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1. Introduction

To date, the energetic plasmas responsible for the terrestrial aurora
have been probed directly with in situ spectral measurements of the precipitat-
ing electron flux, while the morphology and temporal behavior of the aurora
have been monitored with ground-based and space-based imagery. Space-based X-
ray imaging offers a means for combining spectral and spatialimeasurements of
the aurora by detecting X-ray fluxes which arise from bremsstrahlung emission
by the precipitating auroral electrons. Of course, the bremsstrahlung X-ray
spectrum must be interpreted properly in order to infer the spectral parame-
ters of the precipitating electrons., Quantitative interpretation of brems-
strahlung X-ray spectra is possible since the production and transport of > 1
keV bremsstrahlung X-rays in the atmosphere are reasonably well understood.
Also, observations of bremsstrahlung X-rays have been accomplished (e.g.,
Mizera et al., 1978; Imhof et al., 1974, 1975a, b), and the most recent obser-
vations have provided two-dimensional images of the X-ray flux along with

spectral measurements (e.g., Mizera et al., 1984; Imhof et al., 1982).

In practice, the use of bremsstrahlung spectral measurements to infer
incident electron spectral parameters is hampered by instrumental limitations
and low signal-to-noise ratio. Thus, a spectral deconvolution scheme which
makes the most effective use of available data is required. The maximum
entropy formalism (Jaynes, 1957) is a statistical technique which provides a
statistically optimal estimator of a continuous quantity (in this case, the
incident electron spectrum) when only a discrete set of integral functions of
that quantity are known (namely, the observed X-ray spectrum). Maximum entro-
py analysis has been applied previously to image restoration problems (e.g.,

Andrews and Hunt, 1977; Gull and Daniell, 1978, Wil.czek and Drapatz, 19Y85)

where, for example, brightness images of astronomical objects appear noisy and
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blurred due to inadequate detection equipment. The bremsstrahlung spectral
deconvolution problem can be compared to noisy and blurred image restoration,
since the electronmatmospheric interaction effectively causes “"blurring” of

the original electron spectral signature.

A numerical maximum-entropy deconvolution scheme has been developed which
is specific to the bremsstrahlung problem. The téchnique includes a Chi-
squared limitation on errors arising from statistical fluctuations in the X-
ray flux measurements. The numerical technique has been applied to data
acquired by the Aerospace X-ray spectrometer on the polar~-orbiting DMSP-Fé6

spacecraft.

Section II of this report describes the formulation of the appropriate
bremsstrahlung production function (i.e., the "blurring” or "response” func-
tion). Section III describes the maximum entropy constraints and derives a
linear system of equations which comprise an 1interactive solution to the
problem. Section IV applies the technique to some ideal and actual examples,

and Section V summarizes the results.
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I1. Bremsstrahlung Production

It is necessary to determine an appropriate bremsstrahlung production
function ¢(X, T, n) which approximately satisfies the following expression for

the observed X-~ray spectrum:

T
MAX
/

fx(X. n) = dr £ (T) - X, T, n) + e(X) QY

X
where the integral for the observed flux fx as a function of X-ray energy X
and aspect angle n (see Figure 1) must be carried to an incident electron
energy Ty,x Such that the contribution to observed X-ray flux from incident
electron flux feo(TMAX) is negligible. The factor e(X) represents errors or
variations which arise from processes not described by the production function
¢. Later we assume that the errors e(X) are not blased and represent, for
example, fluctuations due tu Iinadequate counting statistics. In practice the
production integral (1) is replaced with a summation over energy levels Ty

which are selected for evaluation. That {s

n
ka(n) = ifl fel . ¢1,k(n) + e (2)

The bremsstrahlung production kernel ¢ an be estimated based on

1,k €
analytical treatment of bremsstrahlung production and transport in the atmo-
sphere (e.g., lLuhmann, 1976; 1977) or from the results of Monte Carlo calcula-
tions (e.g., Seltzer and Berger, 1974). We review here an analytical tech-
nique for estimating observable X-ray flux at satellite altitudes in order to
demonstrate some important physical considerations (limb brightening, for
exanple). In any case, any appropriately derived bremsstrahlung production
function ¢ can be substituted into the maximum entropy formulation de-

i,k
scribed in Section III.
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The bremsstrahlung production funcrion ¢ represents the integrated X-

i,k
ray productivity of an incident electron beam at energy ‘I‘i over an emission

where z 15 the atmospheric depth (gm/cmz). The form of ¢,

range 0 < z < z ik

c
must 1incorporate both electron energy degradation over the entire emission
range and X-ray absorption over the escape path length z sec n, where the
angle n is the emission aspect angle with respect to the =zenith. A plane

parallel geometry can be assumed, as shown in Figure l. Note that fe(T) must

be assumed uniform over the “"sensed” horizontal area.

Lubmann (1976) treated the spatial evolution of the energy spectrum of
incident electrons on the atmosphere by showing that a solution to the Fokker-
Planck equation for the electron distribution functions has the form

2n dT/dS(T)

f(2B) = 37 17as(E) feo'T )

where
Y-3/4
dT/dS(Y) = 7748 (4)
ang
4/17
T = [% (z+8E7/ %)) (5)

for a beam. Here Y is a dummy variable, E is the energy of the degraded beam

~

and B = 4.57 x 1077, The range of the beam {s thus z, = BT’/A, however it is
more important to consider the emission range of the beam, beyond which an
electron beam with initial energy T does not contribute to bremsstrahlung

production at photon energy X. This range {s such that E = X Iin Eq. (5), or

11
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N
" ) -
' Zc - B(,r//4 - X7/A) (6)
i
)% Similarly, one can determine the minimum incident electron energy which can
42
;£ contribute to bremsstrahlung emission at energy X for atmospheric depth z,
‘ X
" which 1is
Y : " 1
4/7
o 1 7/4
T = | (z + BX (7) 4
B L )
AN :
R
?{ﬁ The flux spectrum of electrons at depth 0 < z < z, is then just
Ny
M
* g 374
fe (z,E) = &f) feo(T)Au (8)
o
'\‘:'
~o
::,j where Ay is the cosine of the beam width in pitch angle.
).‘:
The bremsstrahlung production rate due to an electron of energy E is
s
‘jﬁ determined by the Bethe-Heitler differential cross section (Heitler, 1954),
>, 4
)y which for an air target of mean atomic weight M takes the form
r‘
,_. 1 e °3(X £) « 173 o ((JEH /—E—X)Z} (9)
Vel M odx 7 XE : X
h"s
sl
with units cmz/g keV. This cross section is plotted in Figure 2 for selected
"3g . ’
158
‘:j electron energies. Note that high energy electrons contribute significantly
\
o
>
W to X-ray production at much lower energies.

The bremsstrahlung production rate at atmospheric depth z is thus

o= .
s

-

fRX| Nx

+
x

»
]

= d o 3/4
5 Tf dT —— (X%, E) (%) £,.(D (10)
c !

“- ,; "Il

PB(z,X) =

o 12
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. Figure 2. Plot of the Bethe-Heitler Cross Section for an Air Targe:.
o Curves are drawn for a number of electron energies T.
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iy
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e
)\ﬁ where the factor of  arises from an integration over the angular distribution
525 ,
%;;; of bremsstrahlung emission with respect to the direction of the electron
e beam. Since we are concerned with auroral energles only, the slight energy
X
2
t:{ dependence in the emission angular distribution (Rees, 1964) has been ignored
iég here, and for an electron beam we use ( = 2/w2. Equation 10 1s written
e
) intentionally as an integral over incident energy T rather than local degraded
i
k*; energy E in order to facilitate later numerical evaluation of Jeo(T)'
W
Qﬂ' The bremsstrahlung intensity viewed from the top of the atmosphere is the
jfl productivity function given in Eq. (10) multiplied by an exponential attenua-
-"‘I
:&;' tion factor and integrated along the appropriate propagation path from the
R
&ha maximum source depth z_ to the top of the atmosphere (see also Luhmann, 1977):
o
o z secn .
,::a fx(x,n) = f dz sec n PB(z,X) exp (-ua z sec n) (11)
x* o
>
N
v where u, = ua(X) is the mass absorption coefficient which for 1 keV < X < 30
,\‘n
‘-i
:: keV can be approximated
>
S
.- "
b (1) = 4.28 x 107 x7°0 ca/g (12)
g
) ,J.‘\
'-.::'\
B
"*~ for a nitrogen/oxygen atmosphere [ from the data of Hubbell (1971)1.
ey
DA It is convenient, for our purposes, to evaluate equations (10) and (11)
oy
¥
15'; for discrete energy levels X = Ki; i =1, m«s Also, we choose to evaluate
g
nf% fe(T) at these same energy levels T = K;; 1 = 1, m« It is necessary at this
> od point to specify the relationship between energy levels K; and differential
L .
A
i:j energy intervals AKi in order to evaluate equation (10) numerically. Here we
LN
'{}i apply a geometric progression of energy levels which is characteristic of
o:} current instrumentation. Namely,
Gl
-_:-u .
.,-_f_. 14
vy
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K,

jer/%g =L+ 8 (13a)

K, - 4K (13b)

where A is typically between 0.15 and 0.20. In doing this, tabular values of
¢i 3 computed for a range of zenith angles, are specific to the energy
b4

increments K. but are otherwise universal. Examples of @i values computed

J »J

for n= 0° and n = 80° are shown in Tables 2 and 3 for values of Kj listed in
Table 1. These values are also displayed in graphic form in Figure 3. The
plot depicts the contribution of unit incident flux of electrons at energy T
to observable X-ray flux at energy K. Note, for example, the characteristic
turnover of the production function at low X-ray energies for high incident
electron energy. This is due to re-absorption of low energy X-rays which are
emitted from deep within the atmosphere by deeply penetrating high energy

electrons, It 1is useful to note that a reasonable approximation to the pro-

duction function, neglecting soft X-ray reabsorption, is
e (T, =KD T,
6, =486 x10° L L 1L (14)

»J K¥.5

J

Of course, this approximate form applies equally well to energy levels other
than those specified in equation (13). A discussion of aspect-angle effects

such as limb-brightening or darkening appears in an Appendix.
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Table 1. Energy Channels in keV

o m
_Vﬁﬁﬁ =
225505 0

Channel Number Energy (keV) Channel Number Energy (keV)

NN 1 2.00 9 7.36
2 2.35 10 8.86
3 2.77 11 10.2
ATy A 3.26 12 12.0

5 3.84 13 14.1
o~ 6 4,51 14 . 16.6
S 7 5.36 15 19.6
)

6.25 16 23.0
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1I1. Maximum Entropy Deconvolution

The bremsstrahlung production function computed in the previous section
(or any other appropriate kernel ¢i,j) can be used to compute the observable
X-ray flux at satellite altitudes caused by incident electron flux with spec-
trum fe(T). In this section a deconvolution scheme is presented which enables
the computation of the incident electron spectrum based on discrete observa-
tions of the bremsstrahlung flux. The technique presented here resembles
similar maximum-entropy schemes which have been developed for image restora-
tion (see, for exampie, Gull and Daniell, 1978; Wilczek and Drapatz, 1985).
The similarity in these data analysis techniques 1s to be expected, since
entropy maximization generaily provides the smoothest (i.e., most cautious)
estimate of a distribution among a set of distributions which are allowed
under constraints imposed by observations. Below we describe the constraint
equations appropriate to the bremsstrahlung problem and develop a maximum

entropy deconvolution scheme for the incident electron flux spectrun.

As in Section II, we assume that discrete observations of the bremsstrah-
lung X-ray flux fx(xk) are available, and that these measurements are related

to the incident electron flux through the following convolution function:
o f + e (15)

Here the e, terms represent errors, which we will assume to arise from sta-
tistical counting deviations. This assumption requires an estimate of the

standard deviations of e, which we call g, . Gull and Daniell (1978) suggest

the application of a x2 constraint to the errors e,  when their variances gk‘

are known. That is
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The constraint AZ can be chosen to reflect a confidence level p by setting
- # to the value of the inverse X2 distribution function with m degrees of

N freedom.

Finally, the entropy of the incident electron distribution is defined by

K\ the Shannon form.

m
L ! (17

o i=1]
A We wish to find the distribution f_ ; which maximizes equation (17) under the
constraints of equations (i5) and (16). The Lagrangian of this system has the

4

.{ form

L(f eoof y €08 B .eeeB ) =
e e n

-
A
E;:‘ =- 1 feimfei - BOLif fei - nfe - (18)

where f., represents an “average” flux which can be estimated from the inte-
‘3.':;) grated X-ray flux, then adjusted in later iterations using a continuation
technique. Differentiating the Llagrangian with respect to f,; and ey, and
setting the partial derivatives equal to zero, we get the following set ot n +

\ m equations

m
= - ] - - = .o 9
mfei 1 BO I %(oi,k , 1 1, 0 (19)

"o 7"

- N I\. L .-‘ T
%{M@AM’ Lﬁm NSRS



r. » ".‘.l“JJ‘

X

T
CRAAe:

S

AL AT

s N
r
L

pRCI Y

- &
}

3, _‘r_iv- .

DS

b/

Y “4{1“‘-"4 1’

P N -
PR A

RARRAA|

-
]

2
%
e = & 28 (20)
Solving for fei’
m
) exp[- L § o ]
k=1 i
fei(sl“'em) = n feO = { = ] (21)
L expl|- I ¢
g=1 k=1 fba,

and substituting f,; and e, into equations (15) and (16) we get the set of m +

1 nonlinear equations for the lagrangian coefficients ﬁk

n Okz
F = T 6 . f (BeeeB) - -f . =0 K= 1,.0.,m (22)
k =1 i,k "ei "l m 3l<28kﬂ xk
1 o 2.2 2
oy ; > kfl a “8 A¢ = 0 (23)
Bl

The system of equations (22) and (23) can be solved iteratively using a non-
linear Newton's method. The Jacobian of the system {is given by ka =

aFk/ 3B,, where

j.
2 ka 1,-..,m
J u;ds —--afei-csk i
kj (=1 i,k QBJ. j ZBm_H
j=1l,e..,m
2 Kk = o + 1
J = g %
k] “ 28 2
fira gl
j=1,ee,m
23
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s 2 k=m+ 1]
i
ka B] 28 2
o+l j=1l,¢ce,m
m k=m+ |
1 2,2
ka ;:;——75 ﬁfl Oz 82 $ (24)
o+l j=o+1
The iteration equation is then
FTEY-F9 S0 (25)

which represents a linear system 1in Bk(l). Following Wilczek and Drapatz

(1985), the starting points are calculated from the initialization equations:

2
m a,
_ g0 Tk - -
feO ifl ®i,k Sk - ) ka 0 3 lyevs,m (26)
m+ ]
(0) (0)
fei(el .-.Bm ) = fei(O....O) feO (27)

In test cases with 16 discrete measurement channels and ka/sk = ly with a
confidence level of 0.9, this scheme has been found to converge in approxi-
mately ten {terations. Some examples are discussed in the following sec-
tion. It should be noted that the solution set ot equation (25) allows an
easy “plug-in” of different forms for the bremsstrahiung production function

¢« Thus, the deconvolution scheme can be modified easily ‘f new or better

forms for the production function become available.




Iv. Examgles

In this section, the deconvolution scheme described eariier is applied to
bremsstrahlung X-ray spectra which are characteristic of the earth's aurora,
The first examples are "ideal™ in that they depict the ability of the deconvo-
lution technique to reproduce the shape of Maxwellian and Gaussian electron
spectra. These examples do not include instrumental effects, although random
noise i{s applied to the "ideal” signal in order to demonstrate the effects of
noise on the numerical technique. These first examples are meant to give the
reader a "feel” for the actual performance characteristics of the numerical
scheme. The second set of examples simulates the response of an actual in-
strument (The Aerospace scanning X-ray spectrometer SSB/A on DMSP-F6) to
ideal spectra. The "noise” added in these cases is characteristic of counting
statistics variations, and consequently 1s energy dependent. The final
examples compare spectral parameters inferred from actual bremsstrahlung
measurements in the aurora with parameters observed directly by a particle
detector. These final examples show the performance of the deconvolution

scheme in the "real world.”

Figures 4a-c show examples of the ability of the numerical scheme de-
scribed in Section III to reproduce ideal spectral shapes. Three examples are
shown: a | keV Maxwellian, a 10 keV Maxwellian, and a 5 keV Maxwellian with
an added 20 10 keV Gaussian peak. In these examples, the observable X-ray
flux from each {nput spectrum 1s calculated using equation (2) and the
bremsstrahlung production function derived in Section II. A simple geometric
progression of 16 energy channels between 1 and 30 keV is assumed. Randon
noise is added to this {deal signal at the 3, 10 and 30% level. The noisy X-

ray ‘:pectrum 1is then deconvoluted by the method described in Section III. A
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Figure 4a. Plots of Input and Inferred Electron Spectra for 1 keV Maxwellian




10 keV Maxwellian
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5 keV Maxwellian
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- Figure 4c. Plots of Input and Inferred Electron Spectra for 5 keV Maxwellian
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continuous inferred electron spectrum 1s computed for energies between | and
100 keV. The results shown in Figures 4a-c are for ten iterations - no sub~-

stantial improvement was found at higher iterations.

[t is obvious at a glance that the deconvolution works particularly well
for the steep | keV gpectrum, even at high noise level. This characteristic
is easy to understand if one thinks of the input spectrum as a simple signal
distribution - the | keV spectrumn represents a sharper signal than the
smoother, harder spectra. A second obvious characteristic of the deconvolu-
tion {s 1its difficulty in reproducing the low-energy portion of very hard
(e.g., 10 keV) spectra under even modest noise conditions. This problem is
due primarily to the shape of the bremsstrahlung production function itself.
It is a characteristic of the bremsstrahlung process that energetic electrons
produce much higher fluxes of low energy X-rays than do low energy elec-
trons. The low energy X-ray signal is partially masked by X-rays resulting
from the high energy portion of the incident electron spectrum,‘and informa-
tion is lost due to decreased signal-to-noise ratio at low energies. This
effect is also apparent in Figure 4c, where the deconvolution technique has
difficulty reproducing the electron spectral shape below the Gaussian peak
energy. All 1in all, the deconvolution scheme produces good results for noise

levels below about 10%.

Figures 5Sa-c show the results obtained for the same input spectra as in
Figures &4a=-c¢, but for a response which simulates that of an actual propor-
tional counter. (The Aerospace Corporation scanning X-ray spectrometer car-
ries a proportional counter with geometric factor of .03 cm? ster and energy
channels as listed in Table 1. Measurements of auroral X-ray spectra are
obtained once per second at an altitude of 830 km.) Naturally, for these

spectra the statistical "“noise” 1s energy-channel dependent, with larger
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Simulated DMSP-F6 SSB/A Response
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relative errors occurring in the higher energy channels. However, because of
the skewed form of the bremsstrahlung production function these errors mani-
fest themselves primarily in the low-energy portion of the inferred electron
spectrum. Again, soft spectra are better represented than hard spectra or
spectra with peaks, although reasonable results were obtained for all of the
examples shown here. Of course, better results would be obtained with instru-
ments having larger geometric factors, with which statistical errors could be

decreased.

Figures 6a, b and 7a, b show results obtained using actual auroral X-ray
data acquired by the Aerospace scanning X-ray spectrometer. Fortunately the
DMSP-F6 satellite, launched in December 1982 into a polar, circular orbit at
840 km altitude, carried both the Aerospace scanning auroral X-ray spectrome-
ter and a precipitating auroral electron detector. This instrumentation
allows a good test of the coaputational procedure described in the previous
section. While the Aerospace X-ray spectrometer is a raster scanning instru-
ment, the data used in this discussion is taken from periods when the instru-
ment was in a static nadir-pointing mode. This permits a more detailed com
parison with the precipitating electron data. The electron data is from the
J-package instrument provided by the Air Force Geophysics Laboratory, which
provides a precipitating electron spectrum once per second over the energy

range 30 eV < T < 30 keV. Only the data from T > 2 keV will be used here.

In order to cowpare the observed and inferred electron spectra we have
chosen to deal with the fundamental spectral parameters; integral energy flux
(ETOT), integral number flux (JTOT) and characteristic energy (EO), defined
below:

30 keV

ETOT = a | dT J (T) T erg/cm2 sec
2 keV °
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o where a = 1.602 x 1079, These spectral parameters are also important in tnat -
N they are used often as the basis of other empirically derived relations, such

- as ionospheric conductance.

A Two samples of data were chosen for study. The first, acquired on 29

%: December 1982 between 47320-47460 seconds UT in the dusk sector, is character-
ljf istic of an auroral surge. The second, acquired on 29 December 1982 between

» 80200 - 81500 seconds UT is more characteristic of a quiet aurora, and in-

~ cludes auroral data from both the dusk and dawn sectors. The first event
) j occurred in darkness, while the second was {n full sunlight.
f:; Figures 6a, b show the observed and inferred electron spectral parameters

.

-ﬁ from the active auroral surge event. The satellite proceeded from high toward

- low latitude during this event. The DMSP optical imagery revealed that the

iz satellite passed over a bright, narrow arc at high latitudes before encounter-

<,
o ing a broad core of a westward-travelling surge between 47400-47450 UT. The

,n
'j; precipitating electron data (solid line) indicates an energy deposition rate

" of about 20 erg/cmz sec in the poleward arc and 10-15 erg/cm2 sec within the

jij core, with a low level of precipitation separating the two. Observed charac- .
‘?: teristic energles were ~ 15 keV in the arc, 5-6 keV in the gap and near U keV

i in the core. The quantities inferred from the X-ray observations are plotted ‘
-f: as crosses, with the horizontal bar indicating the effective spatial resolu-
k‘j tion of the detector and the vertical bar depicting uncertainties attributable
.- to statistical counti{ng errors in the raw X-ray spectral measurement. The
N 38
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inferred quantities are, by and large, quite representative of the real
world. The ability of the X-ray technique to reproduce the characteristic
incident electron energy is particularly notable. The spatlal distribution
and magnitude of energy flux 1is also well represented except for a slight
underestimate of the energy flux within the poleward arc. This underestimate
is probably due to incomplete beam filling of the detector, pointing out the
future need for well collimated instrumentation. Note that in Figure 6 the
electron and X-ray data have been offset in time by 15 seconds in order to

account for magnetic field line tilt between the satellite and the atmosphere.

The second example, shown in Figures 7a, b depicts wmuch quieter auroral
conditions, with the energy deposition barely exceeding 1 erg/cm2 sec. Note
that the energy flux scale in Figure 7a is one order of magnitude lower than
that of Figure 6a. The dusk sector is comprised of a number of.detached arcs
with energy flux less than 1 erg/cm2 sec and characteristic energies of about
3 keV, The dawn sector is more spatially continuous with energy deposition of
about 1 erg/cm2 cec at a characteristic energy of about 10 keV. Again, the
spectral quantities inferred from the X-ray data are in very good agreement
with the observed values, particulariy the characteristic energies. The
poleward edge of the dawn aurora {s underestimated in flux, probably due to

decreasing characteristic energy in that region.

These two examples, which represent quite different levels of auroral
activity, show that the X-rav technique provides a reasonable representation
of the important incident electron spectral parameters, namely integral energy
flux, integral number flux and characteristic energy. These parameters are
interesting {n themselves since the source of plasma in different types of
auroral forms 1{s currently a toplic of theoretical interest. Imaging X-ray

detectors can provide large-scale two-dimensional maps of electron spectral
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:;:! features within a variety of auroral forms. Further, derived quantities such
!;%,: as the ionospheric conductances can be computed from these same fundamental

precipitating electron spectral parameters.
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;N- V. Summary

'
N
;b A numerical technique has been developed which provides a statistically
n optimal estimate of {ncident auroral electron spectra based on satellite

N

O observations of bremsstrahlung X-ray spectra. The technique utilizes a maxi-~
%f mum-entropy estimate for the inferred electron spectrum based on discrete
" . observations of the bremsstrahlung spectrum. An integral convolution of the
H

g electron distribution by a bremsstrahlung production function is assumed, and
H

Q measurement errors are incorporated in the model. The measurement errors are
, constrained in the numerical technique by estimates of the variance due to
[y
2. counting statistics, and a specified confidence level for the x2 function. An
.
[ -

. approximate form of the bremsstrahlung production function is computed in the
Ky

K2

test; however, the numerical deconvolution scheme does not rely on the partic~-

'?j ular form derived in this report. The deconvolution scheme therefore can be
&3 used as a testbed for other more accurate representations of bremsstrahlung
_ production.
<

=
:¥ A number of examples are shown which characterize the performance of the -
53
K-\ numerical model both for ideal cases as well as for actual data. Comparisons
[}

. between inferred and observed electron spectra show that while current instru-
o
;Q mentation suffers from relatively poor signal-to-noise ratio, general charac-
‘-\

~ teristics of auroral electron precipitation can be measured remotely by satel-
g

lite-borne X-ray spectrometers.
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The expression relating observable bremsstrahlung flux to volume emissiv-

ity, shown below, indicates two angular effects of importance:

»

-,

:: Zc sec n

Y KX, n) = dZ sec n PB(X,Z) exp(-ua z sec n) (Al)

o

) )

“, The first effect is purely geometrical, arising from the field-of-view fore-
E‘ shortening at increasing zenith or elevation angle. This effect, along with
~ the concomitant integration over a longer emission column driven by the sec n
:S term, leads to limb brightening. The second effect is increased attenuation
(é due to propagation path lengthening, appearing as the exponential term. This
. obviously leads to limb darkening. Since the absorption coefficient by is a
i: strong function of X-ray energy one might expect different trade-offs between
z limb brighteaning and limb darkening at different elevation angles and ener-

gies. This 1is indeed the case,

.Q Figure 8 shows a representative profile of atmospheric depth in altitude
i; {(Berger and Seltzer, 1972) which we can apply in demonstrating the effects of
, limb brightening. Figures 9a-d show the ratio of the bremsstrahlung intensity

i: at the top of the atmosphere to that at the source altitude (a parameter) as a
:; function of =zenith or elevation angle for several energies covering the

auroral range. For X-rays at 20 keV (Figure 9a), limb brightening is apparent

,3 for all source altitudes from 90-200 km. The brightening is about a factor of

:3 five at 80° elevation angle. Substantial limb brightening is also apparent at
)

— - X = § keV, although less brightening occurs for X-rays from the lowest source

;% altitude. Lower energy X-rays, at 2 keV and 1 keV, show significant limb

& darkening effects for low altitude sources, while maintaining limb brightening
t for higher source altitudes. The net effect of the limb is an integral over
45
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Figure 8. Plot of Atmospheric Depth Versus Altitude (from Berger and Seltzer,
1972)
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Figure 9a and b. Plots of the Ratin of Bremsstrahluny Inteasity at the
Top of the Atmosphere To That at the Source Altitude as
a Function of Zenith Angle for (a) 20 keV and (b) 6 keV
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all source altitudes, which typically results in limb brightening at all

energles since low energy X-rays are generally emitted at higher altitudes.
Note that the effects of limb brightening or darkening do not become signifi-

cant until elevation angles exceed about 70°.
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LABORATORY OPERATIONS

The Aerospace Corporation functions as an “architect-engineer” for
national security projects, specializing in advanced military space systems.
Providing research support, the corporation's Laboratory Operations conducts
experimental and theoretical investigations that focus on the application of
sclientific and technical advances to such systems. Vital to the success of
thege investigations {s the technical staff's wide-ranging expertise and its
ability to stay current with new developments. This expertise is enhanced by
a research program aimed at dealing with the many problems assoclated with
rapidly evolving space systems. Contributing their capabilities to the
research effort are these individual laboratories:

Aerophysics Laboratory: Launch vehicle and reeatry fluid mechanics, heat
transfer and flight dynamics; chemical and electric propulsion, propellant
chemistry, chemical dynamics, environmental chemistry, trace detection;
spacecraft structural mechanics, contamination, thermal and structural
control; high temperature thermomechanics, gas kinetics and radiation; cw and
pulsed chemical and excimer laser development including chemical kinetics,

spectroscopy, optical resonators, beam control, atmospheric propagation, laser
effects and countermeasures.

Cheaistry and Physics Laboratory: Atmospheric chemical reactions,
atmospheric optics, light scattering, state-specific chemical reactions and
radiative signatures of missile plumes, sensor out-of -field-of -view rejection,
applied laser spectroscopy, laser chemistry, laser optoelectronics, solar cell
physics, battery electrochemistry, space vacuum and radiation effects on
materials, lubrication and surface phenomena, thermionic emission, photo-
sensitive materials and detectors, atomic frequency standards, and
environmental chemistry.

Computer Science Laboratory: Program verification, program translation,
performance-sensitive system design, distributed architectures for spaceborne
computers, fault-tolerant computer systews, artificial intelligence, micro-
electronics applications, communication protocols, and computer security.

Electronics Research Laboratory: Microelectronics, solid-state device
physics, compound semiconductors, radiation hardening; electro-optics, quantum
electronics, solid-state lasers, optical propagation and communicattions;
microwave semiconductor devices, microwave/millimeter wave measurements,
dlagnostics and radiometry, microwave/millimeter wave thermionic devices;
atomic time and frequency standards; antennas, rf systems, electromagnetic
propagation phenomena, space communication systems.

Materials Sciences Laboratory: Development of new materials: metals,
alloys, ceramics, polymers and their cowposites, and new forms of carbon; non-
destructive evaluation, component failure analysis and reliability; fracture
mechanics and stress corrosion; analysis and evaluation of materials at
cryogenic and elevated temperatures as well as in space and enemy-induced
environments.

Space Sciences Laboratory: Magnetospheric, auroral and cosmic ray

physics, wave-particle interactions, magnetospheric plasma waves; atmospheric
and {onospheric physics, density and composition of the upper atmosphere,
remote sensing using atmospheric radiation; solar physics, infrared astronomy,
infrared signature analysis; effects of solar activity, magnetic atorms and
nuclear explosions on the earth’s atmosphere, lonosphere and magnetosphere;
effects of electromagnetic and particulate radlations on space systems; space
instrumentation.
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