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ABSTRACT

One of the most crucial problems in theoretical and applied statistics is to

determine the precision of the estimates produced by different statistical estimators.

This problem is greatly increased when the population parametric characteristics are

not known. Parallel to this problem is that of deciding how large (or small) the sample

population must be in order to obtain a desired precision within certain range.

There are several non-parametric methods to approach the first problem. The

BOOTSTRAP Method(Efron, 1979) is one of these approaches and the one of interest

in this thesis. With this method, one could improve the precision of the estimates and

gain information about the distributional characteristics of statistical estimators. The

bootstrap method has been amply compared with other methods; the results show that

the bootstrap method often produces more precise estimates (i.e. with smaller mean

squared error) than competitors such as the JACKNIFE, SECTIONING and

% I CROSS-VALIDATION. However, the results that have been obtained are based on

large sample sizes and large numbers of "bootstrap' replications.

This thesis analyzes the behavior of the BOOTSTRAP method when the number

of bootstrap replications is small. It tries to identify any tradeoffs between sample size

and the number of bootstrap replications required to attain a desired precision in the

estimates produced in several particular situations. One of the goals is to produce

graphical displays that will indicate to the experimental statistician the price that must

be paid in the precision of the estimates, obtained with the bootstrap method, when

sample size is small, and the number of bootstrap replications to use in this situation.
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I. INTRODUCTION

A. BACKGROUND

One of the most common problem in applied statistics is the estimation of an
unknown parameter 0. Once the statistician has decided on the model having one or

more parameters to be estimated and has selected the estimator (i.e., m.l.e., least-square

estimator, etc.) that will be used to obtain the estimates, the second problem that he or

she faces is how to estimate the accuracy of these estimates. There are several ways of

measuring the accuracy or the error of statistical estimators. In this thesis, the measure
of statistical error will be defined to be the mean squared error (MSE) of the

estimators; i.e. the variance plus the bias-squared of 0 h (where 0h represents the

estimator of the parameter 0. In Appendix A the reader will find a list of special

notations used in this thesis):

MSE(oh) = E[(Oh - 0)2] = Var(Oh) + [BIAS(oh)] 2  (1.1)

When the practitioner is dealing with samples obtained from populations for

which the distributional characteristics are known, classical statistical theory provides

an answer to the second problem that the statistician faces. This is true since, at least

in theory, the variance and the bias of mos: statistical estimators can be calculated
analytically. lowever, the difficulty of analytically deriving the MSE of some statistical

estimator increases as the mathematical definition of the estimator becomes more

complicated. When this is the case or when the practitioner does not actually know the

probability distribution, say F, from which the sample was obtained, then the MSE of

the estimators must be estimated.

There are several non-parametric methods for estimating the bias and the

variance of an estimator of interest. The most common ones are the Quenoille-Tukey

JACKNIFE method, CROSS-VALIDATION, and SECTIONING; the Jacknife being

the most commonly used of the three approaches. Efron and Gong iRef. 1] and Miller

[Ref. 2] provide an excellent exposition of the first two methods and Lewis gives a good

introduction and analysis of.the later (See IRef 3]).

?'.'" ? .. ~ - -,,: -._-, - .- ' "" '""--."- i-? .-?.."1"_-- ..- 8".' .' :"'. -- .". ...' ;'..% .".,. ",-'' "."".."'..' ?'.?.., , - ,i ... .



In recent years, Efron [Refs. 1,4], has developed another, rather intriguing

non-parametric methodology for estimating the MSE of any statistic. This method,

called the BOOTSTRAP, is simple and has been shown by Efron to be a pov¢erful

statistical tool that can be applied even in complex situations (See Efron, [Ref. 5] and

[Ref. 61 ). This method, as shown in this thesis, is a good approach for estimating the

precision of a statistical estimator used in a given model. It also gives information

about the distributional characteristics of the estimator used. Efron and Gong [Ref. 1]

and Tibshirani [Ref. 7] have conducted intensive analyses of this new method and have

compared it with the other non-parametric methods mentioned above. Surprisingly for

some authors, the BOOTSTRAP has been shown to produce estimates with much

more precision (sometimes up to twenty percent lower variance, for example) than the

JACKNIFE and CROSS-VALIDATION estimators. As an example, Efron [Ref. 4:

Section 3], has shown that the BOOTSTRAP methodology correctly estimates,

asymptotically, the variance of the sample median, a case where the JACKNIFE is

known to fail. As in the case of the sample median, it is known that the JACKNIFE

collapses for non-smooth statistics; however, the BOOTSTRAP seems to produce

accurate estimates even in these cases.

B. THE GENERAL PROBLEM

Suppose that the realization x. , x 2 ,...,xn of a random sample X , Xz,...,

Xn has been observed, and that XA , Xz , . . . , X. are independent and identically

distributed (i.i.d.), having a probability distribution F. In practice, the distribution F is

probably unknown and the problem is to estimate the value of some parameter of

interest, such as the mean, variance, or median. This is done using a sample of size n

with some estimator of 0(F), say 0h(F). The basic idea of the BOOTSTRAP method is

very simple, at least in principle:1 having observed x 1 , x 2 ,..., Xn, construct the

sample empirical probability distribution, Fh, by putting mass I/n at each observation x.

x2... Xn * Now, fixing Fh , draw a random sample of size n with replacement from

Fh . This sample will be called a bootstrap random sample and will be denoted by

X= (X 1,X *,. .. ,X n) (1.2)

'The BOOTSTRAP methodology will be analyzed in more detail in Chapter 2.
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and then X*i "id Fh. Then the task is to estimate the distribution of 0(F) by the
distribution of 0*(Fh), where 0*(Fh) denotes the value of the parameter of interest

based on the bootstrap mechanism. This mechanism proceeds as follows : keeping Fh

fixed, draw a bootstrap sample and calculate 0*(Fh); do this a large number B of times* h * h* h

obtaining 01 I(F ), 0* 2(F ), . . . , 0B(F ). The resultant (sample) distribution of 0* is
called the bootstrap distribution Fh* . Once F h * is obtained, then any specific feature

of this distribution, such as expected value of 0* , E*(0*) or the variance of 0*

Var, (0"), could be obtained. (In this thesis, notation like "E, ", "Var* ", "S 2 ", "X*"

etc., indicates calculations relating to the conditional bootstrap distribution of X*, with

the vector of random variates X and hence Fh , fixed. 2 ). Theoretically, then, the

bootstrap idea could be used to estimate the expected value, the variance, and the

mean squared error of any estimator, given a sample that comes from an unknown

probability distribution F.

As mentioned earlier, Efron (See [Ref. 4] ) has shown that this method is often

more precise than other non-parametric methods for assessing statistical accuracy.

However, the experimentation done in the past using this method relied on a large

number B of bootstrap replications; i.e, a large sample on In some cases, it can be

shown (see Chapter 2, for the case of Var*(0*)) that as B -+0, the variance of 0*

based on Fh is equal to the variance of the estimator 0 based on F . But, how large

must B be in order to obtain estimates that are accurate or to obtain estimators with a

small MSE is a question to be answered. Also, what is the tradeoff between the

sample size n and the number B of bootstrap replications ?

The purpose of this thesis is then twofold : first, to analyze the bootstrap

performance as the number B of replications increases, starting from a small B. The

second, also of great interest, is to study the relationship between the sample size n and

the number B in the estimation of the MSE of the estimator using the bootstrap

mechanism.

C. ORGANIZATION

There are several methods of dertermining the bootstrap distribution of an

estimator 0 (F), two of which will be analyzed in this thesis.3 The first is by direct

2As it will be shown in the next chapter, this is a critical feature of the
BOOTSTRAP method: the vector of random variates X and [" must be fixed through
the process.

3A third method involves making Taylor series expansion to obtain the

10



theoretical calculations (this is usually the most difficult approach). The second relies

on Monte Carlo approximations to the bootstrap distribution: repeated realizations of

are generated by taking random samples of size n from Fh , say x , x ... ,
,B h** h) * h)

X and the histogram of the corresponding values O*I(Fh) , 0* 2(F , , 0 B(F) is
constructed as an approximation to the actual bootstrap distribution (See [Ref. 1:

Section 21 ). These two methods are of interest in the second chapter. In the last

section of Chapter Two, the different statistical experiments conducted for this thesis

are explained in detail. In Chapter Three, the results from these experiments are

presented and analyzed, and the problem of using the bootstrap approach in linear

regression problems is also discussed. Conclusions are presented in the last chapter.

There, one of the points of interest is to discuss the main disadvantage of the bootstrap

methodology : the computer time required to implement this method when Monte

Carlo simulation is used. In Appendix B, the FORTRAN software that was designed

to run the experiments discussed in this thesis will be explained and the code is listed.

This computer program is user friendly and can be used to estimate the bootstrap

distribution of eight different estimators. Finally in Appendix C, the reader can see

some tables that give a good idea about how large (or small) B and n can be in order

to obtain a desired precision on the estimates of parameters of given populations F.

approximate mean and variance of the bootstrap distribution F . See Ref.4, Section 5.

11
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11. THE BOOTSTRAP METHOD

A. A DESCRIPTION OF THE METHOD

As mentioned earlier, the Bootstrap methodology is, in principle, simple. Also,
recall that in this thesis the problem of interest is to study how this method performs in
estimating the MSE of some statistical estimators, and how the MSE behaves as the

number B of bootstrap replications and the sample size n change.

Suppose that the data of interest consist of a random sample X = (X ,X2

Xn ) of size n, from an unspecified probability distribution F on the real line. The Xi
may be real valued, two dimensional, or take values in a more complicated space, but
this will not affect the theory, see Efron [Ref 2]. Thus, it is assumed that

X1 ,X 2 ,', Xn " iidF. (2.1)

The problem is now to estimate the probability distribution of a specific estimator of a
parameter 0(F), say 0"(F). The probability distribution of 0h(F) could be approximated

by the following algorithm (See Efron [Ref. 1: Section 2 J):
(1) given that the realization of X has been observed, say Xi = xi, i = 1, 2,..., n,
(2) construct the sample probability distribution Fh , by putting mass I/n at each

point x1 , x xn ,

(3) keeping xi and Fh fixed, draw with replacement a random sample of size n
from Fh, and call this the bootstrap sample; i.e., X*i x'i, where X*i - iid

F h ,so

P(X*i = xj X = x ) 1/n, (2.2)

(4) the distribution of Oh(F) can be approximated by a sample on 0*(Fh); then, a
measure of accuracy could be assigned to 0*(F) base on 0*(F11).

As mentioned earlier, the distribution of some estimators 0 *(Fh) might be

calculated analytically.

12



1. Direct Analytical Calculations

An attempt is now made to calculate some parameters of interest of the

distribution of X*i. Assuming the conditions shown in expressions (2.1) and (2.2), the

expected value of X*i, given X, could be calculated as follows:

E,(X i ) - =E(X*i X = x)- = jxj P(X*i = xjl X = x), (2.3)

where j 1, 2,..., n. From (2.2), this is equal to

E,(X j ) = Yj (xj / n) = K j = 1, 2,..., n, (2.4j

which is the sample mean of the original sample X. Then from (2.4), the unconditional

expected -alue ofX i is

E (X*) = EIE*(X j I X) = E(R)= lx j= 1, 2,..., n. (2.5)

Thus, the unconditional expectation of X j is equal to the mean of the population

from which the original sample was obtained. (Note, from this point on all summation

signs go from I to n, unless otherwise specified, and E* , Var* , etc., are conditional,

give X .)

Likewise, the unconditional variance of X* could be derived from the

conditional variance of X*

Var*(X*i) = E*(X i - E(X i X = x)) 2 ] (2.6)

Using (2.5) this expression is equivalent to

Var*(X i = E[(X 1 - X)' IX] (2.7)
•*2 X-

= E*(X i) "
= i (X 2,/n)- R2
=Yi (Xi n

By definition of the sample variance, S2 x, then

Var*(X i = (n-l)/n S2  (2.8)
X

13
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Now, unconditionally

Var (X i) = E(Var*(X)) + Var[E*(X*)] (2.9)

= E [Ei (X'i /n )- V] + Var(X)

= E [(n-1)/n S2x] + y2x /n
= (n-1)/n E(S2x) + zx n

= (n-1)/n trzx + aZx/n

= 
*X2

Therefore, the variance (unconditional) of X i is the same as the variance of
Xi. The covariance between X i and X j has a very important impact on theF 1 * h

bootstrap methodology, primarily when the bootstrap distribution of 0 i(F") is

approximated by Monte Carlo simulation (see next section).

Conditionally (given X), the covariance between X* and X is as follows

Cov*(X *i,Xj) = EI(X i" E,(X i)) (Xj - E(X j)) (2.10)

From (2.5), this is

Cov*(X i.X j ) E*(X i' - 5) (X X) 1 (2.11)
=E*(X i X j)-2

Now conditionally, given X -- x, the joint distribution of (X*i,Xj.) is uniform over the
the jondthdisributin oft X

points (x1 ,x2,..., Xn) X (x1,x2 ,... ' Xn) and this implies that (Xi X3 ) = (Xkxl) with

probability I/nz. Then

-.E,(Xi X) = i (xi xj ) / n2  i j (2.12)

(1/n 2)(El xi)z -

Finally, the conditional covariance between X i and X j is

Cov,(X iX) = O 0. (2.13)

Now, to derive the unconditional covariance between X i and X j, it will be convenient

to use the result obtained in equation (2.13). To use (2.13), it must be shown that the

following equality holds:

14
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Cov(X i,X i)= E[Cov*(X i,X i)] + Cov[E*(X i), E,(X j)]. (2.14)

To show this, notice that the conditional covariance can be defined as

Cov(X,YIZ) E(xylz)l(XY - E(XIZ)E(YIZ))IZ] (2.15)

E(x,ylz) (XYIZ) - [E(XIZ)E(YIZ)].

Then

Ez[Cov(X,YIZ) = Ez[E(x,ylz)(XYIZ) - {E(XIZ)E(YIZ)}] (2.16)

= EZ[E(x,ylz)(XYIZ)] - {Ez[E(XIZ)]Ez[E(YIZ)]} -

- Ez[E(XIZ)E(YIZ)] + {Ez[E(XIZ)IEz[E(YIZ)]}

= Cov(X,Y) - Cov[E(XIZ),E(YIZ)].

Therefore,

Cov(X,Y) = Ez[Cov(X,YIZ)I + Cov[E(XIZ),E(YIZ). (2.17)

With this in mind, the unconditional covariance could finally be computed by using

(2.15). Now, the portion inside the brackets of the first term of the right hand side of

equation (2.14) was shown in (2.13) to be equal to zero. Then, using expression (2.5),

equation (2.14) reduces to-

Cov(X*i,X*j) = Cov(.X,X) = Var(X) = cr2 x/n , (2.18)

and from (2.18), the correlation coefficient is given by

p(X i,x j) = I/n = P[X i = Xj] (2.19)

Comparing equations (2.13) and (2.18) it could then be stated that the

bootstrap samples are (conditionally) independent as long as X is held fixed.

It is possible now to derive the distributional characteristics of some statistical,
estimators based on the distribution of X i" In doing this, it is assumed that the

original sample X is fixed and these derivations are conditional. For example, the

expected value and the variance of X* (the bootstraped sample mean) are obtained as

follows: using equation (2.5)

15
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E - , (2.20)

so unconditionally, the expected value of the bootstrap sample mean is

E(x*) = E(X) = x (2.21)

The conditional variance of the bootstrap sample mean is

Var*(X*) = (1/n')Var* [Ei (X 1i)] (2.22)

- (1/n') [Zi Var*(X *i) + (n(n- 1)/2)Cov*(,X*i,X*j).

From equation (2.13), the conditional variance is then

Var*(X*) = (l/n2)[YiVar*(X*i)] (2.23)

= (1/n2 ) [n Var*(X*i)]

Using equation (2.8), finally

Var*(X*)= (n-l)/n2 Szx . (2.24)

With this expression, the unconditional variance of ,* is given by

Var(X*) = E[Var*(X*)I + Var[E*(X*)]. (2.25)

From equation (2.5), and (2.20)

Var(X*)= E[(n-1)/n' S2x ] + Var(X)

= (n-1)/n z 62 x + a'x/n

= (2n-l)/n Var(,X)

As mentioned earlier, equation (2.24) is the one of interest when one wants to apply

the bootstrap mechanism to obtain the variance ofX*. Notice that as n 00,

Var*(X*) -. Var(X) (2.26)

strongly (strong law of large numbers), but this is not the case for the unconditional

variance ofX* , where as n -. 00,

16
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Var (X*) - 2Var(X). (2.27)

It is now possible to define an estimator for the MSE of the mean of a

population based on X:

MSE*(X*) = Var*(X*) + [E*(X* (2.28)

= Var*(X*) + [Bias*(X,*)I2

In the same manner, the MSE of any estimator could be derived. However, it

is easy to see that as the mathematical definition of the estimator gets more

complicated, this procedure can become very tedious. This is why it is desired to

estimate the bootstrap distribution of the estimator by simulation rather than

analytically.

2. Monte Carlo Simulation

The algorithm presented in Chapter II, Section A, could be expanded to allow

Monte Carlo simulation to approximate the bootstrap distribution of 0*(Fh). As before

(See Efron [Ref. 2: Section 21):

(1) given that the realization of the random vector X has been observed, say X i

= xi for i ,..., n

(2) construct the sample probability distribution F' , by giving a mass 1/n at each

point x. , x2 ,..., xn
(3) keeping xi (and thus, F" ) fixed, draw with replacement a random sample of

size n from Fh , and call this a bootstrap sample;

(4) from this random sample, compute the bootstrap replication, Oi (Fh); i.e,

compute the value of the desire statistic based on the sample from Fh . Then,

(5) do steps (3) and (4) a "large" number B of times. In this way one obtains
independent bootstrap replications of 0 *(F), say 0*I(Fh) 0* 2(F),..., 0*B(F)

(6) now, approximate the variance of 0*(F h) by the sample variance

Var*h [0*(Fh)] = Ei [0*i(Fh) O*(Fh)2 / ( B - 1 , (2.29)

where i= 1, 2,..., B, and

6*(Fh) = i 0 i(Fh) / B (2.30)

4. 17

","%

4. . , . ., .: .., . , ., , , , , . . .,. : ., . ,. . . , . " . . . . . . . ...



Q.,

The MSE of 0*(Fh) may be estimated by

MSE* h(0*(Fh)) = Var*h[0 *(Fh)] + [BIAS*h(0 *(F h)]. (2.31)

It will be seen in Chapter Three that as B and n get large MSE*h(0 (Fh)) approaches

zero. A problem in using the bootstrap is the choice of B, and we consider this in

Chapter Three.

This bootstrap simulation procedure was carried out to study the effect of

possible choices of B, in terms of the estimated MSE of several estimators. The reader

will see, in the next chapter, that the choice of B should depend on the sample size n,

the specific estimator under consideration and the structure of the population from

which the sample was obtained.

a. The Statistical Experiment

In this thesis, various experiments were conducted to study the problem

of selecting B. The main idea behind these experiments was to select some well known

probability distributions and some parametric estimators for which the distributional

characteristics are well known. Then the MSE of these estimators could be determined

theoretically. Therefore, one could compare this true MSE with the estimated MSE of

the estimators obtained using the bootstrap mechanism.
The critical part of the experiment was to design an effective computer

code to perform the Monte Carlo simulation. The FORTRAN program developed to

carry out the simulation reported here is listed in Appendix B. This program was used

to analyze the performance of eight different estimators based on the bootstrap

methodology. These were the sample mean, variance (three different estimators),

coefficient of correlation, coefficient of variation, the five-percent trimmed mean, and

the median.

The simulation runs as follows (See Appendix B):

(1) n random variates, for up to 8 values of n, are first generated representing a

random sample from a population F. ( In the simulation a total of N random

variables are first generated, then sectioned into samnles of sizes ni where i=

1, 2, ..., 8.)

(2) For each subsample of size n , a bootstrap function is called to generate a

bootstrap sample from the original sample. Then, the estimator function is

18
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called to produce a desired estimate. This step is repeated until B bootstrap

samples from the original sample are obtained.

(3) After the B estimates have been obtained, the statistics function is called to

calculate the mean of these estimates, this number is one of the O*i(Fh).

(4) In order to improve the precision of the simulation process, steps (2) and (3)

are replicated M times. Then, the process will produce a total of(N x M)/ n

estimates. From these estimates, a box-plot is constructed and estimates,

including MSE, are calculated.

In the next chapter some of the results obtained from this simulation

process are analyzed.

19
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111. APPLICATION OF THE BOOTSTRAP METHOD: SOME RESULTS

A. THE MEAN VARIANCE AND THE COEFFICIENT OF VARIATION OF
EXPONENTIAL RANDOM VARIATES

The first experiment conducted was intended to analyze the bootstrap mechanism
in estimating the MSE of the estimators for the mean, variance and coefficient of
variation of a sample coming from a population of exponential random variates with
parameter X = 1. The population coefficient of variation is defined as:

CV(X) = x/ax (3.1)

In the Exponential(l) case, the mean, variance and the coefficient of variation have the
same value of 1. With this first fact in mind, the MSE of sample mean, as an example,
is defined using (2.21) and (2.28) as:

MSE(X*) = Var(X*) + [E(X* - lax)] (3.2)

Conditionally, from (2.26), an estimate of(3.2) is:

MSE*h(,*) = I(n-i)/n 2 Sx2 J + [E*(X* - 1)]2 (3.3)

In the same manner, the MSE for the variance and coefficient of variation could be
estimated. These estimates were obtained using the algorithm described in the
preceding section. The sample sizes for this experiment were: n = 10, 20, 25, 40, 50, 70
,100, 140. Each estimator was bootstraped using B= 5, 8, 10, 15, 20, 25, 40, 60, 100,
140, and 500. Figures 3.1, 3.2 and 3.3 below, show how the MSE*h for the mean,
variance and coefficient of variation respectively decreases as both n and B increases.

A remarkable feature of these plots is that the MSE*h of the bootstrap sample
variance (Figure 3.2) decreases much faster as the sample size increases than when B
increases. Observe the big jump in the MSE*h when n goes from 10 to 40 relative to

that of B going from 5 to, say, 40: the jump is much greater in the former.
Another observation of interest is that the MSE* h of the estimates decreases as

B increases, but beyond a certain threshold very slowly. Indeed, the decrease in MSE*h
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Figure 3.2 MSE. h of Bootstrap Sample Variance: Exp(l).

21



---,,-_ N25

- N-40
."- -,---N-50

*~ I,0- 70
"@' .--w-.-N,, 140

oI I I I I I I I -300 400 500

B = BOOSTRAP REPLICATIONS

Figure 3.3 MSE~h of Bootstrap Coeff. of Variation: Exp(1).

beyond B 50 is barely noticeable. For example,, see Figure 3.2, the MSE~h of the

sample variance decreases only by one-thousandth of a unit when B is increased from
200 to 500 replications. This is also true for the sample mean. However, for the

* ~coefficient of variation (see Figure 3.3), the MSE~ h improved about two perccnt (.02)

in the same range for a small sample size (n= 10). These results give an idea of the
performance of the MSE of the bootstrap estimates of a given estimator. It should also

suggest to the statistician that once the estimators are performing fairly well (i.e., once

this threshold has been attained), there is no reason to increase the amount of

bootstrap replications, since this will not induce a great improvement in the estimates.

An important point here is that when an attempt is made to estimate the sample

variance using the bootstrap method, the number of bootstrap replications should be

greater than 100 in order to decrease the MSEh below 0.6.

The bootstrap distribution of some of the estimators are shown in Figures 3.4,

and 3.5 in the form of boxplots and a summary of the distributional statistics. These

were obtained by using a statistical package, called SMTB10, developed at NPGS (See

Appendix B). This package was modified by the author of this thesis in order to obtain

MSE*h. Each boxplot represents the distribution of the bootstrap estimator based on

tle sample size n.

22
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Notice, in Figure 3.4, that the distribution of the bootstrap sample mean

resembles a Normal, as would be expected by the Central Limit Theorem, with the

Kurtosis and Skewness oscillating around zero, as n increases. Recall from previous

section that the standard deviation of X*, in the case of Figure 3.4, would be estimated

by

STD*h(X*) = STD*h/ /n*, n = N x M/NE(I)

and STD*h is the value shown on the bottom table of this figure. Figure 3.5 shows the

distribution of the bootstrap sample variance (3.5). Looking at the distribution
summary, one can say that this distribution is quite similar to that of a scaled

Gamma(k,1) distribution. Again as n, increases the Kurtosis and Skewness get closer to

that of the Gamma, say 6/k, and 2/./k respectively. Figure B.4 and B.5, Appendix B,

show the distribution of the same estimators when B = 150. It is easy to see that the

distributional characteristics for the estimators follow the same patterns as those

discussed above, where B = 5. The only difference there is that, as expected, the

number of outliers decreases significantly particularly in the case of the sample

variance.

B. THE SAMPLE VARIANCE

This experiment was intended to further study the behavior of the bootstrap

sample variance for populations with various distributions. The ones discussed in this

section are the GAMMA(0.5,1), NORMAL(0,1) and LAPLACE(0,1). For this

experiment, the sample size where n = 5, 10, 20, 25, 30, 50, 60, and B= 5, 8, 10, 15,

20, 25, 30, 35, 40, 50, 100, and 500. In the first two cases, the GAMMA and

NORMAL distributions, the bootstrap sample variance seems to approximate the

population variance fairly well when n 2t 50, where the MSE*h is less than 0.10.

Figures 3.6, 3.7, and 3.8 show the relation between B, n, and the MSEh of the

bootstrap sample variance for a Gamma(0.5,1), Normal(0,1), and Laplace(0.1)

respectively.

Notice that there is a lot of random variation in the MSE h when B is in the

range 5 -< B <50 for n < 30, and for B < 25 when 30 < n -< 60. This random noise

extends beyond these ranges in the case of the Gamma(0.5,1). Notice that in Figure

3.6, the lines for the MSE*h of the sample variance when n= 15, and 20 are above

that when n= 10 for B < 300. However, when B=500, these lines lie below the one

corresponding to n= 10. The MSE," for n= 15, and 20 is actually less than the MSE:h
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Figure 3.8 MSE*? of Bootstrap Sample Variance of a L(0,1).

for n= 10 just after B > 150. In this experiment, it is also true as found for the

Exponential(l), that MSE h decreases faster as n decreases than when B increases. This
was also the result in the case of the Laplace(0,1). However (notice the scale of the

MSE in this case), the MSE*h is quite high. Figure 3.8 shows that for a sample of size

n - 15, the MSE,1h > 1.0 even when B is as large as 500. It was suspected that

probably this high MSE, h was caused by the mechanism used to generate Laplace

random variates. The first method used in this experiment takes the difference of two

Exponential (I) variates. The second method generates an Exponential(l) and converts

it to a Negative-Exponential(l) with probability .5 - The histograms, using different
sample sizes, showed that the first algorithm used to generate Laplace random variates

was the most effective. In any case, the point here is that for the ranges of n and B

used in the experiment, the MSE*h of the sample variance for a Laplace(0,1) never

decreased below 0.2. This was not the case for the other distributions. This suggests
rthat the performance of the bootstrap method depends on the distributional properties

of the population in question as well as the estimator under consideration.
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C. THREE DIFFERENT ESTIMATORS FOR THE VARIANCE

In Chapter Two, the expected value and the variance of the bootstrap sample

mean (X) were derived. In this section, the expected value of the bootstrap sample

variance, call this S*2 , is calculated. Let

S 2= [i (X - X*)21/ (n - 1) (3.4)

= [i Xi*2 nX*z/ (n- 1)
Note that

E,(X 1) = (1/n)Ei X2'  (3.5)

so that

E*(Yi Xi* z) = i (3.6)

Likewise the second moment of X is given by:

E*('X*2) = (1/n2 )[Ei Xi*2+ ijj E(X*iX*j)I i j (3.7)

As before, (X'iX*j) has probability (1/n z) of being any point of the form (xkxl) so

from (2.7)

E*(X*i,X*j) =(1/n 2 ) E[ i Xi? + Eiyj XiXj 1 (3.8)

= (l/n 2 )Yi Xi 2 + ijj (XiXj)/n 2

Now

SX*iX*j = (n(n-l)/n2 )[yi Xzi + Yi j XiXj] (3.9)
- ((n-l)/n 2 )( i Xi)2

= n(n-I)X 2

Then (3.7) can be expresscd as

E,(X*2) = (l/n2 )[i X2 . + n(n-I)X 21 (3.10)

Finally, using (3.6) and (3.9), the conditional expccted value of iS*1 is

28
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E,(S 2
) = (1/(n-1))E*(Y i X 2i + nX*) (3.11)

- 1/(n-l)[li E*(X*i2) - nE*(X*2)]

= 1/(n-l) { i Xi- (/n) (Yi Xi 2 + n((n'l)) " 2J}

= 1/(n-1) [((n-l)/n)ZEi Xi - (n-l), 2 ]
= i(Xi -:) 2 / n.

Call this a s *2. Now suppose it is known that X "-N(la,a 2)- this restriction is not really

required in this context - and it is desired to estimate the variance of X using the

bootstrap method. As shown in the previous chapter,

E(X*) = p x  (3.12)

so the unconditional expected value of iS. 2 is:

E(1S*2) = E*IE(1S*zX) (3.13)

= E[(Y(X i - X) 2 )/ n
= ((n- l)/n)ax2

Then 1S"2 is a biased estimator for a x2. The finite population correction factor might

thus be suggested to improve the performance of IS 2. Define

2 S*2 = (n/(n- 1)) 1S*2 = n/(n-1) 2 Yi (Xi* "- ,*)2 (3.14)

an unbiased bootstrap estimator of a'x2 . Analyzing expression (2.5) and (3.11), yet

another estimator for a x can be suggested. Since the value of E*(X i )= X is known,

the following estimator for ax 2 also seems reasonable:

3S*2 = RXi")2 / n (3.15)

The third experiment was conducted to compare the performance of these three

estimators (3.4), (3.14), and (3.15). Figures 3.9, 3.10, and 3.11 show the results of this

experiment.

As can be seen, the third estimator, 3S*2, in almost all cases outperforms the

other two for all different sample sizes tried in this experiment. Even the second

estimator (3.14) performs almost as good as S* 2 when n > 50. When n > 50, the
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Figure 3.9 MSEh of the Sample Variance of a N(0,1).
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Figure 3.11 MSEh of the 3rd Variance Estimator of a N(0,1).

- difference between these three different estimators is barely noticeable. However, for

very small samples, n < 20, 3 S is definitly a better estimator for a2 than S *2

Efron [Ref. 11 has suggested the use of 1S*2 as the bootstrap estimator of the sample

variance. As the plots suggest, it could be now recommended the use of S* Z and

even zS (for larger samples, n > 50) rather than iS to estimate the sample
*2variance. Note that as n--00, 1 S*2 is the same as zS . (Note: these two estimators

(3.14) and (3.15) are called VARIA2 and VARIA3 respectively in the FORTRAN

code, listed in Appendix A).

D. THE CENTER OF A DISTRIBUTION: COMPARISON OF THE MEAN,
MEDIAN AND TRIMMED MEAN

The sample mean is the most used estimator for the center of a distribution.
However, two other estimators are also used, specially for symmetric distributions: the

median and the 5% trimmed mean. There have been many comparisons of the

asymptotic performance of these three estimators. Lehman [Ref. 8] has calculated the

asymptotic values of these estimators in case when the sample is from a Normal(0,1) or
a Laplace(0,1) population. These calculations are summarized in Table I below.
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TABLE 1

ASYMPTOTIC VARIANCE OF THE MEAN, MEDIAN
AND 5% TRIMMED MEAN

ESTIMATOR

Probability
Distribution Mean Median 5% Trimmed Mean

Normal(0,1) 1.0/n 1.57/n 1.01/n
Laplace(0,1) 2.0/n 1.00/n 1.65/n

These values, among other things, show that for the case of sample coming from a

Normal(0,1), the mean has less asymptotic variance than the other estimators.

However, if the data comes from a population with heavy tails, like the Laplace, the

median is a better estimator asymptotically (having less variance). The 5% trimmed

mean is a compromise between the other two: it should used when the practitioner

does not know the nature of the tails of the population.

A fourth experiment was conducted to see if these observations hold when the

corresponding bootstrap estimators are used. In this experiment, the MSE of of the

bootstrap estimators were compared with the asymptotic MSE for the usual estimators

as B increases. The asymptotic MSE (call it MSEA) of the three estimators could be

estimated by adding the asymptotic variance, as defined in Table 1, plus the

bias-squared. The MSEA was compared with the MSE*h of the bootstrap

estimators, for several sample sizes, as B increases.

Figures 3.12, 3.13, and 3.14 summarize the results of this comparison for the case

of a Normal(0,1) population. Figures 3.15, 3.16, and 3.17 show the results for a

Laplace(0,1) population.

In these figures, the solid horizontal lines represent the values of the asymptotic

MSE of the usual estimators. For example, in Figure 3.12 the estimated asymptotic
MSE of the sample mean for a sample of size n= 5 is approximately 1/5.0 +

(BIAS) 2 -. 20. The dotted line represents the estimated MSE of the bootstraped

estimators as B increases.

In summary, for the Normal(0,1) population, the bootstraped sample mean and

the 5% trimmed mean have less error, asymptotically; they are estimating the center of
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Figure 3.13 Asymptotic MSE of the Sample Median of a N(0,1).
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the distribution with much better precision than the bootstrap sample median.

Comparing Figures 3.12 and 3.13, it looks obvious that for sample sizes n<60 the

bootstraped sample mean shows much smaller MSE than the bootstraped sample

median. When the sample size is n= 60 there is no distinguishable difference between

the estimated MSE's of these two estimators. Notice that the bootstraped 5% trimmed

mean (Figure 3.14) seems to perform as well as the bootstraped sample mean; it is

better for very small samples, say for n=5, 10, and 15. This confirms the general

relationship among these estimators, even in the case of bootstraping the estimators,

that the 5% trimmed mean is a robust compromise between the sample mean and the

sample median.

The results obtained in this experiment, however, do not agree with the classical

theory in the case of the Laplace population. In this case the bootstraped sample mean

outperforms the bootstraped sample median in estimating the center of the

distribution, for sample size n<5 20. For a sample of size n = 60, there is no real
difference between these two estimators, in terms of MSEh. Notice that the 50'0

trimmed mean (Figure 3.17) performs better than the bootstraped sample median

(Figure 3.16) for the cases where n<60, but in turn, is outperformed by the

bootstraped sample mean ( Figure 3.15).

E. LINEAR REGRESSION BY BOOTSTRAPING TiE RESIDUALS

In a final experiment, linear regression estimation was considered. In this case,

there is a choice of bootstraping methods; however, in this thesis only one method is

considered. The method considered here relies on bootstraping residuals to estimate

the variance of the Ph" vector(Ph stands for " i hat"). A measure to estimate the MSE

of this vector is also introduced.

In the typical linear regression problem there are n independent observations

(real-valued) Yi and it is assumed that the following model holds:

Y = XP] + c , (3.16)

where c is a random sample from some population F, and Pi is a p X i vector of

unknown parameters that must be estimated. All that is assumed about F is that it is

centered at zero, E(c)= 0 and Cov(c))=a 2 I . One way of estimating P is by the

commonly used least squares method, in which the sum of the squared distances
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(3) Using the same fitting technique used to obtain ]h in the original problem,

calculate J3" Then obtain an estimate of *

b* = (XX) " X'Y* (3.21)

(4) Repeat steps (2) and (3) B times obtaining independent bootstrap

realizations b *, b *"", b*B Then the covariance of ph can be estimated by
the sample covariance matrix of the bb, b = 1, 2,..., B.

Efron has shown (See [Ref. 1: page 18]) that as B 00,

Var(]p*) = ((n-p)/n) (X' X)y'(r (3.22)

where cr2 is an unbiased estimate of the variance of Yi . In this procedure, r2 can be

estimated by 2S*2 . It can be seen that as B - 0 ,

Var(1*) -* Var(Ol1). (3.23)

The following experiment was conducted to estimate the MSE of pIh . Suppose it

is known that the observations Yi come from a Normal(0,1). Then the true value of the

JI- vector in the regression model (3.17) is JI = (0,0,0), so the E(p) = 0 and the

variance-covariance matrix of Pi is = r(X' X) "1 , where it is known that G2 = 1.

For this experiment, a design matrix X of orthogonal-column vectors was

created. This matrix has l's in the first column; then a series of n alternating l's and

-l's in the second column; and finally the third column (for p = 3 ) is a series of two l's
and two -l's (also, n = 2x , x = 2, 3, 4.... ). Then it was possible to readily calculate

J3h , by

ph = (1/n) (X' Y). (3.24)

The bootstrap algorithm described above was used to generate a sample of J1i 'Then,

an estimate of is

i (Il/n) (X' Y )(3.25)
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% It was desired to develop a measure of precision for analogous to MSE, which

depends on Var(P3 and the bias of P * . Define

MSE(P*) = Ep*- .(')z (3.26)

ON. Recall that in this experiment rhe E(13h 0. Then, (3.26) could be estimated in the

following way:

1) Do step (4), as above, obtaining

MSE*(P3 (P~i* -E( Ph )2]B i= 1, 2,..., B (3.27)

- ~ - i1B.
2) Repeat (1) a number of NI times to obtain an average MSE* h of the procedure

(3.27).

The results of this experiment are shown in Figure 3. 18.
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Here, the sample sizes were taken as n = 4, 8, 16, 32, 64, and 128, and M = 15.

The estimator j3* was bootstraped a number B = 5, 10, 15, 20, 30, 40, 50, 100, 150,

and 500. The results obtained were surprising. When the number of observations is

small, n< 33 , the MSE h of the estimator is relatively high (MSE*h > .09) even

when B is as large as 500. When n > 65, there is some improvement in the MSE h ; in

this case, the MSE~h is at least 5% lower that when to n < 33. It is interesting to see

that increasing B from 5 to 500 there is no remarkable gain in the precision of

estimator when n > 65; the MSE*h oscillates around the same value. Now, when n <

33, increasing B by the same amount, the MSE h decreases but less than 1% of its

initial value. It seems that in the linear regression estimation the key problem is the

size of n and not of B.

When using this method for estimating the MSE of ph , the practitioner must

bear in mind that it involves the residual distribution and hence assumes that the linear

model is correct.

7'
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IV. CONCLUSIONS

As it has been shown, the Bootstrap is an accurate method for estimating the

precision of the estimates and for estimating the distribution (or some feature of the

distribution) of an estimator. For MSE, the number B required to obtain a certain

degree of accuracy will vary depending mainly on the population (this is a subject for

further studies) and the type of the estimator used for estimation. It was found that

when the sample comes from a population having heavy-long tails, such as the Laplace

distribution, the bootstrap estimator for the mean is a better estimator for estimating

the center of the distribution than the median or the 5% trimmed mean; where in the

case of using nonbootstrap estimators, the median is a better estimator than the other

two estimators.

In estimating the variance of a population, it was found that there exists an

estimator that is more accurate than the typical estimator recommended in the

bootstrap literature. This estimator (3S ) relies on the fact that the original sample

mean in the bootstrap method is known. Once this value is calculated, there is no need

to find X for each bootstrap sample, since R is fixed through the process. Another

estimator for a' was also proposed, 2S*2 . This estimator is unbiased, where 1S*2 is

not, but for small sample sizes, n < 30 , is not as accurate as 3 S* . It should be

emphasized that in using this estimator, 3S*2, one can reduce the computer time

required to estimate a2 . Hence, this is another advantage in using this estimator.

In the linear regression estimation, using as a neasure of precision definition

(3.28), it was found that the bootstrap method analyzed in this thesis gives estimates

with small MSE*h with relative small sizes of B, but for relatively large sample size, n

> 60. When the sample size is small, increasing B up to 500 will result in a gain of

around 1% in the precision of the estimates. Thus, in the linear regression estimation

the critical issue for MSE is the sample size. It was also noted that the disadvantage of

this method is that it assumes that the model in question is correct.

The result that seems to apply to all cases studied in this work is that, in using

the bootstrap method for estimating MSE of some parameter 0 , there really exits a

tradeoff between B and n: as n increases, one can significantly decrease B and still get

very precise estimates. lowever, no matter what n is, once some degree of accuracy
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has been obtained, there is no reason to increase B much more since this will not

induce greater precision in the estimates. In Appendix C , the reader will find tables

that provide information about this tradeoff for given estimators and populations.
Analyzing the figures presented in previous chapters and these tables, a rule of thumb
about the relation between n and B can be hypothesized. The following rule seems

reasonable: make the number B - 1000/n. In almost all cases studied here, this rule

yielded estimates with MSE*h < 0.05 (note: independent of n, making 40 < B >

60 will also produces estimates with small MSE h ). The only exception is when the

population in question was Laplace(0,1). This is an area that needs further study.

Finally, it was found that a (possibly not serious) disadvantage in using the

bootstrap method is the computer time required to obtain the estimates. For example,

in estimating the variance of a Ganuna(0.5,1) distribution, increasing B from 20 to 100

increased the CPU time of the IBM 3033-A16 system used in this experiment about

75%. This time is increased at least another 500 if one desires to obtain the

distributional characteristics of the estimator (i.e., boxplots). I lowever, in view of the

decreasing cost of computer time, this does not seem to be a major obstacle for using

this method.

*1I
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APPENDIX A

LIST OF SPECIAL NOTATIONS

(1) oh .0 -hat, estimator of 0

(2) Fh :empirical probability distribution

(3) 0*(F*) :the value of 0 based on bootstrap method

(4) X :a bootstrap random sample

(5) MSE*h :estimated MSE based on bootstrap method

(6) ph :estimator of the p x 1 j3 -vector

(7) bh :an estimate of Ph

1(8) p* :estimator of JI based on bootstrap method

(9) b * :an estimate of J
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APPENDIX B

FORTRAN CODE FOR BOOTSTRAPING

This program, called BOOTST, was developed to estimate distributional

properties of some statistical estimators using the Bootstrap Method. Also it is possible

to obtain estimates of the MSE of the estimators. The code was written in FORTRAN

77. It can generate a random sample for Monte Carlo simulation or can read the

sample data by a CALL to a subroutine FDATA (at the end of the code listed below).
The user can generate samples from the following distributions: Exponential(X),

Laplace(0,1), Uniform(0,1), Normal(O,1), Gamma(a,l), Poisson(k), and the

Geometric(p). The parameters a, X, and p can be specified by the user within the

appropriate function. With this program, the user can study the distributional

properties of the following bootstrap estimators: mean, variance coefficient of

variation, serial correlation, median, and the 5%-trimmed mean. Also, one can obtain

estimates of the "P -vector" in the case of the linear regression estimation by

bootstraping the residuals ( See Chapter Three, Section D ). The program is structured

in five main sections: the MAIN program, to include input requirements; the DATA

GENERATION, the ESTIMATORS definition, the BOOTSTRAP SAMPLING

mechanism, and the STATISTICS sections.

The program can be used in two ways. The first, makes use of another program

called SMTBI0. This code was developed at the NPGS by Prof. P.A.W. Lewis, and

Mr. Luis Uribe (See [Ref. 9] ). It is highly recommended that the user become familiar

with the documentation of STMBIO before attempting to use BOOTST. In general,

when using this option, the user must create an input file containing the parameters

specified in the input section of BOOTST. Then, a CALL is made to STMBIO, and in

turn STMBIO will make various sequential calls to generate the data, calculate the

values of the desire estimators (using the bootstrap mechanism), and produce the

statistics. When a call to STMBIO is made, the user could produce estimates for 1, 2,

or 3 different estimators using 1, 2, or 3 sample data generators or any of the eight

possible combinations. Also, the user could select up to 8 different sample sizes for

each estimator. Therefore, in one execution, statistics for up to three differcnt

estimators, using up to three different data generators, and for up to eight different
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sample sizes can be obtained using the bootstrap method. These options are controlled

in the INPUT requirements of BOOTST. At the end of each execution, BOOTST will
send to a printer (or to the screen, depending on the option selected) a file containing

boxplots and a summary of the statistics for each estimator. The input requirements

are controlled by the user in a file called BOSIN.

The general execution of BOOTST runs as follows:

(1) For each estimator

(2) Read Input Requirements (MAIN)

(3) CALL STMBJO

(4) CALL Data Generator (Data Generation Section)

(5) N= k X n random variates are generated, where k = / or 2,...,
or 8 different sample sizes. Then the data is sectioned into
samples of sizes A(4. = n. If M repetitions of the process are
allowed, then a total of ' l N random nunibers are obtained.
Estimates are calculated for each sample size N(K).

(6) CALL Estimator Function (Estimator Section)
Begin Generation of Estimates

(7) For I= I to B
CALL BOOTSTRAP (Bootstrap Section)
CALL STATISTIC

Store Bootstrap Estimates
CALL STATISTIC

Store Mean of Bootstrap Estimates

(8) PRODUCE Boxplot and Statistics

The input requirements specific to BOOTST are explained below, the other

inputs declared in the MAIN are specific to STMBIO ( See [Ref. &refl0] ).

(1) ANS : 1 or 0 : If the user wants to store each bootstrap estimate for each
estimator, the answer should be 1. Estimates are stored in FILE 21.

(2) NE(I): a vector containing the sample sizes (n). Up to 8 different sample sizes.

(3) IB: Number of bootstrap replications for each execution.

(4) IX: Seeds used to generate data (up to 3 different seeds).

If the user desires to obtain estimates and graphical displays of two or more

different estimators and is using a large number B, say B > 60, the amount of

computer time required will increase significantly depending on the system used.

The second way to execute BOOTST is recommended for more experienced users
or for those who do not want to obtain boxplots of the estimates. This option will save

a great deal of CPU time. For this option, the user will have to make some simple

changes to the MAIN program:

(1) Delete from the input requirement section those inputs that only apply to
STMB0 (those not listed above).

(2) Replace the call to STMBIO by the following sequence of calls:
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(i) Call Data Generator (i.e., one of the data generators)
(i) Call Estimator (i.e., one of the estimator functions) The estimator

function (subroutine) will make the appropriate call to the Bootstrap and
Statistic subroutines.

(3) For this option, the i)put parameters ANS must be set to integer 1. Also, if
the user now make reference to the code, it will be noticed that each estimator
subroutine has a special parameter WI. This parameter must be deleted
everywhere since its only applies to STMB10.

The computer code is listed below.

CC UPDATED 07-03-86 W. CORTES-COLON
C MAIN : DECLARATION, INPUT SECTION AND CALL FOR SMTBIO.
C

COMMON IB IXI IX2,IX3,IX4,ANS
COMMON ZMU0000A
CHARACTER*80 T1 T2 T3
REAL*4 Yi10000YMINeYMAX PMEAN(3)YAMSECI3)
INTEGER NE18) D RG SEI SVS,N,M, L ,NEST,NSR
INTEGER IXI IXZMIXi IX4, IB ANS
EXTERNAL XMEAN,VARIACOEVA ,ECOR MEDIA TRIMM VARI2 VAR
EXTERNAL EXPONUNIFONORML, GAMAFv POISF, GEOMFLAPLA

C
OPEN(UNIT=19, FILE='BOSIN')
READI19,*) ANS

10 READ,19,*, ENO=999) N,MLDRGSEI,SVSNESTNSR
READ19,*) YMIN YMAX
READi lq,*) INE(I ),I=,L)
READ( 19, *1 IB
WRITE(22,105) IB,INE(I),I=1,L)

105 FORMATI I4,8I4)
READ(19,*) IXIIX2,1X3,IX4
READ 19,115) TI

115 FORMIATIA80 )
READ(19,115) T2READ (19,1151 T3
READ(19,*) {PMEAN(I),I=1,3)
READ 19,14 (AMSEC(J ,J=I,3)

C CALL FOR S 1TBO: PRODUCES BOX-PLOT AND COMPARISON OF STATISTICS
C

CALL SMTB1O(IX1,IX2,IX3,Y N ,NE L DNSRRG ,SEISVS.YMINPYMAXv* NEST, NORML XtEANT1,NORMLMEDIATiNOR1LTRIEM, T3  A
* PHEAN AMSEC
GO TO 16

999 WRITE(6*) 'END OF DATA INPUT'
STOP
END

C DATA GENERATION SECTION
C

SUBROUTINE EXPON(IX,XNEK)
REAL X( 1)
IFINEK .LE. 0) RETURN
CALL SEXPN(IXX,NEK,1,0)
RETURN
END

SUBROUTINE LAPLA( IXXNEK)
INTEGER ISEED
REAL XI1),XU(1000I,XZ(1000)
IF)NEK.LE.0) RETURN
CALL SEXPN(IXX2,NEK 1O)
CALL SEXPN(IXXU,NEKIO)
DO 10 I=INEK

X' I )=XZ(I I-XUI)
10 CONTINUE

RETURN
END

SUBROUTINE UN IFO( IX,X,NEK)
REAL Xii)
IFINEK .LE. 0) RETURN
CALL SRND(IXXNEK,1O)
RETURN
END

C
SUBROUTINE NORML( IXXNEK)
REAL X1)
IFINEK .LE. 0) RETURN
CALL SNOR(IXX,NEK,1,0)
RETURN
END

C
SUBROUTINE GAMAF(IXXNEK)
REAL X(I), ALPHA
ALPHA=O.5
IFINEK .LE. 0 RETURN
CALL SGAMA IXPXNEK,,OALFA)
RETURN
END

C
SUBROUTINE POISF( IXX,NEK)
REAL X(II,LAMOA
LAMDA=O. 5
IFINEK .LE. 0) RETURN
CALL SPOIS(IXX,NEK,1,OLAMDA)
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RETURN
END

* C
SUBROUTINE GEOMFI IXXNEK)
REAL Xii), P
P=0.5
IFINEK .LE. Of RETURN
CALL SGEONIIXXNEKiOP)
RETURN
END

ESTIMATOR SECTION :BRLG IS USED FOR LINEAR REGRESSION ESTIMATION
C ONLY. IT IS RECOMMENDED TO USE THIS ESTIMATOR SEPARETLY: I.E,
C WHEN CALLING SMTBiO, USE ONLY ONE ESTIMATOR.

C REAL FUNCTION BLREGIYOSNEKNI)
COMMON IS ANS
REAL YOSS(1) BMSTAR(3),MSEBS
REAL XDES1(603) XTRANS(3 600) XDES2(3,600),XTXINVI(3 3)
REAL RESiI6DO ),YHAT(6OOJ,R6TARttOO),BHAt(3),YSTAR(6DO0
REAL BSTAR(3)
INTEGER NI
00 10 1i NjEK

YMAT(I -0o.0
DO 10 J1l 3

XDESiIIJ) =1.0
XDES2IJ,1) 0.0
XTRANS(J,I 3=0.0

10 CONTINUE
DO 20 11 N EK,2

XDES1I f2)=-1.0
20 CONTINUE

DO 30 I=1,NEK,4
XDES1II,3) -1.0
XOESi(I+,3) = -1.0

30 CONTINUE
DO 40 11l 3

XTXINVII I)1I.0/FLOATINEK)
BHAT(I)=

40 CONTINUE
DO 50 J-1 NEK

DO So f-il 3
XTRANS( f,J )=XDES1IJ,I)

50 CONTINUE
DO 60 K=1,3

DO 60 J-1 NEK
DEOZ K0 f=,J )XDES2( K,J) + XTXINVIK ,I )*XTRANS( I ,J

60 CONTINUE XE2
DO 70 K=153

DO 70 J1 NE
BHATIKi=BHAT(K) + XDES2IKJ)*YOBSEJ)

70 CONTINUE
DO 90 J1j NEK

DO 80 f=1,3
YHATIJ)=YHAT(J) + XDESIJ,I)*BHAT(I)

80 CONTINUE
RES1IJ)=YOBS(J)-YHAT(J)

90 CONTINUE
DO 95 IHX=1,3

BMSTAR(INX)=O.O
95 CONTINUE

MSEBSO .0
DO 100 IW~i IS

DOlH JI1 NEK
RSTAR( .1II=RES1(JI2)

110 CONTINUE
CALL BOOTS( RSTAR,NEK)
DO 120 K-i NEK

YSTARIKIfl'HATIK) + RSTARIK)
120 CONTINUE

DO 130 K-i 3
BSTARIKi=.
DO 130 KI=l,NEK

BSTAR(K)=BHATIK) + XDES2(K,KI)*RSTARIKI)
130 CONTINUE

C NRITE(6,5) IBSTARIKL),KLi1,3)
C 5 FORMAT(iF8.4)

00 140 KJ=1,3
BMSTAR( KJ )BMSTAR( KJ) + BSTARI KJ)

140 CONTINUE
100 CONTINUE

DO 150 KHil 3
BMSTAR(KA )4MSTAR( KH 3/FLOAT(IB)

150 CONTINUE
DO 160 K11l 3

MSEBS=MStBS. BMSTAR( KI )*BMSTAR KI,)
160 CONTINUE

BLREG=MSEBS
IFIANS.EQ.1.AND.NI .EQ.1) NRITEC 21,102) BLREG

102 FORMATIF8.4)
RETURN
END

REAL FUNCTION XI1EANIX,NEK,NI)
& COMMON IB,ANS

REAL Xi 000) Y(0)BBiO
INTEGER WI 00,V1,BiD )
DO 10 1il NEK

Y I IX(I)
10 CONTINUE

DO 15 1=1,18
DO 20 JIl1 NEK

Xji .= Y(JI)
20 CONTINUE

CALL BOOTS(X,NEK)
CALL BSTATSIXNEKV)
BB(I)= Vii)

15 CONTINUE
CALL BSTATSEBBIBV)
XMEAN=V( 1)
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IFEANS EQ. ANO .I.EQ.11 I RITE(21,1021 )QIEAN
102 FORMATI FS 1.4)

RETURN
END

2 REAL FUNCTION VARIAIXNEK,NI)

REAL l ) Y1100)V0,Blo )
INTEGER wf OOV1OB10J
DO 10 11 tNEK

Y(II)=X I)
10 CONTINUE

00 5 1=1,18
10 20 J11 fNEK

XlJI)=tl JI)
20 CONTINUE

CALL BOOTSIXNEK)
CALL BSTATS X,NEKV)
DWI)= V(2)

15 CONTINUE
CALL BSTATS(88,IBV)
VARIA=E 1)
IF(ANS.EQ.1.AND.NI.EQ.1) NRITE(21,1021 VARIA

102 FORMATIF8.4)
RETURN
END

REAL FUNCTION VARI2IXNEKdII)
COMMON 18, ANS
RNE Y(003,PV(103,BB(1000J
Do 0 1=1 NEK

(I= 3XI)
10 CONTINUE

DO 15 1=1,I8
DO 20 JI-1 NEK

xeJIi=tlJz 3
20 CONTINUE

CALL BOOTS(X,NEKJ
CALL BSTATSEXNEKV)
88111= V(3)

15 CONTINUE
CALL BSTATSIBBIBV)
VARI2V( 1)
IFIANS.EQ.1.AND.NI.EQ.1) NRITEI21,.102) VARI2

102 FORMATIF8.4)
RETURN
END

REAL FUNCTION VARI3IX,NEK,NIi
COMMON 18, ANS
INER Nl ) (003 ,V( 103,88(10003 ,SMEANDNEK
ONEK=NEK
SIEANO0.O
DO 10 11 tNEK

SMEAN=SMEAN+XI I)
10 CONTINUE

SMEAN=SMEAN/DNEK
DO 15 I=1,IB

00 20 JV1l ONEK

20 CONTINUE
CALL BOOTSIX PIEK3
00 30 JJ1 fNUK
88B1)=BB(I + IIXIJJ)-SIIEAN)**23

30 CONTINUE
6811 1=8811 )/DNEK

15 CONTINUE
CALL BSTATSI B8P,8,V)
VARI=VI 13
IFIANS.EQ.1.AND.NI.EQ.1) I'RITE21,.102i VARI3

102 FORMATIFB.4)
RETURN
END

C
REAL FUNCTION COEVAIXNEK,Nh3
COMMON IB,ANS
REAL XliYI1O0)V1)B(00
INTEGE w('f O)V1)8 00
D0 10 I1 NEK

YE I )=X(Ii
10 CONTINUE

DO 15 I1=1,is
Do 20 M1,NEK

Xl JI )Yl JI)
20 CONTINUE

CALL BOOTSIX,NEKi
CALL BSTATS XNEKV 3

15 CONTINd 14
CALL BSTATSIBBIBV3
COEVA=I ii
IFIANS.EQ.1.AND.HI.EQ.13 NRITEI 21,102) COEVAI

102 FORMATIF8.41
RETURN
END

C REAL FUNCTION SECORIXNEK,NIi
COMMON I8,ANSREAL Xlii V(00)V1lOB(00
INTEGER Wi OiVliB10)
Do 10 11 ,NEK

10 CONTINUE
DO A5 1=1,18

0 20 JI=lNEK
XIJI) JYJI 3

20 CONTINUE
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'7AL BSTTS(XNEKV
, P.4 FALL BOOATS(XNEKV

15 CONYINUE V'
CALL BSTATS(BB,IB,V3
SECOR=VE 1~FEAS.E.1.ND.H.EQ13 RITE(21,102) SECOR

102 OMT B4

END

REAL FUNCTION MEDIAIX,NEK,NI)
COMMON IB,ANS
REAL Xl) Yloop 0)Bloo
INTEGER 14f 00)V1OB(00

010 11 NEK
10 O0NTINUE

815 I=1,IB
DO 20 JI-1 NEK

XlJI =ilJI3
20 CONTINUE

CALL BOOTSIX vNEK)
CALL BSTATSE A,NEK ,V)
BgII3= V(6)

15 CONTINUE
CALL BSTATS(BBpIB,V 3
MEDIA=VI 1
IF(ANS.EQ.1.AND.NI.EQ.I) NRITE(21,1O2) MEDIA
RETURN
END
REAL FUNCTION TRIMIIXNEK,NI)
COMMON MBANS
REAL X(I) Y(10)V1)B(00
INTEGER Wf 10)V13BI00
DO 10 11 tNEK

YEII= 3XI)
10 CONTINUE

DO 15 1=1,IB
DO 20 JI11,NEK

XI JI 3Y( I)
20 CONTINUE

CALL BOOTSIX,NEK)
CALL BSTATS(XNEK,V)
BB(I)= V(7)

15 CONTINUE
CALL BSTATSCBBIB,V)
TRIMM=V( 1)
IFRANS.EQ.1.AND.NI.EQ.1) MRITE(21,.1O2) TRIM

102 FORMAT(F8.4)
RETURN

- . END
C

*.C BOOTSTRAP SECTION
SUBROUTINE BOOTS(X,NEK 3

* COMMON IX'.
REAL X11) XBE10003, XX(1000)
CALL SRND(IX,XBNEKp2,D)
DO 10 I~hNEK

B= A*NEK
M=INTlB!-l)
IFEM.GT.NEK )M=NEK
X0X(I E=XEM)

10 CONTINUE
DO 20 I=1,NEK

XII )XX( I
20 CONTINUE

RETURN
END

STATISTICS SECTION

SUBROUTINE BSTATS X ,NEK ,V)
COMMON IS
REAL X(lle V(10),ZN(5000) ZTE 50003 RBMDIAN
RE AL*8 XM AN,SW zSUM3 SUM'. SUUMpDVVAVS ,NtCOREAL*8 XTRIM BTRIM VARfA
INTEGER BTAILETAILAR.DVDA,~T,~SO

C -- COMPUTE MEAN STND DEVIATION, SKENNESSz KURTOSIS, VARIANCE, CVC---- MEDIAN, CORRhATION COEFF, AND TRIMI .05) MEAN.
NBNEK
IFENB GT 13 GO TO 10
NRITE(6 1003 NB

100 FORMAT 2X,'SUBSAMPLE SEIZE IS TOO SIALLvF6.2)
RETURN

'~310 CONTINUE
XMEANO0.0
ONB=NB
DO 20 1=1,NBXMEAN=XMEAN.X( 13

20 CONTINUE
XEAN=XMEAN/DNB

V(I XMEAN
C TO GENERATE HIGHER MOMENTS

SUM2 = .000
SUM3 0.000
SUM'. = .000
DO 30 1=1 NB- MADEV X(I)-XMA

SL412 =SUM2 + 0EV *E2
SUM3 =SUM3 + 0EV **3
SUM. SUM. + 0EV **4

30,CONTINUE
C BOOtSTRAP VARIANCE AND ITS STANDARD DEVIATION.

DVAR = SUt12 / (DINB -1.0003
VI 2 3DVAR
VSTD=DSQRTI DVAR 3
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APPENDIX C

MSE*h OF SOME ESTIMATORS USING THE BOOTSTRAP METHOD

EST. MSE Of The Sample Mean Of An EXP(1)

B/n 10 20 25 40 50 70 100 140
5 0.1213 0.0544 0.0531 0.0309 0.0257 0.0216 0.0142 0.0118
8 0.1157 0.0570 0.0446 0.0299 0.0277 0.0164 0.0123 0.0103

10 0.1131 0.0551 0.0453 0.0288 0.0247 0.0170 0.0134 0.0097
15 0.1095 0.0543 0.0451 0.0277 0.0241 0.0164 0.0113 0.0099
20 0.1064 0.0528 0.0432 0.0262 0.0252 0.0163 0.0131 0.0096
25 0.1051 0.0525 0.0405 0.0270 0.0244 0.0153 0.0132 0.0097
40 0.1022 0.0508 0.0417 0.0277 0.0245 0.0162 0.0122 0.0087
60 0.1031 0.0511 0.0410 0.0258 0.0239 0.0159 0.0117 0.0091
100 0.1030 0.0512 0.0420 0.0252 0.0244 0.0155 0.0119 0.0090
140 0.1018 0.0511 0.0406 0.0256 0.0242 0.0156 0.0117 0.0092
500 0.1007 0.0471 0.0368 0.0217 0.0202 0.0119 0.0101 0.0041

EST. MSE Of The Sample. Variance Of An EXP()

5 0.9130 0.5313 0.4114 0.1690 0.1703 0.1120 0.0745 0.1363
8 0.7783 0.4765 0.4023 0.1951 0.1538 0.1176 0.0847 0.0791

10 0.7776 0.5418 0.4485 0.1703 0.1461 0.1393 0.0680 0.0800
15 0.6732 0.5385 0.3457 0.1533 0.1433 0.1096 0.0650 0.0817
20 0.6408 0.4589 0.3447 0.1562 0.1373 0.1043 0.0662 0.0852
25 0.7115 0.4840 0.3452 0.1730 0.1311 0.0945 0.0656 0.0887
40 0.6822 "0.4692 0.3392 0.1556 0.1349 0.1179 0.3635 0.0808
60 0.6959 0.4563 0.3265 0.1529 0.1341 0.1006 0.0658 0.0827

100 0.6857 0.4668 0.3434 0.1555 0.1285 0.1185 0.0643 0.0753
140 0.6789 0.4714 0.3259 0.1565 0.1280 0.1069 0.0592 0.0733
500 0.6649 0.4603 0.3035 0.1429 0.1098 0.0937 0.0394 0.0563

EST. MSE Of The Sample Coeff. of Variation Of An EXP(1)

5 0.0667 0.0391 0.0285 0.0238 0.0183 0.0144 0.0090 0.0080

8 0.0618 0.0352 0.0299 0.0249 0.0160 0.0156 0.0079 0.0080
10 0.0618 0.0340 0.0269 0.0218 0.0169 0.0126 0.0084 0.0080
15 0.0598 0.0336 0.0268 0.0221 0.0158 0.0127 0.0076 0.0079
20 0.0599 0.0313 0.0263 0.0218 0.0156 0.0133 0.0077 0.0068
25 0.0590 0.0323 0.0246 0.0223 0.0156 0.0137 0.0079 0.0074
40 0.0584 0.0309 0.0255 0.0208 0.0153 0.0120 0.0073 0.0071
60 0.0578 0.0313 0.0253 0.0214 0.0154 0.0127 0.0078 0.0070
100 0.0580 0.0304 0.0249 0.0213 0.0151 0.0122 0.0070 0.0073
140 0.0573 0.0308 0.0252 0.0215 0.0147 0.0123 0.0074 0.0074
500 0.0419 0.0297 0.0204 0.0187 0.0115 0.0100 0.0057 0.0039

Figure C.1 MSE*h of the Estimators for Exp(l).
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B/n 5 10 15 20 25 30 50 60
5 0.4213 0.2045 0.2934 0.3217 0.1813 0.1527 0.0790 0.0565
8 0.4229 0.1951 0.2726 0.2332 0.1633 0.1383 0.0646 0.0449

10 0.3397 0.2134 0.2294 0.2195 0.1672 0.1376 0.0704 0.0417
15 0.3410 0.1904 0.2629 0.1974 0.1834 0.1415 0.0642 0.0442
20 0.3668 0.1975 0.2420 0.2365 0.1647 0.1467 0.0676 0.0430
25 0.3505 0.1859 0.2397 0.2229 0.1535 0.1067 0.0701 0.0437
30 0.3792 0.1851 0.2446 0.2307 0.1580 0.1196 0.0743 0.0449
35 0.3409 0.1927 0.2254 0.2228 0.1523 0.1234 0.0733 0.0438
40 0.3465 0.1896 0.2453 0.1988 0.1623 0.1215 0.0672 0.0426
45 0.3571 0.1852 0.2544 0.2191 0.1603 0.1290 0.0677 0.0420
50 0.3678 0.1888 0.2405 0.2318 0.1478 0.1191 0.0693 0.0439

100 0.3313 0.1785 0.2230 0.2191 0.1576 0.1229 0.0674 0.0409
500 0.3165 0.1582 0.1341 0.1217 0.1117 0.1095 0.0441 0.0287

EST. MSE Of The Sample Variance Of A N(O,1)

5 0.4158 0.2142 0.1416 0.1145 0.0987 0.0719 0.0413 0.0375
8 0.3841 0.2049 0.1363 0.1005 0.0970 0.0701 0.0490 0.0271
10 0.3650 • 0.1931 0.1346 0.1018 0.0930 0.0590 0.0424 0.0350
15 0.3687 0.1948 0.1332 0.1008 0.0853 0.0633 0.0444 0.0356
20 0.3541 0.1848 0.1298 0.0988 0.0835 0.0610 0.0420 0.0306
25 0.3712 0.1870 0.1225 0.0948 0.0848 0.0674 0.0398 0.0304
30 0.3570 0.2820 0.1250 0.0963 0.0847 0.0611 0.0416 0.0313
35 0.3632 0.1869 0.1266 0.0925 0.0850 0.0623 0.0399 0.0297
40 0.3474 0.1831 0.1252 0.0908 0.0818 0.0622 0.0414 0.0301
45 0.3595 0.1839 0.1223 0.0924 0.0809 0.0640 0.0408 0.0306
50 0.3625 0.1897 0.1211 0.0916 0.0827 0.0603 0.0408 0.0302
100 0.3644 0.1611 0.1132 0.0841 0.0806 0.0619 0.0412 0.0300
500 0.3175 0.1392 0.1008 0.0610 0.0715 0.0522 0.0391 0.0205

EST. MES Of The Sample Variance Of A L(0,1)

5 2.9553 2.3940 1.5890 1.0396 0.8608 0.7340 0.5076 0.4655
8 2.8503 2.0733 1.6019 0.9700 0.7033 0.6355 0.5318 0.3749
10 2.7371 2.0438 1.6862 0.9944 0.7115 0.7020 0.4938 0.4011
15 2.7377 1.9280 1.7109 0.9290 0.7775 0.6838 0.4844 0.3128
20 2.7954 1.8716 1.5557 0.9623 0.6811 0.6798 0.4974 0.3277
25 2.6397 1.8955 1.5850 0.9498 0.7466 0.6352 0.4633 0.3654
30 2.6941 1.8366 1.7492 0.8812 0.7106 0.6430 0.4849 0.3270
35 2.7119 1.8774 1.5792 0.8772 0.7000 0.6618 0.4890 0.3512
40 2.6518 1.8689 1.8452 0.8875 0.7028 0.6250 0.4785 0.3479
45 2.6200 1.8315 1.6082 0.9156 0.7119 0.5982 0.4987 0.3234
50 2.6419 1.8801 1.7016 0.8712 0.6749 0.6377 0.4652 0.3489
100 2.6334 1.8705 1.4931 0.8678 0.6827 0.6336 0.4763 0.3329
500 2.4163 1.6915 1.3852 0.7542 0.6173 0.5918 0.4258 0.3039

Figure C.2 MSE*h of S2 .
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EST. MSE Of Sample Variance of a N(0,1)

B/n 5 10 15 20 25 30 50 60
5 0.4206 0.2099 0.1609 0.1025 0.0916 0.0680 0.0477 0.0379
8 0.3855 0.2032 0.1294 0.1084 0.0875 0.0702 0.0474 0.0316

10 0.3939 0.1986 0.1396 0.0964 0.0990 0.0667 0.0445 0.0292
15 0.3743 0.1942 0.1344 0.0961 0.0842 0.0658 0.0398 0.0325
20 0.3674 0.1854 0.1218 0.0971 0.0842 0.0665 0.0403 0.0319
25 0.3589 0.1898 0.1313 0.0968 0.0859 0.0619 0.0408 0.0312
30 0.3547 0.1851 0.1273 0.0949 0.0849 0.0615 0.0389 0.0317
35 0.3647 0.1861 0.1242 0.0949 0.0819 0.0622 0.0422 0.0310
40 0.3490 0.1851 0.1277 0.0928 0.0854 0.0631 0.0399 0.0314
45 0.3568 0.1871 0.1231 0.0915 0.0857 0.0632 0.0389 0.0298
50 0.3549 0.1862 0.1234 0.0940 0.0835 0.0650 0.0388 0.0311

EST. MSE Of Sample Variance (2nd Estimator) of N(0,1)

5 0.5810 0.2467 0.1537 0.1091 0.0908 0.0879 0.0557 0.0384
8 0.5356 0.2540 0.1367 0.1164 0.0882 0.0844 0.0630 0.0368
10 0.5686 .0.2461 0.1394 0.1026 0.0732 0.0790 0.0576 0.0408
15 0.5387 0.2304 0.1398 0.1067 0.0812 0.0685 0.0573 0.0369
20 0.5403 0.2285 0.1277 0.1043' 0.0786 0.0727 0.0493 0.0383
25 0.5198 0.2204 0.1322 0.0989 0.0784 0.0754 0.0530 0.0340
30 0.5407 0.2270 0.1342 0.1023 0.0778 0.0742 0.0535 0.0330
35 0.5355 0.2249 0.1313 0.1005 0.0782 0.0740 0.0531 0.0347
40 0.5310 0.2225 0.1324 0.1034 0.0757 0.0744 0.0544 0.0356
45 0.5166 0.2261 0.1312 0.1036 0.0775 0.0713 0.0518 0.0362
50 0.5141 0.2242 0.1293 0.0994 0.0769 0.0712 0.0530 0.0360

EST. MSE Of Sample Variance (3rd Estimator) of a N(O,1)

5 0.3794 0.1714 0.1354 0.1222 0.0904 0.0673 0.0433 0.0410
8 0.3518 0.1706 0.1349 0.1173 0.0768 0.0612 0.0453 0.0363

10 0.3471 0.1729 0.1359 0.1132 0.0856 0.0622 0.0475 0.0403
15 0.3356 0.1542 0.1275 0.1055 0.0750 0.0578 0.0433 0.0364
20 0.3319 0.1568 0.1241 0.1119 0.0755 0.0595 0.0370 0.0345
25 0.3243 0.1615 0.1256 0.1089 0.0782 0.0563 0.0409 0.0332
30 0.3218 0.1573 0.1180 0.1095 0.0757 0.0552 0.0419 0.0322
35 0.3244 0.1576 0.1218 0.1034 0.0787 0.0553 0.0428 0.0320
40 0.3253 0.1522 0.1225 0.1076 0.0771 0.0553 0.0420 0.0366
45 0.3200 0.1573 0.1232 0.1056 0.0758 0.0565 0.0407 0.0351
50 0.3308 0.1565 0.1220 0.1064 0.0764 0.0552 0.0401 0.0347

Fi-,.:re C.3 MSE*h o f iS z  S*2 and of 3S
* Z.
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Figure C.5 Bootstrap Dist. of Sample Variance B= 150.
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