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ABSTRACT

One of the most crucial problems in theoretical and applied statistics is to
determine the precision of the estimates produced by different statistical estimators.
This problem is greatly ihcreased when the population parametric characteristics are
not known. Parallel to this problem is that of deciding how large (or small) the sample
population must be in order to obtain a desired precision within certain range.

There are several non-parametric methads to approach the first problem. The
BOOTSTRAP MethodT(Efron, 1979)‘is one of these approaches and the one of interest
in this thesis. With this method, one could improve the precision of the estimates and
gain information about the distributional characteristics of statistical estimators. The
bootstrap method has been amply compared with other methods; the results show that
the bootstrap method often produces more precise estimates (i.e. with smaller mean
squared error) than competitors such as the JACKNIFE, SECTIONING and
CROSS-VALIDATION. However, the results that have been obtained are based on
large sample sizes and large numbers o? ”bootstrap”/replications.

This thesis analyzes the behavior of the BOOTSTRAP method when the number
of bootstrap replications is small. It tries to identify any tradeoffs between sample size
and the number of bootstrap replications required to attain a desired precision in the
estimates produced in several particular situations. One of the goals is to produce
graphical displays that will indicate to the experimelx;tal statistician the price that must

be paid in the precision of the estimates, obtained with the bootstrap method, when

sample size is small, and the number of bootstrap replications to use in this situation.
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2 I. INTRODUCTION

b A. BACKGROUND

'3 One of the most common problem in applied statistics is the estimation of an

! \ unknown parameter 8. Once the statistician has decided on the model having one or .
more parameters to be estimated and has selected the estimator (i.e., m.lLe., least-square

L estimator, etc.) that will be used to obtain the estimates, the second problem that he or

-;T_ she faces 1s how to estimate the accuracy of these estimates. There are several ways of

, measuring the accuracy or the error of statistical estimators. In this thesis, the measure

i of statistical error will be defined to be the mean squared error (MSE) of the

estimators; i.e. the variance plus the bias-squared of 6" (where 6" represents the

(\ cstimator of the parameter 0. In Appendix A the reader will find a list of special

L)
'Y

notations used in this thesis) :

¥,

MSE(©@") = E[(0" - 8)]] = Var(") + [BIAS(OM)]? (1.1)

When the practitioner is decaling with samples obtained from populations for

* LR

which the distributional characteristics are known, classical statistical theory provides
‘:'. an answer to the second problem that the statistician faces. This is true since, at least
in theory, the variance and the bias of most statistical estimators can be calculated
analytically. However, the difficulty of analvtically deriving the MSE of some statistical

estimator increases as the mathematical definition of the estimator becomes more

ij complicated. When this is the case or when the practitioner does not actually know the
x‘ probability distribution, say F, from which the sample was obtained, then the MSE of
_ the estimators must be estimated.

There are several non-parametric mcthods for estimating the bias and the
'_::: variance of an estimator of interest. The most common ones are the Quenoille-Tukey
JACKNIFE method, CROSS-VALIDATION, and SECTIONING; the Jacknife being
‘. the most commonly uscd of the three approaches. Efron and Gong {Ref. 1] and Miller
” [Ref. 2] provide an exccllent exposition of the first two methods and Lewis gives a good
_ introduction and analysis of the later (Sce [Ref. 3] ).

.

:
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In recent years, Efron [Refs. |,4], has developed another, rather intriguing
non-parametric methodology for estimating the MSE of any statistic. This method,
called the BOOTSTRAP, is simple and has been shown by Efron to be a powerful

o statistical tool that can be applied even in complex situations (See Efron, [Ref. 5] and

[Ref. 6] ). This method, as shown in this thesis, is 2 good approach for estimating the
precision of a statistical estimator used in a given model. It also gives information
about the distributional characteristics of the estimator used. Efron and Gong [Ref. 1]
and Tibshirani [Ref. 7] have conducted intensive analyses of this new method and have |
compared it with the other non-parametric methods mentioned above. Surprisingly for
some authors, the BOOTSTRAP has been shown to produce estimates with much
more precision (sometimes up to twenty perceht lower variance, for example) than the
JACKNIFE ard CROSS-VALIDATION estimators. As an example, Efron [Ref. 4:
Section 3], has shown that the BOOTSTRAP methodology correctly estimates,
asymptotically, the variance of the sample median, a case wherc the JACKNIFE is
known to fail. As in the case of the sample median, it is known that the JACKNIFE
collapses for non-smooth statistics; however, the BOOTSTRAP seems to produce

accurate estimates even in these cases.

B. THE GENERAL PROBLEM
Suppose that the realization Xy Xy yoons Xy of a random sample Xy Xz sy
X,, has been observed, and that A X2 s e e ey Xn are independent and identically :

distributed (i.i.d.), having a probability distribution F. In practice, the distribution F is

probably unknown and the problem is to estimate the value of some parameter of
i interest, such as the mean, variance, or median. This is done using a sample of size n
with some estimator of 8(F), say 8"(F). The basic idea of the BOOTSTRAP method is
very simple, at least in principle:! having observed Xy s Xg s ooy X, cORStYUCt the
sample empirical probability distribution, F®, by putting mass 1/n at each observation x

ol 2 Am o o

1
i TR Now, fixing F , draw a random sample of size n with replacement from

FM . This sample will be called a bootstrap random sample and will be denoted by

X =(X;,X,,...,X}) (1.2)
I'The BOOTSTRAP mcthodology will be analyzed in more detail in Chapter 2. .
9
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and then X*i~iid F" . Then the task is to estimate the distribution of O(F) by the
distribution of 0*(F"), where 9*(F") denotes the value of the parameter of interest
based on the bootstrap mechanism. This mechanism proceeds as follows : keeping FM
fixed, draw a bootstrap sample and calculate 9*(F"); do this a large number B of times
obtaining G*I(F"), O*Z(F"), Ce, O*B(F"). The resultant (sample) distribution of 8" is
called the bootstrap distribution F" . Once FM is obtained, then any specific feature
of this distribution, such as expected value of 0" , E*(B*) or the variance of 0" ,
Vara (9* ), could be obtained. (In this thesis, notation like "E« “, “Varx ”, ”S*2 “, ”X* ”
, etc., indicates calculations relating to the conditional bootstrap distribution of X* , with
the vector of random variates X and hence FP , fixed.? ). Theoretically, then, the
bootstrap idea could be used to estimate the expected value, the variance, and the
mean squared error of any estimator, given a sample that comes from an unknown
probability distribution F.

As mentioned earlier, Efron (See [Ref. 4] ) has shown that this method is often
more precise than other non-parametric methods for assessing statistical accuracy.
However, the experimentation done in the past using this method relied on a large
number B of bootstrap replications; i.e, a large sample on 9*. In some cases, it can be
shown (see Chapter 2, for the case of Var*(e*)) that as B =090, the variance of 0"
based on F™ is equal to the variance of the estimator 0 based on F . But, how large
must B be in order to obtain estimates that are accurate or to obtain estimators with a
small MSE is a question to be answercd. Also, what is the tradeoff’ between the
sample size n and the number B of bootstrap replications ?

The purpose of this thesis is then twofold : first, to analyze the bootstrap
performance as the number B of replications increases, starting from a small B. The
second, aiso of great interest, is to study the relationship between the sample size n and
the number B in the estimation of the MSE of the estimator using the bootstrap

mechanism.

C.  ORGANIZATION
There are several methods of dertermining the bootstrap distribution of an

cstimator 0*(17“), two of which will be analyzed in this thesis.® The first is by direct

2As it will be shown in the next chapter, this is acritical featurc of the
BhOOTS I'RAP method: the vector of random variates X and I'™ must be fixed through
the process.

3A third method involves making Taylor scries expansion to obtain the

10




theoretical calculations (this is usually the most difficult approach). The second relies

on Monte Carlo approximations to the bootstrap distribution: repeated realizations of
X* are generated by taking random samples of size n from F" | say x*l , x*z s,
x" and the histogram of the corresponding values G*I(F") , 9*2(Fh) e O*B(F") is
constructed as an approximation to the actual bootstrap distribution (See [Ref. I:
Section 2] ). These two methods are of interest in the second chapter. In the last
section of Chapter Two, the different statistical experiments conducted for this thesis
are explained in detail. In Chapter Three, the results from these experiments are
presented and analyzed, and the problem of using the bootstrap approach in linecar
regression problems is also discussed. Conclusions are presented in the last chapter.
There, one of the points of interest is to discuss the main disadvantage of the bootstrap
methodology : the computer time required to implement this method when Monte
Carlo simulation is used. In Appen.dix B, the FORTRAN software that was designed
to run the experiments discussed in this thesis will be explained and the code is listed.
This computer program is user friendly and can be used to estimate the bootstrap
distribution of eight different estimators. Finally in Appendix C, the reader can sece
some tables that give a good idea about how large (or small}) B and n can be in order

to obtain a desired precision on the estimates of parameters of given populations F.

approximate mcan and variance of the bootstrap distribution F . See Ref.4, Section S.

11
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II. THE BOOTSTRAP METHOD

A. A DESCRIPTION OF THE METHOD

As mentioned earlier, the Bootstrap methodology is, in principle, simple. Also,
recall that in this thesis the problem of interest is to study how this method performs in
estimating the MSE of some statistical estimators, and how the MSE behaves as the
number B of bootstrap replications and the sample size n change.

Suppose that the data of interest consist of a random sample X = (X, ,X,,. ..
» Xp ) of size n, from an unspecified probability distribution F on the real line. The X
may be real valued, two dimensional, or take values in a more complicated space, but

this will not affect the theory, see Efron [Ref. 2]. Thus, it is assumed that

Xl,Xz,...,Xn~iidF. (21)
The problem is now to estimate the probability distribution of a specific estimator of a
parameter 8(F), say 8"(F). The probability distribution of 8"(F) could be approximated
by the following algorithm (See Efron [Ref. 1: Section 2] ) :
(1) given that the realization of X has been observed, say Xi = X; i=1,2,..,n,
(2) construct the sample probability distribution F? | by putting mass 1/n at each
T
(3) keeping x; and F" fixed, draw with replacement a random sample of size n

point x, , X

from F" , and call this the bootstrap sample; i.e., X*- = x*i , where X*i ~ id

i
FM | so

P’ = x1X=x)=1n, (2.2)

(4) the distribution of 8"(F) can be approximated by a sample on 9*(F"); then, a
measure of accuracy could be assigned to 0*(F) base on 0*(17").
As mentioned earlier, the distribution of some estimators 9*( Ehy might be
calculated analytically.

12
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1. Direct Analytical Calculations
An attempt is now made to calculate some parameters of interest of the
distribution of X*i. Assuming the conditions shown in expressions (2.1) and (2.2), the
expected value of X*i , given X, could be calculated as follows :

Eo(X"j) = EX51X = %) = Yix PX"; = X1X =), (2.3)
where j = 1, 2,...,, n. From (2.2), this is equal to :
E*(x*j) = Y;(x/n) = X i=1,2,..,0, (2.4

which is the samplc mean of the original sample X. Then from (2.4), the unconditional
expected value of X*i 1s

E(X") = EE«X;|X)] = EX) = p, i=1,2n. 25)

Thus, the unconditional expectation of X*j is equal to the mean of the population
from which the original sample was obtained. (Note, from this point on all summation
signs go from 1 to n, unless otherwise specified, and E« , Var« , etc., are conditional,
give X )

Likewise, the unconditional variance of X* could be derived from the
conditional variance of X" :

Vara(X ;) = Eo(X ;- EXj1X = 0)? 1 . (2.6)
Using (2.5) this expression is equivalent to :

Vara(X';) = E[(X ;- R)? 1 X | 2.7)
E«(X'2%)- X2

= 2 32

= ). (X i/- n) - X

= % (% -R?/n
By definition of the sample variance, Szx , then

Vars(X ;) = (n-1)/n S2, (2.8)

13
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Now, unconditionally

E(Varas(X')) + Var[E+(X")] (2.9)

E[}; (X% /n)-X?] + Var(R) -
E[(n-1)/n %] + 6% /n

(n-1)/n E(§%) + 6%, /n ;
= (n-1)/n 6% + 6%/n

= ¢,

Var (X ;)

Therefore the variance (uncondltlonal) of X i 1s the same as the variance of
X;- The covariance between X and X has a very important 1mpact on the
bootstrap methodology, pnmanly when the bootstrap distribution of 0" (F") is
approximated by Monte Carlo simulation (see next sectxon)

Conditionally (given X), the covariance between x*. j and X lS as follows :

Cova(X "X} = El(X"} - Ex(X ) (X7} - Eu(X") ) . (2.10)
From (2.5), this is

Cov*(X*i,X*j) = E*[(‘( . X) X*-%)] .11
E«(X'; X')- %2

Now conditionally, given X = x, the joint distribution of (X X ) 1s uniform over the
x,) and this implies that (X X )) = (xgxy) with

points (XX, X} X (Xy,2,,0,

probability I/n? Then

Eo(X'i X' = LT (x ) / n? i %] (2.12)

= (1n?) (F; x)? = %2

. - . * * .
Finally, the conditional covariance between X', and X j1s

COV*(x*i,x*j) =%2.%%2=0. (2.13)

Now, to derive the unconditional covariance between X and X i it will be convenient
to use the result obtained in equation (2.13). To use (2.13), it must be shown that the

following equality holds:

14




Cov(x‘i,x*i)=E[Cov*(x*i,x*j)] + Cov[Ea(X ")), E..(X*j)]. (2.14)

To show this, notice that the conditional covariance can be defined as

Cov(X,Y|Z) = E(x,y]z)[(XY - E(X|Z)E(Y|Z))|Z] (2.15)
= E(y y1z) (XYIZ) - [E(XIZ)E(YIZ)]
Then
E,Cov(X,Y|Z)] = E{E(y y1,(XYIZ) - (E(XIZE(Y(Z))] (2.16)
= EJE(x,y|2)(XYIZ)] - {EE(XIZ)JE [E(Y|Z)]} -
- ES[E(XIZ)E(Y|Z)] + {E,[E(X|Z)]E,[E(YIZ)]}
= Cov(X,Y) - Cov[E(X|Z),E(Y|Z)).
Therefore,
Cov(X,Y) = E,[Cov(X,Y|Z)]+ Cov[E(X|Z),E(Y|Z)]. (2.17)

With this in mind, the unconditional covariance could finally be computed by using
(2.15). Now, the portion inside the brackets of the first term of the right hand side of
equation (2.14) was shown in (2.13) to be equal to zero. Then, using expression (2.5),

equation (2.14) reduces to—
Cov(x*i,x*j) = Cov(X,X) = Var(X) =¢%,/n , (2.18)
and from (2.18), the correlation coeflicient is given by

p(x*i,x*j) = I/n=PX"; = Xl (2.19)

Comparing equations (2.13) and (2.18) it could then be stated that the
bootstrap samples are (conditionally) independent as long as X is held fixed.

It is possible now to derive the distributional characteristics of some statistical
estimators based on the distribution of X*i. In doing this, it is assumed that the
original sample X is fixed and these derivations are conditional. For example, the
expected value and the variance of X" (the bootstraped sample mean) arc obtained as

follows: using equation (2.5)
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E«X) =X,

(2.20)
so unconditionally, the expected value of the bootstrap sample mean is
EXR") = EX) = p, . (2.21)
The conditional variance of the bootstrap sample mean is
Vars(X") = (1/n?)Vare [ T (X")] (2.22)
=(1/n%) [¥; Var«(X "))+ (n(n- 1)/2)'Cov,.,(.x*i,x‘j)] .
From equation (2.13), the conditional variance is then
Vara(X") = (1/nd)[T;Vars(X") | (2.23)
=(1/n%) [n Varu(X )] .
Using equation (2.8), finally
Varo(X")= (n-1)/n? $2, . (2.24)
With this expression, the unconditional variance of X" is given by
—%k -k -
Var(X ) = E[Var«(X )] + Var[Ex(X )] . (2.25)

From equation (2.5), and (2.20)
Var(X")= El(n-1)/n? §%,] + Var(X)
= (n-1)/n? 6% + 6% /n
= (2n-1)/n Var(X)
As mentioned earlier, equation (2.24) is

the one of interest when one wants to apply

. . . o* .
the bootstrap mechanism to obtain the variance of X . Notice that asn ~ 00,

Vars(X") = Var(X)

(2.26)

strongly (strong law of large numbers), but this is not the case for the unconditional

) =
variance of X , wherc asn = 90,
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N Var (X ) = 2Var(X). (2.27)
E
| . It is now possible to define an estimator for the MSE of the mean of a
f.'\ population based on X
N
b MSE«(X") = Var«(X") + [E«X" - E«(X)P? (2.28)
X = Vara(X") + [Biass(X")J?
'.E', In the same manner, the MSE of any estimator could be derived. However, it
" is easy to see that as the mathematical definition of the estimator gets more
> complicated, this procedure can become ver}} tedious. This is why it is desired to
- estimate the bootstrap distribution of the estimator by simulation rather than
analytically.
.‘ 2. Monte Carlo Simulation
:', The algorithm presented in Chapter II, Section A, could be expanded to allow
g Monte Carlo simulation to approximate the bootstrdp distribution of 0*(F"). As before
‘ (See Efron [Ref. 2: Section 2] ):
-r (I) given that the realization of the random vector X has bcen observed, say X
= xjfori= 1, 2,.,n;
(2) construct the sample probability distribution F" , by giving a mass 1/n at each
- pointxl,xz,...,xn,
o4 (3)  keeping x; (and thus, F ") fixed, draw with replacement a random sample of
! size n from F" , and call this a bootstrap sample;
- (4) from this random sample, compute the bootstrap replication, Oi*(Fh); i.e,
- compute the value of the desire statistic based on the sample from F" . Then,
E (5) do steps (3) and (4) a “large” number B of times. In this way one obtains
2. independent bootstrap replications of 0" (F"), say O*I(F"), 0*2(F"),..., B*B(F")
._’ (6) now, approximate the variance of 0*(F") by the sample variance
-
i Vars [07(F")] = Y (8"(F") -9 (F™)2 /(B- 1), (2.29)
-
j:. wherei=1, 2,..., B, and
" 8°(F") = ¥, 0" (F" /B . (2.30) |
‘s
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The MSE of 9*(F") may be estimated by

MSE."(0"(F™) = Var,"0*(F")] + [BIAS."(0 (FM)?. (2.31)

It will be seen in Chapter Three that as B and n get large MSE*"(O*(F")) approaches
zero. A problem in using the bootstrap is the choice of B, and we consider this in
Chapter Three.

This bootstrap simulation procedure was carried out to study the effect of
possible choices of B, in terms of the estimated MSE of several estimators. The reader
will see, in the next chapter, that the choice of B should depend on the sample size n,
the specific estimator under consideration and the structure of the population from
which the sample was obtained.

a. The Statistical Experiment

In this thesis, various experiments were conducted to study the problem
of selecting B. The main idea behind these experiments was to select some well known
probability distributions and some parametric estimators for which the distributional
characteristics are well known. Then the MSE of these estimators could be determined
theoretically. Therefore, one could compare this true MSE with the estimated MSE of
the estimators obtained using the bootstrap mechanism.

The critical part of the experiment was to design an effective computer
code to perform the Monte Carlo simulation. The FORTRAN program developed to
carry out the simulation reported here is listed in Appendix B. This program was used
to analyze the performance of eight different estimators based on the bootstrap
methodology. These were the sample mean, variance (three different estimators),
coefficient of correlation, coefficient of variation, the five-percent trimmed mean, and
the median.

The simulation runs as follows (See Appendix B):

(1) n random variates, for up to 8 values of n, are first generated representing a
random sample from a population F. ( In the simulation a total of N random
variables are first generated, then sectioned into samples of sizes n; where i=
12, ..,8)

(2) For each subsample of size n , a bootstrap function is called to gencrate a

bootstrap sample from the original sample. Then, the estimator function is

18
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called to produce a desired estimate. This step is repeated until B bootstrap
samples from the original sample are obtained.

(3) After the B estimates have been obtained, the statistics function is called to
calculate the mean of these estimates, this number is one of the O*i( M.

(4) In order to improve the precision of the simulation process, steps (2) and (3)
are replicated M times. Then, the process will produce a total of (N X M)/ n
estimates. From these estimates, a box-plot is constructed and estimates,
including MSE, are calculated.

In the next chapter some of the results obtained from this simulation

process are analyzed.
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III. APPLICATION OF THE BOOTSTRAP METHOD : SOME RESULTS

A, THE MEAN. VARIANCE AND THE COEFFICIENT OF VARIATION OF
EXPONENTIAL RANDOM VARIATES

The first experiment conducted was intended to analyze the bootstrap mechanism
in estimating the MSE of the estimators for the mecan, variance and coefficient of
variation of a sample coming from a population of exponential random variates with
parameter A = 1. The population coefficient of variation is defined as:

CV(X) = oy /Ny (3.1

In the Exponential(1) case, the mean, variance and the coefficient of variation have the
same value of 1. With this first fact in mind, the MSE of sample mean, as an example,
is defined using (2.21) and (2.28) as:

MSE(X") = Var(X") + [E(X" - pl 2 . (3.2)
Conditionally, from (2.26), an estimate of (3.2) is:
MSEL"X") = [(n-1)/n?S,2 ] + [E«(X " - D)2 . (3.3)

In the same manner, the MSE for the variance and coefficient of variation could be
estimated. These estimates were obtained using the algorithm described in the
preceding section. The sample sizes for this experiment were: n = 10, 20, 25, 40, 50, 70
,100, 140. Each estimator was bootstraped using B=135, 8, 10, 15, 20, 25, 40, 60, 100,
140, and 500. Figures 3.1, 3.2 and 3.3 below, show how the MSE«" for the mean,
variance and coeflicient of variation respectively decreases as both n and B increases.

A remarkable feature of these plots is that the MSEs" of the bootstrap sample
variance (IFigure 3.2) decreases much faster as the sample size increases than when B
increascs. Observe the big jump in the MSE4" when n goes from 10 to 40 relative to
that of B going from 5 to, say, 40: the jump is much greater in the former.

Another observation of interest is that the MSEL™ of the estimates decreases as

B increases, but beyond a certain threshold very slowly. Indecd, the decrcase in MSE 4P
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Figure 3.1 MSEx«" of Bootstrap Sample Mean: Exp(1).
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"{. beyond B 2 50 is barely noticeable. For example, see Figure 3.2, the MSEa" of the
sample variance decreases only by one-thousandth of a unit when B is increased from
- 200 to 500 replications. This is also true for the sample mean. However, for the
N coefficient of variation (see Figure 3.3), the MSE." improved about two percent (.02)
< . . . :
- in the same range for a small sample size (n=10). These results give an idea of the
performance of the MSE of the bootstrap estimates of a given estimator. It should also
‘- suggest to the statistician that once the estimators are performing fairly well (1.e., once
f-j this threshold has been attained), there is no reason to increase the amount of
’. bootstrap replications, since this will not induce a great improvement in the estimates.
..
. An important point here is that when an attempt is made to estimate the sample
' variance using the bootstrap method, the number of bootstrap replications should be
~ greater than 100 in order to decrease the MSE4" below 0.6.
N The bootstrap distribution of some of the estimators are shown in Figures 3.4,
A . . . . .
and 3.5 in the form of boxplots and a summary of the distributional statistics. These
f- were obtained by using a statistical package, called SMTB10, developed at NPGS (See
~ Appendix B). This package was modified by the author of this thesis in order to obtain
- . . . .
MSE.P. Each boxplot represents the distribution of the bootstrap estimator based on
[
the sample size n.
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Notice, in Figure 3.4, that the distribution of the bootstrap sample mecan
resembles a Normal, as would be expected by the Central Limit Theorem, with the
Kurtosis and Skewness oscillating around zero, as n increases. Recall from previous
section that the standard deviation of X*, in the case of Figure 3.4, would be estimated
by

STD+YX") = STD«"/ /n", n" = NxM/NE()
and STD4" is the value shown on the bottom table of this figure. Figure 3.5 shows the
distribution of the bootstrap sample variance (3.5). Looking at the distribution
summary, one can say that this distribution is quite similar to that of a scaled

Gamma(k,p) distribution. Again as n, increases the Kurtosis and Skewness get closer to

that of the Gamma, say 6/k, and 2/4/k respectively. Figure B.4 and B.S, Appendix B,
show the distribution of the same estimators when B = 150. It is easy to see that the
distributional characteristics for the estimators follow the same patterns as those
discussed above, where B = 5. The only difference there is that, as expected, the
number of outliers decreases significantly particularly in the case of the sampic

variance.

B. THE SAMPLE VARIANCE

This experiment was intended to further study the behavior of the bootstrap
sample variance for populations with various distributions. The ones discussed in this
scction are the GAMMA(0.5,1), NORMAL(0,1) and LAPLACE(0,1). For this
experiment, the sample size where n = 5, 10, 20, 25, 30, 50, 60, and B= 5, 8, 10, 15,
20, 2§, 30, 35, 40, 50, 100, and 500. In the first two cases, the GAMMA and
NORMAL distributions, the bootstrap sample variance seems to approximate the
population variance fairly well when n 2 50, where the MSE4" is less than 0.10.
Figures 3.6, 3.7, and 3.8 show the rclation betwecn B, n, and the MSE«" of the
bootstrap sample variance for a Gamma(0.5,1), Normal(0,1), and Laplace(0.1)
respectively.

Notice that there is a lot of random variation in the MSE4" when B is in the
range 5 < B <50 for n < 30, and for B<25 when 30 < n < 60. This random noise
cxtends beyond these ranges in the case of the Gamma(0.5,1). Notice that in Figure
3.6, the lines for the MSE«" of the sample variance when n=15, and 20 arc above
that when n=10 for B < 300. HHowever, when B =500, these lines lie below the one

corresponding to n=10. The MSE4+" for n=15, and 20 is actually less than the MSE "
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Figure 3.8 MSE.4" of Bootstrap Sample Variance of a L(0,1).

for n= 10 just after B > [50. In this experiment, it is also true as found for the
Exponential(1), that MSE«" decreases faster as n decreases than when B increases. This
was also the result in the case of the Laplace(0,1). However (notice the scale of the
MSE in this case), the MSE«" is quite high. Figure 3.8 shows that for a sample of size
n =< 15, the MSE4+® > 1.0 even when B is as large as 500. It was suspected that
probably this high MSE«" was caused by the mechanism used to generate Laplace
random variates. The first method used in this experiment takes the difference of two
Exponential (1) variates. The second method generates an Exponential(1) and converts
it to a Negative-Exponential(1) with probability .5 . The histograms, using different
sample sizes, showed that the first algorithm used to generate Laplace random variates
was the most effective. In any case, the point here is that for the ranges of n and B
used in the experiment, the MSE«" of the sample variance for a Laplace(0,1) never
decreased below 0.2. This was not the case for the other distributions. This suggests
that the performance of the bootstrap method depends on the distributional properties

of the population in question as well as the estimator under consideration.
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C. THREE DIFFERENT ESTIMATORS FOR THE VARIANCE

In Chapter Two, the expected value and the variance of the bootstrap sample
mean (X*) were derived. In this section, the expected value of the bootstrap sample
variance, call this 15*2 , 1s calculated. Let

15*2 = [Zl (X*i - i*)zl/ (n-1) (3.9)
= (X2 X"y /(- 1)
Note that
Eu(X'{®) = (1/m); X, | (3.5)
so that
E(X; X% = ;X4 (3.6)

N S* ..
Likewise the second moment of X is given by:

ExX?) = (1n?)[F; X2+ BT EX'X)l i#i (3.7)

As before, (X*jX*j) has probability (1/n?) of being any point of the form (xgxp so
from (2.7)

EX X" =(1n®) LY X2 + T8 XX ] (3.8)
= (/n*)Y; X+ XXy (XX)/n® .
Now
YY X'XY = (a-DmIT; Xy + LY XXl (3.9)
= ((n-1)/n¥)(Y; X;)?
= n(n-1)X?

Then (3.7) can be expressed as
E(X"2) = (1/n?(Y; X% + n(n-1)X?] (3.10)
Finally, using (3.6) and (3.9), the conditional expccted value of 15*2 is
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': * * -
d Ex(;S8 %) = (1/(n-1))E«(}; X (2 + nX'?) (3.11)
= 1/(n-1)[T; E«(X ") - nE«(X"2)]
; = 1/(n-1) { ¥, X;%- [(n) O X;# + n((n-1)X?))
= 1/(n-1) [((n-1)/n)Y; X;% - (n-1)X?]
; = Zl (Xlz - )-()2 / n.
' Call this cs*z. Now suppose it is known that X ~ N(p,6%)- this restriction is not reaily
required in this context - and it is desired to estimate the variance of X using the
bootstrap method. As shown in the previous chapter,
E(X) = ny | (3.12)
so the unconditional expected value of 15*2 is:
* *
\ E(,S %) = E«[E(;S ¥X)] (3.13)
y = E[(X(X;-X)?)/ n] :
: = ((n-1)yn)s,?
: Then 1SLz is a biased estimator for oxz. The finite population correction factor might
4 thus be suggested to improve the performance of IS"‘z . Define
* * * =k R
: ;S 2= (n/(n-1) ;S %=n/(n-1)2};(X; -X)? (3.14) ~ .
1 an unbiased bootstrap estimator of ze . Analyzing expression (2.5) and (3.11), yet
another estimator for cxz can be suggested. Since the value of E*()-(i*)= X is known, .
the following estimator for o.xz also seems reasonablc:
$'2 = Y (X" -X)?/n (3.15)
3 i '
The third experiment was conducted tc; compare the performance of these three X
estimators (3.4), (3.14), and (3.15). Figures 3.9, 3.10, and 3.11 show the results of this
experiment.
: As can be scen, the third estimator, SS*Z, in almost all cases outperforms the
other two for all different sample sizes tried in this experiment. Even the sccond g
estimator (3.14) performs almost as good as IS"‘Z when n > 50. When n 2 50, the A
29
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Figure 3.9 MSE4" of the Sample Variance of a N(0,1).
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Figure 3.11 MSE.4" of the 3rd Variance Estimator of a N(0,1).

difference between these three different estimators is barely noticeable. However, for
very small samples, n < 20, 3S*Z is definitly a better estimator for 62 than ls*z :
Efron [Ref. 1] has suggested the use of IS*Z as the bootstrap estimator of the sample
variance. As the plots suggest, it could be now recommended the use of 35*2 and
even ZS*Z (for larger samples, n > 50) rather than 15*2 to estimate the sample
variance. Note that as n— 0, 15*2 is the same as zS“‘2 . {Note: these two estimators
(3.14) and (3.15) are called VARIA2 and VARIA3J respectively in the FORTRAN
code, listed in Appendix A).
D. THE CENTER OF A DISTRIBUTION: COMPARISON OF THE MEAN,

MEDIAN AND TRIMMED MEAN

The sample mean is the most used estimator for the center of a distribution.
However, two other estimators are also used, specially for symmetric distributions: the
median and the 5% trimmed mean. There have been many comparisons of the
asymptotic performance of these three estimators. Lehman [Ref. 8] has calculated the
asymptotic values of these estimators in case when the sample is from a Normal(0,1) or

a Laplace(0,1) population. These calculations are summarized in Table 1 below.
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TABLE 1

ASYMPTOTIC VARIANCE OF THE MEAN, MEDIAN
AND 5% TRIMMED MEAN

ESTIMATOR

. Probability . .

. Distribution Mean Median 5% Trimmed Mean
Normal&O,l 1.0/n 1.57/n 1.01/n
Laplace(0,1 2.0/n 1.00/n 1.65/n

These values, among other things, show that for the case of sample coming from a
Normal(0,1), the mean has less asymptotic variance than the other estimators.
However, if the data comes from a population with heavy tails, like the Laplace, the
median is a better estimator asymptotically (having less variance). The 5% trimmed
mean is a compromise between the other two: it should used when the practitioner
does not know the nature of the tails of the population.

A fourth experiment was conducted to see if these observations hold when the
corresponding bootstrap estimators are used. In this experiment, the MSE of of the
bootstrap estimators were compared with the asymptotic MSE for the usual estimators
as B increases. The asymptotic MSE (call it MSE4) of the three estimators could be
estimated by adding the asymptotic variance, as defined in Table 1, plus the
bias-squared. The MSE, was compared with the MSE4+" of the bootstrap
estimators, for several sample sizes, as B increases.

Figures 3.12, 3.13, and 3.14 summarize the results of this comparison for the case
of a Normal(0,1) populaticn. Figures 3.15, 3.16, and 3.17 show the results for a
Laplace(0,1) population.

In these figures, the solid horizontal lines represent the values of the asymptotic
MSE of the usual estimators. For example, in Figure 3.12 the estimated asymptotic
MSE of the sample mecan for a sample of size n=35 is approximately 1/5.0 +
(BIAS)2~.20. The dotted linc represents the estimated MSE of the bootstraped
estimators as B increases.

In summary, for the Normal(0,1) population, the bootstraped sample mean and

the 5% trimmed mean have less error, asymptotically; they are estimating the center of
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the distribution with much better precision than the bootstrap sample median.

Comparing Figures 3.12 and 3.13, it looks obvious that for sample sizes n<60 the
bootstraped sample mean shows much smaller MSE than the bootstraped sample
median. When the sample size is n= 60 there is no distinguishable differcnce between
the estimated MSE’s of these two estimators. Notice that the bootstraped 5% trimmed
mean (Figure 3.14) seems to perform as well as the bootstraped sample mean; it is
better for very small samples, say for n=35, 10, and 15. This confirms the general
relationship among these estimators, even in the case of bootstraping the estimators,
that the 5% trimmed mean is a robust compromise between the sample mean and the
sample median.

The results obtained in this experiment, however, do not agrce with the classical
theory in the case of the Laplace population. In this case the bootstraped sample mean
outperforms the bootstraped sample median in estimating the center of the
distribution, for sample size n< 20. For a sample of size n = 60, there is no real
difference between these two estimators, in terms of MSE«P. Notice that the 5%
trimmed mean (Figure 3.17) performs better than the bootstraped sample median
(Figure 3.16) for the cases where n<60, but in turn, is outperformed by the

bootstraped sample mean ( Figure 3.15).

E. LINEAR REGRESSION BY BOOTSTRAPING THE RESIDUALS

In a final experiment, linear regression estimation was considered. In this case,
there is a choice of bootstraping methods; however, in this thesis only one method is
considered. The method considered here relics on bootstraping residuals to estimate
the variance of the B" vector(B" stands for “ B hat”). A measure to estimate the MSE
of this vector is also introduced.

In the typical linear regression problem there are n independent observations

(real-valued) Y; and it is assumed that the following model holds:
Y =XB+ ¢, (3.16)

where € is a random sample from some population F, and B is a p X 1 vector of
unknown paramecters that must be estimated. All that is assumed about F is that it is
centered at zero, E(g)= O and Cov(g)=6% 1 . Onc way of estimating B is by the

commonly used least squares method, in which the sum of the squared distances
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(3) Using the same fitting technique used to obtain B" in the original problem,

* . . . *
calculate p . Then obtain an estimate of B :

' = (xX)'xXY" (3.21)

(4) Repeat steps (2) and (3) B times obtaining independent bootstrap
realizations b*l, b*z,..., b*B . Then the covariance of B® can be estimated by
the sample covariance matrix of the b*b , b=1,2,.,B.

Efron has shown (See [Ref. 1: page 18] ) thatas B = o0,
Var(B®) = ((n-p)/n) (X’ X) 62 (3.22)

where 62 is an unbiased estimate of the variance of Y; . In this procedure, 6% can be

estimated by ZS*2 . [t can be seen that as B — 00 |
Var(B*) » Var(") . (3.23)

The following experiment was conducted to estimate the MSE of B". Suppose it
is known that the observations Y; come from a Normal(0,1). Then the true value of the
B- vector in the regression model (3.17) is B = (0,0,0), so the E(f) = O and the
variance-covariance matrix of B is EB = ¢%X’ X)?, where it is known that 6% = 1.

For this experiment, a design matrix X of orthogonal-column vectors was
created. This matrix has 1’s in the first column; then a series of n alternating 1's and
-1’s in the second column; and finally the third column (for p= 3 ) is a serics of two 1’s
and two -1’s (also, n = 2% x = 2, 3, 4,... ). Then it was possible to readily calculate
B, by

B = (/) (X" Y). (3.24)

The bootstrap algorithm described above was used to generate a sample of B*i . Then,

. *
an estimatc of f, is

b= (I/n) (X' Y'). (3.25)
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It was desired to develop a measure of precision for B* analogous to MSE, which
depends on Var(B*) and the bias of B* . Define

Ty v
.l

I

MSEB") = El(B” - EB)A. (3.26)

Recall that in this experimen: the E(P" ) = O. Then, (3.26) could be estimated in the

following way:

X XXAAAL

s

1) Do step (4), as above, obtaining

h T
S

A
P

MSE«B") = [X, B - E(B")?] B i=1,2,..B (3.27)
. .
= (X !B -BiIZ]/B .
2) Repeat (1) a number of M times to obtain an average MSE4" of the procedure
(3.27).

The results of this experiment are shown in Figure 3.18.
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Figure 3.18 Estimated Averages MSE of p".
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Here, the sample sizes were taken as n = 4, 8, 16, 32, 64, and 128, and M = 15.
The estimator [5* was bootstraped a number B = §, 10, 15, 20, 30, 40, 50, 100, 150,
and 500. The results obtained were surprising. When the number of observations is
small, n<33 , the MSE«" of the estimator is relatively high (MSE«" > .09) even

when B is as large as 500. When n > 65, there is some improvement in the MSE+" ; in

this case, the MSE+" is at least 5% lower that when to n < 33. It is interesting to sec
that increasing B from 5 to 500 there is no remarkable gain in the precision of
estimator when n > 65; the MSE4" oscillates around the same value. Now, when n <
33, increasing B by the same amount, the MSE«" decreases but less than 1% of its
initial value. It seems that in the linear regression estimation the key problem is the
size of n and not of B.

When using this method for estimating the MSE of B" |, the practitioncr must
bear in mind that it involves the residual distribution and hence assumes that the linear

model is correct.
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IV. CONCLUSIONS

As it has been shown, the Bootstrap is an accurate method for estimating the
precision of the estimates and for estimating the distribution (or some feature of the
distribution) of an estimator. For MSE, the number B required to obtain a certain
degree of accuracy will vary depending mainly on the population (this is a subject for
further studies) and the type of the estimator used for estimation. It was found that
when the sample comes from a population having heavy-long tails, such as the Laplace
distribution, the bootstrap estimator for the mean is a better estimator for estimating
the center of the distribution than the median or the 5% trimmed mean; where in the
case of using nonbootstrap estimators, the median is a better estimator than the other
two estimators.

In estimating the variance of a population, it was found that there exists an
estimator that is more accurate than the typical estimator recommended in the
bootstrap literature. This estimator (SS*Z) relics on the fact that the original sample
mean in the bootstrap method is known. Once this value is calculated, there is no need
to find X for each bootstrap sample, since X is fixed through the process. Another
estimator for 6% was also proposed, ZS*Z . This estimator is unbiased, where IS*Z is
not, but for small sample sizes, n < 30, is not as accurate as 3S*Z. It should be
emphasized that in using this estimator, 3S*z, one can reduce the computer time
required to estimate 6. Hence, this is another advantage in using this estimator.

In the linear regression estimation, using as a measure of precision definition
(3.28), it was found that the bootstrap method analyzed in this thesis gives estimates
with small MSE«" with relative small sizes of B, but for relatively large sample size, n
> 60. When the sample size is small, increasing B up to 500 will result in a gain of
around 1% in the precision of the estimates. Thus, in the linear regression estimation
the critical issue for MSE is the sample size. It was also noted that the disadvantage of
this method is that it assumes that the model in question is correct.

The result that seems to apply to all cases studied in this work is that, in using
the bootstrap mcthod for estimating MSE of some parameter O , there really exits a
tradcoff between B and n: as n increases, one can significantly decrcase B and still get

very precise estimates. Ilowever, no matter what n is, once some degree of accuracy
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has been obtained, there is no reason to increase B much more since this will not
induce greater precision in the estimates. In Appendix C , the reader will find tables
that provide information about this tradeoff for given estimators and populations.
Analyzing the figures presented in previous chapters and these tables, a rule of thumb
about the relation between n and B can be hypothesized. The following rule scems
reasonable: make the number B ~ 1000/n. In almost all cases studied here, this rule
yielded estimates with MSE«" < 0.05 (not;a: independent of n, making 40 < B >
60 will also produces estimates with small MSE4" ). The only exception is when the
population in question was Laplace(0,1). This is an area that needs further study.

Finally, it was found that a (possibly not serious) disadvantage in using the
bootstrap method is the computer time required to obtain the estimates. For example,
in estimating the variance of a Gamma(0.5,1) distribution, increasing B from 20 to 100
increased the CPU time of the IBM 3033-A16 system used in this experiment about
75%. This time is increased at least another 50% if onec desires to obtain the
distributional characteristics of the estimator (i.e., boxplots). However, in view of the
decreasing cost of computer time, this does not seem to be a major obstacle for using
this method.
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(1) 6"
(2) F?
(3)87(F")
@ X"
(5) MSE4"
(6) p"
(7) b
) B
©)b"

APPENDIX A
LIST OF SPECIAL NOTATIONS

:0 -hat, estimator of 0

:empirical probability distribution

:the value of @ based on bootstrap method
:a bootstrap random sample

;estimated MSE based on bootstrap method
:estimator of the p X 1 B -vector

:an estimate of p"

:estimator of P based on bootstrap method
:an estimate of B*
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;
R APPENDIX B
:3 FORTRAN CODE FOR BOOTSTRAPING

This program, called BOOTST, was developed to estimate distributional
._; properties of some statistical estimators using the Bootstrap Method. Also it is possible
::f to obtain estimates of the MSE of the estimators. The code was written in FORTRAN
\: 77. It can generate a random sample for Monte Carlo simulation or can read the
‘ sample data by a CALL to a subroutine FDATA (at the end of the code listed below).
::; The user can generate samples from the following distributions: Exponential(}),
:r Laplace(0,1), Uniform(0,1), Normal(0,1), Gamma(a,!), Poisson(A), and the
\:_ Geometric(p). The parameters @, A, and p can be specified by the user within the
= appropriate function. With this program, the user can study the distributional
'{ propertiecs of the following bootstrap estimators: mean, variance coefficient of
': variation, serial correlation, median, and the 5%-trimmed mean. Also, one can obtain
: estimates of the "B -vector” in the case of the linear regression estimation by
. bootstraping the residuals ( See Chapter Three, Section D ). The program is structured

in five main sections: the MAIN program, to include input requirements; the DATA
GENERATION, the ESTIMATORS definition, the BOOTSTRAP SAMPLING
mechanism, and the STATISTICS sections.

The program can be used in two ways. The first, makes use of another program
3 called SMTBI10. This code was developed at the NPGS by Prof. P.A.W. Lewis, and

, Mr. Luis Uribe (Sce [Ref. 9] ). It is highly recommended that the user become familiar
" with the documentation of STMBI10 before attempting to use BOOTST. In general,
2 when using this option, the user must create an input file containing the parameters
' specified in the input section of BOOTST. Then, a CALL is made to STMBIO, and in
:'-j' turn STMBI10 will make various sequential calls to generate the data, calculate the
" values of the desire estimators (using the bootstrap mechanism), and produce the
” statistics. When a call to STMBI10 is made, the user could produce estimates for 1, 2,
' or 3 different estimators using 1, 2, or 3 sample data generators or any of the cight
- possible combinations. Also, the user could select up to 8 different sample sizes for

-i'__ each estimator. Therefore, in one execution, statistics for up to three different
= estimators, using up to three different data generators, and for up to eight diflerent
>

:
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sample sizes can be obtained using the bootstrap method. These options are controlled
in the INPUT requirements of BOOTST. At the end of each execution, BOOTST will
send to a printer (or to the screen, depending on the option selected) a file containing
boxplots and a summary of the statistics for each estimator. The input requirements
are controlled by the user in a file called BOSIN.

The general execution of BOOTST runs as follows:

(1)  For each estimator

(2) Read Input Requirements (MAIN)

(3) CALL STMBIO0

4) CALL Data Generator (Data Generation Section)
(35) N=k X n random variates are generated, where k= [ or 2,...,

or 8 different sample sizes. Then the data is sectioned into
samples of sizes N(K)=n, If M repetitions of the process are
allowed, ihen a total of M X N random numbers are obtained.
Estimates are calculated for each sample size N(K).

(6) CALL Estimator Function (Estimator Section)
Begin Generation of Estimates
N ForI=]1to B )
CALL BOOTSTRAP (Bootstrap Section)

CALL STATISTIC
Store Bootstrap Estimates
CALL STATISTIC
Store Mean of Bootstrap Estimates
(8) PRODUCE Boxplot and Statistics
The input requirements specific to BOOTST are explained below, the other
inputs declared in the MAIN are specific to STMBI10 ( See [Ref. &refl10} ). -

(1) ANS : 1 or O : If the user wants_to_ store each bootstralplﬁséirénlate for each

estimator, the answer should be 1. Estimates are stored in
(2) NE(I): a vector containing the sample sizes (n). Up to 8 different sample sizes.
(3) 1B: Number of bootstrap replications for each execution.
(4) IX: Seeds used to generate data (up to 3 different seeds).

If the user desires to obtain estimates and graphical displays of two or more
different estimators and is using a large number B, say B 2 60, the amount of
computer time required will increase significantly depending on the system used.

The second way to exccute BOOTST is recommended for more experienced users
or for those who do not want to obtain boxplots of the estimates. This option will save
a great deal of CPU time. For this option, the user will have to make some simple
changes to the MAIN program:

1 Delete from the input requirement section thosc inputs that only apply to
M STMBIO (those notplisted gbove). P Y appy

(2) Replace the call to STMBI10 by the following sequence of calls:
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! 1) Call Data Generator (i.e., one of the data generators) . )
;i . () Call Estimator (1.¢., one of the estimator functions) The estimator
Y function (subroutine) will make the appropriate call to the Bootstrap and
.| Statistic subroutines.
| . . . . . .
. (3) For this option, the input parameters ANS must be set to integer 1. Also, if
. the user now make reference to the codg, it will be noticed that €ach estimator
. subroutine has a special parameter  WI. This parameter must be deleted
: cverywhere since 1ts only applies to STMB10.
. The computer code 1s histed below.
! ¢ uppatep 07-03-86_  W. CORTES-COLON
‘ € MAIN : DECLARATION, INPUT SECTION AND CALL FOR SMTBI1O.
. COMMON IB,IX1,IX2,IX3,IXG,ANS
! COMMON_ 2120000 )
n CHARACTER*80 11, T2, T3
‘ REAL*G  Y(100003,YMIN,YMAX, PMEAN(3),AMSEC(3)
! INTEGER NE(8),0,RG,SEL,SVS,N,M,L,NEST,NSR
| INTEGER IX1,IX2,1X3,1%4,18 AN
| EXTERNAL XMEAN,VARIA,COEVA,SECOR,MEDIA,TRIMM,VARIZ,VARI3,BLREG
! c EXTERNAL EXPON,UNIFO,NORML, GAMAF, POISF, GEOMF,LAPLA
b
E c
- QPEN({UNIT=19, FILE='BOSIN')
K READ(19,%) ANS
- 10 READ(19,%, END=999) N,M,L,D,RG,SEI,SVS,NEST,NSR
- READ(19,%} YMIN, vMAX
.- READI19,%) (NE(T),I=1,L)
. READ(19,%) IB
- WRITE{22,105) 1B,(NE(I),I=1,L)
. 105 FORMAT{I4,814)
+ | READ(19,%) IX1,IX2,IX3,IXG
. READ(19,115) T1
115 FORMAT(AB0)
READ(19,115) T2
- READ(19,115) T3
. READ(19,%) (PMEAN(I),1=1,3)
. READ(19,%) (AMSEC(.J),J=1,3]
- € CALL FOR'SMTBI10: PRODUCES’BOX-PLOT AND COMPARISON OF STATISTICS
. CALL SMTB1O(IX1,IX2,IX3,Y,N,M,NE,L,0,;NSR,RG,SEI,SVS,YMIN,YMAX,
7 % NEST, NORML XNEAN,T1,NORML,MEDTA;T2,NORML , TRINMM, T3,
N % PMEAN,AMSEC )
. Go_ 70 10
s 999 WRITE(6,%) 'END OF DATA INPUT'
’ END
Y & DATA GENERATION SECTION
> SUBROUTINE EXPON(IX,X,NEK)
- REAL X(1)
~ IFINEK .LE. 0) RETURN
N — CALL SEXPN{IX,X,NEK,1,0)
RETURN
N c END
SUBROUTINE LAPLA(IX,X,NEK)
INTEGER ISEED
REAL “X(1),%XU(1000),%2(1000)
‘. IF(NEK.LE .0} RETURN
- CALL SEXPNIIX»X2,NEK,1,0)
X CALL SEXPN(IX,XU,NEK;1,0)
- DO_10 I=1,NEK
X(I)1=x2{11-XU(1)
. 10 CONTINUE
- RETURN
r. c END
0 SUBROUTINE UNIFO(IX,X,NEK)
REAL X(1)
. IF(NEK .LE. 0) RETURN
f CALL SRND(1iX,X,NEK,1,0)
. RETURN
L c END
- SUBROUTINE NORML(IX,X,NEK )
- REAL X(1)
. IFINEK .LE. 0) RETURN
. CALL SNOR(iX,X,NEK;1,0)
. RETURN
" c END
SUBROUTINE GAMAF(IX,X,NEK )
= REAL X(1), ALPHA
Y. ALPHA=0.5
N IF(NEK .LE. 0) RETURN
CALL SGAMA{IX,X,NEK,1,0,ALFA)
K RETURN
K ¢ END
. SUBROUTINE POISF(IX,X,NEK)
REAL X(1),LAMDA
8 LAMDA=0.5
IF(NEK .LE. 0} RETURN
CALL SPOIS{IX,X,NEK,1,0,LAMDA)
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MSE." OF SOME ESTIMATORS USING THE BOOTSTRAP METHOD

APPENDIX C

EST. MSE Of The Sample Mean O0f An EXP(1l)

B/n 10 20 25 40 50 70 100 1640

5 0.1213 0.05644 0.0531 0.0309 0.0257 0.0216 0.0142 0.0118
8 0.1157 0.0570 0.0646 0.0299 0.0277 0.0164¢ 0.0123 0.0103
10 0.1131 0.0551 0.0453 0.0288 0.0247 0.0170 0.0134 0.0097
15 0.1095 0.0543 0.0451 0.0277 0.0241 0.0166 0.0113 0.0099
20 0.1064 0.0528 0.0632 0.0262 0.0252 0.0163 0.0131 0.0096
25 0.1051 0.0525 0.0405 0.0270 0.0244 0.0153 0.0132 0.0097
%0 0.1022 0.0508 ©0.0417 0.0277 0.0245 0.0162 10.0122 0.0087
60 0.1031 0.0511 0.0410 0.0258 0.0239 0.0159 0.0117 0.0091
100 0.1030 0.0512 0.0620 0.0252 0.0244 0.0155 0.0119 0.0090
140 0.1018 0.0511 0.06406 0.0256 0.0242 €.0156 (0.0117 0.0092
500 0.1007 0.0471 0.0368 0.0217 0.0202 0.0119 0.0101 0.0041

EST. MSE Of The Sample. Variance O0f An EXP(1l)
5 0.9130 0.5313 0.4114 0.1690 0.1703 0.1120 0.0745 0.1363
8 0.7783 0.4765 0.4023 0.1951 ©0.1538 0.1176 0.0847 0.0791
10 0.7776 0.56418 0.4485 0.1703 0.1461 0.1393 0.0680 0.0800
15 0.6732 0.5385 0.3457 0.1533 0.1433 0.1096 0.0650 0.0817
20 0.66408 0.6589 0.3447 0.1562 0.1373 0.1043 0.0662 0.0852
25 0.7115 0.4840 0.3452 0.1730 0.1311 0.0945 0.0656 0.03887
60 0.6822 0.49692 0.3392 0.1556 0.1349 0.1179 0.0635 0.0808
60 0.6959 0.4563 0.3265 0.1529 0.1341 0.1006 0.0658 0.0827
100 0.6857 0.6668 0.3634 0.1555 0.1285 0.1185 0.0643 0.0753
140 0.6789 0.4716 0.3259 0.1565 0.1280 0.1069 0.0592 0.0733
500 0.6649 0.4603 0.3035 0.1429 0.1098 0.0937 0.0394 0.0563
EST. MSE 0f The Sample Coeff. of Variation Of An EXP(1l)

5 0.0667 0.0391 0.0285 0.0238 0.0183 0.0144 0.009C 0.0080

8 0.0618 0.0352 0.0299 0.0249 0.0160 0.0156 0.0079 0.0080
10 0.0618 ©0.0360 0.0269 ©0.0218 ©0.0169 0.0126 ©0.0084 0.0080
15 0.0598 0.0336 0.0268 0.0221 0.0158 0.0127 0.0076 0.0079
20 0.0599 0.0313 0.0263 0.0218 0.0156 0.0133 0.0077 0.00638
25 0.0590 0.0323 0.0266 0.0223 0.0156 0.0137 0.0079 ©0.0074
40 0.058¢ 0.0309 0.0255 0.0208 0.0153 0.0120 0.0073 0.0Q71
60 0.0578 0.0313 0.0253 0.0214 0.0154 0.0127 0.0078 0.0070
106 0.0580 0.0306 0.0249 0.0213 0.0151 0©.0122 0.0070 0.0073
140 0.0573 0.0308 0.0252 0.0215 0.0147 0.0123 0.0074 0.0074
500 0.06419 0.0297 0.0206¢ 0.0187 0.0115 0.0l100 ©0.0057 0.0039

Figure C.1 MSE+" of the Estimators for Exp(1).
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B/n 5 10 15 20 25 30 50 60
5 0.4213 0.2045 0.2936 0.3217 0.1813 0.1527 0.0790 0.0565
8 0.4229 0.1951 0.2726 0.2332 0.1633 0.1383 0.0646 0.0649
10 0.3397 0.2134 0.2296 0.2195 0.1672 0.1376 0.0706 0,0617
15 0.3410 0.1906 0.2629 0.1974¢ 0.1834 0.1415 0.0642 0.0642
20 0.3668 0.1975 0.26420 0.2365 0.1647 0.1467 0.0676 0.0430
25 0.3505 0.1859 0.2397 0.2229 0.1535 0.1067 0.0701 0.0437
30 0.3792 0.1851 0.26¢46 0.2307 0.1580 0.1196 0.0743 0.0649
35 0.3409 0.1927 0.2254¢ 0.2228 0.1523 0.1234 0.0733 0.0438
60 0.3465 0.18396 0.2453 0.1988 0.1623 0.1215 0.0672 0.0626
45 0.3571 0.1852 0.2546 0.2191 0.1603 0.1290 10.0677 0.0420
50 0.3678 0.1833 0.2405 0.2318 0.1478 0.1191 0.0693 0.0439
100 0.3313 0.1785 0.2230 0.2191 0.1576 0.1229 0.0676¢ 0.0409
500 0.3165 ©0.1582 0.1341 0.1217 0.1117 0.1095 0.0441 0.0287
EST. MSE Of The Sample Variance O0f A N(O0,1)
5 0.4158 0.2142 0.1416 0.1145 0.0987 0.0719 10.06413 0.0375
8 0.3841 0.2049 0.1363 0.1005 0.0970 0.0701 0.0490 0.0271
10 0.3650 -0.1931 0.1346 0.1018 0.0930 0.0590 0.06424 0.0350
15 0.3687 0.1948 0.1332 0.1008 0.0853 0.0633 0.04446 0.0356
20 0.3541 0.1848 0.1298 0.0988 0.0835 0.0610 0.0420 0.0306
25 0.3712 0.1870 0.1225 0.0948 0.0848 0.0674 0.03%8 0.0304
30 0.3570 0.1820 0.1250 0.0963 0.0847 0.0611 0.0416 0.0313
35 0.3632 0.1869 0.1266 0.0925 0.0850 0.0623 0.0399 0.0297
40 0.3476 0.1831 0.1252 0.0908 0.0818 0.0622 0.0416 0.0301
45 0.3595 0.1839 0.1223 0.092¢ 0.0809 0.0640 0.0408 0.0306
50 0.3625 0.1897 0.1211 0.0916 0.0827 0.0603 0.0408 0.0302
100 0.3646 0.1611 ©0.1132 0.0841 0.0806 0.0619 0.0412 0.0300
500 0.3175 0.1392 0.1008 0.0610 0.0715 0.0522 0.06391 0.0205
EST. MES Of The Sample Variance Of A L(0,1)
5 2.9553 2.3940 1.5890 1.0396 0.8608 0.7340 0.5076 0.64655
8 2.8503 2.0733 1.6019 0.9700 0.7033 0.6355 0.5318 0.3749
10 2.7371 2.0438 1.6862 0.9944 0.7115 0.7020 0.4933 0.4011
15 2.7377 1.9280 1.7109 ©.9290 0.7775 0.6838 0.4844 0.3128
20 2.7954 1.8716 1.5557 0.9623 0.6811 0.6798 0.4974 0.3277
25 2.6397 1.8955 1.5850 0.9498 0.7466 0.6352 0.4633 0.3654
30 2.6941 1.8366 1.7492 0.8812 0.7106 0.6430 0.4849 0.3270
35 2.7119 1.8774 1.5792 0.8772 0.7000 0.6618 0.4890 0.3512
40 2.6518 1.8689 1.8452 0.8875 0.7028 0.6250 0.4785 0.3479
65 2.6200 1.8315 1.6082 0.9156 0.7119 0.5982 0.4987 0.3234
50 2.6419 1.8801 1.7016 0.8712 0.6749 0.6377 0.4652 0.3489
100 2.6334 1.8705 1.4931 0.8678 0.6827 0.6336 0.4763 0.3329
500 2.4163 1.6915 1.3852 0.7542 0.6173 0.5918 0.4258 0.3039
r Figure C.2 MSE." of S2
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{ EST. MSE Of Sample Variance of a N(0,1)
B/n 5 10 15 20 25 30 50 60
5 0.4206 0.2099 0.1609 0.1025 0.0916 0.0680 0.0477 0.0379
8 0.3855 0.2032 0.1294¢ 0.1084 0.0875 0.0702 0.06474 0.0316
10 0.3939 0.1986 0.1396 0.0964 0.0990 0.0667 0.0445 0.0292
15 0.3763 0.1942 0.1344 0.0961 ©0.0842 0.0658 0.0398 0.0325
20 0.3676¢ 0.1856 0.1218 0.0971 0.0842 0.0665 0.0403 0.0319
25 0.3589 0.1898 0.1313 0.0968 0.0859 0.0619 0.0408 0.0312
30 0.3567 0.1851 0.1273 0.0949 0.0849 0.0615 0.0389 0.0317
35 0.3647 0.1861 0.1242 0.0949 0.0819 0.0622 0.0622 0.0310
40 0.3490 0.1851 0.1277 0.0928 0.0854 0.0631 0.0399 0.0314
45 0.3568 0.1871 0.1231 0.0915 0.0857 0.0632 0.0389 0.0298
50 0.3549 0.1862 0.1236¢ 0.0940 0.0835 0.0650 0.0388 0.0311
EST. MSE Of Sample Variance (2nd Estimator) of N(O0,1)
5 0.5810 0.2667 0.1537 0.1091 0.0908 0.0879 0.0557 0.0384
8 0.535% 0.2540 0.1367 0.1164 0.0882 0.0844 0.0630 0.0368
10 0.5686 ,0.2461 0.13964 0.1026 0.0732 0.0790 0.0576 0.0408
15 0.5387 0.2304 0.1398 0.1067 ©0.0812 0.0685 0.0573 0.0369
20 0.56403 0.2285 0.1277 0.1043 0.0786 0.0727 0.0493 0.0383
25 0.5198 0.2206 0.1322 0.0989 0.0786 0.0759¢ 0.0530 0.0340
30 0.56407 0.2270 0.1362 ©0.1023 0.0778 0.0742 0.0535 0.0330
35 0.5355 0.2249 0.1313 0.1005 0.0782 0.0740 0.0531 0.0347
60 0.5310 0.2225 0.1326¢ 0.1034 0.0757 0.0744 0.0544 0.0356
45 0.5166 0.2261 0.1312 ©0.1036 0.0775 ©0.0713 0.0518 10.0362
50 0.5141 0.2262 0.1293 0.0994 0.0769 0.0712 0.0530 0.0360
EST. MSE Of Sample Variance (3rd Estimator) of a N(0,1)
5 0.3796 0.1714 0.1356¢ 10.1222 0.0904 0.0673 0.0433 0.0610
8 0.3518 0.1706 0.1349 0.1173 0.0768 0.0612 0.0453 0.0363
10 0.3471 0.1729 0.1359 0.1132 0.0856 0.0622 0.0475 0.0603
15 0.3356 0.1562 0.1275 0.1055 0.0750 0.0578 0.0433 0.0364
20 0.3319 0.1568 0.1241 0.1119 0.0755 0.0595 0.0370 0.0345
25 0.3243 0.1615 0.1256 ©0.1089 0.0782 0.0563 0.0409 0.0332
30 0.3218 0.1573 0.1180 0.1095 0.0757 0.0552 0.0419 10.0322
35 0.32646 0.1576 0.1218 0.1034 0.0787 0.0553 0.0628 0.0320
90 0.3253 0.1522 0.1225 0.1076 ©0.0771 0.0553 0.06420 0.0366
45 0.3200 0.1573 0.1232 0.1056 0.0758 0.0565 0.0407 0.0351
50 0.3308 0.1565 0.1220 0.10664 0.0764 0.0552 0.0401 0.0347

Ficure €3 MSEs"of (S, ,$7% and of ,S"2
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Figure C.4 Bootstrap Dist. of Sample Mean B=150.
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Figure C.5 Bootstrap Dist. of Sample Variance B=1
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