damping 
materials, or at least as a first 
approximation, the dynamic mechanical 
properties are thermorheologically sim- 
ple.  In particular, the complex modulus 

G* = G*(fR) El 

is a function of the reduced frequency 

fot„ E2 

which is a product of the actual fre- 
quency and the well-known temperature 
shift function.  It is often desirable 
to divide by a reference reduced fre- 
quency and use logarithmic scales 

log(fR/fR0)  = log f + log aT 

log f RO 
E3 

Expressions for the partial derivatives 

3 log G*/3T 

- (d log G*/d log fR)(3 log fR/3T) 

= (d log G*/d log fR)(d log aT/dT)  E4 

and 

3 log G*/3 log f 

»(d log G*/d log fR)(3 log fR/3 log f) 

-d log G*/d log fR 

will be needed. 

E5 

In the typical explanation of fre- 
quency-temperature equivalence [1], a 
temperature shift curve or function is 
constructed for each particular set of 
complex modulus data. The real part 
(R), the imaginary part (I), and the 
material loss factor (n) of the complex 
modulus data are plotted as a function 
of the reduced frequency. For conven- 
ience, the expression for the tempera- 
ture shift function is usually taken to 
be unity at the reference temperature. 
With reference to El and E3, the effect 
of a constant in the temperature shift 
function, a<p, is to shift the experi- 
mental data horizontally, whereas the 
effect of a reference reduced frequency 
is to shift any analytical representa- 
tion horizontally.  Historically, the 
oup for a particular damping material 
has been defined empirically by the 
experimental complex modulus data. The 
value of a>j at each experimental temper- 
ature is selected such that it simul- 
taneously shifts horizontally the three 
complex modulus data points (R,I,n) to 
define curves and minimize scatter. 
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With usage of computers it is conven- 
ient to fit the empirical a™ curve with 
a suitable analytical function. 

By contrast to the historical 
focus on a<r, the present focus is on 
its slope. Consider complex modulus 
data taken at the three temperatures, 
Tlf {Ti  + Ala), and (Ti - Alb).  For 
both the data taken at (T^ + ala) to be 
shifted to that at Tj^ 

where 

SAZ i Cl/C2 

Taking the derivative of E6b yields 

- ddog otT)/dT = SAZ/(1 + DT/C2)' 

E7 

E8 

shift (Ala)  = log o^d^) - log aT(T1 
The slope given by E8 is normalized and 
plotted in Fl for representative values 
of the parameter. 

and the data taken at (T, + A,. ) to be 
shifted i   XD 

shift (Alb) log aT(T1 + Älb) 

- log «.pCT^ 

and from calculus approximations to 
derivatives, it follows that 

log o^rTj^ + Ala) - log o^T^ 

log ^(Tj) - log «.JCTJ^ - Alb) 

d log a. 

dT 

EXPONENTIAL EQUATION 

Another expression is the exponen- 
tial 

log aT = - N logd + DT/Ce) ; 

T > Tz - ce 

which may be written 

E9 

log aT = •2-3 CeSAZ lo9(1 + V^) 

where 

SAZ  i N log e/Ce 

E10 

Ell 

The slope corresponding to the exponen- 
tial is 

The satisfactory horizontal shift of 
complex modulus curve segments is 
clearly dependent on the slope or 
derivative of aT rather than the value 
of ax, and that the slope is also a 
function of T. 

- ddog aT)/dT    -    Sj.Jil + D_/CJ A*/ 'T'^e' 
E12 

and is plotted in F2. 

WLF EQUATION 

A commonly used representation for 
the temperature shift function is the 
WLF equation 

log oT - - C1DT/(C2 + DT); 

T  > T2 - C2;  DT - T - Tz  E6a 

which ">.■'  be written 

log aT - - SA2DT/d + DT/
C2)  E6b 

ARRHENIUS EQUATION 

The Arrhenius equation is written 
in the form 

log aT = a2 Rp E13 

where 

I^j,  =  lOOO/T - 1000/TZ;  T > 0 E14 

and using 
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SAZ     i     1000  a^T* E15 

may be written 

log  aT    =     (S^T^/IOOO)!^ E16 

from which 

2 -  ddog  aT)/dT    =     SAZ/(1 + DT/TZ)' 

E17 

and this is plotted in Fl. Alterna- 
tively E17 may be written 

- d(log aT)/dT = S
AZ
T
Z/
T2
  

E18 

APPARENT ACTIVATION ENERGY 

For some purposes, it is of inter- 
est to display the apparent activation 
energy [2, p. 289, (44)] 

AHA = -2.303 R T' d log aT/dT 

E19 

where the gas constant is 

0.00828 Newton*kilometers/ 
gram-mole-'K 

In general, the apparent activation is 
a function of T. When E18, the slope 
for the Arrhenius equation, is substi- 
tuted into E19, we obtain 

Integrating the above representa- 
tion leads to 

log cxT =  a(l/T-l/Tz) + 2.30 3(2a/Tz 

-b)log T/Tz + (b/Tz-a/T^ 

■SAz) (T-V E22 

where the constant of integration has 
been chosen for convenience to make aT 
unity (or log zero) at the reference 
temperature.  The coefficients may be 
evaluated by fitting the slope through 
the three points 

Slope Temp 

SAZ TZ E23a 

SAL TL E23b 

s™ Tu E23c "AH 

The form of the equation E21 inherently 
satisfies E23a.  Substituting E23b and 
c .esults in 

a(l/TL-l/T2)' + b(l/TL-l/Tz) 

+ S AZ AL 

a(l/TH-l/Tz)' + b(l/TH-l/Tz) 

+ S AZ 3 AH 

Letting 

E24a 

E24b 

AHA =  2-303 RSAZTZ E20 

which is independent of temperature, the 
standard result for the Arrhenius form. 

SLOPE QUADRATIC IN 1/T 

This paper proposes the represen- 
tation for the derivative or slope 

- ddog aT)/dT    -    ad/T-l/Tz)' 

+ b(l/T-l/Tz)   + SAZ E21 

as the most workable for many damping 
materials. 

CA (I/TL - i/Tzr E25a 

CB (1/TL - 1/TZ) E25b 

cc SAL " SAZ E25c 

DA (1/TH - 1/TZ)
2 E26a 

DB (1/TH - 1/TZ) E26b 

DC SAH " SAZ E26c 

DE 
■at DBCA " CBDA 

E27 

it follows that the coefficients are 
evaluated 

a  -  (DBCC - CBDC)/DE E28a 
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b  =  (CADC " DACC,/DE     E28b 

If it happens that 

SAZ V  b 2 SAZ Tz  E29 

then this representation reduces to the 
Arrhenius case. This is a major 
attraction. 

The apparent activation energy for 
this case is found by substituting E21 
into E19 

may be seen that the slopes as a func- 
tion of temperature, T, (rather than of 
DT) can be caused to approximate each 
other more closely by an appropriate 
choice of Tz.    These two curves are 
defined by the exponential representa- 
tion. The curves were determined 
empirically, and the exponential equa- 
tion and the parameter values are also 
empirical.  The quadratic in 1/T is an 
adequate approximation over some range 
of Dip (probably sufficient for engineer- 
ing interest) because the curves are 
themselves approximations as noted 
above. 

AH.  = 0.001907 [a(l - iL)2 + bT(l 
Z 

" ^ + V'1 E30 

SPECIFIC CUKVES 13] 

Two specific curves used for vibra- 
tion damping materials were developed 
empirically and the convenient exponen- 
tial equation (E9) was adapted.  One 
curve was developed for use with poly" 
mers and is designated "AON" with the 
parameters 

N « 11 

175.60*4/1.8 = 97.5591 = 100. 

S,, =• 0.0489676 = 0.05 
E31a 

The WLF equation approximates this 
curve when 

c1/c2 9/17S  »  0.0514  =  0.05 

175. C2  -  315/1.8 

E31b 

The "DIGJ" curve was developed for the 
larger temperature ranges required by 
enamels and is given by 

N - 14 

C. - 278/1.8 » 154.44 ~  155. 

SAZ - 0.03937 = 0.04 

C^Cj *  12/2Si.7 • 0.04114 = 0.04 

C2 - 525/1.8 - 291.7 = 290. 

E32 

The exponential slope El2 is com- 
pared *n  F3 for the two sets of parame- 
ter values given by E31 and E32.  It 

DETERMINATION OF THE TEMPERATURE SHIFT 
FUNCTION 

The temperature shift function is 
implicitly defined by the set of com- 
plex modulus data. Historically, the 
function has been found by shifting 
data horizontally until curves were 
defined and scatter minimized; where 
there is a marginal experimental fre- 
quency range, this is not completely 
satisfactory.  It happens that tnere 
are theoretical relationships that may 
be used to determine the slope of ax 
from experimental data. The basis of 
this procedure is the hypothesis that 
the complex modulus as a function of 
reduced frequency is adequately approx- 
imated in the range of interest by 

G* IGe + V^)8!/!1 + (Jr)6]; 

x - VfRO        E33 

which contains fractional powers [4]. 
Note that as shown by F4, the slope of 
the magnitude, real and imaginary, in 
the transition region is a constant. 
Because the slope of the imaginary is 
also constant below the transition, it 
is more convenient and is used. The 
imaginary component of E33 is 

B, sin90ß(G/, - GJrVd g        e 
+ 2cos90ß rß + r2ß) 

which in the range of interest is pro- 
portional to 

Gj 2 rß;  r < 0.01 

It follows that 
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log Gj 2 ß log fR; 

d log Gj/d log fR = 3    E34 

This result may be substituted into the 
imaginary part of E4 to give 

= n 

(3 log Gj/BT) ß(d log aT/dT) E35 

The desired slope is evaluated once the 
two quantities 
determined. 

3 log Gj/ST and ß are 

The complex modulus (i.e., the 
real modulus, the imaginary modulus, 
and their ratio or loss factor) depends 
on both temperature and frequency. 
Temperature is dominant; and the pres- 
ent context is that experimental fre- 
quency is marginal (at least to deter- 
mine ftp). It is necessary to adjust 
experimental data for the effect of 
frequency 

exp 

This last equation indicates the valid- 
ity of fitting a polynomial in tempera- 
ture 

N 
I 

k=o 
E39 

and determining T\max  and Tz and its 
temperature. Accurate representation 
of properties in the transition is of 
interest because of possible engineer- 
ing applications in this region; conse- 
quently, the temperature of n  is 
chosen as the reference. max 

The next step is to determine 6 
The expression for 
oped from E33 

nmax may be devel- 

n    «    (1 - 1/A) tanßTr/2 

™aX 1   +   1/A   +   2/h1/2   COSßTT/2 

vww 
GR(fexp'Texp) 

ri(fA'Texp) 

GIA(fA'W E36a 

«WVW E36b 

WSA E36c 

G /G g' e E40 

Numerically this equation may be solved 
iteratively, and the parameter A may be 
approximated from experimental data. 

where fA is a frequency representative 
of a particular data set, e.g., a geo- 
metric average of experimental frequen- 
cies. In order to make these adjust- 
ments, E34 Is substituted into ES 

3 log GB/3 log f 6; 

3 log Gj/3 log f - ß 
E37 

or approximately 

log Gj^-log G Rexp «• 8(log f.-log f 

or 

"RA 

and similarly 

GIA ' 

«wvw 

^exp^A^exp' 

exp 

E38a 

E38b 

and therefore in the middle of the 
transition region 

With ß known the imaginary modulus 
may be adjusted using E38b and fitted 
to a polynomial 

E41 log GIA 
N     k 

-   E  CAk T 
k-o ^ 

and the slope 

3 log Gj/ST - d log GIA/dT 

■ 
N"1      k 

1     k  CAk T k-1   AK 

T  > E42 

evaluated as a function of T or at spe- 
cific points such as Tz and at a higher 
temperature, T . 

It follows that 

'AZ (d log GIA/dT )/6 E43 

Z 

and 
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SAH  =  «ilogGIA/äT 
T = T H 

At this juncture, two points 
^TZ'SAZ) and (

T
H»
S
AH) have been defined, 

and a third relationship is required. 
It is supplied by hypothesizing that at 
T^, a temperature in the glassy region, 
the apparent activation energy, is a 
constant, or the derivative 

dAHA/dT  2 2a;T/Tz-l)/Tz + b(l-2T/Tz) 

+ 2TS AZ 

is set equal to zero at T 

,)/$ E44     determining slope in only the glassy 
region, or the transition, or the rub- 
bery, may be determined while not 
affecting the others. 

Another very obvious advantage is 
representation of a much more general 
type of slope curve than has been pos- 
sible in the past.  Only experience 
with viscoelastic materials of interest 
will determine general adequacy. 

It is worthy of note that the ref- 
erence temperature has no physical sig- 

E45     nificance here; it should be considered 
to be an empirical parameter which hap- 
pens to have units of temperature. 
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erties of Damping Materials," 
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Vol. 22, n. 4, 1974, pp 451-470. 

Ferry, John D., Viscoelastic Prop- 
erties of Polymers, John Wiley and 
Sons, 3rd ed., 1980. 

Rogers, Lynn and Ahid D. Nashif, 
"Computerized Processing and 
Empirical Representation of Visco- 
elastic Material Property Data and 
Preliminary Constrained Layer 
Damping Treatment Design," The 
Shock and Vibration Bulletin, No. 
48, September 1978, Part 2, pp 23- 
37. 

Rogers, Lynn, "Operators and Frac- 
tional Derivatives for Viscoelastic 
Constitutive Equations," J. Rheol- 
ogy, 27(4), pp 351-372 (1983). 

DISCUSSION 

Very limited usage with experimen- 
tal complex modulus data together with 
engineering judgment suggests that the 
quadratic in 1/T as determined by the 
slopes is accurate and efficient. The 
greatest advantage is that the various 
temperature regions of data may be con- 
sidered independently or in uncoupled 
fashion. That is, the parameter 
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Discussion 

Mr. Zak (University of Illinois): Using those 
fractional derivatives for vlsco-elastlc 
characterization Is opposed to something like 
the convolution Integral or the differential 
fom that has been used over the years. Can you 
apply this to real time problems or Is it used 
in the frequency domain only? When you 
calculate the beta, can you have the real time 
in vlsco-elastlc equations with this fractional 
derivative formulation, or does it strictly have 
to be In the frequency domain? 

Mr. Rogers; To answer your question as directly 
as I can, there is a textbook on fractional 
calculus, but it is not really well known at 
this particular point, nor are the Laplace 
transform pairs, and the Fourier transform pairs 
well known. For the equation I showed, you can 
take the Fourier transform, or the Laplace 
transform, and get an explicit, closed form 
solution for the relaxation modulus and the 
creep compliance. If you are willing to forego 
very short time effects, then there are 
approximate closed form equations that let you 
get back and forth between the frequency domain 
and the time domain for relaxation and for 
creep. 

Mr. Zak; Can't you do the whole thing by 
characterizing your shift function through the 
other methods that have often been used in the 
solid propellent rocket business, through the 
convolution and the Prony series and things of 
this nature? Or does this give you something 
you can not do the other way? 

Mr. Rogers! The attraction of the fractional 
calculus, for me, is the great economy of 
terms. With the Prony series, and a couple 
other series, you need at least 20 terms, and 
two constants per term, so you are talking about 
something like 40 parameters to be evaluated for 
a particular vlsco-elastlc material to cover a 
wide frequency range. With fractional calculus, 
you can do it with something like six terms. 
You can view the fractional calculus as being 
empirical, or you can say that because of the 
tconomy of tens, there rosy be some relationship 
to the very small scale polymer dynamics 
theory. However, you are right. The 
convolution integrals, the series types are all 
satisfactory and workable. I feel there Is an 
economy of computer time and storage to be had 
by using a fractional calculus. 

Mr. Rath (Naval Research Laboratory): You 
indicated that the activation energy of the 
Arrhenius equation can be predicted as a 
constant. Activation energy, trt.lch is 
temperature dependent, is usually state related 
to that method. Did you say you extended It to 
the glass transition temperature when the state 
of the matter is changing? If so, I have 
difficulty realizing the activation energy will 
remain at the same value. 

Mr. Rogers: The chapters, or the material, that 
I have read state that Arrhenius temperature 
shift function, 1/T, jives a constant activation 
energy, and in fact, xt is appropriate in the 
glassy region of vlsco-elastlc materials. The 
attractive thing about the quadratic, and 1/T 
for the slope, is that term is included in the 
alpha T that results. The other attractive 
thing is it is not mandatory that you have a 
monotonic function in alpha T, and there have 
been some actual materials that do not have 
it. However, other than that, I am not really 
prepared to remark about apparent activation 
energy. 
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EFFECTIVENESS OF ON-OFF DAMPER IN ISOLATING DYNAMICAL SYSTEMS 
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Concept of vibration isolation through an on-off damper Is Investigated. 
A number of on-off damper control schemes are proposed and analyzed for 
their Isolation performance.    The vllbatlon isolation characteristics of 
the proposed on-off dampers are evaluated through computer simulations and 
compared to that of a passive damper.   Effectiveness of the on-off damper 
Is investigated for single degree-of-freedom system with rigid as well as 
elastically coupled damper.   Isolation characteristics of Ruzicka relax- 
ation Isolator and Snowdon's two Inertia vibration Isolation system with 
on-off damping are evaluated and compared to the optimal passive 
Isolators.     Isolation performance of on-off damper Is also investigated 
for milti-degrees-of-freedom dynamical systems. 

INTRODUCTION 

Passive shock and vibration Isolation 
systems are undoubtedly the most simple, 
inexpensive, and reliable means to protect 
dynamical systems from shock and vibration 
Inputs. Design of an effective isolator 
involves the selection of suitable spring and 
damper such that the acceleration transmitted 
to the payload is minimized. Pass- Ive 
Isolators employing optimal linear or non- 
linear springs and dampers have been exten- 
sively Investigated by various researchers. 
However, the Inherent per- formance limit- 
ations of passive Isolators, specifically due 
to fixed damping, are well known. It has 
been well established that the isolation 
performance of an Isolator with variable para- 
meters Is far superior to that of an isolator 
with fixed parameters [l]. 

Active vibration isolation systems with 
parameters that change automatically with 
response and excitation variables, provide 
superior isolation performance. However, 
active systems In-general, are more costly, 
more complex and therefore less reliable. 
Thus the Implementation of active shock an 
vibration isolation systems has been limited 
to cases, where the performance benefits out- 
weigh the disadvantages of Increased costs, 
complexity and weight [2,3]. Recognizing as 
both the performance benefits well as limit- 
ations of active systems, the concept of semi- 
active vibration Isolation system has been 
developed [4].     Semi active Isolators require 

only low level electrical power for the neces- 
sary signal processing and provide extremely 
superior isolation performance than the pass- 
ive Isolators. Semlactlve force generators 
based on Inertial (skyhook) dcmplng has been 
proposed and analyzed by Karnopp et. al. [4] 
and Margolls [5J. Concept of externally 
controlled active damper has been analyzed by 
Crosby and Karnopp [6j. 

Semlactlve Isolation systems In general, 
are similar to the passive Isolators In that 
all suspension elements generate their res- 
pective forces passively. However, It Is 
assumed that the damping force generated by 
the damper can be varied Instantaneously. The 
semlactlve dampers proposed In the literature 
[4,5] generate damper force passively while 
the sign of the generated force being altered 
by the semlactlve controller. Skyhook seml- 
actlve control can provide Isolation perform- 
ance very similar to that of an active system. 
Although the hardware Implementation of such 
semlactlve force generator Is significantly 
simpler and less costly than a complex active 
vibration control system. The cost and 
complexity of the skyhook control may still be 
prohibitive for general applications. 

In an attempt to slmollfy the hardware 
implementation and to reduce the cost of such 
semlactlve force generators, to a point where 
general use Is feasible, a simplified on-off 
damper scheme utilizing the absolute and rela- 
tive velocities of the mass has been proposed 
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proposed and analyzed [7,8,9]. However, the 
measurement of absolute velocity, specifically 
for low frequency applications, may pose cert- 
ain complexities [10]. In this Investigation, 
a number of on-off damper schemes are analyzed 
to establish their effectiveness for single as 
well as multi degrees-of-freedom dynamical 
systems. 

ON-OFF DAMPER CONCEPT 

Consider a conventional  SDOF spring-mass 
damper system shown in Figure 1.   The acceler- 
ation response of the suspended mass due to 
base excitation can be expressed as; 

x = (FL + Fri) (1) 

where F^ and Fj are spring and damper forces, 
respectively. Assuming linear coefficients, 
the suspension forces are expressed as; 

F^ = K(x - xo) 

Fd = C(x* - xo) (2) 

where K and C are constant spring rate and 
damping coefficient, respectively. From the 
steady state trace of inertia force and 
suspension forces (Figure 2), it can be 
established that the amplitude of mass 
acceleration is 

I trf^tn + x/4 xH K+ Fd h/m for (3) a
 | t0+x/2<t<t0+3T/4 

| t0+t/4<t<t0+T/2 
jxH|Fk|-|Fd|)/mfor {4) 

(tQ+3t/4<t<t0+T 

where x is the period of oscillation. It is 
evident from equation (3) that the damper 
force tends to increase the amplitude of mass 
acceleration during a part of the vibration 
cycle. The damper force tends to reduce the 
magnitude of mass acceleration during the 
remaining part of vibration cycle as demonstr- 
ated by equation(4). Poor vibration isolation 
performance of heavily damped passive systems 
is attributed to this phenomenon. Deteriorat- 
ed Isolation performance of heavily damped 
passive isolators becomes more obvious at 
higher excitation frequencies, when the magni- 
tude of damping force dominates over the 
spring force. An analogus phenomenon also 
exists in the passive shock isolation systems. 
Various dual phase damping mechanisms have 
been proposed and analyzed to improve the 
shock isolation characteristics of passive 
shock    isolators [11,12]. 

An on-off damping mechanism may be real- 
ized, which operates as a conventional passive 
damper with high coefficient of damping during 
the part of vibration cycle when it acts to 
reduce the amplitude of mass acceleration. 
The damping mechanism may be switched off 
during the portion of the cycle when a passive 

damper would normally increase the amplitude 
of mass acceleration. Shock isolation 
characteristics of such an on-off damper have 
been Investigated in previous studies [13]. 
Such an on-off mechanism may be accomplished 
by introducing a two position valve operated 
by a solenoid relay, to a conventional 
hydraulic damper. The on-off valve offers 
certain orifice restriction to the hydraulic 
flows (high damping) during the on-cycle 
operation of the damper. The orifice size is 
modulated to its maximum opening during the 
off-cycle operation resulting from 
restrictions offered by the orifice modulated 
to its largest opening. Moreover, the damping 
force generated by the on-off damper is of 
velocity square nature due to orifice flows, 
while neglecting leakage flows and seal 
friction [14]. However, passive damping 
either viscous or velocity squared, exhibit 
identical behaviour as presented in equations 
(3) and (4). 

ON-OFF CONTROL STRATEGY 

Karnopp [4] established that the damping 
force tends to increase the magnitude of mass 
acceleration when the sign of absolute 
velocity of mass opposes the sign of relative 
velocity. Damper force reduces the magnitude 
of mass acceleration when absolute velocity of 
the mass bears the same sign as the relative 
velocity of mass. Thus a semiactive inertia! 
damper is formulated such that the damper 
force is reduced to zero when the absolute 
velocity of mass opposes the relative 
velocity. The force generated by the 
semiactive inertlal damper is thus expressed 
as: 

fd* 
c*    for     ;u - *„) > o. 

for Hi - *„) < 0. 
(5) 

Two cases may arise when x(x - x0) is exactly 
zero. The damper force must be zero when i - 
0. The damper experiences a lock up when [i 
- x0) * 0. Such a skyhook semiactive damper 
can be realized in practice but only at the 
expense of considerable sophistication. 
Alternatively, a number of simplified on-off 
damper schemes are proposed in the following 
sections. 

0n-0ff Damper I 

Krasnicki    [8]   analyzed   a   simplified 
on-off   damper   based   on   the   above   control 
scheme.      The   damper   force   in   the   case   of 
on-off damper is generated entirely passively 
and is expressed as: 

CU - ',)     For   x(x' - x0)>0. 

0. For   *(* - J?n)<0. 
(6) 

Such an on-off damping force generator may be 
realized by introducing a two position on-off 
valve to a conventional  passive damper.   The 
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damper. The damper force generated is neglig- 
ible when the valve is modulated to its maxi- 
mum opening. Realistically, the damping force 
generated follows the velocity square law due 
to orifice flows. Moreover, the damper gener- 
ates a small amount of force during its off- 
cycle, when the orifice is modulated to its 
maximum opening. Thus, the on-off damper 
force can be expressed in the following 
manner: 

I Cv|x - x0|(x - x0)   if x(x* - x0)> 0. 

d lc;|x - x0|(x - x0), if xU* - *0)<0. 

(7) 

where Cv is the coefficient of velocity square 
damping and Cy is a fraction of Cv represent- 
ing the coefficient of damping corresponding 
to the orifice modulated to its maximum open- 
ing. This control scheme is quite simple to 
implement with a two position on-off valve, 
however the measurement of absolute velocity 
may  introduce  certain complexities. 

0n-0ff Damper II 

Alternatively, a second switching scheme 
devised from the concept of on-off damper is 
considered. From equations (3) and 14), It 
was established that damper force causes an 
increase in amplitude of mass acceleration, 
whenever forces due to spring and damper bear 
the same sign. The mass acceleration decreas- 
es when damper force opposes the spring force. 
Since the directions of damper and spring 
forces are proportonal to the sign of relative 
velocity and relative displacement respective- 
ly, the on-off scheme can be established in 
the following manner: 

Cvlx-x'ojlx-x*,)), if (x-x*0)(x-x,
0)< 0. 

CvJx-x'oJU-x,)), if (x-x'0)(x-x0)>0. 

(8) 

The on-off damper operating with this 
control scheme will act as a conventional 
orifice damper with high damping coefficient 
(Cv), when the sign of relative velocity 
opposes the sign of relative displacement 
across the damper. The damper operates with 
significantly lower value of damping coeffi- 
cient (Cy), when the sign of relative velocity 
across the damper carries the same sign as the 
relative displacement. This on-off scheme has 
an advantage over the scheme of damper I in 
the sense that it utilizes the signal from 
directly measurable variables. 

0n-0ff Damper III 

The acceleration response characteristics 
of on-off damper in-general, exhibit disconti- 
nuities at the time of switching Thus, a sign- 
ificant magnitude  of  jerk   is  experienced  by 

the system mass.     A third on-off  scheme is 
devised  to minimize  the jerk  experienced by 
the   Isolator  mass.     The  control   scheme is 
formulated In the following manner: 

Fd» 
Cv|x-xo|(x-xo),    1f(x-xo){x-xo) > 0 

c;|jJ-jfo|()f-)fo),   if()f-)?o)(x-io) < 0 

(9) 

Such an on-off damper operates as a convent- 
ional damper with high value of damping 
coefficient (Cy), when relative velocity carr- 
ies the same sign as the relative acceleration 
of the mass with respect to base. The damping 
coefficient is significantly reduced when the 
relative velocity across the damper opposes 
the relative acceleration of the mass with 
respect to the base. 

VIBRATION ISOLATION PERFORMANCE OF ON-OFF 
DAMPERS 

The   equation   of   motion   for   the   base 
excited spring-mass system with orifice damper 
can be expressed as: 

"x + _JL|x,-x,
0|{x-x*0)+<1)2(W0) = 0      (10) 

xmax 
2 

is the maximum base where «„ ■ K/m,  X 
and 

given by the following expression: 
excitation,   and   ti  Is   the  damping  parameter 

""irXm, lax (11) 

Table I lists the expressions for damping 
parameter of a single degree-of-freedom isol- 
ator with on-off damping. Equation (10) is 
solved to determine the vibration Isolation 
performance of on-off dampers, using direct 
Integration techniques. The vibration isolat- 
ion characteristics of the on-off dampers, 
using direct integration techniques. The 
vibration isolation characteristics of the 
on-off dampers is established by its transmis- 
sibility ratio due to harmonic acceleration 
excitation at the isolator base. The steady 
state inertia, spring, and damper forces of 
the SDOF Isolator employing on-off damper II 
is presented In Figure 3. It is observed that 
the damper assumes a low damping value, when- 
ever the spring and damper forces bear the 
same sign. The acceleration response of the 
on-off damper consistently reveals two peaks 
during each vibration cycle, irrespective of 
excitation frequency. The two peaks are 
associated with high and low values of damp- 
ing. The off-cycle duration of the on-off 
damper I is significantly smaller than that of 
dampers II and III, for low excitation freq- 
uencies. However, the off-cycle period of 
on-off damper I increases and eventually 
approaches that of dampers II and III, as the 
excitation frequency is increased. 
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TABLE 1 

Damping Parameter of SDOF System with 0n-0ff-Damping 

Damping Parameter On-Off Damper 

n I II III 

TIT   Amax m-io) >0 (*-*o)(x-xo) <0 ()?-)fo)(x-xo) > 0 

IT  'Snax ill Wo) < 0 IWo){x-xo) > 0 U-)?o)(x-xo) < 0 

The displacement and velocity transmlsslblllty 
characteristics of on-off dampers are 
established as shown In Figures 4 and 5, 
respectively. Figure 4 Illustrates a compar- 
ison of displacement transmlsslblllty ratios 
of on-off dampers to that of a passive damper. 
The system parameters are selected as us * 10 
rads/s, Cv/m « 50 and Cy/m »0.5 for all the 
damper schemes. It can be established that 
on-off dampers provide vibration Isolation for 
excitation frequencies beyond 90% of undamped 
natural frequency. The velocity transmlsslb- 
lllty ratio (Figure 5) of the on-off dampers 
exhibit similar behaviour as Illustrated by 
Figure 4. On-off dampers II and III exhibit 
slightly larger resonant peak than the passive 
damper, however, the isolation performance of 
dampers II and III Is slightly superior to 
that of on-off damper I. 

VIBRATION ISOLATION CHARACTERISTICS OF 
DYNAMICAL SYSTEMS WITH ON-OFF DAMPING 

The vibration Isolation characteristics 
of a number of dynamical systems employing 
on-off damper is Investigated to establish the 
effectiveness of on-off dampers. Various 
dynamical systems considered for this investi- 
gation are presented in the following sub- 
sections. 

Relaxation (Ruzicka) Isolator 

Ruzicka [15] discussed the relaxation 
isolator shown in Figure 6. The equations of 
motion for the isolator with elastically 
coupled viscous damper are expressed in the 
following manner: 

I* I = r      l.+(2Cr(N+l)/N)2 1 

x + 2Cuo(if-)tn) ♦ uoU-ifo) - 0. 

ZCwotfn-fl ♦ N wo(xn-xo) -   0. 112) 

where u0 » K/m, c Is the ratio of damping 
coefficient to the critical damping, and N is 
the ratio of coupling spring stiffness to the 
isolator spring stiffness. The transmlsslbll- 
lty characteristics of Ruzicka isolator with 
viscous damping can be expressed as; 

nqi (l-r2)2+ |2Cr(N+l-r2)/N)2j 
(13) 

where r is the ratio of excitation frequency m 
to w0. An optimum Ruzicka isolator with pass- 
ive 'damping relates damping factor 
stiffness ratio N to realize a 
response at the fixed point [16]: 

Copt" 
N 

2(N + 1) 

and  the 
maximum 

(14) 

The vibration isolation performance of 
the relaxation type Isolator is Investigated 
by replacing the passive damper by an on-off 
damper. Thus the damping factor for the 
relaxation type Isolator with on-off damping 
can be given by the expressions listed In 
Table 2. Although, the damping force gener- 
ated by orifice type on-off damper follows the 
veloctiy square law, the effectiveness of 
on-off damper in the relaxation type of isol- 
ator can very well be Investigated while 
assuming linear damping. 

The transmlssibllity characteristics of 
the relaxation type isolator with on-off with 
on-off damping are established and compared to 
that of passively damped Ruzicka Isolator. 
The comparative performance of the passive and 
on-off damper configurations is presented 

is presented In Figure 7, for stiffness ratio 
N ■ 5, and u0 ■ 10 rad/s. The passive isol- 
ator exhibits vibration isolation beyond freq- 
uency ratio r » 2.3. All of the on-off damper 
configurations reveal vibration isolation 
beyond frequency ratio r ■ 1.2. The on-off 
damper II Indicates slightly poor performance 
around Isolator's resonant frequency. How- 
ever, the isolation performance of on-off 
damper II Is definitely superior to that of 
on-off damper I due to light damping offered 
by   on-off damper II. 

Two Degrees of Freedom Dynamical System 

Snowdon [17,18] discussed the two inertia 
system shown in Figure 8, usually referred to 
as  Snowdon  vibration   isolation  system.     The 
equations of motion of the two inertias are 
given as follows: 

ISO 



TABLE 2 

Damping Parameter of Relaxation Isolator with 0n-0ff Dawping 

Damping Parameter 0n-0ff Damper 

I II III 

2rau0 * 
*(*-*„) > 0 (*-*n)(x-xn) <0 ()f-)?n)(x-xn) >0 

^. •" 
x(Wn) < 0 (Wn)(x-i(n) > 0 ()f-)?n)(x-xn) < 0 

m xs + C(xs-xp) + K(xs-xp)=0 

a m xp + lC{ip-i0) + C(ip-x*s) + N K^-Xj,) 

+ K(xp-xs) »0 (15) 

where o Is the ratio of primary mass to 
secondary mass, A is the ratio of damping in 
the primary isolator to the damping in second- 
ary isolator, and N Is the ratio of the spring 
stiffness of primary and secondary isolators. 
x., x-, and x0 represent the displacement of 
secondary mass, primary mass, and the base, 
respectively. The transmissibility ratio 
(ratio of secondary mass displacement to base 
displacement) of the passively damped isolator 
Is given by; 

^1        lR2 + S2J (16) 

where 

P - N - 4 c^^^A 

Q - 2CrZ2(N + A) 

R . a rW - r^Hl. + N + o+4c2AZ2)+M 

S - -2 r3aHl. + o + A) + 2crZ2(A +N) 

(17) 

where r is the ratio of excitation frequency w 
to the natural  frequency X of the isolator, 
given by: 

K/ra (18) 

and 

Z2 « [I. + N + o -/(I. + N + a)2 - 4No]/2a 

(19) 

Introducing Z In this form normalizes the 
response  curves  so  that  the  lower  resonance 

frequency occurs near r = 1. Snowdon's optim- 
ization determines the ratio of Inertias such 
that a large Isolation range between the two 
resonances is accomplished. The optimum mass 
ratio was established as follows: 

"opt = M - 1. (20) 

The vibration isolation characteristics of the 
two OOF system Is investigated for two isolat- 
or configurations: on-off damping between the 
two inertias; and on-off damping between the 
two masses m. and ms and also between nu and 
the base. The damping fact of the Snowdon's 
Isolator with on-off damping Is evaluated 
using the expressions presented in Table 3. 
The vibration Isolation characteristics of the 
isolator with on-off damping are evaluated and 
compared to that of the passively damped 
system. 

The displacement transmissibility char- 
acteristics of the two-DOF system employing 
one on-off damper between the two inertias is 
presented in Figure 9 and Figure 10 shows the 
displacement transmissibility (xs/xj behavior 
of the Isolator employlngtwo on-off dampers. 
A comparison of Isolation performance of the 
two OOF system with on-off damping to that of 
a passively damped system reveals that all the 
on-off damper configurations offer superior 
isolation performance. On-off damper II indi- 
cates poor performance around the resonance 
when compared to passive, on-off damper I and 
III (Figures 9 and 10). A comparison of 
Figures 9 and 10 reveals that introduction of 
two on-off dampers can offer slightly improved 
isolation performance (on-off damper I). 
However, the resonant transmissibility ratio 
of on-off damper II  Increases significantly. 

Three DOF Cab Suspension 

Off road vehicles in-general are unsus- 
pended vehicles and offer a difficult ride 
problem. Ride vibrations of these vehicles Is 
characterized by lightly damped resonance 
due to their significantly soft tires. The 
ride vibrtion levels at the driver-seat inter- 
face are of significantly large amplitude and 
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TABLE 3 

Damping Parameter of Two DOF Isolator with 0n-0ff Damping 

Damping Coefficient On-Off Damper 

I II III 

C 

C 

xs(x*s-xp) > 0 

VW < 0 
(xs-j?p){xs-Xp)  < 0 

(*s-*pH*s-V > 0 

Us-XpHVV * 0 

(■xs-xp)( Vfp) < 0 

AC 

AC" 

XpUp-x*0) > 0 

tyip-i0) < 0 

(^0)(xp-x0)  <0 (xp-x0)(<p-;0) * 0 

{ip-i0)Up-i0) < 0 

dominate In the frequency range 1 - 3 Hz [14]. 
An effective ride Improvement system at the 
cab requires heavily damped soft suspensions. 
However, a heavily damped vibration Isolation 
system leads to poor ride response at the 
driver seat In the Isolation region. The 
isolation performance characteristics along 
the bounce, pitch, and roll coordinates can be 
improved by employing variable or on-off 
damping. Consider the cab configuration of 
Figure 11, supported on four corner suspension 
units. The equations of motion of the 3 OOF 
passive cab suspension can be expressed in the 
general form: 

[M]{y}+ [0]{yMk]{y}= [Df](y0]+[Kf]{y0} 
(21) 

where [M], [0], and [K] are [3x3] mass, 
damping, and stiffness matrices, respective- 
ly. [Of] and [Kf] are forced damping and 
stiffness matrices, respectively. [yf and 
[y0} are {3x1} vectors of response and 
excitation coordinates, given by; 

(y} = (zc ♦ 9}T    bo) " Iho ♦» 80}T 

The cab suspension units employing on-off 
damping   require   the   vertical    response   and 
excitation   coordinates   at   their   respective 
mounting  locations.    The response zc and 
excitation coordinates at the four suspens- 
ion   locations   can   be   evaluated   from   the 
response and excitation variables at the e.g., 
using  geometrical   transformation matrix [A] In 
the following manner: 

{Z}=  {z.z.z.z^ - [A] {y} 

T 
{zol  =   {Z01 Z02 Z03 *()<.}    =   [A]   frol 

(22) 
and 

[A] 
1. 
1. 
1. 
1. 

-a; 
-a,' 

-b. 

sion units employing on-off damping can be 
expressed as listed In Table 4. 

TABLE 4 

Force Generated by the Suspension Unit Employing On-Off Damper 

Suspension Force 
P. 

On-Off Damper 
hj I II in 

0J< W- 1f 

ij(fj-foj)  > 0 

*j(*j-V<0 

(W(zrzoj) <0 

(frV(zrzoj) >0 

(*rV(zrzoj> >0- 

' Wzj-zoj) <0- 
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The Isolation performance characteristics 
of three DOF cab suspension is assessed in 
terms  of following response ratios: 

Bounce transmissibility ratio =|zc/(zCo)maxl 

Pitch transmissibility ratio =| ♦/Uo)raax| 

Roll transmissibility ratio e/( 9o) max I 

(23) 

The response transmissibility ratios of the 
cab suspension are evaluated by solving equa- 
tion (21), using direct integration routines. 
The response transmissibility ratios of the 
cab suspension system employing on-off damping 
are cotnoared to that of a passively damped cab 
suspension as shown  in Figures 12, 13, and 14. 

Bounce transmissibility ratio response of 
the cab suspension with passive and on-off 
damping is presented in Figure 12. The isol- 
ation characteristics of the cab suspension 
employing any of the on-off damper configur- 
ations is significantly superior to that of 
passively damped cab suspension, the response 
characteristics of on-off damper II and III 
corresponding to resonant frequency is slight- 
ly deteriorated when compared to that of a cab 
suspension however, the bounce response ratio 
of these dampers is slightly Improved in the 
isolation frequency region. Pitch and roll 
response ratio of the cab suspension employing 
on-off dampers (Figures 13 and 14) exhibit 
identical behaviour as demonstrated by Figure 
12. 

CONCLUSIONS 

Three on-off damper schemes are configur- 
ed and Investigated for their vibration isol- 
ation performance. On-off damper I is based 
on the absolute and relative velocities of the 
mass. On-off damper II is based on directly 
measurable relative velocity and relative 
displacement variables. The on-off damper III 
Is configured to minimize the jerk experienced 
by Isolator mass, and is based on directly 
measurable response and excitation variables. 
The vibration Isolation performance of the 
on-off dampers, is in general superior to that 
of a passive isolator. On-off damper I offers 
resonance transmissibility ratio identical to 
that of a passive damper, however, the 
response behaviour of on-off dampers II and 
III around the resonant frequency is slightly 
poor than that of a passive damper. 

The effectiveness of on-off dampers is 
also Investigated for two- and three- DOF 
dynamical systems. A two DOF Snowdon's Isol- 
ator is investigated when employing on-off 
dampers. A three- OOF cab suspension employ- 
ing on-off damping at four corner mounted 
suspension units is investigated for its 
bounce, roll and pitch response character- 
istics.    The bounce, roll, and pitch response 

behaviour of the cab suspension employing 
on-off damping is also superior to that of 
passively   damped system. 
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Figure 1: SDOF spring-mass-damper system 

Figure 3: Steady state spring, damper and 
inertia forces of SDOF isolator. 
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Figure 2: Spring, damper and inertia forces 
trace of SDOF passive isolator. 
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Figure 4: Displacement transmisslbllity chara- 
cteristics of on-off dampers. 

154 

fe^M^^^^fä^^^^^;^ >^;>wV:^^ 



2.0 

• 
o on-off II 

• on-off III 

Ik^                                       Passive 

ü 1.0 .-» 

0.6 - \            x 

0.4 - \              N 
0.3 

■ \             \ 
\              \ 

V                 v 
O.Z 

0.1 - >v 

.05 ■       i        i       i 

Frequency 
Figure 5: Velocity transmissibility ratio of 

passive and on-off dampers. 

i.U 

X 
/ >.- ~~--v 

e on-off 11 

Passive 
Xo. ^ A VN                  _ on-off I 

I 
\ 

\ 

\ 
S 

0.5 - 0 
\ \ 

0.4 - \ 
\\ 

0.3 " \\ N 

0.2 
\\ 

0.1 - X 
\\ 

.05 - 
1 -i.   i U.              1 

Figure 6: Schematic configuration of vibration 
isolator with elastically coupled darper. 

Figure 8: Two- DOF vibration isolator. 

12 3 4 5 6 

Frequency, Hz 
Figure 71  Displacement transmissibility ratio of 
elastically coupled on-off dampers!", = 10 rad/s, 

C     = 0.7795. N = 5) 
opt 

e on-off 11 
2. 

/ 

e 
• on-off 111 

Passive 

',    1 v' \\ or-off 1 
, \ 

A \\ 
as - 

\s v. 
X 

0.3 - 
e\ 
\ 

0.2 a s 0.2 ^s           ^■-- 
A z 1.0 

0.8 

*"*"■—> 

0.1 - C = 0.08 
\» 

z z 0.723 -i^^^ 
.05 

 1_ 1            1 

0 

Frequency, Hz 
Figure 9: Displacement transmissibility ratio of two 
DOF system ( on-off damper placed between ms and m ) 

155 

S&&^^:&^ 



2. 
0 

0    -? 
o    on-off II                   | 

y Ä •   on-off III 

1? ^ \v »—« Passive 

\\\ 
0.5 

0.3 

:         ^ 

^\ 
0 ? 

a = 0.2 \          *\.               ^~"~ 
A = 1.0 o \^                 ^•. 

0.1 
h   ? s 0.8 

?'= 0,08 
Z = 0.723 O    >v 

.OS 

i 

°~^~——— 

Figure 11:   Three D0F cab suspension model 

Frequency, Hz 
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STRUCTURAL DYNAMICS 

BUCKLING OF RING-STIFFENED CYLINDRICAL SHELLS WITH DYNAMIC LOADS 

T. A. Butler 
W. E. Baker 

Los Alamos National Laboratory 

C. 0. Babcock 
California Institute of Technology 

Buckling of a ring-stiffened, thin-walled cylinder from dynamic base 
excitation was Investigated In a combined experimental/numerical program. 
A polycarbonate (Lexan) cylinder was excited with single-frequency harmonic 
transients to determine the peak base acceleration levels required to Induce 
buckling. Buckling was Identified using recorded signals from strain gages 
and accelerometers, with high-speed video records, and by audibility. Ex- 
perimental results are compared with numerical results obtained using a 
freez1ng-1n-t1me technique. The numerical method Is based on modal analysis 
techniques combined with a statically determined buckling Interaction curve. 
Results of the study Indicate that, for the particular types of transients 
studied, this freezlng-ln-tlme technique provides a conservative prediction 
of when buckling will occur. 

I.  INTRODUCTION 

As one phase of an ongoing program to Investi- 
gate the buckling of free-standing, nuclear 
containments under various loadings, the Los 
Alamos National Laboratory 1s currently study- 
ing buckling of thin-walled, cylindrical shells 
from dynamic loads. The goal of this work Is 
to assess the current (and past) design and 
analysis procedures for predicting buckling of 
steel containment vessels under time-dependent 
loadings. In particular. In this phase of the 
work the freezlng-ln time method 1s evaluated. 
For this analysis method, time-dependent 
stresses are calculated with a structural dy- 
namic computer code or the stresses are derived 
from equivalent static loads and then. In 
either case, are assumed to be static (frozen 
In time) during performance of bifurcation 
buckling analyses. Implicit In this procedure 
Is the assumption that the stress field that 
causes the buckling changes little during the 
time that It takes the structure to deform 
Into the buckled configuration. 

The freezlng-ln-tlme method Is evaluated 
based on a series of experiments performed 
with a ring-stiffened, polycarbonate (Lexan) 
cylinder that was dynamically loaded by horl 
zontal base excitation. The loading transients 
consisted of a sine wave signal at particular 

frequencies that linearly Increased In ampli- 
tude from zero to a predetermined maximum 
value. Prior to the dynamic tests the cylin- 
drical shell was buckled under static loads 
(axial compression and bending) to define the 
static buckling criterion using an Interaction 
relationship based on previous work [1]. The 
same shell was then submitted to dynamic exci- 
tation with an electrodynamlc shake table. 
Typical test sequences consisted of subjecting 
the test cylinder to Increasing levels of base 
excitation, until buckling occurred. Buckling 
was detected by using data from strain gages 
and accelerometers mounted on the cylinder, 
high-speed video recordings, and audibility. 
A numerical model of the cylinder was devel- 
oped, and the freezing In-time method was used 
to predict the buckling levels using stresses 
predicted by the model and the experimentally 
derived buckling Interaction curve. 

Previous research r 
of cylindrical shells ha 
static problem with litt 
on buckling response 1n 
Inertlal effects are of 
has performed extensive 
the dynamic characterlst 
diet changes In the stat 
with changing boundary c 
have generally been appl 

elated to the buckling 
s concentrated on the 
le effort being focused 
environments where 
Importance. Singer [2,3] 
studies making use of 
les of shells to pre- 
1c buckling behavior 
ondltlons. His methods 
led to shells with 
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closely spaced longitudinal stlffeners where 
the Influence of boundary conditions, rather 
than Imperfections predominates. For the shell 
considered In this study, which has no longi- 
tudinal stlffeners. Imperfections became an 
Important parameter. In the following sections 
of this paper, the Lexan model 1s first de- 
scribed. The test method and results are then 
summarized and results of the numerical study 
are presented. 

II. TEST SPECIMEN DESCRIPTION 

The cylinder used for the experimental 
studies was constructed from Lexan and was 
supported with aluminum end rings (Fig. 1). 
The geometry of the cylinder was designed to 
provide similarity of essential features with 
steel nuclear containment structures. The 
size and spacing of the ring stlffeners were 
based upon the requirements of ASME Code Case 
N-284 [4] for prevention of both ring and 
global buckling under typical design loadings 
for nuclear containments. 

The polycarbonate material used for con- 
structing the cylinder and stiffening rings 
has two characteristics that make It particu- 
larly convenient for dynamic buckling tests; 
models may be fabricated using a convenient 

solvent bonding technique, and the material 
remains elastic throughout a test Involving 
reasonable post-buckling deformations. There- 
fore, the model may be subjected to buckling 
deformations many times without substantial 
change 1n the response of either the buckling 
load or the buckled mode shape. Babcock [5] 
reviewed several Investigations where plastics 
of this type have been used for various buck- 
ling studies, both static and dynamic. 

The model construction technique results 
In a high-quality shell with few geometric 
Imperfections, and the axial buckling load 1s 
typically from 70 to 95 per cent of the clas- 
sical value. The first step In the fabrication 
process Is to form the shell on a rolled steel 
mandrel using a butt Joint to connect the edges. 
A 20 mm (0.79 In.) wide doubler Is used at the 
joint for reinforcement. Solvent bonding 1s 
used at this Joint and at all other Joints 
between Lexan. After being cut to the desired 
cross-section, the ring stlffeners are formed 
to the radius of the shell and oven annealed. 
This process removes residual stresses In the 
rings and minimizes accompanying residual 
stresses and geometric Imperfections 1n the 
shell. After the Lexan stiffening rings are 
attached and the Lexan shell Is removed from 

7241111« (18.50 In.I DIAM 
-•73 mm (ZC.SOIit.) DIAM 

4.06 mm (0.16 In.) 

3.09 mm (0.12 In.) 
990 mm (23.25 In.) 

63.9 mm (2.90 In.) 
(8 PLACES) 
-J 4 

4l.4mm(l.63ln.l 
12 PLACES) 

-696 mm (27.90 In.) 1.0. x 
0.76 mm (0.030 In.) Thk 
POLYCARBONATE (LEXAN) 

-CASTIMC EPOKY (t PLACES) 
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 720mm 128.58 In.) DIAM 
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fig. 1. Details of ring-stiffened, Lexan cylinder. 
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the mandrel, the ends of the shell are con- 
nected to aluminum end rings by setting In a 
casting epoxy. During the casting process the 
shell 1s held In a circular shape with an ex- 
panding Internal ring. 

A standard tension test was used to de- 
termine the modulus of elasticity for the Lexan 
material, which was 2.52 GPa (3.66 x 105 psl). 
A vibrating beam was used to determine the 
strain rate effects on the modulus of elastic- 
ity. The natural frequency of the beam was 
determined for several different lengths, and 
the modulus of elasticity was calculated. 

For a frequency of 20 to 250 Hz the value 
of the modulus did not change significantly. 
Indicating llttlj strain rate effect In the 
frequency range of Interest. 

III. STATIC TEST PROCEDURE/RESULTS 

Preliminary to the dynamic tests, a series 
of static tests were performed on the cylinder 
to establish Its buckling strength. Both com- 
pression and bending tests were conducted. 
The results of these tests, along with the 
buckling Interaction diagram that Is discussed 
In detail In Ref. 1, were used to define the 
static buckling criterion used with freezing- 
in-time analysis. 

The static compression tests were con- 
ducted with a 200 kN (55 kip) servohydraullc 
testing machine. Rubber cushions were placed 
between thick end plates, which provided the 
load path from the testing machine to the cyl- 
inder, and the aluminum end rings of the cyl- 
inder to obtain a uniform load distribution 
around the cylinder. Axlsymmetrlc loading was 
used, and five tests were performed with the 
cylinder at different angular positions rela- 
tive to the end plates. The peak load prior 
to general collapse varied from 3923 N (882 
lb) to 4528 N (1018 lb), and the average was 
4092 N (920 lb) with a standard deviation of 
249 N (56 lb). The average load at general 
collapse Is approximately 71 percent of the 
classical buckling load of an unstlffened cyl- 
inder of this geometry. Figure 2 shows the 
model In the buckled configuration. 

The bending tests were conducted by clamp 
Ing the lower end ring to a rigid test fixture 
and applying a load along a diameter at the 
top ring. In essence, the shell acted as a 
short cantllevered beam with a load at the end 
giving a constant shear distribution along the 
length of the shell. As with the axial tests, 
considerable care was takers to ensure minimal 
deviation from an Ideal stress distribution at 
the clamped end. During the tests, as the 
load was slowly applied, visible, but stable, 
shear buckles formed before general collapse 
at the peak load. For a series of nine tests, 
the average buckling load was 1770 N (397 lb), 
and the range was 1710 N (384 lb) to 1850 N 
(416 lb). Figure 3 shows the cylinder In the 
buckled condition for this type of loading. 

IV. MODAL STUDIES 

A. Experimental Results 

Several shell modes of the cylinder were 
determined from low-level vibration tests. 
Certain shell modes were excited with a speaker 
driver and the vibration mode shape of the 
shell was measured with a noncontact fiber 
optic displacement measuring device. This 
procedure was followed for each of the shell 
modes that could be Identified and easily 
excited. 

Because the shell material 1s nonmagnetic, 
It was convenient to excite the shell with the 
speaker driver using acoustic coupling. The 
output from the driver was concentrated on a 
small area approximately 0.60 cm (0.25 In.) In 
diameter. This "focusing" was accomplished by 
fitting the driver with a metal adapter that 
has a small opening that could be placed close 
to the shell surface. Excitation with the 
driver working near Its rated output resulted 
In shell vibrations of sufficient amplitude 
for measurement. 

Natural frequencies were Identified by 
slowly Increasing the excitation frequency 
while monitoring the vibration amplitude at a 
particular point on the shell surface. The 
natural frequency was Identified as the fre- 
quency at which the peak-to-peak amplitude was 
locally a maximum. The excitation was held 
constant at this frequency and the mode shape 
was determined by measuring radial displacement 
of the shell at selected points with the fiber 
optic displacement measuring device. 

Experimental results are shown In Fig. 4 
along with the results of the numerical study 
described below. Note that the experimental 
frequencies are quite close to the analytical 
predictions. The nu2 modes were not excited 
experimentally because the speaker driver was 
not moved from the axial midpoint of the cyl- 
inder, which Is a node (zero displacement) for 
these modes. Only the shell modes were excited 
during the experimental modal study. The beam 
bending/shear mode Identified on the figure 
was found from shake table tests, discussed 
below, to be very close to the analytical value 
of 43 Hz. 

B. Numerical Results 

A numerical model of the lexan cylinder 
was developed using the BGSOR IV computer code 
[6]. The model Is axIsymmetrU and has 200 
nodal points. The elastic modulus for the 
Lexan was obtained with unlaxlal test specimens 
of the parent material that was used for fab- 
ricating the cylinder. Polsson's ratio was 
est mated to be 0.4. Standard properties were 
used for the aluminum In the upper end ring. 
The lower end ring was not modeled and the 
bottom of the Lexan cylinder was assumed to be 
fixed. Each Lexan stlffener was modeled as a 
discrete ring. 
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The numerical model was used to predict 
the mode shapes and frequencies for the cir- 
cumferential harmonics zero through twelve 
with the results being shown in Fig. 4. Gen- 
eralized force for harmonics other than n=l is 
zero for single axis horizontal input for the 
ideal cylinder that is represented numerically 
and, therefore, modes with n > 2 were not 
included in the transient response calcula- 
tions. It should be noted, however, that the 
higher harmonics can be excited on the test 
cylinder because of small geometric imperfec- 
tions. The modes associated with circumferen- 
tial harmonic zero are excited only for verti- 
cal input. Their inclusion is necessary to 
account for the small amount of vertical motion 
that occurs on the shake table during the 
tests. 

Figure A  shows that the predicted fre- 
quencies and mode shapes for harmonics greater 
than two follow the pattern typically expected 
for a thin shell with this type of geometry. 
The predicted numerical values are also very 
close to those measured during the modal survey 
tests. 

V. VIBRA uN T':ST METHOD 

The vibration tests were conducted on a 
single-axis, horizontal shake table that was 
controlled with a digital control system. The 
method of attaching the cylinder to the shake 
table presented the problem of changing the 
buckling response because of the Imposed end 
condition. Because the table and lower end 
ring on the cylinder were not exactly planar, 
bolting the ring to the table could introduce 
stresses in the Lexan shell that were large 
enough to cause buckling with no added loads. 
The following mounting procedure was used to 
overcome this problem. An intermediate ring 
was machined to fit between the table and the 
cylinder. It has a groove in the top into 
which the shell end ring can fit. After bolt- 
ing this intermediate ring to the table, the 
groove was partially filled with a casting 
epoxy and the shell end ring was set into the 
epoxy and gently clamped while the epoxy cured. 
After the epoxy had cured, the clamps were 
tightened slightly. Figure 5 shows a photo- 
graph of the cylinder mounted on the shake 
table. 

Fig. 2. Buckled configuration of Lexan cylinder under uniform axial compression. 

160 

&&£^ä&&&äS^:S^^ 



Flg. 3. Buckled configuration of Lexan cylinder under bending load. 

During the phase of the research reportet- 
In this paper the excitation was sinusoidal In 
nature. This type of excitation was chosen 
primarily to simplify analysis of the test 
results. After the buckling phenomena are 
well understood for this type of transient, we 
plan to excite similar cylinders with more 
complex earthquake type transients. 

The desired acceleration transient for 
each test was a  sine wave at a given frequency 
that Increased linearly In amplitude from zero 
to a predetermined peak 1n 40 cycles. The 
peak acceleration was held for one additional 
cycle followed by ten cycles of linearly de 
creasing amplitude to ;ero acceleration. This 
particular transient was selected to reduce 
the chance of falling the cylinder by restric- 
ting the number of cycles of buckling that the 
cylinder could experience during any one test. 
For 3  given test, frequency and the peak ac 
celeratlon were selected, and then the peak 
acceleration was Increased during successive 
tests until buckling was detected. The de 
creasing amplitude tall on the transient was 
necessary to avoid the Introduction of a  "shut- 
down" transient, which could cause a  severe 

response at the end of each test. The harmonic 
tests were performed at frequencies from 10 Hz 
to 80 Hz In Increments of 10 Hz. 

Included 1n the data taken during each 
test were the three components of Input accel- 
eration recorded with accelerometers mounted 
on the lower ring of the cylinder, three com- 
ponents of output acceleration recorded from 
accelerometers mounted on the cylinder's upper 
ring, and four strain measurements. Two of 
the strain gages were oriented vertically at 
the "toe" of the cylinder where buckling from 
compresslve stresses was Judged most likely to 
occur (see Fig. 5). These gages were centered 
between the lower end ring and the first ring 
stlffener, one being on the Inside and th<- 
other on the outside. The other two stra n 
gages were on the side of the cylinder. 9C 
degrees from the first set of gages and cen- 
tered In the bay Just below the center ring 
stlffener. As with the first pair, the two 
gages were back to-back, one Inside and th? 
other outside. The orientation of the gages 
on the shell was 60 degrees from the axial 
direction. 
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Fig. 4. Hodal frequencies for ring-stiffened 
cylindrical shell. 

In addition to recording time histories 
of these ten transducers, photographic coverage 
of each test was obtained with two high-speed, 
video cameras. An equivalent framing speed of 
1000 frames per second was used. These records 
permitted visual Identification of when buck- 
ling occurred In the areas covered on the cyl- 
inder. One of the cameras was oriented toward 
the toe of the cylinder Just above the bottom 
aluminum ring. The other was oriented to show 
shear buckling on the cylinder at a location 
approximately 45 degrees to the direction of 
excitation. 

VI. VIBRATION TEST RESULTS 

Several different criteria were used to 
determine when buckling occurred In the cylin- 
der for each of the tests. Some of these were 
more effective within certain frequency ranges; 
however, by using all the criteria, the point 
at which buckling occurred for each frequency 
considered was reasonably well Identified. 
Only at one frequency, 80 Hz, was «"he shaker 

^ 

>rv. 

rH 

i 

Mg. 5. Lexan cylinder mounted on shake table. 

162 



capacity too low to buckle the cylinder. A 
summary of test results Is shown In Fig. 6. 
The first, and most consistent, method for 
Identification of buckling is labeled "top 
acceleration" 1n the figure. For this method 
acceleration recorded with the accelerometer 
located on the top ring of the cylinder and 
oriented 1n the direction of primary excitation 
was used along with the mass of the top ring 
to determine buckling with an equivalent static 
criterion. When this acceleration first 
reached a level that the equivalent static 
load acting on the ring was equal to the static 
buckling load (1770 N (397 lb)) the cylinder 
was considered to have buckled. The buckling 
acceleration was then Identified at the same 
point in time from the accelerometer located 
at the base of the cylinder and oriented in 
the direction of excitation. 

A second criterion, based solely on the 
vertical acceleration response verified the 
first criterion for frequencies above 43 Hz 
(the fundamental frequency of the cylinder). 
Figure 7 shows the vertical acceleration record 
of the top ring for a 60 Hz test and a 70 Hz 
test. The response initially increases lin- 
early, as would be expected from the prescribed 
input acceleration. Then at approximately 0.6 
s for the 60 Hz case and 0.5 s for the 70 Hz 
case, a high frequency response component ap- 
pears and the response becomes nonlinear, as 
indicated by the peak response for each cyle. 
Again, the buckling acceleration is identified 
from the base input at the appropriate point 
in time. Results using this criterion are 
within 5 percent of the first criterion and 
are, therefore, not shown in Fig. 6. Another, 
similar, method for identifying buckling in- 
volves comparing the top acceleration in the 
horizontal direction with the calculated ac- 
celeration. Figure 8 shows both the experi- 
mental and analytical acceleration for a 50 Hz 
test. The calculated response does not inclide 
buckling effects, so, by comparing the two 
signals and determining when the experimental 

Test 44 - 70 Hz - ARV 

- X COMPUTED 
- o TOP ACCELERATION 

I AUDIBILITY 

0 VIDEO 

X -r 

- r NO TEST ABOVE II q 

1 1    1 
10 "20       30       40T     50 

43 

NO TEST BELOW 10 g 

NO TEST BELOW 12 g 

J I L 
60       70 

FREQUENCY (Hi) 

80      90 

F1g. 6. Required base acceleration to buckle 
Lexan cylinder as a function of 
frequency. 

o max= 16.4320 
g-i min= -12.3960 

0.75   1.00   IZi 
time (sees) 

1.90 

Test 41 - 60 Hz - ARV 
max= 9.99880 
min= -9.88680 

Fig. 7. 

0.79   IM        I» 
time (pea) 

Vertical acceleration of top aluminum 
ring on Lexan cylinder for 60 and 
70 Hz tests. 

response deviates significantly from the anal- 
ytical, buckling can be identified. For this 
50 Hz test, this criterion for identifying 
buckling again gives results close to the 
equivalent static criterion. 

Buckling was also identified for all ex- 
cept the 20 and 80 Hz tests using the recorded 
video signals. For each of the tests, the 
video was analyzed frame by frame near the 
initiation of buckling and the time at which 
buckling occurred was identified. From Fig. 6 
it can be seen that, except for the 70 Hz case, 
this criterion results in buckling accelera- 
tions that are very close to those for the 
other criteria already discussed. The final 
criterion used for identifying buckling In- 
volved audibility. When buckling occurred the 
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Test 46 - 50 Hz - coLcuLoted response 
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VII. ANALYSIS RESULTS 

The B0S0R-IV computer code was modified 
to calculate modal stresses and these, along 
with the frequencies, generalized masses, and 
mode shapes were used 1n a separate computer 
code that Integrates the uncoupled equations 
of motion 1n modal coordinates. Modal damping 
values of 1 per cent of critical, the measured 
damping of the test cylinder, were used for 
the calculations. The modal response values 
are then used to predict the stress 1n the 
cylinder at each location for each point 1n 
time. These stresses are normalized with the 
critical buckling stress determined 1n the 
static tests discussed above. A postprocessor 
Is then used to plot the maximum normalized 
stresses at specified points on the shell and 
these are compared with the buckling Interac- 
tion curve discussed In detail In Ref. 1. 

Test 46 - 50 Hz - ARL 
o max= 36.6790 
g-i min= -31.9120 

0.00  0.29 o.n  too  IJS 
time (sea) 

too 

Fig. 8. Horizontal acceleration to top 
aluminum ring on Lexan cylinder 
for 50 Hz test. 

cylinder responded with an audible popping 
sound. While each test was being performed 
two of the experimenters were positioned near 
the shake table and listened for this charac- 
teristic sound. Because the tests were short 
In duration, the point 1n time ^t which the 
sound occurred could not be Identified. It 
could only be determined that buckling either 
did or did not occur for each test. In F1g. 
6, the lower bar for this criterion Indicates 
a test for which buckling did not occur (no 
buckling sound was Identified), and the upper 
bar Indicates a test for which a buckling sound 
was Identified. If more tests had been per- 
formed between the two bars, this criterion 
may have given more precise results. 

Figure 9 shows results for calculations 
of the cylinder response during a given tran- 
sient. In the figure, the computed point where 
there Is zero shear stress, Nse=0.0, Is at 
the toe of the cylinder zero degrees from the 
direction of excitation. The points where 
there Is nearly zero axial stress are at plus 
and minus 90 degrees from the direction of 
excitation and the other points are at 15 
degree Increments between 0 and plus and minus 
90 degrees. For each location the plotted 
point represents the maximum excursion of com 
blned axial and shear stress during the total 
duration of the transient. When any of the 
computed stress values are outside of the in- 
teraction curve, buckling can be expected. 
The sequence described here Is a freez1ng-1n- 
tlme technique and was used to analyze all of 
the tests. 

The numerical model was used to analyze 
response of the cylinder to the harmonic exci- 
tation at each frequency considered In the 
test series and, 1n addition, at the fundamen 
tal frequency of the cylinder (43 Hz). Results 

MCMQIOWLZSHfflfL SIRCSS RCSULTRNI 
BUCKLING   LNJIRflCIIDN CURVES 

LEXHN CTLINDCR  K'jTi 

r 

: .*'   i.o    u.fl    o,(.    u-i    ii..'    iMi    LW    ii.i    iv.b    0,9    i .o    \.i 

F1g. 9. Computed stress levels on static 
buckling Interaction curve. 
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of these calculations are shown 1n Fig. 6, 
along with the experimental results. The com- 
puted buckling acceleration levels are consis- 
tently below the experimental data. The pri- 
mary explanation for this difference is the 
fact that the computational buckling criterion, 
when compared with the particular static buck- 
ling interaction curve used here, should prob- 
ably use an Integrated stress level over a 
characteristic area rather than point values. 
The characteristic area has not yet been de- 
termined but should probably be related somehow 
to the buckling wave length for the cylinder. 

Discussion of one particular point on the 
Interaction curve can help clarify this ex- 
planation. Consider the point on the curve 
where the shear stress is zero (Nse=0.0) and 
the normalized axial stress is one (Ns=1.0). 
When the Interaction curve was developed, this 
point was determined with the complete cylinder 
In a uniform state of axial stress and Nse was 
zero everywhere. On the other hand, for the 
load cases considered here, the Nse stress 
component is generally zero for only one loca- 
tion on the cylinder; at 0 degrees and 18Ö 
degrees to the direction of excitation (that 
is, at the toe of the cylinder). The axial 
stress is not constant at this point but varies 
in both the circumferential and axial direc- 
tions. 

Vlll.  CONCLUSIONS 

A series of harmonic tests were performed 
to determine whether an analytical freezing-in- 
time buckling method is appropriate for pre- 
dicting buckling of a ring-stiffened cylinder. 
Results of the experimental portion of the 
research showed that buckling could be identi- 
fied by three techniques: an equivalent static 
load method using horizontal response acceler- 
ation, vertical response acceleration, and 
from video coverage. The first two techniques 
gave results that were in agreement to within 
5%. Use of audible emissions has potential 
application hut needs further development. 

The computational method 
buckling used a model that ac 
sented the test shell as evid 
eel lent agreement between the 
predicted shell mode frtquenc 
the buckling load predicted u 
In-time method described In t 
significantly conservative, 
tion frequencies used in this 
the lowest shell modes, this 
restricted. When excitation 
near those of shell modes, th 
be excited because of shell i 

for predicting 
curately repre 
enced by the ex- 
caiculated and 

les. However, 
sing the freezing- 
his paper was 
Since the excita 
work were below 
conclusion is 
frequencies are 
ese modes could 
mperfections and 

lower the buckling loads. One reason for the 
conservatism is thought to be associated with 
the differences in the stress field in the 
cylinder during the harmonic tests and the 
stress field present when the static buckling 
Interaction curve was developed. Further re- 
search needs to be performed to determine how 
the dynamic stress field developed during gen- 
eral transient excitation can be treated to 
make appropriate use of statically determined 
buckling Interaction curves. 
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FORCED VIBRATIONS OF STRINGER STIFFENED DAMPED SANDWICH PANEL 

N. Kavi and N.T. Asnani 

Mechanical Engineering Department, 

I.I.T. Delhi-110016, INDIA 

Transfer matrix method to determine response 
of a stiffened sandwich panel consisting of 
elastic face layers sandwiching viscoelastic 
core, to a deterministic harmonic loading has 
been developed. A rectangular sandwich panel 
with arbitary number of stringers placed at 
equal or unequal spacings has been considered 
with the edges perpendicular to stringers 
simply supported and the edges parallel to 
stringes with arbitrary boundary conditions. 
The principle of correspondence of linear vis- 
coelasticity has been applied to take account 
of the viscoelastic damping. Vibration res- 
ponse of a sandwich panel with two equally 
spaced stringers to a sinusoidal excitation has 
been determined and values of the resonant 
frequencies and associated modal loss factors 
have been reported. 

NOTATIONS 

A. 
i 

d 

Dt 
E. 
l 

stringer pitch for stiffened sand- 
wich panel 

width of panel 
coefficients defining transverse 
displacement 
cross-sectional area of stringer 

(hl+h3)/2+h2 

do/2a 

(E^+Ejh^/lSd-v2) 

Yong's modulus of stringer, 

h.    Thickness of the layer 'i' 

M     Bending moment 
x ^ 

p.+jq. Roots of characteristic equations 

S,S   Transverse shear force and non- 
dimensional transverse shear 
force 

U.V.W Displacements in X,Y and Z- 
directions 

x     Nondimensional ordinate in 'X' 
direction = X/a 

q     Shear parameter   _   - 
= G(l/E1h1-i-l/E3h3)a':(l-v )/h2 

■'s 

C 
y 
l,r 

Geometric parameter 

(h1+h32h2)
2 E1h1E3h3 

4Dt(l-v   ) E.1h1+E3h3 

pi Mass  density  of 'i'th  layer 
m-ny 

b 
V Poisson's  ratio 

circular frequency 

Elasticity modulus of stringer 

Warping constant about shear 
centre '0' 

M.I.of stringer about centroidal 
axts parallel to 'X' direction 

M.I. of stringer about centroi- 
dal axis parallel to 'Y'-dir- 
ection 

Product moment of inertia 

Mass density of stringer 

distance  shown in Fig. 2 

Subscripts used for left and 
right side of line of attachment 
of stringer 
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a   frequency parameter 
2 4 

= (p1h1+p2h2+p3h3) (» a /Dt 

1.   INTRODUCTION 

The sandwich panel consisting of a pair 
of stiff elastic faces separated by and 
bonded to a soft central viscoelastic 
core layer have found extensive appli- 
cation as structural components of air- 
crafts, spacecrafts, missiles and in 
many other branches of contemporary 
structural engineering.  Generally 
these panels are further stiffened by 
orthogonally placed stringers.  Vibra- 
tion and damping analysis of these st- 
ructures are of considerable importance 
and have been investigated in [1,2,3]. 
In these studies energy methods have been 
used for deriving equations of motion 
and solutions have been found for simply 
supported boundary conditions.  In [4] 
the authors have reported transfer ma- 
trix analysis for free vibration of 
elastic sandwich plates.  In the present 
work the method of transfer matrix has 
been developed for forced response of 
stiffened sandwich panel with a deter- 
ministic harmonic loading.  Rectangular 
sandwich panel with any number of strin- 
gers at equal or unequal intervals and 
with edges perpendicular to stringers 
simply supported and edges parallel to 
stringers with arbitrary boundary con- 
ditions have been considered.  Vari- 
ations of all quantities »long perpendi- 
cular to simply supported edges have 
been taken sinusoidal satisfying the 
boundary conditions.  This transforms 
the two dimensional problem into eff- 
ective one dimensional problem. 

The principle of correspondence of 
linear viscoelasticity has been applied 
to take into account the viscoelastic 
damping of the core i.e., the shear 
modulus of the core is considered com- 
plex for forced response.  Transverse 
displacement, slope, bending moment, 
shear force, longitudinal force and 
longitudinal displacement have been 
taken as elements of state vector defin- 
ing state at a point.  The field tra- 
nsfer matrix relating state vectors at 
any two points of a sandwich bay of the 
panel has been developed from the go- 
verning equations of motion of the bay. 
The elements of the state vector and the 
field matrix involve complex quantities 
due to complex shear modulus of the 
core.  The point transfer matrix relat- 
ing state vectors across the stringer 
has been developed from the governing 
equations of motion of a stringer which 
takes into consideration its inertia, 
warping and torsion. 

The impressed force has been int- 
roducec1 in a form of a unit transverse 

shear force varying sinusidally along a 
perpendicular to the simply supported 
edges. A state vector having all ele- 
ments zero except the shear force has 
been used as an excitation. Making use 
of the field and the point transfer 
matrices a relationship between the state 
vectors at extreme edges of the panel 
are established.  Introducing known 
boundary conditions at the edges of the 
panel, non-zero elements of the state 
vector at one of these edges have been 
computed from the transfer matrix re- 
lationship.  Using these computed values, 
the response in terms of various elem- 
ents of the state vector at any location 
of the panel can be evaluated. 

2.   FIELD TRANSFER MATRIX 

Fig. 1 shows a finite stringer 
stiffened damped sandwich panel with X- 
wise edges, i.e., the edges perpendicular 
to the stringers simply supported and 
the edges parallel to stringers with 
arbitrary boundary conditions. The mod- 
ulus of the viscoelastic core is given 
by G = G + jß where G = Real part of 
the Modulus and ß= Material loss 
factor.  Using G in place of G, the 
sixth order governing differential equ- 
ation of motion of the sandwich bay 
is obtained [4] as follows: 

w^1 -(3c2+gy+jßgy)w^v+{(3;4+2c2gy-i2) 

4  -       2 r,  gy+  ?   Q+giJ  ) + j2ßgy c )»"+{•:.)- ? 

+j(ßgn~ ßgye4)}w , = o (1) 

The solution of equation (1) is given by 
6 

(2) W  = 
x 

The 

Z  e 
i-1 

'n'th derivative of 
is given by 

6 
W.n = 1       A. (p.+jq. 

'W w.r.t. 
x 

(p +jq )x 
e  1   1 (3) 

Equation 
6 

Wn = 1 
X   i = l 

6 

i = l 
where 

i=l 
(3) may be simplified as 

A. (p.  +iq.  )(p . +jq . ) 
i ri,n J^i,n,-xi J^xi 

A.(p .  +3q .  ) 
i. xi,n J^xi,n (4) 

P ■   = o.  p .-q.  a . rx-i,n  'i,n xi ^i^^xi 

Pln p.x 1'n  i  1 

^i cos q.x, 
Pxi= e 

p.x 
q .=e   sin q.x Mxi        ^i 

and 

(5) 
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q .  =q.  p .+p.    q . 

for i = 1,2,...,6. 

Hence from equation (4) the vector of 
W and its first five derivatives may be 

written as 

{Wn} = [P +jP .]{A.} 
x     xr ■' xi  i 

where 

x 

(6) 

w11 = [w  w1 wi1 ,111 wlv wv]T 
X    X 

C ] = xr 

Pxl,0 px2,0 ^3,0 Px4,0 px5,0Px6,0 

Pxl,l Px2,l Px3,l Px4,l Px5,lPx6,l 

Pxl,2 Px2,2 Px3,2 Px4,2 Px5,2Px6,2 

Pxl,3 Px2,3 Px3,3 Px4,3 Px5,3Px6,3 

Pxl,3 Px2,2  Px3,3 Px4,3 Px5,3Px6,3 

Pxl,4 Px2,4 px3,4 Px4,4 Px5,4Px6,4 

Pxl,5 Px2,5 Px3,5 Px4,5 Px5,5Px6,5 

''xl^ qx2,0 qx3,0 qx4,0 qx5,0 qx6,0 

xl,l qx2,l qx3,l qx4,l qx5,l qx6,l 

[P .] = 
xi ' 

xl,2 qx2,2 qx3,2 qx4,2 qx5,2 qx6,2 

^xl.S qx2,3 qx3,3 qx4,3 qx5,3 qx6,3 

3xl,4 qx2,4 qx3,4 qx4,4 qx5,4 qx6,4 

3xl,5 qx2,5 qx3,5 qx4,5 qx5,5 qx6,5 

Where 

■ xi,o 
1.0 for 1,2,, ,6 

The elements of state vector {SV )are 

the transverse displacement 'W ',slope 

'W1' , bending moment 'M ', shear force 
x       ^        x 

'S ', longitudinal force 'N ' and 

longitudinal disolacement 'U '.  U ,N 
^ ' x    x' x 

M and S are expressed as functions of 

'W ' and its derivatives [4] as follows. 
x 

ux = (v^isK+'v^K11 

+(u
l+^il>w. 

Nx  =   (G4 + jG.4)W^+(G2 + jG.2JW; 

+   (Go^Gio'Wx 

ll 
x 

M     =   {M.+JM..)W     4(M_+jM.,)W x 4   J   i4     x 2   J   i2     : 

+   (M +1M.   )W 
0    J    10      X 

11 
X 

(7) 

(8) 

(9) 

Sx =   (V5+3Vi5)Wx+<V3+jVi3)Wx 
+ (v1+jvil)wx 

where 

U5 =   (1-ß2)   g  (1+ B2)2 

Ui5= -2/{g   (1+ß2)2} 

in 

(10) 

u. 2   - 2 - 
-U5(2c  gy-g)   +üi5B(2?  gy-g) 

üi3= -{Ui5(2?
2gy-g)+2ß  C2gy-g}U5 

(C  ,   x U.- ol i5 
: ..  x u.,) oil i5 

V.,= -(C  n   x U.,.   + C   .,   x U.) il ol i5 oil 5 

G4  = U5XU6-Ui5XUi6'Gi4=üi5XÜ6+U5Xüi6 
G2  = ü3XÜ6-Ui3XÜi6'Gi2=ü3XUi6+U6XUi3 
Go = UlxVUilXUi6-qh^Gio=UilXVüreqhä 

M4  =yi+lG4'Mi4=yilGi4'M2=yilG2+1' 
M. ,= ^11  Gi2 

Mo = yilGo'Mio=yilGio'V5=M4+U7xU5 

Vi5= Mi4+U7xü.5,V3=M2+U7xU3, 

Vi3=Mi2+U7xUi3 

V1   = M^xüjn   (l-v),V.1=M.o+U7xü.1 

Col= n-c4 -g2(l-e2)(y-l)-gc2(y-l) 

ü.6 =  ßg, U7 = y11  ;     (I-.),  y11 

coii = g (y-i)2e-gßc (y-i),u6=g(i-v)c 

d 
Using the equations (7) to (10) the state 

vector {SV "V may be written in the fo- 
llowing matrix form 

{SVx}= [Cr + j C.] {W^}      (11) 

where 

{SV }= [w ,w:L, M ,S ,N ,U ]
T 

x    x' x'  x x x' x 

1 0   0 0 0 0 
0 1   0 0 0 0 
Mo 

0   M2 0 M4 
0 

[cri = 0 v1  0 V3 
0 V- 

Go 
0   G2 0 G4 

0 

and 

0 u1  0 U3 
0 0. 

J 

0 0 0 0 0 0 
0 0 0 0 0 0 
M. 
lO 

0 Mi2 
0 M. 

i 4  0 

(0,1 = 0 vil 0 Vi3 
0 Vi5 

Gio 
0 Gi2 

0 Gi 4  0 

0 uil 0 Ui3 
0 Ui5 
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Using equation (6) equation (11) may 
be written as 

{SV }= [D  + jD .] {A.} 
x    xr  J xi   i 

(12) 

where 

and 

[D  ] = [C P  ] - [C.  P .] 
xr     r xr     i  xi 

[D .] 1 xi 
[C P .] + [C.  P  ] 

r xi     i  xr 

State vector at x = 0 is given by 

{svo} [D  + JD .] {A.} 
or  J oi   i (13) 

{A.}= lDor+JDoi]- {SV^^+jQ^} 
(14) 

Using equations (14) and (12) the state 
as 

(15) 

vector {SV } and {SV } are related as 
x        o 

{SVx}= [T + j T] {SVo} 

where 

and 

[T] 

[T] 

[D  Q ] 
xr r [Dxi Qi] 

[D . Q ] + [D  Q. ] xi r     xr wi 
[T + jT] is the field transfer matrix 
relating the state vector at ordinate 
•x" to that at 'o'. 

3.    POINT TRANSFER MATRIX 

The stringer is a thin walled 
member of open cross-section and is att- 
ached to the panel by bonding (Fig. 2). 
The elements of state vector at either 
side of line of attachment of stringer 
are given by compatibility and equili- 
brium considerations, i.e., 

w: 

E C  ■ 
s wo 

W^1 and u!i 
J       n       J 

■ 7 + G  j —4 4    s -'s, 2 y        3y 

Ü, 

-pio-p    ACW-pACU 'sex   hs     syesszc 

-(N^-N^s  +M1i-M^ J      J       z      J      J 

3
4u, 

E     I - 
s    n 4 s    n5 

3y 

= -s A
S V

(SJ-  SJ) (16) 

34U. 
4 

3   W 

EsIC- ay rh1. 
9X 

N: = -P A   u   + N; 
s   S      C J u 

Using geometric relations for defor- 
mation of stringer and sinusoidal 
variation of elements of state vector 
across the simply supported edges. 

We have 

r    1   ir    il  r    1 
xJ _ xj'  xJ _ xJ' xJ ~ xJ 

MrT = M
1
T+K W +K W

1+K W 
xJ   xJ m x r x u x 

3xJ S1T-K4.W +K,W
1+K U 

xJ  t X  f X  XX (17) 

NrT = N T+K W +K W
1+K U 

xJ   xJ w x x x y x 

With help of equation (16) the state 
vector at left and right side of line 
of attachment of stringer can be re- 
lated as 

[STL 

sv}]: = STlj {SV}J 

'l 0 0  0 0 0 
0 1 0  0 0 0 
Km Kr 1  0 0 K 

= -Kt Kf 0   1 0 K 

Kw Kx 0   0 1 K 

0 0 0   0 0 1 

(18) 

(19) 

and 

Km= (EsV  V^PsVS'/V2 

K
r = (EsCwsc4+G

S
Jsa4i;-psJsu2a4'/Dta3 

Ku = ^s^^z^s^'V^'^'/V2 

Kt = (Es  l/ -ps"2 As a4)/Dta 

(20) 

K,  =   (-E^I   rS, . +p A C 
s   nC  z 's  s y a  )/Dta' 

Kv =   (-Es  \^)/Dta 

Kw= 'Es V^4' (y-DV3'/^2» 

4.   TRANSFER MATRIX CONSIDERING IMP- 
RESSED FORCE 

The panel is subjected to a de- 
terministic excitation in form of 
transverse shear force that varies 
sinusoidally along a line passing 
through the middle of 'j'the bay and 
parallel to stringers.  The excitation 
is given by 

ivt .mii 
Fp(y,t) = F sinf^le (21) 

Omitting sine function and time depen- 
dent functions and using S = unity, 
the x 

SF [0 0  10  0] (22) 

Designating [T+jT]. and [ST.] as the 

field and the point transfer matrices 
for 'i'th bay and 'i'th stringer res- 
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pectively, (TI + jTI). as the field transfermatrix for half of 'j'th sandwich bay 
and introducing impressed force vector, the state vector at right edge of the panel 
is related to that at left edge as follows: 

where 

and 

^SV n1= [TN+j TN] jSVo1+ [TH + j THl^SFj} 

[TN + j TN] = [T + j f]  [ST] _1   [T + j T] 

(23) 

[TH + j TH] = [T + j T] [ST] .  [TI + j TI] T 

5. BOUNDARY CONDITIONS 

The extreme edges of the panel parallel to stringers may be fixed, free, simply 
supported or supported on elastic springs, for which boundary conditions are known. 
Using these boundary conditions, the non-zero elements of state vector at one extreme 
edge of the panel can be evaluated by use of the transfer matrix relationship.  In 
the analysis described below only fixed and simply supported boundaries have been 
considered. For fixed boundary edges, at 'o'th and 'n'th stations. 

Wx = Wx = üx 0 

and the state vectors at these stations are given 

{SV}0 = [0   0  Mx  Sx  Nx  0]J 

and 

{SV}  = [0   0  M   S   N   0]T 

n x   x   x    n 

Using equations (24) and (25) in equation (23) and simplifying 

0 

0 = ( 

0 

tnl3 tnl4 tnl5 

tn23 tn24 tn25 

tn63 tn64 tn65 

tnl3 tnl4 tnl5 fM 1 
X 

+j th23 tn24 tn23 ) 

tn63 tn64 tn&j w 
|thl4 

+( ith24 +jJth24 

tn64 

thl4 

th6 4 

where 't's with subscripts are the elements of the corresponding matrices. 

For simply supported boundary edges, at 'o'th and 'nth' stations, 

W = M = N =0 
XXX 

Hence the state vectors at these stations are given by 
,i {sv}o = [o  vr  o  sx 

{SV}n = [N  wj  0   Sn 

Ü ]T 

X o 

ujT 

Using equations (27) and (28) in equation (23) and simplifying 

tnl2 tnl4 tnl6 

tn32 tn34 tn36 

tn52 tn54 tn56 

+1 

€nl2 €nl4 Enl6 

€n32 En34 tn36 

tn52 tn54 tn56 

+   ( 

(24) 

(25) 

(27) 

(28) 

thl4\ rthl4> 
th34\ +j  Jrh34), ) 
th54 |th54 

(29) 

6. DETERMINATION OF FORCED RESPONSE 

The response at any point on the panel can be evaluated by use of the foregoing 
analysis.  To determine response at mid-point of 'k'th bay with fixed y wise edges 
we proceed as follows.  From equation (26) we have 

• 
X 1 

thl4\ 

X 
.= -(, th24| 

x. 0 
ith64j 

ItBu 

th24 x ) I 

th64 

Itnl3 tnl4 tnl5 

tn23 tn24 tn25 

tn63 tn64 tn65 

+j 

tnl3 tnl4 tnl5 

tn23 tn24 rn25 

tn63 tn64 tn65 

(30) 

Denoting state vector at mid point of 'k'th bay as ^SV ,A and using equation (30) 
we have 
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{SV}kk =  ['ri + jTI]k  tST]k-l 
[T + j T]1   {SV}o 

+ [TI + jfl]k[ST]k_1..  [TI+ jTIlj [SF}J 

Above equation can be simplified as 

{SV}., = [TK + jTKj  SV  +  [TJ + jTJ] {SF}. 

(31) 

(32) 

where 

[TK + jTK] = [TI + JTI]k ... [T + jT]1 

and 

[TJ + jTJ] = [TI + j fl]k .. . [TI + jTIJj 

Further simplification leads to following expression 

X 

1 

tkl3 tkl4 tkl5 ^13 Ocl4 tkl5 ftjl4 tjU 

< tk23 tk24 tk25 tk23 tK24 tk25 K] tj24 tj24 

i 

M 
X = ( tk33 tk34 tk35 +j tk33 tk34 tk35 )Sx *'. 

tj34 
V • + j  ' 

tj34l) 

S 
X 

tk43 tk44 tk43 tk43 tk44 tk45 N 
x 

tj44 t3"44 

N 
X 

tk53 tk54 tk55 tk53 tk54 tic55 tj54 tj54 

U tk63 tk64 tk65 tk62 tk64 tk65 tj64 
J 

t564 

(34) 

where 't's are elements of the corresponding matrices. 

Proceeding as above the response of state vector at mid-point of 'k'th bay for 
simply supported end condition at extreme edges is given by 

w 
X 

< 

\ 

s 
X 

= ( 

N 
X 

U 

tkl2 tkl4 tkl6 

tk22 tk24 tk26 

tk32 tk34 tk36 

tk42 tk44 tk46 

tk52 tk54 tk56 

tk62 tk64 tk66 

+3 

where 

+ D 

Ekl2 tkl4 tkl6 

tk22 tk24 tk26 

tk32 tk34 tk34 

rk42 tk44 tk46 

tk52 rk54 tk56 

rk62 Ek64 tk66 

thl4^ 

th34 )■ } 

th54 

tjl4> 

f EDl4
, 

w1] 
X 

U 

tj24 t524 

tj34 

tj44 + j 

tj34 

t544 

) 
k 

tj54 tj54 

tj64> P\64^ 

'tnl2 t nl4 tnl6 £nl2 tnl4 €hl6' 

tn32 t n34 tn36 +j €n32 En34 th36 

tn52 t n54 1 .n56 tn! 52 tn54 tn56 

(35) 

)-1 (36) 

7. COMPUTATION OF FORCED RESPONSE 

A computer program has been made to compute frequency response of a stringer 
stiffened sandwich panel subjected to sinusoidally varying line excitation in accor- 
dance with foregoing formulations. At an assumed value of frequency, response is 
computed.  Frequency is then stepped up and response at this value of frequency is 
evaluated.  The process is repeated till response is determined for a wide range 
of frequencies.  The displacement response is plotted against frequencies and from 
this the resonant frequencies are obtained. 
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8.   RESULTS AND DISCUSSION 

The frequency response of a str- 
inger stiffened damped sandwich panel 
with three bays haf, been computed. The 
structural data of panel is given in 
Table-1. The panel is simply supported 
at X and Y wise edges and is excited 
by a distributed line loading, the 
intensity of which varies sinusoidally 
along Y directior.  The maximum ampli- 
tude of the loading is unity. The 
frequency response is computed at mid- 
point of third bay.  Frequency res- 
ponse curves showing transverse dis- 
placement against frequency is given in 
Fig. 3..  Resonant frequencies and loss 
factors determined from the response 
curves on the basis of maximum res- 
ponse and half power bandwidth are 
given in 2nd and 3rd columns of the 
Table-1.  The frequency response curves 
of the panel with X-wise edges simply 
supported and Y-wise edges fixed has 
also been determined and shown in 
Fig.4, for sinusoidally varying line 
loading.  Corresponding resonant fre- 
quencies and loss factors are also 
given in 2nd and 3rd columns of 
Table-1. 

Resonant frequencies and loss 
factors of the panel based on damped 
forced normal modes calculated from 
[5] has been reported in 4th and 
5th columns of the Table-1.  In 
the method reported by D.J. Mead [5], 
the fictitious harmonic loading on 
the panel has been used i.e. exter- 
nal distributed harmonic loading has to 
be in phase with local velocity and 
proportional to local inertia loading, 
while in the present analysis the 
excitation is discrete.  As such the 
differences in the results for resonent 
frequencies and loss factors found by 
the above mentioned two methods are not 
ruled out. 

By observing the results in Table-1, 
it may be seen that the resonant freque- 
ncies by the present developed method 
and by Mead's [5] method are reasonably 
in agreement and associated loss factor 
for the 1st mode also tally with each 
other.  However the values of the loss 
factor for the third mode obtained by 
the present method are lower than that 
predicted by [5].  This may be attri- 
buted to the difference in the two 
methods of analysis and to the un- 
avoidable computational errors. In the 
present malysis the line loading coin- 
cided with the nodal line of the second 
mode. As such the resonant frequency 
and loss factor in the second mode 
could not be ascertained. 

TABLE  :   RESONANT FREQUENCIES AND 
LOSS FACTOR OF STRINGER 
STIFFENED DAMPED SANDWICH 
PANEL 

Structural data of panel : a = Distance 

between two consecutive stringers 

=17.2 cm, b=31.1 cm, h1 = h = 0.071cm, 
6      2 

h, = 0.1 cm, E1 = E, = .7x10  kg/cm , 

G varies between 102 kg/cm at lOOcps 
2     4 

to 1400 kg/cm at 10 cps,  ß varies 
4 

between 0.6 to 1.0 over 100 to 10  cps 

with maximum value = 1.0 at 390 cps. 

For stringer K = 1.8164, K = 13072, 

No. of stringers = 2, No. of bays = 3 

End Conditions 
Resonant Frequencies in cps and associated loss factor 

obtained by transfer matrix for 
line excitation 

Calculated from reported 
results [5] 

Resonant frequency Loss factor Resonant f.re- 
quency  

Loss 
factor 

X and Y wise 
edges simply 
supported 

198 

30 3 

0.2 

0.25 

210 
225 
285 

.21 

.23 

.31 

Y wise edges 
fixed and X wise 
edges simply 
supported 

212 

315 

0.21 

0.16 

225 
285 
316 

.23 

.31 

.34 
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STRUCTURAL DYNAMIC REANALYSIS USING RITZ VECTORS 

L. Kitis 
Department of Mechanical Engineering and Aerospace Sciences 

University of Central Florida 
Orlando, Florida   32816 

and 

W. D. Pilkey 
Department of Mechanical and Aerospace Engineering 

University of Virginia 
Charlottesville, Virginia   22901 

The objective of this paper is to indicate how structural dynamic reanalysis can be 
done when Ritz vectors [1| are used in mode superposition. Reanalysis 
methodology gives system response as a function of design parameters without a 
complete analysis for each parameter change. The generation of Ritz vectors for 
use in reanalysis requires the solution of linear algebraic equations and an 
eigenvalue problem of reduced order. An efficient method of formulation and 
solution of these problems is described. 

INTRODUCTION EVALUATION OP RITZ VECTORS 

An alternative to the use of exact systM 
eigenvectors as a basis for reducing the sis« 
of a finite element model to perform node 
superposition analysis is the use of Kits 
vectors. This approach, developed in Ref. [1], 
reduces computer time, provides error estimates 
for the dynamic analysis, and automatically 
Includes the advantages of static condensation, 
Guyan reduction, and static correction due to 
higher mode truncation. The examples studied 
in [i] indicate that the superposition of Rite 
vectors yields more accurate results, with 
fewer vectors, than when exact eigenvectors are 
used. 

The purpose of this note is to indicate 
how structural dynamic reanalysis can be 
carried out whan Ritz vectors are used instead 
of exact system eigenvectors. The basic 
objective of reanalysis methods is to compute 
system response as a function of design 
parameters without a complete structural 
analysis for each parameter change. These 
methods are frequently incorporated into 
optimization algorithms that require repetitive 
analyses of large systems [2]. 

Given mass matrix N, stiffness matrix K, 
and load vector f, Rite vectors ate 
generated recursively using the numerical 
algorithm given in [1]. Consider a locally 
modified system in which a relatively small 
number of entries of the matrices N and X vary 
with trial design changes. Let the Initial 
matrices b« denoted by M , K and let design 

changes be expressed by the sparse matrices AN, 
AK. Then the mass and stiffness matrices for 
the trial design are given by 

M - MA -t- AN 

K - K„ + AK 

(1) 

The first step in the evaluation of Ritz 
vectors is to solve for the displacement vector 
vector x" 

* 
Kx1 (2) 

As the stiffness matrix K is changed according 
to (1), the solution of (2) requires static 
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reanalysis for which there are many algorithas 
available [3]. One possible approach is to 
derive a reduced order set of linear equations 
whose solution gives the modified response 
x*  assuming the original response x« has been 

computed and stored. To this end, rewrite Eq. 
(2) in the form 

(K0 + AK)X1 (3) 

and multiply Eq. (3) by the inverse of K to 
get 

(IN + V*c)?1 -1    * 
K0 - " -10 

(4) 

where I is the NxN identity matrix and N is 

the order of the matrices K and M. Recalling 
that AK is a sparse matrix, let I, J be integer 
sets denoting the nonzero rows and the nonzero 
columns, respectively, of AK. Arranging the 
entries of I and J in ascending order, write 

1 " tivh V 
J - Uvh V 

(5) 

Define a condensed stiffness matrix AK bj 
taking 

x*  " x* 
\ 10k 

P 
E 

q 
E K"1   AKn  x*  (8) 

m-l n-1 0k'i  n'm llB 

n 

which follows from Eq. (4). Thus, Eq. (7) is 
an equation of reduced order (p<N) whose 
solution yields, with Eq. (8), the solution to 
the problem (3). In order to apply Eqs. (7) 
and (8), however, it is necessary to calculate 
the columns i  l < n < q, of the inverse of 
the original stiffness matrix K . One 
convenient way to do this is to solve 

K0*k " 5< (9) 

for w. , 1 < k < q, where e.  is the 
'xk 

vector with all entries zero except the 
L -th entry, which is one. Then, w is the 

i.-th column of the inverse of K . 

The second essential step in the 
calculation of Ritz vectors 

* 
is to find x.    by solving 

Kx* - Mr.   , 
-i       -i-l (10) 

for i - 2,3...,I>. The reanalysis problem 
associated with Eq. (10) is only slightly 
different from the one solved above starting 
from Eq. (2). Equation (4) becomes 

m,n    im,xn 

for 1 < m < q , 1 < n < p. Similarly, define 

"^-n- <'o-\,)n 
(6) 

(xlj1'
xlj2' 'V 

With these definitions, the reduced order 

system of linear equations obtained from Eq. 

(4) can be written as a pxp matrix equation 

(IN + K^AK) X^ (M + AM) X^ (11) 

The right hand side varies with mass changes, 
but can easily be found by solving the linear 
equation 

Ko u - (M + AM) Xi_1 (12) 

Thus, it is only necessary to replace the 
vector r.. with the vector u to apply 

-10 
the reanalysis formulas given above to problem 
(3).  In particular, the reduced order problem 
(7) becomes 

_-l_ 

-1   -10 
(7) 

where the k-th entry of the vector on the 
right hand side is the j.-th entry of the 

original response vector x* .  Since x* is 
-10 10 

known, the solution x* of the set of 

p linear equations (7) is enough to determine 
the complete modified response vector x*. 

In fact, for k I J the response component 
xj is given by 

(I  + K J AK) x* 

where the k-th entry of u is the 
j.-th entry of u. Equation (8), 

which gives the components of response 
that are not included in the reduced 

vector x., 
-i 

becomes 

p   q 
-   Z    t       K 

m-l n-1 

(13) 

n X   AK X* 
0k,in        "'"'    'm 

(14) 
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CONCLUSICW 

The reanalysis problem for the generation 
of Ritz vectors has been seen to be a static 
reanalysis problem and a method of solution has 
been described. The third essential step in 
finding Ritz vectors requires the solution ofv 

an eigenvalue problem of reduced order [1]. 
This step may be retained without change, since 
the numerical effort involved is small compared 
to the effort invlved in the computation of 
the Ritz vectors. 
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FATIGUE AND ACOUSTICS 

PREDICTION OF METAL FATIGUE USING MINER'S RULE 

H. H. E. Leipholz 
Departments of Civil and Mechanical Engineering 

Solid Mechanics Division 
University of Waterloo 

Waterloo, Ontario, Canada 

In this paper, the concept of a modified Wöhler curve is introduced and 
used for the prediction of metal fatigue. First, a method is presented 
by which the modified curve can actually be obtained. Then, experimental 
evidence is given uf the high precision of a fatigue life prediction by 
means of equation (4) which involves the values N^ provided by the 
modified Wbhler curve. In the last section of the paper, it is indicated 
how equation (4) can be modified to yield equation (18). This equation 
is applicable for fatigue life prediction in the case that the load is a 
stochastic one. 

INTRODUCTION 

In an earlier paper  [1],  it has been shown 
that Miner's rule is a reliable tool for pre- 
dicting the fatigue  life of metal  specimens, 
even in the presence of random loading, provided 
the probabilities of classes of equally damaging 
load oyoles are knom.  An extension to that 
paper was given in  [2], where a proper damage 
specifying parameter was defined and the calcul- 
ation of probabilities of the above mentioned 
nature was shown.    The so developed theory was 
then applied and experimentally verified in  [3]. 
It turned out to be the case  that when using 
Miner's rule in the form 

N = (D 

where g^  are the probabilities,  and the Nj  are 
expectations of fatigue lifes of the various 
equally damaging  load cycles,  the results  for 
the  fatigue  Ufo N of  the specimens were poor, 
if one used Nj-values obtained  from ordinary 
Köhler curves.     It proved to be necessary to 
use,   for the quantities Nj,  values provided by 
so-called modified Wöhler curves. 

The aim of this paper is   (i)   to justify the 
use of these modified curves,   (ii)   to show how 
modified Wöhler curves can be obtained systri-n- 
atically,  and  (iii)   to demonstrate experiment- 
ally the  usefulness of the modified curves. 

In order to simplify the experimental  set- 
up,  it is assumed this  time that one has speci- 
mens of stoel  1045-AR which are subjected to 
load cycle blocks of varying intensity as  shown 
in Fig.  1.    The si,  i = 1,2,3,.. are  load 
levels, not necessarily sti-esslevel s, but levels 

corresponding to the respective damage parameter 
used; the n^ are the numbers of cycles per load- 
ing block so that 

6. = n./N (2) 

are the frequencies corresponding to load level 
i, which are to be used in (1) in place of 
probabilities. 

For the following deliberations, strain 
levels of load cycles have been used as the 
damage parameter. Therefore, si : cj must be 
observed throughout. 

MODIFIED WÖHLER CURVE 

A Wöhler curve as shown in Fig. 2 is 
obtained by subjecting specimens to load cycles 
with certain peak values s^ which are kept 
constant until fatigue failure at Nj cycles 
occurs. The two corresponding values Sj and Nj 
are used as coordinates in an s.N-plane yield- 
ing points of the Wöhler curve. Since each 
point of the curve is determined by using a new 
specimen, there is no interaction effect. 
Therefore, the curve shall be termed "virgin". 
On the other hand, if a load history correspond- 
ing to Fig. 1 is applied to a specimen, there is 
an interaction effect: the. effect of lurpcr 
cycles on the behaviour of the srecimen when 
subjected to smaller cycles will be auch that 
these smaller cycles uill produce noi\   dsmaijc 
than they would have produced if the st ecimen 
would still have been  "virgin".    Consei(ucnUy, 
Nj-values from a virgin Wohler curve must he 
inadequate in this case as they do not reflect 
the influence which various load blocks will 
have on each other's damage producing power. 
One can with pood reason assume that owing to 
the interaction effect, load blocks with 
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Fig. 1 - Loading with varying intensity 

7x10 

4x10 

Steel 1045-AR 

Virgin Wohler curve 

3.5x10  

Virgin Wohler curve 

Modified Wohler curve 

Fig. Wohler curve  for steel   1045-AR Fig. - Modified Wöhler curve 

si < smax> where s.max is  the highest  load 
inteiis;!y in  the  loading history,  will  have, 
instea    of" Nj-values,  Nj-valucs  for which 

N,   < N.. (3) 
ii 

Thus, for damage evaluation of a loading 
history of the kind shown in Fig. 1, the N^- 
values of a modified Köhler curve as shown in 
Fig. 5 should he used.  Hence, fatigue life 
does not follow from equation (11 but from the 
new equation 

1-1 
»Jrii 

N. 
(■n 

where  necessarily N  < N.     This  reduction of 
fatigue  life   (according  to  (1))   as  compared  to 
the fatigue  life predicted by the classical 
Miner's rule   (1)   is  indeed being observed 
experimental ly. 

An explanation for the relevance of the 
modified Wohler curve  follows  from recently 
detected phenomena  in fracture mechanics  in- 
volving the so-called "crack closure".    Take 
for example  the  report by T.   Topper and P.   Au 
in   |4].     According to the authors,  repeated 
cycling of a certain  intensity  leads  to de- 
creasing damage production as  debris produced 
by  fracture props  the crack  tip open after a 
while  so  that   further cracking,  and  thus  damage 
production,   is   impaired.     Only after a  load 
cycle :.':'&';   ; nuffi.■i^Ktl..  so"i: }i::ssiv£ peak has 
been applied,   damage production by  the smaller 
cycle  is  reassumed at  a higher degree.     The 
effect  of the compressive  load  is very  long 
lasting,   up to 200,000 cycles,   and,  when ex- 
ceeding a certain corapressive  threshold,  also a 
very strong one. 

The  mechanism of damage production  and the 
effect  of compressive  load peaks  on damage 
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.o<Ni N 

(b) 

Fig. 4 - Effect of compressive load on damage accumulation 

production is explained in Fig. 4. A certain 
load cycle with intensity s^ is assumed to pro- 
duce a damage of magnitude dj. 
cycles, the total damage 

After N 1,0 

D (5) 

The 

= N.  d, 
cr   1,01 

leading to fatigue failure is reached, 
corresponding fatigue life is Nj 0, (see Fig. 
4a). However, that is an ideal situation. 
Actually, due to d bris accumulation at the 
crack tip, the amount of damage per cycle is 
constantly decreased so that the loading in Fig. 
4b' reaches the level Dcr only after N^ > Ni 0 
cycles, (see Fig. 4b). Now assume that the ioad 
history changes from that in Fig. 4b' to the one 
in Fig. 4c' involving repeated compressive peak 

loads.  Then, the damage accumulation occurs as 
shown in Fig. 4c. Due to the compressivr pt/ak 
loads, the damage accumulation is repeatedly- 
accelerated owing to the temporary flattening of 
the debris and sharpening of the crack tip by 
the compressive load. Therefore, damage level 
l)cr is reached already after Nj cycles, Uiere 

Ni,   < N. < N. nil 
i ,0    l    i 

holds. 

Reali:ing that  the Ni-values are  the 
abscissae of the virgin Wöhler curve and the Nj- 
values that of the modified Köhler curve  for one 
and the same ordinate sj,  it  is plausible  that 
the trace of the modified Wöhler curve must  in- 
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be as shown in Fig. 3. 

But, something else can be concluded: 
Let be 

d. = ps., (7) 

assuming that the damage dj of a cycle is pro- 
portional to the corresponding damage parameter 
value Si, where p is the coefficient of pro- 
portionality. Then, with (7) in (5), one ob- 
tains 

Using 

D  = N. ps.. 
cr   i,or i 

D /P. cr'f 

(8) 

(9) 

which is a certain constant, one arrives after 
rearrangement and with (9) in (8j at 

s. 
i 

kN. -1 
i,o' 

(10) 

which is a hyperbola, the "WBhler hyperbola", 
in the s,N-plane [5]. Since (6) holds, one can 
conclude that this hyperbola is a lower bound 
for the modified Köhler curve, see Fig. 5. 
Hence, one has the practically very important 
result that the modified WBhler curve can only 
be situated in a restricted domain of the s,N- 
plane which is the hatched domain in Fig. 5. 

.Virgin Wohler curve 

-Modified Wohler curve 

Wohler hyperbole 

N %     Nj   Nj 

Fig. 5 - Location of the modified Wöhler curve 

ON DETERMINING THE MODIFIED WÖHLER CURVE 

Assume, n lab tests, each one with n load 
blocks, have been carried out. For test number 
1, the fatigue life IjO), the load intensity S: 
for block i, and frequencies 8p' of cycles 
with intensity s^ in test number j have been 
reported. Then these quantities are supposed 
to be related by formula (4) if one sets 
NU) = NU)  -     ■•    ■  - 

that 
Consequently, one has to expect 

NÜ) 
n 

i = l N, 

i^r1 

1.2,. .n, (H) 

J 

AP In (11), the Ni are not known, while the 
'i.f.?re given by the load history, and the 
Nl^' have been determined experimentally. 

Hence, one may solve the set of equations (11) 

for the unknown Nj. In this way, one obtains 
the abscissae of points on the modified Wähler 
curve.    The corresponding ordinates Sj are 
also known by virtue of the load history. 
Thus, one can plot n points of the modified 
Wöhler curve. As a result, one has an approxi- 
mation to this curve. 

The question arises what the significance 
of the approximation following from a single 
set of tests would be. The answer is, that it 
is very high. The reason for that is that the 
interaction effect between load blocks, which 
causes the modified Wöhler curve to emerge, is 
fairly invariant with respect to the triggering 
compressive load level and its frequency. Take 
a certain load history. Consider the loading 
block of highest intensity. Since the load is 
assumed to be cyclic, this block involves 
compressive peaks.  If the intensity of these 
compressive peaks is beyond a certain threshold; 
the "crack closing effect" occurs, and if the 
frequency of these compressive peaks is again 
beyond a certain threshold, this effect is con- 
stantly upheld. Thus, for this loading history, 
as for any other satisfying these minimal 
requirements, the same modified Wöhler curve 
applies. As a consequence, it is up to a large 
degree immaterial which specific set of tests 
one uses to determine points on the modified 
Wöhler curve. This fact explains the relative- 
ly high significance of that single sample of 
the modified curve as obtained by means of one 
application of (11). 

However, the following remarks have to be 
made in addition: for a derivation of the modi- 
fied Wöhler curve through (11), no test data 
should be used which involve Sj values close to 
the endurance limit of the virgin Wohler curve. 
Also test data should be chosen that specific- 
ally involve such Sp) values which yield a 
coefficient determinant of (11) suitable to 
make the calculation of the N^ values as in- 
sensitive as possible to the experimental in- 
accuracies involved in the test data. How 
this can be done has been discussed in [6]. 

Let now an example for determining the 
modified Wöhler curve be given. Consider the 
test data in Table 1. 

Using the values in Table 1 for the equa- 
tions in (11) yields 

0.02  0.02  0.96 

^ J 

0.3   0.1   0.6 

o.o: 

ft2 

0.5 

N2 

= 57,338, 

= 15,507, 
«a J 

0.68 
■1 

20.789. 
,Ni    Nj    N3 

The solutions of these equations are 

N; = 4.551. N2 = 8.467. N, = 90.391.  (12) 
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TABLE  1 
Test data 1-3 

Test Strain Peaks e.   = s. 
i        i 

Frequencies B- 
Experimentally 
Observed Life 

j  = 1 Sj = 0.6,  S2 = 0.4,  S3 = 0.2 ^ = 0.02,  &il)  = 0.C2,  ßl15 = 0.96 N(l)  = 57,338 

j  = 2 sj = 0.6.  S2 = 0.4,  S3 = 0.2 eP = 0.3,    ßp5  = 0.1,    ß|2) = 0.6 N(2)  = 13,507 

j  = 2 Si = 0.6,  s2 = 0.4.  S3 = 0.2 ^ = 0.02,  ß|3)  = 0.3,    ß!j3) = 0.68 N*-3^  = 20,789 

* 

Combining these N^ values with the correspond- 
ing s^ = e^ values yields the following points 
Pi = fsi'^i) on t;^e "lodified Wbhler curve: 

Pj = (0.6:4,551), Pa 

P3 = (0.2;90,391). 

(0.4;8,467), 

These points are used to draw the modified 
curve, in comparison to the virgin curve, in 
Fig. 6. 

1.5110' 

90361 

3.5x10" 

Virgin Wohler curve 

Modified Wöhler curve 

Fig. 6 - Comparison of modified Wöhler curve 
with virgin Wöhler curve 

It should be noted that point F[ must actu- 
ally lie on the virgin Wöhler curve (as it 
fairly well does), since the cycle with the 
highest intensity, i.e. sj = 0.6, cannot have a 
damage increasing effect on itself. If point P^ 
should turn out not to lie on the virgin curve 
owing to always present inaccuracies in the 
experimental data, one should drop the calcula- 
ted point P] and replace it by that point on the 

virgin Wöhler curve which corresponds to 
Sj E sj = 0.6. 

The modified WBhler curve will subsequent- 
ly be used to show that, for some other tests, 
the experimentally obtained fatigue life N can 
fairly accurately be predicted as N from 
equation (4). 

EXPERIMENTAL VERIFICATION OF THE MODIFIED 
WÖHLER CURVE'S RELEVANCE 

Consider Table 2. Since the s^ values are 
here^the same as those in tests nos. 1, 2 and 3, 
the Ni values given in (12) can be used for a 
calculation of N^) by means of (4). The also 
needed ß}1^ values can be found in Table 2. 

-1 

Thus, one has 

NM  = 
0.182      0.182  i    0.636' 
4,551   '   8,467      90,391_ 

and obtains 

N^   = 14,559 

for fatigue life prediction.    This value com- 
pares well with the experimentally obtained 
value N^J   =  15,074.    The aonsarvative pre- 
diction error is only 

(15,074-14,599)100       .   .,.. 
15,074 "  i-i 

This result apparently_indicates that equation 
(4) together with the Nj-values from the modi- 
fied Wöhler curve works well indeed. 

To support this assertion, let now a set 
tests be considered for which not only the 
' values but also the values s. have been 

varied. 

% 

Let the new s 

sj = 0.5, 

values be 
1   1 

Sj = 0.3, s3 = 0.2. (13) 

The corresponding N--values are read off the 
previously determined modified Wöhler curve as 
shown in Fig. 7 yielding the set of values 
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TABLE 2 
Test data 4 

Test Strain Peaks s.   = e. Frequencies 6. Experimental 
Life 

j - 4 sj = 0.6,  S2 = 0,4,   S3 = 0.2 B^  = 0.182,  B^  - 0.182,  g^)  = 0.636 N^  =  15,074 

Nj  = 6.5 x 103, N2 = 2 x  10h, 

N3 = 9.04 x I0k. (14) 
3(B) 0.3 0.1 0.6 

'■O.eSxlO3      2xl0'4      9.04x10^ 
17,349, 

03 
02 1 05 

:,(c) 

Virgin W-curve 

Modiiicd W-curve 

Fig.   7 - N.-values  for tests A,  B and C 

Now let three tests,  A,  B,  and C,  be given 
for which the gj-values and the experimentally 
determined N-values are reported in Table 3. 

TABLE 3 
Data for tests A,  B,  C 

Test A B 
■ > 

C 

ßi 0.02 0.3 0.02    | 

ß. 0.02 0.1 0.3      i 

e3 0.96 0.6 
1 

0.68 
1 

N 
exp. 

80,876 17,7:9   !   41,695 , 

Using the data in this  table and the Nj-values 
in (14), one obtains by virtue of (4)  the 
fatigue life predictions 

N^ 
0.02 0.02 0.96 

0.6S»103      2'lOk      g^xlO1* 
68,027. 

0.02 0.3 0.68 

6.5xl03        2x10'*      9.04x10^ 
39,062. 

Comparing these predictions with the experiment- 
ally obtained values in Table  3,  one finds the 
following errors 

A _  (80,876-68,077)100 
e 80,876 

15.9% 

B      (17,729-17,349)100      .  ..„ 
e 17,729 = 2-13% 

C      (41,695-39,062)100      ,   ,0 
e    = 4TT695  = 6-30 

Tnese errors  indicate that the predictions are 
on the safe side and sufficiently accurate. 

In order to stress the latter point, let 
the fatigue life be predicted for test A using 
the classical  formula  (1).     From Fig.   7 one 
obtains for 

si 0.5,  S2  = 0.3,  S3 = 0.2, 

The Nj values 

Nj = 6.5  x  10 

N3 = 4  x  105. 

N,  = 4  x  10u 

Thus,  equation  (1)  yields 

prcd. 
\JL 02 

L6.5xl03 

0.02 

4xl0u 

0.96 

4'<105 
167,308. 

This value  is to be compfircd with Nexp.= 80,876 
yielding the error 

_   (80,876-107,308)100 „ 
e  " 80,876 "  -urn.j. 

The error indicates that the prediction by means 
of (1) is on the unsafe  side. Also the error is 
rather large, 6.72 times larger than the error 
e'\ which had heen calculated using the data 
provided by (4).  These findings stress the 
relevance of (4] and of the odified Köhler 
curve which is the foundation of (4). 

Finally, let an extreme case he introduced. 
It is a test which involves the s^-v-alues 

S! - 0.4, s-, = 0.25, S3 = 0.1,       (15) 

and the ßj-values 

Bi = 0.005,  S2  = 0.005,  Si  = Ü.9S. (16) 
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The remarkable fact is that S3 = 0.1 is below 
the enduranoe limit of the virgin Wöhler curve 
and that the frequencies of the higher peak 
loads, i.e. si = 0.4 and S2 = 0.25, are minimal, 
namely ß = COOS, but still sufficient to 
trigger the interaction effect, as will be seen. 
Owing to the interaction effect, the damage 
producing power of the cycles with S3 = 0.1 
will be significantly increased, while, 
according to the classical Miner's rule, i.e. 
according to (1),  these load cycles would not 
at all contribute to fatigue damage. 

From Fig. 8, the N^- and the Nj-values are 
read off as follows: 

TABLE 4 
Comparison of Wöhler- and modified Wöhler data 

S! = 0.4 Mi = 1.5 x lok Nj = 1.5 x 10"* 

S2 = 0.25 N2 = 1 x lO1* N2 = 4 x IO" 

S3 = 0.1 N3 = " N3 = 1 x 106 

0.1 025 0.4 

1.5x10' 

4(10' 

tilO 

l«l<^ 

Virgin W-curve 

Modified W-curvc 

Fig. 8 - S3 « 0.1 is below the endurance limit 
of the virgin curve 

(821,615-689.655)100 
e = 821,625 

and it is on the safe side. 

16% 

Let now the classical Miner's rule be used 
for a prediction of fatigue life, i.e. let 
equation (1) be applied. Then, one obtains 

N 0.005 0.005  0.99 

l.SxlO1*  Ixio" 

-1 
= 2,631,579. 

Comparing this value with the experimental one 
in (17), one finds the error to be 

(821.615-2,631,579)100   ,,nl 
e =  82^615  = -220% 

This error is on the unsafe side and 13.75 
times larger than the previous error related to 
(4).    This fact indicates clearly that equation 
(4)  is superior to the classical equation (1) 
and that the modified Wöhler curve, which leads 
to (4),  is indeed very relevant. 

STOCHASTIC LOADING 

Assume that the specimen, whose fatigue 
life is to be predicted, is subjected to 
stochastic loading. Let this loading be such 
that i = 1,2,3..., classes of equally damaging 
events characterized by means of the values s^ 
of a damage parameter s can be identified. Let 
the occurrences of these classes in the load 
history be given by the probabilities pj. Let 
there exist a modified Wöhler curve which re- 
lates the damage parameter values si for the 
Nj-values introduced earlier. It is then 
claimed that 

E(N) = 

i E(V 
(18) 

yields the expected fatigue failure of the 
specimen under the stochastic loading. 

The derivation of (18) is as follows. Let 
the subsequent, considerations be based on two 
axions: If f is a random quantity and E[f] its 
expectation, then the relationships 

EiTa.f.] = la.E[f.],  a. = constants,      (19) 
i      i 

Efnf.l = H(E[f. 1), wher? the f. are statistic- 
,1   .   1 1 
1     *       ally independent       (20) 

hold true. 

Using (16) and the Nj-values of Table 4 in 
(4) yields 

0.005   0.005  0.99 

k.Sxlo''  4x10''  IxlO6- 
= 689,655. 

The experimentally determined fatigue lifp for 
this case was 

N    = 821,615. 
exp. 

Hence,  the prediction error following from 
applying equation (4)  is 

(17) 

The damage for load block i with n^ cycles 
and with damage dj per cycle is 

(21) D.  • n.d.. 
1        11 

The total damage D a specimen can take is con- 
sidered to be a physical constant. Therefore. 

D = N.d. for any  i. 

Hence, 

d. = D/N.. 
l     1 

(23) 
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Morover, by definition, 

n. = p.N. 

where N is the fatigue life. 

Obviously, 

D = ID. . 

Based on (19), one has by virtue of (25), 

E(d) = ^(D.). 
i 

Based on (20), one has by virtue of (21), 

E(D.) = E(n.)E(d.). 

Using (27) in (26) yields 

E(D) = [E(n.)E(d.). 
i 

Yet,  from (24)  follows 

Etn.)  = piE(N). 

Using (29)  in (28)  yields 

E(D)  = E(N)j;piE(di) 

and 

-      E(d) 
1 = EWlPi ETDT • 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

Based on (20) and (22), one can claim that 

E(D)  = E(d.)E(Ni)  fora»^ i. (32) 

With (32)  in (31) one finds 

1 « E(N)[ —i— , 
i mj 

which finally yields 

(33) 

E(N) 
i E(N.) 

-1 

That is (18) as had to be shown. 

The conclusion is that fatigue life pre- 
diction using the modified Wöhler curve con- 
cept is indeed possible also in the case of 
certain classes of stochastic loading, provid- 
ed the probabilities pj of classes of damaging 
events with the intensities si are known. To 
a certain extent, work done by El Menoufy, 
H. H. E. Leipholz, and T. H. Topper in [3] is 
in anticipation of this conclusion. 
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Discussion 

Mr. Zurnaclan (Northrop Electronics Division); 
Would you say this finding Is applicable to a 
broad class of engineering materials? 

Mr. Lelpholz: We have checked it for aluminum 
and for steel. 

Mr. Getllne (General Dynamics): What was your 
test specimen? 

Mr. Lelpholz; It was an unnotched specimen. 

certain random loading, the kind of 
probabilities that the various parts of that 
random loading have. That gives you a very 
precise prediction. However, if you compare the 
theory with experiments, you nust have well- 
defined experiments. The theory is, of course, 
only valid in the range that you define. 

Mr. Galef (TRW): It would be very helpful to me 
if you would clarify the differences between 
your work and the work Freudenthal of Columbia 
did back in i960, and Fuller of Boeing did in 
1962. It sounds very similar. 

Mr. Getllne: Was it polished? 

Mr. Lelpholz; Yes. 

Mr. Getllne: This is not the real world, 
unfortunately. 

Mr. Lelpholz; Yes. 

Mr. Getllne; Miner's Rule applies, if and when 
it does apply, only for that portion of the 
curve that you showed. If you continue up to 
the low frequency end, eventually you will 
arrive at ultimate stress, and where the 
sequence of stresses is not necessarily 
important within the area that you showed. When 
you get up to these high levela, where you get 
an occasional stress that will take it to yield 
or rupture, the whole thing breaks down. 

Mr. Lelpholz: Yes, it sounds similar. I might 
mention that I have had some correspondence with 
Professor Leibowitz on it, who is from NYU. The 
difference Is indeed that we explain the 
physical reasoning behind it while Treudenthal 
came to the same conclusion; you must have a 
modified curve. However, he based it on 
statistical observations, so that is the 
difference. We tried to explain why that is 
from physical reasoning, so we can Indeed 
predict where the modified curve would lie 
without carrying out 100,000 experiments. 

>■ 

Mr. Lelpholz: Of course. However, that does 
not speak against the theory. 

Mr. Getllne: No, however, this actually 
occurs. I did all the sonic fatigue work on the 
Space Shuttle mid-fuselage, and we ran into 
these situations. Second, when you take a piece 
of aluminum plate, with which I am mostly 
familiar, and when you sculpture it and mill it, 
the fatigue properties change greatly. So, you 
do not have the same properties to deal with 
from one piece to another. 

V 

Mr. Lelpholz: No. You see, if you talk about 
fatigue as I did, but I assume that I am talking 
to experts, it is quite clear that any kind of 
theory that you bring forward la for a specific 
material, and for a specific way to process the 
material. You do not have one theory for 
everything. 

Mr. Getllne: When you deal with random loading, 
rather than with block loading as you described, 
you can consider the area under an S-N curve, a 
fatigue curve representing the energy the piece 
of structure can absorb during its useful 
life. If you take the random loading, as the 
energy you put into it, you can develop a curve 
for that, where that curve moves forward In time 
until there is an intersection of the two curves 
which will give you an equivalent to Miner 's 
Rule on an energy basis. 

Mr. Lelpholz: You can do It, or you can do It 
In a different way by really calculating, for a 
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OPTIMIZATION OF AEROSPACE STRUCTURES 

SUBJECTED TO RANDOM VIBRATION AND FATIGUE CONSTRAINTS 

V.K. Jha 
Spar Aerospace Limited 

Ste. Anne de Bellevue, Quebec 
and 

T.S. Sankar and R.B. Bhat 
Concordia University 
Montreal, Quebec 

Aerospace structures have to be designed with very strict reliability 
requirements, at the same tif-9 these structures should be as light as 
possible in weight to minimize the cost of launching into space. These 
structures are often subjected to random excitations with power spectral 
density varying in an arbitrary manner In the frequency domain. With the 
advent of the space shuttle, It is likely that these structures may have 
to be designed to withstand nany launches, and hence fatigue will be an 
Important factor along with other considerations while optimizing the 
design. An approach for handling and incorporating fatigue design 
constraints in optimizing aerospace structures has been presented In this 
paper. 

Miner's criterion of cumulative facigue damage has been used to formulate 
the fatigue constraint to ensure that the total expected fatigue damage 
over the required period of fatigue life does not exceed unity. The 
fatigue constraint is used In conjunction with other probabilistic 
constraints such as those on displacements, stresses ind on component 
sizes, when subjected to random vibration loads, to arrive at an optimum 
design. An optimum design of a typica" satellite antenna structure has 
been realized using the proposed approach of handling fatigue constraints. 

INTROOUCTION 

Aerospace structures have to be designed 
with very strict reliability requirements 
while their weight Is kept to a minimum. 
They are subjected to random excitations dur- 
ing launch and the atmospheric part of their 
flight. Hence, their design must take the 
random nature of the responses into consider- 
ation. With the advent of the space shuttle, 
it Is likely that these structures may have 
to be designed to withstand many launches, 
and consequently, fatigue will be an 
Important consideration In optimizing the 
design. 

An analytical technique to calculate 
the response of satellite antenna structures 
when subjected to random excitations during 
launch has been presented by Jha et al [l]. 
A method of optimizing these structures with 
probabilistic constraints was also presented 
by the same authors [2]. They followed an 
approach to synthesize structural analysis 
and optimization procedures that was proposed 
by Sobleskl and Bhat [3] for the optimum 
design of structures. 

An approach for incorporating fatigue 
design   constraints   In   optimizing   aerospace 

structures is presented in this paper. 
Miner's criterion [4] of cumulative damage has 
been used to formulate the fatigue constraint, 
and the sturcture is designed to ensure that 
the total expected fatigue damage over the 
service life does not exceed unity. The 
fatigue constraint Is used In conjunction with 
other probabilistic constraints such as those 
en displacements, stresses and on component 
sizes, when subjected to random vibration 
loads. The design of a typical satellite 
antenna structure Is optimized using the 
proposed approach of handling fatigue 
constraints. 

DESCRIPTION OF AN ANTENNA SYSTEM 

A satellite antenna structure Is general- 
ly a circular dish, having the form of a para- 
boloid. The antenna serves the primary 
function of receiving and transmitting the 
communication signals reaching the spacecraft. 
The antenna is an Integral part of the coramun- 
Icatlins subsystem of any satellite. The 
structural survival of an anttnna is of utmos*. 
Import^ce for the successful operation of any 
satellite. A schematic of an antenna struc- 
ture Is shown In Figure 1. 
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OPTIMIZATION WITH PROBABILISTIC CONSTRAINTS 

When a structure Is subjected to random 
loading, the response Is also random. Hence, 
any constraints applied on these response 
quantities must be probabilistic. Structural 
optimization with probabilistic constraints 
can be stated as following: 

Minimize W(X) 

Subject to 

P(Gj(X) < Gj spec) > Pj, j*l, MCON     (1) 

where W(X)  Is the weight of the structure and 
P denotes the probability distribution. 

The constraints specified In the 
Inequality (1) Imply that the probability that 
Gj{X), which represents a parameter like 
stress or dlsplacc/ient. Is less than or equal 
to a specified value Gj Is greater than or 
equal to a probability Pj. Here NCON Is the 
number of such constraints In the problem. 
Constraint (I) could also be expressed In an 
Integral form as: 

'■jspec 
(2) 

where fjG.IX)] Is the probability density 
functlorr of the parameter GjCX). 

Since the excitations on the structure 
have been assumed to be Gaussian and the 
structure Is taken to be a linear system, the 
response parameters defining the constraints 
Gj(X) are also by definition Gaussian. Let 
Sj(X) be the first moinent or the mean value of 
the parameter {Gj{X)}. Further, let Gj be the 
second moment or the standard deviation of the 
parameter Gj(X). For the required limiting 
probability Pj, and the specified constraint 
value Gjsoec on Gj, tables for the unit normal 
varlate give a value of 

G1spec • «MOO 

Let corresponding to the probability level P. 
this value be denoted by rw. The condition 
stated through the probablllsxlc constraint of 
equation (2) can '.hen also be satisfied by the 
adjoint deterministic constraint stated by the 
Inequality expression. 

iisEgiL 
oG 

_G1(X) 

J 
'b (3) 

Since the excitation Is taken as a 
centered random process with zero mean, the 
■•an value of Gj(X) Is zero, and G« will 
become equal to trfe root mean square vdlue of 
the parameter {Gj(X)). Hence equation (3) may 
be expressed as 

"jspec 
Gj rms > i. (4) 

The value of TU will vary depending upon the 
acceptable procablllty level Pj specified on 
the constraint. The value of TU Is equal to 1 
If P* Is equal to 0.65, 2 If P* Is equal to 
0.95Jand 3 If Pjls equal to 0.9927. The 
selection of tne probability level Pj will be 
different for different situations ana applic- 
ations. Its value depends upon the risks 
Involved If the structure falls. I.e. the 
risks Involving cost, human life, health 
hazard, etc. With the variation In the 
specified probability level, the optimum 
solution for a structure will change. In 
general, a high reliability Imposition In the 
probability will result In a heavier struc- 
ture. A value of TH equal to 2 has been 
chosen In designing the satellite antenna 
structure. 

DESIGN REQUIREMENTS FOR THE ANTENNA STRUCTURE 

Design requirements for the spacecraft 
antenna structures Include requirements on 
frequency, displacement, structural Integrity, 
size and shape and mahufacturablllty of the 
antenna. 

Ihe design requirements are: 

I) The first natural frequency of the 
antenna structure should be greater than 
15 Hz. 

II) The maximum displacement of any point on 
the antenna structure should not exceed 
2.54 >; 10* ^ when subjected to the 
random vibrations as shown In Fig. 2. 
The confidence level associated with 
this requirement should be at least 
95%. 

III) The maximum stress In any element of the 
antenna structure should not exceed 1.38 
x 108Nnr2, when the structure Is 
subjected to the random vlbratlonal 
loading specified In Fig. 2. 

1v) Minimum thickness of any section must be 
5.0 x 10*^1). This requirement is based 
upon the manufacturab111ty 
requirements. 

v) Fatigue failure must not occur for at 
least 36000 sec. 

The above requirements reflect the general 
nature of the requirements 1mpOi*d on the 
antenna design In the aerospace Industry, at 
present. 

DESCRIPTION OF THE FINITE ELEMENT MODEL 

The finite element mathematical model of 
the antenna structure Is presented In Fig. 3. 
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The model consists of 33 nodes connected with 
24 plate elements and 24 beam elements. Out 
of the 33 nodes, 32 nodes have six degrees of 
freedom, and the central node Is fixed 
representing tne boundary conditions for the 
structure. The total number of degrees of 
freedom of the system used in the present 
analysis is 192. The size of the elements 
near the base has been kept smaller In 
comparison to the elements on the outer edges 
of the structure. The finer division near the 
base has been done because the most critical 
stresses are expected near the base since the 
smaller element size would ensure greater 
accuracy In the estimate of stresses In the 
plate elements. The coordinate system used 
for the analysis Is shown In Fig. 3. The 
excitation axis of the structure has been 
taken as the z axis. This Is the direction In 
which the most damaging excitations are 
experienced by the antenna structure. 

FORMULATION OF THE DESIGN PROBLEM FOR 
OPTIMIZATION 

The purpose of the optimization Is to 
design an antenna with minimum possible weight 
and yet capable of meeting all the Imposed 
design requirements. Hence, for the 
optimization, the particulars are: 

The objective function Is the weight of 
the structure and Is specified In the form 
f(X), where X Is the vector of design 
parameters. 

The four parameters, describing the 
antenna design selected for optimization and 
shown In Fig. 4 are stated below: 

a) The thickness of the dish; 
b) The height of the ribs at the back of 

the dish; 
c) The width of the ribs; and 
d) The thickness of the ribs. 

The thickness of the dish and the height of 
the ribs are assumed to be linearly decreasing 
from the central support of the dish to the 
outer edge, and the slope parameter defining 
the thickness and the heights at various 
locations are to be optimized. 

The variables for optimization, thus, are: 

Xp the slope defining thickness of the 
plate; 

Xj, the slope defining the height of the 
ribs; 

Xj, the width of the ribs; and 

x,,, the thickness of the rib section. 

fhe constraints on the optimization, which 
reflect all the design requirements are as 
follows: 

The De Tminlstlc Constraints 

1. Natural frequency > 15 Hz. 

2. 0.002 radians < X1 < 0.05 radians. 

3. 0.02 radians < x2 < 0.05 radians. 

4. 7.6 x 10-3m i Xj < 2.54 m 

5. 5.0 x 10-Sn < x,, < 0.254 m 

The Probabilistic Constraints 

1. P[Maximum displacement < 2.54 x 10-^ > 
95% 

2. P[Kax1mum stress In ribs < 1.38 x 108 Nnr2 

> 95% 

3. P[Max1mum stress In dish surface < 2.38 x 
108 Nnr2 > 95% 

4. Expected cumulative damage In 36000 sec < 
1. 

Thus the problem Is now fully defined for 
carrying out an optimal design using the 
procedure established earlier [2]. 

Optimum Design of the Antenna without 
Fatigue Constraints: 

The design scheme of [2] was used for 
optimization. 

The Initial values of the design vari- 
ables were chosen by using the standard beam 
formulae to satisfy the stress displacement 
constraints. This was done to choose realist- 
ic and meaningful starting values. The weight 
saving thus obtained then becomes quite mean- 
ingful. 

The Initial Design Parameters: 

The parameters describing the Initial 
design of the antenna are given by the follow- 
ing: 

Xj « .004 «"adlans 

x2 • .05 radians 

X3 - 1.27 x 10"^ 

x,, ■ 1.30 x lO"3!« 

Weight of the structure ■ 8.9 kg 

First natural frequency » 8.4 Hz 

Maximum RMS displacement *  1.2 x 10-^ 

Maximum RMS stress - 8.11 x 107 Nnr2 

Initial analysis also Indicates that the 
starting design does not satisfy the frequency 
and stress constraints. 
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The Final Design of the Antenna: 

After the completion of the automated 
optimum design performed by employing the 
Computer-Aided Design Procedure a feasible 
design realizing a weight less than the 
initial in-feasible design is obtained. The 
design history of the optimization cycle is 
shown in Fig. 5. 

The final optimum design is obtained as 
follows: 

Xj = 0.02 radians 

X2 = 0.08 radians 

X3 = 1.72 x 10-2m 

x,, = 7.6 x lO-1^ 

Objective function = 5.08 kg 

First natural frequency = 15.06 Hz 

Maximum RMS displacement = 4 x lü-1^ 

Maximum RMS stress = 5.69 x 107 Nm"2 

FORMULATION OF THE FATIGUE CONSTRAINTS 

The failure criterion used in modelling 
the fatigue constraint is based upon the hypo- 
thesis proposed by Miner [4] and Palmgren [5]. 
This is a simple deterministic crlisrion and 
has been considered appropriate in formulating 
the fatigue constraint in many structural 
dynamic problems. Here it Is assumed that 
each cycle of the random stress response 
inflicts an incremental damage which depends 
upon the peak amplitude of the excursion. 
Each succeeding cycle inflicts additional 
damage and the failure occurs when the total 
damage reaches one hundred percent. 

To quantatively establish the fatigue 
strength for a specific material, a large 
number of identical samples are to be tested 
with varying stress amplitudes. The results 
of such tests when plotted define the S-N 
(stress vs number of cycles to failure) curve 
or the fatigue curve for the material. A 
typica' S-N curve 's shown in Figure 5. The 
fixed stress amplitude Is S, the number of 
cycles until failure occurs at stress S Is N. 
For many materials, the curve is well 
approximated by a straight line when log S is 
plotted against log N, that is, S-N curve may 
be approximated by the equation, 

is the number of cycles at which failure 
occurs under uniform stress amplitude S, as 
indicated by the S-N curve. Thus, if the 
material experiences n* cycles of stress 
amplitude S« for 1 = 1,2,...M, the total 
cumulative damage Is given by 

M 
(6) 

According to Palmgren-Miner hypothesis 
the material will undergo a fatigue failure 
when the total cumulative damage 0, reaches 
unity. Palmgren-Miner hypothesis imposes no 
restrictions regarding the order of applic- 
ation of various stress levels, and is thus 
applicable to random loading processes in 
which the stress may vary from one cycle to 
another. 

In order to use the Miner's criterion in 
formulating the fatigue constraint, it is to 
be assumed that the response of the structure 
may be considered as a narrow band process. 
The validity of this assumption will be later 
checked before applying the fatigue 
constraint. Let f0 be the expected frequency 
of the narrow band response in cycles/sec and 
T be the time in seconds for which the struc- 
ture has to withstand the fatigue environment. 
Then the expected number of stress cycles in 
time T will be given as f0T. 

Let p(a) be the probability density of 
stress peaks. Expected number of cycles with 
peak stress varying from a to a+da is 
p(a).dacf0.T. Let N(a) be the number of 
cycles at which failure will occur for a 
co',tant amplitude stress of 'a'. Then 
according to the Miner's criterion, the 
accumulated damage for cycles in the range ©f 
'a' and 'a+da'  is 

fljlj. - f0T p{a).da/M(a) (7) 

The total expected damage E[D{t)] is given by 

'»n-fot/flflfd« (8) 

If the response is assumed to be a Gaussian 
stationary random process, then the peaks have 
a Rayleigh distribution, given by 

p(a) . « exp(-a2/2 o y2) (9) 

where o., Is the RMS response of the stress. 
Substit/ting Eqs.  (5) and (9) in Eq.  (8) 

N SD (5) 

where    b   and   c    are    material    dependent 
constants. 

According to Palmgren-Miner hypothesis, 
«hen n cycles of stress amplitude S have been 
experienced, the material has used up a frac- 
tion of its fatigue life equal to n/N. where N 

E[D(t)] V        r   .b+1 /   aD+1 exp(-a2/2 ey^da 

fj 
-£- (/2 ay)0 r(l ♦ b/2) (10) 
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The condition for failure may be stated as 

-£ {/I ^)b r (1 + b/2) > 1      (11) 

Thus  fatigue  constraint  specifying  that  the 
structure should not fall for T seconds Is: 

fnT 
-g- UZ ^)b r (1 + D/Z) < 1 (12) 

FREQUENCY RESPONSE ANALYSIS 

The fatigue constraint developed In Eq. 
(12) can now be used together with other 
design constraints to arrive at an optimum 
weight structure which will satisfy all the 
design constraints Including fatigue. In the 
process of deriving the fatigue constraint. It 
was assumed that the response of the antenna 
structure Is a narrow band random process. 
Before using the fatigue constraint given In 
Eq. (12), this assumption regardlg the narrow 
band response Is to be verified. The 
frequency response of a multl-degree of 
freedom system subjected to harmonic 
excitations Is given by [6]. 

'1 

where: 

jiLaL 
r-l ^ VV [{l-W^l^VVf* 

(13) 

Yf Is the peak displacement, 

Tr Is the participation factor for the 
rth mode, 

Mr Is the generalized mass for the rth 
mode, 

C   Is the structural damping, 

x  Is   the  peak   acceleration of the 
excitation, 

u    Is the rth natural  frequency for the 
system, and 

u   Is   the   frequency   of   excitation   In 
rad/sec. 

The frequency response computation was 
carried cut In the present context using the 
SPAR finite element program [7]. Additional 
software was generated to enable SPAR to 
compute the frequency response. A plot of the 
frequency response Is shown In Fig. 6. As can 
be seen from this figure, the response of the 
antenna 1" a narrow band process and ttm 
predominant natural frequency of the structure 
Is 22.5 Hz. Thus, the fatigue constraint 
developed as per Eq. (12) can be Justifiably 
used for the antenna structure. 

Optimum Design of the Antenna with Fatigue 
Constraint: 

The satellite antenna structure optimized 
before without the fatigue constraint Is now 
considered to Include the fatigue constraint. 
The Initial values chosen for the design 
parameters are the same as the optimum design 
parameters calculated before without the 
fatigue constraint. The Initial values of the 
design parameters have been chosen In this 
manner to clearly bring out the effect upon 
the optimized weight of the structure due to 
Inclusion of the fatigue constraint. All the 
other constraints Imposed on the design 
without the fatigue constraint have been 
retained. The fatigue constraint as developed 
In Eq. (12) Is Included. The expected 
cumulative damage In 36000 sec. Is constrained 
to be less than unity. 

Including the fatigue constraint, the 
following optimum solution Is arrived at: 

Minimum weight - 12.3 1b (5.6 kg) 

First natural frequency ■ 17.6 Hz 

Maximum RMS displacement > 0.004" 
(0.010 cm) 

Maximum RMS stress « 512 ps1(37.2 kg/cm2) 

Design variables x1 ■ 0.002 radians 

Xj ■ 0.089 radians 

Xj - 0.629" (1.597 cm) 

x,, - 0.032" (0.018 cm) 

The final analysis for the minimum weight 
design of the antenna Including the fatigue 
constraint Is automatically produced by the 
software package developed. The change In the 
weight of the antenna structure and also the 
change In the values of the design parameters 
durl.ig various Iterations are plotted in Fig. 
7. The weight of the antenna continuously 
Increases through various Iterations. This Is 
due to the fact that the starting design here 
was the optimum design without the fatigue 
constraints and to satisfy the fatigue 
constraint the structure must be made stronger 
in comparison to the previous optimum design 
that was achieved without the fatigue 
constraints. The design variables x1 to xH 
show very little change In their values 
because the starting values correspond to the 
optimum design wlothout fatigue constraints 
and hence there Is very little room for change 
In their values. 

DISCUSSICÜ3 AND CONCLUSIONS 

The minimum weight of the antenna 
structure considering the fatigue constraint 
is 12.3 lb (5.59 kg) as compared to the 
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minimum weight of 11.2 lb (5.09 kg) for the 
structure without the fatigue constraint. 
Thus an Increase of 9.8 percent In weight Is 
the penalty for Including the fatigue 
constraint. The weight of the structure win 
also depend upon the time limits for the 
fatigue environment. The weight of the 
structure win Increase with the Increase In 
duration of the fatigue environment. At 
present, fatigue normally does not enter Into 
the design requirement for spacecraft 
structures because the loads are applied only 
for a very short duration. However, with the 
advent of the space shuttle It Is very likely 
that some structures will have to undergo 
loads for more than one launch, and then 
fatigue will become an Important design 
requirement. Thus the proposed system of 
designing spacecraft structure can be used for 
designing structure to Include fatigue 
requirements. 
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Fig. 3.    Beam Elements 1n Finite Element 
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EV \LUATION OF VIBRATION SPECIFICATIONS FOR 

STATIC AND DYNAMIC MATERIAL ALLOWABLES 

S. P. Bhatia and J. H. Schmidt 
Northrop Corporation, Electronics Division 

Hawthorne, California 

SUMMARY 

A technique was developed previously to correlate sine, shock and random speci- 
fications for selecting the highest load or acceleration producing environment for 
comparison with the static (yield or ultimate) material allowables. The proposed 
method in this paper extends the above technique so that it not only allows for the 
direct comparison between sine, shock and random environments using a static 
(yield) allowable, but also makes this comparison more comprehensive by account- 
ing for fatigue producing environments and the corresponding lower dynamic 
(fatigue) material allowables. The concept of "equivalent stress" for random 
vibrations is introduced. The proposed technique allows for a quick and an accu- 
rate assessment of the worst vibration environment using both the static and 
dynamic allowables, helps selection of alternate materials and provides the direc- 
tion that detailed structural analysis must proceed. 

INTRODUCTION 

Whe>) a structural design is required to meet 
different vibration environments, it is common not to 
determine the worst environment, nor to include the 
effect of these environments on the selection of dif- 
ferent materials. In most cases, designs are analyzed 
in detail for each one of the above environments 
based on finite element or other methods. After 
completing this detailed analysis, the structure is 
either considered satisfactory or modifications are 
made to the design and/or materials based on each 
one of these environments. This is a time consuming 
and uneconomical procedure for structural analysis. 
It is more desirable to compare all the environments 
to select the worst one prior to proceeding with the 
detailed analyses. 

i he method proposed in this paper provides the 
engineer with a quick, yet accurate and comprehen- 
sive approach to assess different enväronmenU that 
are modified to allow a direct comparison of these on 
the basis of a common static (yield or ultimate) 
material allowable. The fatigue producing sine and 
random environments are adjusted to a common basis 
with the shock environment so that the effect of 
static as well as dynamic material allowables is taken 
into account. This technique also allows evaluation 
of different materials depending upon the severity of 
each one of the various environment«, whether these 
are controlled by static or dynamic material allow- 
ables. For random vibration environment, the con- 
cept of equivalent stress is presented so that this 
single stress is sufficient to allow comparison of this 

environment with other environments. This concept 
also called "reduced stress" was proposed by Harris 
and Crede (Ref. 1). However, the calculations based 
on this stress do not result in an accurate damage 
assessment. The proposed method overcomes this 
difficulty by accurately taking into account the 
cumulative damage caused by random vibration 
environment on the basis of the equivalent stress. 

GENERAL APPROACH 

As presented in Ref. 2, the vibration environ- 
ments of sine, shock and random can be directly 
related and compared to assess the severity of one 
environment versus another. However, this evalua- 
tion is limited to one of comparing the different 
environments on the basis of acceleration, load or 
stress in relation to a static (yield or ultimate) 
material allowable. 

In order to be more comprehensive for evalua- 
tion of different vibration environments, the possibil- 
ity exists that a sine or random environment of fairly 
long duration may be the most severe based upon the 
detailed fatigue analysis. Using the technique 
described in Hef. ? sine, shock, and random vibration 
environments can be graphically displayed and thus 
evaluated as shown ii: 7^(ure 1. This environment 
comparison does not iiicl-O any consideration for 
fatigue. As will be shown, the sine and random envi- 
ronments can be modified to include the effect of 
lower dynamic material allowables Uied on the 
fatigue limits. 
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FREQUENCY (Hz) 

In order to produce a modified random curve, it is 
necessary to determine a single stress level that 
directly reflects consideration for fatigue. 
Moreover, the dynamic material allowables rather 
than static material allowables need to be considered 
for random as well as sine environments which are 
applied for a specified duration. Three distinct 
regions of a fatigue S-N curve, as shown in Figure 2, 
must be addressed as follows: 

1) Region A represents a sine or random environ- 
ment that is of sufficiently short duration so 
that a comparison to static (yield) material 
allowable is applicable. This reverts to the 
previous method of Sef. 2. The results of this 
comparison are thus the same as those shown in 
Figure 1. 

2) Region B represents a sine or random environ- 
ment that is of sufficiently long duration to   _ 
produce enough cycles at any frequency (1x10 
cycles or greater) so that comparison with 
dynamic (endurance) material allowable, SE is 
required. This case requires only slight modifi- 
cations. The sine and random curves need to be 
multiplied by the factor, K., defined below 
based on yield allowable: 

Figure 1. Combined response plots based on 
static allowable only K, = SY 

SE 
(1) 

The curve for random environment in Figure 1 
was based on the definition that 3<r (three sigma) 
stress levels produce limit loads or stresses that will 
compare directly to static (yield) material allow- 
ables. This does not take into account the fatigue 
producing characteristic of the random environment. 

where Sy = yield allowable, and 

Sg = endurance allowable. 

ANGLE -TAN-1(Kal 

$ 

f 
LOGS 

Sy - TENSILE ALLOWABLE. OR 
Sy - YIELD ALLOWABLE 

ENDURANCE 
ALLOWABLE 

LOON 

Figure 2. A typical S-N curve 
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3) Region C is the difficult region and its solution 
is discussed further in this paper. This region is 
linearized on a log-log :>lot by best fitting the 
following equation using least squares or other 
methods to the S-N material data points so that 

-   /M«" (W (2) 

Equation (2) can also be written as 

log S = log Sj - -j^- (log N) (3) 

where S     = stress level, 

N    * number of allowable cycles at 
stress level S, 

S.   = hypothetical stress level to cause 
fatigue failure at one cycle, and 

Ko  = a material property defined as the 
inverse of slope of the S-N curve 
on a log-log scale as shown in 
Figure 2. 

By utilizing Miner's rule for fatigue damage, 

m     In, 
D= 2 

i=l IN(Siff) 
(4) 

where D    = cumulative fatigue damage, 
normally set at 1.0 but can be 
quite different depending upon the 
material, load sequence and other 
factors (Ref. 3). The results of 
this method are not affected by a 
particular value of D, 

ro    * maximum limit of i in S.v levels. 

"l<r number of applied cycles at various 
stress levels, S.^, and 

N(S. ) > number of allowable cycles at 
stress levels, S|V. 

Postulating that for a given structure there 
exists one equivalent stress level, S-Q, and 
eof responding number of allowable cycles, N(S_Q) 

that produce damage, D-g, so that 

DEQ sm^ (5) 

81»'* the damage assessment is the same, I.e., D 
* D. equations (4) anü (5) yield, 

V ) 

EQ 

ro 
n     » £ 

HB^Jf    i»l JN»,,) 
(6) 

If equation (t) is used to substitute N(SRO) and N{S. ) 
Into equation (•), the result is * 

WQ) 

Ka 

If a Gaussian distribution is assumed with m 
stress levels). 

"U 0.683n 

n2o. =   0.271n 

"3a 
By definition, 

S2a = 

0.0433n 

2S 
03<r =   3S 

'lo- 
'la 

(7) 

'3(3(r 

(8) 

(9) 

(10) 

(11) 
(12) 

Substituting from equations (8) through (12) into 
equations (7) and rearranging: 

'la 
= P: 0.683 + 0.271(2)K'> + 0.0433(3)K<> |   ^(13) 

or   SEQ= p l<r 
Where Sg- is applicable in the region. 

SE $ SEQ ^ SY 

(14) 

(15) 

As can be seen from equation (13), p depends only 
upon the material property K«. The variation of p 
with the material property Ko is shown in Figure 3. 
pis slightly dependent upon the type of distribution 
chosen, i.e., Gaussian or Rayleigh, but it is indepen- 
dent of any other variable including the material 
property S., number of applied cycles n, and the 
stress level S^. Its value is less than three for most 
of the materials. The relationship shown in equation 
(14) is important, since this now allows the previous 
procedure based on static allowables to be extended 
to include an evaluation of vibration environments 
for fatigue as well. 

PROCEDURE 

In general, various components in a structure «re 
made from different !D«terials. To take into account 
the mechanical properties of these materials, the 
following procedure is presented to .nodify different 
vibration environments so that these are directly 
comparable. 

(a) Compute the ratio K. > Sy/S- for all the 
materials. The largest ratio will probably 
be the worst case. 

(b) Obtain Ko and ß for all materials. 

(c) Based on the test duration specified, calcu- 
late the number of applied cycles at various 
frequencies as follows. 

n * f x t (16) 
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Figure 3. Variation of multiplier p vs. k 

where   n = number of applied cycles, 

f » frequency, He, 

t = test duration, seconds. For sine 
environment, it is the dwell 
time at frequency f. 

(d)  Obtain the fatigue allowable stress S« 

corresponding to number of cycles, n fr<)m 
equation (3) so that, 

(e) 

(f) 

log 8p » log Sj ~ -j^- (log n) (17* 

Modify the sine environment by multiplying 
with tiie factor K., where 

(18) 

Modify the random environment by multi- 
plying with the factor K, defined by 

(19) • P^F) 
(g)   Usir« the factors K2 and Kj defined 

above :. equations (1» and (19) for sine and 
random environments, respectively, all the 
environments are directly comparable on a 
common static (yield) material allowable 
basis. The effect of lower dynamic (fatigue) 

material allowables is also taken into 
account. The modified environments of 
Figure 1 are plotted in Figure 4. It should 
be noted that multiplication of the random 
environment by 3« is no longer necessary. 

(h)  Factors K. and K. are introduced to 

compare results obtained from this proce- 
dure for random environment to those of the 
previous method. If the random envirai- 
ment is of sufficient duration and the 
concept of the equivalent stress is not 
known, it will be desirable to use the 
endurance limit, S-, in obtaining the 

factor K. defined below. 

ß) (20) 

It should be noted that three in equation 
(20) is based on 3». If the random 
environment is compared with the static 
(yield) material allowable without takii* 
into account the effect of its fatigue 
characteristics as reported in Ref. 2, the 
multiplier K. based on 3   levels is used, 
where 

KSS (21) 
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FREQUENCY (Hz) 

Figure 4. Combined response plots modified 
for static and dynamic aiiuwables 

Comparison of the various multipliers K, 

through Kg is discussed in the following 

illustrations. 

ILLUSTRATIONS 

To apply the technique proposed in this paper, 
two different materials with the following properties 
are considered. It should be noted that these 
materials listed below in Table 1 are selected to 
cover two extremes of the ratio K,. 

TABLE 1 

EXAMPLE A EXAMPLE B 

Material Al 7075 SAE 1018 

SY MPa (ksi) 365.5   (53) 275.9 (40) 

SE MPa (ksi) 89.7   (13) 237.9 (34.5) 

K1 = SY/SE 4.08 1.16 

S1 MPa (ksi) 1849.7   (268.2) 650.3 (94.3) 

Ka 5.72 15.12 

P 1.890 2.440 

t (seconds) 1440 1440 

To account for dynamic as well as static 
material allowables, the test duration is evaluated at 
various natural frequencies. Assuming a ?M vjuency 
range from 100 to 10,000 Hz, the various factors are 
Cöiailated as shown in Table 2. 

TABLE 2 

CALCULATION OF THE VARIOUS FACTORS 

Frequency,f 
(HE) 

Number 
of Applied 
Cycles, n 

Allowable Fatigue Stress, Sp 

For Example 
A        B 

K3 
For Example 

A       B 

| 

K4 
For Example 

A         B 
Example A 

MPa(ksi) 
Example B 

MPaflcsi) 

100 1.44X105 331.7   (33.6) 296.6   (43.0) 1.58 1.00 2.99 2.44 12.24 3.48 

500 7.20X105 175.2    (25.4) 266.2    (38.6) 2.09 1.04 3.95 2.54 12.24 3.48 

1000 1.44X106 155.2    (22.5) 254.5    (36.9) 2.36 1.08 4.46 2.64 12.24 3.48 

2000 2.88X106 137.2    (19.9) 243.4    (35.3) 2.66 1.13 5.03 2.76 12.24 3.48 

10,000 1.44X107 103.4    (15.0) 218.6    (31.7) 3.53 1.16 6.67 2.83 12.24 3.48 

K» is allowed to vary between one and K, so that SE<Sp<SY. 
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The sine response acceleration is multiplied by 

the factor K, so that it can be compared with the 

shock response spectra. It should be noted that K, is 

kept between 1.0 and K. to ensure that S„ is within 

S- and Sy. Furthermore, the random vibration 

response is multiplied by Kj based on the concept of 

the equivalent stress, SEO, which results in the same 

cumulative damage as the full spectrum of random 
vibration environment. All three response spectra 
are plotted in Figures 5 »nd 6. The environments are 
directly comparable sine« these have been modified 
for comparison with the static (yield) material allow- 
able. The worst environment is predicted to be 
random for material A and shock for material B. 
Thus material A is found to be dynamic (fatigue) 
critical and material B is judged to be static (yield) 
critical. The particular environments should be 
evaluated for further detailed analysis of these 
materials. The values of multiplier K. are also listed 

in Table 2. Comparison of the random environment 

based on K-, K. and K. for materials A and B is 

shown in Figures 7 and 8 respectively. These dia- 
grams illustrate that the equivalent stress modifies 
the random vibration environment to the appropriate 
levels for material A as well as B without imposing 
unnecessary severity or too little increase for com- 
parison with the sine and shock environments. 

FREQUENCY (HZ) 

Figure 6. Combined response plots for 
material B 

K« (ENDURANCE) 

/V 

/       K, (EQUIVALENT STRESS) 

/ ><.••*      *• (STATIC ONLY) 

FREQUENCY (Hz) FREQUENCY (HZ) 

Figure 5. Combined response plots for 
material A 

Figure 7. Random vibration response plots for 
material A modified by different factors 
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K« (ENDURANCE) 

K. (STATIC ONLY) 
K, (EQUIVALENT STRESS) 
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FREQUENCY (Hz) 

& Figure S, Random vibration response plots for 
material B modified by different factors 

CONCLUSIONS 

The method proposed modifies the fatigue 
producing sine and random environments and takes 
into account the dynamic material allowables. The 
concept of equivalent stress provides means to 
reduce random vibration spectrum to a single stress 
level with equivalent damage so that comparison with 
the dynamic material allowable is possible. Direct 
comparison of sine, shock and random environment en 
the basis of a common static (yield or ultimate) 
material allowable is obtained to select only one 
worst environment for further detailed structural 
analysis. This is expected to make the analytical 
evaluation of structures more economical and more 
comprehensive. 

207 



Discussion 

Mr. Galef (TBH); For reasons that were brought 
out In Professor lelpholz's paper, there Is 
really no region B, or endurance limit region, 
except for sinusoidal stress. To clarify that, 
the occasional 3 slgma, 4 Sigma, or 5 slgna 
limits (by the way, we will have to learn to 
start multiplying by numbers other thfi three; 
there Is no particular reason for always talking 
about 3 slgna limits), the occasional high cycle 
will start a crack that will continue to 
propagate at the stresses well below the 
endurance limit. This has to be considered. 

Mr. Bhatia: Yes, you are right. In this 
procedure we have simplified the S-N curve. 
However, the method will be applicable if there 
is no endurance limit. You just drop the line 
all the way. 

Mr. DeLeon (ITT Gilfillan): Where did you get 
the dynamic material properties? 

Mr. Bhatia; We got some from MIL Handbook 5D, 
and there are aerospace material handbooks 
available which have some of these properties. 
In some cases we also had to contact the 
supplier. 
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SUPERSONIC FLOW INDUCED CAVITY ACOUSTICS 

Leonard L. Shaw 

Wright-Patterson Air Force Base 
Dayton, Ohio 

A wind tunnel test was performed on a cavity model with 
variable length and depth.  It was tested at three super- 
sonic Mach numbers of  1.5, 2.16 and 2.86. Four unit 
Reynolds numbers, 1.0, 2.0, 3.0, 4.0 million were tested. 
The model was tested at two angles of attack and two yaw 
angles. Two cavity widths «ere tested. Acoustic data 
were obtained for almost all combinations of the test 
parameters. Strong acoustic resonance was obtained for 
many of the configurations and all three Mach numbers. 
Levels as high as 165 dB were measured. Reynolds number 
was shown to strongly affect excitation of specific 
resonant modes. Angle of attack affected the levels as 
well as yaw. , An important result of the effort is the 
affect of model scale.  It was shown that by changing the 
cavity size, but keeplpj all other parameters equal, 
change in the flow Induced acoustic levels as large as 20 
dB can occur. The purpose of this paper is to document 
as much of the acoustic data as possible so that the data 
trends will be available for the user. 

INTRODUCTION 

Aircraft weapons bays exposed to 
free stream flow may experience an 
intense aeroacoustic environment in 
and around the bay. Experience has 
taught that the intensity of this en- 
vironment can be severe enough to re- 
sult in damage to a store or its In- 
ternal »quipment, or to the structure 
of the weapons by itself. To assure 
that a store and the sensitive inter- 
nal equipment can withstand this haz- 
ardous environment and successfully 
complete its mission, they must be 
qualified to the most severe sound 
pressure levels anticipated for the 
mission.  If the qualification test 
levels are too high, the store and its 
Internal equipment will be overdesigned 
resulting in unnecessary cost and pos- 
sible performance penalltles.  If the 
levels are below the In-flight levels, 
the store or its Internal equipment 
may catastrophically fail during per- 
formance of the mission.  Thus, it is 
desirable that the expected levels in 
weapon bays be accurately predicted. 

A large number of research efforts 
have been directed toward understanding 

flow induced cavity oscillations. How- 
ever, the phenomenon Is still not ad- 
equately understood to allow one to 
predict the fluctuating pressure levels 
for various configurations. This is 
especially true at supersonic flow 
speeds where only a small amount of 
data are available. Only a few of the 
many past studies present any super- 
sonic data. Reference 1 presents 
fluctuating pressure data for Mach 
numbers up to 5 for various length-to- 
depth (L/D) ratio cavities.  It was 
conclusively shown that the highest 
levels occur for an L/D ratio near 2.0. 
The fluctuating pressure levels pres- 
ented in Reference 1, even the highest 
ones, are much lower than data obtain- 
ed more recently. 

Supersonic data up to a Mach num- 
ber of 3 are available in Reference 2 
for three L/D ratios and two Reynolds 
numbers. The most Important result of 
these data, relative to the current 
study, is that the narrowband tone 
generation was eliminated by Increasing 
the flow Reynolds number. By increas- 
ing the unit Reynolds number from 0.3 
million to 1.5 million completely 
suppressed the narrowband tone. Thus, 
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the reason the fluctuating pressure 
levels In Reference 1 are lower than 
other data 1s believed to be due to a 
high test Reynolds number. The actual 
test Reynolds number was not given. 

Additional supe 
Mach numbers up to £ 
Reference 3. These 
narrowband tone ampl 
for higher Reynolds 
number 2. The tunne 
number are given but 
Is the local Reynold 
cavity leading edge, 
pends on the dlstanc 
surface leading edge 
leading edge, unfort 
measurement Is not a 

rsonlc data for 
are presented In 

data showed that 
Iflcatlon can occur 
number at Mach 
1 unit Reynolds 
the Important value 
s number at the 

This value de- 
e from the test 
to the cavity 

unately this 
Iways given. 

Based on the above requirements 
a joint program vlth the NASA Langley 
Research Center, Supersonic Aero- 
dynamics Branch was performed. Their 
Interest was mainly static pressure 
distribution and boundary layer defi- 
nition. They Instrumented the model 
with static pressure ports and used a 
static pressure probe to study the 
boundary layer. The Structural Vibra- 
tion and Acoustics Branch Instrumented 
the model with microphones to fully 
define the flow Induced acoustics 
environment In the cavities. The 
acoustic data were recorded and r'juced 
by the Structural Vibration and Acous- 
tics Branch while the static pressure 
data were recorded by NASA. The wind 
tunne! tests were performed at NASA 
Langley Research Center In the Unitary 
Flow Fddllty In Building 1251. Since 
almost three hundred different test 
configurations/conditions were tested, 
a voluminous amount of acoustic data 
were obtained.  Essentially all of the 
data were published In Reference 6. 
The purpose of this paper Is to docu- 
ment as much of the acoustic data as 
possible so that data trends from 
essentially all of the configuration/ 
conditions will be available to the 
user. This Is necessary since the flow 
Induced cavity acoustics levels In a 
cavity have been shown to be very sen- 
sitive to configuration and flow con- 
dition, thus making It almost Impossi- 
ble to generalize the results for many 
configurations. 

DESCRIPTION OF THE WIND TUNNEL MODEL 
AND INSTRUMENTATION 

The mode! consisted of an open 
rectangular cavity Installed In a aero- 
dynamlcally shaped body.  The body was 
aerodynamlcally shaped to eliminate 
shock wave Interactions between the 
wind tunnel walls and the model. Figure 
1 shows a side view of the model and 

Figure 2 shows a front view. The 
cavity is seen 1n Figure 2 to be In the 
center of the moael. The model was 
sting mounted from the rear. The down 
stream wall of the cavity was remotely 
adjustable. 

Figure 1  Side View of Model 

Figure 2 Front View of Model 
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Figure 3 Long Cavity Configurations 

Figure 4 Snacer Blocks For Various 
Widths 
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DESCRIPTION OF TEST PROCEDURES 

The model was Installed In the 
wind tunnel as shown In Figure 1. The 
cavity was set at a depth of 2.5 Inches, 
and width of 2.5 Inches, and length of 
12 Inches and acoustic data were rec- 
orded. The length was changed to 7.5 
and 3.75 Inches and data recorded at 
each one. The Mach number was then 
changed to 2.16 and data were recorded 
for each one of the three lengths. The 
angle of attack w?s changed to -5 de- 
grees and data recorded for each length. 
Nach number was then changed to 2.86 ana 
each of the parameters were varied and 
data recorded for each condition. The 
only changes which required shutting 
the tunnel down were changing the depth 
of the cavity or the width. The length 
was controlled remotely by a motor 
driven rear wall. 

DISCUSSION OF RESULTS 

The acoustic data recorded during 
the wind tunnel test were reduced Into 
narrowband (11.7 Hertz) spectra and 
plotted with multiple spectra on a plot 
to Illustrate the effect of each test 
parameter. Spectra for each of the 
test parameters are presented and dis- 
cussed below. 

Mach Number 

It has been believed that flow In- 
duced cavity acoustic pressure oscilla- 
tions were not significantly excited at 
supersonic speeds (See Reference 2 and 
3). The results of this test show that 
this Is not the case. Figure 6 shows 
spectra for Mach numbers 1.5, 2.16, and 
2.86 for Reynolds number o' 2.0 mil- 
lion and length-to-depth ratio of 3. 
The resonant frequencies increase with 
Nach number as the Rosslter equation 
predicts. This can be seen at each of 
the resonant frequencies.  The amplitude 
of the lowest resonant frequency de- 
creases with increasing Mach number. 
This is what would have been predicted 
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X NIKE 8 0A-159 N-1.50 
A NIKE 8 0A«153 M-2.16 
□ NIKE 8 0A>132  N-2.86 

Figure 6 Spectra Showing Effect of 
Nach Number, D«2.0. L-6, W-2.5, RE-2.0 
A«0, B-0 

The broadband levels Increased about 
7 dB and the resonant frequencies as 
much as 25 dB. The sixth resonant fre- 
quency WcS not excited at 0 degrees an- 
gle of attack but is 20 dB above the 
broadband level for -5 degrees angle of 
attack. Thus the angle of attack of a 
cavity could significantly (25 dB) In- 
crease the flow Induced acoustic levels 
at supersonic flow speeds. 

A NIKE 10 
0 MIKE 10 

0A*146 
0A-136 

A-5 
A-0 

Figure 7 Spectra Showing Effect of 
Angle of Attack, D-2.5, L-7.5, W-2.5, 
RE-2.0, B-0 

Angle of Attack 

Angles of attack of 0 and -5 de- 
grees were tested.  In general, having 
the cavity at a -5 degree angle of 
attack Increases the acoustic levels In 
the cavity. Both broadband levels and 
resonant frequencies levels are in- 
creased. Figure 7 shows spectra at 0 
and -5 degrees for a Mach number of 
2.86 and length-to-depth ratio of 3. 

Reynolds Number 

Unit Reynolds numbers of 1, 2, 3, 
and 4 million were achieved during the 
test. Figure 8 shows spectra for all 
four Reynolds numbers for a Mach number 
of 2.86 and length to depth ratio of 6. 
The broadband levels show an ordered 
increase with Increasing Reynolds num- 
ber. One cannot say that Reynolds num- 
bers alone caused the Increase since 
wind tunnel pressure Is changed to 
change Reynolds number which also 
changes the dynamic pressure. Since the 
effects of dynamic pressure are well 
defined they can be accounted for leav- 
ing the real Reynolds number effect. To 
go from a Reynolds number of 1 million 
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ever, in some cases 3 degrees of yaw 
greatly increased the resonant fre- 
quency amplitudes as seen in Figure 9 
for the first resonant frequency. 

f MIKE 1 0A«141 RE-4 
X MIKE 1 0A«139 RE-3 
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Figure 8 Spectra Showing Effect of 
Reynolds Number, 0-1.0, L«6, W-2.5, 
M-2.86. A-0, B-0 

Yaw 

The model  was  tested at yaw angles of 
0 and  3 degrees.     Figure 9 shows  spectra 
for 0 and  3 degrees yaw  for a Mach  num- 
ber of 2.16 and length-to-depth  ratio of 
3.     For these and other spectra yaw gen- 
rally have  little  Impact on the levels, 
especially  the broadband levels.     How- 
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Figure  9    Spectra  Showing  Effect  of 
Yaw,   D»2.0,   L»6,   W=2.5.   RE=2.0,   A-0, 
M-2.16 
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depth mode response occurred at very 
high frequencies. 

X MIKE 1 0A=143 0«0.5 
A MIKE 1 0A=166 D»2.0 
O MIKE 1  0A=157  0*1.0 

resonant response. For the 6 Inch 
case (L/D 26) there Is a fair amount 
of response. For the 3 Inch case 
(L/0=3) there Is strong response. For 
the 1.5 Inch case (L/D-1.5) there also 
Is response but It occurs at mu h higher 
frequencies since the resonant frequen- 
cies scale with length. 

Figure 10 Spectra Showing Effect of 
Depth, L-6, W»Z.5, RE-2, M-1.5, A«0, 
B-0 

♦ MIKE 2 0A«134 L-12 
X MIKE 2 0A-146 L-1.5 
A MIKE 2 0A»151 L»3 
O MIKE 2 0A-144 L«6 

Figure 11 Spectra Showing Effect of 
Length, 0-1.0, W-2.5, RE-2.0, M-1.5, 
A-0, B-0 

Length 

The model was tested at lengths 
of 1.5, 3, 6, and 12 Inches. Results 
for all four lengths are shown In 
Figure 11 for a Mach number of 1.5 and 
depth of 1.0 Inch. First looking at 
the spectra there appears ta be  no 
trend with length. The reason for this 
Is that all of the spectra are from 
microphone 2 which means that for each 
length microphone 2 Is at different 
normalized longitudinal locations. 
Since It Is well known that the reso- 
nant frequencies exhibit longitudinal 
mode shapes, having the measurement 
location at different normalized longi- 
tudinal locations would cause different 
levels to be measured. This partly 
explains the wide variation of the 
data. The other cause is that the 
length-to-depth ratio Is greatly dif- 
ferent {L/0 from 1.5 to 12).  For the 
12 Inch long case (L/D-12) there Is no 
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1         cavity. This causes the acoustic feed 
1         back waves to propage te mostly through 
■         boundary layer velocity gradients re- 
Z                       suiting In the waves being bent and 
i         traveling a slightly longer distance 

to reach the 1 eadlng edge making the 
cavity appear slight! y longer, thus 

i         causing the resonant frequency to do- 
i         crease sllghti y. W s decredse In 
1         resonant frequency was seen In all the 
P         narrow cavity data for all the test 
1        conditions. 

AMIKE  8 
OMIKE  8 

OA-140 
OA-141 

W-1.0 
W-2.5 

Figure 12 Spectra Showing Effect of 
Width, 0-1.0, L-6.0, RE-1.0, M-2.86, 
A-0,  B»0 

des  represent standing waves  In  the 
cavity so each measurement location 
will  be at a  different location on 
the wave.    The lowest resonant  fre- 
quency has one  node near the center of 
the cavity and the second resonant 
frequency has  two nodes.    Microphones 
1-4 are  located at normalized locations 
öf 0.2,  0.4,  0.6,  and 0.8 respectively 
for the  3 inch  length cavity.     It is 
seen  1n  Figure  13 that  for mode  1   the 
levels  vary greatly but at mode  2 there 
is only a small  change  in amplitude. 
The reason is the measurement locations 
fall   at different positions  on  the 
standing waves.    For mode  2  they happen 
to  fall   at approximately equal  amplitude 
positions. 

♦ MIKE 4 OA-142 
X MIKE 3 0A=140 
A MIKE 2 0A*135 
O MIKE 1 0A-143 
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Figure 13 Spectra Showing Effect of 
Spatial Location, D«1.0, L«3, W-2.5, 
RE-2.0. H-2.16. A-0. B-0 

Spatial 

Microphones were located along the 
floor of the cavity at fourteen loca- 
tions. Only part of the microphones 
were exposed at the shorter cavity 
lengths. LaU from microphones 1-4 for 
a cavity length of 3 Inches and Mach 
number of 2.16 are shown In Figure 13. 
The broadband levels vary as much as 
12 dB and the resonant frequency ampli- 
tude vary as much as 18 dB.  It Is Im- 
portant to kr.ow the measurement loca- 
tion In a cavity. Generally the broad- 
band levels iicrease towards the rear 
of the cavity  The resonant frequen- 

Scale 

There is question as to what affect 
the scale of the cavity has on the flow 
Induced acoustic environment (e.g. see 
Reference 2). Specific combinations of 
cavity length and depth were selected 
to give the same L/D ratio. Figure 14 
presents dati for four cavities with 
the same L/D ratio of 3. Different 
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microphones were selected to be at the 
same normalized measurement location 
for each cavity. This normalized lo- 
cation Is 0.4 from the leading edge. 
The data represent the same L/D ratio 
and the same location on the standing 
waves In the cavities.  If one resonant 
frequency Is selected and compared to 
the other scale data, the affect of 
scale size can be determined. Consider 
the 6 Inch length case and the mode 
near l,/50 Hertz.  Compare 1t to the 3 
Inch long cavity dnd there should be a 
peak at about 3,500 Hertz and there Is 
one. However, It Is 14 dE lower. Now 
compare 1t to the 1.5 Inch case and 
there should be a peak near 7,000 Hertz 
and there 1s but Its amplitude Is back 
up to be same level as the 6 Inch case. 
Other comparisons like this could be 
made and show different results also. 
This points out the problem of scaling 
the data from one scale size to another, 
especially from model size to full scale 
aircraft. The problem Is not understood 
but Is believed to be due to not ac- 
counting for the boundary layer scale 
at the leading edge of the cavity. How- 
ever, In this case the boundary layer 
was the same thickness for each scale 
size but the results did not show a 
specific trend with s' le size. This 
leads one to believe  «t the feedback 
mechanism Is also a fr ctlon of the 
boundary layer thlckncs. 

♦ MIKE 1 OA-158 
X MIKE 5 OA-139 
A MIKE 4 OA-158 
O MIKE 2 OA-151 
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CONCLUSIONS 

The results of this wind tunnel 
test clearly Indicate that strong flow 
Induced acoustic pressure oscillations 
can occur In cavities exposed to super- 
sonic free stream flow. Overall levels 
as high as 165 dB can be generated. The 
scale of the model selected for testing 
may not give as high of levels as a 
model of another scale size. This could 
lead to significant errors In predicting 
full scale environments. Differences 
as large as 20 dB can occur. 
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