
r-AIITS 145 LEXICL TRANSLATOR FROM ARABIC TO LATIN N PRCL
ENVIRONMENT(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA

I S S ALJUHAIMAN SEP 86

UNCLASSIFIED F/6 9/2 U

13,

10 .

,~ 2

11111-2 1111 _. 111.6

J(RbCOPY RESOLUTIO TEST CHART

-s- i

L.

iNAVAL POSTGRADUATE SCHOOL
Monterey, California

9

0

THESIS
LEXICAL TRANSLATOR FROM ARABIC TO

LATIN IN PASCAL ENVIRONMENT

by

Sadek Saleh Aljuhaiman

LLuJ September 1986

L.-

: Thesis Advisor: Daniel Davis

Approved for public release; distribution is unlimited

86 12 19

A '-

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

'Approved for public release;
2b DECLASSIFICATION /DOWNGRADING SCHEDULE distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL '7a NAME OF MONITORING ORGANIZATION
(If applicable)

Naval Postgraduate Schoolj Code 52 Naval Postgraduate School
6c ADDRESS (City. State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

8a NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c ADDRESS (City, State. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

I TITLE (Include Security Classification)

LEXICAL TRANSLATOR FROM ARABIC TO LATIN IN PASCAL ENVIRONMENT

* PERSONAL AUTHOR(S)
Aljuhaiman, Sadek S.

'3a TYPE OF REPORT t3b TIME COVERED 14 DATE OF REPORT (Yeiar, Month, Day) 15 PAGE OuNT

Master's Thesis FROM___ TO _ __ 1986, September1b

'6 SUPPLEMENTARY NOTATION

COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

F ELD 'GROUP SUB-GROUP Lexical Translator

Bilingual Operating System

9 ABSTRACT (Continue on reverse if necessary and identify by block number)

The Lexical translator is a program written in Turbo PASCAL to generate

a Latin PASCAL source code from an Arabic PASCAL source code. The Arabic

code is written under a bilingual operating system transparent to the DOS on

personal computers.

The bilingual operating system compatibility as well as the Arabic

characters' code values is investigated. The Latin code is fed into a

computer to be compiled and run uith a Latin interpreter (i.e., Turbo PASCAL),

in an Arabic environment.

,'o) S' 7PUTiON /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

5 ,'%CLASSIFIED/UNLIMITED 0 SAME AS RPT 0QDTIC USERS Unclassified

22a %AME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL.

Prof. Daniel Davis (408) 646-3091 Code 52DV

DO FORM 1473, 84 MAR 83 APR edition may be used unt,l exhausted SECURITY CLASSIFICATION OF ,1S PACF
All other editons are obsolete

1 UNCLASSIFIED

.4% -¢. "'. '". """'. ''. ' .q ,- ,-" .,-.. '. -,, °. , .' .,." ">L ,',$ A " **'. "t ", - , t. ,C -.,,,,

" ,, ' % " ," # r , . w ., ," ,% ,.. , " , . . , , ; . ' " '' , ". " .. ' ,- . - % , ". " "

Approved for public release; distribution is unlimited.

Lexical Translator from Arabic to
Latin in Pascal Environment

by

Sadek Saleh Aljuhaiman
Captain, Royal Saudi Air Defense Forces
B.S., Arizona State University, 1979

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1986

Author:
Sadek Saleh 1luaia

Approved by: &&L
Daniel Davis, Thesis Advisor

Ron Ruene Second Reader

"Vincent f m Chairman,
Department f Computer Science

Kneale T. Marlhlj-\
Dean of Information and Polldy-sciences

2

ABSTRACT

The Lexical translator is a program written in Turbo

PASCAL to generate a Latin PASCAL source code from an Arabic

PASCAL source code. The Arabic code is written under a

bilingual operating system transparent to the DOS on

personal computers.

The bilingual operating system compatibility as well as

the Arabic characters' code values is investigated. The

Latin code is fed into a computer to be compiled and run

with a Latin interpreter (i.e., Turbo PASCAL), in an Arabic

environment.

Acces3sion For

NTT17 GRA&I

DC T A.B

.J t if ication

IDistribution/

Availability Ccles

- Awil ind/or

Dist Special

$ 3

A • ,

'.91

VJ --- ?m"
5

'a* r-tr ~j

TABLE OF CONTENTS

I. INTRODUCTION---6

II. BACKGROUND ON ARABIC CHARACTER--------------------- 11

A. INTRODUCTION--------------------------------------11

B. ARABIC LANGUAGE---------------------------------- 12

C. WRITING ARABIC------------------------------------ 13

D. ARABIC NUMERALS---------------------------------- 14

III. CONTEXTUAL PROBLEMS IN ARABIC WORDING-------------- 17

A. DIRECTION OF FLOW-------------------------------- 19

B. ARE DIACRITICS REQUIRED?------------------------ 21

C. THE CONTEXTUAL ISSUES--------------------------- 23

IV. EFFORTS TO STANDARDIZE CODES------------------------ 28

A. SOLUTION EFFORTS--------------------------------- 29

B. TI DS990 BILINGUAL SYSTEM----------------------- 31

C. ALIS INC., BCON SYSTEM-------------------------- 33

D. ASV CODAR-U SYSTEM------------------------------- 37

E. THE STANDARDIZED SET---------------------------- 40

41F. CONCLUSION-- 42

V. INTERFACE DESIGN GENERAL APPROACH------------------ 43

A. MAJOR CONCEPTS----------------------------------- 44

B. OPERATING PRINCIPLES---------------------------- 47

C. DESIGN GOALS------------------------------------- 51

D. DESIGN LIMITATIONS------------------------------- 52

VI. PROGRAM MODEL--- 55

A. INTRODUCTION------------------------------------- 55

B. PROGRAM ENVIRONMENT----------------------------- 55

C. PROGRAM BODY------------------------------------- 58

D. PROGRAM MODULES---------------------------------- 64

E. PROGRAM DIRECTIVES------------------------------- 71

F. LIMITATIONS-------------------------------------- 71

VII. CONCLUSION--- 73

A. CONCEPT FUTURE----------------------------------- 73

B. LIMITATIONS-------------------------------------- 74

APPENDIX A: FIGURES-- 76

APPENDIX B: TEXAS INSTRUMENTS APPROACH TO BILINGUAL
OPERATING SYSTEM------------------------------ 82

4APPENDIX C: DS9900 BILINGUAL COMPUTER SYSTEM BY
TEXAS INSTRUMENTS---------------------------- 89

APPENDIX D: BCON BILINGUAL OPERATING SYSTEM BY
ALIS INC.-------------------------------------- 96

APPENDIX E: CODAR I, II, U CODE SETS-------------------- 112

APPENDIX F: FINAL CODE U-F.D.----------------------------- 114

APPENDIX G: ASMO'S APPROVED ARAB STANDARD
SPECIFICATIONS------------------------------- 117

APPENDIX H: PROGRAM CODE--------------------------------- 123

APPENDIX I: TEST RUNS------------------------------------- 152

LIST OF REFERENCES--- 158

BIBLIOGRAPHY-- 159

INITIAL DISTRIBUTION LIST--------------------------------- 160

5

I. INTRODUCTION

The English language is the most popular scientific

language used today. The language descended from Latin and

has had wide use in the scientific field. The English

alphabet is familiar to people in Europe and all countries

who use languages descended from Latin. There are slight

changes between the various alphabets that have descended

from Latin.

The wide use of Latin alphabets has made it easy to set

standards for typewriters and console keyboards. The

similarity in grammar common to most of them, their fonts

and direction of flow (i.e., left to right) has made it easy

to standardize.

Keep in mind that, many of the computer pioneers made an

effort not to limit the implementation of their software to

one spoken language. Software is the key to any limited use

of computers in any language. Typically lack of knowledge

of programmers in a foreign language limits their ability to

write applications acceptable to the user. Not so many

nations are blessed with the computer development

technology. However all nations have people who, as users,

are capable of contributing to humanity using this

technology.

6

-~ --a . - ~ b ~ a -- ~ ..--7

Given the technology existing today, if we can create an

interface between a host foreign language and a target

application language there will be fewer barriers to nations

that do not use a standard English, French, or German-based

computer operating systems and software. The interface will

accept user commands from the host environment and translate

it to the syntax of the target environment. It is assumed

that the user is knowledgeable in the semantics of the

target environment in his spoken language terms.

The question may be asked, "what good will this approach

do such a nation?" There are several good points. Two of

the most important reasons--One, there is a good library of

software that exists; and two, the price of software (even

with the addition of an interface communicator) is less than

newly-written customized software. It is faster and easier

to write an interface than to rewrite a large body of

software.

Two user environments should not be confused. The

'C customized foreign alphabets used in many countries on

mainframes for specific applications are developed by

contractors who are expert in that application but not

necessarily the foreign language. The mainframes must use

the software provided by the original contractors. It takes

a lot of effort and capital to develop new software

. application for the special machine. This limits the use of

the computer to operators and data entry personnel with

'N

4

minimum creative programming from the user side. Users do

not share the expertise of others and the continuously

improving software. This is because there are limited users

and minimum feedback to software developers.

-. The second user environment is the average user who has

some scientific background but has no access nor the capital

to invest in mainframe hardware. This user is often an

educator, student, or a professional. This category of

users has great potential. The use of software with a

native language interface would be very helpful and afforda-

ble at the same time to this group. This group is very

capable of contributing in their respective fields with the

* . powerful processing features available with personnel

computer technology today.

This thesis is concerned with the second user environ-

ment for several reasons. The second group of users are the

creative ones. Their understanding of computers and its

applications is a major step toward building the target

". machine with compatible native standards. This will elimin-

. ate the ad hoc design by the contractor who most of the time

has to hire a non-technical translator and dictate to them

the language specification, key words, and commands of the

operating system, or query language. Usually a translator

will translate the machine native language key words to the

target language using its alphabet. The translator may have

minimal programming or computer experience. This will most

8

C....

--r ,,-=-, -, - r - . J -
,

, i t rvrlW 'WV fl ' ' - . 'J* -w -

likely lead to an ambiguous environment for users to work

with.

The feasibility of such an approach is constrained by

several factors. The language or the user environment is

one factor. How is the language implemented or emulated on

standard Latin language hardware? The target machine (i.e.,

micro to mini computers) compatibility with others in the

same family is also a factor. These are factors that affect

feasibility. Economical feasibility is based on demand and

supply and a developer must evaluate the benefit vs. the

development cost in order to develop such interface

software.

The Arabic language is a very rich language in vocabu-

lary and historical background. The Arabian alphabet is

very old. The language was used for several centuries by

leading ancient mathematicians, physicians, biologists, and

chemists. They successfully contributed in their fields

using the Arabic alphabet. Their numerals, symbols, and

equations were all written in Arabic. However this does not

make it simple to use the Arabic alphabet in the modern

computer environment.

One reason is that the direction of flow in reading and

writing is from right to left. Secondly, Arabic characters

are not printed like Latin characters. Arabic words are

printed like calligraphy. Arabic characters must be either

written in stand alone or connected form. The character may

9

be located in one of three ways: at the beginning of a

word, in the middle, or at the end of a word. With a set of

complicated rules the shape of a character is determined by

its location with respect to the word. This difficulty has

complicated attempts to provide a software emulation to the

Arabic environment in personal computers.

The goal of this thesis is to provide an approach to

solving this problem. The steps that must be followed will

be described in addition to special consideration. To show

that translation is possible, we will develop an interface

to communicate between an Arabic form of source code in the

PASCAL language and an existing English PASCAL compiler.

The interface will use sample source code written in Arabic

and Lexically Translate it to English source code. The goal

is, given correct Arabic source code, the interface will

produce correct English source code. This should be done

once. Once the program is compiled the interface step is no

longer needed with the compilation.

10

- ..-. - -...... .- -

II. BACKGROUND ON ARABIC CHARACTER

A. INTRODUCTION

There are 28 basic characters in the Arabic alphabet

(Figure 1). However, these basic characters are not

sufficient for use with computers or typewriters.

Authorities agree [Ref. 1] that the optimum set should use a

minimum of 31 characters (Figure 2), three more caiaracters

than the original set. The additional 3 characters are

needed to constitute the optimum set for representing Arabic

texts. One may check the Kufic script, which is over 1500

years old, to realize that engravings by ancient Arabs were

done with close to 31 characters. Each character has one

shape. Over the years, variations of the characters have

developed for ease of writing and reading. Each character

may have from two to five shapes depending on its location

within a word. All applications must use these variations

as standards to represent Arabic texts. Implementing the

variation is critical for compatibility issues. Code

representation of any variation must follow a strict

standard to insure survival among other implementations.

The Arabic alphabet has only three vowels in the 28

characters (see Figure 3 for the alphabet names). Voweli-

zation is also performed through the use of diacritics (see

Figure 4). Most Arabic texts do not show diacritics.

,tt11
"..%

Readers have learned to read and understand the word based

on the context of its use. If misinterpretation is

critical, verifications are provided in parentheses. Most

applications today do not require diacritic symbols.

The Arabic numerals and Hindu are used in the Arabic

world. North African countries use the Arabic numerals (as

used in Latin). The Arabic name is given to the numerals

used in Latin, and Hindu numerals are used by most of the

Arabic world (Figure 5). However, history books show that

both systems originated in India. The Arabic language uses

the Latin comma for a decimal digit to be distinguished from

the Arabic number zero which is the Latin decimal digit

B. ARABIC LANGUAGE

The Arabic language differs from languages descended

from Latin in several ways. The primary differences are:

* Arabic is written right to left instead of left to
right.

* The representation of vowels by using diacritics in the
form of over or under scores with most letters within
the words.

Secondary differences are:

* Letters in Arabic may be joined or not according to
location within the word. A particular letter may be
joined to the preceding letter, and/or following letter.

* Each letter has between two and five different forms
dependent on its contextual position.

Lexically the Arabic language can be defined in BNF

notation as follows [Ref. l:p. 28]:

12

P.. v ' 2
. .

" '".-,-..-.- ." "- . P'-'-- "'. '' -. - - ',-. ,p-P--P , -P, pp"v.p* " ,i.P

<language> (<sentence>),

<sentence> ::= (<word>)l

<word> (<characters><voc.sym><character>)l

<character>::= (see Figure 1.

<voc.sym> ::= (see Figure 4.

C. WRITING ARABIC

Writing in Arabic flows from right to left, additional

lines start from right to left beginning below the previous

line. A word is entered by typing the first character at

the cursor position followed (to the left) by the next

character. An example of this is the word "hello." If the

same word is entered in Arabic it will be entered as

follows:

cursor position -- <

step 1. enter character "h" --------------------------- h<

step 2. enter character "e" -------------------------- _eh<

step 3. enter character "1"_e--------------------------h<

step 4. enter character "i" _e------------------------ -h<

step 5. enter character "o" ----------------------- olleh<

This demonstrates the direction of flow, however if one

should worry about each character shape, it may seem tedious

for long text. In some applications one must provide dia-

critics also. In short, typing one vocalized word seems

like a puzzle.

There are rules governing the shape (form) of the letter

based on its contextual position.

13

Dewachi, Abdulilah [Ref. l:p. 27] has the following

opinion on the rules:

These rules have, in my opinion, been developed for ease
of handwriting and have no bearing on the semantic and/or
syntactic requirement of the language.

In spite of the cause or the reason for the development of

the rules, all books, newspapers, and magazines in the Arab

countries today are written using those rules. They will

also stay that way for years to come.

Arabic letters are cursive in shape. The implementation

of the alphabets is highly dependent on how legitimate the

characters look. The cursive nature of characters requires

that both monitor and graphic adapter provide good resolu-

tion. High resolution is also required for supporting

correct vocalization, as previously discussed.

D. ARABIC NUMERALS

Both the eastern Arabic numerals and the western Arabic

numerals (Figure 5) are used. Countries like Algeria,

Morocco and Tunisia use the western Arabic numerals. The

numeral system is not a critical issue since in both repre-

sentations they have the same value.

Many people believe that the Arabs write the numbers

from left to right. This is a misconception. The language

books and schools teach the classical way of writing and

reading the numerals. The classical way is to either use

the words ("one","two",...) or the numbers ("i","21,...) in

writing starting from right to left. For example the number

14

., ..

523 will be written in Arabic as "three and twenty and five

hundred." It may sound wrong in English composition but

this is the syntax that classical books use. This method

should be encouraged. This is also followed in reading the

numbers.

The most common method in handwriting numbers is to

write in the order they are said. An example of how numbers

are read and written today is the year 1986--pronounced as

"One thousand nine hundred six and eighty. Notice the six

comes before the eighty. Writing the number "1986) using

numbers is done as follows:

first digit I---

second digit 19.

third digit 19-6

fourth digit 1986

This method is far too complicated to be adopted by mechani-

cal machines. The classical method should be encouraged for

another obvious reason. The numbers are entered least

significant bits first in low memory. From the computer

hardware point of view the adders/subtractors may work on

the number before the complete number is loaded [Ref. 1].

This is the more efficient way. Also both numbers and

strings will be right justified.

This chapter has outlined the major concerns and differ-

ences between the Arabic and Latin alphabet. There are a

few more things worth noticing. The opening brackets "[",

15

"(", and "(" are the closing brackets in Arabic and vice

versa. The Arabic question mark has the same look as "?"

but rotated 180 degrees around its vertical center. A list

of a complete code set including special characters is

included in the ARCII code set (Appendix D). ARCII will be

discussed in detail in later chapters.

tI I,

II *9 1V.=/ ' ****q, i

III. CONTEXTUAL PROBLEMS IN ARABIC WORDING

For any computer to work in Arabic it must also be able

to handle English alphabets. Arabic users will pay a few

extra dollars to add the bilingual features in purchasing a

computer. The form of the bilingual feature is a

controversial issue. This chapter will show why one should

be concerned in using mixed mode or even alternative between

the two alphabets--Latin and Arabic.

There are three major differences between alphabets

descended from Arabic and Latin. The differences are

direction of flow, diacritics, and variant location shape of

characters. These issues are specific to the language.

This chapter will discuss these issues with respect to the

computer environment.

Each difference requires special attention in an Arabic

alphabet implementation in hardware. The direction of flow

in reading and writing is very complicated for users and

developers alike. This is especially true where the

keyboard, the display, and the printer are to operate in

bilingual mode. Arabic is read and written in the opposite

direction to Latin. The difficulty is when the user wants

to flip to the other mode for another application, or within

the same applications the user wishes to mix both character

sets.

17

A boom in the introduction of electronic computing to

the Arabic world lead manufacturers to make short cuts to

meet the complicated needs of the Arabic alphabet. Also the

Arabic alphabet is used in several countries with non-Arabic

languages. This wide use invited companies to quickly

develop a character set for Arabic, based on limited

research. As a result important language needs such as
'4 diacritics were avoided. This also has lead to a delay in

the realization of an effective solution.

The contextual problems, that is, the variant shape of

characters, is the most difficult. To establish a solution

is to decide the style or the method that developers should

follow in implementing Arabic character sets. The problem

is the complexity of providing to the user all shapes possi-
4i. ble for the 28 character set on the keyboard. Each charac-

ter has between two to four shapes, making for a total

requirement of 84 codes to represent the minimum set of the

Arabic alphabet. This number is higher by 50 percent than

what the English alphabet (upper and lower case) requires.

The rest of the special characters and diacritics require

more codes. In some cases the applications of diacritics to

some charac-ters requires a unique shape to represent it.

This requires a unique code for the combination of

N characters and diacritics. The use of "Hamzah" I also

1The "hamzah" is one of the three characters that were
added to the alphabet in addition to the original character
set.

V 18

......................................V....~

requires special attention when used with any of the three

vowels in the alphabet. The limited number of codes the

keyboard has is the limiting factor for planning the code

assignments. A look at some efforts and proposals will be

discussed in the following chapter.

A. DIRECTION OF FLOW

Working in mixed mode is considered a must in the Arabic

environment. There are two approaches to handle the mixed

modes data entry and storage problem. One approach calls

for the data to be stored in aural order (i.e., logical

order). The second approach is to store the data in the

same order as it looks (i.e., visual order). Keep in mind

that if an Arabic word is inserted in English text the last

character of the word will be encountered first, scanning

from left to right.

One approach places the burden on the display to

translate the incoming data to the correct direction to be

displayed. The display must translate an escape code or a

mode bit sent with the data. The easiest method is to set a

high bit (if it is not used) as to whether the character is

Arabic or Latin. This option calls for smart display

devices.

The second approach is to store the data in aural order.

This approach places the burden on the computer to determine

how to stoze data to cause no shifting of display direction.

This means the display program will keep track of the

19

~ -A, ~ .. .'.*~, -A~ ~
\J..". .p . .- A~r ~ . ~ ~ ~ !

language mode and do order reversing to store the data in an

appropriate order. In handwriting, handling mixed modes is

done in the following fashion:

- continue typing until reaching a foreign character.

- count the number of spaces occupied by foreign
characters up to the first native character.

- skip that number of spaces and write back to where you
stopped before skipping. When done the writer should
end where he/she jumped from.

- skip the same number of spaces you counted. This is

where the next native character belongs.

It seems that humans can do this routine more easily than

computers. The computer can only deal with incoming data as

it arrives, one character at a time. This means the

computer does not know in advance how many foreign charac-

ters are coming. The computer can use a logical device

called a stack. Characters of different mode are stored

(pushed on the stack) up to the next native character. At

this point the computer has the foreign string in reverse

order on the stack. In the next step the computer starts to

*write from the top of the stack until no more characters are

in the stack. Then the program continues with the last

encountered native character. In this approach the

direction of flow for the display is maintained. Obviously

this method has several disadvantages. One, it slows the

storing of data in mixed mode. Two, it slows the computer

from doing other functions, where a smart display could

20

handle the display of mixed mode data as they are stored

logically.

The approach that should be taken is connected with

resolving the contextual issue, the variant character shape

problem.

B. ARE DIACRITICS REQUIRED?

By linguistic standards the omission of diacritics by

computers murders the Arabic language. Linguists have

always officially criticized the mispronunciation of

statements by television and radio people. The use of dia-

critics is a must in the language even by recommendation of

westerners involved with the Arabic alphabet [Ref. 1: pp.

39-46].

In a previous chapter diacritics were discussed. There

are five basic diacritics. The five are (Figure 3) from

right to left: "Fat_ha", "Dammah", "Kassrah", "Sukoon", and

"Shadah". The first three can be doubled, in the same

manner as double quotes in Latin. When any diacritic is

doubled it is known as "Tanween" and adds an N sound to the

character. The Shaddah has the same effect as doubling the

consonant in English. It can be used inconjunction with any

of the first three or their "Tanween." The Sukoon, when

used, means that the character must be read in primitive

form, versus using previous diacritics.

An example of one word using different diacritics will

show how the sound and ,ubsequently the meaning changes.

21

The word pronounced "tilmeeth" in Arabic means a student.

The "th" at the end is the character "Thal" in Arabic. The

example will show the different sounds per word when only

the last character has different diacritics.

WORD VOWELIZATION PRONOUNCED

TILMEETH "FATHA" TILMEETHA

TILMEETH "KASRAH" TILMEETHI

TILMEETH "DAMMAH" TILMEETHO

TILMEETH "SUKOON" TILMEETH

Using the "Tanween" effect with the first three diacritics,

the same word is pronounced as follows:

- with "Fatha tanween" TELMEETHAN

- with "Kasrah tanween" TELMEETHIN

- with "Dammah tanween" TELMEETHON

Shaddah has the ability to be used with all the above except

the Sukoon.

The use of diacritics removes the ambiguity in the

reading of text. It is powerful enough to change the

meaning of the sentence completely. The vowelization of

verbs by diacritics will change the sentence to passive

tense. In Arabic the verb comes before the noun. So in

Arabic the two statements, 'was stolen Ali a book, ' and

'stole Ali a book' without the use of diacritics, especially

on the verb, could not be distinguished. The effect of the

O"er" and "ee" in English as in "employer/employee" is also

achieved by the use of diacritics in Arabic on the noun. In

22

combination, the failure to use diacritics can completely

obscure the meaning of a sentence. For example, it would be

as if in the sequenced fired/wasfired employee/er we did

not know which of each alternative is meant. The employee

either was fired, or fired someone. On the other hand, the

employer either was fired, or fired someone. See Figure 6

for some examples using vowels and without vowels.

Clearly one can see the need of diacritics. In

religious and history texts, they are used extensively. In

an international symposium for standardization of character

code sets and keyboards for Arabic language in computers

held on 1-4 June 1980, several proposals were presented by

researchers and companies that already have developed their

own character sets [Refs. 1,2]. All the proposals and

recommendations agreed on including the diacritics. This

use of diacritics will be beneficial in the use of data

bases, artificial intelligence and educational textbooks.

C. THE CONTEXTUAL ISSUES

The mere presence of a character in different locations

within a word determines the shape to be written or read.

Should the computer do the analysis and free the user from

worrying about a large complex character set, or should the

keyboard contain all possible variations of each character

and have the user learn to master more than one hundred

strokes for the alphabet in addition to numerals, special

characters, and punctuation?

23

One popular approach is to provide only a minimum set of

required characters, usually between 31 and 60 not including

diacritics, numerals, and special characters. This approach

is known as the single character single shape keyboard. The

data is stored in memory or storage devices using this

reduced code. The reduced code is analyzed by an interface

to give the right form or shape. The interface is part of

the display, when smart displays are used, or a shell on top

of the "O.S." to contextually analyze the character form.

The issue is not quite settled and standardized among

all Arabic alphabet users, nor Arabic countries. A suc-

cessful meeting of authorized people from all concerned

countries have not yet, to my knowledge, agreed on a

standard. A few companies who stepped into the market early

have generated their own version of character code sets.

Some companies have realized the gap between their early

implementation and ac,.ual language needs. The gap was

realized more when the use of the produce was not utilized

in all the areas and aspects for which it was designed.

Some companies have realized that the survival and popu-

larity of their product depends on compatibility with at

least the codes of a character's internal representation.

Some companies went further by investing in research for an

optimum solution. Language experts were hired and/or con-

sulted by companies like IBM, TI, and WANG. The companies

24
.- --.1•

are following efforts for solutions and continuing further

the research to achieve an effective solution.

In resolving the multiple character shapes, most com-

panies have tried some reduction of all possible codes to a

single code using several philosophies. Texas Instrument

has presented [Ref. 1] three approaches to reduce the Arabic

code.

The first approach was called "CORRESPONDENCE & DIFFER-

ENCES." This approach divided the alphabet into groups.

The first type A have characters with one, two, or three

points (Appendix B). The second type B are without points.

The last type C contains characters having at least one form

of each, for example character "RA" and "ZA." The two char-

acters have the same form with a point on the "RA" and no

point on the "ZA." The idea is if the basic form has one

key (code), two or more characters will have the same basic

form, the points can be added later.

The second approach was called "ROOTS & APPENDICES"

(Appendix B). The approach divided the alphabet into

groups. Two groups have six characters in each. Another

group has four characters. Each of the above groups have

the same cursive and "APPENDICES." The "ROOT" of the char-

acter can be used at the beginning or in the middle of a

word. One appendix will complement each root of a group.

This will require a total of seven codes for a group of six

roots. The group would require (for six characters, each

25

QA-

with three contextual forms) a total of 18 separate keys

and/or codes. This approach implicitly asks for more

software to analyze the appendices. A character may be

represented by two codes internally. This will make text

storage inefficient.

The last approach was "CONTEXTUAL ANALYSIS" (Appendix

B). Texas Instruments has developed a product using this

approach. The DS990 Bilingual System can handle

Arabic/Latin modes and display them on a screen or line

printer. The contextual analysis approach, in all the

developments seen by the author, uses a reduced code set.

The reduced code set is used for the internal representa-

tion of data. Keyboard keys of the Arabic set are kept to a

minimum, usually the basic form. A software interface

analyzes the character contextually and displays the charac-

ters in the right form. This interface software in some

application is pushed further away from the responsibility

of the CPU to the display terminals. Such terminals are

called 'SMART' terminals. TI's DS990 system diagram (Appen-

dix C) shows the configuration of a typical system.

TI realized the need for diacritics in the Arabic

"., language after it introduced the system to the marketplace.

TI, at an international symposium held in Riyadh, Saudi

Arabia between 1-4 June, 1980 [Ref. 1:p. 68], in an effort

at standardization of code, character sets, and keyboards,

recommended that the Arabic computer systems standards

26
V I'

requirement include the use of diacritics. This is an

example of the approach of the pioneer companies who had to

define and develop the alphabet codes set. Premature

standards will automatically be overriden by the authorized

agency. The DS990 did not handle the use of diacritics.

Since the use of diacritics was adopted by all standards

committees, this lead a few companies to follow a new

standard that supports diacritics.

ALIS, Inc., introduced BCON TM as a bilingual operating

system. BCON was geared toward MS-DOS based microcomputers.

The bilingual operating system is an interface between the

operating system (O.S.) and different applications [Ref. 2].

This bilingual operating system adopted the single key or

single code approach. Each character is represented inter-

nally in memory by a unique code. BCON also fully supports

the use of diacritics in text. The single code approach, as

mentioned before, requires that a device or an interface

(hardware or software) properly analyze the character and

display the correct form. BCON uses Application Screen

Image Compensations (ASIC) to perform the contextual analy-

sis. BCON uses separate codes and fonts for each character.

The internal character code gets translated (mapped) to its

output code. The internal code has 4 to 5 output codes.

The code to be displayed is based on the location of the

character within the word (TI's and BCON's system will be

covered in more detail in the next chapter).

27

%) -- %

•~~~~~a-Z C -I. !. . . . ,

24. IV. EFFORTS TO STANDARDIZE CODES

..- Several nations use the Arabic alphabet today, both

Arabic speaking nations and non-Arabic speaking. It is a

political challenge to gather concerned nations and succeed

in establishing a standardized code set acceptable to all of

them. It is difficult for any one country to take the ini-

tiative and responsibility to follow such a program until it

comes to life. It is hard for a single country to conduct

research and share knowledge with another country that is

thousands of miles away. In recent years as cooperation

between Arab nations has increased, and as methods of com-

munication have improved, as well as travel, there have been

more productive meetings and symposiums. Several countries

have mutually cooperated to work and develop a possible

solution to the standard codes set for Arabic in data

processing.

Many countries like Kuwait, Iraq, Morocco, and Saudi

Arabia have hosted meetings and symposiums, listening to

experts on the language, and in the data processing field.

Researchers, as well as company representatives, have

brought up points to consider, shared their experiences, and

given recommendations. Several existing systems have been

developed or proposed by companies or individuals in the

field. The countries that have been exposed to technology

28

2'&

and are more developed than other Arabic nations, have an

urgent need to set standards in general. Countries like

Morocco started as early as the 1950's to set standards for

printing devices.

The north African countries have progressed further in

this research. Morocco shared willingly with the Arab

nations their latest research and developments in the area.

The problem of choosing an existing system, with some or no

modification, or to redefine once again a new standard, is

also a political issue.

A. SOLUTION EFFORTS

Several companies have provided results of their

N research and in some cases have implemented systems, giving

recommendations and results of conducted tests, in the case

of keyboard layout proposals. Companies that have an

interest in the market and have worked in the Arabic data

processing field, have no authority to develop a code set

standard. Government representatives are the authorized

agency to do such a task. Several companies have proceeded,

given a lack of standards, to develop Arabic code sets and

implement them on hardware. This has resulted in several

*incompatible systems of code sets. Data in one system means

different things in another code set system. This approach

to the development of code sets has both disadvantages and

some advantages to the companies involved.

29

I e * 14. .

Early development made companies as well as users

understand the weaknesses of the developed system. For

example, TI's DS990 system's omission of diacritics failed

to fulfill the needs of the language. On the other hand, by

just introducing a product early, companies make their name

familiar to customers. The customer cannot complain about a

reasonable attempt. This did establish a good reputation

for such companies, especially when they adopt the approved

standard and reintroduce their products. In addition to

developing a good name, they gain experience in the process.

This will help in introducing an earlier product complying

with the standards. So a company's early efforts are not a

total waste.

Since early implementation ignored including diacritics

use with text, newer designs have to pay special attention

to their use. Data base machines must pay attention when

sorting and searching. The representation of diacritics

will require special care from data processing machines.

The priority of characters with or without diacritics must

be known to the machine. A process of stripping diacritics

from a given string to be located to match with a query,

will facilitate the search. However, the target of the

search, when found, must be displayed, and stored if

updated, in the vocalized form. Unlike Texas Instruments,

IBM chose to maintain domination in the market for type-

writers and Arabic only EDP machines. IBM did conduct

30
J.
f[',,

.?. 3 0

°%
4
•

stidies on their own in an effort to develop a code set and

keyboard layout. IBM, represented by Mr. R.P. Hajjar and

Dr. A.M. Ismail, presented their attitude toward a bilingual

code set standard at the symposium held in Riyadh, Saudi

Arabia, in June 1980 [Ref. l:p. 72]:

Meanwhile, competent people from the Arab world and from
elsewhere, have addressed the same subject and came up
with a variety of solutions that are not compatible with
each other, due to the fact that they reflect the require-
ments of a particular Arab country, but may not be totally
acceptable by the neighboring Arab country. This is the
main reason why IBM has not implemented such solutions,
but will look forward to investigate the possibilities of
their implementation, in case these solutions are adopted
as part of an inter-Arab standard.

IBM, TI, and Wang have shared their research and willingness

to achieve a solution and adopt it in their products.

This chapter will briefly cover three systems:

- TI DS990 System

- ALIS Inc., BCON System

- ASV-CODAR Proposed System.

B. TI DS990 BILINGUAL SYSTEM

DS990 is a bilingual system that generates seven bits

for ASCII codes and generates an 8 bit code for Arabic

codes. The system represents the Arabic alphabet with 32

unique codes in addition to 13 special characters. The

thirty-two codes are the internal representations of the

alphabet. TI's system uses the one key many shapes

philosophy. The 32 codes are the basic character set of the

system (Appendix C). The one key many shapes approach

31

requires the use of an interface with a smart display to

display the correct form and shape. The DS990 block diagram

(Appendix C), shows how the system is arranged. The 32

codes are mapped to 128 less 13 giving a total of 115 shapes

that can be displayed. The display ROM interface contains

all 128 shapes (Appendix C). The display service routine

(DSR) and the display ROM interface contextually analyze the

basic code set and display the data correctly by mapping one

code to one or two display code(s).

DS990 does not handle diacritics. It also increased the

optimum set from 31 to 32 unique characters. The system

considers LAM ALEF as a single character. Two clear viola-

tions. The use of diacritics is a must in data processing.

The LAMALEF (DC hex value in the basic character set)

(Appendix C) is composed of the character LAM (D6 hex)

followed by the character ALEF (CO hex) which are two

- separate characters and should not have a unique code. The

fact that the table shows no special code for eastern Hindu

numerals indicates that the same code for Arabic numerals,

known as western Hindu, is used for both representations

(Figure 5). Depending on the display mode, the eastern

*(Hindu) and the Arabic (western Hindu) are displayed

differently. So a user of a north African country cannot

use the western Hindus (known as Arabic numerals) in Arabic

mode. This is not desirable.

32

DS990 stores information in memory in logical order in

Latin mode and Arabic mode. The display ROM interface and

the control program map the internal representation of one

code to one or two display codes. For example, to display

the character 'SEEN' as in the basic character set (CB hex

value) (Appendix H), the character is represented by two

display codes. The first code is the value BC hex followed

by the code 8B hex in the display ROM interface table.

The approach followed by TI is the typical way most

companies are implementing their display techniques. How-

ever, the disadvantage is the omission of diacritics and

considering "LAMALEF" as one character. TI has indicated

they now believe the implementation must have diacritics.

[Ref. 1]

C. ALIS INC., BCON SYSTEM

ALIS Inc., introduced BCON TM as a bilingual operating

system that could be a standard to follow, or at least close

to a standard. The bilingual operating system adopted the

single key single code approach. Each character is repre-

sented by a unique code internally in memory. BCON also

fully supports the diacritics use in text. BCON was geared

toward MS-DOS based microcomputers. The bilingual operat-

ing system is an interface between the MSDOS operating

system and applications. BCON is designed to facilitate the

adaptation of the large number of existing MS-DOS

applications to Arabic [Ref. 2]. The single code approach

33

as mentioned before requires that some device or interface

(hardware or software) properly analyze the character and

display the correct form. BCON uses Application Screen

Image Compensations (ASIC) to per-form the contextual

analysis, and then selects the correct display code

(Appendix D).

* 1. Hardware and Software of BCON

BCON hardware is another board on top of the Latin

character generator board. The new board has the Arabic

character generator with the required wiring to allow con-

current operation of both character generators. The two

boards are back to back and use one slot on the mother

board--a microcomputer. Keyboard caps (or stickers) are

provided for use on the keyboard. The stickers have both

alphabets printed side by side.

The software is a program which when activated,

resides in low memory and uses 19k bytes. Once BCON is

activated, it can be set in Latin "native" mode or Arabic

mode. The only way to free memory is to reset the system.

Both modes of the operating system will allow bilingual

insertion in the appropriate direction. In their early

version (up to early 1985), ALIS introduced a reduced code

called Arabic Reduced Code Information Interchange (ARCII).

ARCII is the internal representation of the characters in

memory and what is seen by the operating system.

34

2. ARChI Code Set

Arabic Reduced Code for Information Interchange

(ARCII) is ALIS's early attempt to define a code set. The

reduced code (ARCII) (Appendix D) is the internal represen-

tation codes of data in memory. The ALIS reduced code is

completely different from early proposals for a target

standard set proposed by ASMO (further details will be

covered in the next section).

The code uses the graphic characters for the Arabic

set. By assigning one to the 8th bit, 128 additional codes

are available for Arabic codes. This allows the BCON bilin-

gual system to mix codes and use both ASCII and ARCII.

There are 46 different codes assigned for the alphabet,

starting with code DO hex and ending with FD hex. ARCII

places the diacritics early in the table to give them pri-

ority in sorting algorithms. This early positioning in the

table was not favorable, however. The reasoning will be

discussed when the standard code and the format justifica-

tion are discussed. The escape codes and special characters

should not be redefined for ARCII if similar ones in Latin

exist. This minimizes the code set for ARCII, freeing more

code for future expansion. Codes for functional codes could

be minimized by using the international one.

ALIS reduced code is completely different from early

proposals for a target standard set. The Arab Organization

for Standardization and Metrology (ASMO), after several

35

years of research and after meeting with Arab representa-

tives, recommended the use of CODAR U-F.D. as a standard for

Arabic codes (further details will be covered in the next

section). Subsequently, ALIS and other companies adopted

the new code set in order to assure compatibility with other

applications and implementations. BCON's original version

of reduced code (ARCII) (Appendix D) is the internal repre-

sentation of information in memory.

The form or appearance of characters is not a major

issue as in how it should be displayed. This is dependent

' on the machine resolution and capabilities. The fonts and

style of displayed texts vary from one machine to another.

ASMO has recommended that the style of displayed text be

left to developers. This has left a lot of room for manu-

facturers to be creative and compete for quality work for

the benefit of the user.

3. OperatinQ Principles of BCON

BCON, once loaded, resides in memory using 19k of

low memory. BCON has three code sets. The three code sets

are: reduced code (ARCII), key code and display code.

Figure 7 shows how the three codes are integrated with each

other. A list of the three code sets is provided in Appen-

dix D. ARCII includes the diacritics as a part of the code

set. This was set as a requirement of the CODAR U-F.D.

standards. BCON receives the key code and stores it in

memory in reduced code form. The reduced code form is

.'36

analyzed by BCON and contextually analyzed and displayed in
the correct form. In the display process, BCON appends if

necessary what is called "TAIL GENERATION" to some charac-

ters if they fall at the end of a word [Ref. 2].

The early work on BCON, as well as the work of other

companies, must be modified to correspond to the new

standards. ALIS in early 1986 introduced a new mode in

addition to ARCII. The new mode uses the ASMO approved code

set. No documents are available at this time. However, as

mentioned before, previous effort was not totally lost. The

company still utilizes the contextual analysis developed

earlier, with minor modifications. The same is true for

their printer driver software. This is a good example of

how early development enables a company to react quickly to

new demands.

D. ASV CODAR-U SYSTEM

In researching the early efforts initiated by official

organizations or government agencies for inter-Arab unifi-

cation of the codes set, two names were always associated:

CODAR and Dr. Lakhdar. A few acronyms are important here:

CODAR : Code Arabs (French)

ASV : Arabe Standard Voyelle (French)

IERA : Institute d'Etudes et de Recherchers
I'Arabisation

IBI : Intergovernmental Bureau for Informatics

COARIN: IBI Committee on the use of Arabic in Informatics

4. 37

ALESCO: Arab League Education Cultural and Science

Organization

SASO : Saudi Arabian Standards Organization

ASMO : Arab Organization for Standards and Metrology

Dr. Ahmed Lakhdar Gazal, Director of IERA (Institute for

Research and Studies for Arabization in Rabat, Morocco) has

been associated with the CODAR project for several years.

Dr. Lakhdar proposed that the Arab nations adopt the CODAR

system as a standard for telecommunications. IERA was

working as far back as 1955. The standardized Arabic Code

was a dream many people were expecting and needed for many

years. However they have no power over defining it or

making it official, assuming it is acceptable.

The CODAR system is a long-going project that is geared

for setting standards for several fields of interest. The

project covers:

-PRINTING

- TYPEFACES

- TRANSFER LETTERS, SELF-ADHESIVE TYPES

- SLUG-CASTING MACHINES

- MOVABLE TYPE COMPOSITIONS-CASTER

- PHOTOCOMPOSITION

,.' ~.TYPEWRITERS

INFORMATICS AND DATA TRANSMISSI)N

TELECOMMUNICATIONS

This chapter is concerned with Informatics and Data Trans-

mission. However, a lot of credit must be given to

38

personnel behind CODAR. It took CODAR a lot of effort and

dedication by IERA's staff to accomplish a unification. A

long list of acknowledgments, appreciation, and financial

support letters were coordinated by CODAR from several coun-

tries and organizations. A list of participants include:

Moroccan Ministry of Education (1956)

First Conference of the Arab National Commissions for
UNESCO (1958)

First Conference on Arabization (Rabat, 1961)

UNESCO (Arab book-keeping experts meeting) (Cairo, 1972)

A long)ist of occasions and dates are listed [Ref. l:pp.

207-210].

Under Informatics and Data Transmission there were three

versions of the 7-bit code system. They are:

Seven bit CODAR I : first coding scheme of the ABV
characters

Seven bit CODAR II: a proposition for a unified Arabic
coding scheme, discussed at regional
(IBI) meeting at Bizzert, Tunisia,
June 1976

Seven bit CODAR U : unified coding scheme for the Arab
countries proposed by COARIN (IBI
committee on the use of Arabic in
informatics) at a meeting in Rome,
June 1977.

The seven bit CODAR I, CODAR II, and CODAR U (Appendix

E) are code set proposals. CODAR I was produced by EURAB

and the printers were manufactured by the Italian firm SELI.

CODAR II is a subsystem of CODAR I. The subsystem can be

obtained by removing all possible combinations of "Harakat"

(i.e., Fat'ha, Kassrah, and Dammah) with the "Shaddah." The

39

k
q

•N

subsystem also leaves out three Persian characters, opening

and closing square brackets, backslash and a few character

variant shapes.

CODAR U fully supports vocalization with all possible

"Shaddah" combinations with the "Harakat" This system is

the closest to being acceptable by ASMO and approved as a

standard. ASMO's approval will give the system official

status.

E. THE STANDARDIZED SET

In 1980 CODAR U was accepted as a working basis for a

basic code set. Recommendations and modifications were to

be presented to ASMO in order to formalize the code set.

The next step was to distribute it to ASMO's members.

Member countries insure that it is implemented accurately.

During a meeting held between 22-24 April in Rabat

(Morocco), the final code for the proposed standard, called

CODAR U-F.D. was finalized and submitted to ASMO along with

six recommendations (Appendix F) . The conference recom-

mended ASMO to distribute and test the code by IERA, SASO,

and the National Center for Information in Tunisia before

enforcing the code. ALESCO and ASMO were also recommended

to make every effort for the adoption of the code by all

Arab countries.

Finally, on October 21, 1982 ASMO adopted the code pre-

* /." pared by IREA, and ALESCO. This code was the result of the

CODAR U-F.D. proposed in April, 1982 at Rabat. The

40

modifications and changes are included (Appendix G). There

are a few points to consider. There are 31 codes for the

alphabets, 3 codes for "Harakat," 2 codes for "Shaddah" and

"sukoon, " 5 codes for "Hammzah," 3 codes for "Tanween,"

-, totalling 44 codes. Their location must not be changed in

the table under any circumstances. The "Hamzah" in all

variations, on top or under characters, are considered forms.

of "Hammzah." The "Hamzah" is placed in the beginning of

the code table, which in searching means any character with

"Hamzah" associated with it should be expected higher in

order (equivalent to "A" in Latin). This concept will con-

fuse users when searching or sorting. The results may be

surprising for sorting algorithms. In sorting, the table

allows a simple sort. Errors will result' from the occur-

rence of diacritics and the code 60 hex in the table (6/0).

The code 60 hex is used for connection or extending a word

for formatting purposes. So a sorting algorithm should

strip text of the diacritics and the connection dash

(similar to Latin underscore) first, then sort the text

according to the basic 31 character code. The user must be

educated about all the remarks mentioned in the reasoning in

ASMO's final form of the code set. Another convention was

that the character comes first in words that are vocalized.

The form to follow is:

WORD ::= (<CHARACTER> <SHADDAH> <DIACRITICS>)*
1

,,. 41

• "'"" ' '* " " '" '"'' "' " - "".'' ' " ' -" " " " " ' "

So the "Shaddah" comes before the diacritics if used for a

character. The second convention is if the pure word

matches in sorting, the diacritics then should be used by

the sorting algorithm as qualifiers. In my opinion, this

violates the Regularity Principle in programming, where the

user must be concerned and remember all the exceptions.

This does not in any way mean there is an easier way.

F. CONCLUSION

The ASMO code set is the standard Arabic code set the

Arab countries must enforce in their countries.

Subsequently all companies in the area must adopt and use a

standard code set. The competition is now directed toward

improving the display application with high resolution and

graphic capabilities. Printing devices also are an area for

manufacturers to compete in printing different Arabic styles

and fonts. The contextual issue is left as a flexible issuei

to the implementors to research and develop for their indi-

vidual products. The display form of text on monitors and

printing devices will not affect the internal representation

of the data, which must be compatible with the standard code

set. This may result in several display sets developed by

the companies as their view and intention of displaying a

good Arabic text. Hopefully this should create a stable

base to work with and encourage development of products

based on the ASMO standards and conventions listed in

Appendix G.

A' 424 -.I

V. INTERFACE DESIGN GENERAL APPROACH

- The lexical translator will generate Latin code from an

Arabic source code in Pascal syntax. The Pascal compiler

can compile/run the Latin code to generate an output. The

interface will generate a correct Latin code given that the

Arabic source code is in correct syntax. The translator

will give minimum help to correct the Arabic code. The user

must understand the syntax and the semantics of the language

to write correct source code. The interface is not an

interactive type of translator. The design is generally the

same for all Pascal compilers. The interface must always

* consider the environment it will work in. The interface has

two environments to consider: the source code bilingual

system, and the compiler environment. From the portability

and compatibility point of view, the translator will be

limited to a particular Arabic standard, and a particular

" •PASCAL implementation.

The bilingual implementation has its own function codes.

Those codes are embedded within the Arabic source code, if

generated under the bilingual operating system. The

bilingual operating system used here is BCON from ALIS, Inc.

There is a list of function codes in Appendix D. The PASCAL

compiler used here is TURBO PASCAL from Borland, Inc.

43

The Arabic implementation utilizes the upper half of the

255 character set used by graphics to display Arabic fonts.

Some Pascal compilers will accept any of the 255 characters

as legal characters for use in string data. Turbo Pascal,

for example, allows the entire set of 255 characters. This

is one reason why Turbo Pascal is used in this thesis as a

target environment for the generated code. The interface

will, however, generate a correct PASCAL code even if the

source code follows standard Pascal.

The compiler will always refer to the Turbo Pascal

compiler even though, from a theoretical point of view, it

should be any Pascal compiler. Similarly, since there is no

standard representation of Arabic data, i.e., available and

implemented, we use the BCON operating system, using ARCII,

as the internal representation of data in memory.

A. MAJOR CONCEPTS

The interface looks at any piece of code (token) as one

of several types. These types are:

-. - Literal string

"K' - Comment

,7, - Integer

- Identifier

., - Functional operator.

Literal strings are constants and the interface does not

alter the ASCII value. The comments are surrounded by '(*'

and '*)' in Arabic equivalent codes. Integers are important

44

and easy to handle since there is an isomorphic relationship

between Arabic integer tokens and Latin. A real number

token is made up of two integer tokens separated by a func-

tional operator. An identifier is any legal name in Pascal,

either a reserved word or user-defined. Functional

operators are all the codes that are used for addition,

brackets, pointer arrows, etc. In setting the specification

for programming in Arabic Pascal, the optimum goal is to

have a one-to-one relationship between the Latin and the

Arabic special characters. Also we want to avoid overload-

ing the use of special characters.

1. Literal Strings

Literal strings are used for assigning into string

variables and for read and write commands. Strings are used

to interact with the user in an application and understand

the performance of the program. Therefore we do not alter

these strings. The literal string is any string of charac-

ters surrounded by single or double quotes. It is the pro-

grammer's responsibility to verify the content of an

assigned string. The literal string can have any character

of the entire set 80 hex ... FF hex.

2. Comments

The comment length is limited to one line. The com-

ment is enclosed by an opening bracket followed by an aster-

isk, and ends with an asterisk followed by a closing

bracket. When the translator encounters the beginning of a

45

comment it looks for the end of the comment. The comment is

considered as one token. The translator will not alter the

content of the commenc since it is for the use of the pro-

grammer only.

3. Integers

Integers are any consecutive digits from 0-9 with no

separation in between. For example, the integer printing

format "2245:6" is considered as three tokens as far as the

translator is concerned. The first token is the integer

"2245," the second is functional operator ":", the third is

the integer "6" token.

Real numbers are made up of three parts as one would

" expect. They are integer token, Arabic numeric comma, and

- integer token.

4. Identifiers

All legal Pascal names fall under this category.

This includes reserved words, ana variable names. The token

is identified first as an identifier, then looked up in the

reserved words group. If it is not in the list then it is a

variable name. Variable names include variables, labels,

procedure and function names. When an identifier is encoun-

tered and it is not a reserved word, then it is given an

identifier number. The identifier number is stored with

other information about the token in a hashing scheme in a

symbol table. The token is looked up in the symbol table.

If it is not entered, then it will be entered in the

4' 46

beginning of the link list of the same hash key. Since the

primary user of the translated code is the compiler, the

program will have meaningless variable names. However, the

translator will generate a file called "DICTIONARY" contain-

ing each identifier number and the Arabic token associated

with it.

5. Functional Operator

Tokens are identified by separators and terminators.

Blanks are separators, as well as other codes that have a

function other than being separators. For example, the plus

and minus sign as well as the up_arrow symbol in PASCAL are

separators. If, for example, the variable rootA.leftsun

was the Arabic token it will be translated into something

like, id_l^.id_2, where the identifier numbers are entered

for the Arabic tokens.

The scope of the variables will distinguish fre-

quently occurring variable names. If id_1 occurred in two

declarations, the compiler will distinguish between two

occurrences of idl, depending on the location of the

declarations. Therefore the translator does not need to

concern itself with multiple uses of the same name.

B. OPERATING PRINCIPLES

The translator goes through several phases and each

phase has a sub-task. The process begins with the name of

the Arabic source code file. The file is opened, the target

output file is initialized and a dictionary table file is

47

.1

opened. The second phase fills a buffer with a code segment

of the source code, a line at a time. The line is broken

into tokens. Each token is given a type and then

translated. The cycle is repeated for each lineup to the

end of the source file.

1. File Opening and Initializing Phase

The program starts with the prompt for the user to

input the source file name. The file name is checked for

existence and then reset for reading. The file name is used

to open two more files, the dictionary file, and the output

file. The initialization is concerned with the hash table

that has information regarding the record structure of the

identifier's symbol table. The rest of the parameters are

optional features such as to list the source comments with

the output code. Another feature is debugging for tracing

the program in the translation while the translator is

scanning and translating the source code. Both comments and

debugging features should be easily set at any point in the

source code. The rest of the parameters, for example, line

number, identifier number, are initialized.

2. Reading and Decomposing the Source Code

An input buffer is filled from the source code and

scanned. A line at a time is read from the buffer and

checked for special instructions (directives) for the

translator. If the line is not a directive, it is checked

to see if it is a comment. If the line is a comment or

48

starts with one, then the comment is either omitted or

written out depending on the comment option. The comment

option is a Boolean variable set by the user within the

program source code, to either omit or write out the comment

tokens in the generated file. The line, or the remainder of

the line then, is decomposed into tokens. Tokens are

identifiers, integers, blanks, or special characters.

Identifiers are either reserved words or user-defined

identifiers. Reserved words are matched with their

associate Latin reserved word. User-defined identifiers are

given a label number in the sequence of their first

appearance, if it does not already exist. Integer tokens

are scanned and each digit is mapped into its matching Latin

digit. Special characters are given their equivalent Latin

characters, such as Arabic and Latin semicolon. Blanks are

copied as it makes for better formatting of the generated

code.

The investigation of the token type is based on the

first character of the next token in the input buffer. For

example, if the first character is a:

- Letter: Then investigate the possibility that it is an
identifier.

- Digit: The token must be an integer.

- Other: Then it must be a special character.

In this phase only the identifiers are translated. When a

user-defined identifier is encountered, and, if it has not

previously been recognized, it is given the next identifier

49

, .number in sequence. Reserved word tokens are stored in a

constant table, in a record format. Each record has an

Arabic word and the matching Latin one. Any identifier

token is first looked up in the table. If found then the

5 index of the matched record is passed back to the main

program. The integer tokens are given the type integer and

*: passed back to the main program. If any of the above is not

true then we get one character and pass it individually.

In short, each token is given a token type, length,

and passed back to the main program. Reserved words are

passed back with the match index additionally. Identifiers

are also inserted in the symbol table. If not found, their

identifier number (in Latin characters) is passed back.

3. Token Translation Phase

The tokens are translated into Latin-based on the

token type. The integer tokens are translated by mapping

each Arabic (Eastern Hindu) digit into its Latin (Western

Hindu) associated digit. Reserved word tokens are

translated by writing their matched Latin reserved word,

. using the match index found earlier. User-defined identi-

fiers are replaced by the identifier number assigned to it.

The rest of the special characters are looked up in a "CASE

OF" (a PASCAL control statement) list or assigned into a

- constant table (array). This model uses a case statement.

As each user identifier is trans-lated and written out in

50

-r r o - - e- -- e eW

the output file, it is also written out in the dictionary

table along with the Arabic token associated with it.

4. File Closinq and Ending

The last phase is to close the source file, diction-

ary, and the generated output file. This phase will only be

reached at normal program execution. The program will ter-

minate if there is a character code not in the range of the

Arabic alphabet defined by the bilingual operating system.

Long tokens and comments will cause errors and should stop

the translation, since translating a comment makes no sense.

C. DESIGN GOALS

The interface is supposed to generate from any Arabic

source code a Latin code in PASCAL syntax. The Arabic pro-

grammer must master PASCAL programming in his native

language. Essentially little syntax and no semantic

checking will be performed on the source code. The com-

piler job is to scan and perform the syntax and semantics on

the translated code. Some help must be provided for

tracing, and debugging should be incorporated into such an

interface. The compiler gives the error messages in Latin.

This could be utilized in several ways. One way is to keep

the line numbers of the source code and the generated code

as close as possible. The error messages usually are stored

in a text file and can be translated. This, along with the

line number of the error location, can be combined to give

the location and type of the source code error.

51

A second way, if the error messages cannot be translated

in their file, is to translate the error messages and return

them out with the error number. The Arabic programmer can

." look up the error number in Latin and the line number of the

* * error, then look up the translation of the error and

explanations. In both ways a few hints regarding the errors

and possible causes should be provided to the user.

D. DESIGN LIMITATIONS

The design does not use or handle diacritics at all as

far as reserved words are concerned. This could cause error

and personal interpretations of how the reserved word is

written. Since most reserved words are clear once read, the

user must not type any vowels with the reserved words in the

program. Similarly, to not duplicate the translation of a

single user-defined identifier, and eliminate the complica-

tion of debugging of such cases, the user should not use the

vowels in his defined identifiers. The diacritics may be

used in literal strings and headings of reports. Several

factors may affect and prevent the use of diacritics. Some

sorting routines sort independently of diacritics. Since

vowelization can upset the sorting order and the rules for

sorting the same name with different vowelization. A second

reason is that the location of the vowelization of the

character is not standardized. A third reason is that the

resolution of terminals is poor and hard on the eye to

52

. . ..

distinguish, for example, between the "FAT'HA" and the

single quote symbol in printed or displayed form.

The design therefore will not handle vowels in the

Arabic source code. However, it should be noted that the

option of including the diacritics requires few changes in

the design, and a lot of attention from the Arabic pro-

grammer. The attention is required to rewrite his own

sorting routine that sets the ARCII value for the vowelized

source code. Also the programmer must be consistent with

his use of vowels with identifiers for the above reasons.

The display and print justifications cannot be

controlled easily within the program since the bilingual

operating system does not use a standard unified code for

Arabic display and print mode. For example, in BCON, the

operating system used for the implementation of this thesis,

if you are editing an Arabic screen mode then the curser in

the entire code will start at the far right of the screen.

This right justification is for the Arabic format and inden-

tation in Arabic texts. Therefore, if you exit the editor

you must set the screen mode to Latin screen mode, otherwise

the "C:>" prompt will be displayed in the far right of the

screen. So for the sake of simplicity to the user and

consistency on the behalf of the generated codes, the

display codes are left out of the translator control and are

under the control of the display system of the bilingual

operating system. The modes can be set with an external

53

.

escape code to the printer or a sequence of key strokes to

set the screen to Arabic mode.

These limitations can be resolved once there is a

standard set. I believe the bilingual operating system

should by default handle the justification issue, and allow

the user to turn this option off. This is in the range of

two to five years to come in the industry involved with

Arabic text handling.

4.

.

4 5

4..

VI. PROGRAM MODEL

A. INTRODUCTION

The Lexical Translator program is intended to be simple,

flexible, and to demonstrate feasibility of the concept.

Speed and efficiency was not a primary goal. Features can

be added as needed based on the response of users of the

program.

The program will require the supervision of a good

PASCAL programmer to assist the compilation and execution of

the translated code. The assistance could be achieved by

simple detailed instructions on how to use the program to

generate output code.

B. PROGRAM ENVIRONMENT

The Translator is developed under a certain environment,

and until there is a unified standard for a bilingual

operating system, program portability and compatibility will

be limited.

1. Hardware Environment

The program is developed using an IBM XT personal

computer, It can be just as well developed using an IBM PC

Jr., or IBM At. The IBM XT has 640 kilobytes of RAM memory,

20 megabyte hard disk, two half height floppy disks, and the

ALIS Inc., graphics board. The board is made up of two

boards back to back. The first board is a Paradise color

55

0 1 -- 1 -1101 me 1Ip% 7 - -

graphics board. The second board is on top of the paradise

board and it has the Arabic character generator and the

necessary connection circuitry needed. The two boards fit

.I .in one slot on the mother board of the XT computer.

The keyboard is an IBM PC keyboard with cap stickers

for the keys. Each sticker has two to four different

characters, for Arabic and Latin. The keyboard layout is

displayed in Appendix D.

An Epson FX 85 dot matrix printer is used for the

listing of the program. The printer has an Arabic driver to

display Arabic characters.

2. Software Environment

ALIS Inc., BCON bilingual operating system was used

in developing the thesis program and test runs. BCON

resides in low memory using about 20K bytes. The BCON is

supposed to be transparent to the DOS operating system. DOS

stands for Disk Operating System used by IBM microcomputers.

The BCON operating system requires special skill and more

than average user knowledge. BCON is mainly required for

generating the Arabic fonts, and interpreting and mapping

the key strokes to their associated ARCII values. The

interpretation and mapping are performed under the Arabic

mode only. The Arabic characters are stored as hex values

s's ranging from 80 hex up to FF hex. This range of values is

reserved for graphics under the DOS operating system. This

56

-L SNA . t"A L -

means any Arabic character code is considered a graphic

character in the absence of BCON.

An important concept must be pointed out. The

presence of BCON is to display the right form, font, and the

indentation of Arabic text. So with minimum skill, a pro-

grammer can develop, review, correct Arabic characters in

any DOS compatible machine. Then the result can be dis-

played under BCON, where BCON can interpret the graphics

character as ARCII code, and display the correct textual

form of the ARCII code by sending the appropriate display

code to the terminal or the printer.

When writing long Arabic texts, it is much easier to

do so under BCON, with the aid of an Arabic word processor.

The simple EDLIN editor available on DOS distribution disk,

or Turbo PASCAL editor of version 2.1 and below, will work

also. There is some limitation to what one can use under

BCON and still display Arabic characters. BCON requires two

conditions for compatibility when using any application.

First BIOS interrupts 2 16 Hex and 10 Hex are called to

access the keyboard and the screen respectively. Second,

the application must handle 8-bit characters. [Ref. 2: p.

3-1]

Turbo PASCAL version 2.1 was used to write the main

program and resource file. The printer interface, called

2 1nformation about the interrupts can be found in DOS
technical manuals for personal computers.

57

-i-

MPD by ALIS [Ref. 2], is implemented for several printers.

The name stands for Multi Printer Driver. The MPD was used

to drive the Epson FX 85 to display the Arabic characters in

the program listings, and sample tests (Appendices H, I).

C. PROGRAM BODY

The Lexical translator is designed to be easily modi-

fied and should be done when the updated version of BCON

utilizing the unified standard code set is available. The

program is modular and could be rewritten in "C" or FORTRAN.

The program is designed to generate a correct output file

from a correct input source file. The program will not

interpret the result and the programmer must exercise crea-

tivity and care as his/her programming advances, to assure

correct results and clear output.

The printable output of any developed program is either

a string of characters, or mathematical results. Since any

string assignment is not altered, this will result in no

difficulties for string output. If the result is a real or

integer number, the result will be displayed based on the

BCON digit mode. The program did not concern itself with

numerals since all the users are familiar with the Western

' Hindu Numerals (Latin). Also, BCON has an option that

allows the user to swap the digits in the operating system

environment. So for BCON, analyzing the results of numeric

calculation will be duplicating the same work. This may be

a limitation under an operating system other than BCON.

58

1. Program Files

The program has two main files that are used for the

generation of the output code. The main file and the

resource file. The main file contains constant declara-

tions, data structure declaration, variable declarations,

procedures and functions, and main program body.

The resource file has the assignments of a constant

*' array declared in the main program and is used as an include

file. The resource file has a subset of the reserved words

and standard function names. The resource file is a very

useful modular concept since you can replace the PASCAL

resource file with one for the language "C". With minimum

changes in the constants and directives one could use one

Translator with several resource files, one for each

language, to Lexically translate from Arabic to one of many

Latin compilers syntax. This program focus is on the Turbo

PASCAL syntax.

2. Generated Files

The translator will generate two files:

- A Dictionary file with the same name and "DIC"
extension.

- An Output file with the same file name and "PAS"
extension.

The program will generate the desired output in the "PAS"

file. The dictionary file will be updated each time an

identifier is encountered for the first time. User-defined

59

-S.

"I , - -- 7 " " " - '' 2
,' " "

"
'

"" g '" "*"" '' ' " ' °
"

""

Arabic identifiers are translated to identifies of the form

"id_000 ... id_999."

3. Key Variables and Data Structure Declarations

The external file "Resource.Pas" is an assignment of

a constant array. Each element of the array is a record.

The record has two components. The first component is the

Latin reserved word or function name, and the second

component is the Arabic translated (matching) word.
3

The user-defined identifiers are handled by a

hashing scheme and a symbol table. The decision was to

demonstrate an efficient way to store and retrieve identi-

fiers. The lexical translator will be constantly looking up

any non-reserved identifier in a symbol table to insert it

or to get its Latin match if predefined. To improve effi-

ciency, the program uses a direct chain Hashing scheme [Ref.

3:p. 45].

The identifier is passed to a function and given a

key number by FunctionKEY. With a hashing formula the

function calculates the key number of the identifier. The

key number is a location in the Hash table. The content of

this specific location is pointer to a wordrecord which

either contains the word or is where a new record should be

inserted in case the word was not found. Words having the

same key number will be linked together in a linked list.

3The translation is in no way a standard or profes-
sionally translated. The translation was made for demon-
stration purposes.

60

%
A

The incident of having several words with the same key

number decreases the efficiency of Hashing (see Ref. 3 on

how to avoid Hashing collision and when to use Hashing).

"" The word record has the following.

IdNo - the identifier number in the sequence of
insertion.

Length - number of characters of the identifier.

Lastchar - location of the last character in the
symbol table..

Nextword - pointer tD the next identifier with the
same key number.

LatinId - the Latin identifier assigned to the
identifier.

With the above word (identifier) information, we can locate

the word in the symbol table. The spelling table is

declared as an array of 5000 characters. The size is an

estimate and can be changed as one can predict a closer

estimate. The symbol table is implemented as a linked list

and its size can vary dynamically so as to be as large as

necessary.

The translator looks for tokens using two methods.

The first method uses a pair of delimiters to identify the

token. The pair define the beginning and end of a token.

Token classes that can be identified by this method are

comments, literal strings, and directives.

The second method recognizes a token by its first

character. Examples of this class are integers, and identi-

fiers. The second method includes tokens with one character

61

12L! 1

such as separators and terminators. Both separators and

terminators will be referred to as delimiters throughout the

program. The delimiters are defined in a constant set. The

Hex values of the set can be interpreted with the aid of the

ARCII table (Appendix D).

Errors are a user-defined data type. Types of

errors are, for example, long-token, long comment, and

long_literal string. All of the above errors are expected

to occur as a result of failure of the programmer to end a

comment or literal string.

The token types are defined to be one of the

following:

- Blanks

- Reservedword

- Identifier

- LiteralString

- ControlCode_ c . _
- Comment

- Integer

- Functional_Operator

- Unclassified

- Illegal

4. These are the main declarations of the program. The

definition of the tokens and assignments of the variables

will be covered in the following sections.

62

.%°

4. Token Classes I and II

Class I tokens are recognized using the first

method. This includes the following types of tokens:

LiteralString: This token begins with Arabic quote mark,
single or double, and ends with it. The
Hex values are 97 Hex and A2 Hex.

Comments Begins with right bracket followed by
asterisk and ends with an asterisk
followed by left bracket.

Directives : Are strings in curly brackets. This
feature is for debugging. The directives
will allow the user to choose between
commented Latin source, with original
comments, and debugging option to display
on the monitor the tokens and their
types.

Class II covers the identifiers, including reserved

words, and integers. The remainder of token types will be

reviewed shortly.

Identifiers and Reserved Words: Begin with an Arabic
letter followed by an optional number of
underscore, digit, or other Arabic
characters.

Integers : Begins with digit and ends with any non-

digit character.

The remainder of the token types are Functional Operator,

Illegal, and Unclassified. FunctionalOperator tokens are

the arithmetic operators, brackets, asterisk, decimal digit,

semicolon, colon, pointer '^', etc. The illegal token is

the token that exceeds its defined length. This condition

is used to set an error message to pass to the user about

the location of an error. An Illegal token is also set if

the Hex code is less than 80 Hex. The legal range is 80 ...

63

FF Hex. The control code is any escape code or function

call within the range of Arabic characters ranging from 80

Hex ... FF Hex. The Unclassified token type is used as the

value before it is determined.

D. PROGRAM MODULES

The Lexical translator will call several procedures and

functions in the process to generate the desired code. The

main body of the program calls several procedures and

functions. The program modules and their locally declared

procedures and functions are as follows:

Open_File

Initialize

FillBuffer

TokenandType

Blank

Comment

LiteralString

IntegerToken

'/' IdentifierToken

ReservedToken

Special_Char_Token

ControlCharToken

MapjIdentifierToLatin

* .,.Search

Hash_Key

Insert: calls IdNo

64

Found

Latin-Integer

GetLatinSpecChar

PrintError Messages

1. OpenFile

The program starts by calling the Open File

procedure. The procedure will prompt the user for the name

of a file to translate and verify that the file does exist.

The second part is to open the input file for reading, reset

the Output file for writing, and the Dictionary file for

writing.

2. Initialize

Initialize procedure will set all the hash table

pointers to nil. The nil values are used to indicate that

there are no words with that key number yet initialized. It

will also set the initial values of global variables. The

module is called once at the beginning of the program.

3. Fill-Buffer

This procedure will get a line of source code, keep

track of the line number of the source code, and set the

line size of the source code. This module is continuously

called by the main program until the end of the source file

is reached.

4. Buffer-Emptv

This function will test to see if the variable Next

Loc, which represents the next token location on the line,

65

. . -..- v z - ":.: :c<. ' "-" ' - {-- "i .. .>. ..
' ¢-<.<.k -.]. . .< .. -, - v , ' -. '

is pointing beyond the LineSize variable. This case will

set the function to true, causing the main program to call
.,

the FillBuffer procedure to refill the buffer. This module

is called continuously by the main program.

5. TokenAndType

When called, this procedure is passed a line of

source code and the location of the first character of the

token to be fetched. The procedure gets the token and gives

it a type. The procedure initially sets the type of the

token to Unclassified and through several calls, tries to

analyze the type of the token. The first convenient check

is for Comments. It should be noted here that one would

like to place the most likely type check at the beginning to

reduce time of analysis of the token type. Another reason

for searching for comments first is because they are the

only type that requires two characters in the beginning and
the end of the token. The rest can be predicted just by

inspecting the first character.

If the token type is not set to Comment, then the

module calls several modules with a case statement. The

modules are called based on the first character after the

last token read. The Next Location variable points at this

character in the input line buffer called "Line." The

possibilities are:

, 6

FIRST CHARACTER LIKELY TOKEN TYPE

Arabic space Blank(s)

Double or Single Quotes Literal string

Arabic Digit Integer

Arabic Letter Identifier

Function Code Control Char

Other Characters Special Characters

Each possible token type above represents a module. The

module will be called to set the type of the token.

Looking at each module called by Token-andType,

they all set the token type and the length of the token.

All likely token types except for Literal Strings and

Comment will not set any error flags, since one character

will satisfy their requirements. For example, Blanks,

Integers, Identi-fiers, Control Characters, and Special

Characters all could be one character long. When Literal

String and Comment modules are called, they must begin and

end with a predeter-mined pattern. So an open comment for

longer than line length is an error, and the same for a long

literal string token. TokenAnd_Type only examines the Line

Buffer charac-ter and does not consume it. The called

modules assign the character to the Token Buffer and advance

the pointer of the Line Buffer one character. When a

successful, token type is assigned the module sets the token

length. PASCAL uses the first array location to store the

length of the assigned characters in bytes.

67

The behavior of the modules called by Tokenand

Type, are summarized below:

Blanks: Will keep consuming the Line Buffer blanks
(Arabic and Latin) up to a nonblank character
is reached. Blanks will set Token Type and
Length.

Comment: Consumes the characters within the Arabic
characters range, until the comment closing
mark is reached. The module will set the

A error set to long-comment, if any character
lies in the Latin alphabet range, including
the end of file and carriage return (ASCII OD,

" OA Hex). The error is long comment since the
comment is restricted to one line long.
Comment alters the opening and closing bracket
of the Arabic comment token. The characters
are the Arabic opening brackets, closing
brackets, and the asterisk, having the Hex
values A8, A9, and AA respectively.

LiteralString: The module will be called in case the
next characters are single or double quotes.
The module will expect to be terminated with

the same character it began with. If the
matching character is not reached before the
end of the line it is considered an illegal
token, and the error set will be assigned the
type long token. Valid literal strings will
not be altered. However the opening and
closing will be translated to single or double
quotes accordingly.

IntegerTok: Stands for integer token, and will be
called when a digit is present. The module
will keep assigning the Latin digits in the
token buffer, and assign the TokenType
Integer to the variable Tok type.

IdentifierTok: Will be called when the character is a
letter. The single letter qualifies as an
identifier alone, or could be followed by an
optional number of Arabic underscore, digit,
or letter. The module will set the Tok-type
to Identifier. The module has no effects on
error set, since when called it was a valid
token based on the first character of the
token.

ReservedTok: The module is called when the token found
is an identifier. The module will check if

68

. ,. _-.. . -. _ .. -. -.... . . -. . - ..- ." - . • • - " - './ - . 'L - ''. o'.-S.

the token is in the reserved words constant
array called "ResWord." If the identifier is
a reserved word the index of the table is
passed back to the main program.

ControlCharTok: The module is called when a BCON
function code is the next character in the
LineBuffer. The module assigns one character
(code) to the token buffer.

Special_Char: This module assigns one character to the
token. The token will always have one
character.

When TokenandType returns the token type to the

main program, a case statement will either call a procedure

or do the processing with a compound statement. The blanks

will be translated to Latin ASCII code blanks. The returned

comment token will be written out as is. Literal strings

are written out literally. Reserved words are written as is

using the MatchIndex in the ResWord constant array. The

identifiers are looked up in the symbol table. If

predefined, the token identifier number is returned with it,

or else the identifier is inserted in the table and given an

identifier number. The module used is called MapIdenTo

Latin.

6. MapIdenToLatin

The Identifier token is received and searched for

with a procedure called Search.

7. Searchd

This module starts by calling the Hash-Key function.

69

--

a. HashKey
HashKey calculates the token key-no with a hash

formula. The key number is used to look up the pointer of

the word record in the hash table. The word record is a

linked list of identifiers of the same key number. All the

pointers are initialized to nil at the beginning of the

program. If the key number results in a nil pointer value,

that means there is no such word in the symbol table, nor

any other word with the same hash key number, then Search

calls Insert to insert the identifier in the symbol table.

A b. Insert

Insert creates a word record at the beginning of

the linked list and stores the identifier in the spelling

table. Insert makes a call to IDENLBLNO, which uses the

global variable IDNO (sequence of appearance), and assigns

an identifier number in the word record.

If the pointer is pointing at a word record, then the first

word in the linked list is checked, and so on until there

are no more word records in the list or the word is found.

c. Found

The function Found checks if the resulting

-. ; pointer is pointing at the exact identifier spelling.

If the word record is found then it already has been

assigned a specific identifier number which is then passed

back to the main program to be written out as the Latin

identifier.

70

. l a

8. LatinInt

The procedure maps each digit of the token to the

Latin digit 0... 9, and passes back the Latin integer.

9. GetLatin_.SpecChar

The procedure is to give each Arabic special

character its Latin "functionally" equivalent character.

10. Print Errors

Based on the error set,- Print Errors will send the

error type and the line number in the source code where it

was encountered.

E. PROGRAM DIRECTIVES

The program offers two directives. One is the option to

keep the source comments in the output file, or the program

will omit the comments by default. Two is the option to

turn on and off the debug option at any location in the code

at the beginning of a line. This option will display the

tokens and their types as they are scanned.

The program is demonstrated by a list of test runs to

verify the translation of reserved words and special

characters. Also a sample of small PASCAL programs are

included with their generated files, code and dictionary

tables (Appendix I).

E. LIMITATIONS

The program does not allow the user to use the 'Include'

directive in TURBO PASCAL. The size of the program is

71

V -

limited by TURBO PASCAL to 64k, where an additional code
could be included as an 'Include' file.

The program is set to handle up to one thousand

L: identifiers. This is a reasonable number in working with

TURBO PASCAL since the program size is limited to 64k bytes.

The spelling table is 5000 characters long. That means

the total length of all identifiers can not exceed 5000

characters. The programmer can avoid, when writing long

programs, exceeding the limit by using short identifiers.

The program will not generate an error flag if a Latin

string is found in comments or literal string. This is

because both comments and literal strings are not altered.

ARCII provides two commas. The numeric comma is used

with real numbers in Arabic, and the Arabic Comma is used,

in this specification, as the Latin comma except for the

real number case. This is a small hurdle in the case of

translating the generated code back to Arabic. The

appearance of the two Arabic commas is different. They are

1800 out of phase on the vertical axis where the numeric

comma looks like the Latin comma. The decision on using

both commas was to avoid overloading the use of the Arabic

comma.

72

|:4..

VII. CONCLUSION

This thesis has tried to narrow the gap between educated

Arabic-speaking people and computers in general. The target

ages are mid-teenage, and forty-five and above. The

majority of these two classes still look at computers as

magic. They believe man created them. However they have a

hard time believing that man tells computers what to do.

With that attitude, the only thing that can convince them is

to help them to write small programs and see the results.

We are convinced that the majority will get rid of their

fear and have the desire to explore this machine.

In short, the topic of the interface between the rich

Latin software library, and the Arabic language environment

is a promising area in the sense that it will bring those

who fear computers closer, and find a more efficient way to

get the job or hobby done.

A. CONCEPT FUTURE

The program is simple in concept and to code, but the
environment where it is expected to work is not yet

standardized. The standards are not widely implemented, nor

are the developers of bilingual operating systems very

* helpful in responding to concerns about hardware

compatibility.

73

Once a unified environment is established, then the

concept could be developed further. The goal of this work

was to illustrate the feasibility and avoid specific issues

of the implementation environment. The program modules were

designed to be adaptable and portable for several purposes

with little modification. For example:

- For several programming language translations, such as
"C," FORTRAN, and BASIC, we only need several resource
files and several special character sets, one for each-
programming language requirement.

- For several code sets, including different languages, we
need the concept of a bilingual operating system that
uses the upper range of the character set ranging from
80 ... FF Hex.

- The program can work in a Latin-only operating system,
to translate source codes that have been edited using
Arabic code set values. Also, the generated source
could be compiled in the same machine. If the program
is interactive, then it needs to run under a bilingual
operating system.

B. LIMITATIONS

The bilingual operating system was not well documented

as far as how some of the function codes are implemented

during editing. Some of the characters have two codes (such

as the Arabic multiply sign and the numeric multiply sign).

To know which multiply sign is generated when I strike a

key, I had to use an editing tool to display the code in Hex

values and match the text file and its Hex values.

Right indentation is relative to the editor mode. If

you select- your screen mode to be Arabic and you read a

piece of Latin code, it will be right justified.
7

D
• ',74

The user must be careful reading data files. Some data

is readable only in Arabic mode and some data is readable

only in Latin. Also the data displayed may have been

transformed by the operating system. As mentioned before,

the user could use the "SWAP" option for altering ASCII

digits and ARCII digits in the DOS environment, or read the

digits as a string and change the values into ASCII. This

Nis important in order to perform numerical operations with

Arabic digits.

I strongly believe that, with time, standards will be

developed with more care and concern for the user. This is

the reason we chose not to design the program for a specific

system.

It is hoped that this work will benefit other

researchers and future thesis students from other countries

since a similar concept could be applied to other languages,

especially languages descended from Latin.

75

APPENDIX A

F IGURES

E b b~ jb). OZ %

Figure 1. The 28 Arabic Alphabets

Jh~ U..Z..

Figure 2. The 31 Alphabets (Optimum Set)

76

NAME CHARACTER NAME CHARACTER

ALEF IDAD .
BA *A TAH 1b
TA'A -aDHAH

THA AIN
JEEM I3HAIN
HA'A FA
KHA'A OAF Li

DAL .~KAF d
THAL .~LAM

RA MEEM
ZA jNOON

BEEN HA
SHEEN WAW
SAD VA 4

HAMMAZAH
TAAMARDOTA
ALEF..MAOSURA i

* Figure 3. Arabic Alphabet Names

77

S -

L Figure 4. Arabic Diacritics (Vowelization)

g-

'p%-.

. 1.,
L:4-:

• '"

.Jv

N7
4,,. k, ' ,,.s,,' .,; , ', v -;,... v . - - ,,..-7 . - - -.... ,..,.,---- -"--- - -"-.-,.".--- ._. .".

'i A Y 10 E T'V

Eastern Hindu numerals

9 8 7 6 5 4 3 2 1 0

Western Hindu numerals

Figure 5. Hindu Numerals

'7

'S'S 79SI
' V, , . . "" ."' .e e','""". ,;@ "- .",,.-q '' "-.';; ';' . ''''v "

V.

$ "' tA 1 t tI A

V" 4'i1 %a.t:i touttowel

a. ,'ithout Vowels

1~~IZL -~ ,.e5 J.EL

Figure 6. Arabic '-'ext

80

System 4displayOprtn

Mieor codes BCO0N reduced system
codes and

key codes applications
Keyboard

Figure 7. BCON Code Sets

APPENDIX B

TEXAS INSTRUMENTS APPROACH TO
BILINGUAL OPERATING SYSTEM

Philosophy of Bilingual Arabic
Latin Implementation on Microcomputer

System

.d. .-

Texas Instruments

82

ARABIC COMPUTER SYSTEMS
PHILOSOPHY

SPECIFIC CHARACTERISTICS OF THE ARABIC LANGUAGE

ARABIC IS WRITTEN FROM RIGHT TO LEFT

* THERE ARE SOME VARIATIONS IN TYPES OF ARABIC CURRENTLY IN USE IN
DIFFERENT COUNTRIES

* THE LANGUAGE IS A FOUR LEVEL ONE. A CHARACTER CAN HAVE UP TO
FOUR SHAPES DEPENDING ON ITS POSITION IN THE WORD: ISOLATED,
INITIAL, MEDIAL OR FINAL

ARABIC CHARACTERS ARE JOINED WITHIN A WORD

NO UPPER CASE EXISTS IN ARABIC

!'11 start my presentation by a brief mentioning o1 some of the characteristics of the
Arabic language which have been covered in previous papers and which afl'ect thle use oI
the Arabic language in the computer field.

83

ARABIC COMPUTER SYSTEMS
PHILOSOPHY

SPECIFIC CHARACTERISTICS OF THE ARABIC LANGUAGE

SONLY THREE CHARACTER VOWELS EXIST IN ARABIC
ALIF ,OUAOU ,, YAA

*VOWELISATION IN ARABIC IS ALSO PERFORMED THROUGH THE USE OF
DIACRITICS. THESE ARE USED:
- IN THE CASE OF SIMILARLY WRITTEN WORDS TO AID THE READER

- IN RELIGIOUS TEXTS INCLUDING THE KORAN

- FOR SCHOOL TEACHING

.4 * ARABIC LANGUAGE USES INDIAN NUMERICS, WITH THE DECIMAL POINT
V BEING A COMMA.

THERE ARE ARABIC SPECIAL CHARACTERS WHICH INCLUDE THE ARABIC
COMMA ,SEMICOLON ' , QUESTION MARK ,ETC.

84

ARABIC COMPUTER SYSTEMS
PHILOSOPHY

ARABIC ALPHABET

* THE BASIC ARABIC ALPHABET IS COMPOSED OF 28 CHARACTERS

* THE LAMALIF WHICH IS COMPOSED OF TWO CHARACTERS LAM + ALIF
IS CONSIDERED AS ONE CHARACrER

* THE HAMZA CAN BE WRITTEN IN MANY DIFFERENT WAYS IN ARABIC
DEPENDING ON ITS USE, WITH A VOWEL OR ISOLATED

* IF THESE TWO CHARACTERS ARE TAKEN INTO CONSIDERATION THE
ALPHABET IS 30 CHARACTERS

* THE TAMARBOUTA IS A SPECIAL CHARACTER NOT INCLUDED IN THE
ALPHABET. IT IS OCCASIONALLY INCLUDED AT THE END OF WORDS
DEPENDING ON GRAMMATICAL RULES

85

ARABIC COMPUTER SYSTEMS
BILINGUAL SYSTEM APPROACH

SOLUTION 1 : CORRESPONDANCE & DIFFERENCES

* THIS STUDY IS BASED ON THE CORRESPONDANCE AND DIFFERENCES
BETWEEN ARABIC CHARACTERS. THE ARABIC ALPHABET MAY BE CONSIDERED
AS FORMED OF THREE TYPES OF CHARACTERS:

- TYPE A INCLUDES CHARACTERS HAVING 1, 2, OR 3 POINTS:

- TYPE B INCLUDES CHARACTERS WITHOUT POINTS:

- TYPE C INCLUDES CHARACTERS HAVING AT LEAST ONE FORM IN EACH CASE:

* IF WE ONLY CONSIDER THE FORMS WITHOUT POINTS WE CAN REDUCE THE
CHARACTERS IN EACH TYPE AND THEN ADD THE POINTS AFTERWARDS

86

ARABIC COMPUTER SYSTEMS

BILINGUAL SYSTEM APPROACH

SOLUTION 2 : ROOTS & APPENDICES

* A STUDY BASED ON THE USE OF APPENDICES AND ROOTS TENDS TO
REDUCE THE TOTAL NUMBER OF SHAPES BY CONSIDERING A ROOT TO BE
USED IN INITIAL & MEDIAL SHAPES TO WHICI I AN AIPIPLNDIX IS AIJi)EL) TO
FORM THE FINAL OR ISOLATED SHAPES

TYPE A TYPE B TYPE C
a = :+ . (.-

4 =e +,.. '-. + .

a= + ,.---ji +.,-"=•+".4- -ol - J

(J =
,4= (+ ,, ,, +,, -" ,

The problem with this solution is what code to give to these apprendices. ii lhe\N are coded would

tic) be considered as characters in a character coLnt' iow would high level languages interpret tiem'

How "ould %pecial %/w function interpret them'? replace - insert - find String.

ihis IS the study %hich resulted in the actual Arabic implementation on Texas Instrument, equipment

and which will he explained in this paper.

i

87

4

ARABIC COMPUTER SYSTEMS
BILINGUAL SYSTEM APPROACH

SOLUTION 3 "CONTEXTUAL ANALYSIS

Ar A STUDY BASED ON THE USE OF SHAPING ALGORITHMS. USLNG CONTEXTUAL
ANALYSIS TO DETERMINE THE PROPER SHAPE OF THE CHARACTER, FOUR
GROUPS ARE IDENTIFIED

- GROUP 1 ONE SHAPE PER CHARACTER
- GROUP 2 TWO SHAPES PER CHARACTER
- GROUP 3 THREE SHAPES PER CHARACTER
- GROUP 4 FOUR SHAPES PER CHARACTER

* POSSIBLE APPROACHES

- ONE-KEY ONE-SHAPE SIMPLIFIES THE SOFTWARE BUT USUALLY LIMITS THE
SET OF ARABIC CHARACTERS AND CREATES A COMPLEX KEYBOARD SINCE
ALL THE ARABIC CHARACTER SHAPES MUST BE PRESENT ON THE
KEYBOARD.

- ONE-KEY MANY-SHAPES IMPLIES MORE SOPHISTICATED SOFTWARE BUT
SIMPLIFIES KEYBOARD & USER INTERFACE

4

I() th :c 2 proaulilc' , th. 2nd one has bcIn ,%,,II b. ,I.c o lcrcd it, 111c t uIho\ e ih ,

88

APPENDIX C

DS9900 BILINGUAL COMPUTER
SYSTEM BY TEXAS INSTRUMENTS

ARABIC COMPUTER SYSTEMS
DS990 BILINGUAL SYSTEM

COMMERCIAL COMPUTING REQUIREMENTS FOR THE MIDDLE-EAST

* BILINGUAL LATIN/ARABIC DATA INPUT & OUTPUT

* COBOL DRIVEN APPLICATIONS

* BILINGUAL PRINTING

*BILINGUAL SORT/MERGE

SPECIAL PRODUCTS DEVELOPPED TO MEET REQUIREMENTS

*BILINGUAL DATA ENTRY TERMINAL

*BILINGUAL MATRIX PRINTER

*BILINGUAL LINE PRINTER

Sol: IWA RE

I lic',e hiatidl h,)t~i In the naittiia;l manncr + It% rc iupicdk/ % Iar opcrator,, q- ti Ic. I

Ilanutimigc' cas.v hiandlinig.

89

V

V

ARABIC COMPUTER SYSTEMS
DS990 BILINGUAL SYSTEM

CHARACTERISTICS OF BILINGUAL DATA ENTRY TERMINAL

* BILINGUAL VIDEO DISPLAY UNIT

- THE CHARACTER GENERATOR ROM GENERATES 7 x 8 MATRIX FOR ALL

STANDARD ASCII CI IARACTERS AND 128 ARABIC SHAPES

A 7 x 10 MATRIX IS USED FOR INTRICATE ARABIC CHARACTERS

Latin & Arabic can be displayed on the screen at the same time.

909.

9.

" €_ ; ,. , . , .., ,-....-..... ,,

ARABIC COMPUTER SYSTEMS
DS990 BILINGUAL SYSTEM

* BILINGUAL KEYBOARD
- PROVIDES 5 MODES OF OPERATION : ARABIC, LATIN, SHIFT, UPPERCASE

& CONTROL. IT CONSISTS OF 91 KEYS
- PROVIDES THE USER WITH THE CAPABILITY OF ENTERING ARABIC

AND/OR LATIN DATA WITHOUT CONSTRAINTS
- KEYBOARD MULTIFUNCTION CAPABILITY IS PROVIDED BY A MODE

SELECTION KEY AND TWO CHARACTER SET SELECTION KEYS
- DATA IN EITHER LANGUAGE CAN BE ENTERED IN EITHER MODE
- THE KEYBOARD GENERATES 7-BIT CODES FOR LATIN AND 8-BIT CODES

FOR ARABIC

~7 Fi ~F ? IAOU

'Nov CSI F J.1 I " ' 1 1 1 I I 9 1k
5'ELOP~flLOCK 2 .. I e 7 6 *I O

-CONTROL A,,!. S 5 1.' J T~ 3 M

I1.laii pla cCmu'l, o1 Ar Li ke t. pcwnirhcr.

RN

91

ARABIC COMPUTER SYSTEMS
DS990 BILINGUAL SYSTEM

ARABIC CHARACTER SHAPING

* 32 BASIC ARABIC CHARACTERS ARE GENERATED BY THE KEYBOARD

A CONTEXTUAL ANALYSIS OF THE ARABIC DATA IS PERFORMED BY THE
CONTROL PROGRAM TO DETERMINE THE CORRECT SHAPE OF THE
CHARACTER TO BE DISPLAYED

* IN TOTAL THE. TERMINAL CAN DISPLAY 115 SHAPES

EXAMPLE OF SHAPING PROCEDURE

ENTER YAA

TA -

KAF

LAM

MIM - .a:.

SPACE : -2-c

92

k~d~ft. v^*.

ARABIC COMPUTER SYSTEMS
DS990 BILINGUAL SYSTEM

DEVICE SERVICE ROUTINE INTERFACE OVERVIEW

*THE DEVICE SERVICE ROUTINE IS CONTROL SOFTWARE BETWEEN THE
USER'S PROGRAM AND THE VIDEO DISPLAY TERMINAL (VDT)

DISPLAY
ROM PR~OGRAM

VOT OUTPUT ~ INTERFACEINEFC

11~ 1I I A

S\.Nc111 I1c\IhIill\ h Sn It arJc IllipIlnlit-

93

ARABIC COMPUTER SYSTEMS
DS990 BILINGUAL SYSTEM

BILINGUAL TERMINAL PROGRAM INTERFACE
0 0 0 0 0 0 . 0 0 [
p 1 0 0 r I I I n o n o

I A.. I aI 0
t,% D I S 0 o A I 0 o o ER

0 2 3 * 5 * 1 * 9 * 9 c 0

E SF 5R E

o O-DCAI o INPU -J(o o. '* , EAS[.

0 1 " .OME I
o oD c$l <: * * io C A * -

__ 1: 3TG

ININ

I sI .0

-SUE - , @ ~T-

F - G0 Its

Basic Character Set.

94

"I A L S * A L >K >I L.- -..- ,

.9,

ARABIC COMPUTER SYSTEMS
DS990 BILINGUAL SYSTEM

BILINGUAL TERMINAL DISPLAY ROM INTERFACE

00 0 0 0 0

6' 00 0 1 0 0 0 0
0

1 I i6 ' 1, 0 0 0 0 0 00 0

S0 0 0 0t OL 0 I0,0 so. c, I . A . o° ' ° I

1) L S 0 * 0 ST. Lj.2

0 0 3. DC~ . 0 60 0"2 0 O 0 6 6 6) I

_ _ _ _ - - - - - - - - _ _ h
-6 312 F ... C , , .-' .6

0 0 S' S J *

0- 0, 6 oC 1 . 5 6 . . . ' * ' b ' -

6.. @

Problems of .%rabic Numerics mtnu(u,.c .SO I fT nuiric c(T hr COIL IORTRAN.

6 95

-- N N -

7 AD-A175 145 'LEXICAL TRANSLATOR FROM
ARABIC TO LATIN NPSAENVIRONMENTCU) NAVAL POSTGRADUATE SCHOOL MONTEREY CA

IS S ALJUWAIMRN SEP 86
UNCLSIFIDE FG92 U

i1 111 , "2. 12.5===

I2.2

4-

1111IL 1 1111_!.4

jr RlCP RESOLUTION TEST CHART

U'I il

APPENDIX D

BCON BILINGUAL OPERATING SYSTEM BY ALIS INC.

Default Reduced Codes
II i iat, ,.araclvr- icntiia.1 t"' Oi al, \N-Cl w i h ir,. v ~ ;'tion cot tht,

t il, ing t% u charactvr,

01 F-unction code vi Biiinzu. l k rvvie ktca" imagt d it Latin space,'
F~ Iunction codte ---t Lx!-,,- ':!i ncrk-, i. i't atti \io, (lma1ed a-; Latin

pae

V N Numerl' space
= Arabic- number sign

82 x Numeric multipkY sign
83 Arabic ampersand sign

S4 Arabic apostrophe sign
S; Numeric percent sign
St, + Numeric divide sign

87 Numeric lfet parenthesis
M ' ...umerc right parenthesis
? - Numeric pius sign

SA Numeric minus sign

88 Numeric less thin sign
AC - umeric equals sign

SD Numeric greater than sign

r[Function rode .v! .rar!, -krvtr I jniux-v \1-.i (imaged as Arabic space)

F'1 F-unction code -'.- i.iin -,trvw' :.anuzu~*, " i'd maved as Arabic space)

4() F-unction code :-e, ArabL Lint: I.aneihev M-I (imaged as Arabic space)

Li I unction code "..: art Ilint, .ancumzv (i,~- maged as Arabic space)

92 i Arabic commercial at sign
Qj Arabic left square bracket

44 Arabic right square bracket

4:; Arabic urward arrow head
(4h Arabic underline

47 Arabic reverse apostrophe
4K Arabic leti turls bracket

(40 Arabic sertiwal fine

t4 - Arabic right curl% brackei

4B - Arabic tilde
4((reser% ed)

9D ireserved I

(jE F-unction code ,- Lin, bf-Linoar\ (imaged as Arabic space)
9 f iresers ed

(:Numeric means character is Arabic but has intrinsic right
spacing (i.e. vvil be considered part of a numeric string).

- ~~'2Arabic means character has intrinsic left spacing.

96

-V , .r, i lc pa ,1,

S\rabic u.\Lxdamalon mark

\\r 'bi ou, 'aton mark

"\; X "\ra't'i, RmUItivi \ ic i

w A .\rabii perc.nt ,ign

Ak. Arabi, period

.\ -+ \ram, di
O
, Ilgn

A rabic let, parenthesi,

.AL Arabic right parenthesis

AA Arabic asterisk

AB Arabic plus ,ign

AC \ Arabic comma

\D Arabi, minus ign

.AE s umeric comma

- .Arabic solidu,

B1' -\ravic digit 1)

BI Arabic di it 1

B2 T Arabic digit 2

B' - T Arabic digit 3

B4 E Arabic digit 4

B; 0 ArabiL digit :

Bb "L Arabic digit 6

B7 V Arabic digit 7

Bs A Arabic digit 8

B" 1 Arabic digit q

BA Arabic colon

BB G Arabic werni-colon

BC (Arabic greater than sign

BD = Arabi(equals sign

B) Arabic le, than Nign

Bt (* .ra bc .lut,tin mark

-A-

*: 97

% %.

CO 0- TAII
Cl - ASHIDA

C2 - HADDAH
C - ;UKU\

C4 - ~ATHA
C ; SHADDAH FAT'HA

Ch, 0 FATHATAN
C7 !SHADDAH- FAT'HATAN

CS DA.MMAH
C9 SHADDAH DANIMAH

CA 'DAMMNATAN

CB SHADDAH DAMIMATAN

cc - KASRAH

CD SHADDAH KASRAH

CE 'KASRATAN

CF 9 SHADDAH KASRATAN

DO *HANIZAH

Di ALEF

D2 T WVASLA ON ALEF

* D3 HANIZAH ON ALEF

D4 HAMZAH UNDER ALEF

*D:. T MADDAH ON ALEF

Dh - BA A
D7 PEH

Ds~ i TA'A MARBUTA

D9 %-a T AA
DA k;a THA'A
DB IEEM

DC SHEEMI

DD HA'A
DE . KHA A

DF Dll

98

L; r HEE\

f7 ~jeDAD
E -6 IAH

E4 . D HA H
E A AIN
E B CHAI\

E C IjFA

E D QAI-
E E j CAI-

Fl- 5 GAF

10 J LAM
F I ' LA\IAIEF
F2 kN ASLA ON LAMALEF
F3 VHA%,IZAH OX ANIALEF

F4F Y HAMiZ.AH UNDER LA\IALEI-
I ; 'dSADDArI ON LAM ALEE

Fh MEEMA

vx HA

I A fIA'MZ-\H OXNA
FB ALLI N1AQ5,LRA

FE) U Hf\\1ZAH OX N~A A

I L Arab;(~ Fe.erse .oliJu,

I F- Blank I F charaictur 1in'jL,'d as Arabi 'npce)

99

Key Codes to Reduced Codes Table

Key code* English Reduced Code Arabic Arabic
(ASCII) Legend (ARCIID Legend Name

20 i. A) " Arabic !pace

21 Al Arabic

22 A2 Arabic
23 81 # Arabic =

24 5 A4 S Arabic $

25 A5 X Arabic %

26 & 83 & Arabic &

27 E8 J TAH

28 (A8 (Arabic

29 A9) Arabic

2A " AA U Arabic"

28 AB * Arabic
2C F9 . WAW

2D - AD - Arabic-

2E E2 ZAIN

2F I E9 J. DHAH

30 BO Arabic 0

31 1 BI l Arabic 1
, 32 2 B2 T Arabic 2

33 3 B3 If Arabic 3

34 4 B4 E Arabic 4

35 5 B5 0 Arabic 5

36 6 B6 Arabic b

37 7 B7 V Arabic 7
38 S B8 A Arabic 8

39 9 B9 , Arabic 9

3A BA Arabic

3B EE J KAF

3C AE Arabic numenc comma

3D = BD a Arabic =

3E A6 Arabic

BF Arabic "

: : Character bvte of kev code word only (low-order byte). The
%. scan code (high-order byte) is not modified by BCON.

100
I 'S.2.

(140 (92 @ Arabic C

41 A CC - KAzRAH

42 3 F
1' \AD)AH ON LAMALEF

43 (" Arabic

44 B C Arabic

4; C DAMMAH

4h4 Arabic 1

47 C F3 V HANIZAH ON LAMA(EF

48 H D3 HAMIZAH ON ALEF

4Q 1 A7 Arabic divide sign

4A I CI - KASHIDA

4B K AC Arabic comma

4C L AF / Arabic/

4D NI 84 Arabic

E 4E N D5 T MADDAH ON ALEF

4F 0 A3 x Arabic multiply sign

50 P BB I Arabic semi-colon

51 Q C4 , FAT'HA

52 R CA - DAMMATAN

53 5 CE 0 KASRATAN

54 T F4 > HAMZAH UNDER LAMALEF

55 L 97 Arabic

56 V 9A I Arabic

57 , C6 0 FAT'HATAN

58 x C3 * SUNKUN

59 D4 3 HAMZAH UNDER ALEF

5A Z CO j TAIL

5B DB IEEM

5C FE \ Arabic \

5D I DF DAL

5E 95 Arabic

5F Q6 - Arabic

101

h

tEO E THAL

IE; SHEEN

b2 fI V LAMALEF

I- A .~HAMZAH ON l.\AtA

64 f-C YAA

6A DA THA A

bf, DoBA A

67 *.FO J LAM

h8 Di ALEF

69 IFS - HA

6A D9 -' TA'A

6B3 F7 NOON

6C F6 MEEM

6D D8 6S TA'A MARBUTA

6E FB ~ S ALEF MAQSLJPA

6F DE KHA A

70 DD H A'A

71 E. 7 DAD

72 E ED Q AF

73 E E4 SEEN

74 'EC F FA

75 E EA AIN

76 El I R A

77 E 6 vd SAD

78 DO £ HAMZAH

79 E B CHAIN

7 A I'FD HAMZAH ON YA A

7B BE) Arabic >

7C 99 Arabic I

7D BC (Arabic <

7E -C2 SHADPAH

Kev code English Reduced Code Arabic Arabic

iscan -char) Legend fARCIh, Legend Name

I Sot A t kD7 PEH

1800 Ar DP7 * PEH

l'itIA'- DC 1 HEEM0
IQtI(l A"-7 DC SHEEM
2;ot A" I)' E\l

21,1A- E I

102

Ir

a ~~BCON Kayboard Layout Vsion 3 _ _ _ _

!V I

1 __ Wj ~ ~iiiiri~L~j~.iJul
_ '--i0'

Keyboard Layout and Keycodes to
Reduced Codes Tables

103

Display Codes
Dispia'. Reduced Name (shape) 4*1

code code

(I to f- V U to 1-1- Latin cniaracierb, identical to original ASCII set, with thi-
eXceptiOn Ct the toliciwing tw~o character,;

01 0L 1- unction code OE
ttF F-unction code OF

100t C2 SHADDAH
10) C3 SUKUN
102 C4 F--THA
103 C; SHADDAH FAT HA
104 C6 1-ATHATAN

1 0; C7 SHADDAH F-AT HATAN
I ON C S D.AMsMAH
107 C 9 SHADDAH DA\1\IAH
ION. C A DAMMATA%
I (l' - SH.ADDAH DAMMATAN
IOA cc KASRAH
IOB CD SHADDAH KASRAH
loc CE KASRATAN
IOU CF SHADDAH KASRATAN
IOE AO Arabic visible space
101- QE Arabic vistiie boundat'.-

110 SE Functton code 8E
III 9F Function code WE
112 40 F-unction code 90
111 91 F-unction code 91
114 ()E function code 9E

116 00 (Reserved)
116 00) (Reserved)
1H7' 00 (Reserved)
I114 00 (Reserved)
I ILI 00 (Reserved)
I IA 00 (Reserved)
I I B 00) (Reserved)

I I P 00 (Heserved)
I IL[00 (Reserved)

IIF on (Reserved)

'Ai means Alone. F means Fina!. I means Initial and Ml means Medial

00)~ mean, that thi, Jtspla\ code is reserved and that no r.eduk.'d code' is

associated to it t,% detault

104

~~'"~ N'**

-M

Dtsplas Reduced Iaeshape) 0)
code code T

l A ra I, iLxPat-

A4 Arati =

I2 A; Arabic
11f Arabic ~

I- 1s 4 Arabi,

I:. A2 s Arabic
121 .Ac Arabic
I'12 A.A Arabic

12B A B Arabic

I12C AL Arabic (numeric comma)
121' -N Arabic
1217 Atb Arabic

12f AlI Arabic/

)I II BOl Arabic LU
1 11 Bi Arabic I
132 B 2 Arabic 2
P3 BI Arabic 3
134 B4 Arabic 4
11 B Arabic :;

13h B Arabic fi

117 B Arabic 7
13h BS Arabic S
Il BQ Arabic 94
11\ B-\l Arabic
I Il B11 Arabic

I'Q BC Arabic
I ID) BID Arabic
I 'IF BE Arabic
I II BF Arabic

',A means Alone I means Final. I means Initial and %I means Medial.

1-i Oili means. that this, displav code is reserved and that no reduced code is
ass.ociated to it b% detault

10 5

................................. A5-.. - r

Display Reduced Name Ishape) (
code code

141, " r bR L

14: [)1 f l \1Z \ii
14:" 1)1 \l [F A l

14, D9 I \ \, \ 0% \1 I \l

144 D4 HA'l/ AH L \DER ALE I Al
14' D PEH A
14' D7 PEH I

14- D TA A \IARBL TA Al
14s DO TA A A

14'4 D4 TA A I

V 14A D.A THA A A
14B DA THA A I

14C DB IEEM A
14D DB IEEM I

14E DC SHEE\1 A
141' DC 5HEEM I

lg DD HA A A
,;1 DD HAA I

I;2 DE KHA.A A
1,3 DE KHAA I
1;4 LI. DAI Al

.1;' F I I AMALF A

lI F2 VASLA ON ILAIALEF A
I-7 F3 HAMZAH O% .,A\IALEF A
-1:x F4 HAMZAH L\DER LAMALEF A

MI F= MADDAH 01. LAMALEF A
1 V %I EM A

_B '41 Arabic
1;C IL Arabic
I 1) 44 Arab:L

1t 4; Arabic
I W,{ h Arabi(

[A A means Alone 1' means final I means Initial and M means Medial

-**
"
f0 means that this displav code is re.er ed and that no reduced code is

as'sociated to it r,\ detault

106

*::.'.

4'.°

.- ,

Display Reduced Name (shape)
code code

I,1 Q7 Arabi
I I In- %1EF%1

102 F7 "(1O\
163 F7 NOON
1b4 Ps HA A

I i AC Arabic text comota
In A3 Arabic x tmultipl\ sign)

17 A7 Arabic divide sign
168 D3 HAMZAH ON ALEF Al

16Q EO THAL Al
IbA 00 Arabic > >
16B 00 Arabic < <
16C E4 SEEN with compressed tail A

1bD E; SHEEN with compressed tail A

IHE E6 SAD with compressed tail A
16F E7 DAD with compressed tail A

170 80 Numeric space
171 82 Numeric x (multiply sign)

172 85 Numeric %
173 8t Numeric divide sign
174 87 Numeric
175 88 Numeric
17t 8Q Numeric -
177 8A Numeric -

I I3 8B Numeric
1714 8C Numeric =

17A 8D Numeric
17B 9S Arabic

17C 99 Arabic
17D 9A Arabic
171 9B Arabic

17F FF Arabic (DELETE sign,

A means Alone. F mean- ,
Final. I means Initial and M means Medial

-1 00 means that this displav code is reserved and that no reduced code is
assoc ated to 1 b. detault

107

4-" " " - " ,"" . ; ; "" -'- , '""' -"- -""- - -" - . "' - ". - " -"- ". "" " " " " -" " .•. "" - . " -" - "" ""- ."" ' '

Display Reduced Name Ishape) 0)
code code

1 (C" SHADDAH linking)
I ' I C3 1,L:KL \ dlirin g

I .C4 I AT H\ (linking)
IS3 C.; SHADDAH fATH-A (inimng)

1$4 Cb FAT'HATAN (inking)
is; C7 SItADDAH FAT'HATAN (linking)
lS6 C, DAMMAH (linking)
I7 cc SHADDAH DAMMAH (linking)
ISI CA DAMMA1 AN (linking)
189 CB SHADDAH DAMMATAN (linking)

% 18A CC KASRAH (linking)
18B CD SHADDAH KASRAH (linking)
1SC CE KASRATAN (linKing)
ISD CF SHADDAH KASRATAN (linking)
ISE CO TAIL
18F CI KASHIDA

.. *-

190 DI ALEF F
191 D2 WASLA ON ALEF MF
192 E4 SEEN with compressed tail F
193 D3 HAMZAH ON ALEF MF
194 D4 HAMZAH LNDER ALEF MF
19; D; MADDAH ON ALEF Al
195 D5 MADDAH ON ALEF MF

IQ7 D BAA A
198 D BAA F
1(D6 BAA I
19A Db BAA M
I(B D7 PEH F
19C D7 PEH M
19D D8 TAA MARBLTA MF
19E D9 TA'A F
19F TA'A M

() A means Alone, F means Final. I means Initial and M means Medial.

(' 00 means that this displa' code is reserved and that no reduced code is

4 ~associated to it b%, detault

108

N" % % %

tispla% Reduced Name tshape) 41)
code code

1)\ \

P B II L\I
I\ DB ILlI I
I.A4 DC SHELNI
IN; DC ,HEEI M
1 DD HA A
I\7 DD HA A I
SA?, DE KHAA
1 1\4 DE KHAA M
I AA DF DAI. MF
1AB E5 SHEEN with compres.ed tail F

I AC Eo THAI MF
lA) El RA A I
I,\E El RA MF
I,\ E2 ZAIN Al

11311 E2 ZAIN FM
IBI E3 SEEM At
1B2 EE SEEM FM
IB E[4 SEEN A
IB4 E4 SEEN F
IB; E4 SEEN I
1Rh E4 SEEN M

187 E5 SHEEN A
IBM E- SHEEN F
1 R E. SHEEN I
IB..\ E; SHEEN M
IBB Eh SAD A
IB(Lb SAD F
I RP E7 DAD A
IM E7 DAD F
1 [i -x TA H AI

A mean, Alone. F means Final. I mean, Inital and NI mean' Medial

a." (- 00 means that this display code is reserved and that no reduced code is
associated to it b\ detault

-510

~109

_.

-. 5. .-': d' - -. 5

Displa' Reduced Name Ishape) 1*)
code code

i IC; ' 1 .'XH Nil

I XI l

"c2 DH V'.t NI
I L L\ N\ .\

1C4 L\ \1\ F
1C ELA AIN
IL

, [-.\ AIN %

]CC EB GHAI\

ICA EB GHAIN M
ICB EC FA A
IC(_ EC I-A F
ICD EC FA I
ICE EC FA i

* ICF ED QAF A

I IDo ED QAF F
IDI ED QAF I
lD2 ED QAF M
ID3 EE CA- A
ID4 El CA[F
I D; EE CAI Al
I Dt EE CA[MF
ID7 El' GAF A
ID(El- GAF F
ID4 EF GAF I
ID,\ EF GAF M
IDB F11 LAM A
ID(FI LAM F

IDD I-) LAM I

IDL FO I.AM N
Ilni- Il LANALEF F

t*i A means Alone. F mtans 1-inal. I mean, Initial and NI means Medial

* (;: 00 means that this display code is reserved and that no reduced code is
associated to it b, default

j

110

%..

Display. Reduced Name Ishape))
code code

11-11 [1 A\ *\L. ON LA\IAI EFI
If F 1 H A\\ZA.H 0\ I I\ Al

1- f4 HA!.\ZAH LNDLR I -\lI ElI
ILI' F; %ADDAM ON t-A\.\-LFV
114 F, MEE.NI F
1E; Ft) MEENI NI
lEt, F7 \OON I
IE' F7 NOON .-I
! E. S 6F HA F
169 68 HAI
lEA FS HA NI
IEB F9 WVAW A
IrC 69 W AW F
lED FA HAMIZAH ON' WAW A
lEE FA HANIZAH ON WAW F
IEF FB ALEF MAQ-,URA Al

160 FB ALEF MAQSURA MIF
IFI PC YA A A
162 PC YA'A F
1F3 PC YA'A I
164 PC tA A M
IF; FD HANIZAH ON YA'A A
I~ Pe FD HAMiZAH ON YA'A F
I F7 ED HANIZAH ON YA'AI
IFS FL) HAMZAH ON YA'A NI
I169 00 ALEF (for LAMALEF) ME
IFA 00 WASLA ON ALEF (for WASLA ON LAMALEF) NI
168 001 HAMZAH ON ALEF (for HAMAZAH ON LAMIALEF IMF
IFC 00 HAMZAH UNDER ALE? ifor HAMZAH UNDER

LAMALEFt Nil
lFD 00 MADDAH ON ALEF (for MIADDAH ON LAMALEFt ME
I FE 66 SAD Kith compressed tail F
66F E7 DAD with compressed tail F

(~A means Alone. F means Final, I means Initial and NI means Medial

(00 mean, that thi. displa v code is reservetd and that no reduced code is
associated to it b% default

11N1

APPENDIX E

CODAR I, II, U CODE SETS

Seven bit CODAR II

7 bit 00 01 10 11 00 01 10 11I

CODAR 11

0000 ®U DIE ESP U Q -

0 0 0 1 0 SOH DC I I

0 1 0 G) STX DC 0 s o

0 0 1 1 ET DC 3 .

0 0100 0 EOTJDC $ * __

1 0 0 0 - CAN 8

1 0 1 0 C SYN &
10 11 1 0 BE ETB + _ ~j

1 I a 0 FF FSCAN ,

1 0 1 cR GS M 3

110 0 so RS >

171T ®SI us/1

CODAR II coding compatible with CCITT Nr. 5. The set coded is the sub-system ASV-CODAR/
comprising 64 characters for informatics and data transmission. It \,as presented at the
UNESCO/IBi Conterence at Bizerte. 1976. The ASV-CODAR/2 sub-sy stem can be obtained by
eliminating the characters framed in heav lines.

112

;' " -. S2 d ..- .. " . . . 'Te3 .
l
" " " " ", ., .'' .'r,*" . '." ".-.. ,.

Seven bit CODAR U

0 0,0 1 0 oi 1 0 0 0 1 l o l 0 I
' CO O0AR -U-

_ _ _ _ _ _ _ _

COaf.,. ,Is.g 0 -ly 0 3 6

0 000 '0I NULD ME ESP 0 1,

0 0 01 _f SOH DC 1 1 0

0010 2 ST X DC 2 I

0 01 1 E ET D C 3 _ _

0 10 a EOT'DC$ IA

00 1 C, ENO'NAK %

0 1 0 C* ACK SYN 6A

0 1 1 1 , BEL ETB : Al

1 00 0 B~ S CAN 8S - I

1 0 01 H T E M 9

10 1 0 L~ F SUB

Tio1_1 1 ~. VT ESC * ;i

I® C FF FS ,

1 I C C CR GS - -

1110 ®SO RS -> -
US us?~

- -mee

113

APPENDIX F

FINAL CODE U-F.D.

FINAL CODE
CODAR U-F.D.

Recommendation of the final
4Meeting Held In Rabat (Morocco)

In 22-24 April 1982

1

.'

a''

114

"V
.* . . . - . _ , .,. . . .• . - , , , . - • . . , . . •1'.

FORE\kORD

The importance of the role of the information channels in the Arabic wAorld is becoming ncreasingls
ob%,ious in all sectors. All -rabic countries are dealing wkith %arious t.pes ofinformation in the fields of
administration organization. planning, science and technology.

The simple concept of cooperation between the Arab countries, and the positjie results of
standardization make it necessar, to Introduce a unified cipher tor the.Arabic characters used in the field

ot Information exchange.

In this connection the concerned Arabic organization ha~e taken considerable measures s'uch as the
two meetin s which were held in Rabat(Morocco)t the first meeting was the(,Arab experts confcrence for

the unified Arabic cipher in the field of information). It was held \, ith the cooperation of the iArabic
Institute lor Researches and Arabization) during the period between 25th-29th Sept.. 19M). The second
meeting concerned with the regulation of the Arabic cipher in its final shape and was held on April 22-24.
1982. In this meeting the technical committee did achieve the projected corrections. and the Arabic
cipher which is known as ICODAR L.F.D.) was ready.

Attached are the reasons for modification of the COAR-UF.D.. the recommendations adopted at
the meetings and the final shape of the unified Arabic cipher which %ill be formed in an Arabic standard.
This standard will be distributed to the ASMO member bodies for further studying and approal as a
prelude to the actual experimentation and application.

RECOMMlENDA TION

In the final session and with a group agreement of the conferees on the final shape of the unified
Arabic cipher. the following recommendations have been adopted:

1) The conference requests the Arab League Education Culture and Science Organization
(ALECSO) and Arab Or2anization for Standards and Metrology (ASMO) to adopt the
Arabic cipher which has been agreed upon. and take all necessar, measures for its adoption
and enforcement in all Arabic countries.

2) The conferees recommend to the information organization that use Arabic lanu0e to
experiment the ne,. cipher before enforcement.

These recommendations shall be submitted in particular to the l lnstitutC for Rcearch and
Studies for Arabization) in Morocco. the Saudi Arabian Standard,, Orzanization and the
National Center for Information in Tunisia for the purpose of testing the new :ipher before

the next {ASMO) meeting.

I) It is recommended that the Arabic cipher in its new and final share be adopted b% the \rahic
asociation for telecommLnications.

j4) It is also recommended that ALECSO. the ASMO and the Arab association for
telecommunication ,hall make necessar\ coordination to use Arabic language In the ticld of
Iniormation bet, een then ind other International organizations bodies and the ('NESCO

15) The meeting recommends an emergency session ALECSO and ASMO to regulate the
specifications of the de ,ices, the printing letters and their forms and to find the best wka, at

utilizing computers.

16) The meeting also recommends the continuous contact betw\een A LECSO and ASMO to see to
the best execution of these recommendation.

115

CODAR - U/FD L%.
Codage arabe unific forme dcfiniti'.e 4..IIW 11L& tb d.a~ ~.:.

IRABAT 22 -24t A~rri 19821) (1"2 J124 -22 Jm P

001 0. 1 0__

00

00 1 ! i

01004 __

0 o101 5

0 110 6

1 070 I 9

101011919..

R*no.es - -sm

sr io i o int et [a nomlsto 0f1 w .
du -o r U.

"".7

110113

APPENDIX G

ASMO'S APPROVED ARAB STANDARD SPECIFICATIONS

4l S M0

ARAB STANDARD SPECIFICATIONS
449

Data processing - 7 - bit coded Arabic Character set for Information Interchange

.¢

ARAB LEAGUE
ARAB ORGANIZATION FOR STANDARDIZATION

AND METROLOGY (ASMO)

1, 117

bd . .

Preface

This Arabic Standard was prepared by technical committee No. 8 (Arab:ic characters in informatics).
Among the parties who participated in its preparation are the Arab League Educational, Cultural,
and Scientific Organization (ALECSO), and the Institute of Studies and Research for Arabization in
Morocco.

SIn accordance with the 1982 Directives for the Technical Work of the Arab Organization for

Standardization and Metrology - Part 1: Procedure and Working Methods- this Arabic Standard was
' ' adopted by the resolution of the General Assembly of ASMO No:

R 342 / G.A. / S 15 - October 21, 1982).

I11

.p'

A-L

II,

.,-.'. ~7.

DATA PROCESSING: 7-BIT CODED ARABIC
CHARACTER SET FOR INFORMATION

INTERCHANGE

0. INTRODL'CTION

This Arabic Standard specifies the properties of a coded character set using '-bit binar, codes for
information interchange among different types of data processing equipments using the Arabic
characters. It also specifies a set of control and graphic characters, in addition to its coded
representation inspired from ISO 646. The set of specific graphic characters in this standard
enable us under all circumstances to represent Arabic text whether it is totally \o elized,
partially vowelized, or unvowelized. This standard provides the possibilities for information
interchange for special applications, as well as the possibilities for expansion in case of
insufficiency of the coded character set. This Arabic Standard was made in accordance %4 ith. ISO
646. and the following points were modified so that the standard ISO 646 is convenient for
Arabic usage:

- Table 1.

- Comments on this table.

Table I was modified in such a way which permits the usage of the coded character set as a
separate group from the Latin character set described in ISO 646 for information interchange.
and the usage of basic programs in Arabic Language for the purpose of complete Arabization
when using computers. This table also allows the usage of the coded character set together \, ith
the Latin character set as in the International Standard ISO 646 because of the correspondence
between tiese two standards.

Applying this standard requires several application standards to be implemented on a carrier
(magnetic carrier, transmission net\ork. etc.). and these applications are specified in other
standards.

1. SCOPE AND FIELD OF APPLICATION

I I This Arabic Standard contains a set of 128 characters (control characters and graphic
characters such as letters, digits and symbols) with their coded representation. Most of
these characters are mandatory and unchangeable, but provision is made for some
tlexibihlt, to accommodate special national and other requirements.

1.2 The need for graphics and controls in data processing and in data transmission has been taken
into account in determining this character set.

1.3 This Arabic Standard consists of a general table with a number of options. notes. a legend and
explanatory notes.

1.4 This character set is primarily intended for the interchange of information among data
processing systems and associated equipment, and within message transmission s\stems.

119

I1 14

. %

1.5 This character set is applicable to al Arabic alphabets.

1 6 This character set includes facilities for extension where its I21 characters are insufficient for
particular applications.

1.7 The definitions of some control characters in this Arabic Standard assume that data associated
v ith them is to be processed serially in a forward direction. Their effect "hen included in strings
of data which are processed other than serially in a forward direction or included in data
formatted for fixed record processing may have undesirable effects or may require additional
special treatment to ensure that the control characters have their desired effect.

2. IMPLE.MENTATION

2.1 This character set should be regarded as a basic alphabet in abstract sense. Its practical use
requires definitions of its implementation in various media. For example, this could include
punched tapes, punched cards, magnetic tapes and transmission channels, thus permitting
interchange of data to take place either indirectly by means of an intermediate recording in a
physical medium, or by local electrical connection of various units (such as input and output
devices and computers) or by means of data transmission equipment.

2.2 The implementation of this coded character set in physical media and for transmission, taking
into account the need for error checking, is the subject of other ISO publications.

"4...

120

k4. ..

.¢

.

Table (I)

0 1 .O O" 0 0 1 1 Ilq,:b, 0 0 1 1 = 01 0
1;b 0 1' 0 1

0 1 23 456 7
b-

01000 0 NULT,.C, SP 0 @ - -

0001 1 TC. DC 1
0 - - -

S0 110 2 T C, D C, 2 T

0 0ill 3 TC, D C, 3
,- - -71 OO - - -

01004 . DC. 4 A,
o 011 5 1[42 .'F. % 5S !.'

0 1 0 6 iC. TC. & 5 6

OF i C. 1 & 1 10
0 1 1 1 7 BEL CA' Y7

0 0 1 9 FE EM (9 ; .

1 1 0 10 F SUB * : .

1o0 11 F ESC + t4 4

S1 1o o 1 F is.--

1 0 IS.
,'.- < st-

4 so

1 1 1 15 si is. _ DEL

) See Note (T) See Note (.)
\(.jeSee Noe)

121

NOTES ABOUT TABLE 1:

1) The format effectors are intended for equipment in which horizontal and vertical movements are
effected separately. If equipment requires the action of CARRIAGE RETURN to be combined

-.with a vertical movement, the format effector for that vertical movement may be used to effect the
combined movement. For example, if NEW LINE (symbol NL. equivalent to CR4-LF) is
required, FE2 shall be used to represent it. This substitution requires agreement betAeen the
sender and the recipient of the data.

The use of these combined functions mav be restricted for international transmission on general
switched telecommunication networks (telegraph and telephone netvorks)

2) The symbols -. t and locations 2/3 and 2/4 are used respectively to denote NUMBER SIGN and
CURRENCY SIGN. Note that the character do not designate the currenc. of a specific country
unless otherwise agreed upon between the sender and the recipient of data.

%: 3) These positions are intended for national use or for alphabet extension. If not used for such
purposes, they may be used for representing symbols which do not have specific functions. This
requires agreement between the sender and the recipient of the data.

- For the general case of information interchange among computers. these positions shall not be
;. used.

4) Positions and names of special signs which have specific functions in the code :able is the same as in
ISO 646. However, such signs should be imaged and printed according to text as shown in the
following Table.

.- ,

%"

.- .

122

V 1.. - - -- *..:.

APPENDIX H

PROGRAM CODE

Program Lex ical _Translator (input,output)
(* *** *)

File Name : Lexical.pas
Module name : Lexical Translator
Author : Sadek Saleh AL-Juhaiman
Date created : April 4, 1986
Last change : Aug 4, 1986
Cal Is
OpenFile = Gets the source -file name, and

initialize the Output files.
Initialize = To initialize the hash table and global

vari abl es.
Fill Buffer = Fill the line buffer and increment the

line no.
BufferEmpty= Check if the line buffer was consumed.
Token_And_Type = Get the next token and its type.
Map_Iden_To_Latin= Search for the identifier in the

symbol table. If not predefined
then insert it

LatinInteger = Map integer tok.ens to Latin integers.
Special._Character= Map special characters to Latin

equivalent character.
Control Char Notifies the presence of escape

codes.

Called by : None
Include files : Resource.pas

Variables
Line =Input line buffer.
NextLoc =Points at the first char of next. token.
Token =Buffer of 255 character.
TokType =Types of the token present in token buffer.
TokLen =The length of the token in token buffer.

. LineNo =Source code line number.
* Debug _On =Boolean variable, debugging feature, set

by Arabic directive in the source code.
CommentOn= Directive, to include the comments in

the generated output.
ResWord = Array of records for the reserved words.

contains the Arabic and its English match.
MatchInd = Index, in ResWord array to token location.
Int -Str = Integer string of size 10 characters.
Line = Input line buffer.
Next_Loc = The first character of the next token in

the line buffer
Token Token buffer.
LatinId = The mapped identifier (in Latin form).

Hash = HashTable;
ArabicSpell = Spelling string array of 50-)()- chars.

123

"' ,,"' .
,

-. J ', 4, % -, ,.-7 .' -. ' -,' -. , 7 .,..L &-,',,' -. . .- . % .. "-",".-,", . .L-. .- -.

characters = Number of chars in spelling table.
Line_ No = Counts the read Source lines.
LineSize = Line buffer upper limit.
Match_ Id = Index of reserved word found in the

constant array.
Iden No = The number of the identifier in the

sequence of arrival.
LatinChar One character buffer for special

characters.
LatInt = The inteqer translation to Latin.
Error Set Token error set.

Comment
The program will ask for input source file with or
without extension . IF the name is valid it will open

* the file and initialize tow out Put files. The two

files will have same file name and the extensions DIC
and PAS. The DIC file has all userdefined identifiers
with their assigned IdNumbers. The PAS file will ha%,e
the generated PASCAL code.

After initialization the program will tak-;e one
line and break it to tokens. The token is given a
type, then based on the type a translation module will
be called.

The above will continue for each line of code until

a major- error is encountered. Major error will result

from long tokens when using comments or literal string.

1

'p.•

.

124

i2~%*N_'i

CONST

MaxArbWord =12; size of Arabic word]

Max _LatWord =I2; size of Latin word 3

Max Len -55 { line & literal size '
ResWords =59; { reserved words size]
MaxKey = 671-0; { Prime number, hashing }
MaxChar = 5000; { Size of spelling table,-

TYPE

LineRange = 0..Max _Len;
ArabWordStr = string[Max _ArbWord];

{ max char per Latin word }

LatnWordStr = string[Max:_LatWord];

WordRec =RECORD { constant array record
{ of r'eserved words

English: LatnWord _Str;
Arabic : Arab _Word _Str;

END;

ReservedIndex= 1 .. ResWords;
Words = array [Reserved _ Index I OF Word Rec;
Latin _Token = string [6];{ string in the form id_000 J
WordPointer = ""WordRecord;{ Pointer to user defined id}
WordRecord = RECORD C for user defined iden. 3

Index, identifier nLumber sequence'
Lenth, { Length of the word

{ Location of the word last--3
{ character in symbol table.-

LastChar: integer;
* link pointer to next word -

NextWord: WordPoi nter;
*C assigned identifier number-3

Latin _Id- Latin _Token;
END;

HashTabl e array [I . MaxKey I OF WordFoi nter;
SpellingTable = array [I t. Maxchar] OF char;

* Lo_Str = string[Max _Len]
TokenStr = string [Max _Len]
Errors (Long Token ,Long. Comment,

Long._ Literl Str, Illegal Char)
T yes _Of _ToPken D 1. anks,I legal Feserved Word

Literal _Str, ContrlCod,Uncl sfd,
Identifier,Coment, ntegerl,
F unc t p r-ator) ;

A Arabic characters rancei

125
,-4M

-from 80 He,. to FF Hex
Arbic_Alph = set of $80 . FF

Strl1 = string[l)];

'C

w4

126

% %

leP 0*

CONST resoLurce fil 1e conin th

res-word:words
(english: 'ab SOlI te aai: 0--

(english: 'array' ;arabic: 2D
(english: 'begin' .;arabic: 'L-. I
(english: 'case' ;arabic: 'LJ L--'

(english: 'do' .;arabic:'Ji1)

(english: 'don' ;arabic: J~i_',A'

% ~~~(english: "else' ; rbic
(enalish: 'end' ;arabic:
(english: 'external' ;arabic: -L-)
(english: 'tex t' ;arabic: 'W'

(english:'forward' ;arabic:'Cj -'2'),

(enqlish: 'forIt o ;arabic:'WV)

(english: 'goto' ;arabi c: L&, I~~~'J'
(english: 'concat' ;arabic: ',J-3

(english: 'inl' e ;arabic: '_j-.),L

(e-nglish: 'lb' .;arabic:dI.j,'),
(english:'ind' ;arab ic.~.)
(english: 'nibl' ;arabic:""~'

(english: 'mod' ;arabic ib-'
(english: 'niel' ;arabic: ~L~~)
(english: 'o' abi.'B !

(english: 'ovr lrbiv''
Gen g 1ish :'ofd'' ;arabiL: 'J.'I Q
(english:'orocdue ;arabic: ;I)
(engl ish: 'poake ;arab'ic: L, _9 ')-

(english: 'proe r ;arab'ic:~

(engl ish: 'pogam ;,arabir c: L-
(english: 'regind ;arabic:~
(engli 1sh: 'repea' ;arabic: _-L-z T
(english: 'real' ;,arabic: ~ ~u'
(english: 'ineg' , ar at)ic:'-.')
(english: 'bole' ;arabic:'~b'

'S.(english: 'r-ead' ar at)i C:'L
(english: rinegen' ; arabic:'

(e-nglish: 'boorItiEln ;arabic: L'

(e-nglIi sh: 'red' .;arabi c I'~
(english: 'sr'a~ .;arabic. ~

(english: 'etn ;arabic: d I4

(english: 'then ;arabic. : ~)

(enqlish: 'tvpD' ;ar4b ic: I J

127

PL'

(english: unti . ;arabic: 'u'.-')

(english: var arabic:
(english: 'str" ;arabic: 'kj_e') ,
(english: chr' ;arabic: '-i -_j°)
(english: 'ord" ; arabic: "' _j) ,
(english: 'whi le' ; arabic: ' --. ' ,

(english: 'input' ;arabic: 'J_-i")
(english: 'output' ;arabic: ' ji-')

. - ~~(english: °with ;rbc -

(english: 'x or ;arabic:.-=-. qI'))-

Arabic _Alph : Arbic_Alph =

I $BM . $B89, { Arabic digit
$D(F{ Arabic letters }

S$96, Under score

IC] { tail genration

Delimiters : SET OF char = {const set, delimiters
S#$80, { Space

#$BE, .B BCON function code
#--t.8F, BCON functi on code
#.90, { ECON function code 3
#91, { BCON function code
#$t 93-, { Array left square bracket
#120, { Latin space
4-$94, { Array right square bracket
#95, { Arabic Lip arrow "pointer"
" 97* Arabic reverse apostrophe
t)Arabic c Space 4

{ rabic multiply
#$:.A6, { Arabic period

4$A7, A Arabic divide
ItA8, { Arabic left parenthesis
#$A9,{ Arabic right parenthesis

{ Aralic plus sign
#$AB,{ ARABIC comma
#SAD, Arabic minus
, { nImeri.c comma used a c

rt the LaLin decimal dgt
#1-4 { ~Arabic color,

t#$BC, A Arabic greater than
#$1D, C Arabic eq.ual sign
:41BE I Arabi c less than

A1'2

' 128

VAR
Debug_On : boolean;
Comment _On : boolean;
Tok_Type : Types_Of _Token;
TokLen : LineRange;
Int _Str : stringE10];

I : integer;
Line : in_Str;
Next_Loc : Line_Range;
token : token _Str;
Latin_ Id : Latin_Token;
Hash : HashTable;
ArabicSpell : SpellingTable;

Characters : integer
LineNo : integer;
LineSize : L ine_Range;

IdenNo : 0C- .. 999;
Match _ Ind : Reserved _ Inde:-;
Latin _Char : char;
Lat _Int : str I0;
ErrorSet : SET OF errors;
OutFile : text;
InFile : text;

Dictionary : text;

Procedure
OPENFILE;
VAR
valid :boolean; { for i/O error W/ file name
F Name, { file name with no e.,tension]
FileName : strinq[121;{ file name from key board.1
ind : integer;

BEG IN
valid := false;
WRITELN ('Input File name:
REFEAT r until valid file name

READln (File Name);

ASSIGN (InFi le,Fi I e_Name);
X -or}- if no error opening f I e.

RESET(Infile); { then file exist
{.$I +- 3 if no 1/0 error, its valid]

valid = fIOresult 0);
Ci.rScr;
if not (valid) THEN

BEGIN
WRITELN(** FAILUFE TO OPEN FILE

File_ N.me);
WRITELN(Please REENTER Input._File name ':.

END;
UNTIL VALID;

ind:= i;

129

_' ,..". V.

PEFEAT Cget the name W/O e>xten-ion3

F-Name(.ind.) :=FileName(.ihd.);
ird :=lnd + 1;

UNTIL (FileName(.1nd.)=' ') OR
(FileName(.ind.)='.) OR
(ind LENGTH (FileName))

F Naime(.(O.) EHRind-1);
4AAS5IGN (out-tileF _ name+' .pas') C transl atol- -o~tpUt

ASSIGN (dictionary,FName+'.dic');{ dictionary File
RESET (infile);

F:WR ITE wut +il1e)
REWRllE~dictionary); {file contains identifiers:

END; Cand their translations

130

"So&

Pr ocedure

INITIALIZE { Initialize the hash kevs 3
VAR { and the global variables 3

[eyNo integer;
BEGIN

Debug_On false;

Comment _On:= false;
Error _Set:=[];
Line No C= '-;
Iden _No C)
Key No : 1;

WH I LE hevNo = Ma; 'Key DO
BEGIN

hash(. KevNo .) ' nil ;
KeyNo := KeyNo + 1

END;
characters = t count of chars in spell tbl 3

END; " initializ .

PROCEDURE
FILLBUFFER

VAR line :InStr; { input line buffer
vAR where : line range;{C location in buffer 3
VAR lineno : integer;

VAR LnSize : line range

BEGIN
READLN(in-File,line)
LineNo := LineNo + 1;

IF DebugOn THEN WRITELN(line);
IF (line= {+L-_o})THEN { set comment directive
BEGIN

Comment _On:= true;
READLN(infile,line);

line _No LineNo +1
END;

IF line = --.. Lo' THEN
BEGIN X reset comment directive
CommentOn:= false;
READLN(infileline);

lineNo := Line _No +1
END;
IF l. ne :z +Ls+ THEN { set de u directive

BEG I N
Debug On: true
READLN (i inf i I e I ine)

line No Line No -I*
END;

IF line ...- csJ-z , THEN C reset debuc direcLtive 3

BEGIN

131

*DE-butg_On false;
READLNvinfile,1ine);
line-No :=Line-No+1

END;
where I initialize line pointer
Ln-Size =length(line); fline size

END;

4 132

FUNCTION

BUFFER EMPTY
Next Loc : line rangel"
Ln .Size : line_range

) :BOOLEAN;

.'" BEGIN C check if buffer is empty
BUFFEREMPTY (nextloc " LnSize);

END;

FUNCTION

EMPTY ERROR SET: BOOLEAN;
C ***************************************-***********-

{ If error set is empty then no errors are found
yet. translation will continue 3

BEG I N

EMFTY _ERRORSET : (ERROR. SET = EI;
END;

F'r ocedure
TOKENANDTYFE

VAR where : line_range;{ location of ne.t token
VAR token :tokenStr;
VAR TokLen :line range; { length of resulted token}
VAR TokType :.Types_Of_Token; { Token type
VAR Match Ind:reserved inde..C index- of res. words

:;:

module name : TOKENANDTYF'E

date created : April 7, 1936

calls : Blanks, Comments, Literal _Strin..
Integer Tok, IdentifierTok,
Reserved Tok Special Char,

.4 Control _Char

a-.:alled by : MAIN
v ar jables :
last change : Aug 5, 1906
Commen t
procedure collects the tokens and assi qned

Token Typc nrimea. to them.
C * % * **. . m.- ...** :: .. - - a-* .- - .4 . .- .- .*-4*.* * -* -- "

S..R i integer; { For token index.:Lnq J
"a ch . char; C spcciai, character: t '! 11

coNST dEqits (IF char = I- D C . #- '9 1

133

%

Pr ocedure
BLANK; { collects blank (s) token
VAR index" : integer;

BEGIN
i nde'

,{ A Arabic space 'blanks'
{ 20 Latin space 'blanks

WHILE (ORD(line [where]) = :ZAO) OR

(ORD(line [where]) = 2C)) DO

BEGIN
index:index + 1;

token(. index'.) : line(.where.);
w" where :=where+;

END;
TcokType := blanks;

TokLen inde,
token (.0.) := CHR (index,-)

ENT);

h1.3

-" 134

,;.:._...-..- , ~ .' i .>.. .*.-.*.
- ,m& ..} .., ,. ' 2 L-"'- - _ " " : , "" ," ' .° , -'" %"." ,'" . , ,m , -_.".,," ,, . -'.,' .

F'r ocedure
COMMENT;
C **********~****************************- ** *.* **.***** }

C Procedure comment will assign the matching Latin
brackets and the body of the comment to the token.
The token type then set to Comment.

BEG I N
token[l] 'U; { assign the opening bracket ;

token[2] C and asterisk to token
index = 2 ; r start of comment body

where = where + 2;

REPEAT { assign body of comment
inde~x:= index+l; { pointer of token buffer
token index:=line [where];
where := where +]. *C pointer of line bufler

UNTIL (ORD (linewhere]) =) AND
(ORD (line[where+1) = $A8)) OR
(where .= LineSize):

IF (where .= Line Size) THEN
BEGIN { The end of line is reached .
TokType := Illegal { before closing the comment
ErrorSet:= Error _Set + [Long_Comment];

END
ELSE { the comment is vRiid

BEG I N
token[index+l] '*';{ assign the closing brackeeL
token[index2] -) 1
TokType coment;
where := where + 2.; . advance line pointer
TokLen : i nde, +2 " advance token pointer
token[O] : chr (Tok _Len) C s et token length]

END.;
END; COMMENT 3

135

PROCEDURE

LITERALSTRING;

r

Literal string will look for single and double quotes.
Matching the quote character at the beginning and the
end cf the string. Then assigning the Latin quotation
marks.

** }.

BEGIN
index:= 0;
CASE ORD(line~where]) of { if buffer points at • }

$97 REPEAT { single quotes
inde., := index +1
tokenlindex] := line[where]
where := where + 1;

UNTIL (ORD(line[where]) = $97) OR

(where line-size)

$A2 REPEAT { double quotes

index := index +1;
tokenlindex] := line[where]
where := where + 1;

UNTIL (ORD(linelwhere]) -A2) OR
(where linesize);

END; C CASE }
{ if literal ended with
C the right quote mark;

IF (ORD(line(.where.)) $A2) OR

(ORD(line(.where.))= $97) THEN
BEGIN

index index + C advance pointer for the I
TokLen : index; { quote mar. Set length.
Tok_Type := Literal _Str;
token[): chr(TokLen) ;

{ for single quote literal]
IF (ORD(token []) = $97) THEN
BEGIN { assign single quotes

token Ell :=chr ('$27) ;
token [index] := chr($27);

. END;

IF (ORD(line [where])= $A2)THEN
BEGIN { assign double quotes]

token Ell :=chr ($22);
token [index] := chr ($22)

END;
where := where + 1 { point to the next token }

END

136

Iv

ELSE { if line pointer did not see"'

BEGIN { single/double qoute= error

ErrorSet :=ErrorSet + [Long_LiteralStr];
TokType illegal;

TokLen index;
token[O] chr(index); C set length of token

END;
END;

q

-p

j
137

PROCEDURE
INTEGERTOK;S{c *** }

{ The procedure will return the Digits ranging

from BO .. B9 Hex. }j

BEGIN
index : = C)
WHILE C line(. where.) in digits) DO

BEGIN;

index := index + 1
token(.index.) := line(.where.);
where : where +1;

END;
Tok_Type : integerl;

TokLen : index;
token[O) := chr(index);

L,. END.;

Procedure
IDENTIFIER_TOK;

{ ** }

C The procedure will look for any number of digits and
underscore characters following the first letter.c***

',.

," VAR valid: boolean;
S BEGIN

': index: =);
REPEAT

index:= index + 1;
token(.index.) := line(.where.);

where:= where+1;
UNTIL not(ORD(line(.where.)) in Arabic alph);
Tok_Type:= Identifier;
Tok _Len := index;
token[O]:= chr (index);

END;

138

.4-

4... -- - ' " * - " ." ," ." . .. , V .. ' . ' 'I

Procedure
RESERVED TOK

VAR match_ index: reserved _inde;);

.C *** :

{ If the TOKEN is reserved word. The procedure will
set the token type to Reserved _Tok and pass the
index., of the word. In the constant array.

{ *** j

VA R index: integer;
hit : boolean; { when a match is found }

BEG I N
hit := false;
index := 1;
WHILE (index <= res-words) AND (not(hit)) DO
BEGIN

IF(token = res word(.index.).Arabic) THEN
BEGIN { the token match with

hit := true; { reserved word
match _index :=index;

END;

index:= index + 1
END; { while no hit }
IF hit THEN Cif token is reserved wordj-

Tok Type := Reservedword; C set the token type }
END;

139

Procedure
SPECIALCHARTOK ;
{ **

t The procedure gets all the the tokens of one char
other than the escape codes.

{ ** 3.
var IllegalChars :set of $21. .$FF;

BEGIN
IllegalChars:= [$21 ... $7E,{ Latin chars 3

$81..$8D,{ numeric characters, Arabic 3
$92, { Arabic @ character
$97 , $99
$9B. .$9FC non used characters
$A 1 . . $A2,
$A4.. $A5,
--AA, $AF ,
$BF,

$C0. . $CF 1; I Arabic diacritics
IF ord(line (.where.)) in Illegal_chars THEN
BEGIN { Latin characters

Tok_Type:= illegal;
errorset:=errorset + [IllegalChar];

END
ELSE
BEGIN
token[1l:=ljne [where]; { one character special char
where where + 1; { advance line pointer
TokLen ;1
token(.C.):= chr(i); C set token length to one
TokType = FunctOperator { set tokne type

END;

END;

F'r oc ed Ur e
CONTROLCHARS;

{ control characters are used by BCON and will be omitted.

• -C ***** *******-** **** ~-**-** ********************** *** *- *- ,

.140

-,.
-"p X .} - :';.,:.,: , . -:,: i.k;,-, " ,X ; ' s : ' ', . Y ; : ; ; : ? ; .:?::-: ::.:::-:-;:-:?: :::-; ;:..:.:;-'--::,.:;

BEGIN
token~l] line[where];
To.._Type contrl_cod;
Tok _Len 1 ;
if Debug_On THEN
BEGLN

WRITELN(" Control character (',ORD(line~where]) ,
') in source code');

WRITELN(" IN Line Number ', LineNo,

, Location wwhere);
END;
where := where + 1;

END;

BEGIN; { TOKENANDTYFE

C Based on the first character of the token call an

appropriate module to collect the token and set the type.:

TokType := unclsfd ; { initialize token t'pe]
IF(ORD(line[where]) = $A9)AND { $A9 openings bracket

(ORD(line[where+1])=$AA)THEN { :AA- is asterisk
COMMENT; call procedure Comment

IF TokType <> coment THEN-, if not comment THEN based
CASE ORD(linelwhere]) OF C on first char get the type }

$ A,C : BLANK; { leading space(s)
$A2, 197 : LITERALSTRING;
BO.. .$B9 : INTEGER_TOK; C get integer token
D(.. $FD : BEGIN [leading letter

IDENTIFIERTOK; { is it user defined/

reserved].
RESERVEDTOK (match-i nd)

END;
$80 , $8E,
$8F, s90,
$91 CONTROL CHARS; C control characters
ELSE SPEC I ALCHAR_TOK.;

END; C case }
END;

141

FrocedUre
MAF' TIDENTOLATIN

token :Token _Str;
lenth :integer;

VAR Latin _Id :Latin _Token)

mod~ile name :Map IdenToLatin
date created : pril 3C_,1986
calls :SEARCH
called by :MA~IN
variables

tok.-en = scanned identifier tok en.
lenth =length of scanned icdentifier
Latin_ Id =the translated identifier in Latin form

last change AUg 2, 1986

Comment
The ProcedUre will look Up an Arabic identifier if not
in the list it will insert the Arabic token in the list.
The token wil11 be assigned a Latin label for the use ot
the PASCAL compiler. The meaningless label will have -the
form of Id_### . Where the '#' is an integer.

Note: code segments of this module is taken from

FPRINCH HANSEN ON PASCAL COMPILERS" 19e5
see thesis references

142

FUncti or Hash FK:ey C retUrn the hash kev of
/o.:n tokL.en 'tr the identi-fiers.

lenth: line range
)integer;

CONST W = 2 513; 12768 - 255, overflow chek
N =Maxik'ey; P rime nUmber for words size'j

VAR SUM, i : integer; {SUM is the token ord. ValUeJ'

BEGIN

WHILE i lenth DO
BEGIN

SUM : (SUM +ORD (token(.I .) MOD W;

END;
Hash L.:ev.:= (SLUm MOD N + I ;

END,

Frocedure INSEFA<T
token :token _Str;
lenth:line _ranqe;

index :inteqer;
~eyNo : i nteger

P~~F ni~ : integer;
pc3i n ter : wordpointer;
t emp : Latin-_to :en;

II NIO. V~AR Latin _id : Latin _token);

OF3 Dh-G O-

STR (Iden no: 1 , TEMP)
Lat ini id :CONC(T 'i d' TEMFP)

19.. '9 :END;
99 BEGIN

STR(Iden _No:2, TEMP-);
VLatin td CONCAT('id- T.EMP).

END,;
.'.7i 7,9 : BEGI N

STR(Iden _No: 7,TEMP):

1-:ti 11d: CON(OT('i d_' , TEMF'I
% END;

143

090.

BEGIN Cinsert Identifier in~
spelling table

characters characters + lenth;
m lenth;

*n characters -m.

WHILE (m 0:C) DO
BEGIN

m:= m -1
END;
ID_-NO(temp);
NEW(pointer); CInsert word record infol

pointer- .Latin _Id temp;
pointer NextWord :=Hash (. eyNo.)
pointer-. Index .index;

pointer--. enth lenth;
pointer".lastchar characters

WRITELN (dictionary,'
pointer-.Latin Id,' 'token);

Hash (J. .evNo.) pointer;

END;

FUNCT ION
FO0U ND

token : token _Str;
lenth :integer;
pointer: Word~ointer

boolean;

VAR same :boolean;
m,n :integer;

BEGIN
a IF Pointer-. enth K>lenth THEN

same :false
ELSE

G I N
Same :=trUe;
m :lenth;
n pointer-. 1 astchar __-1
WHILE same A~ND Orm C DO
D EG I N

sam-e : i A 'r ab i z~pseJ. (.mvn .)

END;
a. ~ [END;

d FFVI IND same;

145

%J..

Pr ocedur e
Search

token : token _Str;
lenth : inteQer, { token length

VAR LatinId Latin token { returned Latin tokenj

.4/. { **- j

{ Comment:
The module will call function Hash_K:ey to get the

token key and then look the key up in a hash table.
The hash table content is pointers, pointing at
word records. The records has the length of token
location in symbol table, Latin Identifier number,
the rneXt word in the linked list.,

IF the pointer resulted from the Key number is nil,
that means the word is not in the table. That means the
word must be inserted if there is room in the spelling
table. Insertion is made by procedure INSERT. If the
pointer is pointing at a record, or linked list of

records, function
FOUND is called to verify the spelling.

VAR l:eNo : integer; { global variables for SEARCH}
done : boolean;
Pointer : wordpointer;

BEGIN SEARCH

t eNo : Hash Key(token,lenth);
poi nter= hashC KevNo
done " I al'se
WHILE not (done) DO

{ insert new id. if size and
IF (pointer = nil) THEN{ and number within limits J
BEGIN { add identifier

I.. Iden _No := Id&n_ No + I.
INSERT (token,lenthIdenNo, IKeyNo);
Latin Id := hash (.keyNo.).Latin Id;

. Jore "= true;

F'...SE IF FOD Cl' (to:er,T Iok Le-ipoi.nter) THEN
UE' :G I N

Latin _Id := pointer'.LatinId;

dclie =true;

E'D

146! i4

°.

ELSE
pointer pointer .nex~tviord

END;

147

- . .%.

BEG IN; Map_ Iden_ToLatin
SEARCH (Token, Tok _Len, Latin_ Id)-,
END; " MAP-IDENTIFIER--TO-LATIN

PROCEDURE

GETLAT I N_SPECCHAR

token :tokenStr

VAR Latin char :char

VAR Arbchar:stringE1;

BEGIN
ArbChar: =token (. I.

CASE ORD (Arb Char OF
BC : Latin _char := A C Arabic greater than

$BE : Latinchar . ': Aragbic less than
:t93 : Latin _char := Arabic square brackeL
$94 : Latin _char I
4:A8 : Latinchar : Arabic RIGHT parenthesiz

$A9 : Latin char -= (; { LEFT
tAB : Latin char := A+ rabic Plus
-AD : Latin char Mi nus
1A7 : Latin char / vi de
$96 : Latin _char Under _Score
$ A7 : Latin char * Multiply
•BA : Latin _char Colon
BD : Latin _char EqUal

- AE : Latin_char Numeric comma
95 : Latin _char l; Hat

$A6 : Latin _char := ; t Period
I DB : Lat i n char := '; . Semi col on

LAC : L atin char = Comma
END;

148

%'

K

.E N,~END:

Procedur e
LAT IN_ I HT

token :to <en Str;
Tok Len: 1in e r-ange;

VAR Lat Int:StrlO)"

VAR ind : integer;

BEGIN for each digit map to
{ Latin digit

for ind:= 1 to Tok _ e n DO

CASE ORD (token (. i nd.) of
$- BC) : Lat n) : '0";

4R1 : Lat Int(.ind.) : '1'
$B2 Lat_ Int.ind.)
1. : Lat _Int(.ind.

$B4 : LatInt(.ind.) 4'.

$135 : Lat _Int(.ind.) 7'.
$D6 : La tInt (.ind.) := '6 ;
$B7 : LatInt(.ind.) := '7';

$B8 : Lat Int(.ind.) '8

:t 9 : Lat _Int(.ind.1 9'
END;

Lat Int(.O.) := toI:en()" { set lenoth of to en

END;

PROCEDURE
PRINTERRORMESSAGES;
var ind : integer;

B EG I N

WR I TELN ('*** ERROR ON L I NE NO. I i ne _no):
for ind :I 1 to linesize do write (line(.ind.));
WRITELN;

IF lonqgtoken IN error _set THEN
WRITELN(' has long token *** , token);,

IF 1 ong_ comment IN error set THEN
WR I TELN (has long comment***' ,token)

IF lor gliteral _Str in error set THEN
WR I TELN(' UNCLOSED QUOTES) ;

IF Illegal Char IN error set THEN

WRITEL". ('=---. Character number ,Nei<t.LoL

is out of range. ...

END;

149

V ,

LMain
BEG INr

OFE N F FILE;
I NIT I AL I Z7E;
Whi le not (eof (inf ile)) AND(error _set E I] DO
BEGIN {Line process

F'IL-L _BUFFEFP(line-,nex.t _loc,li.neno,line-size);

WHILE not (BUFFER EMPTY (next _loc~line siz.e) A ND

5EINCerror _set =[3) DO
BEGIN Token process

TOK :EN _ ND _TYP'E(r-iex t 1oc ,tok:E n ,Tok-_ Len,
Tok _Tvpe Matc-h I nd)

IF De-bugj_ On THEN
WRITELN ('token ' token , 'I enght=

Tok:_ Len 'Next : Loc ',Ne>< t _Loc

CA-EE Tcl _Tvpe o.
b I =)An 1.s FOR i. 1 to Tok _Len DO

corment IF Comment _On THEN
write(out-file,toker);

lteral I c:tr w r-i t. e 0U t f i. e ,t o ke n
v es er. e d _ wor d w ri. t e (OU TF ILE ,

r e s _wo r d Tia t c:h j. nd.r.ng1h
d ent 1t 1er IF (Iden _No - -)AD

(characters :'Ms:Char) THEN
BEG IN

MAF' _IDEN _ TO LATIN (toL::en, TcD L LeF U
Wr it (0Ut 1. e, L.t _Idj:

END;
inteqer I BEGIN

LATIN_ IN7 (tok:en,-,Tok :_Len,L-At _ nt;

writeoLtilLaIn;
END;

f{-.nrA _ operator: BEGIN
GET LAiTI N SPEC CHAR~ (to en ,Lat, F' cnar
write~outf i e,L.-Atin _char);

* END;
coan t r Iod WR ITELN('Ii ne I inerno: 4,

Control code was ignored '

Slle gaI BEGIN
F'P~f -iPF -C,"-AGES

- GiGE FND;

EIND; WHILFU TC-l EN
W RI '[U Lr o ut i], e

E I
IF er rj or- t C 3 Tl IEN WFJTELN Cl 'errot' on tot en tvpe

COnut f nifIle-)

150

MAI

6N ~

CLOSE(in-File);
CLOSE(dictinnary)
END.

151

APPENDIX I

TEST RUNS

Test Run 1 v~~~~~~ L~

=_ JLk.J I ILA

LI4

L4

Source Code

152

i d -1 V_ ~ _FL~J,

i d-2 I
i d 7. y-J Lb-JI
i d 4 q.vI

i d 5
1 d_7
id 78-A

Test Run 1Dictionary Table

program id_ 1;
const i d 2 :
type id_.7 = record

id 4 string [Zrd]
id5 integer

id_6 boolean
end;

var id 7 :array [1. .i d_21 0-f i d
id 8 integ(e r;

beg in
while(id- Z 6 2) d o
begin

id 8 id_8 + 1
read Cid _ 7Eid_-8).id_4,id --7[idSlid_5);
write (id _7EidSLid_4,id 7[id_8].id 5);

end-,
end.

Generated Code

153

Test Run 2 " - -

. = yJ LLJ I _j Ib

J IL.- I.

,-0 .~,J I E I ..kL .

Source Code

I ,-' = J-JI _ ,-L . id 1
.---. I _ -,= i d 2

.J t..J id
id 4

I' d 5
I i d 6

i d 7
_,. ,: C ._od ..

Dictionary Table

154

-41

Test Run 2

* program id_ 1;
const i d 2 3
-type id:. record

id_4 string V0
id_5 integer

id 6 boolean
end -

var id 7 :array E l.. id 2] o-f id .3
id 8 integer;

begin
while(id_6 :1 "2) do
beg in

id 8 idB + 1
read Cid _ 7EidS lid_4,id _7Eid_8J.id_5));
w~rite Cid_7[id Blid_4,id 7"Eid 8Lid_5');

end;
end.

Generated Code

155

Test Run 3L+

.flc = -1 ct.-Ij,-J _l

E 0 1 CL-1vJ J-., -(L I

- ~ ~ ~ ~ ~ - LLJL+ I ~ . W~-

J L-1tJ L-,' r-.VI

Source Code

156

Test Run 3

* procirarn id _ 1(input.Output);
const id-2 15;
var id-7 stringC5lJ;

-~ id 4: stringCI22J;

id 5 real;

b eg i n,
id: 122.7 * id_4

-id _4:="Yl\Cr '
concat (id _3,id_4);

writein (id:.-,id_4);

end.

Generated Code

id I

i d I

id 4 1

Dictionary Table

157

Za,--

LIST OF REFERENCES

1. Proceedings of the International Symposium for
Standardization of Codes. Character Sets and Keyboards
for the Arab Language in Computers, 1-4 June 1980 in
Riyadh, Saudi -Arabia, Saudi Arabian Standard
Organization, 1984.

. 2. BCON Programmer's Manual, Arabic-Latin Information
" - Systems, Inc., Montreal, Canada, 1985.

3. Hansen, Per B., Brinch Hansen on PASCAL Compilers,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1985.

158

BIBLIOGRAPHY

Aho, Alfred V., Sethi, Ravi, and Ullman, Jeffrey, D.,
Compilers: Principles, Technicrue and Tools. Addison-
Wesley Publishing Company, Reading, Massachusetts, 1986.

Schlidt, Herbert, Advanced Turbo PASCAL: Programming and
Technique. McGraw-Hill Book Company, Berkeley,
California, 1986.

Tremblay, Jean-Paul and Sorenson, Paul G., The Theory and
Practice of Compile WritinQ. McGraw-Hill Book Company,
New York, New York, 1985.

159

INITIAL DISTRIBUTION LIST

No. Copies

1. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

2. Prof. Daniel Davis, Code 52Vv 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

3. Cdr. Ron Rautenberg, Code 52Rt 1
Department of Computer Science
Naval Postgraduate School

Monterey, California 93943-5000

4. Prof. Kamil Said, Code 56Si 1
Department of National Security Affairs
Naval Postgraduate School
Monterey, California 93943-5000

5. Major Abdul-Latif Alzayani 1
Department of Operations Research
Naval Postgraduate School
Monterey, California 93943-5000

6. Major Hamad AlYosefi 1
20907 East Borough Drive
Fort Collins, Colorado 80525

7. Major Abdullaziz I. Al-Hudaithi 1
20907 East Borough Drive
Fort Collins, Colorado 80525

8. CPT Abdulkareem Al-Juhaiman 1
1596 W. Straford Drive
Chandler, Arizona 85224

9. Royal Saudi Air Defense Forces Training 1
Riyadh, Saudi Arabia

10. Prof. Ahmed Lakhdar Gazal 1
Director De L'Iera
P.O. Box 430
Rabat, Morocco

160

11. Director General of Saudi Arabian 1
Standards Organization

Riyadh, Saudi Arabia

12. CPT Sadek S. Alju-aiman 10
P.O. Box 5233
Riyadh 11422
Saudi Arabia

13. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

*16

i

.4..

-I¢

.

. L'

J'

,r , 161
,

.4W 12-W

