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- : Calculations fo- .arge Markovian finite source, finite repair
o capacity two+-echelon repairable item inventory models are shown to
S ([g] be feasible using the randomization technique and a truncated state
] h space approach. More complex models (involving transportation pipe-
N o lines, multiple item types and additional echelon levels) are also
o considered.
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N 1. INTRODUCTION
L <

Let {X(t), t 2 0} be a continuous-time time-homogeneous Markov

C’ process (CTMP) on a finite state space S = {1,2,...,m} . All such
g Markov processes can be characterized by an initial distribution T2}
" - and an infinitesimal generator

% ( )
) -9 q q .o q
. S 1 12 13 Im
, L 21 9 923 e 92m
I -

v Q= 93; 132 "3 93

(I m
ol » . .
> . . . .
SR o ~
J‘; : 15 | 1 U2 n3 tee D l IC
. where ELECTE
5 . DEC 2 21986,
) . = lim P(X(tHAt) =3 |X(t)=1) 4 ¥ --‘
~ 131 Ao At ’ 3 (/7 .
- X A

and

Vo =
3 — i J';i 13
> This document has been approved
: 4 for public release and sale; its
-3 - diztributon is unlimited.

A S A R



NG
e T T TVe P

—
-

‘o W%

e}

R O G R
WNWIER IR M WAL IR A

T-488a

The qij's are the transition rates. The infinitesimal generator Q
seems to be the most natural way to describe the stochastic nature of
continuous time Markov models with denumerable state spaces. The state
probability vector at time t is denoted ﬁ(t) = (ﬁl(t), nz(t), veos
ﬂm(t)) , Where ﬂs(t) = PCX(t) = s) , s €S . These transient probabil-
ities satisfy the Kolmogorov forward equation

() =M, t>0. (1)
This is an initial value éystem with 7(0) given. (See [1,7,14] for
more background on Markov processes.) It is apparent that for processes
with large state spaces, we need to solve very large systems of differ-
ential equations. For example, a two-base, one-depot, single-item type,
two~echelon system with 24 units at each base and two spare units at the
depot has a state space of 106,875 possible states, requiring the
solution of 106,874 simultaneous, linear, first-order differential
equations in 106,874 unknowns.

This paper presears a method for solving Equation (1) for certain
models with large state spaces: the randomization numerical technique
is used to solve a truncated version of Equation (l). This makes it
possible to calculate measures of interest for systems which are even
too large to be handled by applying the efficient randomization technique
to the full state space. This then, would allow the modeling of such
systems as an aircraft wing, with three squadrons and two echelons of
supply and repair, or a fleet of gas turbine engine ships with both ship-

board and shore repair capability.
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The paper is structured as follows: The randomization algorithm
is reviewed in Section 2. Multi-echelon repairable item systems are
discussed in Section 3; the primary goal of this paper is to investi-
gate the transient behavior of such systems, however they also provide
good examples for illustrating the general truncation approach. The
full state space of a particular multi-echelon system is described
in Section 4. The truncated state space is given in Section 5.

The problem of determining a good level of truncation is discussed
in Section 6. Some numerical results are given in Section 7. More
complex models are discussed in Section 8; these include systems
with transportation delays, multiple items and higher echelons.
Section 9 contains conclusions. This paper extends the earlier work

of Gross and Miller [5].

2. THE RANDOMIZATION ALGORITHM

Any Markov process X on a finite state space can be represented
as a discrete time Markov chain (the uniformized embedded chain) 'ran-
domized" by a Poisson process, Define

P=Q/A+1, where A =max q, (2)
ieS

and I 1is the identity matrix; P 1is a stochastic matrix. Let

{Yn, n=20,1,2,...} be a Markov chain on S with transition matrix P
and initial distribution 3(0) . Let {N(t), t > 0} be a Poisson
process with rate A which is independent of {Yn, n=0,1,2,...} .
Then {YN(t)’ t > 0} is a Markov process with generator Q and
initial distribution i(O) and hence is probabilistically identical

to {X(t), t 2 0} . This construction makes it possible to compute

-3 -
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transient probabilities of a Markov process with generator Q from
transient prob. 1lities of a Markov chain Y with transition maxtrix
P and a Poisson process N with rate A . The transient probabil-
ities of Y are denoted ¢(n) = C¢l(n), 2(n), cees ¢m(n)) , where

¢s(n) = P(Yn=s) , s €S . The randomization formula is

(=]

7 op(x(t)=s | N(t)=n)P(N(t)=n)

n=0

P(x(t) s)

2 P(v_ = s)P(N(t) = n)
n=0
or equivalently,

-

I g S

n=0

(At)

m(t) (3)

See Gross and Miller [4] for additional discussion and details. (Equa-
tion (3) can also be found in Ginlar {1, p. 259] and Keilson {10, Eqn. 2.1.5].)

The infinite series in Equation (3) must be truncated for computa-
tional purposes. Let

et - min [k § SOl @)
n=0 :
where € equals an acceptable error (specified by the user). The compu-
tational version of Equation (3) is
00 - T(eZ,t) cb(n) (At) (5
n=0

Truncation of the infinite series involves a probability loss of at most
€ ; thus all probabilities (of states or subsets of states) will have an

error between -£ and 0. Note that the randomization formula (5) re-

duces the calculation of transient probabilities of a Markov process to
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those of a Markov chain and underlying Poisson process, both of which
are more amenable to exact numerical evaluation.
The ¢'s are computed recursively using the relation from stan-

dard Markov chain theory;

$(0) = 1(0) ;5 ¢(n+l) = ¢(n)P, n2>0 . (6)

(Note that Equation (6) involves only nonnegative numbers, a fact that
contributes to numerical stability of the algorithm.) The matrix P is
usually sparse and thus the above matrix multiplication should be per-
formed by an appropriate algorithm: Such a multiplication algorithm
(called SERT) is described by Gross and Miller [4]. The number of
operations in this algorithm is proportional to the sum of the number
of states and the number of transitions.

In short, the standard randomization computational algorithm com-

putes A and P from the generator Q wusing (2). It computes the

truncation point T(g,t) from (4), then the ¢(n)'s using (6) recur-
sively, accumulating in Equation (5) to give Ee(t) .

Gross and Miller [5] have computed transient probabilities for
Markov orocess models of multi-echelon inventory systems with 20,000
states and 00,000 transitions using the randomization algorithm.
Melamed and Yadin[l1] have applied the method to queuing networks with
a large number of states. Miller [12] has adapted the randomization
algorithm to efficiently handle certain stiff systems which arise in the
reliability analysis of fault~tolerant systems.

There are other numerical approaches to the solution of the

Kolmogorov equation (1) which we will not consider. Two general ap-

proaches are: (i) numerical integration techniques such as Runge-Kutta,
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PP

predictor-corrector, etc.; and (ii) exponentiation [7(t) = ﬂ(O)th] by

-
P
o,

.\ computing the spectrum, computing the Taylor series, or other means.

;;. The randomization technique has a distinct advantage over these approaches

.E: in that a bound on the global error can be set by the user, and it is

é& achieved. (The only other source of error is the influence of rounding
> and truncations by the machine performing the calculations; by noting

.§ that the randomization algorithm mainly involves multiplication and

;3 addition of positive numbers, Grassmann [3] has bounded this error.)

3 Furthermore, Grassmann [2] has shown empirically that randomization is

B

:FE more efficient for some queuing systems.

:

14 3. MULTI-ECHELON REPAIRABLE ITEM SYSTEMS

k; Multi-echelon repairable item provisioning systems are gener-
; alizations of the classic machine repair model. We consider a system

3:4 consisting of two bases and a depot. Each base has a certain number

i

EE: of "machines" (or key replaceable components of "machines') assigned

E{ to it and a certain desired number of these which should be operating.

ﬁ; Machines fail (independently of each other) after being operated for

fii an exponentially distributed length of time. There are repair shops

b

.i: at each base and at the depot. When a machine fails it has a certain

‘j: probability of going to the base repair shop for repair; otherwise it

jéi goes to the depot repair shop. Each repair shop has a certain number

%i of repair channels. Repair times are exponentially distributed. If there

’?: are more machines requiring repair than repair channels at a given repair

;? shop, a queue forms. The depot repair shop stocks spare machines which

';: are used on a one-to-~one ordering basis to replace failed machines

p coming from the bases. If the depot spares pool is empty when a

-6 -
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= replacement is required, a backorder is created which will be filled when
%; repair is completed on one of the items in depot repair. If both bases are
;4 awaiting backorders, a repaired item is sent to the base with the maxi-
:: mum depot backorders (ties are broken by flipping a fair coin). When

,i neither base is awaiting a backorder, a machine completing depot repair
X is placed in the depot spares pool. Thus any given machine may be in
}? any of six states (or equivalently-at any of six nodes in a "network'):
i- failed and in base repair shop at either base (BR1,BR2); failed and in

2 depot repair shop (DR); operational and at either base (BUl,BU2); opera-
i; tional and in the depot spares pool (DU). These six states and the

E possible transitions a machine can make between them are illustrated

. in Figure 1. The parameters and variables of the system are described

;{ in Table 1. Note that transportation times from bases to base repair

;: shops and from bases to depot repair shop are assumed to be negligible.

a We consider adding transportation nodes to the network in Section 8.

-

:5 We shall introduce the following classification symbology for

ig these systems: (#bases, fflevels of repair, fflevels of supply). So the
5y system of Figure 1 is considered a (2,2,2) system, since there are two

3 bases, repair facilities at both base and depot levels, and spares

‘; stockage at both base and depot levels.

" Steady-state models and behavior of multi-echelon inventory

.g systems are presented by Sherbrooke [15] and Muckstadt [13]. 1In these

5; models, they assume an "infinite" population of machines, so that the

- system failure rate is constant, regardless of the number of machines

- actually in operation (state-independent failure rate). Further, they

also assume that "ample" repair facilities exist so that failed items

:

‘{-

Ve . .o . - - ;
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p b

Base 2

4 | |
a | BR2 «+ BUZ2 |

2 Figure 1. General schematic for
a two-base multi-echelon repair-
able item system.

never queue in the vepair shops but go immediately into service. A method
for computing approximate transient performance measures of the above
multi-echelon system is presented by Hillestad and Hillestad and Carillo
[8,9], again with the limiting assumptions of state-independent failure
rate and ample service. These two assumptions make it considerably

easier to obtain both steady-state and transient results. Gross and

A%

Miller [5] compute exact transient probabilities using the randomization
algorithm, explicitly accounting for state dependent failure rates and

queueing at the repair facilities. For further background on multi-echelon

Coyay

inventory systems, see the above references.
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TABLE 1

PARAMETERS AND VARIABLES OF MULTI-ECHELON SYSTEM

Symbol

Definition

BUi

BRi

DU

DR

BSi

MSi

BCi

#BUi
#BR1
#iou
#DR

#DB1

Denotes

units

Denotes
Denotes
Denotes

Allocation of total stock to Base 1 (operating machines plus

a. Parameters

network node: Base 1 operational (working and spares)

network node: Base 1 repair facility
network node: depot spares

network node: depot repair facility

spares), i = 1,2

Desired number of working machines at Base i

Number

Probability machine failing at Base i 1is base repairable

of repair channels in repair shop at Base i

Mean failure rate, Base 1 items

Mean repair rate, Base 1 items

Number of depot spares

Number

Number

Number

Number

Number

Number of depot repair channels

Mean depot repair rate

b. Variables
of operational units currently at Base i
of units currently in or awaiting Base 1 repair
of spares currently available at depot
of units currently in or awaiting depot repair

of depot backorders from Base i
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4, STATE SPACE DESCRIPTIONS OF (2,2,2) SYSTEMS
Let us define the state of the system as the number of machines
at each node:
s = (#BUL, #BR1, #BU2, #BR2, #DR, #DU) .

The number of backorders at the depot from Bases 1 and 2, respectively.

are:

#DB1

BS1 - (#BU1 + #BRL) ,

#DB2

It

BS2 - (#BU2 + #BR2) ,
where, as given in Table 1, BS1 and BS2 are the allocation of total
stock to Bases 1 and 2, respectively.

In general, the state space appears to have six dimensions, but
because of one-for-one ordering and conservation of the total number of
items in the system, the dimensionality of the state space can actually
be reduced.

The description of the state space breaks into two situations:
(1) no depot spares available, and (ii) some depot spares available.
Thus we break S into two parts, namely

S = 50\j S+
where

S

0 states with depleted depot spares pool

S+ states with nondepleted depot spares pool.

First consider SO . The state of the system can be described

with four numbers:

(#DB1, #BR1,#DB2, #BR2)

k4
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_$t since here {#DU = 0 , and thus
* #BU1 = BS1 - #DB1 - #BR1
-
Fw "
~3 #BU2 = BS2 - #DB2 - {#BR2
i
I\ #DR = DS + #DB1 + #DB2
S
The feasible states of SO are subject to two constraints:
",
s #DB1 + #BR1 < BS1
>
- #DB2 + #BR2 < BS2
N
Therefore SO can be represented as a Cartesian product,
-
= So =T * Ty
ta where
o
] T, = {(#pB1,#BR1): #DB1 + #BR1 < BS1}
N T, {(#DB2,#BR2): #DB2 + #BR2 < BS2}
in Figure 2 shows a schematic of the set of states of SO .  The notation
o ‘-"
T 1is used because the spaces Tl and T2 are triangular. The number
) )
N of points in Tl and T, are
o I7.| = (BS1+1) (BS1+2)
-:' 1 2
and
- _ (BS2+1) (BS2+2)
- IT,| = ;
S 2 2
; o ctively, and the number of states in SO is
g 1 = (BS141) (BS1+2) (BS2+1) (BS2+2)
S ."04
. 4
ii Now, let us consider the states where the spares pool at the depot
- is not empty, S+ . In this case the state of the system can be described
-
-, by three numbers:
\-.
\'-
Sr (“BR1, #BR2,{DU) ,
-~

. - 11 -
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#BR1 #BR2
01 2 3 4 01 2 3 4 5
O ¢ o o o o 0 ¢ o o o o
1 . . . . 1 . . . . .
#DB1 2 + o - X ffiDB2 2 =+ + =+ o
3 + - 3 e e e
L - L .o .
5 .
Tl TZ

Figure 2. An example of state space SO describing indi-

vidual bases; here BS1 = 4 and BS2 = 5.

with constraints on these given by
#BR1 < BS1
#BR2 < BS2
0 < #DU < DS

We can condition on the value of #DU to get S+ as follows.

Let

Sy =S US U U S s
where Si consists of states with exactly 1 machines in the depot
spares pool.

Note that each Si is a rectangle and its size is

[S.| = (BS1+1)(BS2+1)

Thus

|S,| = (BS1+1) (BS2+1)DS

and the total number of states is

N (BS1+1) (BS142) (BS2+1) (BS2+2)

7 + (BS1+1) (BS2+1)DS

T-488a
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;?k So, we can describe the entire state space as
c DS
S = x .
n U \YS
<. i=1
A _\:_
- Examples of state space sizes are given in Table 2.
‘15N
" ‘ In order to compute the probability distribution for all the
L ' . ) A . .
'~ states at any continuous time point, ps(t) (g eSS, te [O,M)) , we
o S
¢
~\
W use the randomization method to provide the computational formulas
e
. and a technique called SERT (see [4]) which takes advantage of a
%
:d sparse Q matrix as computational machinery. There are two ways to com—
"l
]
L ~
. pute the probability distribution for the CTMP when using the SERT
i o~
technique:
o (i) Table look-up
“x -
- (ii) Algorithmic approach.
-
When using the table look-up, we construct all the target and
f; rate vectors and store them. Any time that an event occurs, the algo-
r rithm goes through these vectors and gets the necessary information to
>
JJ' compute the next discrete time probability vector. This procedure has
-
ﬁ- the undesirable feature that a huge amount of the main memory is needed
:j (in fact the memory needed is approximately twice the product of the number
- of different event types and the size of the state space). Consequently,
:i we are limited in the size of problem that we are able to run.
T . . i
v When using the algorithmic approach, we calculate the transition
v
S rates and the target states each time an event of the underlying Poisson
;? process occurs. While this algorithmic approach does not consume the
»
- same vast amounts of memory space as the table look-up method, the algo-
-9
e rithmic approach becomes quite uneconomical with respect to CPU time.
X
W
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TABLE 2

SIZE OF THE STATE SPACES OF (2,2,2) SYSTEMS
FOR SELECTED VALUES OF BS1, BS2, AND DS

BSL BS2 DS lsol + IS, = Is]
2 2 2 36 18 54
4 4 2 225 50 275
6 6 2 784 98 882
8 8 2 2025 162 2187
10 10 2 4356 242 4598
12 12 2 8281 338 8619
18 18 2 36100 722 36822
24 24 2 105625 1250 106875

It becomes clear that for th;s class of problem (Markovian
with large state-space), if we want to get exact solutions (within a
prespecified error tolerance) using the existing tools, we confront
either the computer's main memory restrictions, or the high cost of CPU
time.

The question that naturally comes up is: Can we find another way
to estimate (within a prespecified error tolerance) measures of interest
such as the availability of a desired number of machines at time t ?

It would be reasonable to expect that, for a system that

initially starts at full strength (all machines operational), the prob-
ability will be concentrated among only a relatively small part of the
whole state space during a mission period (or period of interest), if
the traffic intensities are low and the mission periods are relatively
short. In other words, we should be able to truncate the state space
and consider only those states among which we believe almost all the
probability to be distributed.
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The truncated states, on the other hand, are "lumped" into one
or more states, which can be treated as absorbing states. If the prob-
ability of visiting any of those truncated states (probability of being
absorbed) is negligible during the mission period, then the analytical
measures estimated are almost exact., Further, we will know the addi-
tional error introduced in our measures, as this will be the absorption

probability. However, there are two major questions that must be
addressed: How will we truncate the state space? In which cases will the

truncation procedure perform satisfactorily?

5. TRUNCATED STATE-SPACE APPROACH

Figure 3 shows a schematic of the state space representation for

a (2,2,2) system. Recall that

DS
S=T, xT,V i\zjlsi =S\US, -

Assume that we truncate the state space as shown in Table 3. Then the

truncated state space will look like that shown in Figure 4. The truncated

TABLE 3

TRUNCATION OF STATE SPACE

For Variable 1In Portion of State Space Truncated Beyond

#DB1 Tl TDB1
#BR1 Tl TBR1
#DB2 T2 TDB2
#BR2 T2 TBR2

A
#BR1 S+ TBR1

A
#BR2 S+ TBR2

- 15 -




v O Y - - - . it Sdee Ao Sta-Ale-d b ARe b ST

N
. T-488a
S \
S
b #BR1 - #BR2 #BR2
! 01 2 3 01 2 3 4 0 1 2 3 4
-.)' 0 . . . . 0 . . . . - 0 . . . . .
_\‘ 1 - . . 1 . . . . DS l . . . . .
- #DB1 x #iDB2 + \U #BR1 )
. 2 . . 2 . . . i=l 2 . . . .
' 3 - 3 . . 3 1y . . ) .
2 Tl 4 - TZ
! So Sy
Figure 3. Full state-space representation for a prob-
lem where BS1 = 3 and BS2 = 4.
;
v #BR1
)
0 1 2 Q 1 2 0 1 2 3
¥ TBR TBR DS SBR2
0 - . . 1 0 . . . 2 U 0 . . . . +
x {#fDB2 +\U#BRL ; | . . .
#Bl ., , .0 1 + « <@ ) O]
O 2 . . . 2 . - . .
BO
T o} o
TBO gBR1
: 2 +
. Figure 4. Truncated state space, where TDBl = 1,
e TBR1 = 2, TDB2 = 2, TBR2 = 2, T3R1l' = 2,
’ T3R2' = 3. The states TﬁR, Tio, TgR,
5 Tgo, SERZ SBRL e absorbing states.
v,
>
5
. states are lumped into six absorbing states. Whenever there is a
4
D transition from the remaining state space into a truncated state, it will
o be considered as a transition to a specific (absorbing) state which,
once visited by the process, will never be left. The size of the state
Py
ﬁ space (excluding the absorbing states) is now reduced to
X = (TDB1+1)* (TBRL+1)+ (TDB2+1)* (TBR2+1) + DS+ (TBRL'+1)+ (TBR2'+1) .
(»
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The benefits of truncating the state space are readily apparent.
First, we decrease significantly the amount of computer memory required
(e.g., we need to consider only a fraction of the whole state space).
Secondly, by this method we are able to calculate the total absorbed
probability or, in other words, ;he amount of total error added because
of absorption. Thirdly, CPU time for the execution of the algorithm
is reduced because it depends approximately linearly on the size of
the state space. This approach can also be utilized when treating

certain infinite state-space CTMP's, for example M/M/c/® queues or

open queuing networks.

6. ESTIMATION OF INITIAL TRUNCATION POINTS

Now that the algorithm is established, the only step needed befor
it can be implemented is the selection of the truncation points. To do
this, we look at our (2,2,2) system as three independent M/M/1/« queues,
the traffic intensities of which are made equal to the traffic intensiti
of the three stations of our original problem. We define traffic intens
ties for our state-dependent original problem as the maximum possible lo
namely, AiMSiai/uiBCi for the bases and Zi XiMSi(l—ai)/uDDC for the
depot. We mention here that three independent queues are not in general
good approximation for our true multi-echelon queueing network, but will
serve our purpose for providing reasonable values for initial truncation
points, and is used only for this purpose. Once the state space is trun
cated, randomization SERT is applied to the original multi-echelon netwo
The question that now arises is: What is the smallest n , such that

Pr {an M/M/1/= queue visits state n or hisgher during [O,tm]} <68,

- 17 -
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where th is the mission time. The n estimated this way will qualify
as the appropriate initial truncation point. As a side observation,
Pr{an M/M/1/= visits n or higher during [O,tm]}

= Pr{an M/M/1/n visits n during [O,tm]} .

Using randomization SERT, we calculate the absorbing probabilities
as functions of time and truncation point for different traffic inten-

sities, ranging from ,2 up to .7 (see the appendix). It turns out

that as the truncation point n increases, the absorbing probability
as a function of time becomes linear, with slope equal to 1 (on a £n-2n
scale) and intercept dependent on the traffic intensity and the truncation
point n .

The graphs calculated for M/M/1/n queues as given in the
appendix are based on a randomization cut-off error, € , of 10_6 .
These can be used to satisfactorily estimate truncation points even 3
for systems with more than one server, provided that the "match' of
traffic intensities is maintained, that is, the single-server service
rate is set equal to the sum of the multiple servers service rates.
If the traffic intensities are relatively low (which they often are in
multi-echelon repairable inventory systems), and the mission period short
(tm small), then the truncation technique should work in the sense that
the truncation points decrease the number of states to be considered to
a dimension that the computer memory can handle (in Section 9, we discuss
this further). Otherwise, system approximation techniques such as de-
composition into independent queues or approximation by Jackson networks,
or simulation. CGCross, Miller, and Plastiras [6] give a comparison of

randomization and simulation, including CPU times for comparable accuracies.

- 18a -
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s Their general conclusion was that for smaller state spaces and for
> higher precision, randomization is more economical. For example, to
obtain a precision of *17 with 99% confidence using simulation turned
out to require three times as much CPU time as randomization for a

- 15000-state problem.
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7. EXAMPLES
We present two examples, one of a (2,2,2) system and another
of a (3,2,2) system, which show the effectiveness of the truncation

approach.

Example 1.

Let us consider the (2,2,2) system shown in Figure 5. The
full state space for this problem is 77,234 states. Using the table
look-up algorithm, it is impossible to handle this problem on the
VAX 11/780 system without truncation. We desire availability
measures, where

Availability at time t for Base i = A (t) = T p. .(t)

where pj i(t) is the probability that j machines are working at

Base i at time t . We also desire the total probability of absorption
during the mission time tm (which for this example equals 30) to be less
than .015.

To evaluate the initial truncation points, for Base 1 the
traffic intensity pl is

aleM51

o = .6(.15)20 _

17 7BCI, T 4.5 0.4 .

When we calculate the graphs of the absorbing probabilities for differ-

ent cases of traffic intensity p , we assume X =0 and U =1 (we

refer to p =1 as the "nominal" value). 1In general, pu is not 1 and we
must adjust our time scale accordingly to match event rates. The absorbing
probabilities at time t for an M/M/1 system with traffic intensity

p = kA/ku 1is the same as the absorbing probability at time kt for a

- 19 -
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BR1 Base 1

1 server | ¢—— 20 operating 2 gpares \\\

= = DR DU

Yy 4.5 Al 0.15 4
1 server |—» | 2 spares
.8

BR2 Base 2 //’ u0 =3.33

1 server & -9 20 operating 2 gpares
2_l

My = 0.5 A, = 0.05

2

Figure 5. (2,2,2) example.

system with o = A/u , since these two systems yield the same expected
number of events over their respective time intervals, namely, t(kA + ku) =
(kt)(A + 1) . Thus, while we are interested in a mission time of 30, our u
is 4.5, not 1, so k = 4.5 and the "equivalent'" mission time is 4.5(30) =
135 . Using our graphs in the appendix, given that p = 0.4 , we wish to
find the smallest n , such that Pr{an M/M/1/n visits n in time period
[0,135]} < .005 . We obtain an n of 9, so that TBRl1 = 9 , and TBR1l' = 9
will serve as our initial truncation points for the state variable #BR1

for the SO and S+ portions of the state space, respectively.

Similarly, at Base 2 the traffic intensity 02 is:

o L 22Tac20
2 BC2u, .5 C
Now here the event rate is 1/2 X nominal (since Uy = .5); therefore, we
look at the graphs and tables where p = .4 and seek the smallest

n such that Pr{an M/M/1/n visits n in time period [0,15]} < .005
We obtain n = 6 ; thus TBR2 =6 , and TBR2' = 6 will serve as our

initial truncation points for the state variable {#BR2 for the

SO and S+ portions of the state space, respectively.
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P
fﬁ&: We now consider the depot. The traffic intensity pD is
A
R . (rop ST + (a)A M52 4(.15)20 + .8(.05)20 _ 4 ¢
D DCH ) 3.333 T
;; Here, the rates are 3.333 X pominal (because p = 3.333) ;
x. therefore, we look at the tables and graphs where p = .6 , and pick
SN the smallest n such that
1?}
__;E: Pr{an M/M/1/n visits n in time period [0,100]} < .005
\:i We obtain n = 14 , which serves as the truncation point for the number
G{' of machines undergoing repair in the repair facility at the depot.
::2: Our aim is to fix truncation points for the number of machines that
AR
'?ﬁt the depot owes to each base. Given that DS = 2 , the total number
"': of machines owed by the depot to the bases is 14 - 2 = 12 . Now,
Jﬁ we need to divide this number into two numbers, which will serve as
W
Qi;‘ the truncation points for the depot backorders in Base 1 and Base 2,
D respectively. One way to "allocate' is to divide the total according
‘{:é to the ratio of the failure rates of the bases to the depot. 1In our
2
;j example we divide the 12 machines as follows. The failure rate to
r';{ depot from Base 1 is .4 x 20 x ,15 = 1.2 and from Base 2 is
'éii .8 x 20 x .05 = 0.8 . The total is 2.0 and the allocation then is
L TDBL = (1.2/2)(12) = 7 and TDB2 = (0.8/2) (12) £ 5
:E:{ The truncated state spare now looks like that shown in Figure 6.
,i;i In Table 4 we can see the number of states considered for the
e
'htd truncated state space, and their respective absorbing probabilities.
EE;: The entries in the first row correspond for the case where the trun-
! 3& Cation points are the same as in Figure 6. After examining the
:?ti absorbing probabilities we find the probability of Tgo relatively
£ - 21 -
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li high. Since we would like the total absorbed probability to be less
zf than .01, we increase TDB2 from 5 to 6, and rerun the algorithm with the
f: results shown in the second row of Table 4.
g One might ask whether the M/M/1/® approximation can help in
a} estimating truncation points for problems where there is more than one
o ' server in the repair shop. To show that it can, Rows 3 and 4 in Table 4
'5 correspond to two additional runs in which we retain the truncation points
f of the Row 2 example based on the M/M/1/<, but where we try two and then
. three service channels at each base repair facility, reducing the service
ii rate of each of the multiple channels appropriately to yield an equivalent
;Q service rate. Row 5 lists results of an additional run where the number
o of service channels at Base 1 and Base 2 repair are 3 (the Row 4 case),
:: but where TBR2' has been increased to 7 in order to reduce the absorption
'3 error closer to the desired .01 value.
&
o Example 2.
_: We now consider a (3,2,2) system as shown in Figure 7. The full
R state space size can be found by generalizing the formula for the two base
.
5 case. Here we have the Cartesian product of three triangles (one corres-
? ponding to each base) for the SO part of the state space, and the union
: of DS cubes for the S+ part of the state space. Hence,
A
N |S| = (BS1+1) x (BS1+2) x (BS2+1) x (BS2+2) x (BS3+l) x (BS3+2)/8
RS
K~ + DS x (BS1+1) x (BS2+1) x (BS3+1) .
'{ Using the above formula for this example, the full state space is
EE 43,278,703 states. Going through the same procedure used for the pre-
;: vious example, we set our initial truncation points using the graphs
‘{ given in the appendix and obtain values shown in Figure 8.
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Table 5 lists the number of states of the truncated state space

VX XA

considered, and the absorbing probabilities. The first row exhibits

results based on the truncation points chosen initially (as shown in

SBRZ BR3

+ nd S

Figure 8). Observe that SERl s have the higher ab-
sorbing probabilities. After increasing TBR1' , TBR2' and TBR3'
from 6 to 8, we reran the problem with the results shown in Row 2 of

Table 5 and the total absorbed probability drops below .01l.

8. MORE COMPLEX SYSTEMS

We now consider the following three models, which are more complex
variations of the models having two bases and two echelons:

(i) Model with transportation pipelines,

(ii)  Model with two types of spares,

(iii) Model with intermediate repair shop (three echelons).

Model with Transportation Pipelines

A schematic of such a system is shown in Figure 9. This model has
two bases, two levels of supply, and two levels of repair, and serves as
a prototype for analyzing transportation pipelines. There is only one
addicional characteristic that distinguishes the model of Figure 9 from
the (2,2,2) system previously studied. Failures from base to the
depot enter a single pipeline (denoted by PIN), and repairs of
backordered machines enter either one of two pipelines (denoted by
P1OUT and P20UT) depending on to which base they are sent. In order
to describe the state space for this model, we will condition on the

number of spares available at the depot:

- 27 -
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(i) Spares available at depot => DU > 0

If spares are available in the depot, then whenever a machine
enters the PIN pipeline, another machine enters either the P1OUT or
the P20UT pipeline at the same time. The number of backorders for
each base will be at level 0 , so that the total number of machines
allocated to each base (BSi) wtll be distributed in the [aa] or

[bb] portions of the network. The conditions for #DU > 0 are

#BR1 + #BU2 + #P1OUT = BS1
#BR2 + {/BU2 + {#P20UT = BS2
#PIN + {#iDR + #DU = DS ,

and the tontal number of states is:

DS (DS+1) < (BS1+1) (BS1+42) % (BS2+1) (BS2+2)
2 2 2

(ii) Spares not available in depot => #DU = 0.

For this case,
DS < #PIN + #DR < BS1 + BS2 + DS ,
in fact, #PIN + #DR = #DB1 + #DB2 + DS (where #DB1l, #DB2 are the

numbers of backorders at the depot from Bases 1 and 2, respectively).

If we let

j = BS1 - #DB1

k

BS2 - {DB2 ,
then the total number of states is:
Bil GHD G+ L B82 e e2)
.20

5 2 o 2

X [DS+(BS1~-3j)+(BS2-k)+1]

- 30 -
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Thus, the total state space size is given by:

-

F'3

S -

ls‘ _ DS(DS+1) o (BS1+1) (BS1+2) x (BS2+1) (BS2+2)
2 2 2

E BS1 BS2 i + i + i i+
’ ) ) (11 l)(1l 2) § (1,41) (1,%2)
f i = { = 2 2

11—0 i, 0

x

[DS+BS1+BS2-i —12+1]

1

L- Examples of state space sizes for the above model are given in Table 6.

Model with Two Types of Units

We show schematically in Figure 10 an example with two different

types of machines or components. This model is the same as the

SNt 3N

(2,2,2) prototype except that we now have two types of machines (or

s
s

- assemblies, say A and B). Given that they are independent components,
we can easily derive the formula for the state space of the model of

Figure 10 as follows:

S| = l:(BSlA+l)(BSLA+2) . (BS2A+1) (BS2A+2)

3 > + DSA(BSlA+l)(BSZA+l{]

2L

[%BSIB+1)(BSIB+2) % (BS2B+1) (BS2B+2)

3 7 + DSB(BSlB+l)(BSZB+l{} .

P Pl s

Table 7 exhibits state space sizes for different sizes of the above

o

. model.

Model with Intermediate Repair Shop
(Three Levels of Supply and Repair

We show in Figure 11 a (4,3,3) system. We let ISi be the

number of spares allocated to intermediate station 1 , #IUi the

‘I-.

number of spares available at intermediate station i , and #IRi

'.\

be the number in or awaiting repair at intermediate station i

- 31 -
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. TABLE 6

*"

D STATE SPACE SIZES FOR THE MODEL

- WITH TRANSPORTATION PIEPLINES

js BS1 BS2 DS Number of States
1 1 1 49
e 2 2 2 508
-\‘
N
o 4 4 2 6,800
" 6 4 2 17,430
. 6 5 2 28,812
o
o 6 6 2 44,688
¥,
. 8 8 3 229,950
e ‘ 16 12 3 4,933,383
A
"'\
[ 24 18 4 60,916,375
o
% TABLE 7
= STATE SPACE SIZES FOR TWO ITEM-TYPE SYSTEM
"/
.
BS1A BS2A BS1B BS2B DSA DSB Number of States
>,
o 2 3 2 3 2 2 7,006
(=
L 2 3 3 4 2 3 17,640
G
| 4 4 4 4 2 2 75,625
I
= 4 4 6 6 2 2 242,550
-"4
%
- 4 5 6 7 2 3 441,000
| 8 8 8 8 2 2 4,782,969
ot 8 8 10 10 2 2 10,055,826
3
. -
Y A
5.
A Y

- 132 -
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We now condition on the number of spares available at the depot
(as before, DS represents the number of spares allocated to the depot

and BSi the total number of machines allocated to Base 1i).

(i) #pL >0
In this case, we have two independent (2,2,2) models, with

two echelons and two bases.  Thus

.

IS, | = DS <« [(IS1)(BSL+1)(BS2+1) + (BS1+1)(BS1+2) (BS2+1) (BS2+2)/4]

|

x

[(IS2) (BS3+1) (BS4+1) + (BS3+1) (BS3+2) (BS4+1) (BS4+2) /4]

(ii) #DU = 0 (no spares available at depot) and the depot
owes 1 IUl spares and j 1U2 spares.

Ve first focus on the [aa] portion of the network.

(a) 0 < 1i<Isl

1. #1U1> 0

X
d Then we have to consider {iié'l (BS1+1) (BS2+1) (IS1-1)
! states.

2. {#IU1 =0

Then BS1 + BS2 + IS1 - i machines have to
be allocated to the five stations contained in
b area [aa] of Figure 11. So we consider
IS1-2
T T T (kD) (kH2) (241) (2+2) /4
i=0 k 2

states, where

k

number of machines at Base 1

A '3

number of machines at Base 2

b _35_
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and the double sum is conditioned on
0<k + 2% <BSL +BS2+ IS1 - i
0 € k € BS1
0 <-% < BS2
(b) 1IS1 € i < BS1 + BS2 + ISj
Here, we know that #IUl = 0 . So the number of
states to be considered is
BS1+B52+1S1
YT (kD) (k42) (441) (242) /4,
i=IS1 k 2
where the double sum is conditioned on
0<k +2<BS1+BS2+1IS1-1
0 € k € BS1
0 <2 <BS2.
We are now able to write the formula giving the number of states
of the entire state space:
[S] = DS x [JS1(BS1+l)(BS2+1) + (BS1+1)(BS1+2)(BS2+1) (BS2+2)/4]

x [I82(BS3+1) (BS4+1) + (BS3+1) (BS3+2) (BS4+1) (BS4+2) /4]

| 1S1-1
/ +1 7 [(BS1+1) (BS2+1) (IS1-i)]
i=0
min(BSl,BSl+BSZ+ISl~i) min(BS2,BS1+BS2+IS1-i-k)
+
0<i<BS1+BS2+IS1 k=0 £2=0

[ (k+1)(k+2)(2+l)(2+2{}

4
152-1
<) 3 [(BS3+1((BS4+1) (I1S2-1) ]
i=0
min(BS3,BS3+BS4+IS2-1i) min(BS4,BS3+BS4+IS2~i-k)
+
0<1<BS 3+BS4+1S2 k=0 2=0
{(k+1)(k+2)(a+1)(£+2{}
4
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:{} Table 9 gives some examples for different cases of the above model.
15
h‘:‘:.t
_— 9. CONCLUSIONS
=
1_?;: We can see that the truncation technique works for rather large,
b
f\}: single-item, two-echelon Markovian systems. The applicabilitv of the
Bty ‘ technique basically depends, for each individual case, on the rates and
:f the mission times.
}“;‘ Figure 12 gives an idea of which rates will be acceptable if we
A wish to have an M/M/1 system probability of "overflowing" a certain
-\.
n\'-‘,
.r:::- n (= number in svstem) of .005 in 30 time units; that is, points on ecach
e
;:3 contour correspond to points for which n 1is overflowed in 30 time
4%,
NN units with probability .005. Points below this specific contour give
N
}3: absorbing probability less than .005 in 30 time units. For instance,
o
-
e
x TABLE 9
o,
{.g STATE SPACE SIZE FOR INTERMEDIATE REPAIR SYSTEM
N
I, S — —
’ BS1 BS2 IS1 BS3 BS4 IS2 DS Number of States
'-_-:J 1 1 1 1 1 1 1 689
o 2 1 0 2 1 0 1 2,074
= 2 1 1 2 1 1 1 4,426
.".‘,,
:zi’ 2 2 1 2 2 1 1 15,525
o
Z:E 5 5 2 5 5 2 2 9,460,802
e 10 8 3 9 12 2 3 1,573,833,690
B
b
:::.: - 37 -
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in Example 1, we came up with a Base 1 repair truncation point, TBRI1,
of 9. Now, if we still wish to have the system run for 30 time units
and the absorbing probability for T?R to be < .005 then, using Figure
12, we show that the arrival and failure rates that will suffice are
those below the contour for n =9 . So according to this figure, our
rates of "\" = alAlMSl = 1.8 and ™u" = c My = 4.5 will do, because
this point is not above this contour. However, if, for example,
alAlel = 8 and clul = 15, then TBRl = 9 will not do because the
point made up of these rates lies above the n = 9 contour.

This figure can also be used for mission times other than 30 time
units by scaling the rates appropriately. For example, 1f we are
interested in a mission time equal to 15 time units with dlAlMSl = 1.8
and cHp < 4.5 and we desire to know whether TBRl = 7 might be a
good truncation point (so as to allow the probability at absorption
to be less than .005) then, knowing that this is equivalent to a system

with mission time equal to 30, and alAlMSl = 0.9 = 2.25 and

> “1M
using Figure 12, we see that we are above the contour for =n = 7 , and
as a consequence it is not an appropriate truncation point. However,
TBR1 = 9 would certainly work here since the point is below that con-
tour. In fact, if a truncation point is satisfactory for a mission
time t , it will certainly be satisfactory for mission times less than
t . The opposite is not necessarily true.

Thus, if one has an idea of the total number of states that can

be handled on a particular computer, using the state space size formulas

[for example, equation (7)] can give rough ideas of what the truncation




points must be for the computer to be able to handle the problem.
Using Figure 12 in the manner illustrated above will indicate whether
these truncation points are adequate for the rates of the partic-
ular system under study.

The more complex models reflected in state space sizes given
in Tables 7, 8 and 9 can tax even the truncation technique. Trun-
cation might be feasible for the pipeline models as the state space
does not blow up too rapidly (see Table 7). However, the multi-
machine and intermediate repair types of models, except for perhaps
relatively small systems, generally have state spaces which are too large
for even truncation to handle, and which would have to be analyzed by
other techniques, such as simulation or approximation with simpler
systems. Nevertheless, this truncation technique can handle systems

large enough to model many realistic size problems of the real world.
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