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SOME APPROXIMATE BOLTZMANN EQU -TION SOLUTION METHODS
FOR THE STUDY OF INTENSE MICROWAVE PULSE PROPAGATION

I. INTRODUCTION

The propagation through the atmosphere of short pulse high power

microwave (HPM) radiations is of interest for many applications. One of the

important aspects of the propagation, however, is the attenuation of the pulse

as it traverses the atmosphere. The attenuation results from the absorption

of the radiation by the air plasma electrons, which are generated by the air

breakdown action of the high power microwave. The microwave radiation is also

attenuated through absorption by the air molecules and by scattering processes

with molecules and particulates.

To calculate the attenuation of the HPM pulse one must solve Maxwell's

equations in conjunction with the radiative transfer equation. The

attenuation coefficient, due to the absorption by the air plasma, is related

to the plasma conductivity or more specifically it depends on the electron

density and the collision frequency for the momentum transfer. The electron

density, on the other hand, depends on the avalanche ionization rate which in

turn depends on the atomic cross sections and the appropriate electron

velocity distributions.

The relevant quantities for the HPM attenuation calculations, however,

can be obtained if an ab initio approach is considered, where one solves the

Boltzmann equation in conjunction with Maxwell's equations and the radiative

transfer model.

To obtain reasonable estimates for the microwave attenuation, one may use

experimental values for the ionization and momentum transfer rates Vi and vm"

However, in the region of interest, i.e. high power and short pulse, there

exist no experimental data. Therefore, the Boltzmann equation approach is

necessary. The formulation of a Boltzmann equation requires a set of

appropriate atomic cross sections which represent the state of the art and are

reliable. The appropriate cross sections are given in tabular form at the end

of this report based on a recent compilation by Ali.

Manuscript approved July 23. 1986.
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The Boltzmann equation approach in obtaining the electron velocity

distribution has been formulated in general by many authors and its solution

using spherical harmonics is well understood2'3'4  Many treatments of the

Boltzmann equation, applied to breakdown in gases and swarm experiments, have

utilized the steady state approach where ionization effects are not

considered. This approach has also been used previously as means to obtain
5

electron atom collision cross sections

Teeffect of ionization for high E/N (E is the electric field and N the

gas density) has been treated for swarm experiments by Taniguchi, et. al.,6

Brunet and Vincent7 and Yoshida, et. al8 . The electron velocity distribution

in gas breakdown by an rf pulse has been treated by Morez9 . However,

Boltzmann equation analyses for very high rf fields with short pulse durations

have had very little attention. Recently, Pitchford1 0'1 1 has considered the

time dependent Boltzmann approach in the breakdown of nitrogen.

In the following sections, we describe some theoretical formulations

which provide a basis for generating approximate solutions of the Boltzmann

equation suitable for the study of short intense microwave pulses interacting

with a background atmosphere, in various parameter regimes. It is not

intended that all of these formulations be developed in full detail here;

rather we shall simply outline calculation methods being considered in order

to provide a platform for discussion of the advantages and disadvantages of

the various approaches. One example, appropriate in the collisional regime,
is developed in detail and implemented on a sample problem.

II. TIMESCALES

Microscopic and Macroscopic Timescales
>h. We treat the problem by considering a short pulse of length L, where L/cIV.

is less than or of the order of a nanosecond. Before discussing the Boltzmann

equation, it is useful to survey the various types of processes involved in

the problem and the timescales on which each operates. There are several

timescales relevant to the dynamics:

T- 1/v, where v is an effective collision frequency; for the present we

label all binary interactions as "collisions". v may be less than,

comparable to, or greater than w.

T X/c. This is the wave period, the timescale associated with the

interaction of a single electron with a cycle of the wave.

2
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T - L/c. This is the transit time, the timescale associated with the

interaction of a single electron with the pulse.

t -min(TV 1 , T 2), where 
twl = /2Ivg - vphl, tw2 = )/ Vph, g and Vph are

the wave's group and central phase velocities, and AVph is the width

of the phase velocity spectrum of the wave packet. These are the

timescales on which the waveform changes due to dispersion. The

quantity X/Ivg - V phi is the time required for a point of constant

phase to move a distance of order X in the rest frame of the pulse,

i.e. the frame moving with the group velocity. X/ Vph is the time

required for dispersive effects to produce a local distortion in the

shape of the waveform.

T - Ld/c, where Ld is the damping length. This is the wave damping or

attenuation timescale.

xa h/c, where h is the atmospheric or ionospheric scale height. This is

the timescale on which the ambient environment seen by the wavepacket

changes.

Dispersion Timescale

For all cases of interest, L << h, Ld, so that Tp << a , Td" For a

narrowband wavepacket in a weakly dispersive medium, we also have Tp << Tw"

To obtain a more quantitative feeling for the magnitude of the ratio Tp /w we

estimate 'tw using an approximate dispersion relation. We note that for a wave

in the 1 to 100 GHz range, and assuming an electron density of 10

electrons/cm3 or less, we have

(Wp/W)2 << 1,

where w is the plasma frequency. In this case the dispersion relation isP

approximately

(kc/w)2 - 1 - (Wp )/[ (&-iv)] + terms of order (52/w)(w p/), (1)

where 2 is the electron gyrofrequency, and v is the effective collision

frequency. Equation (1) can be used to show that

Swl ~ X(2 +V2 )/[C(wpW) 2

3



Next we estimate "w2 " The width of the k spectrum depends on the shape of the

wave envelope, but 2n/L is a good estimate for practical cases. Then AVph =

(avph/3k)&k, and avph/ak can be calculated from equation (1). To lowest

order in the small parameter (w p/W) one finds

'tw2 - L(W +2)/[C(W W)2].

Clearly rwl < Tw2' since X < L. Thus Tw = rwi and

p / - (L/X)w W/(w 2+V2)]2. (2)

For a one nanosecond pulse at 1 GHz, ne - 108/cc, v - 0, equation (2) yields2e

rpPtw - 10-2 . We regard these as "worst case" parameters: higher frequencies,

nonzero values of v, and lower values of ne all make this ratio smaller. In

view of (2), we shall ignore the difference between the wave frame (vph) and

the pulse frame (v ) in the following.

III. QUASISTATIC BOLTZMANN EQUATION

Now consider the Boltzmann equation in a frame moving with the group

velocity vg. We assume that the direction of propagation is parallel to the z

axis, and that spatial gradients in the x and y directions are negligible. In

this reference frame we must use the relativistic Boltzmann equation, which is

af Bf 8f
vz L - e[E + (vlc)xB]-af -o

T az o ill.(3

In the wave frame the two dominant causes of temporal variation, wave-

particle interactions and "collisions" (atomic processes) produce only spatial

variations. In the absence of dispersion, attenuation, or inhomogeneities in

the ambient environment, we would expect steady convective flow in the rest

frame of the pulse, with ambient gas at all z<O and a spatially growing

.4 disturbance between z=O and z=L. We do not expect hydrodynamic turbulence to

appear within the pulse, since the heavy particles cannot respond on a

nanosecond timescale. Moreover, since vz  is close to c, and Tw' Td Ta are

all >> Tp, it follows that

a/3t- l/min(tw, t d' a ) < < vz a/az - I/p or larger.

4
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Thus the quasistatic Boltzmann equation,

afI (4)
e(v/c)xB- = coll.z -p aiol

in which the parameters of the pulse, the ambient medium, and the distribution

function are all understood to be slowly varying functions of time, is an

excellent approximation; the error incurred by dropping a/3t in the pulse

frame is of order 1% in the worst case, as shown above. Note that the

electric field has been dropped from the equation, since E - - (1/c)A/3t

vanishes in the wave frame; we recover E when transforming back to the lab

frame. In the wave frame the total momentum, p, is a constant of the motion,

since we have only a static magnetic field. Electrons and ions enter the

pulse moving along the z axis at nearly the speed of light; the difference in

their velocities is small. The magnetic field rotates the large wave frame

electron velocity vector away from the ion velocity vector and toward the

direction perpendicular to both z and the B-field direction (assume B is

aligned with the y axis), and this appears in the lab frame as an acceleration

in the x-direction. To an observer in the lab frame, it appears as if the

magnetic force is weak, and that the acceleration is produced by a strong

electric field in the x-direction

In the pulse frame the "information flow" is directed from the head of

the pulse towards the tail, for all quantities. Thus, in addition to the

reduction of the dimension of the system by one, we are now dealing with a one

point boundary value problem, and we can seek solution algorithms which

involve marching through the pulse from head to tail. In particular, it is

possible to develop algorithms involving the solution of coupled sets of

ordinary differential equations or quadratures. This is the essential

attribute of the approach. In the following sections examples of such

algorithms are outlined. In principle we can solve (4), use f to calculate

the instantaneous current, electron density, conductivity, etc., as functions

of the slowly varying ambient parameters, and use these in the Maxwell

equations to self consistently determine the slowly varying pulse amplitude

and waveform.

5
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IV. REDUCTION TO SIMULTANEOUS ORDINARY DIFFERENTIAL EQUATIONS

The lab frame counterpart of equation (4) can be written in terms of the

coordinate Z-Vpht, where vph = C is the phase velocity. We simply assume

that the distribution function in the lab frame is a function of and

*b.*¢. velocity components only; justification for this is provided by eq. (4). Then

it follows that, in the lab frame,

faf (4')ph - C [E(Q + (v/c)xB(Q)1- = at41Z p - coll.

Coulomb or Fokker-Plank type collisions are unimportant on nanosecond

timescales, for ne values of interest here. The remaining "collision" effects

can be expressed as follows:

=f f(C,v') S(v,v') d v' - G(v) f(C,v)
' coll.

The first term on the right describes the rate at which particles are

transported to the phase space location ( ,v) from all other phase space

locations (C,v'), by binary interaction processes. The second term gives the

rate of loss from (C,v) due to such processes. The functions S and G, which

describe atomic interactions, are assumed to depend on the slowly varying

ambient parameters, but the associated functional dependences on z,t are

suppressed here, in keeping with the quasistatic approximation.

Since f is square integrable, we can express it as a sum of orthogonal

base functions in velocity space, with coefficients which vary with <. We

assume that S and G can also be expanded.

f(<,v) = Eijk f ijk( ) bijk(v) = Zj fj(Y) *j(v)

G(v) - Eijk jk Iijk(v) E Zj Gj §j(v)

SS(v,v') - ijk~ilj,k, 5ijki'j'k, ijk(V) ifjfk,(v)

= i Ej, Sj #j I(v) Ij,(v')

In general, the orthogonal functions for the expansion in a three

dimensional velocity space would carry three indices (§ijk ), but since we

truncate the series we can easily rearrange these into a one dimensional array
• 2 with a single index (0), where the maximum value of J is N, the total number

6
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of terms in the expansion. These relationships can be used to transform (4')

into a set of coupled ordinary differential equations for the coefficients

fj (Q. In the simplest case, when lvj << c, we can neglect the magnetic field

term in (4') and set (vz - v ph) = -c (these approximations simplify the

analysis, but neither is absolutely necessary). Substituting the expansion

relations above into (4'), performing the velocity integration, re-expanding

remaining products of the form *1(v)fij,(v') into sums of single f's, using

recursion relations or re-expansion (depending on the choice of orthogonal

functions) to express Wa/av in terms of 's, and equating coefficients of the

orthogonal functions yields the desired set of N equations for the F's:

d fJ(C) - TJ,J'(Q fJ'(Q = 0 (4")

or, d f(Q + T(Q) f() = 0

where f() is the vector of expansion coefficients of f( ,v), and T is a

matrix whose elements are functions of the electric field and the S and G

expansion coefficients. In the case in which v >> w, the distribution

function will be nearly isotropic, in which case the number of separate

equations to be solved and the size of the matrix T can be drastically

reduced.

In any case, we solve by integrating from < = 0 (ambient region ahead of

the pulse) to C = L. The accuracy of the resulting solution is limited by the

amount of computation we are willing to do (manifested by the number of terms

retained in expansions, other approximations employed, etc.), up to the

accuracy limit of the quasistatic approximation itself (-1%), but it seems

likely that good results can be achieved with a reasonable level of effort.

An alternative approach, in the same spirit, would be to represent the

distribution function via a set of moments. One represents the distribution

function by the product of a truncated series of orthogonal functions and a

specified "approximation function" such as a Maxwellian or bi-Maxwellian with

free parameters (drift velocity, temperature, etc.). A coupled set of

ordinary differential equations for the free parameters and orthogonal

function coefficients is obtained by the usual method. Convergence of the

function series is enhanced when the "approximation function" is well chosen.

The coupled ordinary differential equation approach is likely to be the

most practical method of generating solutions. It is possible, however, to

7



write down an analytic solution of the quasistatic equation in terms of a
1"scattering operator" r. This approach is discussed in the next section.

V " V. FORMAL SOLUTION OF THE QUASISTATIC EQUATION

We note that in the absence of collisions there are three constants of

the motion for a particle in the force field of the pulse, in the wave frame.

We have assumed the wave to be linearly polarized with B in the y-direction,

so that in addition to the total energy the canonical momenta P and P arex y
solutions of the homogeneous equation associated with (4). This means that we

can simplify the operator on the left hand side of (4) by transforming to a

new set of coordinates:

P, px' Py' Pz -> Z P x' Py' p

where P = px + eA (z)/c

P = Pyy yY

With the new coordinates, the quasistatic Boltzmann equation in the wave frame

is

ii-',C =fL
vz z i zconst. C = t coll. (5)

where C is a shorthand representation of the set of constants Px, Py , p . The
"collision" term can be expressed in the pulse frame as follows:

S I - f f(z,C') S(z,C,C') d3C' - G(z,C) f(z,C) (6)

Coll.

The first term on the right describes the rate at which particles are

transported to the phase space location (z,C) from all other phase space

locations (z,C'), by binary interaction processes. The second term gives the

rate of loss from (z,C) due to such processes. Equations (5) and (6) can be

combined and rewritten as follows:

df(zC) + g(z,C) f(z,C) I(z,C) (7)

where
I(z,C) = ff(z,C') s(z,C,C') d3C' (8)



rrrvu-, r~rnr f - U V -9 - -- 'a-Frr~ t

-1
g(z,C) = [vz(z,C)] G(z,C) (9)

-1
s(z,C,C') = [vZ(z,C)I S(z,C,C')

Note that a/az has been replaced by d/dz. Since the C's are to be held

constant under the differentation by z, we can treat (7) as an ordinary first

order differential equation in z, if we regard I(z,C) as a known function. In

terms of I(z,C), the solution to (7) is

f(z,C) = e- fg(z',C)dz' [ f(O,C) + J0 I(z',C) efg(z '',C)dz" dz' ] (10)

Now define the function space operator r such that

rf = fO f f(z',C') s(z',C,C') d 3C' dz' (11)

Eq. (11) becomes

efg(z'C)dz'f(z,C) = f(O,C) + reIg(z',C)dz'f (12)

We can iterate (12) to obtain

e g(z"C)dz'f(z,C) = [I + r + r2 + r3 + ...j f(O,C) (13)

We can formally "sum" (13) and express the solution to (12) in the form

f(z,C) e- fg(z',C)dz'[I - rj-  f(O,C) (14)

which can also be obtained directly from (12).

The operator r can be interpreted as a "scattering operator". In the

absence of "collisions", the exact solution of the quasistatic equation is

given by the first term of (13); the wavefield effects are carried in the

constants of motion C(z,p). In a weak scattering situation, where electrons

do not undergo more than one atomic interaction during their transit, r

operating on the primary flux f(O,C) describes the contribution to f from

electrons scattered into the interval (C,C+dC) after a single interaction, and

we expect that (l+r)f(0,c) will be an adequate solution. Similarly, we can

interpret r2 f(O,C) as the contribution from electrons that enter (C,C+dC)

after being scattered twice. nf(0,C) is interpreted in analogous fashion.

9



The effects of losses from the (C,C+dC) interval are described in closed form

by the e- Jgdz term. In general, if these interpretations are correct and if

L is the mean free path for atomic processes which add particle- to the phase

space interval, then we expect that the series in (13) has converged after n
terms if n is much larger than the expectation value fr the number of

scatterings experienced by an electron in moving from 0 to z, i.e. n >> z/LS.
To illustrate and test these ideas consider a simple model problem which can

be solved exactly. Let f(z,C) be a function of z only, f = F(z), inside a

region R of C-space with volume VC, and zero outside this volume. Also take

g(z,C) = I/LG and s(z,C,C') = 1/(Ls VC). Equation (7) then has the solution

f(z,C) = F(z) - F(0) exp[z/L s -z/LG] = F(0) exp[z/L'] for C in R

, f(z,C) 0 for C outside R

where L' = LsLG/(LG - LS)

If LS < LG, then L' is positive. We have an avalanche if 0 < L' << L.

Now let us consider (13). For the model problem, we find

r' F(O) = (z/LS)n/n1 F(O) (15)

With (15), (13) is easily summed to yield the correct solution to the model

problem. It follows from (15) that the ratio of the adjacent terms r/ n1in

(13) is (z/Ls)/n, so that the convergence condition is the same as that

inferred above. Note that the series always converges, even in the case of an

avalanche.

We can express the scattering operator as a matrix by expanding in

orthogonal functions, as before. We assume the orthogonality condition has

the form (a slight modification of the analysis is needed if there is a weight

function)

" #j j, d3 C - 6j'j,

Eq. (12) can be written in the form

Q(zC) = f(0,C) + rQ(z,c) (16)

where Q(z,C) = e g(z',C)dz'f(z,C)

10



Differentiation of (16) with respect to z yields

= I s(z,C,C,) 0 d3C'

Nov expand s and Q in orthogonal functions, and use the orthogonality relation

to eliminate the integral. We get

dQ/dz - s 0 = 0 (17)

where O(z) = Q Q(zC) 0j(C) d3C

s',(z) = f s(z,C,C') 4j(C) OJ,(C') d
3C d3C'

The solution to (17) is

Q(z) - expllfE(z')dz'1 Q(e) E [fs(z')dz'in /n!] )0(0)
or, since t'0 = exp[fg(z',C)dz'] f(z,C) and q(0) - f(O),

f(z,C) = 4.exp[fs(z')dz'-Ifg(z',C)dz'lPf(O) (18)

Eq. (18) is similar in form to the solution of the model problem considered

above. For computation, one would replace the matrix part of the exponential

in (18) by its series expansion [(18) is then the matrix version of (13)] and

transform back to the lab frame. In its present form, (18) is more cumbersome

for computational purposes than (4"), especially in the collisional regime,

but it is possible that further analysis will lead to approximate algorithms

useful in the weakly collisional regime where the series expansion converges

rapidly.

In the next section we develop in some detail the equations needed to

implement a version of the coupled ordinary differential equation approach

discussed in section IV.

11



VI. COUPLED ORDINARY DIFFERENTIAL EQUATION CALCULATIONS

The General Formalism

In the laboratory frame, the Boltzmann equation can be written as

- 'af e f. 1 f

(Vz - Vph) - e () + v/c x B(T) ( 1) Coll.

where we have used me electron mass, C a Z-Vpht and af/at - -vph(af/3C). In

this section, we solve the above equation by reducing it to a system of

ordinary differential equations. For the purpose of this report, which is to

demonstrate the formalism, we will use a simplified scattering model.

However, the basic technique is not limited to any particular scattering

:'. model.

Since vph a c and jvj << c, we neglect the magnetic field term and set

(vz - Vph) = -c in the above equation. Ve also assume that the system is

nonrelativistic. The coordinate system is such that z is the propagation

direction of the microwave pulse and the electric field is in the x direction.

Then, the approximate equation can be written as

a4 f +e E ( C) if- 1 f C I(0
K Mec X avx C aic =0()

The last term describes the time rate of change of the distribution function

due to collisions. In the present problem, we have partially-ionized plasmas

so that the short-ranged collisions of electrons with neutral particles

dominate. Coulomb collisions are unimportant. Thus, the collision term takes

on the general form

3tjcoll. - Jd v'f(, v,)S(v, v) - G(v)f(Cv), (21)

where the first term gives the time rate of increase in the distribution

function f(C,v) due to collisions at all v' and the second term represents the

time rate of loss of electrons at (C,v) due to collisions taking place at

(1,v).

WI



The plasma distribution function f is taken to depend on C and the

.spherical velocity coordinates v and e, where e is the polar angle. We define

v a v x/v . cose and use a separable form of f and the following set of basis

functions:

*v (212 sin (Siv), j -1,2,3,....

0 v0

and

Pm(w) N (m + P(), m - 0, 1, 2,3,...

The normalization relations are

v

0o dv v 2 ( v v) -jk

and

f dWPm(V)P ( w) =2m 'n"

Here, v is the maximum electron velocity, and P m (w) is the usual Legendre

polynomials. We then exand f, S and G as follows:

f(C,v_) = E fil() i (V)P l(w)

S(v, v') E E S i l j m  v)* j (v')Pl ( w ) Pn ( w ' )

and

G(v) = G ,ilYi(v)Pl(W).

13
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Then, (20) can be written as

i,1 e i,1

x + v (V)P,()+Om l'(]

+L E * Siljmfjm()+i(V)Pl(w)
c J,

(22)

- E E G il f Jm(-)0(v),(V)Pl(W)Pm ( w )  0,

where + di/dv and P1'(w) - dPl/dw. If we multiply all terms by the basis

functions +j(v)Pm(w) and integrate over velocity space, then it is clear that

a system of ordinary differential equations results.

A Simple Collision Model

In order to solve (22), we need to specify the collision terms. While

this equation can be used for any scattering cross-sections, we will

illustrate the method and its capabilities by using a simple collision model

and solving the equation directly. In this paper, we assume that, after a

collision with a neutral particle, an electron has an equal probability of

being scattered into any solid angle. Then, we have

G(v) - naE as(v), (23)

and

n a( v , -2
S(v,') = E-a s(  v ' + , (24)

s

14
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where s is the index for various collision processes, na is the ambient
neutral density and a is the scattering cross-section (integrated over the

solid angle) for the collision process s. The quantity cs is the normalized

threshold energy for the interaction s; an electron with incoming energy of

(m e2/2) loses (mes/2) as a result of the collision. For each interaction s,

if the incident energy is less than es, then no scattering takes place so that

as(v) - 0 for v2< Vs . We define

T(V) a Es(V) (25)
s

Using (23) and (24), it is straightforward to calculate the expansion

coefficients Gil and Siljm* By multiplying all the terms in (22) by

*j (V)Pm(w) and integrating over the velocity space, (22) can be reduced to the

following system of differential equations,

L eE (Q )
o(' e - m ij)im '

+ 1 (2 )E~m+l ( iij m = 1Lij)fi,m+i()]
!1

+ Xjm() - 0, (26)

where i,j,k - 1,2,3,.. and l,m,n = 0,1,2,3,.... The collision term

m can be written as

Xjm) 0 Cj0no1ko km i m (27)

In the above expressions, the following definitions have been used:

A . J dx x-1sin(ix)sin(jx),

L.j 0 .1 r;dx cos(ix) sin(jx) - ij[1- (-l)J+1(j2 - i
o U0

15
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IMz) (1 + 1) 2 1 +I 1) 1/2

1 21 +1 21. +-3)'
'99

1(2) 12 (21 +1)1/2
1 l -+

v

v +v s(4]sin (nIv) sin (- v C~'
j " dv [Ea Iv2 + v v s if ?~ i

foo

v

i j dv v2aT(v)sin( i)

0

and

r i dx x sin(ix)sin(kx)sin(jx).

then we find

T E [ao [a ()J+1 - b0 i1 fi
)(Qi '

where

8H v 1/2- a0 r --
cG-2)

and

n 1/2

cv0

using the definitions of Sji and i, it can be shown rigorously that

16
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In (27), XJ m()(C) describes the changes in the distribution function due to

the creation of ionization secondary electrons. This term will be calculated

later according to a simplified model. Note that, because of the isotropic

scattering assumption, we have

SiljM= 5lo mo ij

and

G l (4 u ~)1/2 1/2

0

where 6 denotes the 6-function. For more realistic scattering cross-sections

of the form os(v,9), the summations in (26) would be more complicated. Note

that conservation of particles requires that fd v(3f/at)Icoll. - 0 in the

absence of ionization (X (i) = 0) for any distribution function f. If wejme

define

T . d3v at coll.

o2V0  _ - S. (28)

for any choice of s(v), excluding ionization. Thus, T = 0 exactly for any f

and any scattering processes.

Solution

We have solved the set of differential equations (26) by numerical

integration. For the present work, we used 21 scattering processes to

calculate 9ji and Ci: they are ionization, vibrational excitations of N2

molecules, electronic excitations of N2 molecules, and momentum transfer. For

the purpose of numerical computation, it can be shown that

1 i kj k2j (29)

where

vo
A kj a O dv vat(v)sin( !-v)sini-v).

0 0 Vo

17
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Using (29), we can rewrite (27) as

X"m( <) 2. fi(A + xm () (30)

This expression eliminates the double summation, providing better

accuracy. For the purpose of illustrating the procedures involved in

* calculating the contribution of the secondary electrons created by ionization,

we assume a simple model in which the secondary electrons are produced with

zero energy. The result is expected to depend on the distribution of the

secondary electrons, and for serious calculations one would use a more

realistic distribution. Pitchford 0 , for example, has assumed that the
incident and secondary electrons share the energy equally following. In this

paper, we will not discuss the detailed consequences of the model dependence;

a task for future studies. If we assume that all secondary electrons are

created with zero initial energy, then

-- i 83(v) G(i)(v/) f( , v') d 'V,

coll.

where the superscript (i) means that only the ionization cross-section is

used. This expression gives the time rate of change of the distribution

function due to the ionization secondary electrons. Using this expression, we
find

jm [_2) Smo . io (1

!0
"' cv °j j  i .Gi

where i  is obtained from the definition of Gi following (27) by replacing
a T(v) with a(i)(v), the ionization cross-section.

Our code solves the set of equations represented by (26), with the

collision terms X jm() given by (30) and (31) or other expressions
representing different assumptions about the nature of the "collisions". In
particular, the assumption that all the secondary electrons are created with

zero energy, discussed above as a simple illustration of the method, is

numerically troublesome and somewhat unphysical: in practice the newly created

electron population must have a finite temperature. The electron distribution

18
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function can be reconstructed and displayed in phase space, or moments,

conductivities, and other quantities of interest can be calculated directly

from the function space representation.

For the purpose of evaluating the quantities in (26), we define equally

spaced grids for the velocity and angular coordinates. Then, all quantities

including the cross-sections, 6ij' 9ji, and A ij are defined and computed on

these grids. For diagnostic purposes, we check particle and energy

conservation.

Figures 1, 2, and 3 illustrate the type of results one obtains with this

method, as applied to a sample problem: Ewave = 100 statvolts/cm., w/2m = 30
wave18 3

GHz, and we have an atmosphere of N2 with a density of 10 /cm . Secondary

electrons are created with a thermal spread of 2 ev, in this test calculation.

Figure 1 represents the drift of an initially Maxwellian distribution function

with 20 ev temperature under the action of a wave electric field only (the

wave amplitude has been reduced to 25 statvolts/cm. to avoid runaway): atomic

processes are turned off. In Figure 2 we see the evolution of the same

initial distribution function in the absence of a wave electric field, but

with atomic processes operative. A tabulation of the cross section data used

is provided in the Appendix. The "ledge" seen to form on the shoulders of the

Maxwellian is due to vibrational excitations with cross sections sharply

peaked near 2.5 ev. The growing central peak is primarily due to the cooling

effect of the various excitation processes; i.e., these are mostly electrons

scattered down from higher energies. Ionization of neutrals by hot tail

particles also contributes to the growth of the central peak. In Figure 3,

the wave (100 statvolts/cm. amplitude) and the atomic processes act

simultaneously, and one can observe drift motions, the buildup of electron

density due to ionization, etc. Note that the distribution function quickly

becomes non-Maxwellian.

VII. SUMMARY AND COMMENTS

We have discussed an approach to the solution of the Boltzmann equation

suitable for the study of short intense microwave pulses interacting with a

background atmosphere in various parameter regimes, and a specific example

appropriate in the collisional regime. The coupled ordinary differential

equation approach appears to be viable. Continuing studies and comparisons of

this approach with others are expected to expose the advantages and

disadvantages of the method, and lead to refinements.

19
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Figure 1. This Figure shows the drift of an initially Maxwellian distribution

function with 20 ev temperature under the action of a wave electric

field (E wave ,. 25 statvolts/cm., w/2n - 30 GHz) only: atomic

processes are turned off. The four subfigures represent

"snapshots" of the distribution at different wave phases, as the

"- wave pulse moves past an element of the electron gas. The phases

• .,.-displayed are: (top left) XI=  /4, (top right) C2 - X/2, (bottom

'-"left) % = 3X/4, (bottom right) C 4 X, where X is the wavelength.
i.2

2,

'4.2

i,', -,','',-''-Figurea,,.. '  1..'"-'.'. ..... ,',- ,. . igure- shows,+."'".."-. .th-.ft o"nin t a l Maxve" ," lian- distribution ."-" ."." . -" + ,".'

ti ,m,, ,m,, .. m., ,,ma.,m ,l~l aal~ funt~lionll~m,, with 20 ev temperature under the.. acio of a wave...electric
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Figure 2. The evolution of a 20 ev Maxwellian distribution in the absence of

a wave electric field, but with atomic processes operative is
* shown. The growing central peak is composed of primary electrons

scattered down from higher energies and secondary electrons created

-.- when hot tail particles ionize neutrals. The "ledge" which forms on

the shoulders of the Maxwellian is due to vibrational excitations

with cross sections sharply peaked near 2.5 ev. Distributions are

displayed at "times" C./c, i = 1,2,3,4.
9.i
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Figure 3. Evolution of the electron distribution function with a 100

statvolts/cm. wave and the atomic processes acting simultaneously.

One can observe drift motions, the buildup of electron density due

to ionization, etc. Note that the distribution function becomes

non-Maxwellian. Again the subfigures represent snapshops at phases

- X/4, X/2, 3X/4, X.
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APPENDIX: CROSS SECTION TABLES

Cross section data used in the sample calculation described in the text

is tabulated below. The threshold energy for each process is given in

parenthesis.

N2 Rotational Cross Section

a0 (E0 - .02 ev)

Electron Energy (eV) 0(cm 2)

0.0 0.0
0.02 0.0
1.2 7.2(-18)
1.6 2.1(-17)
1.7 2.7(-17)
1.8 4.8(-17)
1.9 1.7(-16)
2.0 6.2(-16)
2.1 6.5(-16)
2.2 6.1(-16)
2.3 8.28(-16)
2.4 7.2(-16)
2.6 6.1(-16)
3.0 2.7(-16)
3.6 4.5(-17)
5.0 0

42

J

-.

4'.'

p.
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. K2 Vibrational Cross Section (v - 1)

a 1 (E1  0.29 ev)

Electron Energy (eV) a(cm )

0.3 1.32(-19)
0.75 6.4(419)
1.44 1.22(-17)

*1.65 1.84(-17)
1.74 2.30(-17)
1.85 4.3(-17)

p.,1.92 1.01(-16)
1.98 2.60(-16)
2.02 3.0(-16)
2.09 2.1(-16)
2.12 1.46(-16)
2.18 7.8(-17)

*2.24 1.38(-16)
2.27 2.36(-16)
2.31 2.8(-16)
2.38 2.18(-16)
2.41 1.39(-16)
2.47 1.07(-16)
2.54 1.2(-16)
2.57 1.78(-16)
2.61 2.0(-16)

a.,2.66 1.66(-16)
2.71 3.6(-17)
2.73 8.8(-17)
2.76 5.6(-17)

-~2.79 7.0(-17)
2.83 3.68(-17)
3.07 7.68(-.17)
3.27 3.98(-.17)
3.60 3.38(-17)
4.0 0

a.-5



N2 Vibrational Cross Section (v - 2)

a2 (E2 - 0.58 eV)
Electron Energy (eV) O(cm 2

1.73 0.0
1.81 6.0(-18)
1.91 4.6(-17)
1.98 9.8(-17)
2.03 1.78(-16)
2.13 2.2(-16)
2.18 1.58(-16)
2.24 1.1(-16)
2.28 6.0(-17)
2.34 5.0(-17)
2.39 2.6(-17)
2.43 9.8(-17)
2.49 2.0(-16)
2.53 1.84(-16)
2.57 1.4(-16)
2.63 7.0(-17)
2.69 2.6(-17)
2.73 5.2(-17)
2.82 1.06(-16)
2.92 7.0(-17)
3.02 1.84(-17)
3.12 5.8(-17)
3.22 3.4(-17)
3.29 1.84(-17)
3.35 2.4(-17)
3.50 1.2(-17)
3.68 0.0

r . -
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N 2 Vibrational Cross Section (v -3)

a (E 3 = 0.87eV)

Electron Energy (eV) O(cm2)

1.80 0.0
1.87 3.0(-18)
1.97 4.0(-17)
2.02 7.8(-17)
2.05 1.17(-16)
2.12 1.39(-16)
2.17 1.72(-16)
2.22 1.76(.-16)
2.27 1.38(-16)
2.32 7.2(-17)
2.36 2.24(-17)
2.40 3.0(-18)
2.47 4.2(-17
2.52 6.9(-17)
2.57 8.7(-17)
2.6 9.6(-17)
2.67 6.9(-17)
2.72 2.7(-18)
2.77 3.0(-.18)
2.82 3.0(-.17)
2.92 5.1(-17)
3.02 2.1(-17)
3.13 1.5(-17)
3.21 1.94(-17)
3.32 3.0(-18)
3.35 0.0
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N 2 Vibrational Cross Section (v - 4)

a 4 (E 4 -1.16 eV)

Electron Energy (0V) O(cm 2

2.0 0.0
2.07 3.0(-18)
2.13 6.0(-17)
2.19 7.94(-17)
2.20 1.19(-16)
2.28 1.49(-16)
2.32 1.27(-16)
2.37 9.74(-17)
2.4 8.1(-17)
2.5 3.0(-18)
2.56 3.0(-18)
2.62 3.0(-17)
2.67 4.5(-17)
2.71 7.8(-17)
2.77 5.7(-17)
2.82 2.7(.-17)
2.86 3.0(-18)
2.94 1.2(-17)
3.0 2.4(-17)

3.15 1.8(417)

3.25 0.0

N 2 Vibrational Cross Section (v -=5)

a. 5 (E 5 =1.45 eV)

Electron Energy (eV) a(cnt 2

2.0 0.0
2.13 3.0(-18)
2.17 3.9(-17)
2.22 5.7(-17)
2.32 8.1(-17)
2.38 9.3(-17)
2.42 9.9(-17)
2.48 9.9(-17)
2.52 8.1(1-17)
2.57 4.2(-17)
2.62 3.0(-18)
2.68 3.0(-18)
2.72 1.5(-17)
2.82 4.2(-17)
2.92 4.2(-17)
3.0 3.0(-18)
3.12 1.5(-17)
3.22 2.24(-17)
3.32 3.0(-18)
3.35 0.0

28



N 2 Vibrational Cross Section (v - 6)

a6 (E 6 -1.74 eV)

Electron Energy (eV) a'(crn 2

2.25 0.0
2.30 3.0(-18)
2.37 4.2(-17)
2.40 7.0(-17)
2.44 9.0(-17)
2.49 9.06(-17)
2.54 9.06(-17)
2.65 8.44(-17)
2.72 4.22(-17)
2.81 1.81(-17)
2.9 1.5(-17)
3.0 2.7(-17)
3.1 1.2(-17)
3.15 0.0

N 2 Vibrational Cross Section (v = 7)

a 7 (E 7 - 2.03 ev)

Electron Energy (eV) a(cm 2

2.35 0.0
2.40 3.0(-18)
2.44 1.66(-17)
2.49 2.4(-17)
2.53 3.02(-17)
2.61 3.92(-17)
2.65 5.12(-17)
2.68 6.04(-17)
2.74 5.12(-17)
2.77 3.92(-17)
2.83 3.0(-17)
2.88 1.2(-17)
3.0 3.0(-18)
3.08 1.2(-17)
3.17 1.5(-17)
3.3 9.0(-18)
3.4 0.0
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N 2 Vibrational Cross Section (v - 8)

a8 (E8 = 2.32 eV)

Electron Energy (eV) a(cm 2

2.50 0.0
2.57 3.0(-18)
2.62 1.8(-17)
2.66 2.42(-17)
2.71 2.42(-17)
2.78 1.96(-17)
2.84 2.4(-17)
3.0 9.0(-18)
3.04 3.0(-18)
3.15 3.0(-18)
3.3 9.0(-18)
3.4 3.0(-18)
3.5 0.0

*Excitation Cross section For N 2(A 
3E)

09q (E9 - 6.17 eV)

Electron Energy (e0) a (cm)

6.17 0.0
6.50 1.28(-18)
7.0 1.88(.-18)
8.0 6.3(-18)
9.0 1.21(-17)
10 1.68(.-17)
11 2.22(-17)
12 1.92(-17)
13 1.5(-17)
14 1.2(-17)
15 1.0(-17)
16 8.8(-18)
18 6.7(-18)
20 5.4(418)

30 2.5(-18)
35 1.7(-18)

40 1.3(-18)
4.

Above 40 eV use

8.06 x 10-14
E 3

30
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Excitation Cross section For N 2(B 3il)

ai0 (EIo = 7.35 eV)

Electron Energy (eV) a(cm )

7.35 0.0
7.5 4.0(-19)
8.0 5.4(-18)
9.0 1.4(-17)
10.0 2.25(-17)
11.0 2.78(-17)
12.0 2.99(-17)
13.0 2.97(-17)
14 2.71(-17)
15 2.41(-17)
16 2.16(-17)
17 1.95(-17)
18 1.79(-17)
19 1.66(-17)
20 1.56(-17)
22 1.42(-17)
24 1.30(-17)
26 1.20(-17)
28 1.10(-17)
30 1.01(-17)
32 9.2(-18)
34 8.4(-18)
40 5.1(-18)

Above 40 eV use

a 3.3 x 10- 1 3 L__
E3

31
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Excitation Cross section For N2(v3)

a11 (E = 7.36 eV)

Electron Energy (eV) a(cm )

7.36 0.0
8 2.7(-18)
9 7.4(-18)
10 1.2(-17
11 1.66(-17)
12 2.13(-17)
13 2.6(-17)
14 3.06(-17)
15 3.51(-17)
16 3.8(-17)
17 3.76(-17)
18 3.5(-17)
19 3.09(-17)
20 2.65(-17)
22 1.97(-17)
24 1.53(-17)
26 1.26(-17)
28 1.08(-17)
32 8.35(-18)
36 6.6(-18)
38 5.9(-18)
40 5.2(-18)
50 3.0(-18)

Above 50 eV use

- 3.75 x 10- 13 1 3E3

.2
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Excitation Cross section For N2(B3 E)

012 (E12 = 8.16 eV)
Electron Energy (eV) _(cm

2 )

-A 8.16 0.0
9 1.6(-18)
10 3.5(-18)
11 5.5(-18)
12 7.4(-18)
13 9.4(-18)
14 1.13(-17)
15 1.25(-17)
16 1.14(-17)
17 9.2(-18)
18 7.3(-18)
19 6.1(-18)
20 5.4(-18)
22 4.7(-18)
24 4.3(-18)
26 3.9(-18)
30 3.4(-18)
34 2.9(-18)
40 2.4(-18)
44 2.2(-18)
50 1.9(-18)

Above 50 eV use

a 2.37 x 0-13 1
E

S33
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Excitation Cross section For N2(a' Z)

a 13 (E13 = 8.4 eV)

Electron Energy (eV) O(cm 2

8.39 0.0
9.0 1.0(-18)
10 2.7(-18)
11 4.5(-18)
12 6.2(-18)
13 8.0(-18)
14 9.6(-18)
15 1.04(-17)•16 8.5(-18)
17 6.4(-18)
18 5.2(-18)
19 4.5(-18)

p20 4.1(-18)
22 3.4(-18)
26 2.7(-18)
30 2.3(-18)
34 2.0(-18)
38 1.87(-18)
42 1.84(-18)
46 1.82(-18)
50 1.80(-18)

Beyond 50 eV use

-9 X 10 17

3..4
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Excitation Cross section For N2 (al)

a14(E14 = 8.55 eV)

Electron Energy (eV) 
a(cm )

8.54 0.0
9 9.5(-19)
10 3.0(-18)
11 4.95(-18)
12 7.0(-18)
13 9.0(-18)
14 1.1(-17)
15 1.3(-17)

16 1.43(-17)
17 1.50(-17)
18 1.49(-17)
19 1.43(-17)
20 1.38(-17)
22 1.26(-17)
26 1.14(-17)
30 1.02(-17)
34 9.2(-18)

38 8.8(-18)
42 7.6(-18)
46 6.9(-18)
50 6.3(-18)

Beyond 50 eV use

3 x 1016
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Excitation Cross section For N2(v 1t)

a15 (E15 = 8.87 eV)

Electron Energy (eV) a(cm 2)

8.89 0.0
9 2.0(-19)
10 3.7(-18)
11 7.1(-18)
12 9.9(-18)
13 1.77(-17)
14 1.15(-17)
15 1.0(-17)
16 8.1(-18)
17 6.6(-18)
18 5.6(-18)
20 4.3(-18)
24 3.2(-18)
28 2.6(-18)
32 2.1(-18)
36 1.6(-18)
40 1.3(-18)

- 44 1.0(-18)
48 8.0(-19)
50 7.0(-19)

Beyond 50 eV use

1.87 x 10 - 1 5

E% 2

-'3

,

-S-. $ ;;.:.,,,,-,,.;.. , .+.. .. ,N -:.:: .: -- ,<::;.:.:; :x-;..:.:.J+>..,,./



N 2Dissociation Cross Section

a16 (E 16 =10.0 eV)

Electron Energy (eV) a(cm 2

9.7 0.0
10.0 1.27(-18)
10.5 1.87(-18)
11 2.49(-18)

N12 4.92(-18)
13 1.12(-17)
14 2.43(-17)

*15 3.58(-17)
16 4.75(-17)
18 6.82(-17)
20 8.56(-17)
22 1.05(-16)
26 1.36(-16)
30 1.58(-16)
35 1.67(-16)
40 1.73(-16)
50 1.75(-16)
60 1.79(-16)
70 1.80(-16)
90 1.71(-16)
100 1.64(-16)

4 After 100 eV use

1.64 x 10-14
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Excitation Cross section For N2 (C
3 11)

a17 (E17 = 11.03 ev)

Electron Energy (eV) 
a(cm )

11.03 0.0
11.5 8.0(-18)
12 1.46(-17)
13 2.98(-17)
14 4.43(-17)
15 3.89(-17)
16 2.84(-17)
17 2.34(-17)
18 2.02(-17)
19 1.81(-17)
20 1.65(-17)
22 1.39(-17)
24 1.18(-17)
28 8.6(-18)
32 6.6(-18)
36 5.2(-18)
40 4.2(-18)
44 3.4(-18)
48 2.8(-18)

S50 2.6-18)

Beyond 50 
eV use

1.42 x 10- 14
E E2.2
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Excitation Cross section For N 2(E 
3 Z~

a018 (E 18 0 11.87 ev)

Electron Energy (eV) O(cm 2

11.87 0.0
12 5.0(-20)
13 1.0(-19)
14 2.1(-19)
15 3.0(-19)
16 4.0(-19)
17 5.0(-19)
18 5.6(-19)
19 6.2(-19)
20 7.0(-19)
22 7.8(-19)
24 8.0(-19)
28 6.5(-19)
32 4.0(-19)
36 2.7(-19)
40 1.8(-19)
44 1.0(-19)
48 8.0(-20)
50 7.0(-20)

Beyond 50 eV use
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Ionization Cross Section

a19 (El9 = 15.6 ev)

Electron Energy (eV) a(cm 2)

16 2.1(-18)
16.5 4.65(-18)
17 7.12(-18)
17.5 9.84(-18)

d 18 1.29(-17)* 18.5 1.63(-17)
19 1.98(-17)
19.5 2.3(-17)
20 3.07(-17)
20.5 3.07(-17)
21 3.45(-17)
22 4.17(-17)
23 4.91(-17)
24 5.65(-17)
25 6.38(-17)
26 7.13(-17)
28 8.74(-17)
30 1.03(-16)32 1.15(-16)
36 1.38(-16)
40 1.57(-16)
45 1.77(-16)
50 1.93(-16)
60 2.18(-16)
70 2.33(-16)
85 2.46(-16)
100 2.52(-16)
120 2.52(-16)
160 2.42(-16)
180 2.35(-16)
200 2.27(-16)
300 1.92(-16)
400 1.66(-16)
500 1.45(-16)
600 1.29(-16)
800 1.06(-16)
1000 9.22(-17)

Beyond 1000 eV use

2.09 x0 14 [og (0.08E) - log (1- 0)2 - 2]

0 -C
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Momentum Transfer Cross Section

Electron Energy (eV) a (cm 2
-In-.-

0.01 2.2(-16)
0.014 2.5(-16)
0.022 2.94(-16)
0.032 3.5(-16)
0.065 4.9(-16)
0.1 6.04(-16)
0.23 8.2(-16)
0.33 9.3(-16)
1.0 9.98(-16)
1.5 1.15(-15)
1.6 1.25(415)
1.8 1.60(-15)
2.0 1.8(-15)
2.2 1.8(-15)
2.6 1.5(-15)
2.8 1.4(-15)
3.0 1.25(-15)

* .. 3.3 1.10(-15)
3.6 1.05(-15)
4.0 9.8(-16)
4.5 9.2(-16)
5.0 9.1(-16)
6.0 1.0(415)
7.0 1.05(-15)
9.0 1.0(-15)
10 9.4(-16)
15 8.4(-16)
20 8.2(-16)
30 6.0(416)
50 4.1(416)
100 2.0(-16)
200 9.0(-17)
400 3.5(-17)
700 1.25(-17)

Beyond 700 eV use

qI -8.75 x 10 1
M E
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