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SOME APPROXIMATE BOLTZMANN EQU - TION SOLUTION METHODS
FOR THE STUDY OF INTENSE MICROWAVE PULSE PROPAGATION

I. INTRODUCTION

The propagation through the atmosphere of short pulse high pover
microvave (HPM) radiations is of interest for many applications. One of the
important aspects of the propagation, however, is the attenuation of the pulse
as it traverses the atmosphere. The attenuation results from the absorption
of the radiation by the air plasma electrons, which are generated by the air
breakdown action of the high power microwave. The microwave radiation is also
attenuated through absorption by the air molecules and by scattering processes
with molecules and particulates.

To calculate the attenuation of the HPM pulse one must solve Maxwell’s
equations in conjunction with the radiative transfer equation. The
attenuation coefficient, due to the absorption by the air plasma, is related
to the plasma conductivity or more specifically it depends on the electron
density and the collision frequency for the momentum transfer. The electron
density, on the other hand, depends on the avalanche ionization rate which in
turn depends on the atomic cross sections and the appropriate electron
velocity distributions.

The relevant quantities for the HPM attenuation calculations, however,
can be obtained if an ab initio approach is considered, where one solves the
Boltzmann equation in conjunction with Maxwell’s equations and the radiative
transfer model.

To obtain reasonable estimates for the microwave attenuation, one may use
experimental values for the ionization and momentum transfer rates vy and v
Hovever, in the region of interest, i.e. high power and short pulse, there
exist no experimental data. Therefore, the Boltzmann equation approach is
necessary. The formulation of a Boltzmann equation requires a set of
appropriate atomic cross sections which represent the state of the art and are
reliable. The appropriate cross sections are given in tabular form at the end

of this report based on a recent compilation by Alil.

Manuscript approved July 23. 1986.
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- The Boltzmann equation approach in obtaining the electron velocity
;ﬁgﬁ distribution has been formulated in general gy3m2ny authors and its solution
gka: using spherical harmonics is well understood™’~’'". Many treatments of the
gkga Boltzmann equation, applied to breakdown in gases and swarm experiments, have
. utilized the steady state approach where ionization effects are not
‘{3}4 considered. This approach has also been used previously as means to obtain
%isﬂs electron atom collision cross sectionss.
Y90 The effect of ionization for high E/N (E is the electric field and N the
R gas density) has been treated for svarm experiments by Taniguchi, et. al.,6
”iaq Brunet and Vincent7 and Yoshida, et. a18. The electron velocity distribution
ﬁ'x: in gas breakdown by an rf pulse has been treated by Morezg. Howvever, <
333; Boltzmann equation analyses for very high rf fields with short pulse durations
s have had very little attention. Recently, Pitchfordlo’11 has considered the |
R time dependent Boltzmann approach in the breakdown of nitrogen.
f‘u%i : In the following sections, we describe some theoretical formulations
fgas vhich provide a basis for generating approximate solutions of the Boltzmann
Y equation suitable for the study of short intense microwave pulses interacting
| with a background atmosphere, in various parameter regimes. It is not
?it? intended that all of these formulations be developed in full detail here;
iiﬁij rather we shall simply outline calculation methods being considered in order
SRS to provide a platform for discussion of the advantages and disadvantages of
" the various approaches. One example, appropriate in the collisional regime,
véé% is developed in detail and implemented on a sample problem.
S
&N II. TIMESCALES
U
ol Microscopic and Macroscopic Timescales
ﬁ:ﬁ Ve treat the problem by considering a short pulse of length L, where L/¢
'jsﬁ is less than or of the order of a nanosecond. Before discussing the Boltzmann
P equation, it is useful to survey the various types of processes involved in
qa;i the problem and the timescales on which each operates. There are several
ooy timescales relevant to the dynamics:
1N
| ff T, - 1/v, wvhere v is an effective collision frequency; for the present ve
- label all binary interactions as "collisions". v may be less than, '
{:; comparable to, or greater than w.
e
o T, ~ Mc. This is the wvave period, the timescale associated with the
s interaction of a single electron with a cycle of the wave. |
P
X"
o 2




tp ~ L/c. This is the transit time, the timescale associated with the
interaction of a single electron with the pulse.

T, - mln(twl, th), vhere T = X/lvg - vphl, T2 = X/Avph, v_ and vph are

the wave’s group and central phase velocities, and Avphgis the width
of the phase velocity spectrum of the wave packet. These are the
timescales on which the waveform changes due to dispersion. The
quantity X/Ivg - Vph' is the time required for a point of constant
phase to move a distance of order A in the rest frame of the pulse,
i.e. the frame moving with the group velocity. X/Avph is the time
required for dispersive effects to produce a local distortion in the

shape of the waveform.

~ Ld/c, wvhere Ld is the damping length. This is the wave damping or

attenuation timescale.
1. ~ h/c, where h is the atmospheric or ionospheric scale height. This is
the timescale on which the ambient environment seen by the wavepacket

changes.

Dispersion Timescale

For all cases of interest, L << h, Ld’ so that tp << Ta’ Ty For a
narrovband wavepacket in a weakly dispersive medium, we also have tp << T,
To obtain a more quantitative feeling for the magnitude of the ratio tp/tw ve
estimate T, using an approximate dispersion relation. Ve note that for a wave
in the 1 to 100 GHz range, and assuming an electron density of 108

electrons/cm3 or less, we have

(a)p/w)z « 1,

vhere wp is the plasma frequency. In this case the dispersion relation is
approximately
2 2 . 2
(ke/w)” =1 - (wp) /{w(w-1iv)] + terms of order (Q/w)(wp/w) , (1)

where @ is the electron gyrofrequency, and v 1is the effective collision

frequency. Equation (1) can be used to show that

T

vl X(w2+v2)/[c(wpw)2].
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Next we estimate Ty* The width of the k spectrum depends on the shape of the

vave envelope, but 2n/L is a good estimate for practical cases. Then Avph =
(av /ak)Ak and avph
order in the small parameter (wp/w) one finds

/3k can be calculated from equation (1). To lowvest

T

v L(w2+v2)/[c(wpw)2].

Clearly Tl < Ty2! since A < L. Thus T, = T and
/T, - (L/k)[wpw/(w2+vz)]2. (2)

For a one nanosecond pulse at 1 GHz, ng -~ 108/cc, v = 0, equation (2) yields
tp/rw - 10‘2. We regard these as "worst case" parameters: higher frequencies,
nonzero values of v, and lower values of ng all make this ratio smaller. 1In
view of (2), we shall ignore the difference between the wave frame (Vph) and

the pulse frame (vg) in the following.
III. QUASISTATIC BOLTZMANN EQUATION

Now consider the Boltzmann equation in a frame moving with the group
velocity Vg' Ve assume that the direction of propagation is parallel to the z
axis, and that spatial gradients in the x and y directions are negligible. 1In
this reference frame we must use the relativistic Boltzmann equation, which is

of of of f
= + vz == - e[B + (v/c)xB] z= =
ot 9z 9p at coll. (3)

In the wave frame the two dominant causes of temporal variation, wave-
particle interactions and "collisions" (atomic processes) produce only spatial
variations. In the absence of dispersion, attenuation, or inhomogeneities in
the ambient environment, we would expect steady convective flow in the rest
frame of the pulse, with ambient gas at all z<0 and a spatially growing
disturbance between z=0 and z=L. We do not expect hydrodynamic turbulence to
appear wvithin the pulse, since the heavy particles cannot respond on a
nanosecond timescale. Moreover, since v, is close to ¢, and T, Tqr T, are
all >> rp, it follows that

a/9t ~ 1/m1n(tw, Td, Ta) << v, 3/9z ~ 1/'tp or larger.

.'.
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Thus the quasistatic Boltzmann equation,

vz %; - e(v/c)xB'-gé = 3% (4)
p coll.

in which the parameters of the pulse, the ambient medium, and the distribution
function are all understocod to be slowly varying functions of time, is an
excellent approximation; the error incurred by dropping 3/3t in the pulse
frame is of order 1% in the worst case, as shown above. Note that the
~electric field has been dropped from the equation, since E = - (1/c¢)3A/3t
vanishes in the wave frame; we recover E when transforming back to the lab
frame. In the wave frame the total momentum, p, is a constant of the motion,
since we have only a static magnetic field. Electrons and ions enter the
pulse moving along the z axis at nearly the speed of light; the difference in

their velocities is small. The magnetic field rotates the large wave frame

electron velocity vector away from the ion velocity vector and toward the
direction perpendicular to both 2z and the B-field direction (assume B is
aligned with the y axis), and this appears in the lab frame as an acceleration
in the x-direction. To an observer in the lab frame, it appears as if the
magnetic force is weak, and that the acceleration 1is produced by a strong
electric field in the x-direction

In the pulse frame the "information flow" 1is directed from the head of
the pulse towards the tail, for all quantities. Thus, in addition to the
reduction of the dimension of the system by one, we are now dealing with a one
point boundary value problem, and we can seek solution algorithms which
involve marching through the pulse from head to tail. In particular, it is
possible to develop algorithms involving the solution of coupled sets of
ordinary differential equations or quadratures. This 1is the essential
attribute of the approach. In the following sections examples of such
algorithms are outlined. In principle we can solve (4), use £ to calculate
the instantaneous current, electron density, conductivity, etc., as functions
of the slowly varying ambient parameters, and use these in the Maxwell
equations to self consistently determine the slowly varying pulse amplitude

and waveform.
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o IV. REDUCTION TO SIMULTANEOUS ORDINARY DIFFERENTIAL EQUATIONS

4

&g‘i The lab frame counterpart of equation (4) can be written in terms of the

fgf{ coordinate { = z-vpht, vhere vph = ¢ 1is the phase velocity. Ve simply assume

that the distribution function in the 1lab frame is a function of { and

,Q*- velocity components only; justification for this is provided by eq. (4). Then
ﬁtf it follows that, in the lab frame,

o

" (v - v # - RO+ (W@ - R . (4°)

E\ 4 Coulomb or Fokker-Plank type <collisions are unimportant on nanosecond

hng timescales, for n, values of interest here. The remaining "collision" effects

can be expressed as follows:

\J

b 3 = §ELv) S(v,v') d3vr - G(v) £(T,V)

oA at ! ! ’

":‘:j coll.

.q."

s The first term on the right describes the rate at which particles are

?}xﬁ transported to the phase space location (g,v) from all other phase space
%:i locations (Z,v’), by binary interaction processes. The second term gives the
iiﬁ rate of loss from (Z,v) due to such processes. The functions S and G, which
v describe atomic interactions, are assumed to depend on the slowly varying
e ambient parameters, but the associated functional dependences on z,t are

%3f; suppressed here, in keeping with the quasistatic approximation.

Eﬁié Since f is square integrable, we can express it as a sum of orthogonal

W base functions in velocity space, with coefficients which vary with {. Ve

ver, assume that S and G can also be expanded.

"a:

v.‘f QW) = gy £15(D 45 () = T £(D) 4

Gl
- G(v) = zijk Gijk éijk(v) = ZJ J @J(v)

COey

e

N S(vv) = LI Siskirgrrr figk(Y) Ergre )

e

= LIy 85,50 (D 8,000 .
R

‘?;; In general, the orthogonal functions for the expansion in a three
Sji dimensional velocity space would carry three indices (Qijk)’ but since we
= truncate the series we can easily rearrange these into a one dimensional array

;::r: with a single index (éJ), wvhere the maximum value of J is N, the total number

o

oY 6

oy
>
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of terms in the expansion. These relationships can be used to transform (4')
into a set of coupled ordinary differential equations for the coefficients
fJ(C). In the simplest case, when |v| << ¢, we can neglect the magnetic field

term in (4’') and set (vz - Vph) z -¢ (these approximations simplify the

analysis, but neither is absolutely necessary). Substituting the expansion
relations above into (4’), performing the velocity integration, re-expanding
remaining products of the form QJ(V)Q ,{(v') into sums of single ¢’s, using
recursion relations or re-expansion (depending on the choice of orthogonal
functions) to express 3%/3v in terms of ¢’'s, and equating coefficients of the
orthogonal functions yields the desired set of N equations for the F’s:

d 1 ’ - "
T £3(%) - TJ,J'(D) £3'(Q) = O (4"
or R EHO + @Y = 0

vhere £({) is the vector of expansion coefficients of f£f(Z,v), and T is a
matrix whose elements are functions of the electric field and the S and G
expansion coefficients. In the case in which v >> w, the distribution
function will be nearly isotropic, in which case the number of separate
equations to be solved and the size of the matrix T can be drastically
reduced.

In any case, we solve by integrating from T = O (ambient region ahead of
the pulse) to { = L. The accuracy of the resulting solution is limited by the
amount of computation we are willing to do (manifested by the number of terms
retained in expansions, other approximations employed, etc.), up to the
accuracy limit of the quasistatic approximation itself (~1%), but it seems
likely that good results can be achieved with a reasonable level of effort.

An alternative approach, in the same spirit, would be to represent the
distribution function via a set of moments. One represents the distribution
function by the product of a truncated series of orthogonal functions and a
specified "approximation function" such as a Maxwellian or bi-Maxwellian with
free parameters (drift velocity, temperature, etc.). A coupled set of
ordinary differential equations for the free parameters and orthogonal
function coefficients is obtained by the wusual method. Convergence of the
function series is enhanced when the "approximation function" is well chosen.

The coupled ordinary differential equation approach is likely to be the

most practical method of generating solutions. It is possible, however, to
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b
j'l
_ vrite down an analytic solution of the quasistatic equation in terms of a
?:{: "scattering operator" I'. This approach is discussed in the next section.
B
N
:':-. V. FORMAL SOLUTION OF THE QUASISTATIC EQUATION
L
; ﬂ; Ve note that in the absence of <collisions there are three constants of
: :- the motion for a particle in the force field of the pulse, in the wave frame.
*N
Pt Ve have assumed the wave to be linearly polarized with B in the y-direction,
».
o so that in addition to the total energy the canonical momenta Px and Py are
’FQ; solutions of the homogeneous equation associated with (4). This means that ve
,;? can simplify the operator on the 1left hand side of (4) by transforming to a
~<\‘-
S nev set of coordinates:
A 2, ny Pyy Pz —> z, ny Pyr P
NS
“;i where Px = px + eAx(z)/c
0
P = p
N y y
'-'_':*..
N With the new coordinates, the quasistatic Boltzmann equation in the wave frame
A is
B
e of of
vz(z,C) 5= = 3=
‘x;- 92| onst. C 9t{co1l. (3)
2:1':
ot
{bﬁ vhere C is a shorthand representation of the set of constants Px’ Py, p. The
'::m "collision" term can be expressed in the pulse frame as follows:
"0
o Al . [ Ez,0) 8(2,6,6) C - 6(z,0) £(z,0) (6)
.--"J COll.
.‘_\J
vy
N The first term on the right describes the rate at which particles are
- transported to the phase space location (z,C) from all other phase space
ﬂi; locations (z,C’), by binary interaction processes. The second term gives the
{2: rate of loss from (z,C) due to such processes. Equations (5) and (6) can be
Wy combined and rewritten as follows:
= df(z,C
£ 4 wz,0 (0 - 12,0 7
R
F- o0 where 3
p -t I(z,C) = [f(z,C') s(z,C,C') d°C’ (8)
S
4.
e o
o
"h




....... -

g(z,0 = (v (2,017 6(z,0) (9)

$(z,6,C) = (v, (2,017 5(z,6,¢")

Note that 3/3z has been replaced by d/dz. Since the C’s are to be held
constant under the differentation by z, we can treat (7) as an ordinary first
order differential equation in 2z, if we regard I(z,C) as a known function. In
terms of I(z,C), the solution to (7) is

£(z,0) = e B (h0.0) L 2 1(ar,0) fBEOE g (10)
Now define the function space operator I such that
£ = 2] £(2/,C") s(27,C,C") d°C de a1
Eq. (11) becomes
J8(z0M2 s oy L f0,0) + Tel8(2 02 (12)
Ve can iterate (12) to obtain
ef8(z 02 e oy L 1T TP . et £(0,0) (13)
Ve can formally "sum" (13) and express the solution to (12) in the form
f(z,c) = e 182700421y -l g ) (14)

which can also be obtained directly from (12).

The operator I can be interpreted as a ‘"scattering operator". In the
absence of "collisions", the exact solution of the quasistatic equation is
given by the first term of (13); the wavefield effects are carried in the
constants of motion C(z,p). In a weak scattering situation, where electrons
do not undergo more than one atomic interaction during their transit, T
operating on the primary £lux £(0,C) describes the contribution to f from
electrons scattered into the interval (C,C+dC) after a single interaction, and
we expect that (1+T)£(0,C) will be an adequate solution. Similarly, we can
interpret rzf(O,C) as the contribution from electrons that enter (C,C+dC)

after being scattered twice. rnf(O,C) is interpreted in analogous fashion.

. - .
'''''''''''




The effects of losses from the (C,C+dC) interval are described in closed form

B - Igdz

\ﬁﬁ by the e term. In general, if these interpretations are correct and if
} . Ls is the mean free path for atomic processes which add particle~ to the phase
gz?t space interval, then ve expect that the series in (13) has c.nverged after n
o ~terms if n is much larger than the expectation value frr the number of
'va scatterings experienced by an electron in moving from O to z, i.e. n >> z/Ls.
f§:: To illustrate and test these ideas consider a simple model problem which can
;#ﬁ be solved exactly. Let £(2,C) be a function of z only, f = F(z), inside a
B region R of C-space with volume VC’ and zero outside this volume. Also take
’:i. g(z,C) = 1/L; and s(z,C,C") = 1/(Lg V). Equation (7) then has the solution
=
-*.*_: £(z,C) = F(z) = F(0) exp[z/Lg -z/L;] = F(0) exp[z/L’] for C in R
Q&} f(z,€) = 0 for C outside R
::i::

;é where L' = LSLG/(LG - LS)

o

X If LS < LG, then L’ is positive. We have an avalanche if 0 < L’ << L.
\itk Now let us consider (13). For the model problem, we find
I F(0) = (z/Lg)"/nl F(0) (15)
:l;} Vith (15), (13) is easily summed to yield the correct solution to the model
:;ﬂ; problem. It follows from (15) that the ratio of the adjacent terms r“/r“'l in
f%é? (13) is (z/Ls)/n, so that the convergence condition 1is the same as that

) inferred above. Note that the series always converges, even in the case of an
e avalanche.
§$f Ve can express the scattering operator as a matrix by expanding in
fi; orthogonal functions, as before. Ve assume the orthogonality condition has
%:ﬁ the form (a slight modification of the analysis is needed if there is a weight

— function)
| [ e, dc - &

( JJ’ J,J!

Eq. (12) can be written in the form
Q(z,C) = f£(0,C) + TIQ(z,C) (16)

vhere Q(z,C) = ejg(z”c)dz’f(z,C)

10
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Differentiation of (16) with respect to z yields

3

%g = [ s(z,C,C’) Q d°C’

Nov expand s and Q in orthogonal functions, and use the orthogonality relation
to eliminate the integral. Ve get

dg/dz - 5(_) = 0 (17)

vhere Q(z) = [ Qz,0) ¢,(0) a3c

SJ’J,(Z) = [[ s(z,C,C") QJ(C) ‘bJ,(C') d3C dBC'
The solution to (17) is
Q(z) = exp[fs(z')dz’] Q(0) = ( Z(j) [fg(z')dz']“/n!l J Q(0)

or, since #Q = exp{/g(z’,C)dz’'] £(z,C) and Q(0) = £(0),

£(z,C) = @-exp[fs(z’')dz’'-I[g(z’,C)dz’]-£(0) (18)

Eq. (18) is similar in form to the solution of the model problem considered
above. For computation, one would replace the matrix part of the exponential
in (18) by its series expansion [(18) is then the matrix version of (13)] and
transform back to the lab frame. In its present form, (18) is more cumbersome
for computational purposes than (4"), especially in the collisional regime,
but it is possible that further analysis will lead to approximate algorithms
useful in the weakly collisional regime where the series expansion converges
rapidly.

In the next section we develop in some detail the equations needed to

implement a version of the coupled ordinary differential equation approach

discussed in section IV.
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VI. COUPLED ORDINARY DIFFERENTIAL EQUATION CALCULATIONS

The General Formalism

In the laboratory frame, the Boltzmann equation can be written as

(19)

e
< jrh
L}
i
errn

of e .
(v, - v lE - Ee[g(c) + vic xn(c)] .

vhere we have used mg, = electron mass, { = z-vpht and 3f/3t = —vph(af/SC). In
this section, we solve the above equation by reducing it to a system of
ordinary differential equations. For the purpose of this report, which is to
demonstrate the formalism, we will use a simplified scattering model.
However, the basic technique is not 1limited to any particular scattering
model.

Since Voh ¥ © and |v| << ¢, we neglect the magnetic field term and set
(vz - Vph) 2 -¢c in the above equation. Ve also assume that the system is
nonrelativistic. The coordinate system is such that =z is the propagation
direction of the microwave pulse and the electric field is in the x direction.

Then, the approximate equation can be written as

of e of 1 3f -
S—C-+H?Ex(()avx+&-5?c =0 (20)

The last term describes the time rate of change of the distribution function
due to collisions. In the present problem, we have partially-ionized plasmas
so that the short-ranged collisions of electrons with neutral particles
dominate. Coulomb collisions are unimportant. Thus, the collision term takes

on the general form

af
at

coll. = Id3V'f(Cy v/ )S(v, v') - G(V)f(C,V), (21)

where the first term gives the time rate of increase in the distribution
function £({,v) due to collisions at all v’ and the second term represents the
time rate of loss of electrons at (&,v) due to collisions taking place at

(%,v).
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The plasma distribution function f is taken to depend on L and the

“spherical velocity coordinates v and 6, where 6 is the polar angle. Ve define
v e vx/v = cos® and use a separable form of f and the following set of basis

functions:

4(v) = E)Y% vlsin (By), 5 -1,2,3,...

o] o)

and

2m + 1 \1/2

e P (w), m=0,1, 2,3,...

Pm(v) ]

The normalization relations are

v

° 2
Js av Vo (D4 () = 8y,

and

-

jil dwP (V)P (¥) = 5= &

Here, o is the maximum electron velocity, and Pm (v) is the usual Legendre
polynomials. Ve then exand f, S and G as follows:

£(Gv) = iZlfﬂ(cmiw)s’lw)

S(v, v') = Z] Z S,

113m¥1 (V)¢5 (vIP (NP (w7)

and
G(¥) = F G4, (VP (V).
i,1
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Then, (20) can be written as

df eE_(Q)
il X
7 {9, (V)P (W) + —— £..(0
El[dc ]1 1 * m C Zi‘,l il
2

x [vegmz @) + 2 g (np) )]

- Zl jstﬂj,,,fj,,,<cwi(v)s’l(w)
(22)

LI 611 E4p(D 4 (M (NP DB ] =0,

vhere ¢i' = d¢i/dv and Pl'(w) = dPlldv. If ve multiply all terms by the basis
functions ¢j(v)Pm(w) and integrate over velocity space, then it is clear that
a system of ordinary differential equations results.

A Simple Collision Model
In order to solve (22), we need to specify the collision terms. While

this equation can be used for any scattering cross-sections, we will
illustrate the method and its capabilities by using a simple collision model
and solving the equation directly. In this paper, we assume that, after a
collision with a neutral particle, an electron has an equal probability of
being scattered into any solid angle. Then, we have

G(y) =0} o (v), (23)
[
and
n 1 2
S(v,v') = ‘.—iv- Z us(v’) é[v' - v +es] ’ (24)
s
14




X PR e I . L o a o . . B romw!

‘where s is the 1index for various collision processes, ﬁa is the ambient

neutral density and g is the scattering cross-section (integrated over the

) solid angle) for the collision process s. The quantity £ is the normalized
) threshold energy for the interaction s; an electron vith incoming energy of

(mev2/2) loses (mees/Z) as a result of the collision. For each interaction s,
: if the incidentzenergy is less than A then no scattering takes place so that
N as(v) = 0 for v £ Ve define
"
;

ap(v) = }:s)as(v) (25)

p
f ' Using (23) and (24), it 1is straightforward to calculate the expansion
: coefficients Gil and S11J|n By multiplying all the terms in (22) by
. ¢j(v)Pm(v) and integrating over the velocity space, (22) can be reduced to the
¢ followving system of differential equations,

Py A s

i
| + Xiq(8) = 0, (26)
f vhere 1,j,k = 1,2,3,.. and 1,m,n = 0,1,2,3,.... The collision term
& xjm can be written as
- , =

2) (=2 3 2\ (a (1)
4 Xyn(D) ("o) g )8mozi:fio(z')sji - [30) : )21;( BT * G -
X
o

In the above expressions, the following definitions have been used:

‘-v

1 -1
by, = J dx x~Ysin(ix)sin(jx),
0

J
L., »i J'dx cos(ix) sin(jx) = ij [1 - (-1)“"](3'2 - 141
0 0
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v
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1l +1
1 +3

(L)
1

(1+u
21 +1

)

172

’

12
21 + 1

2l + 1
1 -1

1@ .

)

sji.Jo [2 Iv?
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G.
i
and

rikj

then we find

where

and
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using the definitions of Sji

(Ev)sin

+ v i
8 [ + ]]sm
o

v

0
* J dv vzc (v)s1n(ni)

(o]

ni 2
== v+ &
[Vo s ]

o)

. fn dx x~lsin(ix)sin(kx)sin(jx).

(o)

and Ci, it can be shown rigorously that
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In (27), xjm(i)(C) describes the changes in the distribution function due to
the creation of ionization secondary electrons. This term will be calculated
later according to a simplified model. Note that, because of the isotropic
scattering assumption, we have

Siljm = G%; ) naslosmogij
and

- (zm)l’z(2 ] i s, &,

n2%10°14

vhere & denotes the §-function. For more realistic scattering cross-sections
of the form as(v,e), the summations in (26) would be more complicated. Note

that conservation of particles requires that Id3v(af/3t)|coll = 0 in the
O ;

absence of ionization (x_jm for any distribution function f. If we

define

3.1 of
T’deE 3t |coll.
v = j+l
] 1)
Gi_= - jz::l 3 Sji (28)

for any choice of cs(v), excluding ionization. Thus, T = 0 exactly for any £

and any scattering processes.

Solution

Ve have solved the set of differential equations (26) by numerical
integration. For the present work, we used 21 scattering processes to
calculate Sji and Gi: they are ionization, vibrational excitations of N2
molecules, electronic excitations of N2 molecules, and momentum transfer. For

the purpose of numerical computation, it can be shown that

v

&, [—°) .
, § itikj = 7 )N (29)
where
v
0 & 1
Ak = j dv veo (v)sin( ——v)sinr—lv).
j t v \'2
) ) 0
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Using (29), wve can rewrite (27) as

%a0® = ()

mo io
0

pifﬂ

[s £, (08, im(C)Aji] . x(;;(C) (30)

This expression eliminates the double summation, providing better
accuracy. For the purpose of illustrating the procedures involved in
calculating the contribution of the secondary electrons created by ionization,
we assume a simple model in which the secondary electrons are produced with
Zero energy. The result is expected to depend on the distribution of the
secondary electrons, and for serious calculations one would use a more

10 for example, has assumed that the

realistic distribution. Pitchford
incident and secondary electrons share the energy equally following. 1In this
paper, we will not discuss the detailed consequences of the model dependence;
a task for future studies. If we assume that all secondary electrons are

created with zero initial energy, then

(i) .

¥ - (V) fG(l)(v') £(Z, v') dvr,

t

coll.
where the superscript (i) means that only the ionization cross-section is
used. This expression gives the time rate of change of the distribution
function due to the ionization secondary electrons. Using this expression, we
find

271n .
xHey = [ a} js g Ve, (w, (31)
cvzo mo 21: io

vhere Ci( ) is obtained from the definition of G following (27) by replacing
T(v) with a( )(v), the ionization cross-section.

Our code solves the set of equations represented by (26), with the
collision terms xjm(C) given by (30) and (31) or other expressions
representing different assumptions about the nature of the "collisions". 1In
particular, the assumption that all the secondary electrons are created with
zero energy, discussed above as a simple illustration of the method, is
numerically troublesome and somewhat unphysical: in practice the newly created
electron population must have a finite temperature. The electron distribution

e N
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. 's.ﬂ"l




r-U-"U'U'-'E""'F'E'!"'E'F'!"'!!""v"""""!""‘!""""1"'1""""""FT‘T""TYVV¢'VIYYViW“wviw

function can be reconstructed and displayed in phase space, or moments,
conductivities, and other quantities of interest can be calculated directly
from the function space representation.

For the purpose of evaluating the quantities in (26), we define equally
spaced grids for the velocity and angular coordinates. Then, all quantities

including the cross-sections, Aij’ gji’ and Aij are defined and computed on
these grids. For diagnostic purposes, we check particle and energy
conservation.
Figures 1, 2, and 3 illustrate the type of results one obtains with this
method, as applied to a sample problem: Ewave = 100 statvoi;s/cg., w/2n = 30 ?

GHz, and we have an atmosphere of N2 wvith a density of 10°"/cm™., Secondary
electrons are created with a thermal spread of 2 ev, in this test calculation.
Figure 1 represents the drift of an initially Maxwellian distribution function
with 20 ev temperature under the action of a wave electric field only (the
vave amplitude has been reduced to 25 statvolts/cm. to avoid runaway): atomic
processes are turned off. In Figure 2 we see the evolution of the same
initial distribution function in the absence of a wave electric field, but
vith atomic processes operative. A tabulation of the cross section data used
is provided in the Appendix. The "ledge" seen to form on the shoulders of the
Maxwvellian is due to vibrational excitations with cross sections sharply
peaked near 2.5 ev. The growing central peak is primarily due to the cooling
effect of the various excitation processes; 1i.e., these are mostly electrons
scattered down from higher energies. Ionization of neutrals by hot tail
particles also contributes to the growth of the central peak. In Figure 3,
the wave (100 statvolts/cm. amplitude) and the atomic processes act
simultaneously, and one can observe drift motions, the buildup of electron
density due to ionization, etc. Note that the distribution function quickly

becomes non-Maxwellian.
VII. SUMMARY AND COMMENTS

Ve have discussed an approach to the solution of the Boltzmann equation
suitable for the study of short in:tense microvave pulses interacting with a
background atmosphere in variocus parameter regimes, and a specific example
appropriate in the <collisional regime. The coupled ordinary differential
equation approach appears to be viable. Continuing studies and comparisons of

this approach with others are expected to expose the advantages and

disadvantages of the method, and lead to refinements.
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Figure 1. This Figure shows the drift of an initially Maxwellian distribution
. function with 20 ev temperature under the action of a wave electric
¥ field (Ewave = 25 statvolts/em., w/2n = 30 GHz) only: atomic
processes are turned off. The four subfigures represent

-

"snapshots" of the distribution at different wave phases, as the

vave pulse moves past an element of the electron gas. The phases
displayed are: (top left) Cl = MN&4, (top right) C2 = A2, (bottom
N left) C3 = 3N4, (bottom right) C4 = A\, where M\ is the wavelength.
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Figure 2.

el )
s
P PP

The evolution of a 20 ev Maxwellian distribution in the absence of

a vave electric field, but with atomic processes operative is
shown. The growing central peak is composed of primary electrons
scattered down from higher energies and secondary electrons created
when hot tail particles ionize neutrals. The "ledge" which forms on
the shoulders of the Maxwellian is due to vibrational excitations
with cross sections sharply peaked near 2.5 ev. Distributions are
displayed at "times" Ci/c, i=1,2,3,4.
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Figure 3.

Evolution of the electron distribution function with a 100
statvolts/cm. wave and the atomic processes acting simultanecusly.
One can observe drift motions, the buildup of electron density due
to ionization, etc. Note that the distribution function beccmes
non-Maxwellian. Again the subfigures represent snapshops at phases

Z = NMb, N2, 3NG4, A
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".:: APPENDIX: CROSS SECTION TABLES

A
‘Y
o Cross section data used in the sample calculation described in the text
iy is tabulated below. The threshold energy for each process is given in
B
b parenthesis.
k.
L~ "
-y N, Rotational Cross Section
i % (Eo = .02 ev)
1
o Electron Energy (eV) a(cn?
e
A48 0.0 0.0
A 0.02 0.0
) 1.2 7.2(-18)
Y 1.6 2.1(-17)
o 1.7 2.7(-17)
: 1.8 4.8(-17)
" 1.9 1.7(-16)
ey 2.0 6.2(-16)
2.1 6.5(-16)
* 2.2 6.1(~16)
- 2.3 8.28(-16)
o 2.4 7.2(-16)
- 2.6 6.1(-16)
0 3.0 2.7(-16)
3.6 4,5(-17)
Y 5.0 0
=)
~
>
>4
r“
.
o’
J.dv
,“:
1 N
.Sz
~
::3
'::4
' d
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e
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W
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i
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:E NZ Vibrational Cross Section (v = 1)
;}'
f{l 9y (E1 = 0.29 ev)
[ Electron Energy (eV) a(cmz)
. 0.3 1.32(-19)
f: 0.75 6.4(-19)
! 1.44 1.22(-17)
. 1.65 1.84(-17)
i 1.74 2.30(-17)
; 1.85 4.3(-17)
K 1.92 1.01(-16)
1.98 2.60(-16)
KO 2.02 3.0(-16)
': 2.09 2.1(-16)
g 2.12 1.46(-16)
2.18 7.8(-17)
W 2.24 1.38(-16)
; 2.27 2.36(-16)
LS 2.31 2.8(-16)
2 2.38 2.18(~16)
K 2.41 1.39(-16)
2.47 1.07(-16)
- 2.54 1.2(-16)
2.57 1.78(-16)
L 2.61 2.0(-16)
i 2.66 1.66(-16)
L~ 2.71 3.6(-17)
; 2.73 8.8(-17)
] 2.76 5.6(-17)
> 2.79 7.0(-17)
2 2.83 3.68(-17)
:: 3.07 7.68(-17)
S 3.27 3.98(-17)
i 3.60 3.38(-17)
4.0 0
+.
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Nz Vibrational Cross Section (v = 2)

Electron Energy (eV)

g (E2 = 0.58 eV)
a(cmz)

1.73 0.0
1.81 6.0(-18)
1.91 4.6(-17)
1.98 9.8(-17)
2.03 1.78(-16)
2.13 2.2(-16)
2.18 1.58(-16)
2.24 1.1(-16)
2.28 6.0(-~17)
2.34 5.0(-17)
2.39 2.6(-17)
2.43 9.8(-17)
2.49 2.0(-16)
2.53 1.84(-16)
2.57 1.4(-16)
2.63 7.0(-17)
2.69 2.6(-17)
2.73 5.2(-17)
2.82 1.06(-16)
2.92 7.0(-17)
3.02 1.84(-17)
3.12 5.8(-17)
3.22 3.4(-17)
3.29 1.84(-17)
3.35 2.4(-17)

51 3.50 1.2(-17)

,§:} 3.68 0.0
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Nz Vibrational Cross Section (v = 3)

oy (E3 = 0.87eV)

Electron Energy (eV)

1.80
1.87
1.97
2.02
2.05
2.12
2.17
2.22
2.27
2.32
2.36
2.40
2.47
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a(cmz)

.0
.0(~18)
.0(~17)
.8(-17)
.17(-16)
.39(-16)
.72(-16)
.76(~16)
.38(-16)
.2(~17)
L24(-17)
.0(-18)
.2(-17
.9(-17)
L7(-17)
6(~17)
.9(-17)
.7(-18)
.0(~18)
.0(-17)
L1(-17)
1(-17)
.5(-17)
.94(-17)
.0(-18)
.0
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[
,'g: N, Vibrational Cross Section (v = 4)
$l
e o, (E, = 1.16 eV)
[ Electron Energy (eV) a(cmz)
sty
.c":. 2.0 0.0
:gt 2.07 3.0(-18)
Y 2.13 6.0(-17)
ey 2.19 7.94(-17)
2.20 1.19(-16)
Ny 2.28 1.49(-16)
?$ 2.32 1.27(-16)
Hhrt 2.37 9.74(-17)
‘:.:' 2.4 8.1(-17)
:,:c: 2.5 3.0(-18)
o 2.56 3.0(-18)
' 2.62 3.0(-17)
29 2.67 4.5(-17)
i 2.1 7.8(-17)
o 2.77 5.7(-17)
! 2.82 2.7(-17)
Y 2.86 3.0(-18)
2.94 1.2(-17)
. 3.0 2.4(-17)
o 3.15 1.8(-17)
; : 3.21 3.0(-18)
o) 3.25 0.0
".' N, Vibrational Cross Section (v = 5)
_‘ L (Es = 1.45 eV)
.\ N Electron Energy (eV) a(cng
. 2.0 0.0
;%. 2.13 3.0(-18)
At 2.17 3.9(-17)
)
e 2.22 5.7(-17)
N 2.32 8.1(-17)
M 2,38 9.3(-17)
—_ 2.42 9.9(-17)
g 2.48 9.9(-17)
W 2.52 8.1(1-17)
. 2.57 4.2(-17)
ks 2.62 3.0(-18)
O 2.68 3.0(-18)
] 2.72 1.5(-17)
o 2.82 4.2(-17)
! 2.92 4.2(-17)
oy 3.0 3.0(-18)
;i 3.12 1.5(-17)
h 3.22 2.24(~-17)
3.32 3.0(-18)
. 3.35 0.0
0‘ »
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Vibrational Cross Section (v = 6)

; 2

; 9% (36 = 1.74 eV)

Y Electron Energy (eV) c(cmz)

; 2.25 0.0

' 2.30 3.0(-18)

) 2.37 4.2(-17)

' 2.40 7.0(-17)

. 2.44 9.0¢-17)
2.49 9.06(-17)
2.54 9.06(-17)
2.65 8.44(-17)
2.72 4.22(-17)
2.81 1.81(-17)
2.9 1.5(-17)

* 3.0 2.7(-17)

) 3.1 1.2(-17)

? 3.15 0.0

b

&

N2 Vibrational Cross Section (v = 7)

‘ oy (E7 = 2.03 ev)

1 Electron Energy (eV) a(cmz)
2.35 0.0

K 2.40 3.0(-18)

h 2.44 1.66(-17)

: 2.49 2.4(-17)

' 2.53 3.02(-17)
2.61 3.92(-17)

X 2.65 5.12(-17)

i 2.68 6.04(-17)

~' 2.74 5.12(-17)

K, 2.77 3.92(-17)

}: 2.83 3.0(-17)

' 2.88 1.2¢-17)

I} 3.0 3.0(-18)

A 3.08 1.2(-17)
3.17 1.5(-17)

3.3 9.0(-18)
3.4 0.0

-

[

; 29

3

[}

;'

[

\ I.I ‘(-. -'5 -* -’ ". - I* w(.- ‘,‘!".' l.r‘p“ i* s‘.: .".-{ ’J‘:-’i '.t‘?."'."_' i IE\"";"“A\ ;-'_;--_;-._“..:.::.__'.'.‘. :'_~\ :, \ —_F-. -, ._--.. ._'.:& AER N W

?.“.\. .’& .l". ’ “" N . ‘,,. " ""'._"| *\ ".. . )\’)'- _. “ d ‘ g :;c:-.ﬁ:.:".:d_\'\{-::i.:i}-.:".-::-'.‘::: :::i:::‘-. -.‘-:‘)




.......

vl
:.:ki N, Vibrational Cross Section (v = 8)
4
o Electron Energy (eV) c(cmz)
O 2.50 0.0
I 2.62 1.8(-17)
b 2.66 2.42(-17)
Py 2.71 2.42(-~17)
. 2.78 1.96(~17)
v 2.84 2.4(-17)
N 3.0 9.0(-18)
& 3.04 3.0(-18)
b 3.15 3.0(-18)
ey 3.3 9.0(-18)
3.4 3.0(-18)
» 3.5 0.0
e
B,
..;:
a8 ;
DT Excitation Cross section For N,(A"I)
59 ) (E9 = 6.17 eV)
Electron Energy (eV) g (cmz)
R .
: 6.17 0.0
* 6.50 1.28(-18)
) 7.0 1.88(-18)
% 8.0 6.3(-18)
1 9.0 1.21(-17)
S 10 1.68(-17)
v 11 2.22(-17)
W 12 1.92(-17)
13 1.5(-17)
e 14 1.2(-17)
o 15 1.0(-17)
o 16 8.8(-18)
e 18 6.7(-18)
o 20 5.4(-18)
25 3.8(-18)
s 30 2.5(-18)
W 35 1.7(-18)
K. 40 1.3(-18)
A7
Yy
’V’g Above 40 eV use
- 8.06 x 10714
Ko o= 3
b E
3™
\J
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Bxcitation Cross section For N2(83n)

= 7.35 eV)

Electron Energy (eV)

[V 1= « Ve e e S e e el el et R S NS N S SR Y S o)

Above 40 eV use

c=3.3x10

o(en?)

.0
.0(~19)
.4(-18)
L4(-17)
.25(-17)
.78(-17)
.99(~17)
.97(-17)
L71(-17)
L41(-17)
.16(-17)
.95(-17)
.79(-17)
.66(-17)
.56(~17)
L42(-17)
.30(-17)
.20(-17)
.10(-17)
.01(-17)
.2(-18)
.4(-18)
.1(-18)
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g Bxcitation Cross section For Nz(v 4)
L)
Al .
::’ 011 (Eqy 7.36 eV)
I Electron Energy (eV) a(cmz)
\{
o 7.36 0.0
. 8 2.7(~18)
o 9 7.4(-18)
sz 10 1.2(-17
o 11 1.66(-17)
B 12 2.13(-17)
hw 13 2.6(-17)
14 3.06(-17)
o 15 3.51(-17)
= 16 3.8(-17)
el 17 3.76(-17)
Iy 18 3.5(-17)
o 19 3.09(-17)
o 20 2.65(-17)
22 1.97(-17)
W) 24 1.53(-17)
ot 26 1.26(-17)
- 28 1.08(-17)
o 32 8.35(-18)
K. 36 6.6(-18)
38 5.9(-18)
5 40 5.2(-18)
Rt 50 3.0(-18)
1900}
ey
e Above 50 eV use
. o = 3.75 x 10713 15
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b Excitation Cross section For N2(8'3£)
99 (1-3.12 = 8.16 eV)
;ﬂ Electron Energy (eV) a(cmz)
. 8.16 0.0
Y 9 1.6(-18)
10 3.5(-18)
o] 11 5.5(-18)
12 7.4(-18)
o) 13 9.4(-18)
bt 14 1.13(-17)
Y 15 1.25(-17)
‘ 16 1.14(-17)
R 17 9.2(-18)
o 18 7.3(-18)
e 19 6.1(-18)
R 20 5.4(-18)
~ 22 4.7(-~18)
: 24 4.3(-18)
26 3.9(-18)
30 3.4(-18)
’ 34 2.9(-18)
; 40 2.4(-~18)
. INA 2.2(-18)
) 50 1.9(-18)
E Above 50 eV use
3 o= 2.37 x 1077 &
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" BExcitation Cross section PFor Nz(a'lz)
]
o,
.:;$ 93 (E13 = 8.4 eV)
'-::J Electron Energy (eV) c(cmz)
‘ 8.39 0.0
,_’ 9.0 1.0(-18)
L 10 2.7(-18)
*'(': 11 4.5(-18)
AN 12 6.2(-18)
:.. 13 8.0(-18)
14 9.6(-18)
, 15 1.04(~17)
g 16 8.5(-18)
: ;;:: 17 6.4(-18)
K 18 5.2(-18)
ﬂ,: 19 4.5(-18)
L 20 4,1(-18)
_____ ) 22 3.4(-18)
N 26 2.7(-18)
e 30 2.3(-18)
A 34 2.0(-18)
‘\ L}
N2 38 1.87(-18)
N 42 1.84(-18)
46 1.82(-18)
S 50 1.80(-18)
e
T
S
o Beyond 30 eV use
‘ o =9 x 10" (3)
it
o
e
Ly ..'r
0
o ‘
o
e
O 1
ity
g
ety
P
;.;*i
M
ey
V..::
:::'o: 34
'l'.‘l

AN A A & S e R D R T P S
y S | : TRV e . . y RIS SR
X 0 29 0. : L p N I / WYV .‘u\u‘r"\:' oy

------------------- e a s . s . . . -

¥ ﬁ'- ""' ."
Q,. LS 05 )
OO




Excitation Cross section For Nz(aln)

614(E14 = 8.55 eV)
Electron Energy (eV) a(cmz) A

8.54 0.0

9 9.5(-19)

10 3.0(-18)

11 4,95(-18)

12 7.0(-18)

13 93.0(-18)

14 1.1(-17)

15 1.3(-17)

16 1.43(-17)

17 1.50(-17)

18 1.49(-17)

19 1.43(-17)

20 1.38(-17)

22 1.26(-17)

26 1.14(-17)

30 1.02(-17)

34 9.2(-18)

38 8.8(-18)

42 7.6(-18)

46 6.9(-18)

30 6.3(-18)

Beyond 50 eV use
16
3 x 10
g="%F
35
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ﬁ:j';‘ Excitation Cross section For Nz(le)
s 95 (}E‘.15 = 8.87 eV)
Electron Energy (eV) a(cmz)
.n5' 8.89 0.0
- 9 2.0(-19)
10 3.7(-18)
i 11 7.1(-18)
N 12 9.9(-18)
N\ 13 1.77(-17)
P 14 1.15(-17)
i\, 15 1.0(-17)
16 8.1(-18)
N 17 6.6(-18)
o 18 5.6(-18)
s
P 20 4.3(-18)
- 24 3.2(-18)
A 28 2.6(-18)
"
: 32 2.1(-18)
. 36 1.6(-18)
- 40 1.3(-18)
"N 44 1.0(-18)
o 48 8.0(-19)
NN 50 7.0(-19)
‘N Beyond 50 eV use
R
o L. 1.87 x 1071
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"
"5 N2 Dissociation Cross Section
' %16 (816 = 10.0 eV)
. Electron Energy (eV) c(cmz)
~ 9.7 0.0
! 10.0 1.27(-18)
' . 10.5 1.87(-18)
b 11 2.49(-18)
" 12 4.92(-18)
N 13 1.12(-17)
- 14 2.43(-17)
L 15 3.58(-17)
* 16 4.75(-17)
‘ 18 6.82(-17)
s 20 8.56(-17)
A 22 1.05(-16)
} 26 1.36(-16)
g 30 1.58(-16)
n 35 1.67(-~16)
. 40 1.73(-16)
& 50 1.75(-16)
60 1.79(-16)
70 1.80(-16)
90 1.71(-16)
{ 100 1.64(-16)
" After 100 eV use
&
2-' 1.64 x 1071%
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Excitation Cross section For NZ(C3H)

917 (E17 = 11.03 ev)

Electron Energy (eV) a(cmz)
11.03 0.0
11.5 8.0(-18)
12 1.46(-17)
13 2.98(-17)
14 4.43(-17)
15 3.89(-17)
16 2.84(-17)
17 2.34(-17)
18 2.02(-17)
19 1.81(-17)
20 1.65(-17)
22 1.39(-17)
24 1.18(-17)
28 8.6(-18)
32 6.6(-18)
36 5.2(-18)
40 4.2(-18)
/ 44 3.4(-18)
48 2.8(-18)
30 2.6(-18)

Beyond 50 eV use
1.42 x 10714
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Excitation Cross section For N2(332)

918 (Eig
Electron Energy (eV)

Beyond 50 eV use
a-O

39
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11.87 ev)

c(cmz)
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:“ Ionization Cross Section
¢
-. 99 (E‘.19 = 15.6 ev)
::' Electron Energy (eV) o(em?)
L 16 2.1(~18)
] 16.5 4.65(-18)
b 17 7.12(-18)
17.5 9.84(-18)
e 18 1.29(-17)
b 18.5 1.63(-17)
\ : 19 1.98(-17)
o 19.5 2.3(-17)
" 20 3.07(-17)
20.5 3.07¢(-17)
. 21 3.45(-17)
) 22 4.17(-17)
2 23 4.91(-17)
3 24 5.65(-17)
0 25 6.38(-17)
k 26 7.13(-17)
28 8.74(-17)
. 30 1.03(-16)
- 32 1.15(-16)
<. 36 1.38(-16)
5 40 1.57(-16)
" 45 1.77(-16)
50 1.93(-16)
" 60 2.18(-16)
- 70 2.33(-16)
- 85 2.46(-16)
- 100 2.52(-16)
,' 120 2.52(-16)
‘ 160 2.42(-16)
“ 180 2.35(-16)
b 200 2.27(-16)
i 300 1.92(-16)
- 400 1.66(-16)
) 500 1.45(¢-16)
0 600 1.29(-16)
800 1.06(-16)
35 1000 9.22(-17)
.
S
]
24 Beyond 1000 eV use
X -14
_ o= L8210 f1og (0.08E) - log (1 - )7 - 6]
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P 8= c
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& 40 l
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K Momentum Transfer Cross Section
A}
.“‘ cm 2
[}
g Electron Energy (eV) _o (cm™)
' 0.01 2.2(-16)
* 0.014 2.5(-16)
. 0.022 2.94(~16)
" 0.032 3.5(-16)
KX 0.065 4.9(-16)
" 0.1 6.04(~16)
™ 0.23 8.2(-16)
D 0.33 9.3(-16)
' 1.0 9.98(-~16)
- 1.5 1.15(~15)
' 1.6 1.25(-15)
N 1.8 1.60(-15)
- 2.0 1.8(-15)
™ 2.2 1.8(-15)
o 2.6 1.5(-15)
2.8 1.4(-15)
b, 3.0 1.25(-15)
e 3.3 1.10(~15)
o 3.6 1.05(-15)
N 4.0 9.8(-16)
> 4.5 9.2(-16)
o 5.0 9.1(-16)
" 6.0 1.0(-15)
«}} 7.0 1.05(-15)
o 9.0 1.0(-15)
& 10 9.4(-16)
15 8.4(-16)
4 20 8.2(-16)
30 6.0(~16)
' 50 4.1(-16)
x 100 2.0(-16)
o 200 9.0(-17)
o 400 3.5(-17)
P 700 1.25(-17)
: ) Beyond 700 eV use
¥ -15
- . 8.75 x 10
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