-A17% 145 LEXICAL TRANSLATOR FROM ARABIC TO LATIN IN PASCAL

ENVIRONMENT(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA
S S ALJUHAIMAN SEP 88
UNCLASSIFIED F/G 9/2

I A -

—

v

A
——
o
- BF
T

S
W

CEEEERE
EEE
=
N
'

e
£
3
=
>
o
-

;

L2 [lid e -

R ————

)RZ)COPY RESOLUTION TEST CHART
T T

mpeiryw
ufa' oy

RS O O A U MO AL FU RN R

«!

NAVAL POSTGRADUATE SGHOOL

Monterey, California

AD-A175 145

DTIC

cELECTE
! DEC 1 Q 1986

§ THESIS ~ =

g LEXICAL TRANSLATOR FROM ARABIC TO
‘s LATIN IN PASCAL ENVIRONMENT

by
Sadek Saleh Aljuhaiman

September 1986

Thesis Advisor: Daniel Davis

'3 g Approved for public release; distribution is unlimited

L ‘

8¢ 12 19 00

T Inin DA SR AN

! g\

At 4 2 A BNt th ac o it A bl ek A abh wid bl alit-adh abe-abh albh skl ai*d ol sl - o ’

UNCLASSIFIED
SECURITY CLASSIFICATION HIS PA . .
REPORT DOCUMENTATION PAGE
Ta REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;
2b DECLASSIFICATION / DOWNGRADING SCHEDULE distribution is unlimited
4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)
62, NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
(If applicable)
Naval Postgraduate School|] Code 52 Naval Postgraduate School
6c ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Monterey, California 93943-5000 Monterey, California 93943-5000
8a NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION ' (if applicable)
8c ADORESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO | NO NO ACCESSION NO

'Y TITLE (Include Secunty Classification)
LEXICAL TRANSLATOR FROM ARABIC TO LATIN IN PASCAL ENVIRONMENT

12 _PERSONAL AUTHOR(S)
Aljuhaiman, Sadek S.

‘3a TYPe OF REPORT . 136 TIME COVERED 14 _DATE OF REPORT (Year, Month, Day) 'S PAGE COUNT
Master's Thesis FROM TO 1986 SeptemBer 185

‘6 SUPPLEMENTARY NOTATION

' COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FELO GROUP 5UB-GROUP Lexical Translator

Bilingual Operating System

'3 ABSTRACT (Continue on reverse if necessary and identify by block number)

The Lexical translator is a program written in Turbo PASCAL to generate
a Latin PASCAL source code from an Arabic PASCAL source code. The Arabic
code is written under a bilingual operating system transparent to the DOS on
personal computers.

The bilingual operating system compatibility as well as the Arabic
characters' code values is investigated. The Latin code is fed into a
computer to be compiled and run with a Latin interpreter (i.e., Turbo PASCAL),

in an Arabic environment.

20 D STRIAYUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
(3 .ncLassiFieouNUMITED [SAME AS RPT [J DTIC USERS Unclassified

4‘4‘3 "-Af“ﬁE OF RESE’ONfIBIbE lNO]\QDUAL 22b TELEPHONE (Include Area Code) | 22¢ OFFICE SYMBOL
rof. Daniel Davis 408) 646-3091 Code 52Dv

DD FORM 1473, 84 MaR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THis PACE

All other editions are obsolete
UNCLASSIFIED

ERCRER AT XD

- B oy,

Approved for public release; distribution is unlimited.

Lexical Translator from Arabic to
Latin in Pascal Environment

by
Sadek Saleh Aljuhaiman

Captain, Royal Saudi Air Defense Forces
B.S., Arizona State University, 1979

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1986

Sadek Saleh Aljuhaiman

Approved by: &:kANLL/C/ 1;5L014//

Daniel Davis, Thesis Advisor

Author:

Ron Rautenberqg/ Second Reader

¥ Vincent ZZ ¢tdm, Chairman,
Department ©f Computer Science

%,4~£AFT:}4 okszk,&>\
Kneale T. Mar "
Dean of Information and Poli ciences

A A R LR L. " TR O (.‘ W o, .
G e e T ‘w St A TR N L4 Jﬁ ’\ i

5 Bt » i WL ARG,

A ¢
;‘\}\‘- '\.\

[3

- ABSTRACT

)
g \The Lexical translator is a program written in Turbo
j PASCAL to generate a Latin PASCAL source code from an Arabic
i PASCAL source code. The Arabic code is written under a
.Q bilingual operating system transparent to the DOS on
; personal computers.

The bilingual operating system compatibility as well as
S the Arabic characters' code values is investigated. The
“’ Latin code is fed into a computer to be compiled and run
with a Latin interpreter (i.e., Turbo PASCAL), in an Arabic

environment.

., Acceqoion For

U NTTS GRAXT !

w5 L DTIC TAB '
' b Unnaoennced 3

| Ju:tification

BY e
_Dis tritution/ B
Availability Ccles

' Avoeil and/or
Dist - Speclal

; HLL

e

% ' A : - WA " - -'(,'- y ‘-...-_“" n“, ,< Tl y »
o s by ’ﬂ“ “I"A.A..n ‘- Q'I'a'"“\rn > :' '(‘x Y 1) ..".‘, A W " 3 s A " P ”", % .‘

! A * L} L3 *

-« o Tl ISR A R b e
“»"‘. OO OGOt

TABLE OF CONTENTS

I. INTRODUCTION ==mm=mmmm e m oo mm e e e e 6
II. BACKGROUND ON ARABIC CHARACTER ==-===-==-——==—--- 11
A. INTRODUCTION —===mmm=m—mmme o m e 11
B. ARABIC LANGUAGE —=-==m=mm=mm——me—c e 12
C. WRITING ARABIC -—=-—-- ———————— ————————————- 13
. D. ARABIC NUMERALS —===m===m=———meeem—e oo 14
:E III. CONTEXTUAL PROBLEMS IN ARABIC WORDING ===—====m—- 17
§; A. DIRECTION OF FLOW —m====—m—emm—— e e 19
n B. ARE DIACRITICS REQUIRED? ==m—=-=w=—c—eem————- 21
ér C. THE CONTEXTUAL ISSUES =~=—==—=-—m-me—————— e 23
Eﬁ' ‘ IV. EFFORTS TO STANDARDIZE CODES -====m===m—————————— 28
kt A. SOLUTION EFFORTS =—-———===-——=mmm———mmmmmmo— 29
[B. TI DS990 BILINGUAL SYSTEM —=—wm—m——w=em—————- 31
ij& C. ALIS INC., BCON SYSTEM =——==m=mmm————em————ee 33
" D. ASV CODAR-U SYSTEM ===-=-——m=em————eeem e 37
;&f E. THE STANDARDIZED SET —-=----=========—=-oc——c 40
LY
1o F. CONCLUSION =————=c——mm e 42
ii v. INTERFACE DESIGN GENERAL APPROACH =—=========—=—m—- 43
:?% A. MAJOR CONCEPTS —-—=——————————mmmm oo 44
;éﬂ B. OPERATING PRINCIPLES =-==—-m=====m——m——m———e- 47
1 C. DESIGN GOALS ======mm==emmm e oo mm e 51
‘ﬁi D. DESIGN LIMITATIONS =--====mm=—--—mme————meo e 52
«.
X
" : 4
si
2
L

y B T PR N T R TR I I e RSy e T S VL R . S I T R T T ST I AT S e
:A., ,{g‘.q\,‘_ O ,.’ " L Lols ,- AN . ERARONE -'q - -{' ._}J“._.-‘-(' e

- e

B (A0
i) ‘-:!‘ﬂ"‘v‘. XA

2N

VI. PROGRAM MODEL —-=—=c=—— = 55

A. INTRODUCTION =======m = m oo 55
B. PROGRAM ENVIRONMENT ==——===m===e— oo —— e 55
C. PROGRAM BODY =====—===——— oo e e 58
D. PROGRAM MODULES ——====——==mmm—mo oo 64
E. PROGRAM DIRECTIVES =--——-==-——me—m oo 71
F. LIMITATIONS —=——-- == e 71
VII. CONCLUSION --—====——=—=——me e 73
A. CONCEPT FUTURE —-—==-—— = =mm o mmm oo 73
B. LIMITATIONS ————==———m— e e 74
APPENDIX A: FIGURES ——=-————=m=—m oo 76
APPENDIX B: TEXAS INSTRUMENTS APPROACH TO BILINGUAL
OPERATING SYSTEM —-——===m————— oo 82
APPENDIX C: DS9900 BILINGUAL COMPUTER SYSTEM BY
TEXAS INSTRUMENTS =-—===-—————mmmmmeeee 89
APPENDIX D: BCON BILINGUAL OPERATING SYSTEM BY
ALIS INC. =—=————mm e 96
APPENDIX E: CODAR I, II, U CODE SETS =-=—==~c——=———acoo- 112
APPENDIX F: FINAL CODE U-F.D, ===—==m———m—memeemmeeeo 114
APPENDIX G: ASMO'S APPROVED ARAB STANDARD
SPECIFICATIONS —=======mmmm— oo 117
APPENDIX H: PROGRAM CODE —=========mmmemm—~ e e e e 123
APPENDIX I: TEST RUNS ———— = m e 152
LIST OF REFERENCES ———=mmmmm oo e 158
BIBLIOGRAPHY === === o e o e e 159
INITIAL DISTRIBUTION LIST ====-===c=meemm—mc—mmmmme oo 160

.= TS

')

el a e e S

v s ALl

- B ah

»'l"l*‘l .
l~4

o’

.ﬂ\u

l 4y -‘i

I. INTRODUCTION

The English 1language 1is the most popular scientific
language used today. The language descended from Latin and
has had wide use in the scientific field. The English
alphabet is familiar to people in Europe and all countries
who use languages descended from Latin. There are slight
changes between the various alphabets that have descended
from Latin.

The wide use of Latin alphabets has made it easy to set
standards for typewriters and console keyboards. The
similarity in grammar common to most of them, their fonts
and direction of flow (i.e., left to right) has made it easy
to standardize.

Keep in mind that, many of the computer pioneers made an
effort not to limit the implementation of their software to
one spoken language. Software is the key to any limited use
of computers in any language. Typically lack of knowledge
of programmers in a foreign language limits their ability to
write applications acceptable to the user. Not so many
nations are blessed with the computer development
technology. However all nations have people who, as users,

are capable of contributing to humanity using this

technology.

6
IR A A S TR '--F'“""""" 7'",.'\""4" 'd‘ "'-’"-P"'. \,"(\,""(‘
"f'»....’a, -g!‘g".'r;' i MR A‘. ..|'| ’.! uh‘ 'll.\ 0‘“ W -- n V'(-‘ \' .

K

Wt

ey - 3
1,8, 8
‘.p;'}}l!

F I IFRP S Ay

>,
P
k"
<
'~
>

RN LR
PN .
SRS N

et el
LA W

Given the technology existing today, if we can create an
interface between a host foreign language and a target
application language there will be fewer barriers to nations
that do not use a standard English, French, or German-based
computer operating systems and software. The interface will
éccept user commands from the host environment and translate
it to the syntax of the target environment. It is assumed
that the user is knowledgeable in the semantics of the
target environment in his spoken language terms.

The question may be asked, "what good will this approach
do such a nation?" There are several good points. Two of
the most important reasons--One, there is a good library of
software that exists; and two, the price of software (even
with the addition of an interface communicator) is less than
newly-written customized software. It is faster and easier
to write an interface than to rewrite a large body of
software.

Two user environments should not be confused. The
customized foreign alphabets used in many countries on
mainframes for specific applications are developed by
contractors who are expert in that application but not
necessarily the foreign language. The mainframes must use
the software provided by the original contractors. It takes
a lot of effort and capital to develop new software
application for the special machine. This limits the use of

the computer to operators and data entry personnel with

P P R T T PRI R R P S N I
df-...‘- - '\--, ‘.\-.’.

¢ A e Y e e e e e e

FOEIAC NG,

[]

minimum creative programming from the user side. Users do
not share the expertise of others and the continuously
improving software. This is because there are limited users
and minimum feedback to software developers.

The second user environment is the average user who has

some scientific background but has no access nor the capital

to invest in mainframe hardware. This user is often an
educator, student, or a professional. This category of
users has great potential. The use of software with a

native language interface would be very helpful and afforda-
ble at the same time to this group. This group is very
capable of contributing in their respective fields with the
powerful processing features available with personnel
computer technology today.

This thesis 1s concerned with the second user environ-
ment for several reasons. The second group of users are the
creative ones. Their understanding of computers and its
applications is a major step toward building the target
machine with compatible native standards. This will elimin-
ate the ad hoc design by the contractor who most of the time
has to hire a non-technical translator and dictate to them
the language specification, key words, and commands of the
operating system, or query language. Usually a translator
will translate the machine native language key words to the

target language using its alphabet. The translator may have

minimal programming or computer experience. This will most

* T,

likely lead to an ambiguous environment for users to work
with.

The feasibility of such an approach is constrained by
several factors. The language or the user environment is
one factor. How is the language implemented or emulated on
standard Latin language hardware? The target machine (i.e.,
micro to mini computers) compatibility with others in the
same family is also a factor. These are factors that affect
feasibility. Economical feasibility is based on demand and
supply and a developer must evaluate the benefit vs. the
development cost in order to develop such interface
software.

The Arabic language is a very rich language in vocabu-
lary and historical background. The Arabian alphabet is
very old. The language was used for several centuries by
leading ancient mathematicians, physicians, biologists, and
chemists. They successfully contributed in their fields
using the Arabic alphabet. Their numerals, symbols, and
equations were all written in Arabic. However this does not
make it simple to use the Arabic alphabet in the modern
computer environment.

One reason is that the direction of flow in reading and

writing is from right to left. Secondly, Arabic characters
are not printed like Latin characters. Arabic words are
printed like calligraphy. Arabic characters must be either

written in stand alone or connected form. The character may

TOT T T W T T W

be located in one of three ways: at the beginning of a
word, in the middle, or at the end of a word. With a set of
complicated rules the shape of a character is determined by
its location with respect to the word. This difficulty has
complicated attempts to provide a software emulation to the
Arabic environment in personal computers.

The goal of this thesis is to provide an approach to
solving this problem. The steps that must be followed will
be described in addition to special consideration. To show
that translation 1is possible, we will develop an interface
to communicate between an Arabic form of source code in the
PASCAL 1language and an existing English PASCAL compiler.
The interface will use sample source code written in Arabic
and Lexically Translate it to English source code. The goal
is, given correct Arabic source code, the interface will
produce correct English source code. This should be done
once. Once the program is compiled the interface step is no

longer needed with the compilation.

10

\-."-\

. ERCRR . & < R)
T WL Vel WK % -’m.b:_',-ptl | o . '(m-..‘.n

-

4.
v
<

ITI. BACKGROUND ON ARABIC CHARACTER

A. INTRODUCTION

There are 28 basic characters in the Arabic alphabet
(Figure 1). However, these basic characters are not
sufficient for use with computers or typewriters.
Authorities agree [Ref. 1] that the optimum set should use a
minimum of 31 characters (Figure 2), three more cuaracters
than the original set. The additional 3 characters are

needed to constitute the optimum set for representing Arabic

. texts. One may check the Kufic script, which is over 1500

years old, to realize that engravings by ancient Arabs were
done with close to 31 characters. Each character has one
shape. Over the years, variations of the characters have
developed for ease of writing and reading. Each character
may have from two to five shapes depending on its location
within a word. All applications must use these variations
as standards to represent Arabic texts. Implementing the
variation 1is critical for compatibility issues. Code
representation of any variation must follow a strict
standard to insure survival among other implementations.

The Arabic alphabet has only three vowels in the 28
characters (see Figure 3 for the alphabet names). Voweli-
zation is also performed through the use of diacritics (see

Figure 4). Most Arabic texts do not show diacritics.

11

Readers have learned to read and understand the word based
on the context of its use. If misinterpretation is
critical, verifications are provided in parentheses. Most
applications today do not require diacritic symbols.

The Arabic numerals and Hindu are used in the Arabic
world. North African countries use the Arabic numerals (as
used in Latin). The Arabic name is given to the numerals
used in Latin, and Hindu numerals are used by most of the
Arabic world (Figure 5). However, history books show that
both systems originated in India. The Arabic language uses
the Latin comma for a decimal digit to be distinguished from

the Arabic number zero which is the Latin decimal digit ".".

B. ARABIC LANGUAGE
The Arabic 1language differs from languages descended
from Latin in several ways. The primary differences are:

* Arabic is written right to left instead of 1left to
right.

* The representation of vowels by using diacritics in the
form of over or under scores with most letters within
the words.

Secondary differences are:

* lLetters in Arabic may be joined or not according to
location within the word. A particular letter may be
joined to the preceding letter, and/or following letter.

* FEach letter has between two and five different forms
dependent on its contextual position.

Lexically the Arabic language can be defined in BNF

notation as follows [Ref. 1l:p. 28]:

1+, S il et il S - .

:&; <language> ::= (<sentence>£

;%E <sentence> ::= {<word>)I

:, <word> RS {<characters><voc.sym><character>{

}25 <character>::= { see Figure 1. q

ftg <voc.sym> ::= { see Figure 4)

Wi ' a T

;:0? C. WRITING ARABIC

? ‘ Writing in Arabic flows from right to left, additional
ig’ lines start from right to left beginning below the previous

line. A word is entered by typing the first character at

the cursor position followed (to the 1left) by the next

2)

kﬁ character. An example of this is the word "hello." If the
i:} same word is entered in Arabic it will be entered as
:%; follows:

v cursor position =--=c--—mmmmmmmm—r e - <
::{ step 1. enter character "h" -=--cerrmcmcmcccr e _h<
%& step 2. enter character "e" -——-c-merecmcrccc e _eh<
&J step 3. enter character "1" =———eecem e _leh<
ﬁ“ step 4. enter character "1" -----—c——————— e _lleh<
{5% step 5. enter character "o" - ccmccmrcncan— _0lleh<
;»? This demonstrates the direction of flow, however if one
s"j should worry about each character shape, it may seem tedious
&% for long text. 1In some applications one must provide dia-
?ﬁ critics also. In short, typing one vocalized word seems
t:: like a puzzle.

‘i% There are rules governing the shape (form) of the letter
‘;2 based on its contextual position.

g)

E7 13

‘.."
;:Q: Dewachi, Abdulilah [Ref. 11l:p. 27] has the following
QFSE opinion on the rules:

These rules have, in my opinion, been developed for ease
e of handwriting and have no bearing on the semantic and/or
v syntactic requirement of the language.

\ W

}éﬁ In spite of the cause or the reason for the development of
! the rules, all books, newspapers, and magazines in the Arab
i}. countries today are written using those rules. They will
ﬁ$. also stay that way for years to come.

e Arabic letters are cursive in shape. The implementation
éwiﬂ of the alphabets is highly dependent on how legitimate the
kﬁi characters look. The cursive nature of characters requires
W5 that both monitor and graphic adapter provide good resolu-
~§§ﬁ tion. High resolution is also required for supporting
12@; correct vocalization, as previously discussed.

R

e D. ARABIC NUMERALS

tﬁg- Both the eastern Arabic numerals and the western Arabic
;E?; numerals (Figure §5) are used. Countries 1like Algeria,
,&‘ Morocco and Tunisia use the western Arabic numerals. The
;?%g numeral system is not a critical issue since in both repre-
‘fﬁ sentations they have the same value.

‘;}' Many people believe that the Arabs write the numbers
;;% from left to right. This is a misconception. The language
;f& books and schools teach the classical way of writing and
ﬁ ; reading the numerals. The classical way is to either use
E:vé the words ("one",'"two",...) or the numbers ("1","2",...) in
i;z writing starting from right to left. For example the number
R : 14

MM

A"

™)
RO
.

. -\ “-f‘ m

- -
h » ‘:F
I

RO D AN
["’“ - (.".‘..I .'ﬁl“'. 3 "p \-‘.' a0 ~ »

S U ST TR PP SRR S () P
NI s AT PSRNy £ ,._~ .‘Nr._-f._ -,'«' T . .Y

523 will be written in Arabic as "three and twenty and five
hundred." It may sound wrong in English composition but
this is the syntax that classical books use. This method
should be encouraged. This is also followed in reading the
numbers.

The most common method in handwriting numbers is to
write in the order they are said. An example of how numbers
are read and written today is the year 1986--pronounced as
"One thousand nine hundred six and eighty. Notice the six
comes before the eighty. Writing the number "1986) using

numbers is done as follows:

first digit 1___
second digit l9_.
third digit 19._6
fourth digit 1986

This method is far too complicated to be adopted by mechani-
cal machines. The classical method should be encouraged for
another obvious reason. The numbers are entered least
significant bits first in low memory. From the computer
hardware point of view the adders/subtractors may work on
the number before the complete number is loaded (Ref. 1].
This is the more efficient way. Also both numbers and
strings will be right justified.

This chapter has outlined the major concerns and differ-
ences between the Arabic and Latin alphabet. There are a

few more things worth noticing. The opening brackets "[",

15

"{", and " (" are the closing brackets in Arabic and vice
versa. The Arabic question mark has the same look as "?"
but rotated 180 degrees around its vertical center. A list
gﬂf of a complete code set including special characters is
included in the ARCII code set (Appendix D). ARCII will be

discussed in detail in later chapters.

10

PO

‘\1,'.

PR W,
:. -I‘r"u. -*.is

SN
LS

SRR LR, A CVLACAERE AR A W LRSI LW LA A
YLt N LT C ey Ll },:WV

LA SE
e
.

{7 . RN, Aabhl's, M L2 Ry VRN

IIT. CONTEXTUAL PROBLEMS TN ARABIC WORDING

For any computer to work in Arabic it must also be able
to handle English alphabets. Arabic users will pay a few
extra dollars to add the bilingual features in purchasing a
computer. The form of the bilingual feature 1is a
controversial issue. This chapter will show why one should
be concerned in using mixed mode or even alternative between
the two alphabets--Latin and Arabic.

There are three major differences between alphabets
descended from Arabic and Latin. The differences are
direction of flow, diacritics, and variant location shape of
characters. These issues are specific to the language.
This chapter will discuss these issues with respect to the
computer environment.

Each difference requires special attention in an Arabic
alphabet implementation in hardware. The direction of flow
in reading and writing is very complicated for users and
developers alike. This 1is especially true where the
keyboard, the display, and the printer are to operate in
bilingual mode. Arabic is read and written in the opposite
direction to Latin. The difficulty is when the user wants
to flip to the other mode for another application, or within

the same applications the user wishes to mix both character

sets.
El
17
S P AT A RO RN U SR TERP ER S T i R e
SN A II«"-’(‘q"{'w" D R R e A A T A R B

"q."‘ \'.: s,.\\',:.& u-.ha‘:.& LAl ol L L,

s A boom in the introduction of electron?c computing to
{gi the Arabic world lead manufacturers to make short cuts to

meet the complicated needs of the Arabic alphabet. Also the
W Arabic alphabet is used in several countries with non-Arabic
¥ languages. This wide use invited companies to quickly

develop a character set for Arabic, based on limited

kl research. As a result important language needs such as
ﬁ* diacritics were avoided. This also has lead to a delay in
s the realization of an effective solution.

;E The contextual problems, that is, the variant shape of
ﬁ? characters, is the most difficult. To establish a solution
"y is to decide the style or the method that developers should
 $ follow in implementing Arabic character sets. The problem
%& is the complexity of providing to the user all shapes possi-
‘Q' ble for the 28 character set on the keyboard. Each charac-
ﬁ::" ter has between two to four shapes, making for a total
‘E; requirement of 84 codes to represent the minimum set of the
i Arabic alphabet. This number is higher by 50 percent than
Vﬁ what the English alphabet (upper and lower case) requires.
:ﬂ The rest of the special characters and diacritics require
Bt more codes. In some cases the applications of diacritics to
i:ﬁ some charac-ters requires a unique shape to represent it.
‘Eg This requires a wunique code for the combination of
b{ characters and diacritics. The use of "Hamzah"l also
2& 1The "hamzah" is one of the three characters that were
i added to the alphabet in addition to the original character)
oa set.

::' 18

R

o

S

.,3‘ " * n ﬁ. N ~}‘ 'i-';}‘ ' e e e T e T e LT L N e e b

o A W

"IPIER RN
.

<,

J‘f-'

T AT Latl ol v

requires special attention when used with any of the three
vowels in the alphabet. The limited number of codes the
keyboard has is the limiting factor for planning the code
assignments. A look at some efforts and proposals will be

discussed in the following chapter.

A. DIRECTION OF FLOW

Working in mixed mode is considered a must in the Arabic

environment. There are two apbroaches to handle the mixed

mcdes data entry and storage problem. One approach calls
for the data to be stored in aural order (i.e., logical
order) . The second approach is to store the data in the
same order as it looks (i.e., visual order). Keep in mind
that if an Arabic word is inserted in English text the last
character of the word will be encountered first, scanning
from left to right.

One approach places the burden on the display to
translate the incoming data to the correct direction to be
displayed. The display must translate an escape code or a
mode bit sent with the data. The easiest method is to set a
high bit (if it is not used) as to whether the character is
Arabic or Latin. This option calls for smart display
devices.

The second approach is to store the data in aural order.
This approach places the burden on the computer to determine
how to store data to cause no shifting of display direction.

This means the display program will keep track of the

19

”ﬁ?ﬁfu

. o
» -
~

P R ' \

a
P B I |

4
252

alal '_"‘ : T AR

: Al
- om_

ek an]

v 5

o Lt
. YRR AR R
4 RPN, LN

language mode and do order reversing to store the data in an

appropriate order. In handwriting, handling mixed modes is
done in the following fashion:
- continue typing until reaching a foreign character.

- count the number of spaces occupied by foreign
characters up to the first native character.

- skip that number of spaces and write back to where you
stopped before skipping. When done the writer should
end where he/she jumped from.

- skip the same number of spaces you counted. This is
where the next native character belongs.

It seems that humans can do this routine more easily than
computers. The computer can only deal with incoming data as
it arrives, one character at a time. This means the
computer does not know in advance how many foreign charac-
ters are coming. The computer can use a logical device
called a stack. Characters of different mode are stored
(pushed on the stack) up to the next native character. At
this point the computer has the foreign string in reverse
order on the stack. In the next step the computer starts to
write from the top of the stack until no more characters are
in the stack. Then the program continues with the last
encountered native character. In this approach the
direction of flow for the display is maintained. Obvioﬁsly
this method has several disadvantages. One, it slows the
storing of data in mixed mode. Two, it slows the computer

from doing other functions, where a smart display could

20

< .-l . '.- PN P PN A S I A
AN

handle the display of mixed mode data as they are stored

logically.
The approach that should be taken is connected with
resolving the contextual issue, the variant character shape

problen.

B. ARE DIACRITICS REQUIRED?

By linguistic standards the omission of diacritics by
computers murders the Arabic language. Linguists have
always officially «criticized the mispronunciation of
statements by television and radio people. The use of dia-
critics is a must iin the language even by recommendation of
westerners involved with the Arabic alphabet [Ref. 1: pp.
39-46].

In a previous chapter diacritics were discussed. There

are five basic diacritics. The five are (Figure 3) from
right to left: "Fat_ha", "Dammah", "Kassrah", "Sukoon", and
"Shadah". The first three can be doubled, in the same
manner as double quotes in Latin. When any diacritic is

doubled it is known as "Tanween" and adds an N sound to the
character. The Shaddah has the same effect as doubling the
consonant in English. It can be used inconjunction with any
of the first three or their "Tanween." The Sukoon, when
used, means that the character must be read in primitive
form, versus using previous diacritics.

An example of one word using different diacritics will

show how the sound and subsequently the meaning changes.

21

K ;_n:-w..lw:t;:;¢.::_-1

:;:;:; The word pronounced "tilmeeth" in Arabic means a student.
::':'s‘ The "th" at the end is the .character "Thal" in Arabic. The
‘TS';} example will show the different sounds per word when only
‘1: the last character has different diacritics.

: :E. WORD VOWELIZATION PRONOUNCED

k .‘;#., TILMEETH "FAT_HA"Y TILMEETHA

v TILMEETH "KASRAH" TILMEETHI

’”' TILMEETH " DAMMAH" TILMEETHO

[TILMEETH "SUKOON™ TILMEETH

';"‘a' Using the "Tanween" effect with the first three diacritics,
&3 the same word is pronounced as follows:

?f.:; - with "Fat_ha tanween" TELMEETHAN

“«:'\- - with "Kasrah tanween" TELMEETHIN

Y S

1‘1 - with "Dammah tanween" TELMEETHON

{ Shaddah has the ability to be used with all the above except
‘\‘ the Sukoon.

EE'. The use of diacritics removes the ambiguity in the
:u‘,_:’ reading of text. It is powerful enough to change the
5|" meaning of the sentence completely. The vowelization of
-5;:' verbs by diacritics will change the sentence to passive
, tense. In Arabic the verb comes before the noun. So in
{_:; Arabic the two statements, 'was stolen Ali a book,' and
‘:\ 'stole Ali a book' without the use of diacritics, especially
S;‘ on the verb, could not be distinguished. The effect of the
‘.‘ "er" and "ee" in English as in "employer/employee" is also
g:‘ achieved by the use of diacritics in Arabic on the noun. 1In
,r..'::

KO

22

123

'R

¥

FT

§

| , L T P P S R T B O R -
W T T T T At e e e o I N L Y . A T o A T T S L T S VR S T S

.._ i oy o a2 n e e o el he e e T A A RS AR AL e

AT g

combination, the failure to use diacritics can completely
obscure the meaning of a sentence. For example, it would be
as if in the sequenced fired/was_fired employee/er we did
not know which of each alternative is meant. The employee
either was fired, or fired someone. On the other hand, the‘
employer either was fired, or fired someone. See Figure 6
for some examples using vowels and without vowels.

Clearly one can see the need of diacritics. In
religious and history texts, they are used extensively. 1In
an international symposium for standardization of character
code sets and keyboards for Arabic language in computers
held on 1-4 June 1980, several proposals were presented by
researchers and companies that already have developed their
own character sets [Refs. 1,2]. All the proposals and
recommendations agreed on including the diacritics. This
use of diacritics will be beneficial in the use of data

bases, artificial intelligence and educational textbooks.

C. THE CONTEXTUAL ISSUES

The mere presence of a character in different locations
within a word determines the shape to be written or read.
Should the computer do the analysis and free the user from
worrying about a large complex character set, or should the
keyboard contain all possible variations of each character
and have the user learn to master more than one hundred
strokes for the alphabet in addition to numerals, special

characters, and punctuation?

23

«
]
S ettt

]
&

P oW
[N DS S

ﬁ"

o)
*a

3
[}

.
s
)

» "."-.Y‘

L
2,
SLAW AP 3

e,
‘.-"\:'..

[
Mt
.
Ve oy

[l
L)

s

s
k)
)

LAk Ly - ~ yworowoRoweowe, -2 aIA W o lant e e Al v bdiar e dhiradi gl alrh Al e

One popular approach is to provide only a minimum set of
required characters, usually between 31 and 60 not including
diacritics, numerals, and special characters. This approach
is known as the single character single shape keyboard. The
data is stored in memory or storage devices using this
reduced code. The reduced code is analyzed by an interface
to give the right form or shape. The interface is part of
the display, when smart displays are used, or a shell on top
of the "0.S." to contextually analyze the character form.

The issue is not quite settled and standardized among
all Arabic alphabet users, nor Arabic countries. A suc-
cessful meeting of authorized people from all concerned
countries have not yet, to my knowledge, agreed on a
standard. A few companies who stepped into the market early
have generated their own version of character code sets.
Some companies have realized the gap between their early
implementation and ac'.ual language needs. The gap was
realized more when the use of the produce was not utilized
in all the areas and aspects for which it was designed.
Some companies have realized that the survival and popu-
larity of their product depends on compatibility with at
least the codes of a character's internal representation.
Some companies went further by investing in research for an
optimum solution. Language experts were hired and/or con-

sulted by companies 1like IBM, TI, and WANG. The companies

24

are following efforts for solutions and continuing further

the research to achieve an effective sclution.

In resolving the multiple character shapes, most com-
panies have tried some reduction of all possible codes to a
single code using several philosophies. Texas Instrument
has presented [Ref. 1] three approaches to reduce the Arabic
code.

The first approach was called "CORRESPONDENCE & DIFFER-
ENCES." This approach divided the alphabet into groups.
The first type A have characters with one, two, or three
points (Appendix B). The second type B are without points.
The last type C contains characters having at least one form
of each, for example character "RA" and "ZA." The two char-
acters have the same form with a point on the "RA"™ and no
point on the "ZA." The idea is if the basic form has one
key (code), two or more characters will have the same basic
form, the points can be added later. »

The second approach was called "ROOTS & APPENDICES"
(Appendix B). The approach divided the alphabet into
groups. Two groups have six characters in each. Another
group has four characters. Each of the above groups have
the same cursive and "APPENDICES." The "ROOT" of the char-
acter can be used at the beginning or in the middle of a
word. One appendix will complement each root of a group.
This will require a total of seven codes for a group of six

roots. The group would require (for six characters, each

25

P
“.“ o

a v & Yy

L
Pd “-'*-
‘l:i
‘- -

s
1

i
{"-.'r

'-‘.'5.‘-

25

'&'\‘l .

AN o
SIECUY

N s
Ny

&%

with three contextual forms) a total of 18 separate keys

and/or codes. This approach implicitly asks for more
software to analyze the appendices. A character may be
represented by two codes internally. This will make text

storage inefficient.

The last approach was "“CONTEXTUAL ANALYSIS" (Appendix
B). Texas Instruments has developed a product using this
approach. The DS990 Bilingual System can handle
Arabic/Latin modes and display them on a screen or 1line
printer. The contextual analysis approach, in all the
developments seen by the author, uses a reduced code set.
The reduced code set is used for the internal representa-
tion of data. Keyboard keys of the Arabic set are kept to a
minimum, wusually the basic form. A software interface
analyzes the character contextually and displays the charac-
ters in the right form. This interface software in some
application is pushed further away from the responsibility
of the CPU to the display terminals. Such terminals are
called 'SMART' terminals. TI's DS990 system diagram (Appen-
dix C) shows the configuration of a typical systen.

TI realized the need for diacritics in the Arabic
language aftef it introduced the system to the marketplace.
TI, at an international symposium held in Riyadh, Saudi
Arabia between 1-4 June, 1980 [Ref. 1l:p. 68], in an effort
at standardization of code, character sets, and keyboards,

recommended that the Arabic computer systems standards

26

1"{_"

requirement include the use of diacritics. This is an

Ny

example of the approach of the pioneer companies who had to

define and develop the alphabet codes set. Premature

standards will automatically be overriden by the authorized

agency. The DS990 did not handle the use of diacritics.

- e -
: -2 A

Since the use of diacritics was adopted by all standards

committees, this 1lead a few companies to follow a new

,t{h{‘

-

standard that supports diacritics.

ALIS, Inc., introduced BcoN T™ as a bilingual operating

-

system. BCON was geared toward MS-DOS based microcomputers.

I

AN

4

The bilingual operating system is an interface between the

b
Py

operating system (0.S.) and different applications [Ref. 2].

YOG

ot

This bilingual operating system adopted the single key or

single code approach. Each character is represented inter-

P
P

nally in memory by a unique code. BCON also fully supports

the use of diacritics in text. The single code approach, as

o

- .
LR .
LA LA

mentioned before, requires that a device or an interface

(hardware or software) properly analyze the character and

display the correct form. BCON uses Application Screen
Image Compensations (ASIC) to perform the contextual analy-
sis. BCON uses separate codes and fonts for each character.
~ The internal character code gets translated (mapped) to its
i{ output code. The internal code has 4 to 5 output codes.
5 The code to be displayed is based on the location of the
character within the word (TI's and BCON's system will be

- covered in more detail in the next chapter).

.- 27

“~
"

ey e L R S A SRR
ﬁ..'l “-{.‘-‘_‘-' N -\){v‘.:-f'\t\,'hh w .‘J'." ! -('.\q o _‘ ‘.-
- aad) , Can e 3G of '

Iv. EFFbRIS TO STANDARDIZE CODES

Several nations use the Arabic alphabet today, both

.E% Arabic speaking nations and non-Arabic speaking. It is a
R political challenge to gather concerned nations and succeed
lgl in establishing a standardized code set acceptable to all of
i" them. It is difficult for any oeone country to take the ini-
R~ tiative and responsibility to follow such a program until it
{:ﬁ comes to life. It is hard for a single country to conduct
. E research and share knowledge with another country that is
g thousands of miles away. In recent years as cooperation
i;; between Arab nations has increased, and as methods of com-
?E munication have improved, as well as travel, there have been
M more productive meetings and symposiums. Several countries
ﬂﬁ have mutually cooperated to work and develop a possible
%% solution to the standard codes set for Arabic in data
2 processing.

a;ﬁ Many countries 1like Kuwait, 1Iraq, Morocco, and Saudi
i;z Arabia have hosted meetings and symposiums, 1listening to
L experts on the language, and in the data processing field.
ﬁ;ﬁ Researchers, as well as company representatives, have
::ﬁ brought up points to consider, shared their experiences, and
o given recommendations. Several existing systems have been
;:; developed or proposed by companies or individuals in the
Zi field. The countries that have been exposed to technology
:ﬁ;

& 28

&

o

Y

oy

R L A A o R, j

ol la el ta o

&

i e
e OXY

-

5

Ko
[

Ry

P

>
w WL

.l ll"‘. ‘l ‘l ,l 'l

and are more developed than other Arabic nations, have an
urgent need to set standards in general. Countries 1like
Morocco started as early as the 1950's to set standards for
printing devices.

The north Affican countries have progressed further in
this research. Morocco shared willingly with the Arab
nations their latest research and developments in the area.
The problem of choosing an existing system, with some or no
modification, or to redefine once again a new standard, is

also a political issue.

A. SOLUTION EFFORTS

Several companies have provided results of their
research and in some cases have implemented systems, giving
recommendations and results of conducted tests, in the case
of keyboard 1layout proposals. Companies that have an
interest in the market and have worked in the Arabic data
processing field, have no authority to develop a code set
standard. Government representatives are the authorized
agency to do such a task. Several companies have proceeded,
given a lack of standards, to develop Arabic code sets and
implement them on hardware. This has resulted in several
incompatible systems of code sets. Data in one system means
different things in another code set system. This approach
to the development of code sets has both disadvantages and

some advantages to the companies involved.

29

Early development made companies as well as users

-understand the weaknesses of the developed system. For

example, TI's DS990 system's omission of diacritics failed
to fulfill the needs of the language. On the other hand, by
just intfoducing a product early, companies make their name
familiar to customers. The customer cannot complain about a
reasonable attempt. This did establish a good reputation
for such companies, especially when they adopt the approved
standard and reintroduce their products. In addition to
developing a good name, they gain experience in the process.
This will help in introducing an earlier product complying
with the standards. So a company's early efforts are not a
total waste.

Since early implementation ignored including diacritics
use with text, newer designs have to pay special attention
to their use. Data base machines must pay attention when
sorting and searching. The representation of diacritics
will require special care from data processing machines.
The priority of characters with or without diacritics must
be known to the machine. A process of stripping diacritics
from a given string to be located to match with a query,
will facilitate the search. However, the target of the
search, when found, must be displayed, and stored if
updated, in the vocalized form. Unlike Texas Instruments,
IBM chose to maintain domination in the market for type-

writers and Arabic only EDP machines. IBM did conduct

30

- s s

sti'dies on their own in an effort to develop a code set and
keyboard layout. IBM, represented by Mr. R.P. Hajjar and
Dr. A.M. Ismail, presented their attitude toward a bilingual
code set standard at the symposium held in Riyadh, Saudi
Arabia, in June 1980 [Ref. 1l:p. 72]:
Meanwhile, competent people from the Arab world and from
elsewhere, have addressed the same subject and came up
with a variety of solutions that are not compatible with
each other, due to the fact that they reflect the require-
ments of a particular Arab country, but may not be totally
acceptable by the neighboring Arab country. This is the
main reason why IBM has not implemented such solutions,
but will look forward to investigate the possibilities of
their implementation, in case these solutions are adopted
as part of an inter-Arab standard.
IBM, TI, and Wang have shared their research and willingness
to achieve a solution and adopt it in their products.
This chapter will briefly cover three systems:
- TI DS990 System
= ALIS Inc., BCON System

- ASV-CODAR Proposed System. . “_

B. TI DS990 BILINGUAL SYSTEM

DS990 is a bilingual system that generates seven bits
for ASCII codes and generates an 8 bit code for Arabic
codes. The system represents the Arabic alphabet with 32
unique codes in addition to 13 special characters. The
thirty-two codes are the internal representations of the
alphabet. TI's system uses the one key many shapes
philosophy. The 32 codes are the basic character set of the

system (Appendix C). The one key many shapes approach

31

! requires the use of an interface with a smart display to

;3{ display the correct form and shape. The DS990 block diagram
o (Appendix C), shows how the system is arranged. The 32
.ﬁ codes are mapped to 128 less 13 giving a total of 115 shapes
2y

-~ that can be displayed. The display ROM interface contains
a

' all 128 shapes (Appendix C). The display service routine
'i: (DSR) and the display ROM interface contextually analyze the
; basic code set and display the data correctly by mapping one
' code to one or two display code(s).
g DS990 does not handle diacritics. It also increased the
{j optimum set from 31 to 32 unique characters. The system
o

& considers LAM ALEF as a single character. Two clear viola-
Vﬁ tions. The use of diacritics is a must in data processing.
Ko

? The LAMALEF (DC hex value in the basic character set)
4 (Appendix C) 1is composed of the character LAM (D6 hex) 1
;f followed by the character ALEF (CO hex) which are two
y ’

iy separate characters and should not have a unique code. The
s fact that the table shows no special code for eastern Hindu
o e s .
-l numerals indicates that the same code for Arabic numerals,
NS

2% known as western Hindu, is used for both representations
N
. (Figure 5). Depending on the display mode, the eastern
K-, (Hindu) and the Arabic (western Hindu) are displayed
I,

- differently. So a user of a north African country cannot
oy

X use the western Hindus (known as Arabic numerals) in Arabic
N L
: mode. This is not desirable.

¥
o) J
)

‘l
VIR

- 32
L) ::_
o

7.

.
N

’ - R4 N

v
P4
LN
N
2
»
X

DS990 stores information in memory in logical order in
Latin mode and Arabic mode. The display ROM interface and
the control program map the internal representation of one
code to one or two display codes. For example, to display
the character 'SEEN' as in the basic character set (CB hex
value) (Appendix H), the character is represented by two
display codes. The first code is the value BC hex followed
by the code 8B hex in the display ROM interface table.

The approach followed by TI 1is the typical way most
companies are implementing their display techniques. How-
ever, the disadvantage is the omission of diacritics and
considering "LAMALEF" as one character. TI has indicated
they now believe the implementation must have diacritics.

[Ref. 1)

C. ALIS INC., BCON SYSTEM

ALIS Inc., introduced BCON TM as a bilingual operating
system that could be a standard to follow, or at least close
to a standard. The bilingual operating system adopted the
single key single code approach. Each character is repre-
sented by a unique code internally in memory. BCON also
fully supports the diacritics use in text. BCON was geared
toward MS-DOS based microcomputers. The bilingual operat-
ing system is an interface between the MSDOS operating
system and applications. BCON is designed to facilitate the
adaptation of the 1large number of existing MS-DOS

applications to Arabic [Ref. 2]. The single code approach

33

......

as mentioned before requires that some device or interface

ey

% (hardware or software) properly analyze the character and
AN display the correct form. BCON uses Application Screen
:.j, Image Compensations (ASIC) to per-form the contextual
)._ analysis, and then selects the correct display code
o (Appendix D).

v 1. Hardware and Software of BCON

)\

BCON hardware is another board on top of the Latin
character generator board. The new board has the Arabic
z. character generator with the required wiring to allow con-
"'.F:E current operation of both character generators. The two
:. boards are back to back and use one slot on the mother
\‘ board--a microcomputer. Keyboard caps (or stickers) are
'-::r‘ provided for use on the keyboard. The stickers have both
W alphabets printed side by side.

.\:: The software 1is a program which when activated,
Y

:EJ resides in low memory and uses 19k bytes. Once BCON is
." activated, it can be set in Latin "native" mode or Arabic
;" mode. The only way to free memory is to reset the systemn.
i, Both modes of the operating system will allow bilingual
":‘ insertion in the appropriate direction. In their early
::j version (up to early 1985), ALIS introduced a reduced code
: called Arabic Reduced Code Information Interchange (ARCII).
:':. ARCII is the internal representation of the characters in
::: memory and what is seen by the operating system.

by .

o

;:.7 34

bl

B

q

*-_’ Y YN e e 2 A A L e R e S A U e 10

e

L T
Wy W I NV A

,,,,,

2. ARCII Code Set

Arabic Reduced Code for Information Interchange
(ARCII) is ALIS's early attempt to define a code set. The
reduced code (ARCII) (Appendix D) is the internal represen-
tation codes of data in memory. The ALIS reduced code is
completely different from early proposals for a target
standard set proposed by ASMO (further details will be
covered in the next section).

The code uses the graphic characters for the Arabic
set. By assigning one to the 8th bit, 128 additional codes
are available for Arabic codes. This allows the BCON bilin-
gual system to mix codes and use both ASCII and ARCII.
There are 46 different codes assigned for the alphabet,
starting with code DO hex and ending with FD hex. ARCII
places the diacritics early in the table to give them pri-
ority in sorting algorithms. This early positioning in the
table was not favorable, however. The reasoning will be
discussed when the standard code and the format justifica-
tion are discussed. The escape codes and special characters
should not be redefined for ARCII if similar ones in Latin
exist. This minimizes the code set for ARCII, freeing more
code for future expansion. Codes for functional codes could
be minimized by using the international one.

ALIS reduced code is completely different from early
proposals for a target standard set. The Arab Organization

for Standardization and Metrology (ASMO), after several

T e M T T T e T T ™ T T et s Nttt A B N JE O A P
K g W] B e n \\! e e A DO A R AR R T I A R AR LS
i) A o b .h‘.‘ ‘ ,-‘-_- - g YTy Pl S e A s

- AR atd o - pe ol e tudinan [t et -l sl ir ik gBh sl oA Sk g

N

+.15)

:Zl: years of research and after meeting with Arab representa-
;Eé ' tives, recommended the use of CODAR U-F.D. as a standard for
;TY Arabic codes (further details will be covered in the next
i{; section). Subsequently, ALIS and other companies adopted
;Eg the'new code set in order to assure compatibility with other
T applications and implementations. BCON's original version
EF of reduced code (ARCII) (Appendix D) is the internal repre-
gg sentation of information in memory.

LA The form or appearance of characters is not a major
‘{§j issue as in how it should be displayed. This is dependent
-éﬁ' on the machine resolution and capabilities. The fonts and
%h' style of displayed texts vary from one machine to another.
;ﬁ, ASMO has recommended that the style of displayed text be
gﬁ? left to developers. This has left a lot of room for manu-

facturers to be creative and compete for quality work for

o the benefit of the user.

EEE 3. Operating Principles of BCON

;'ﬁ BCON, once 1loaded, resides in memory using 19k of
h ; low memory. BCON has three code sets. The three code sets
b. ; are: reduced code (ARCII), key code and display code.
i Figure 7 shows how the three codes are integrated with each
JCQ other. A list of the three code sets is provided in Appen-
:éﬁ dix D. ARCII includes the diacritics as a part of the code
=~E set. This was set as a requirement of the CODAR U-~F.D.
N standards. BCON receives the Kkey code and stores it in
t:?; memory 1in reduced code form. The reduced code form is

analyzed by BCON and contextually analyzed and displayed in
the correct form. In the display process, BCON appends 1if
necessary what is called "TAIL GENERATION" to some charac-
ters if they fall at the end of a word [Ref. 2].

The early work on BCON, as well as the work of other
companies, must be modified to correspond to the new
standards. ALIS in early 1986 introduced a new mode 1in
addition to ARCII. The new mode uses the ASMO approved code
set. No documents are available at this time. However, as
mentioned before, previous effort was not totally lost. The
company still utilizes the contextual analysis developed
earlier, with minor modifications. The same 1is true for
their printer driver software. This is a good example of
how early development enables a company to react quickly to

new demands.

D. ASV CODAR-U SYSTEM

In researching the early efforts initiated by official
organizations or government agencies for inter-Arab unifi-
cation of the codes set, two names were always associated:

CODAR and Dr. Lakhdar. A few acronyms are important here:

CODAR : Code Arabs (French)
ASV : Arabe Standard Voyelle (French)
IJERA : Institute d'Etudes et de Recherchers

I'Arabisation

IBI : Intergovernmental Bureau for Informatics

COARIN: IBI Committee on the use of Arabic in Informatics

- *’--«

fﬁ; ALESCO: Arab League Education Cultural and Science

;;i Organization

;;: SASO : Saudi Arabian Standards Organization

Tfi ASMO : Arab Organization for Standards and Metrology

'Fg Dr. Ahmed Lakhdar Gazal, Director of IERA (Institute for
e

Research and Studies for Arabization in Rabat, Morocco) has

ﬁ % been associated with the CODAR project for several years.
-

'EE Dr. Lakhdar proposed that the Arab nations adopt the CODAR
! system as a standard for telecommunications. IERA was
Ek} working as far back as 1955. The standardized Arabic Code
'_§ was a dream many people were expecting and needed for many
‘Ef: years. However they have no power over defining it or
f;b making it official, assuming it is acceptable.

E?E The CODAR system is a long~-going project that is geared
«zxi for setting standards for several fields of interest. The
i{. project covers:

\ i -PRINTING
- TYPEFACES

"%ﬁ - TRANSFER LETTERS, SELF-ADHESIVE TYPES

: - SLUG-CASTING MACHINES

?:; - MOVABLE TYPE COMPOSITIONS-CASTER
- PHOTOCOMPOSITION
,,f TYPEWRITERS

INFORMATICS AND DATA TRANSMISSION
A TELECOMMUNICATIONS
'i%ﬁ This chapter is concerned with Informatics and Data Trans-
.\iﬁ mission. However, a 1lot of credit must be given to
38

o

SONAS)

77/ 7 M

:i personnel behind CODAR. It took CODAR a lot of effort and
A

fﬁ dedication by IERA's staff to accomplish a unification. A
) long list of acknowledgments, appreciation, and financial
;f support letters were coordinated by CODAR from several coun-

L2l
a tries and organizations. A list of participants include:
W .

. Moroccan Ministry of Education (1956)
L First Conference of the Arab National Commissions for
P UNESCO (1958)
¥
First Conference on Arabization (Rabat, 1961)

. UNESCO (Arab book-keeping experts meeting) (Cairo, 1972)
}j A long Jist of occasions and dates are listed [Ref. 1l:pp.
%

N 207-210].

< Under Informatics and Data Transmission there were three
“

b versions of the 7-bit code system. They are:

b

. Seven bit CODAR I : first coding scheme of the ABV

characters

:: Seven bit CODAR II: a proposition for a unified Arabic
oy coding scheme, discussed at regional
e (IBI) meeting at Bizzert, Tunisia,
™~ June 1976

V- Seven bit CODAR U : unified coding scheme for the Arab
k.- countries proposed by COARIN (IBI
‘ﬁ committee on the use of Arabic in
K. informatics) at a meeting in Rome,

’ June 1977.

5 The seven bit CODAR I, CODAR II, and CODAR U (Appendix
; E) are code set proposals. CODAR I was produced by EURAB
i,

N
o~ and the printers were manufactured by the Italian firm SELI.
- CODAR II is a subsystem of CODAR I. The subsystem can be

obtained by removing all possible combinations of "Harakat"
L)
X (i.e., Fat'ha, Kassrah, and Dammah) with the "Shaddah." The
.:‘ i
o 39 |
o |
‘.l
¥ |

R

s}

) c . c. kY . T ., EE AT NS . ~_' . " c.‘ -" |~' -" n-‘ -“ " - - ~~' -~
": "‘"-‘:"\ \}\: \-"\'“- ' -,‘ el ‘J'{". SR ' T S s
2

Fd ‘.'
ok

%

-v
=)
Al

.W. -
LAY

‘-
t A

s el
LR e

Kl
.

.' f'"'
.

T
.

ST e
SN IO

subsystem also leaves out three Persian characters, opening
and closing square brackets, backslash and a few character
variant shapes.

CODAR U fully supports vocalization with all possible
"sShaddah" combinations with the "Harakat." This system is
the closest to being acceptable by ASMO and approved as a

standard. ASMO's approval will give the system official

status.

E. THE STANDARDIZED SET

In 1980 CODAR U was accepted as a working basis for a
basic code set. Recommendations and modifications were to
be presented to ASMO in order to formalize the code set.
The next step was to distribute it to ASMO's members.
Member countries insure that it is implemented accurately.

During a meeting held between 22-24 April 1in Rabat
(Morocco), the final code for the proposed standard, called
CODAR U-F.D. was finalized and submitted to ASMO along with
six recommendations (Appendix F). The conference recom-
mended ASMO to distribute and test the code by IERA, SASO,
and the National Center for Information in Tunisia before
enforcing the code. ALESCO and ASMO were also recommended
to make every effort for the adoption of the code by all
Arab countries.

Finally, on October 21, 1982 ASMO adopted the code pre-
pared by IREA, and ALESCO. This code was the result of the

CODAR U-F.D. proposed 1in April, 1982 at Rabat. The

40

AR AR L h R) 4 LRI A R A A “-,'-.',‘»{ ".--" S .\.‘ -
R " "'_g"'v. \3' et) ;2 PR \ .
4 AN e 2 A X B A e b/ P % B ok 1)

Bl A

N) thadal kel aralh bl dal. Sell i e
[y Lo b4 v » > N

:

)

w

:S modifications and changes are included (Appendix G). There
i are a few points to consider. There are 31 codes for the

:4 alphabets, 3 codes for "Harakat," 2 codes for '"Shaddah" and

:3 _ "sukoon," 5 codes for "Hammzah," 3 codes for "Tanween,"

'% totalling 44 codes. Their location must not be changed in
| the table under any circumstances. The "Hamzah" in all
‘i variations, on top or under characters, are considered forms

iﬁ of "Hammzah." The "Hamzah" is placed in the beginning of

1

) the code table, which in searching means any character with

-E "Hamzah" associated with it should be expected higher in

?g order (equivalent to "A" in Latin). This concept will con-

- fuse users when searching or sorting. The results may be

‘
- a_a_*&
Pl

l.'
N s

surprising for sorting algorithms. In sorting, the table

-3 allows a simple sort. Errors will result from the occur-
ks - rence of diacritics and the code 60 hex in the table (6/0).
jgt The code 60 hex is used for connection or extending a word
,a for formatting purposes. So a sorting algorithm should
b strip text of the diacritics and the connection dash
“k (similar to Latin underscore) first, then sort the text
EE according to the basic 31 character code. The user must be
. educated about all the remarks mentioned in the reasoning in
S ASMO's final form of the code set. Another convention was
;%5 that the character comes first in words that are vocalized.
2 The form to follow is:
g WORD ::= { <CHARACTER> <SHADDAH> <DIACRITICS>}I

Ny 41

%
‘:‘- So the "Shaddah" comes before the diacritics if used for a
:E- character. The second convention 1is if the pure word
:‘:.; matches in sorting, the diacritics then should be used by
.}?‘__j the sorting algorithm as qualifiers. In my opinion, this
EE violates the Regularity Principle in programming, where the
i user must be concerned and remember all the exceptions.
:’_‘f This does not in any way mean there is an easier way.
=
:' F. CONCLUSION
e The ASMO code set is the standard Arabic code set the |
'.E;i Arab countries must enforce in their countries.
%:; Subsequently all companies in the area must adopt and use a
| - standard code set. The competition is now directed toward
B
:‘_': improving the display application with high resolution and
2.:;:: graphic capabilities. Printing devices also are an area for
\nd manufacturers to compete in printing different Arabic styles
E{ and fonts. The contextual issue is left as a flexible issue
t: to the implementors to research and develop for their indi-
:'5 vidual products. The display form of text on monitors and
:: printing devices will not affect the internal representation
E:.- of the data, which must be compatible with the standard code
! set. This may result in several display sets developed by
: the companies as their view and intention of displaying a
good Arabic text. Hopefully this should create a stable
:-; base to work with and encourage development of products
,\ based on the ASMO standards and conventions 1listed in
‘-"t Appendix G.
.’:':: 42
e
.
i .
ha |
pﬂ}"};}“&:f NI ST "r*:-",.»"z":;:.-;.:_;;'_.-‘-.-;'_.-".-".-“;-"-}}‘-.‘-‘-;-‘-L-‘-L~'-L-";-‘-'.-‘-“.-"}_"'.-‘- S SR IE R .1-

a
-

x4
T Tx
LI .

s

|

”

NN
P

7

- e o

-

o
¥ ; i
5
Yt

C Tt
‘u),‘\“,\l"')‘,'

.

V. INTERFACE DESTGN GENERAL APPROACH

The lexical translator will generate Latin code from an
Arabic source code in Pascal syntax. The Pascal compiler
can compile/run the Latin code to generate an output. The

interface will generate a correct Latin code given that the

Arabic source code is in correct syntax. The translator

will give minimum help to correct the Arabic code. The user
must understand the syntax and the semantics of the language
to write correct source code. The interface 1is not an
interactive type of translator. The design is generally the
same for all Pascal compilers. The interface must always
consider the environment it will work in. The interface has
two environments to consider: the source code bilingual
systém, and the compiler environment. From the portability
and compatibility point of view, the translator will be
limited to a particular Arabic standard, and a particular
PASCAL implementation.

The bilingual implementation has its own function codes.
Those codes are embedded within the Arabic source code, if
generated under the bilingual operating systen. The
bilingual operating system used here is BCON from ALIS, Inc.
There is a list of function codes in Appendix D. The PASCAL

compiler used here is TURBO PASCAL from Borland, Inc.

43

ot it atae e N S AT Ty i T T e S S S L
,.'_?"/‘\ r:'J'"I_'.'_k'-'. R N 4-\"&'.'.'.‘.' '.'_«.J\'ff:t:‘."'- | »““-,,“\."‘\‘ AR L R RN St s
3 e - . AT, X A Ol R b oph b LA A

.

)

4 ‘.r.’*- Y h

! P
R -

YN

e

E e

-
1

o - e

|‘f Pd I?

x
e

[o L
St

v

The Arabic implementation utilizes the upper half of the
255 character set used by graphics to display Arabic fonts.
Some Pascal compilers will accept any of the 255 characters
as legal characters for use in string data. Turbo Pascal,
for example, allows the entire set of 255 characters. This
is one reason why Turbo Pascal is used in this thesis as a
target environment for the generated code. The interface
will, however, generate a correct PASCAL code even if the
source code follows standard Pascal.

The compiler will always refer to the Turbo Pascal
compiler even though, from a theoretical point of view, it
should be any Pascal compiler. Similarly, since there is no
standard representation of Arabic data, i.e., available and
implemented, we use the BCON operating system, using ARCII,

as the internal representation of data in memory.

A. MAJOR CONCEPTS
The interface looks at any piece of code (token) as one

of several types. These types are:

- Literal string

- Comment

- Integer

- Identifier

- Functional operator.
Literal strings are constants and the interface does not
alter the ASCII value. The comments are surrounded by '/(*'

and '*)' in Arabic equivalent codes. Integers are important

44

and easy to handle since there is an isomorphic relationship

between Arabic integer tokens and Latin. A real number
token is made up of two integer tokens separated by a func-
tional operator. An identifier is any legal name in Pascal,
either a reserved word or user-defingd. Functional
operators are all the codes that are used for addition,
brackets, pointer arrows, etc. 1In setting the specification
for programming in Arabic Pascal, the optimum goal is to
have a one-to-one relationship between the Latin and the
Arabic special characters. Also we want to avoid overload-
ing the use of special characters.

1. Literal Strings

Literal strings are used for assigning into string
variables and for read énd write commands. Strings are used
to interact with the user in an application and understand
the performance of the program. Therefore we do not alter
these strings. The literal string is any string of charac-
ters surrounded by single or double quotes. It is the pro-
grammer's responsibility to verify the content of an
assigned string. The literal string can have any character
of the entire set 80 hex ... FF hex.

2. Comments

The comment length is limited to one line. The com-
ment is enclosed by an operiing bracket followed by an aster-
isk, and ends with an asterisk followed by a closing

bracket. When the translator encounters the beginning of a

45

RS
:S: comment it looks for the end of the comment. The comment is
%E;:.': considered as one token. The translator will not alter the
La'h

" content of the comment since it is for the use of the pro-
EE grammer only.

:;.S 3. Integers

N Integers are any consecuti\}e digits from 0-9 with no
wg separation in between. For example, the integer printing
1‘: format "2245:6" is considered as three tokens as far as the
. translator is concerned. The first token is the integer
EEE "2245," the second is functional operator ":", the third is
;:t. the integer "6" token.

“;. Real numbers are made up of three parts as one would
* expect. They are integer token, Arabic numeric comma, and
; integer token.

4. Identifiers

S

::I,' All legal Pascal names fall under this category.
b " Y

::": This includes reserved words, ana variable names. The token
‘.A is identified first as an identifier, then looked up in the
‘_:,.:}_' reserved words group. If it is not in the list then it is a
E.:‘:" variable name. Variable names include variables, labels,
‘ procedure and function names. When an identifier is encoun-
tered and it is not a reserved word, then it is given an
I_ identifier number. The identifier number is stored with
- other information about the token in a hashing scheme in a
‘:;- symbol table. The token is looked up in the symbol table.
:3'{2 If it 1is not entered, then it will be entered in the
v

e

N N 46

RL-A

[} A Y

Ay b, A,

beginning of the link list of the same hash key. Since the

a 2 2 2 2 KEJ

primary user of the translated code is the compiler, the

.
-

program will have meaningless variable names. However, the

translator will generate a file called "DICTIONARY" contain-

% ing each identifier number and the Arabic token associated
) with it.

-g 5. Functional Operator

i Tokens are identified by separators and terminators.
X Blanks are separators, as well as other codes that have a
‘; function other than being separators. For example, the plus
™ and minus sign as well as the up_arrow symbol in PASCAL are
(separators. If, for example, the variable root~.left_sun
.2 was the Arabic token it will be translated into something
.§ like, id_1~.id_2, where the identifier numbers are entered
‘i) for the Arabic tokens.

; The scope of the variables will distinguish fre-
N

? quently occurring variable names. If id_1 occurred in two
, declarations, the compiler will distinguish between two
Iﬁ occurrences of id_ 1, depending on the 1location of the
; declarations. Therefore the translator does not need to
3 concern itself with multiple uses of the same name.

..

_ B. OPERATING PRINCIPLES

3 The translator goes through several phases and each
L7 phase has a sub-task. The process begins with the name of
‘é the Arabic source code file. The file is opened, the target
‘i output file is initialized and a dictionary table file is
T2

& 47

2

w A

oML |

opened. The second phase fills a buffer with a code segment

of the source code, a line at a time. The line is broken
into tokens. Each token 1is given a type and then
translated. The cycle is repeated for each lineup to the

end of the source file.
1. File Opening and Initializing Phase
The program starts with the prompt for the user to
input the source file namne. The file name is checked for

existence and then reset for reading. The file name is used

. _‘;.S' ; ¥

o
1 b

to open two more files, the dictionary file, and the output

‘e
‘. L

file. The initialization is concerned with the hash table
that has information regarding the record structure of the
identifier's symbol table. The rest of the parameters are
optional features such as to list the source comments with
the output code. Another feature is debugging for tracing
the program in the translation while the translator is
scanning and translating the source code. Both comments and
debugging features should be easily set at any point in the
source code. The rest of the parameters, for example, line
number, identifier number, are initialized.

2. Reading and Decomposing the Source Code

An input buffer is filled from the source code and

scanned. A line at a time is read from the buffer and
checked for special instructions (directives) for the
translator. If the line is not a directive, it is checked
to see if it is a comment. If the line is a comment or

48

™
-
EE starts with one, then the comment is either omitted or
;i written out depending on the comment option. The comment
ZA option is a Boolean variable set by the user within the
‘i program source code, to either omit or write out the comment
}i tokens in the generated file. The line, or the remainder of
the 1line then, is decomposed into tokens. Tokens are
'\ identifiers, integers, blanks, or special characters.
Identifiers are either reserved words or user-defined
‘ identifiers. Reserved words are matched with their
N
j associate Latin reserved word. User-defined identifiers are
R~
;5i given a 1label number in the sequence of their first
; appearance, if it does not already exist. Integer tokens
{% are scanned and each digit is mapped into its matching Latin
% digit. Special characters are given their equivalent Latin
& characters, such as Arabic and Latin semicolon. Blanks are
ﬁé copied as it makes for better formatting of the generated
% code.

The investigation of the token type is based on the
§ first character of the next token in the input buffer. For
?5 example, if the first character is a:

) - Letter: Then investigate the possibility that it is an
o identifier.

E - Digit: The token must be an integer.

-; - Other: Then it must be a special character.

= In this phase only the identifiers are translated. When a
& user-defined identifier is encountered, and, if it has not
- previously been recognized, it is given the next identifier
4

¢ 49

Xy

B\

-

O SR R LTI d Tt A T AT A LR N
‘Y . ., o n’:-'.:'n }.'JI'V,‘» B EN) 1' '_qi '.’ .b "... -(M, ‘

. N T R T A TV I R o QL
-.‘\,‘}‘\\'"-.,.\; AT LA e N
. .
XA A M e e N o 2

-
-
«

-
-

ol
-,
-5

’
LS 4

—
At
A Y

"{ k)
aa

Aty

N
s

'

v S A ':'- -
P
Ay 4t

£

‘I

-
A

-

L e
s
‘-"\r.\r.‘- % e *

(et]
a

4

o
¥ J
oy

oy

W

v
l.‘

NS yf
g '- ". - L

o
R TS
o

number in sequence. Reserved word tokens are stored in a
constant table, in a record format. Each record has an
Arabic word and the matching Latin one. Any identifier

token is first looked up in the table. If found then the
index of the matched record is passed back to the main
program. The integer tokens are given the type integer and
passed back to the main program. If any of the above is not
true then we get one character and pass it individually.

In short, each token is given a token type, 1length,
and passed back to the main program. Reserved words are
passed back with the match index additionally. Identifiers
are also inserted in the symbol table. If not found, their
identifier number (in Latin characters) is passed back.

3. Token Translation Phase

The tokens are translated into Latin-based on the
token type. The integer tokens are translated by mapping
each Arabic (Eastern Hindu) digit into its Latin (Western
Hindu) associated digit. Reserved word tokens are
translated by writing their matched Latin reserved word,
using the match index found earlier. User-defined identi-
fiers are replaced by the identifier number assigned to it.
The rest of the special characters are looked up in a "CASE
OF" (a PASCAL control statement) list or assigned into a
constant table (array). This model uses a case statement.

As each user identifier 1is trans-lated and written out in

50

me LalaRia A A Aot Aulbs- i incaid bk -aladlh bt

the output file, it is also written out in the dictionary
table along with the Arabic token associated with it.

4. File Closing and Ending

The last phase is to close the source file, diction- I
ary, and the generated output file. This phase will only ke
reached at normal program execution.. The program will ter-
minate if there is a character code not in the range of the
Arabic alphabet defined by the bilingual operating system.
Long tokens and comments will cause errors and should stop

the translation, since translating a comment makes no sense.

C. DESIGN GOALS

The interface 1is supposed to generate from any Arabic

source code a Latin code in PASCAL syntax. The Arabic pro-
grammer must master PASCAL programming in his native
language. Essentially 1little syntax and no semantic
checking will be performed on the source code. The com-
piler job is to scan and perform the syntax and semantics on
the translated code. Some help must be provided for
tracing, and debugging should be incorporated into such an
interface. The compiler gives the error messages in Latin.
This could be utilized in several ways. One way is to keep
the line numbers of the source code and the generated code
as close as possible. The error messages usually are stored
in a text file and can be translated. This, along with the
line number of the error location, can be combined to give

the location and type of the source code error.

51

t£§ A second way, if the error messages cannot be translated
= in their file, is to translate the error messages and return
o them out with the error number. The Arabic programmer can
u; look up the error number in Latin and the line number of the

error, then 1look up the translation of the error and
-~ explanations. 1In both ways a few hints regarding the errors

:{3 and possible causes should be provided to the user.

D. DESIGN LIMITATIONS

The design does not use or handle diacritics at all as
far as reserved words are concerned. This could cause error
and personal interpretations of how the reserved word is
written. Since most reserved words are clear once read, the
co user must not type any vowels with the reserved words in the
program. Similarly, to not duplicate the translation of a
single user-defined identifier, and eliminate the complica-

tion of debugging of such cases, the user should not use the

) vowels in his defined identifiers. The diacritics may be
f%; used in literal strings and headings of reports. Several
;iiﬁ factors may affect and prevent the use of diacritics. Some
Lo sorting routines sort independently of diacritics. Since
«ié vowelization can upset the sorting order and the rules for
'iSi sorting the same name with different vowelization. A second
A

reason 1is that the 1location of the vowelization of the
o character is not standardized. A third reason is that the

resolution of terminals is poor and hard on the eye to

52

l’._;-";!‘;l-. , ":’,JI/' Ty o
(LA SN I NN

'

P f n; o r‘_-

-

distinguish, for example, between the "FAT'HA" and the

single quote symbol in printed or displayed form.

The design therefore will not handle vowels 1in the
Arabic source code. However, it should be noted that the
option of including the diacritics requires few changes in
the design, and a lot of attention from the Arabic pro-
grammer. The attention is required to rewrite his own
sorting routine that sets the ARCII value for the vowelized
source code. Also the programmer must be consistent with
his use of vowels with identifiers for the above reasons.

The display and print justifications <cannot Dbe
controlled easily within the program since the bilingual
operating system does not use a standard unified code for
Arabic display and print mode. For example, in BCON, the
operating system used for the implementation of this thesis,
if you are editing an Arabic screen mode then the curser in
the entire code will start at the far right of the screen.
This right justification is for the Arabic format and inden-
tation in Arabic texts. Therefore, if you exit the editor
you must set the screen mode to Latin screen mode, otherwise
the "C:>" prompt will be displayed in the far right of the
screen. So for the sake of simplicity to the user and
consistency on the behalf of the generated codes, the
display codes are left out of the translator control and are
under the control of the display system of the bilingual

operating system. The modes can be set with an external

53

W

A=)

e
A
A
G

-
¥

ASe?,
O

N
LA

“Y

-.
AL
r ‘s

4

‘lx;‘
XA

o~

»
a

s

P
VLY,
.,- s

‘e . '
"){ l“.I‘. l':l‘. .

X
» & S ‘l ‘. ‘II M
OO -]

escape code to the printer or a sequence of key strokes to
set the screen to Arabic mode.

These 1limitations can be resolved once there is a
standard set. I believe the bilingual operating system
should by default handle the justification issue, and allow
the user to turn this option off. This is in the range of
two to five years to come in the industry invelved with

Arabic text handling.

54

Rt VI. PROGRAM MODEL
S
; A. INTRODUCTION
:i The Lexical Translator program is intended to be simple,
flexible, and to demonstrate feasibility of the concept.
Vi Speed and efficiency was not a primary goal. Features can
?f be added as needed based on the response of usérs of the
D
. program.
h .:-f
Fﬂ‘ The program will require the supervision of a good
~",“:n
o PASCAL programmer to assist the compilation and execution of
e the translated code. The assistance could be achieved by
%i simple detailed instructions on how to use the program to
AN
',; generate output code.
b B. PROGRAM ENVIRONMENT
XN
?z: The Translator is developed under a certain environment,
" and until there 1is a wunified standard for a bilingual
QQ, operating system, program portability and compatibility will
bk, -
R, be limited.
1N
Oy 1. Hardware Environment
ffj The program is developed using an IBM XT personal
;E: computer, It can be just as well developed using an IBM PC
) Jr., or IBM At. The IBM XT has 640 kilobytes of RAM memory,
Pl 20 megabyte hard disk, two half height floppy disks, and the
s
o ALIS 1Inc., graphics board. The board is made up of two
o boards back to back. The first board is a Paradise color
e
)
:\) 55
h AN
"t

) R O \ e FaROary e NI Ly DR \
\. "")"}'f 4—‘/"4-,/- f e O SER J" f.-"\i’\-‘"" X -'\,w-, o -{ > n-\vf

N

N

'\ graphics board. The second board is on top of the paradise
“ board and it has the Arabic character generator .and the
." necessary connection circuitry needed. The two boards fit
*\: in one slot on the mother board of the XT computer.

(-\. The keyboard is an IBM PC keyboard with cap stickers
A4 for the keys. Each sticker has two to four different
,;.::; characters, for Arabic and Latin. The keyboard layout is
éﬁé displayed in Appendix D.

L An Epson FX 85 dot matrix printer is used for the
,," listing of the program. The printer has an Arabic driver to
:QCC‘ display Arabic characters.

"‘3‘" 2. Software Environment

E ALIS Inc., BCON bilingual operating system was used
Q in developing the thesis program and test runs. BCON
g‘:'!'- resides in low memory using about 20K bytes. The BCON is

v
.
4.

:.,. supposed to be transparent to the DOS operating system. DOS

}ij stands for Disk Operating System used by IBM microcomputers.
" The BCON operating system requires special skill and more
- :‘: than average user knowledge. BCON is mainly required for
:“E., generating the Arabic fonts, and interpreting and mapping
; :';(" the key strokes to their associated ARCII values. The
.,:' interpretation and mapping are performed under the Arabic
(RN

'(mode only. The Arabic characters are stored as hex values
4::;::: ranging from 80 hex up to FF hex. This range of values is
?‘2:: reserved for graphics under the DOS operating system. This

S

g

2%4"2"

means any Arabic character code is considered a graphic

By
«*alx

character in the absence of BCON.

An important concept must be pointed out. The

3

= >
K oV DU D S

presence of BCON is to display the right form, font, and the

indentation of Arabic text. So with minimum skill, a pro-

- -

grammer can develop, review, correct Arabic characters in
any DOS compatible machine. Then the result can be dis-
b2, played under BCON, where BCON can interpret the graphics
character as ARCII code, and display the correct textual
>; form of the ARCII code by sending the appropriate display
E code to the terminal or the printer.

When writing long Arabic texts, it is much easier to

A,

do so under BCON, with the aid of an Arabic word processor.

&

ﬁ; The simple EDLIN editor available on DOS distribution disk,
.) or Turbo PASCAL editor of version 2.1 and below, will work
ié also. There is some limitation to what one can use under
‘ﬁ BCON and still display Arabic characters. BCON requires two
| conditions for compatibility when using any application.
?‘ First BIOS interrupts2 16 Hex and 10 Hex are called to
ﬁ access the keyboard and the screen respectively. Second,
;ﬁ the application must handle 8-bit characters. [Ref. 2: p.
313

:; Turbo PASCAL version 2.1 was used to write the main
= program and resource file. The printer interface, called
5 2Information about the interrupts can be found in DOS
% technical manuals for perscnal computers.

..) 57

.

S

..:'f::«:a;‘-.-::fi"f' e e e e P L T A e el el o L

L
-

-

. o

W G G Ay
t2244<{;

¥ X)

e R T

‘X2
§ G i P WS s B 3

u?

D)
L

[NV ¥ 1 WCRRS SRR, . SR

MPD by ALIS [Ref. 2], is implemented for several printers.
The name stands for Multi Printer Driver. The MPD was used
to drive the Epson FX 85 to display the Arabic characters in

the program listings, and sample tests (Appendices H, I).

C. PROGRAM BODY

The Lexical translator is designed to be easily modi-
fied and should be done when the updated version of BCON
utilizing the unified standard code set is available. The
program is modular and could be rewritten in "C" or FORTRAN.
The program is designed to generate a correct output file
from a correct input source file. The program will not
interpret the result and the programmer must exercise crea-
tivity and care as his/her programming advances, to assure
correct results and clear output.

The printable output of any developed program is either
a string of characters, or mathematical results. Since any
string assignment is not altered, this will result in no
difficulties for string output. If the result is a real or
integer number, the result will be displayed based on the
BCON digit mode. The program did not concern itself with
numerals since all the users are familiar with the Western
Hindu Numerals (Latin). Also, BCON has an option that
allows the user to swap the digits in the operating system
environment. So for BCON, analyzing the results of numeric
calculation will be duplicating the same work. This may be

a limitation under an operating system other than BCON.

58

T T U P T

SRS S SRR R
N o e
Y HE LU TN T3 .00,

|

RSP TR S A C UL A L R AN
N S A ,\, ,b,.‘.x.‘.x“.'_,

.
-

“

b Salh ot <ok Sal ~ale-Sha Sk A e Al

N
R
e

i 1. Program Files

i The program has two main files that are used for the
“ generation of the output code. The main file and the
vé resource file. The main file contains constant declara-
: tions, data structure declaration, variable declarations,
. procedures and functions, and main program body.

;? The resource file has the assignments of a constant
%E array declared in the main program and is used as an include
. file. The resource file has a subset of the reserved words
Q and standard function names. The resource file is a very
% useful modular concept since you can replace the PASCAL
“ resource file with one for the language "C". With minimum
‘f . changes in the constants and directives one could use one
? ' Translator with several resource files, one for each

’ language, to Lexically translate from Arabic to one of many
E Latin compilers syntax. This program focus is on the Turbo
E PASCAL syntax.
2. Generated Files

~} The translator will generate two files:

?; - A Dictionary file with the same name and "DIC"
! extension.

< - An Ougput file with the same file name and '"PAS"
- extension.

‘:; The program will generate the desired output in the "PAS"
i file. The dictionary file will be updated each time an
i: identifier is encountered for the first time. User-defined
E:

'y

- 59

.;

.

N

) % A) B A P S L DL IR 3 A S P S Bt gt I N
LA :-('."-f J 3 '\.'*-”“p"'\. e e SRS et AR N TR _,.". Iy R
s Xy ,, ! :

Ay g

Fu? % a"a 0

yew LAk ata ol ate~agd el

Arabic identifiers are translated to identifies of the form
"id_000 ... id_999."

3. Key Variables and Data Structure Declarations

The external file "Resource.Pas" is an assignment of
a constant array. Each element of the array is a record.
The record has two components. The first component is the
Latin reserved word or function name, and the second
component is the Arabic translated (matching) word. 3

The user-defined identifiers are handled by a
hashing scheme and a symbol table. The decision was to
demonstrate an efficient way to store and retrieve identi-
fiers. The lexical translator will be constantly looking up
any non-reserved identifier in a symbol table to insert it
or to get its Latin match if predefined. To improve effi-
ciency, the program uses a direct chain Hashing scheme [Ref.
3:p. 457].

The identifier is passed to a function and given a
key number by Function_ KEY. With a hashing formula the
function calculates the key number of the identifier. The
key number is a location in the Hash table. The content of
this specific location 1is pointer to a word_record which
either contains the word or is where a new record should be
inserted in case the word was not found. Words having the

same key number will be linked together in a linked 1list.

3The translation is in no way a standard or profes-
sionally translated. The translation was made for demon-
stration purposes.

60

;3 The incident of having several words with the same key
3: number decreases the efficiency of Hashing (see Ref. 3 on
;7 how to avoid Hashing collision and when to use Hashing).
tj The word record has the following.
‘; Id_No - the identifier number in the sequence of
¥ insertion.
3 Length - number of characters of the identifier.
t; Lastchar - location of the 1last character in the
v symbol table..
‘; Nextword - pointer to the next identifier with the
;4 same key number.
o Latin_Id - the Latin identifier assigned to the
g identifier.

With the above word (identifier) information, we can locate
;EE the word in the symbol table. The spelling table is
:z declared as an array of 5000 characters. The size is an
fi estimate and can be changed as one can predict a closer
:ﬁ estimate. The symbol table is implemented as a linked list
i: and its size can vary dynamically so as to be as large as
“ necessary.
;g The translator looks for tokens using two methods.
E¥ The first method uses a pair of delimiters to identify the
‘ token. The pair define the beginning and end of a token.
j Token classes that can be identified by this method are
ig comments, literal strings, and directives.
;; The second method recognizes a token by its first
Eé character. Examples of this class are integers, and identi-
fi fiers. The second method includes tokens with one character
s
3
N 61
N
j.
s

oy
'&" "‘- o7 " ""1 r

' ..s _‘.,‘-_15_“ e .) _._‘.A..'..,&.\ LA AL x ” Y -1%‘.\ R \n\\".- T\ n,”\-\. -4’
SN SIS i i o :) \ N “.. | L n

S Ake A Sha Ata St 4

Q\d
En & “)
oy ')'\'!'
L b N
f‘k such as separators and terminators. Both separators and
<
‘ﬁ& terminators will be referred to as delimiters throughout the
. :
Ve program. The delimiters are defined in a constant set. The
;WQ' Hex values of the set can be interpreted with the aid of the
\
[})
e ARCII table (Appendix D).
T
ﬂks Errors are a user-defined data type. Types of
Q;ﬂ errors are, for example, long_token, long comment, and
Y
Qgﬁ long_literal string. All of the above errors are expected
"W
fdﬁ to occur as a result of failure of the programmer to end a
ﬁﬁi comment or literal string.
L
3y .
ﬂ\: The token types are defined to be one of the
L
W H\\
~Q¢ following:
o8 - Blanks
Ny
KL - Reserved_word
S
A - Identifier
,3{ - Literal_String
'r.*~:
}g{ - Control_Code
D \J":'
" - Comment
A - Integer
I\ ‘.:,'.
a“il - Functional_Operator
l’*q‘
o - Unclassified
v - Illegal
.""-ﬁ(.
ol
iéj These are the main declarations of the program. The
Ly
iﬂ definition of the tokens and assignments of the variables
)V\ will be covered in the following sections.
AR
LAY
S90N
B
D
5 ." 62
) "':
P
oo
5
>

-

3 'q'_‘.\‘ﬂ'-_.‘-‘.‘-.'."'{ e, "_-;"f."'-. SR

*\a - '\:"-E-:

4. Token Classes I and II

Class I tokens are recognized using the first
method. This includes the following types of tokens:

Literal_String: This token begins with Arabic quote mark,
single or double, and ends with it. The
Hex values are 97 Hex and A2 Hex.

Comments : Begins with right bracket followed by
asterisk and ends with an asterisk
followed by left bracket.

Directives : Are strings -in curly brackets. This
feature is for debugging. The directives
will allow the user to choose between
commented Latin source, with original
comments, and debugging option to display
on the monitor the tokens and their
types.

Class II covers the identifiers, including reserved
words, and integers. The remainder of token types will be

reviewed shortly.

Identifiers and Reserved Words: Begin with an Arabic
letter followed by an optional number of
underscore, digit, or other Arabic
characters.

Integers : Begins with digit and ends with any non-

digit character.
The remainder of the token types are Functional_ Operator,
Illegal, and Unclassified. Functional_Operator tokens are
the arithmetic operators, brackets, asterisk, decimal digit,
semicolon, colon, pointer '~!', etc. The illegal token is
the token that exceeds its defined length. This condition
is used to set an error message to pass to the user about
the location of an error. An Illegal token is also set if

the Hex code is less than 80 Hex. The legal range is 80

63

(o

+

p

-3 A
x
)
I I 4

oo as W WY T TN W T W W W W W W ww

FF Hex. The control code is any escape code or function
call within the range of Arabic characters ranging from 80
Hex ... FF Hex. The Unclassified token type is used as the

value before it is determined.

D. PROGRAM MODULES
The Lexical translator will call several procedures and
functions in the process to generate the desired code. The
main body of the program calls several procedures and
functions. The program modules and their locally declared
procedures and functions are as follows:
Open_File
Initialize
Fill_Buffer
Token_and_Type
Blank
Comment
Literal_String
Integer_Token
Identifier_Token
Reserved_Token
Special_Char_Token
Control_cChar_Token
Map_Identifier_To_Latin
Search
Hash_Key

Insert: calls Id_No

64

LW

%

i e b S 1 J

o o T A T ¥ N # XL A S S o L, NP L SE S S
», | (AT (S T N T Wl P AR LA
> P S Ry 5 h -.}.Aﬂf ‘\1\ ™~) . <, K .}r . s <

Found
Latin_Integer
Get_latin_Spec_cChar
Print_Error_Messages
1. Open_File
The program starts by calling the Open__ File
procedure. The procedure will prompt the user for the name
of a file to translate and verify that the file does exist.
The second part is to open the input file for reading, reset
the Output file for writing, and the Dictionary file for
writing.
2. Initialize
Initialize procedure will set all the hash table
pointers to nil. The nil values are used to indicate that
there are no words with that key number yet initialized. It
will also set the initial values of global variables. The
module is called once at the beginning of the program.

3. Fill_Buffer

This procedure will get a line of source code, keep
track of the line number of the source code, and set the
line size of the source code. This module is continuously
called by the main program until the end of the source file
is reached.

4. Buffer_ Empty

This function will test to see if the variable Next

Loc, which represents the next token location on the 1line,

65

"oy

AN is pointing beyond the Line_Size variable. This case will
:é: set the function to true, causing the main program to call
Y

;ﬁ' the Fill_Buffer procedure to refill the buffer. This module
:i? is called continuously by the main program.

c5§ 5. Token_And_Type

:9_: When called, this procedure is passed a line of
E? source code and the location of the first character of the
ésj token to be fetched. The procedure gets the token and gives

. it a type. The procedure initially sets the type of the

SN token to Unclassified and through several calls, tries to

v

Séi analyze the type of the token. The first convenient check
_%5 is for Comments. It should be noted here that one would
- like to place the most likely type check at the beginning to
:Eg reduce time of analysis of the token type. Another reason
'%ﬁ for searching for comments first is because they are the
o only type that requires two characters in the beginning and
ﬁsg the end of the token. The rest can be predicted just by
éaj' inspecting the first character.

;;J If the token type is not set to Comment, then the
E%; module calls several modules with a case statement. The
‘55 modules are called based on the first character after the
. last token read. The Next Location variable points at this
?53: character in the input 1line buffer called "Line." The
:EE possibilities are:

o
i
XN

:‘JE: 66
%P

[
Q"ﬁﬁx{u};%saua '*u_x,a,:;:;:%:¢u}x%x%:fx%:%;,=;\}::xsk:a,.,.::;vyy;;;:;r;;;a;n;u;z;a;u;n;u;ugz;nzu;u;a:::~fu;*

FIRST CHARACTER LIKELY TOKEN TYPE

Arabic space Blank(s)

Double or Single Quotes Literal string

Arabic Digit Integer
Arabic Letter Identifier
Function Code Control Char
Other Characters Special Characters
Each possible token type above represents a module. The

module will be called to set the type of the token.

Looking at each module called by Token_ and_ Type,
they all set the token type and the length of the token.
All 1likely token types except for Literal Strings and
Comment will not set any error flags, since one character
will satisfy their requifements. For example, Blanks,
Integers, Identi-fiers, Control Characters, and Special
Characters all could be one character long. When Literal
String and Comment modules are called, they must begin and
end with a predeter-mined pattern. So an open comment for
longer than line length is an error, and the same for a long
literal string token. Token_And_Type only examines the Line
Buffer charac-ter and does not consume it. The called
modules assign the character to the Token Buffer and advance
the pointer of the Line Buffer one character. When a
successful, token type is assigned the module sets the token

length. PASCAL uses the first array location to store the

length of the assigned characters in bytes.

R VRTINS ST
,f.»:'l.v

!

o

i I

A

,-,i The behavior of the modules called by Token_and
LN

:' Type, are summarized below:

. 3

L Blanks: Will Xkeep consuming the Line Buffer blanks

) (Arabic and Latin) up to a non_blank character

) is reached. Blanks will set Token Type and

ot Length.

1y

;2‘$7 Comment : Consumes the characters within the Arabic
‘ characters range, until the comment closing
2l mark is reached. The module will set the
J":J error set to long_comment, if any character
T lies in the Latin alphabet range, including

- the end of file and carriage return (ASCII OD,:

P OA Hex). The error is long comment since the

s comment is restricted to one 1line 1long.
e Comment alters the opening and closing bracket

g of the Arabic comment token. The characters

2 are the Arabic opening brackets, closing

0 brackets, and the asterisk, having the Hex

N values A8, A9, and AA respectively.

i Literal_String: The module will be called in case the

N next characters are single or double quotes.

"'.a: The module will expect to be terminated with

1{"-‘. the same character it began with. If the

08 matching character is not reached before the
ey end of the line it is considered an illegal
iy token, and the error set will be assigned the

o type long token. Valid literal strings will

Lo not be altered. However the opening and

o closing will be translated to single or double
Gy quotes accordingly.

. Integer_Tok: Stands for integer token, and will be

o called when a digit is present. The module

._::: will keep assigning the Latin digits in the

e token buffer, and assign the Token__Type

4'-'::: Integer to the variable Tok_type.

L Identifier_Tok: Will be called when the character is a
. letter. The single letter qualifies as an

Lo identifier alone, or could be followed by an

DS optional number of Arabic underscore, digit,

Heh or letter. The module will set the Tok_type

o0 to Identifier. The module has no effects on

£ 4 error set, since when called it was a valid

it token based on the first character of the

::::::0' token. '

0'.‘

::::"‘ Reserved_Tok: The module is called when the token found

:c::?.' is an identifier. The module will check if
ol

.;;f 68

"c"

s

s i

:! o 4' 3'.", el e L S L e T T N N T LT N T .

- e

N the token is in the reserved words constant
; array called "Res_Word." If the identifier is

a reserved word the index of the table is
A passed back to the main program. ‘

2 Control_Char_Tok: The module is called when a BCON
i function code is the next character in the
2 Line_Buffer. The module assigns one character
by (code) to the token buffer.

Special_cChar: This module assigns one character to the
> token. The token will always have one
character.

\ When Token_and_Type returns the token type to the

main program, a case statement will either call a procedure
3 or do the processing with a compound statement. The blanks
: will be translated to Latin ASCII code blanks. The returned
comment token will be written out as is. Literal strings
i are written out literally. Reserved words are written as is

using the Match_Index in the Res_Word constant array. The

‘ identifiers are 1looked up in the symbol table. If
" predefined, the token identifier number is returned with it,
ﬂ or else the identifier is inserted in the table and given an
* identifier number. The module used is called Map_Iden_To
y Latin.
3
N 6. Map_Iden_To_latin
" The Identifier token is received and searched for
o with a procedure called Search.
-
> 7. Search
o,

This module starts by calling the Hash_Key function.

k<
(-
vl
3
d

69

ATy TTETTE TR R T TR wWEwW T

0% a. Hash_Key

L)

Yot)

:'p Hash_Key calculates the token key_no with a hash
4 .

V1Y)

A formula. The key number is used to look up the pointer of

,"‘ the word record in the hash table. The word record is a
\.‘-: -
S linked list of identifiers of the same key number. All the
‘F‘L. :
W) pointers are initialized to nil at the beginning of the

e program. If the key number results in a nil pointer value,
ﬁ# that means there is no such word in the symbol table, nor.

any other word with the same hash key number, then Search

’:&. calls Insert to insert the identifier in the symbol table.
e
Sy b. Insert
A
T
a&ﬁ? Insert creates a word record at the beginning of
e the linked 1list and stores the identifier in the spelling
o
{? table. Insert makes a call to IDEN_LBL_NO, which uses the
.‘.- 4.1
N3

global variable ID_NO (sequence of appearance), and assigns

e an identifier number in the word record.
Y
»§: If the pointer is pointing at a word record, then the first
.54
aas
i, word in the linked 1list is checked, and so on until there
gl are no more word records in the list or the word is found.
2
: ﬂb ¢c. Found
75
e
KN The function Found checks if the resulting
Qﬁ}‘ pointer is pointing at the exact identifier spelling.
LN
:;:: If the word record is found then it already has been
T
-z: assigned a specific identifier number which is then passed
. back to the main program to be written out as the Latin
S
i : Py
:&V identifier.
‘&_.\":;
.ﬁﬁg 70
..‘ -\C
Y'a.,‘
b
,_J'

‘ T R R R A R A R SR S A S LN Rl
:(] ‘a -.d-_:.l,.ﬁ ;’l"":':.-".'"- e e N AR AR

Y 8. Latin Int

g The procedure maps each digit of the token to the

;ﬁ Latin digit 0...9, and passes back the Latin integer.

-; 9. Get_latin_Spec_cChar

lg The procedure i; to give each Arabic special

o character its Latin "functionally" equivalent character.

g 10. Print Errors

% Based on the error set, Print Errors will send the

_ error type and the line number in the source code where it

:3 was encountered.

&

: E. PROGRAM DIRECTIVES

& The program offers two directives. One is the option to
keep the source comments in the output file, or the program
will omit the comments by default. Two is the option to
turn on and off the debug option at any location in the code

% at the beginning of a line. This option will display the

L tokens and their types as they are scanned.

ﬁ: The program is demonstrated by a list of test runs to

& verify the translation of reserved words and special

:ﬂ characters. Also a sample of small PASCAL programs are

N included with their generated files, code and dictionary

‘E tables (Appendix I).

'2

_ E. LIMITATIONS

ﬁ: The program does not allow the user to use the 'Include’

c: directive in TURBO PASCAL. The size of the program is

|

Z- 71 1

o

~. . At R e et Pl P PR Ay
- * > .- = " - ,)- St L")_'.\ ..J“_‘»‘\“.((_‘-P o '-‘4\'»\{-.' -.‘:\’F ',\ :‘
L) 2 24 : N B 408 - $ a X al a2 X

0, AL A

l
A ot e

a

“hbth
a4 2 4

limited by TURBO PASCAL to 64k, where an additional code
could be included as an 'Include' file.

The program is set to handle up to one thousand
identifiers. This is a reasonable number in working with
TURBO PASCAL since the program size is limited to 64k bytes.

The spelling £ab1e is 5000 characters long. That means
the total 1length of all identifiers can not exceed 5000
characters. The programmer can avoid, when writing 1long
programs, exceeding the limit by using short identifiers.

The program will not generate an error flag if a Latin
string is found in comments or 1literal string. This 1is
because both comments and literal strings are not altered.

ARCII provides two commas. The numeric comma is used
with real numbers in Arabic, and the Arabic Comma is used,
in this specification, as the Latin comma except for the
real number case. This is a small hurdle in the case of
translating the generated code back to Arabic. The
appearance of the two Arabic commas is different. They are
180° out of phase on the vertical axis where the numeric
comma looks like the Latin comma. The decision on using

both commas was to avoid overloading the use of the Arabic

comma.

72

?2
i VII. CONCLUSION

;3 This thesis has tried to narrow the gap between educated
;52 Arabic-speaking people and computers in general. The target
" ages are mid~-teenage, and forty-five and above. The
:% majority of these two classes still look at computers as
sf magic. They believe man created them. However they have a
f" hard time believing that man tells computers what to do.
%ﬁ With that attitude, the only thing that can convince them is
;ﬂ to help them to write small programs and see the results.
- We are convinced that the majority will get rid of their
?;f fear and have the desire to explore this machine.

~E; In short, the topic of the interface between the rich
A Latin software library, and the Arabic language environment
Eg is a promising area in the sense that it will bring those
:? who fear computers closer, and find a more efficient way to
N get the job or hobby done.

o

W A. CONCEPT FUTURE

g: The program is simple in concept and to code, but the
- environment where it 1is expected to work 1is not vyet
s; standardized. The standards are not widely implemented, nor
f? are the developers of bilingual operating systems very
f; helpful in responding to concerns about hardware
[ﬁ compatibility. .

o

:\4 73

LIPS - Coe - . LA 677 € P . TR PR ~ P L Y Sl Sa§ W]) LR S NG AR S
" 5N . 4 > ¥, Y, ! B S .) 5
u [AL IRLK A 0P TR Ny, e %y NN

WAL Wohl

e N U Y
'\~ . - ,.\ \“ - ',*':\
. Ve - e !

‘§: Once a unified environment is established, then the
gij concept could be developed further. The goal of this work
'Vh was to illustrate the feasibility and avoid specific issues
-;: of the implementation environment. The program modules were
§¥ designed to be adaptable and portable for several purposes

with little modification. For example:

i) - For several programming language translations, such as

o "C," FORTRAN, and BASIC, we only need several resource

f.% files and several special character sets, one for each-
yh programming language requirement.
e - For several code sets, including different languages, we
4 need the concept of a bilingual operating system that
;J~ uses the upper range of the character set ranging from
2 80 ... FF Hex.

- The program can work in a Latin-only operating system,
— to translate source codes that have been edited using

> Arabic code set values. Also, the generated source
T could be compiled in the same machine. If the program
.:5 is interactive, then it needs to run under a bilingual
'Sy operating system.

o B. LIMITATIONS
0

S: The bilingual operating system was not well documented
7

e as far as how some of the function codes are implemented
AL during editing. Some of the characters have two codes (such
.-

"ﬁ as the Arabic multiply sign and the numeric multiply sign).

A To know which multiply sign is generated when I strike a
L key, I had to use an editing tool to display the code in Hex
g1 values and match the text file and its Hex values.

o Right indentation is relative to the editor mode. If
s you select- your screen mode to be Arabic and you read a

A piece of Latin code, it will be right justified.

(.4 74

I I I A P R A T B I e e e et R e T e T e T T e e A T e e O
"oy Iy R A A R S N A R A Y O VD S A AR ft e .

)
1’ The user must be careful reading data files. Some data
)
§ is readable only in Arabic mode and some data is readable

only in Latin. Also the data displayed may have been

P transformed by the operating system. As mentioned before,
DS
;: the user could use the "SWAP" option for altering ASCII
N digits and ARCII digits in the DOS environment, or read the
)
Y
fj digits as a string and change the values into ASCII. This
b
a\ is important in order to perform numerical operations with.
B
Arabic digits.
o
‘$ I strongly believe that, with time, standards will be
“‘1
.: developed with more care and concern for the user. This is
oL
the reason we chose not to design the program for a specific
:j system.
e
:g It is hoped that this work will benefit other
[\S !
researchers and future thesis students from other countries
KN
ﬁ: since a similar concept could be applied to other languages,
4
a especially languages descended from Latin.
W
R
e
<o
oy
gi
k- .
.
e
&,
=
o
=
"."
5 |
- 75
bk
’;’ :
o
e e R Ry A T L e T

4 N " P B L BV L L. o Y - -

R APPENDIX A

. FIGURES

ol Figure 1. The 28 Arabic Alphabets

Oy Figure 2. The 31 Alphabets (Optimum Set)

I\
A 76

NN o 4 CRII gt A Whe QOL NS T A W T T T
, IR R R TN A o i T -X
VRN I NI By L LA L L ORI TN D SO T Nt oM g SN

.
o
»t
71
> NAME CHARACTER NAME CHARACTER
{ emem—- e oo s en oo e —_—-——_—e— . —-————aa -
o ALEF | DAD ud
BA'A w TAH b
TA'A o DHAH b
R THA & AIN &
» JEEM & GHAIN E
N HA A 2 FA I
KHA A e QAF @
L DAL 3 KAF 3
THAL 3 LAM J
! RA 2 MEEM ,
{ ZA J NOON U i
s SEEN N HA e
o SHEEN o WAW s
i 3 SAD J2 YA (2]
b
"
y HAMMAZAH .
by TAAMARBOTA 3
4 ALEF_MAQSURA S
')
ATyl
&
Y Figure 3. Arabic Alphabet Names
)
Q)
&
b
).'
\ 77

R Figure 4. Arabic Diacritics (Vowelization)

3 78

AN RTINS TR TR R
O " NG WS W R
‘t?l‘w"‘i, o.l‘q‘_l‘._l’a‘\ LM % % J

o on e 2o

Pte

2 4 a4

« X]
o« oA

=74,

¥

o)

Tal»

T A Y T o ¢ T € 1

Eastern Hindu numerals

? 8 7 & S 4 3 2 1

Western Hindu numerals

Figure 5. Hindu Numerals

79

3 Y“""‘l"'wvww

(1

W g ™ LA v T e T,
-,"..’-. .(l./-,.,_.‘,\‘y_:v‘.-,_\,' -

s

/":

-'l.,.‘{l."l./l s,
RN

a8 x
* B
A A 5

FrAEeh

.
SN RN LR

Loy Sawall Jons pball paid aall By dbll
sl 130l als ol) a8 13 Aall ay cigag

4

ooy A Fabmll mena ZB) Gl meny o el
Al oldl amils besen

il on ouilly i)l al gle caRdl Ll

Conady alall

a. Without vowels

Al GG el Ty dlatl aal
P s TEall ay Gyfass B aatlall loas
Y sl 1V) WAt T KD e
Aol mlatale ATEEAN TGN Tmlaaly o)
A mt Tasds il s

reill e Toadlly gl AT e G R (AL
Candy el

b. 1/ith Vowels

Figure 6. Arabic Text

80

R W .
A
NOREWEL NS

LU
‘ot

o g e

S * il Bl i

[

O System

X Yideo
4 codes
K Memory

display

key codes
| —

& [Keyboard

Figure 7.

BCON"

i

BCON Code Sets

-

reduced
codes

Operating
system
and
applications

T ol R Y RO
AT .“‘ ‘r{‘" q,,‘-r\.\- Hhahy N

b A APPENDIX B

TEXAS INSTRUMENTS APPPOACH TO
BILINGUAL OPERATING SYSTEM

Philosophy of Bilingual Arabic
; Latin Implementation on Microcomputer
e, System

< Texas Instruments

R 82

o
2"“
g

IR R R
S N Y
thEn il bl L " N x L 4 N

b .\'w ‘\N.’.“ .\"--\lv L] ‘u‘:(

----- ,.
'
- [D B A ¥ L W i

(- S LN R Gy - N I
.‘s.) /1 .l S ot " p AL 'J“\ N RNALY LR " ‘r‘\, 1
» _x“‘m " C ‘\‘.'“{. j ‘$ A ‘ A ¥ b X “. "

ARABIC COMPUTER SYSTEMS
PHILOSOPHY

SPECIFIC CHARACTERISTICS OF THE ARABIC LANGUAGE

* ARABIC IS WRITTEN FROM RIGHT TO LEFT

* THERE ARE SOME VARIATIONS IN TYPES OF ARABIC CURRENTLY IN USE IN
DIFFERENT COUNTRIES

* THE LANGUAGE IS A FOUR LEVEL ONE. A CHARACTER CAN HAVE UP TO
FOUR SHAPES DEPENDING ON ITS POSITION IN THE WORD : ISOLATED,
INITIAL, MEDIAL OR FINAL

* ARABIC CHARACTERS ARE JOINED WITHIN A WORD

* NO UPPER CASE EXISTS IN ARABIC

'l start my presentation by a briet mentioning of some of the characteristics of the
Arabic ldl'ILlldLL which have been covered in previous papers and which attect the use of
the Arabic language in the computer field.

Rz

;g 83

-'i,'

A ,l.‘:fi‘d\.:!t.» , R ’:!!‘m ha!

ARABIC COMPUTER SYSTEMS
PHILOSOPHY

SPECIFIC CHARACTERISTICS QOF THE ARABIC LANGUAGE

ONLY THREE CHARACTER VOWELS EXIST IN ARABIC :
ALF | ,OUAOU 9 , YAA S

VOWELISATION IN ARABIC IS ALSO PERFORMED THROUGH THE USE OF
DIACRITICS. THESE ARE USED :

~ IN THE CASE OF SIMILARLY WRITTEN WORDS TO AID THE READER
- IN RELIGIOUS TEXTS INCLUDING THE KORAN

- FOR SCHOOL TEACHING

ARABIC LANGUAGE USES INDIAN NUMERICS, WITH THE DECIMAL POINT
BEING A COMMA.

THERE ARE ARABIC SPECIAL CHARACTERS WHICH INCLUDE THE ARABIC
COMMA ¢« ,SEMICOLON ¢ , QUESTION MARK § ,ETC.

\'\‘@

84

L% SR R R B A R A O I R R W ALY A
T R R 2 S e e s :"Z-j

e o e S L

0 5% Yol

ARABIC COMPUTER SYSTEMS
?’ PHILOSOPHY

ARABIC ALPHABET

W * THE BASIC ARABIC ALPHABET IS COMPOSED OF 28 CHARACTERS

* THE LAMALIF WHICH IS COMPOSED OF TWC CHARACTERS LAM + ALIF
IS CONSIDERED AS ONE CHARACTER

! * THE HAMZA CAN BE WRITTEN IN MANY DIFFERENT WAYS IN ARABIC
DEPENDING ON ITS USE, WITH A VOWEL OR ISOLATED

* |F THESE TWO CHARACTERS ARE TAKEN INTO CONSIDERATION THE
ALPHABET IS 30 CHARACTERS

* THE TAMARBOUTA IS A SPECIAL CHARACTER NOT INCLUDED IN THE
ALPHABET. IT IS OCCASIONALLY INCLUDED AT THE END OF WORDS
DEPENDING ON GRAMMATICAL RULES

LA

&

e e e

-

G, |

+

N 85

o BT s 7 I Co ST o dake AT WK O W O O T o N o T N
T g 03 \ , ey O 4 3 s '\- Nl
RGOS S IR0 W R OO LA STV Y,) AN ‘e’\'-'A‘-'s‘:\':‘ak '-‘\’m‘!'u‘!‘nl’;‘;-vn'f'\:!‘e‘!‘u'- WO SOV OO

" v

(Y
Y
Y
‘;

“" !’q

ARABIC COMPUTER SYSTEMS
BILINGUAL SYSTEM APPROACH

SOLUTION 1 : CORRESPONDANCE & DIFFERENCES

THIS STUDY IS BASED ON THE CORRESPONDANCE AND DIFFERENCES
BETWEEN ARABIC CHARACTERS. THE ARABIC ALPHABET MAY BE CONSIDERED
AS FORMED OF THREE TYPES OF CHARACTERS :

- TYPEA INCLUDES CHARACTERS HAVING 1, 2, OR 3 POINTS :

o - oS J
- TYPE B INCLUDES CHARACTERS WI-THOUT POINTS :
2o J Y
- TYPE C INCLUDES CHARACTERS HAVING AT LEAST ONE FORM IN EACH CASE :

SRS NAR-SC VARV o i VAR

IF WE ONLY CONSIDER THE FORMS WITHOUT POINTS WE CAN REDUCE THE
CHARACTERS IN EACH TYPE AND THEN ADD THE POINTS AFTERWARDS

l(’\

N2

86

2O i) -y o - - N

4 Q s i h_ DREES) l wh] » EPRLY
RO, e oyt m AA ‘m «'Mw \‘. “h\'h i, 0 J‘ 'h‘ ‘. A ..ﬂ “‘J-, ’.. e , s ,‘ ‘a 0‘:“'..5'1, ’ “’." Q
», 0. e

T T L e -"-u-.‘-“-w-“-“"-j

O

:

i

- - |

2 ARABIC COMPUTER SYSTEMS

; BILINGUAL SYSTEM APPROACH

'!.‘l ’

;: SOLUTION 2 : ROOTS & APPENDICES

% A STUDY BASED ON THE USE OF APPENDICES AND ROOTS TENDS TO
REDUCE THE TOTAL NUMBER OF SHAPES BY CONSIDERING A ROOT TO BE

] USED IN INITIAL & MEDIAL SHAPES TO WHICI! AN APPENDIX IS ADDED TO

2 FORM THE FINAL OR ISOLATED SHAPES

& .

o TYPE A TYPEB TYPEC

s ¢=(-+>.' U“=5J+~‘ .,a=g+.4

-J C=(+> 'Jh=d+“: -.'a.—.g-o-?

: a‘=(+> ua=d+.a ¢'=L+J.

¢ E=(+€- u'a=d+.b -'Ssg-o-i

A € = + & 3 =0 + 2

3 C

X - = C + - o= + o

, The problem with this solution is what code to give to these apprendices. il they are coded would
\‘-:,- they be considered as characters in a character count? How would high level lunguages interpret them?
?,,,l. How would special s/w tunction interpret them? replace — insert — find string.

B X This 1 the study which resulted in the actual Arabic implementation on Texas [nstruments equipmeint
W and which will be explained in this paper.

IR |

>t~
s
f SN S =

87

[

-
%

:;,

"

N

L)

nee Ve A0 THEL'D % e NI DR o B R R AR e B T e T e e e A SN T T AT N T N AL
‘ B B DK AR N AL S o R A O s S S MR R "\ ¢

. A B it L) Ll . - » s

RN
o
R
" * ARABIC COMPUTER SYSTEMS
egd BILINGUAL SYSTEM APPROACH
L
e SOLUTION 3 : CONTEXTUAL ANALYSIS
e & A STUDY BASED ON THE USE OF SHAPING ALGORITHMS. USING CONTEXTUAL
o5y ANALYSIS TO DETERMINE THE PROPER SHAPE OF THE CHARACTER, FOUR
o GROUPS ARE IDENTIFIED _
) :
RS -~ GROUP 1 ONE SHAPE PER CHARACTER
o —~ GROUP 2 TWO SHAPES PER CHARACTER
:;§ ' —~ GROUP 3 THREE SHAPES PER CHARACTER
3 "
g;:;: ~ GROUP 4 FOUR SHAPES PER CHARACTER
S
ne * POSSIBLE APPROACHES
] — ONE-KEY ONE-SHAPE SIMPLIFIES THE SOFTWARE BUT USUALLY LIMITS THE
> SET OF ARABIC CHARACTERS AND CREATES A COMPLEX KEYBOARD SINCE
o ALL THE ARABIC CHARACTER SHAPES MUST BE PRESENT ON THE
e . KEYBOARD.
‘ —~ ONE-KEY MANY-SHAPES IMPLIES MORE SOPHISTICATED SOFTWARE BUT
SIMPLIFIES KEYBOARD & USER INTERFACE
: - — @
*:',ﬁ, %__v\
L M
&) O1 these 2 approaches the 2ud one has been chosen amd this will be covered in the tollowing slides,
;;:"n
f;,'.:
o
o
§]
: 0
S
L
e
s
':.'\;"Lz
Ra
s
“::".c 88
ot

“," » DXL M - . « oo
Rai R R S LA SRS ComBr LA es i 7o il e AN A ORI D e CAN WP R N
R L L A e e M R T T T S s

¢ Ty
¥
p APPENDIX C
) DS9900 BILINGUAL COMPUTER
3 SYSTEM BY TEXAS INSTRUMENTS
E - ARABIC COMPUTER SYSTEMS
! DS990 BILINGUAL SYSTEM
pr COMMERCIAL COMPUTING REQUIREMENTS FOR THE MIDDLE-EAST
X
* BILINGUAL LATIN/ARABIC DATA INPUT & OUTPUT
v * COBOL DRIVEN APPLICATIONS
i * BILINGUAL PRINTING
K * BILINGUAL SORT/MERGE
\
‘
! SPECIAL PRODUCTS DEVELOPPED TO MEET REQUIREMENTS
* BILINGUAL DATA ENTRY TERMINAL
" * BILINGUAL MATRIX PRINTER
! * BILINGUAL LINE PRINTER iﬂ
" SO TWARE
[These handte both in the natural manner + software simplitied k7w tor operators + high leved
,: Languages casy handhing.
K
"
[
'
k)
i)
'
1
'
|
\
3
Z 89
K
K
A
B A Sy T e i e S e

Ty rwey Badiad s Lo Lo o0 o oid oo 4a ‘.-‘,"mm“mmm

A}
N
0
¢
\'
: ‘ﬁ‘
.
"&:
v ARABIC COMPUTER SYSTEMS
::'; DS3390 BILINGUAL SYSTEM
KA
Sy
3 CHARACTERISTICS OF BILINGUAL DATA ENTRY TERMINAL
b
- * BILINGUAL VIDEO DISPLAY UNIT
.
) — THE CHARACTER GENERATOR ROM GENERATES 7 x 8 MATRIX FOR ALL
'\ STANDARD ASCIl CIIARACTERS AND 128 ARABIC SHAPES
R A 7 x 10 MATRIX IS USED FOR INTRICATE ARABIC CHARACTERS
&
i
n Laun & Arabic can be displayed on the screen at the same time.
b

N :
i) <D

T
v s
i

,,.‘,.
s

1 Pl R «
' :':';'J '

-

-

90

T A A AT A A
i -:\l-f‘\- }

\ Bk ok Sk s Aol AA S A h.n e & Ale 4en A .vv-T
48
o
"
!:'~
W
i
]
i
ARABIC COMPUTER SYSTEMS
i DS990 BILINGUAL SYSTEM
N * BILINGUAL KEYBOARD
:f - PROVIDES 5 MODES OF OPERATION : ARABIC, LATIN, SHIFT, UPPERCASE
& CONTROL. IT CONSISTS OF 91 KEYS
p - PROVIDES THE USER WITH THE CAPABILITY OF ENTERING ARABIC
3 AND/OR LATIN DATA WITHOUT CONSTRAINTS
! t — KEYBOARD MULTIFUNCTION CAPABILITY IS PROVIDED BY A MODE
N SELECTION KEY AND TWQ CHARACTER SET SELECTION KEYS
. - DATA IN EITHER LANGUAGE CAN BE ENTERED IN EITHER MODE
o — THE KEYBOARD GENERATES 7-BiT CODES FOR LATIN AND 8-BIT CODES
o FOR ARABIC
:: (3] L3 Y
o . 2 (3] [} (13 (1 1 2] 4] CMOD
§' e 5 RN P % Y N)] PO PO Y K 8 £ B KR KRR
‘E pant| | [meerar 7mru Q‘?wweélj 'J't”&"ot rCch n_t-_fo AETUAN cgis.’!u\
* - Jrou) ~ |~|w wAoorlouslle I 1] o ol o] wf gl o[l
. 3 o s
s e -
‘.-.' = Baste placements ol Arabic key hke typewriter, ‘65
N
I
o
o
:
)
s .
::‘ 91
.lry

ARABIC COMPUTER SYSTEMS
DS990 BILINGUAL SYSTEM

ARABIC CHARACTER SHAPING
* 32 BASIC ARABIC CHARACTERS ARE GENERATED BY THE KEYBOARD

* A CONTEXTUAL ANALYSIS OF THE ARABIC DATA IS PERFORMED BY THE
CONTROL PROGRAM TO DETERMINE THE CORRECT SHAPE OF THE
CHARACTER TO BE DISPLAYED

% IN TOTAL THE. TERMINAL CAN DISPLAY 115 SHAPES

EXAMPLE OF SHAPING PROCEDURE

Py . WOy 3 redbly
ENTER YAA H w

TA

S

s [Py
JaEIa

edoH o

R -9 (l_—‘\il:j

" P .5 ‘\ ----- ‘ '. e e 1;“""}'“'5 YIRS ‘.i
(1 mﬁ"{\ k l [l ‘. v; ' .i N k A .>. (r o ‘elm’f.ﬁ.‘.\ﬂ‘\...{\

. ARABIC COMPUTER SYSTEMS
DS990 BILINGUAL SYSTEM

DEVICE SERVICE ROUTINE INTERFACE OVERVIEW

* THE DEVICE SERVICE ROUTINE IS CONTROL SOFTWARE BETWEEN THE
USER’S PROGRAM AND THE VIDEO DISPLAY TERMINAL (VDT)

DISPLAY
:1' ThFA PROGRAM
‘ T QuTPUT
b VO ToatA :'NTERFACE INTERFACE
alasiC ARABIC
fro bsr B%%E:n
5 CONTROLLER bsA
i % - —— | e
[LFIRYR] RV ITHIN o — —
Soltwaie T
H/W

)
System [Tevabidity by Soltware implement. {@

93

\v‘r '\'*pr N N W o T e e T Py _’,'-'.-."-\'. B LV R N T T 6 YN
Y] v : X 3 P o F » A o
. ‘t“-?n*., .%. . ’ A SN PR O LI q‘t h LT L Lt et e I far 4 e Ty D] H.l.. '* , O,cf"r.'

[Lo T TT Ty v
Y
Q)
*
)
i
)
1
¢
)
¥
§ Lo .
"
! BILINGUAL TERMINAL PROGRAM INTERFACE
3 s 0 4 0 0 o o 0 o \ ') ! B . \ .
nt o o 0 0 ' ' \ n 0 o o 1 ' . .
\ e " ' ¥ T— m 0 1 n] 1 ' v) t '
)
. [0 t a |l Q 0) 11} 1 1] 1) 0 1 '] A
— g e S\ - —_— Y N G] — e
4 rm PR [' 2 3 . s] ’ . ’ . . c o [¢
' slofolalo A oue sl oo b@ [oo) v 1 o [ASE] R | enren (I
alafofrin sow oc ' af oo e] e [ESSE gacax - &
210 o | 2 stx oc2 ? s » ® Home | 6 e
‘» SR) €T (3}]] c s < . Ta8 52 | e
s I N far oce ' . ° v P . c?f;la)) : 3
I S TS AR tve Nax ~ s f u . v SkiP e (: &)
. 2 'y aCx Srny s 'y 3 v] . c':‘sn T = : J
' o D 8t 1) ’ G w N B AL B + 12 #
% Lo ln - . 13 can ' L} L] x " . :'““ L34 - _\ ",’
K . \ ‘ . M J vt v 9 4 v v f] se| A
; -~ — l I I ; B sus B : ' ' .Cn—ﬂ. prRINT x , 3
[\ . { . T; a i o £SC x I N 1 ‘ Mo H (S 2
. |l]
-4 ‘L L . \ 0 123 N \ (RO Y ¢ - §.
e A
{ | o 4] [-~ ! - | [o §
B A :
AT T T 9 ag ~ " ™ '3
[— -t =
'*‘ S O 51 ") o OfL =] @] ;
; * Basic Character Sct.
f
pd
i
; .
L)
y
Y
k)
i
*a
3,
"
'l
) 94
I
A
Lo, LR A S pag I o RS RS S S B T S A S
‘l‘“ hl“ DALNBXD !f'— Al ')Il »Z' & 2ENT, ‘.,- ‘{"' - '\\\ ."‘4'.' ‘»‘,“f BYANY AGHERRY " ‘.(~ . ':. -.‘.-..‘-.‘.-.'.\{-.{- W o i\«",f .{-..'.--'.-.".;":;_‘ w5
) o e i\ DD A DA AT T T A e T AT AT

Bl el Bad oo b b Bh ol A aa idd avh oie aoa oo

T T Y Y

RO SRASLY
i

A - - TR C T . a4 P o S e
4 RO we . A MM Al bk LA Ani A th A sad Gab daii foit ok icad oob s gL o]

% Sty A o
o ul o fad
R '\'k'h&'\v.’

ARABIC COMPUTER SYSTEMS
DS990 BILINGUAL SYSTEM

BILINGUAL TERMINAL DISPLAY ROM INTERFACE

n8 o [}] [3] [} o T 1 ' [) 1 T
o7 o [} a) 1 ' ' 1 e I o ¢ s ' }
o8 o 0 1 1]) 1 ' 0] 1 L] [} '
s ° 1 o 1 o 1 o 1 ° ! 9 ! 0 ' o
se| 23| 2| ot) ' 2) . s s) ’ 9 a . 4 o € ¢
ololalolo L oue s | o l@]| » | 0 g b S|l =l x| el
B
olojol | som) , 1 A a . a :' 2 i i P T Y i \
ofo ol sTX oc1 H . . ® : b | 3 I I] } Y
ojo vl erx oy .) c s ¢ ' C ~ (e 2 sy
L I - I tor oce LI o |l v | . ' ? 2 > ;=] e | £
ol v lofr | o NAK s € " . v ¢ s > Sl a5 02
. ol v+ |otle ace [. . [v ' : *) S lH | 3 é : N\
~ . ' ' ’ nes e ' v w M - > < E < J - Fy 5 i v
. f il e ne Y) » " . " . B ' _‘h Al ;4 ! b A
— L_.._J,.__.l - J._..—.__J»_-_l~
BREEn ISR PIEICOE
R l ..1 \ noloa e A) ’) ' 3' \ } L 3 ‘_I g i »
SESE Y EY AN RSN IER RN ERN RN
, i | < N g [) N - - s &z e
E ' L 3 LY c " (31 t) C S p) -3 g 1
| v
T e T SN RPN P RN PV RN
R sa s ~ - 2 2] -1 5t ai L=
QR — it T
) : e ,: 5 Y . o ” o8 2 - _ + | 7/ I a !c/‘ 5
Problems of Arabic Numerics must use ASO VT numeric code tor COBOL TFORTRAN. c&'

.- -
R S I Y

e B
YA
) F M

AD-A175 145

UNCLASSIFIED

LEXICAL TRANSLATOR FROM ARABIC TO LATIN IN PASCAL
ENVIRONNENT(U> NAYAL POSTGRADUATE SCHOOL MONTEREY CA
S5 ALJUHAINAN SEP 86 £6 52

27

AN M3 ML NS L U R LR TR T TS TP T T

- 4

L f2s 2.5

o fi
= ¥ L 22 .
% ““ T ,
= e

5
I

I

N
v

' .
:

L
V}R(:)COPY RESOLUTION TEST CHART

-

'Wjﬁmmmmn\\i“mvi

. T L g gt 4l 4 haand

APPENDIX D

BCON BILINGUAL OPERATING SYSTEM BY ALIS INC.

Default Reduced Codes

e Tl bane characters wdenndat to ongmal ASCL ser with the exception of the
tlowing two characters
0k Function code et Bilingusi screen Coeranes Moce (Imaged as Latin spacey
Of Function code =t Latn-Umiy screen Overattre Moae (Imaged as Laon
spacer
U \umeric* space
&1 = Arabic®® number sign
82 » Numeric mulnply sign
&3 & Arabic ampersand sign
&4 Arabic apostrophe sign
na Y. Numeric percent sign
Ko 4 Numenc divide sign
&7 ' Numeric left parenthesis
.1} ' *«umernic nght parenthesis
Ry - Numeric plus sign
BA T Numeric minus sign
48 Numeric less than sign
RC - \umeric equals sign
8D Numeric greater than sign
18 Function rode S¢t Arae:, =creer | anvuace Mode imaged as Arabic space)
ME Function code me ann Screen sangudee Mode imaged as Arabic space)
90 Function code Set Aratiw Lane Lanuuaee Mode (1maged as Arabic space)
91 Function code =e: Laun Line Lancuage Moo timaged as Arabic space)
92 o Arabic commercial at sign
a3 Arabic Jett square bracket
Yq . Arabic nght square bracket
93 ’ Arabic upward arrow head
96 Arabic underhine
L Arabic reverse apostrophe
ax Arabic lert curly bracket
Yu Arabic vertal fine
bR Arabic night curly bracket
up - Arabic tilde
9C tresersed)
oD treserved!
Gt Function code et Line Bounaary (imaged as Arabic space)
9t (reseryed)

) Numeric means character is Arabic but has intrinsic right
spacing (1.e. wiil be considered part ot a numeric strning).
- Arabic means character has intrinsic left spacing.

96

R A L R AR R LT (7 T PALATEIS i
o O T Ot e c'-.-.‘»_"‘\-('.mrf. PRFNASS,

Y I N, LA A N e A AT W LA TETALR
P A NN B A N N N NN e NP DI A O,

i y . + zof . N
13 3
1
¥ ¥
Vot
4,
."
>
\ o
‘ :
0
‘-j
\
LA
;:!.‘ Ao Arapic space
!"0 \i Arabic exclamatnoen mark
\2 AT2DIC GULTATION MAaTk
hH ? \S x NADIC MUILPy sien
s A4 - Arapie dobiar s
: AS Arabic percent sign
: 2 An Arabiwc penod
L% AT + Arapwe diside sign
AN Arabic ter: parenthesis
W AY) Arabic nght parenthesis
-"v: AN ° Arabic astensk
A
oy AB . Arabic plus sign
‘:1, AC \ Arabic comma
L}
ty, AD Arabic minus sign
AL ‘ Numeric comma
At Arabic solidus
:,'. 8o : Arapic dizit 0
N Bl \ Arabic digat |
;:\ B2 T Arabic digit 2
- . B3 Y Arabic digit 3
B4 ¢ Arabic digit 4
* B | 0 Arabic it 3
F”
T Bé& ht Arabic digit 6
:;-. BT A Arabic digit 7
- Bx A Arabic digit &
'
! Bv Q Arabic digit 9
) BA : Arabic colon
Wy BB ‘ Arabic sem-colon
X 'b; BC < Arabic greater than sign
.)
Lo BD = Arabic equals sign
"’;" B > Arabic Tess than sign
-y B} Ly Arabic yueshion mark
N
2
5
o
s
?_‘
N
"
b "y
"
¢
L]
* 9 7 : |

handida Bia oo Bl AL Aha aie ACe At o vew T T TR TP T TR T L 4 T

W
" |
|
. I
" l
,'
18
o
) |
1
) \
u‘l
%)
Kl
‘.
|'
B)
co v TaAll
% C1 - KASHIDA
-~ c2 - SHADDAH
- 3 . SUKUN
: i - $ATHA
i cs Z SHADDAH FAT'HA
Co » FATHATAN
! cr 2 SHADDAH FAT'HATAN
> C8 * DAMMAH
4, cY : SHADDAH DAMMAH
\ CA * DAMMATAN
b CB 2 SHADDAH DAMMATAN
i cc - KASRAH '
5 cD z SHADDAH KASRAH
W CE * KASRATAN
K CF % SHADDAH KASRATAN
o
. DO s HAMZAH
»
e D1 I ALEF
D2 T WASLA ON ALEF
’ D3 ! HAMZAH ON ALEF
D4 | HAMZAH UNDER ALEF
k% D3 T MADDAH ON ALEF
s‘ Do « BAA
N D> | < PEH
Dk 6 TA'A MARBUTA
3" D9 < TA'A
X . DA & THA'A
R DB r IEEM
" DC z SHEEM
' DD r HAA
v DI z KHAA
Dt S DAt
X
P
K
A_
v
) .
‘&
~
Q
‘!
W
R)
»
ll.
i‘. 9 8
()
e
)
'. «

LaN <_

S e Ls - - . -
.- “IAT oA,
\..ﬁ.‘f:\. s.;.u-.. \(A.‘('-\. “ \\ \."'kix‘(\. N

"m 1-)‘,".).‘- Do)-\.'(\ Ny

o~

o

 mg e eme e i

[N

Ay

ko S T AL

L J K

L2 4 ZAIN

{3 FERNSEN|

[v* SLEN

£ W SHEEN

Lo w® SAD

£ o® DAD

Ex o TAH

E9 J DHAH

EA £ AN

EB ¢ GHAIN

EC o FA

ED @ QAtb

EE o CAF

EF S GAF

0 JLAM

F1 Y LAMALEF

£2 7 WASLA ON LAMALEF

£3 Y HAMZAH ON LAMALEI

Fi J HAMZAH UNDER LAMALE}

s Y MADDAH ON LAMALEF

Fa #p MEEM

[o NOON

kX o HA

F9 K} WAW

FA 9 HAMZAH ON Waw

B & ALEF MAQSURA

FC S YA A

FD ¢ HAMZAH ON YA A

FL N Arabie reverse sohdus

tE Blank “FF character iimaged as Arabic spaced

99

\'-(:\- ey ~ - RR ORI ,;z. - __,\

W W Y DY W O PN O

Key Codes to Reduced Codes Table

Key code* | English | Reduced Code | Arabic Arabic
(ASCID | Legend (ARCID Legend Name
20 St Al AR Arabic space
21 : Al ! Arabic !
22 A2 " Arabic
23 = 81 # Arabic =
24 S A4 3 Arabic $
25 %0 A3 / Arabic %
26 & 83 & Arabic &
27 ' E8 b TAH
28 A8 (Arabic (
29) A9) Arabic)
2A AA L] Arabic *
2B -~ AB - Arabic +
2C F9 K WAW
2D - AD - Arabic -
2E E2 J ZAIN
2F / E9 Jo DHAH
30 L BO * Arabic 0
31 1 B1 \ Arabic 1
32 N B2 Y Arabic 2
33 3 B3 Y Arabic 3
34 4 B4 ¢ Arabic 4
35 5 BS o Arabic 5
— 36 6 B6 1 Arabic 6
37 B B7 v Arabic 7
38 B8 A Arabic 8
39 9 B9 q Arabic 9
3A BA : Arabic :
38 EE] KAF
3C AE ’ Arabic numernc comma
3D = BD = Arabic =
3E Ab . Arabic
3F > BF ¢ Arabic ?

(®): Tharacter byte of key code word only (low-order bvte). The
scan code (high-order byte) is not modified by BCON.

100

LRI SR et
IML{A_‘(JA.‘.&LJH.ALL Tt ‘J.-.

- wru e e e

Y -
CWTUONT - Ml Al e Al Acd Al A A 8 & A L) . o8 Mok Soh Bos it ooy]

30 @ 92 @ Arabic @
i1 A CC - KASRAH
42 B F3 v MADDAH ON LAMALEF
43 “ Un { Arabic
4 ! 91 L Arabic |
i3 t CR . DAMMAH
i6 t 94] Arabic |
7 G F3 ¥ HAMZAH ON LAMALEF
48 H D3 ! HAMZAH ON ALEF
49 I A7 + Arabic divide sign
4A ! C1 —_ KASHIDA
4B K AC ‘ Arabic comma !
1C L AF / Arabic /
4D M 84 ' Arabic ’
4E N D5 MADDAH ON ALEF
4F O A3 x Arabic multply sign
50 r BB ¢ Arabic semi-colon
51 Q C4 - FAT'HA
52 R CA - DAMMATAN
53 S CE 4 KASRATAN
54 T F4 J HAMZAH UNDER LAMALEF
55 L 97 . Arabic
56 \ 9A } Arabic .
57 W Cé i FATHATAN
58 X c3 . SUNKUN
59 Y D4) HAMZAH UNDER ALEF
5A Z Cco v TAIL
5B : D8 z IEEM
5C FE \ Arabic \
5D] DF 3 DAL
SE : 95 A Arabic
SF _ 96 - Arabic _
_|
t;;
h L]
E .
- 01
i
®
v
td
T e e e A e T e e AT e
RV N VRS A S e Vo G Y VS e e e e T D e v

PROUC Ty

60 EO) THAL .
61 . E3 o SHEEN
62 - F1 v LAMALEF
63 FA > HAMZAH ON WAW
64 . FC ¢ YA'A °
63 L DA g THA A
66 : Do L BA A
67 - FO J LAM
68 h D1 i ALEF
69 1 F8 o HA
6A ' D9 - TA'A
6B N 7 J NOON
6C ; Fé r MEEM
6D m D8 6 TA'A MARBUTA
6E n FB S ALEF MAQSURA
6F 0 DE z KHA A
70 f DD et HA'A
71 " E7 o DAD
72 r ED K QAF
73 . E4 o SEEN :
74 ’ EC) FA
75 u EA t AIN
76 N El) RA .
7 w E6 > SAD
78 \ DO s HAMZAH
79) EB ¢ | GHAIN
7A ’ FD s HAMZAH ON YA'A
7 BE > Arabic >
7 ' 99 \ Atabic |
7 BC (4 Arabic <
7E - c2 - SHADDAH
key code English | Reduced Code Arabic Arabic 1
tscan - char) | Legend {ARCIN Legend Name ‘1
N. 1800 At O D7 -~ MEH |
:} 1800 Al . D7 hat PEH ‘
p 1900 AL T DC T SHEEM |
. 1900 An g DC z SHEEM ;
t; 2300 A b E3 v SELA ‘
e 2300 A, ER < SEEM
! SR A Bt 3 GAF
k, A £t Fi K9 G Al .
.1
b'ﬂ
:-
f} 102
h
N
:
)
:0_‘-‘. - ._':.‘ ;‘,. e (‘.<'_'_ ARSI '/ e T e e e T T N - .:..‘ :‘. ~_.‘:_._'.\:

S et AP
CRPAOILIRD S YD .. Y o Db S TeV T Dl B8 Pl R o8

|
|
{
|
{
1
!
|
i
|
|

) '
'
t -
: :
"
NN

BCON Keyboard Layout Version 3

e 8
':{“]1[,:?\ ;‘]j ‘:j ']f-:l“-l“i%‘ji%.?' \Iinu»%'[jj{]'- 'l ;3“% LE [.!];[J[\m(j[_?:ljn'wl‘“g:
Rl S e
'"]i(,',“'.‘ '”T[j}_;ij ,lj:'zt‘_l—“, %‘} n',[-l;l;, " :xi.';L) ;';'7‘ _l[{’ll ’— ;L’(, ,l: M, i
- 1;71' r‘:';_;;'lz;_‘_ﬁL_g;_t; L= %L;';;_lr;_l i ‘:’ JI‘J OL@L il
T T T _ = L R

[

Keyboard Layout and Keycodes to
Reduced Codes Tables

w e
4 1

AR RS
R

E v"‘v“

gl i

I A A)

SN
L
RIS

-
B\ % Y
As

4
N

-
<
o,

5

o,

Display Codes

Dispiay Reduced Name tshape) (*)
code code
Ototh Vto bt Laun cnaracters. identical to onginal ASCIH set. with the
exception ¢t the rollowing two characters
oL U3 Funcuon code OE
c 0fF Funcuon code OF
100 c2 SHADDAH
101 C3 SUKUN
102 C4 FAT'HA
103 CA SHADDAH FATHA
104 Co FATHATAN
103 c7 SHADDAH FATHATAN
106 Cs DAMMAH
107 C9 SHADDAH DAMMAH
108 CA DAMMATAN
100 (B SHADDAH DAMMATAN
10A CC KASRAH
108 cD SHADDAH KASRAH
10C CE KASRATAN
10D CF SHADDAH KASRATAN
10E A0 Arabic visible space
10F 9F Arabic visibie boundary
110 8E Function code 8E
11 13 Function code &f
112 90 Function code 90
113 91 Function code 91
114 9E Function code 9E
115 (**) (Reserved)
116 00 {Reserved)
{17 aQ (Reserved)
11% 00 (Re<erved)
11y 0o (Reserved)
1A 00 (Keserved)
118 oo (Reserved)
1 00 (Reserved)
1p [$Y (Reserved)
I11E 00 (Reserved)
itk 0o {Reserved)

*; A means Alone. F means Final. | means Initial and M means Medial

00 means that this display code 1s reserved and that no reduced code s

associated to it by detault

T MEAe o o g s ais A2a 2 wm

Display Reduced Name tshape) (*)

code code

P2 Al Arabie spage
12 Al \rabic !
122 A2 AVATAIN
12 ~ \rathue =
124 Ad Arabic $
123 A3 Arabic Yo
126 «3 Arabie &
127 =4 Arabi
12~ AS Arabic (
129 A9 Arabic)
124 AA Arabic *
12B AB Arabic +
12¢ AL Arabic . (numeric comma)
120 AD Arabic -
120 Ab Arabic .
124 At Arabic /
13 B0 Arabic 0
131 Bl Arabic 1
132 B2 Arabic 2
133 B3 Arabic 3
134 B4 Arabic ¢
135 B3 Arabic 3
13n Be& Arabic 6
137 B” Arabic 7
13n BN Arabic &
139 B9 Arabic 9
134 BA Arabic
138 BB Arabic
13C BC Arabic
13D BD Arabic =
K13 BE Arabic »
131 BF Arabic ?

*; A means Alone | means Final. | means Inmitial and M means Medial.

™% 00 means that this displav code 1s reserved and that no reduced code 18
associated to 1t by detault

105

L U R TP et N -
. R e e, N, DT L L

AT RN NP S
- ¢ .

P g = .
N e s LS .
s L oCa YL E PR PV g

URSCR I I
. e
AN AT T e e Are v

PRPE N SV, PU W, O, o 3 -

Display Reduced Name tshapei (*)
code code
1400 Gl AV AT ©
13! Rl HANMZ A
Pal [MEY Al
145 D2 WASLY ON ALLE Al
144 D4 HAMZAH UNDER ALEL Al
143 D" PEH A
1in D~ PEH I
147 D= TA A MARBLTA Al
14n Dy TA A A
149 Dy TAA I
14a DA THA A A
148 DA THA A I
14C - DB TEEM A
14D DB JEEM |
I4E DC SHEEM A
141 DC SHEEM 1
130 DD HA A A
151 DD HA A |
152 DE KHA'A A
133 DE KHA'A |
154 Dt DAl Al
133 Fl LAMALEF A
13m F2 WASLA ON LAMALEF A
137 F3 HAMZAH ON LAMALEF A
[5% F4 HAMZAH UNDER LAMALEF A
154 F3 MADDAH ON LAMALEF A
. 134 33 MEEM A
138 93 Arabic |
15C tE Arabic
15D 94 Arabic |
15 95 Arabig
15t 9n Arabic _

> A means Alone F means Final, | means Imital and M means Medial

/** D0 means that this display code 15 reserved and that no reduced code 1s
associated to it by detault

106

~ -
Ly o L - - - .

» LV T P P e AN Ty » "
' by o PP R R R
AMMMJJ@}J?J}I:I. S

e AP

PRl ol o i BRI

PO B Y

AL

L e e a4 4 0

a3 I N

As

LSRN

Display | Reduced Name tshape) (*)

code code

G QT Arabig

I6l X3 MEEN I
162 Fr NOON A
163 FT NOON |
164 Fs HaA A
163 AC Arabic text comma

lbo A3 Arabic x (muluply sign)

167 AT Arabic divide sign

168 D3 HAMZAH ON ALEF Al
169 EO THAL Al
16A 00 Arabic > >

16B 00 Arabic < <

16C E4 SEEN with compressed tail A
16D £3 SHEEN with compressed tail A
l6E E6 SAD with compressed tail A
16F v DAD with compressed tail A
170 80 \umeric space

171 82 Numenc x (multiply sign)

172 85 Numeric %

173 86 Numeric divide sign

174 87 Numerc {

175 8% Numeric)

176 89 Numernc +

177 RA Numenc -

174 8B Numenc ¢

179 8C Numenc =

17A 8D Numenc

17B 9% Arabic

17C 99 Arabic

17D 9A Arabic

17E 98 Arabic -~

17F Ff Arabic (DELETE sign.

;A means Alone. F means Final. | means Initial and M means Medial

*% (0 means that this displav code s reserved and that no reduced code s
associated to 1t by detault

107

3‘;\ :\‘¢
LN
ATy
n
", C)
A
a5
Q. !
A \}
::':'9
" ;)
py
05‘
"it‘l - - ¥
T Display | Reduced Name tshape) t*)
— code code
L
';t:‘ 150 c: SHADDAH (hnking)
,‘$ 181 3 SUKULN dirking)
'y 142 C4 FATHA (hinking)
KX 183 cs SHADDAH FAT HA (inking)
RO 184 Co FATHATAN (hnking)
183 c7 SHADDAH FATHATAN (inking)
. 156 CA DAMAMAH i (hinking)
15 187 Cco SHADDAH DAMMAH {hnking)
I 188 CA DAMMATAN (linking)
,-g:.,- 189 CB SHADDAH DAMMATAN (hinking)
o 184 cc KASRAH (hnking)
3 : 188 CD SHADDAH KASRAH (linking)
& 18C CE KASRATAN (hnking)
) 18D CF SHADDAH KASRATAN (linking)
.- 18E co TAIL
SN 18F 1 KASHIDA
e
S 190 D1 ALEF 3
< j 191 D2 WASLA ON ALEF MF
192 E4 SEEN with compressed tail F
193 D3 HAMZAH ON ALEF MF
S 194 D4 HAMZAH UNDER ALEF MEF
- 193 D3 MADDAH ON ALEF Al
Koay 196 D5 MADDAH ON ALEF MF
Bt 197 De BA'A A
] 198 Do BA'A F
B 199 D6 BA'A I
194 De BA'A M
';o.:; 198 D7 PEH F
‘:.'. 19C D7 PEH M
" 19D D8 TA'A MARBLTA MF
Ko 19E D9 TA'A F
.;,l.g‘, 19F De TA'A M
LY
*) A means Alone, F means Final, | means Imtial and M means Medial.
: g :'j **) 00 means that this display code 1s reserved and that no reduced code is
.:-:.:j assoclated to 1t by detault
o
Ay
NN
N::'-:
'::\:
"f::.
o] .
,\'._" .
48 108
\:'4.:
1‘3.0'

AR \TTg RETSL
e T AN S R A S ST A e i RN RS S

e
KO
. v
o
c'l\
ity
g
‘ *
3]
N
) ()
v
,
1"
i
o
) Display Reduced Name tshape} (*)
'y code code
g
oy RN DA THA A |
':, 1A A THA A . At
' a2 DR LA b
1 D8 ILEA M
o~ a3 DC SHEEA]
) 143 LC SHEEM N
"y 1an iln) HA A]
K~ bAT DD HA'A M
G 1An DE KHA A r
T 149 DE KHA'A M
1AA DF DAL : ‘ MF
2 1AB E5 SHEEN with compressed tail F
S, 1AC E0 THAL MF
h - 1AD El RA Al
0 1AL El RA MF
1A} E2 ZAIN Al
) 180 £2 ZAIN FM
i 1B1 E3 SEEM Al
_ 182 EE SEEM FM
1B3 E4 SEEN A
1B4 E4 SEEN F
.~ 183 E4 SEEN [
< 1Bn E4 SEEN M
187 ES SHEEN A
- 1B E3 SHEEN F
S 1Ry ES SHEEN 1
" % 1BA E5 SHEEN M
s 188 k6 SAD A
Lh ™, 1BC k6 SAD F
". 1BD £7 DAD A
I1BE £ DAD F
. 1B} s TAH Al
.,
'-: *' A means Alone. F means Final. | mean«< Inihal and M means Medial
L
~ % 00 means that this display code 1s reserved and that no reduced code 1s
‘-: associated to 1t by detault
.‘l
x.
>
'5'
»
:]
't 109
‘s

e

I

e ".r y L
i}.'ﬂ:)-ih}* ""' (M.A..:') e “&tﬁ‘d’i

081,
‘v':’:
B
gt
e
!.’(." t.
8}
e:“:’
¥
;f::0\,
N
".‘7‘“')
i
ff.i:; Display Reduced Name (shapel (*)
o code code
Q% fCu b~ 1AH i
B) 1 L DH \H Al
1 "{4 1 fu DHAH T
K Ta, 4 10 £ AN oA
'.-\.j 1C4 EA AN t
(h 1CR LA EVAN i
T EA AIN A
‘{'QQ IC' EB CHAI\ A
T, 1Cx EB GHAIN 3
$~." 1Co EB GHAIN |
N 1CA EB GHAIN M
P 1CB EC FA A
Wl 1CC EC FA F
e 1CD EC FA {
; 1CE EC FA M
2 ICF ED QAF A
L
<. 100 ED QAF F
Sk o) ED QAF I
o0 1D ED QAF M
e 1D3 EE CAF A
1D+ EC CAIl F
o 103 EE CAl Al
'y 1D6 EE CAF MEF
Y 107 Et GAF A
M- 1D~ EF GAF F
Pl 1Dy EF GAF 1
LAl 1DA EF GAF M
1DB Fo LAM A
“.! J 1DC kO LAM F
> >y 1DD Ko LAN]
¢ 1DL FO LLAM M
: . 10t F1 LANALE} F
3
Yo * A means Alone. F means Final. | means Initial and M means Medhal
] ™* 00 means that this chsplay code s reserved and that no reduced code 1s
! ﬂ.:: associated to it by default
-r?;)
Wl
t
L/ .t::
) \';'
357
v
"4
s
;::‘o‘ 110
$.l"
:I‘.
;:‘.b"
o,fng‘l

T TN T P TOw W W T O W T TN T T — i " A A a gta e ade aie ozs aih add o2k o rwv'w

Dispiay Reduced Name (shape) (*)

code code

1w k2 WASLA ON LAMALEF t

1t F3 HAMZAH ON L AMALLE 3

TF2 [} HANZAH UNDER 1 AMALES t

1E3 [MADDAH ON LAMNLEFE]

184 Fe MEEM F

1E3 ke MEEM M

1E6 Fr NOON t

1E7 F7 NOON M

'Es F& HA F

1E9 F8 HA 1

1EA F& HA M

1EB F9 WAW A

1EC F9 WAW : F

IED FA HAMZAH ON WAW A

IEE FA HAMZAH ON WAW F

1EF FB ALEF MAQSLRA Al

1FO FB ALEF MAQSURA ME

1F1 FC YA'A A

1F2 FC YA'A F

1F3 FC YA'A I

1F4 FC YA'A M

1F5 FD HAMZAH ON YA'A A

1Fe FD HAMZAH ON YA'A F

1F7 D HAMZAH ON YA'A |

1F8 FD HAMZAH ON YA'A M

1F9 00 ALEF (for LAMALEF) MF

1FA 00 WASLA ON ALEF (for WASLA ON LAMALEFRY M
IFB 00 HAMZAH ON ALEF (for HAMZAH ON LANMALEF) MF
1FC 00 HAMZAH UNDER ALEF (for HAMZAH UNDER

LAMALEF) M¥

1FD 00 MADDAH ON ALEF (for MADDAH ON LAMALEF) MF
IFE E6 SAD with compressed tail F

1FF ET DAD with compressed ta F

™ A means Alone. F means Final, | means Imitial and M means Medial

™% 00 means that this display code 15 reserved and that no reduced code 1s
associated to it by default

S . . - e C s L. . . - el e e e, N

S S R . Lo D L N Y el e e e e N . e

R o . - . E T T . S R T TR Y T T N
<, » LT, . R o ’ LR . CE N ST SR . T (SRS Y

‘k-

E

i 111
b

e
- -t “

- .
oo At e
- - - -1 .. - .
LY S AR B A A e P R A AN . e MR
tﬁ}u.r’ L{‘An“‘ ROV RN PPV PV 8, P PRPR A L VRPN VL, VO P, G WP RGP G S o P S S A, W P TP AT S, YA

APPENDIX E

CODAR I, II, U CODE SETS

Seven bit CODAR II

7 bit
CODARIII

Li'Ll®

w
o

L2 el

vlyi|ve

l
1

Wifw

‘}

N S

I

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
|

- |) D] O] | O O | | O] O]] O O

0
e
0
0
]
]
]
1
0
0
0
0
1
1
!
1

5ib.| b |k

OO OO RO OO O IO ICHOMCIOIONC)

CODAR 1l coding compatible with CCITT Nr. 5. The set coded 1s the sub-svstem ASV-CODAR/|

) comprising 64 characters for informatcs and data transmission. It was presented at the

ML UNESCO/IBI Conterence at Bizerte. 1976. The ASV-CODAR/2 sub-svstem can be obtained by
W ehiminating the characters framed 1n heavy hnes.

Seven bit CODAR U

l Y X

W o o o .0 | v |1 1

¢.€ oo'o1:10 11{oojo1 1011

CODAR-U T —+— -

Coamim 18- g 107? o | v 2 3 Y s CYREEEY

0 0 0 of ofne onefese 0 fo 21 3 b

0 0 0 17 flsoniocit 1 |Zi°13 ¢

0 01t of sflstxoc|» 2]¢i-2]ad ¢

fo o v s fer oc|le 3|25

|o|n of « ffeorioc [$ a4 |2 P> 3§

Io.l o 1ffcflevanakly s127]> <

o 1, 000G Jak ssw[a s]2 5]Aa:)

o1 11| allee e v T |1 &]lD 4

1060 0 affes canj O 8}~ | & Slh

e o tflefw emf)97 1]) a

‘ 1ot offl @flee osuf ¢ |2 &))9

1o 1 @Iwiesc IS B B PR

tito oflefier irs |, <) ”15] &)

llnill@ cR G| - =]-1Z1o &
tijrfjofl@fso'rs | . i >] | & o}
, thrlviaffallss ws| 72,11 bl

113

e

e e
L "

LA e ek A A s b d - G- drie a- i A g A BAR) "-'WYT

APPENDIX F

FINAL CODE U-F.D.

FINAL CODE
CODAR U-F.D.

Recommendation of the final
Meeting Held In Rabat (Morocco)
In 22-24 April 1982

S T T E A TTE R TR T TR I T I T I R T T W T YY W T TN

Miahbinddindtinbio st ot e AR albhs ATl o Ra - fa . da- e Sas iy L l- ot an e T L T T U e m

FOREWORD

The importance of the role of the information channels in the Arabie world 1s becoming increasingly
obvious in all sectors. All Arabic countries are dealing with various types ot information in the tields ot
administration organization, plunmng, science and technology.

The simple concept of cooperation between the Arab countrnies. and the positive results of
standardization make 1t necessary o ntroduce a unitied cipher tor the Arabic charucters used in the tield i
ot informauon exchange.

In this connection the concerned Arabic organizauon have taken considerable measures such as the
two meetings which were held in Rabat(Moroceo): the tirst meeting was the (Arab experts conterence tor
the unmitied Arabic cipher in the tield of informauon). [t was held with the cooperation of the (Arabic
[nstitute for Researches and Arabization) during the period between 25th-29th Sept.. 1980, The secund
meeting concerned with the regulation of the Arabic cipherin its tinal shape and was held on April 22-24,
1982, [n this meeting the technical committee did achieve the projected corrections. and the Arabic

cipher which is known as (CODAR U.F.D.) was ready.

Atrached are the reasons for moditicauon ot the COAR-UF.D., the recommendations adopted a4t
the meetings and the final shape of the unified Arabic cipher which will be formed in an Arabic standard.
This standard will be distributed to the ASMO member bodies tor further studving and approval as u
prelude to the actual experimentation and application.

RECOMMENDATION

In the final session and with a group agreement of the conterees on the final shape of the unilicd
- Arabic cipher. the following recommendations have been adopted:

(1) The conterence requests the Arab League Education Culture and Science Organization
(ALECSO) and Arab Organization for Standards and Metrology (ASMO) to adopt the
Arabic cipher which has been agreed upon. and take all necessary measures tor its adoption
and entorcement in all Arabic countries.

{2y The conterees recommend to the information organization that use Arabic funguage to
experniment the new cipher before enforcement.

These recommendations shall be submitted tn particular to the rlnstitute tor Research and
Studies tor Arabizaton) i Morocco. the Saudi Araban Standards Orgamizauon and the
Natonal Center tor Information in Tunisia for the purpose of testing the new apher betore
the next (ASMO) meeuny.

{3 ltas recommended that the Arabre cipher inits new and tinal share be adopted by the Arabic
association for telecommunicanons.

(3 It s also recommended that ALECSO. the ASMO and the Arab associaton for
telecommunication shall make necessary coordination to use Arabic tanguage i the tield o
information between them and other international organizations bodies and the UNESCO

The meeting recommends an emergency session ALECSO and ASMO to regulate the
specttications ot the devices. the printing letters and therr torms and to tind the best way of
utihizing computers.

(6) The meeting also recommends the continuous contact between ALECSO and ASMO 10 see to
the best execution ot these recommendation,

=
(-]
(03]

TT T e s e e v e——e W Y 3WE g WSS XK XYY XK
P4
p

-

o e 4‘."-* R A R I A s . - e
MM&M&L&.@& :.d’f’ “cﬁ‘x‘m e e e e Y

RS i A R s il agie e 4

M A A Al Ak Sndl it Snd Beh el Baf ey Bov e an 40 uh ga’ Sl o0n sub el e A Al Bk Akl Mok Aok £0h Aad o tak tah vad iod |

CODAR - U/FD D - e

Codage arabe umifi¢e forme definitive AWl Wi b songall agupall Tl
(RABAT 22 24 Avrl 1982 (1982 Q) 24 . 22 b))

Lejree—e ot | —

ocojlolojJolololjojolP

-—

—-b

*

-

Réunion Alecso - Asmo ol auSall glasal)
sur la mise au point et la normalisation dongall Jppall S Al bk g
du Codar - U. Sl b gy

116

I.‘
A

..........................

Lod ” , T A A R T T T -
g-h‘l.h—lkh} u.;.}{.)'_h Mg‘;fm ’_l MM‘-‘M'\A" ,A“.A .A.Z.Js\'..nl'_r)\ A _z.v.: .'i.‘ " '\ \ \.)- .hq'l.k*.h'_n _n" Mﬁ*‘\’ijf‘\hr = A\ h\

| .Jn".}

T W T T O P P P D P P T P O v P O TET h-adA ol i ga Al fae myvvw—nﬂm'm"'w
|
i

* APPENDIX G

ASMO'S APPROVED ARAB STANDARD SPECIFICATIONS 1

R ARAB STANDARD SPECIFICATIONS
449

Data processing - 7 - bit coded Arabic Character set for Information Interchange

AL NAS,

e

-
"s.'_x‘ :

L

EEANENE

ARAB LEAGUE
ARAB ORGANIZATION FOR STANDARDIZATION
AND METROLOGY (ASMO)

)

d
2
b
"
.
et
e

0 117
<+
(]

hd Mot O O T O T Ty T Y O O T T T O T O I T P U T T O T

Preface

This Arabic Standard was prepared by technical committee No. 8 (Araiic characters in informatics).
Among the parties who participated in its preparation are the Arab League Educational, Cultural,
and Scientific Organization (ALECSQ), and the Institute of Studies and Research for Arabization in
Morocco.

In accordance with the 1982 Directives for the Technical Work of the Arab Organization for
Standardization and Metrology - Part I: Procedure and Working Methods - this Arabic Standard was
adopted by the resolution of the General Assembly of ASMO No:

(R 342/ G.A. /S 15- October 21, 1982).

118

o Lt 2, PN ot L FSRRAN AR
3P .{A.c-t.\t..umr.n ...‘h-,.-(ud.xL-rJL.\. OGN S A I

T T T T s e et Ty wm -—-ﬁw-n-r“m‘-wmw“mmmmwwt-mvv" v vy
- - 2]

DATA PROCESSING: 7-BIT CODED ARABIC
CHARACTER SET FOR INFORMATION
INTERCHANGE

0. INTRODUCTION

This Arabic Standard specifies the properties of a coded character set using ™-bit binarv codes for
informatnion interchange among different types of data processing equipments using the Arabic
characters. [t also specifies a set of control and graphic characters, in addition 10 1ts coded
representation inspired from ISO 646, The set of specific graphic characters i1n this standard
enable us under all circumstances to represent Arabic text whether 1t 1s totally vowelized,
parually vowelized, or unvowelized. This standard provides the possibilities for information
interchange for special applications, as well as the possibilities for expansion in case of
insufficiency of the coded character set. This Arabic Standard was made in accordance with ISO
646. and the following points were modified so that the standard ISO 646 is convenient for

Arabic usage:
~— Table L.
~— Comments on this table,

Table 1 was modified in such a way which permits the usage of the coded character set as a i
separate group from the Latin character set described in ISO 646 for information interchange,
and the usage of basic programs in Arabic Language for the purpose of complete Arabizauon

) . when using computers. This table also allows the usage of the coded character set together with
the Laun character set as in the International Standard 1SO 646 because of the correspondence
between these two standards.

Applying this standard requires several application standards to be implemented on a camer
(magneutc carrier, transmission network, etc.). and these applications are specified 1n other
standards.

1. SCOPE AND FIELD OF APPLICATION

I'1 This Arabic Standard contains a set of 128 characters (control characters and graphic
characters such as letters, digits and symbols) with their coded representauon. Most of
these characters are mandatory and unchangeable, but provision 1s made for some
flexibifity to accommodate special natonal and other requirements.

The need for graphics and controls 1n data processing and in data transmission has been taken
into account 1n determining this character set.

‘:'l'
v

N

1.3 This Arabic Standard consists of a general table with a number of options. notes. a legend and
explanatory notes.

[
SR

-
v .

1.4 This character set is primarnly intended for the interchange of information among data
processing systems and associated equipment. and within message transmission systems.

+

119

P

{7

-

gL
'.-4«--...,

-‘-':'.;",".'."-": T ~ .A.\.‘-“-.'\:‘:_ AR . e e

dcadt L XD Na W ~ A - L L IR M‘- D

.V, Ag.},: Y \ .__s, ‘_-, \-Q’ o Y l__’_ s .;-r‘ DI BRI
VYR R O \AJAA

S VR

V‘l-l‘: ‘-¢ ’

=) Rabiadt s =t ol Dl Sk Beg

1.5 This character set 1s applicable 1o 4il Arabic alphabets.

1.6 This character set includes facilities for extension where 1ts 122 characters are insutficient for
particular apphcations.

1.7 The defimtions of some control characters in this Arabic Standard assume that data associated
with them is to be processed serially in a forward direction. Their effect when included in strings
of data vhich are processed other than serially tn a forward direction or included in data
formatted for fixed record processing may have undesirable effects or mayv require additional
special treatment to ensure that the control characters have their desired effect.

2. IMPLEMENTATION

(=]

-1 This character set should be regarded as a basic alphabet in abstract sense. Its practical use
requires defimtions of its implementation in various media. For example, this could include
punched tapes. punched cards, magnetic tapes and transmission channels, thus permitting
interchange of data to take place either indirectly by means of an intermediate recording 1n a
physical medium. or by local electrical connection of various units (such as input and output
devices and computers) or by means of data transmission equipment.

ta
o

The implementation of this coded character set in physical media and for transmission, taking
into account the need for error checking, is the subject of other ISO publications.

Tuble (1)

010 (I G I)
ofol il 8 K
o} 1 o 1 of i of 1
FE'S'? 0111213 5167
ojojo[o} O gnutfrc.| sp aly|—1I-
I s
&0 of1 1T grefoct Tl |-
" . - o
0101110] 2 §1¢ | oc 2 i BE FE B
H—-—f e =
ojojr|1| 3 §rc.foc #7131y H..., Y
oj1Jojo] &4 Erc.|oc. nz Lls]s] ©
1 - -
WU MER B N RS B R I Kl
ofrj1joj 6 grejicl &l 651, ©
ol \lh]1] 7 BBEL]te] T 7 a
h tEve- : I’ b
1§0JOJ0| 8 J Fe.JcAN ﬁB _,L’,‘,‘@
P 3 F ‘< .
1]0j0}1] 9 g FE | EM (@9 sle ls] ©
1{oj1jcj10 ,r“.‘sus * :13 I I
1101111111 ;sé?sc +1 Y3]3 | ¥
r.T 14 @ 4 ”
1]11ojol12 ‘rEt(}s). . -~ \ |. |
1111011113 [;fﬁ 1s.] = =l 3 . 3
i1fo] 164l so fis | - <Y =]~ ’I -
AERRIRE] B R K Y PN B Lt
Bl d 3wl g
121

......

........

'''''''''''''''''''

U NOTES ABOUT TABLE 1:

',) The format éffectors are intended for equipment in which horizontal and vertical movements are
effected separately. If equipment requires the action of CARRIAGE RETURN 10 be combined
with a vertical movement. the format effector for that vertical movement mav be used to effect the

W, "
) >, combined movement. For example. if NEW LINE (symbol NL. equivalent to CR+LF) s
o required, FE2 shall be used to represent it. This substitution requires agreement between the
sender and the recipient of the data.
-\.i- The use of these combined functions may be restricted for internatonal transmission on general
':‘:;: switched telecommunication networks (telegraph and telephone networks)
- 2) The symbols ¥4 and locations 2/3 and 2/4 are used respectivelv to denote NUMBER SIGN and
CURRENCY SIGN. Note that the character do not designate the currency of a specific country
5 unless otherwise agreed upon between the sender and the recipient of data.
AN
N
o r:'_ 3) These positions are imtended for national use or for alphabet extension. If not used for such
-. purposes, they may be used for representing symbols which do not have specific funcuions. This
- requires agreement between the sender and the recipient of the data.
L - :'-
- For the general case of information interchange among computers, these positions shall not be
L used.
wa
Py 4) Positions and names of special signs which have specific functions in the code :able is the same as in
ISO 646. However. such signs should be imaged and printed according to text as shown in the
@.\; following Table.
A"
o
ik

L/

AN
(e L AN

-

X
e

a
&,

[ufay
; §
nr&{

2

Y5
P

A

Vaaa

a v oa s

CEVE
¥ . .

.‘,',

122

» s s

APPENDIX H

PROGRAM CODE

i
% Frogram Lexical _Translator (input,output):
? (% HEAEEXREEEREEEXEREERRR AR EACRA AR AR LA RE AR EAERRE LA, %)
L .
I File Name : Lexical.pas
; Module name : Lexical_Translator
s Author : Sadek Saleh AL-Jduhaiman
Y Date created : April 4, 1986
) Last change : Aug 4, 1986
. Calls
Open_File = Gets the source file name, and
,: initialize the Output files.
Initialize = To initialize the hash table and global
& variables.
> Fill_Buffer = Fill the line buffer and increment the
- line no.)
Buftfer_Empty= Check if the line buffer was consumed.
& Token_And_Type = Get the next token and its tvpe.
" Map_Idern_To_Latin= Search for the identifier in the
“ symbol table. If not predefined
3 then insert it .
» Latin_Integer = Map integer tokens to Latin integers.
Special _Character= Map special characters to Latin
. equivalent character.
- . Control _Char = Notifies the presence of escape
" codes.
o4 Called by : None
Include files : Resource.pas
o
‘o Variables :
P Line =Input line buffer.
N Next_Loc =Foints at the first char of next token.
n Token =Buffer of =55 character.
Tok_Type =Types af the token present in token buffer.
o Tok_Len =The length of the token in token buffer.
> Line_No =Scource code line number.
. Debug_0On =Boolean variable, debugging feature, set
; by Arabic directive in the sowce code.
Comment _On= Directive, to include the comments in
the generated output.
'y Res _Word = Array of records for the reserved words.

. contains the Arabic and its English match.

L Match _Ind = Index in Res_Word array to token location.
o Int_Str = Integer string of size 10 characters.
: Line = Input line buffer.
Mext_Loc = The first character of the next token in
. the line buffer
. Token = Token buffer.
. Latin_Id = The mapped identifier (in Latin form).
. Hash = HashTable;
ArabicSpell = Spelling string array of S000 chars.
X
n
} 123
[}
%

T L A ST S Rt S G S AN S J U RS
T e Oy S e o A T T S
MMMW\AJWKMMMM\L\L\MMLXAAA A%h t1alu""a‘s o %

oot Rl Aol oo andh aoa aon T v bt Bt A ol aa are o Ladh abdd aie ade afd alte ik aae-oti o LA i 3 _aa. P TV T T Y Yy TIYYI W T YT Ty

- e e -
»

characters = Number of chars in spelling table.

Line No Counts the read source lines.

Line_Sizce Line buffer upper limit.

Match_Ind Inde:: of reserved word found in the
constant array.

Iden_NMo = The number of the identifier in the

sequence of arrival.

One character buffer +for special

characters.

Lat_Int = The integer translation to Latin.

Error_Set = Token error set. *}

"z
fl

o
x

ii

)

e
SelAd s

I

i

Latin_Char

AR A

K
(8

L Comment :

‘: The program will ask for input source file with or

n without extension . IF the name is valid 1t will open

.% the file and initialize tow out put files. The two

] files will have same file name and the extensions DIC
and FAS. The DIC file has all userdefined identifiers

U with their assigned Id_Numbers. The FAS file will have

N the generated FASCAL code.

;“ After initialization the program will take one

’; line and break it to tokens. The token is given &

-

- type, then based on the type a tramslation module will
be called.

The above will continue for each line of code until
a major error is encountered. Major error will result
from long tokens when using commente or literal string.

CEEET T IS E IS LSS LSS S ST ST L L EELL LR L LRSS S LT *)

i
W 124 |
i
|

- P P A

&w

-G o
ey OB,
KA iyl

CONST

Max _Arb_Word =12; { size of Arabic word >
Max _Lat_Word =12; { size of Latin word >
Max _Len ==55; { line & literal size >
Res_Words =593 { reserved words size 3
Maxkey = &310; { Prime number, hashing 3
Ma:xChar = S000; { Size of spelling table?

TYFE

Line_Range =
Arab_Word_Str

Latn_Word_Str =
Word_Rec =RECORD

English: La

Arabic @ Ar
END;

Reserved_Index=
Words = ar
Latin_Token = st
WardFointer = W
WordRecord = R
E

HashTable
SpellingTable
L St
Tolken_Str
Errorg

Types OF _Token

O..Max_lLen;
stringlMax_Arb_Word 1;

r

Tomaix

-

char per Latin word

stringl Max_lLat_Wordl;

o

tn_Word_Str;
ab_Word_S&tr;

1 .. Res_uords;
ray [Reserved_Index 1 0OF Word_Rec;
ring [613{ string in the form id_000 3
ordRecaords; { Fointer to user defined id>X
ECORD { for user defined iden. 3
Inde:x, { identifier number sequencel
Lenth, { Length of the word . 3
{ Location of the word last-3
{ character in symbol table.:;

LastChar: integer:
{ link pointer to next word 3
NextWord: WordFointer;

{ assigned identifier number:
Latin_Id: Latin_Tokeng
NDy
= array [1 .. Maxkey 1 OF WordFointer;
array [1 .. Maxcharl OF charg
stringlMax_Lenl;
string [Max_Lenl ;
(Long_Token,Lorng Comment,
lLong _Literal Str, Illegal Chari:
Blanke,l1lleqgal ,Fezerved_Word,
Literal _Str, Contrl Cod,Unclsfd,
Identifier ,Coment, . .ntegerl,
Funct _Opsrator)

it

I

=4 i

v

{ Arabic characters range

.

125

constant array record ¥
of reserved words ¥

Tt oL O N
- » - g
a‘l. .'. ‘vl e

Oy R

s { from 80 Hex to FF Hex 3
I Arbic_Alph set of #80 .. ¥FF ;
IR Stri10 stringl101;

]

FFTS

=

a—_

| aalal e s on e =
;A K&

126

" R RS S R SR L T A e Y - 3 - R T T A R MR) e e e
AN I AN . ~ - RN y Ve AT T
SN A RN EAL AN GY o N AN S EIAE

oy
a" 2" &

' >
e o e

-2

L

YYD

B

ety St fe

PP .
PR I AT

Rt A (PR Ty YR

PP LA

f-

-
-
-

-
«
.
o

CONST

res_word:words =
((english:
(english:
(english:
(english:
(english:
(english:
(english:
(english:
(english:
(english:
(english:
(english:
(english:
(english:
(english:
(english:
(english:
(english:
(english:
(english:
(english:
(english:
(english:
(english:
(english:
(english:
(english:
(english:
(english:
(english:
(english:

.

.

.

‘or
‘packed’
‘procedure’
‘program’

£
A

‘absolute’
“and’
‘array’
‘begin’
‘case’
‘const’
‘div

.

do’

‘downto’
‘else’

end’

‘external ’
‘text
‘forward’
"for
‘function’
‘goto’
‘concat’
‘"inline’
"
inm
“label ’
‘mod’
‘'m1l”’
‘not’
‘overlay

of’

i

fenglish: ‘record’
(english: ‘repeat’
(english: set’
(english: ‘begin’
(english: "shl”
(english: ‘real’
(english: "integer’
(english: "boolean’
(english: 'read’
(english: readln’
(englich: "write’
(englizh: "writeln’
(english: "end’
(english: "shr’
(english: "string’
(english: “then’
(english: type’
fenglish: "to’

S

N

resource file contains the >

arabic: Gibe') ,
arabics: " J!_aalal
arabic: "ws’y,
arabics: "4 lys "0,
arabic: "4t "),
arabics: "G ls),
arabic: ‘devs "),
arabic: "Jx3!),
arabic: ") _Jewl 70,
arabic: "Wis'),
arabics: Aol ",
arabic: = L"),
arabic: ' wle’),
arabic: "33,
arabic: "J=¥"

1
abic: "4 47},
arabic: " JI_wss! "},

arabic: " Log),
arabic: " buedio g,
arabic:z 153! 77,

arabic:
arabic: "a=3i, "},
arabic: "o lo),
arabic: "oy’
arabic: W U s
arabic: "slhbe),
arabic: "Jra,
arabic: 417},
arabic: b gede "),
arabic: "d3 . b "
arabic: " pelad s "),
arabic: w8
arabic: "=t),
arabic: ‘decgene),
arabic:z "l s,
arabic: _leo, 2",
arabic: " e),
arabic: g,
arabic: “gdhboe),
arabics: "T 3},

=

arabic: " ubel ot 7y,
arabic: wid]),
arablc:‘;buuu_Ji’),
arabic: "dalyg.

arabic:’nk~uJ_a)
arabic: “dele),
arabic: 3Isow),
arabicz 'l by
arabic: oJ) 0,

&% ‘a1 43 a8 4e ‘as ‘ae ‘ay ‘A ‘az a4 "aS 'S4 ‘e ‘8% ‘S8 '3U 43 ‘S8 ‘S8 &4 ‘BE ‘A% AN ‘48 ‘43 °Es ‘55 a8 ‘31 ‘A8 &% ‘8% ‘a6 &% ‘B9 ‘A¢ A€ ‘au 2% ‘A4 ‘88 ‘32 'A% ‘a8 °ss ‘as ‘as ‘aa

127

LY T R TN
W'A \.\u{. 'h;k -An’hm’ih.’k 5’:;“

-
1
Jﬁlx:l ;‘l - AAhA h_l,-Jl;

s |

W <
e
R AN
" (english: ‘until”’ sarabic: " =T),
I~ i L . . S L
oy (english: "var rarabics: " pskile "),
e (english: "str” sarabic: a3, 2,
‘Jb (english: chr” sarabic: "o 37,
M (english: ‘ord"’ sarabics: ‘W),
: (english: ‘while’ jarabic: "l),
% (english: "input’ sarabic: "Jsa),
1 (english: output’ sarabic: “ggs),
ﬁ;j {english: "with’ jarabice: ‘zge),
g}; (english: "uor’ tarabic: "G _al7));
)
N
Arabic_ARlph : Arbic_Alph =
! L #RO .. ¥EY, { Arabic digit 3
o ¥DO .. #FD, { Arabic letters 3
¥ £96, { under score 3
o £CO 1; { tail genration)
}
Delimiters : SET OF char = {const set, delimiters 3}
o [#%80, { Space B
K #38E { BCON function code 3
:“ H#$8F, < BCON function code 3
W“ﬁ HEQ0, { BCON function code ¥
B HE91, { BCON function code >
- #EQT, { Array left square bracket
HE20, { Latin space 5
L #¥94, { Array right square bracket 3
::: HEDG, { Arabic up arrow "pointer'
ig #¥97, { Arabic reverse apostrophe
o, HEAO, { Arablc Space 3
HEAT, { Arabic multiply 3
.Y HE¥AL, { Arabic period J
3.}'3 w¥A7, { Arabic divide
. HEAB, { Arabilc lett parentheszis ;
-pw HEAT, { Arabic right parenthe=zis
e HEAR, { Arabic plus sign ;
HEAC, { ARARIC comma :
o #EAD, { Arabic minus 3
?-@ #EOE, { numeric comma used as 3
Q: { the Latin decimal dgt 5
| 304 HERO, 1 Arabic colon 3
3 #ERC, { Arabi1c greater than 3
#EHD, { Arabic equal s1gn 3
— HERE 1; { Arabhic less than 3
;-
>
Yon
‘\l
I\:I
@g-
o
o 128
S"‘
.\'I'
w7
’
o
\'6
Y

. \-f';.-"u- -

N ' A Y --.'I “{‘-. > . - --
Sy Tﬂh@ﬁh&i&aq;ak'y'

B S A g

- \ e f e -
:uﬂ:.',ll\'-l‘,., -A}J\. -h -A.J\

VAR
Debug_0On : boolean;
Comment _On : boolean;
Tok_Type : Types_Of_Token:
Tok_Len : Line_Range;
Int_Str : stringll101;
I : integer;g
Line : 1n_Str;
Next _Loc : Line_Range;
token : token_Strg
Latin_Id : Latin_Token;
Hash : HashTable:
ArabicSpell : SpellingTable;
Characters : integer ;
Line_No : integer;
lLine_Bize : Line_Range;
Iden_No : QOO .. 999;
Match_Ind : Reserved_Inde:x;
Latin_Char : char;y
Lat_Int : strio;g
Error_Set : SET OF errors;
OutFile 1 text;
InFile : text;
Dictionary : text;:
Frocedure
OFEN_FILE;
- VAR
valid :boolean; { for I/0 error W/ file name 3
F_Name, { file name with no extension?
File_Mame : stringlfi21;{ file npame from key board.?:
ind integer;
BEGIN
valid 1= false;
WRITELN ("Input _File name: ')
REFEAT { until valid +ile mame >
READIN (File_Name):
ASSIGN (ImFile,File Name);
{EL-3 { it no error opening filel
RESET (Infile); { then file exist >
TEI+D Cif no 170 ervror, itg valid:
valid = (I0result = 0);
ClrScr;
if not (valid) THEN
BEGIN
WRITELNC *» FATILURE TO OPEN FILE === 7,
File_Name);
WRITELMCS Flease RE_ENTER Input_File name
END;
UNTIL VALID;
1ind:= 13
129

-" <~ J‘
Ah&

et e e
T -/"."'-"". :
AAJMA.AI Y

LB
AP Y .J' ‘A

--....‘_'." -".."‘.

‘f_ N .r PRI 1
a e AN A .APJ‘_A\A

o

A
-
-,

o

[LR]
»

' {.? N
l"-’(‘(‘w

ke

.
L1

g

¥ .

1

LR | . .
.‘ ,h ,l ... "l '. ‘ ?“ ..".N,NI..‘ > ’ s
'."_‘ ‘.‘ ‘.. .- .l. i‘ ." .~." l‘.l‘l a

2
[

..‘,_
sxxs’ A
o £

A
L)

REFEAT { get the rname W/0 extension
F_Name(,1nd.) := File_Name(.ifd.);
1ind :=1nd + 1)
UNTIL (File Mame(.ind.)=" ') 0OR
(File_Name(.ind.)=", ") OR
¢ 1nd = LENGTH (File_Name));
F Name(.0.) := CHR{ind-1):
ASSIGN (outtile,.F_name+ .pas’); { translator.output
ASSIGN (dictionary,F_Name+’ ' .dic)3 { dictionary file
RESET (1nfile);
FEWRITE (outfile) ;

FREWRITE (dictionary); { file contains identifiers
END; { and their translations
130

A
4

[T

Frocedure

INITIALIZE: { Initialize the hash keys
VAR { and the global variables
FeyNo : inteqger;
BEGIN
Debug_On ::= false;

Comment _0On:= false;
Error_Set:=[1;
Line_No := 03

.
VAR where : {
VAR line _no :
VAR Ln_Size

line_range; location 1n buffer
integer;
line_range
)3
HEGTIN
READLMN(infile,line);
Line_No := Line_No + 1;
IF Debug_0On THEN WRITELN(line);
IF (line= "{+b=tel’ YTHEN { get comment directive
BEGIN
Comment _On:= true;
READIN (infile,line);
linme_No := Line Mo +1 ;
END3

IF line =~ THEN

BEGIN {
Comment On:= false;
FEADLN(infile,line);
line No := Line No +1 j

{=bBadoel

reset comment directive

END;
IF line =" {+g i3 THEN { set debug directive
EEGIM

Debug _On = true ;

READLM(Infile,line);

line Mo = Line_No +1 3
END;:
IF line =" {-@_ =3 THEN ¢ reset debug directive
BEGIN

131

Iden_No HE I S
FeyNo =1 3
WHILE KeyNo <= Maxtey DO
BEGIN
hash(. KeyNo .) %= nil;
FeviNo 1= KeyMNo + 1 3
END;
characters := 0O ;3 { count of chars in «pell tbl
END: ¢ 1rmitializ 2
FROCEDURE
FILL_RUFFER
(VAR line Irn_Strg input line buffer

--"--'-'_--_“-_—-“-'W-H!ﬂHENF“N'-HWHHWUﬂmmW“HwUuwUn'mnwwﬂFw“nnwm"WmnnT“"q“nVn”T“T

o

()

(SN)

4

R ‘ &
'
SRR

R

L

R
J?J?ﬁ#&

“a

-——
iy
A

V,“

L

"

W T d ATt
WL Rl Ny
' * -f_."

Debug_On :=

false;

READLN (infile,line);
L

line_No

END;

where

Ln_Size
END;

ine_No +1

1 3
length{line);

initialize line pointer
line size
132

}

Al

o+

TN IO
LV e
o g

-

£y

10

)

'& FUNC |

5 EUFFER_EMFTY
. (Next_Loc : line_range;-

w Ln_Size : line_range

o) : BOOLEAN;

. EEGIN { check if buffer is empty 3
N BUFFER_EMFTY := (next_loc * Ln_Size);
END;

FUNCTION

EMFTY _ERROR_SET: EBOOLEAN;:
{ HAERXERREEEF E LR R AR LR ERE XA E R R SRR R XXX EERE

77,

.Q « I+ error set 1s empty then no errors are found
K vet., translation will continue ¥
I #EAEHIRFERERERERAKRFREF LA EREREXERAEREFARENT XX EE T
o
- BEGIN
- EMFTY _ERROK_SET := (ERROR_SET = [1);
- END;
L)
Frocedure
TOKEN_AND_TYFE
(VAR where : line_range;{ location of next token %
VAR token stoken St
. VAR Tok_lLen :line_range; { length of resulted token’
"R VAR Tok_ _Type :Types 0Of_Token; { Token tvpe 3
. VAR Match_Ind:reserved_index{ index of res. words >
))

-~ o
4N ANy

ta E ks b S RS SRS E L R L R ELEE E R R L EL LR EEEEEREE R AR

module name : TOREN_AND _TYFE

date created : April 7, 193&
‘t calls : Blanke, Comments, Literal String.
[~ Integer Tok, Identifier Tok,
‘Bl Reserved_Tok, Special Char,
=y Control _Char
"

called by T MAIN
fl. variables :
+ last change : Aug S, 1786
'3 Comment :
- procedurs collects the tokens and assigned
y Token Type names to them.

R T S AL L R TR T R
o
- AR index rinteger; { For token 1ndexing J
: ch : char;g { gpeciral characters toben
~ COMNST digits :HET OF char = L#FRO .0 #FEY 13
0‘
g
o 133
»
.d.‘.n RN D .R..'.Pu x‘m) .A"'.n' \'.n A .J\\.A.u‘.ﬂ ‘...r_».‘um;m\..-_;r.-;\.h.hﬁﬁ(AR " ;\-n...‘n..‘n

)
)

B Frocedure

& BLANE 3 { collects blank(s) token
ﬁQ‘ VAR index:integer;

) BEEGIN
v index: =03
AQ Arabic space ‘blanbks’
20 Latin space 'blanks’
fi~ WHILE (BRD(line [wherel) = %A0) 0OR
«: (ORD(line [wherel) = #20) DO
BEGIN

index:=index + 13

token(. index.) :
. where = where+l;
N END;

Tok _Type = blanksg
: i 3

»
N

= limne(.where.’s

e Tok_Len nde: ;
N token (.0.) = CHR{index);
Ny END;

2 x NN
1 3 A
>

‘s By

0000

':-"i'v
A

&
A

-

134

Erocedure

COMMENT ;
I AR AEEREFAEREEREREEXFEFESFEAXERLERERER TR EXE RS CR AL EREE T
{ PFProcedure comment will assign the matching Latin

brackets and the body of the comment to the token.

The token type then set toc Comment. >
I FERREFL R U B ERERE R AR TR E X RE XA X LR EE AR E R AR RS LR LR X]
BEGIN
tokenll1l := " ("3 { assign the opening bracket
tokenl2] = "% { and asterisk to token
index = 2 { start of comment body
where := where + 2j
REFEAT { assign body of comment
index:= i1ndex+1; { painter of token buffer
token lindexl:=line [wherel;
where = where +1; { pointer of line buffer

UNTIL (ORD (linelwherel Y = FAA) AND
(ORD (linelwhere+11l) = A8) OR
(where = Line_Size);

IF {where »= Line_Size) THEN

BEGIN { The end of line 1% reached
Tok_Type 1= Illegal ; i before closing the comment
Error_Set:= Error_Set + [Long_Commentl;

END

ELSE { the commernt is wvalid
BEGIN

tokenlindex+1] 1= "%’ aszign the closing bracket
tokenlindex+21 :)
Tok_Type = coment;
where :1= where + I3 { advance line pointer
Tok_Len := index+2 3 1 advance token pointer
tokenlO]l 1= chr (Tok_Len); { set token length

END;
END: O COMMENT 3

as cas
~

135

[S A

e TR TH R T TR ROV T W T T T o T T T w I mw T AT TN T my N S e T T W T W W™ TN WES WY T Tw~rwy ! oy YW~ ""—YT

FROCEDURE
LITERAL _STRING;
X2 I RS TR R R R T R P S L L R R S T R L R X

e

Literal string will look for single and double quotes.
Matching the quote character at the beginning and the
end cof the string. Then assigning the Latin gquotation
marks, . ¥
R R R Y R L T

[

BEGIN
indes:= 03
CASE ORD(linelwherel) of { 1if buffer points at ; b
¥97 : REFPEAT { single guotes b
index := index +1;
tokenlindexl := linelwherel ;
where := where + 1;
UNTIL (ORD{(linelwherel) = %97) OR
(where » line_size) ;
¥AZ : REFEAT { double guotes ¥

index := index +1;
tokenlindex] := linelwherel ;
where := where + 1;
UNTIL (ORD(linelwherel) = A2) 0OR 1
(where > line_size);
END; { CASE >
{ if literal ended with H !
{ the right quote mark; K
IF (ORD(line(.where.))= ¥AZ) OR
(ORD(line(.where,))= %£97) THEN

BEGIN
index 1= index + 1; { advance pointer for the
Tok _Len r= index; { quote mark. Set length. >

Tok_Type :@:= Literél_Str;
taokenlO] chr(Tok_Len);

{ for single quote literall
IF (ORD(token [131) = #%97) THEN

BEGIN { assign single quotes i
token [11] s=chr (£27) 3
token [index] :1= chr (£27);
END;
IF (ORD(line [wherel)= %A2)THEN
BEGIN { assign double quotes 3
token [11] t=chr (¥22) 3 4
token [index]l 1= chr (£22);
ENDj;
where = where + 1 ; { point to the next token >
END 1
136

"-w N \' - T
&:A hu_‘ 99 .\h&’t’h .\".XX.JJ;L{{&‘{‘MA\ A 1.\ \'\ ™ 1.'\ A_'\ \."‘\l‘ t\ :\\ L Yy \'}\ i

v
ELSE { if line pointer did not see’
REGIN { single/double goute= error
Error_Set :=Error_Set + [Long_Literal_S5trl;
N Tok _Type illegal;
Tok_Len inde::)
Q tokenlfO] chr(index); { set length of token 3
‘ ENDj;
‘ END;

=

- e

T

Iy 137

o

ay
b
i
3' FROCEDURE
@' INTEGER_TOk: ;
Lﬁ T2 R R R Y Y L
R { The procedure will return the Digits ranging
- from BO .. B%Y Hex.
39 3
§¢2 R ST Ry R R e X TR L
*5
W BEGIN
fid index 1= O3
WHILE (linef{(. where.) in digits) DO
. BEGIN;
ol index := index + 1 ;
ot token(.index.) := line(.where.);
4 where := where +1; '
” END;
. Tok _Type := integerl;
’64 Tok_Len 1= index;
Nt tokenlOl 1= chr (index) ;
L.'r ENDj;
Ly)1‘!
R Frocedure
i IDENTIFIER_TOK;
o [REHERERERERRTERRRELEREREERAEEE AR R LR SRR EREXRREREFERANEREEER T
:ﬁ} { The procedure will look for any number of digits and
ol underscore characters following the first letter.
N T AREREEREERE AR AR LSRR LR KRR AR EEAEEREEREA A ERER RS RREAR TR
%
:2 VAR valid: boolean;: - —
} EBEGIN
AN index:= 03
; REFEAT
. index:= index + 1j;
3 token{.index.)? := line(.where.);
" where:= where+l;
N UNTIL not(ORD(line(.where.)) in Arabic_alph);
£ : :
o Tok _Type:= Identifier;
e Tok_Len := index;
- JtokenlOl:= chr (index);
B END:
e \- ’
4
Bl
in *
f'. 4
an
b ‘.)':::
QK {
R 138
e
l...
b

e -
-Q

S R N A A T
L LT AT T L, Em—mm,ﬁ

N

i) St A e i B ade Rt danil Sk bl bl it TRy TTwwrTowor T R w piadi o dhaciondh - ith olibo i alub Shd A A S Std hadh and B 4

2

}
i Frocedura
o RESERVED_TOK
‘s (VAR match_index: reserved_index);
o I Y Y L T2 LS LR LT EE LTI S ST IS .
' { If the TOKEN is reserved word. The procedure will
1; set the token type to Reserved_Tok and pass the
N index of the word. In the constarnt array.

[P

L O HAEHEEREELER R REEREEEERERERR AR LR EREE AR ERER A AR X
‘l
f VAR index: integer;
% hit : boolean: { when a match is found b
i
X EEGIN
hit 1= false;

X index 1= 1;

o WHILE (index <= res_words) AND (not(hit)) DO

< BEGIN
,$ IF(token = res_word(.index.).Arabic) THEN

" BEGIN { the token match with 3

hit 1= true; { reserved word ¥

o) match_index :=inde:x;

32 END;

A,

index:= index + 1 ;
END; { while no hit 3
IF hit THEN {if token is reserved word?

r

Tok_Type := Reserved_word; { set the token tvpe I

ap,

END;

-;.w- —

-

139

o o o

"N .

R R ANy s‘\‘.&‘*‘ P WA, I A
f I « o Y 'A Wy X ~ ‘ L L \" x.‘f ““ \'~

T e e T ey L
}f ' N e

J‘..c:

h?
I. N
?y¢ Frocedure

2§ SPECIAL_CHAR_TOE:

b R T R R TS IR SRS LR T

~ { The procedure gets all the the tokens of one char
L other than the escape codes. >

. e L HAAEREEFERRAEREREEERE LR AR K EECRRLEERE A AR AR ERERERRXRR LR
?" var Illegal_Chars :set of ¥¥21..%FF;

o

A BEGIN
J Illegal Chars:= [#21 ..%7E,{ Latin chars ¥
o +81..%¥3D,{ numeric characters, Arabic ;
e ¥92, { Arabic @ character ¥
‘Wﬁ ¥97,%99,
g“% $9E..¥9F,{ non used characters ;
y :C FAl..¥A2,

e A4, . £AS,
B AR, FAF,

e FEBF,

. F¥CO. . ¥CF 13 { Arabic diacritices

ﬁ; IF ord(line (.where.)) i1n Illegal _chars THEN
) BEGIN { Latin characters 3
oV Tok_Type:= illegal;

u'. error_set:=error_set + [Illegal Charl;

e END

N ELSE
b BEGIN
ptxj tokenl1l:=line [wherel; { one character special char |
K. 7. where := where + 1; { advance line pointer 3
bk Tok_Len t= 1;
- token{(.O.):= chr(1); { set token length to one
e Tok _Type = Funct Operataor { set tokne type 3

~. END;:
s END;
e
Ve Frocedure

e COMTROL _CHARS;:
L ae I FERRERRE AR AR ERT AR FERRR AR AR LR EERAE AR ERRERREREE LAY XK G LA ® 2
"ﬁ { cantrol characters are used by BCON and will be omitted.
I
kg L RERERAARRERRFFRARE R AR EE R AR R RN E NI LR E RN H# KB N R X R
BOCH

e

-

N

I

R

};'i‘
R,

(ol 140
R

-
(hY

L P h Y
"."’\.

>

BEGIN
; tokenll1] := linelwherel:
Tok_Type :1= contrl_cod;
Tok_Len := 1;
if Debug_0On THEN
BEGLN
WRITELN{ " Control character (' ,0ORD(linelwheirel),
‘) 1in source code’);
WRITELN(® IN Line Number °, Line_No,

', Location = "awhere g
END;
where := where + 1;
END;
BEGIN; { TOKEN_AND_TYFE *)

{ RBased on the first character of the token call an

appropriate module to collect the token and set the type.:

Tok_Type := unclsfd ; { initialize token type
IF(ORD(linelwherel) = £AZ)AND { $£A9 openings bracket 3

(ORD (1inelwhere+1]1)=fAA) THEN { #AA is asterisk ¥

COMMENT 3 { call procedure Commz=nt
. IF Tok_Type <> cament THEN{ if not comment THEN based 3
CASE ORD(linelwherel) OF { on first char get the tvpe 2
b FAO,F¥Z0 1 BLANK: { leading space(s) ¥
1 IAE,$97 : LITERAL_STRING;

F¥RO. . ¥B9 : INTEGER_TOK; { get integer token 3

k $DO..¥FD : REGIN { leading letter 3

IDENTIFIER_TOK; { is it user defined/
reservedl
RESERVED_TOE (match_ind) ;

END;
' 80 ,¥3FE,
£8F , 90,
¥91 : CONTROL_CHARS; { control characters >
ELSE SFECIAL_CHAR_TOK;

[

END; { case
END;

141

. Y RN RNy IO 1(1’- ((_". -’.\-- .’.‘ - ‘ (‘ .
A s S AR R G R A O A Gy 1V p I 3 V’ {00 f. ‘h.' N

Frocedure

_IDEN_TO_LATIN

token : Token_Str;
lenth : integer;

VAR Latin_Id : Latin_Token J;

L2 SIS S EE LSS S LIS ST ST S LIS S S LSS LRSI L L L LE S L N

module name
date created

e

Map_Iden_To_Latin
April 30,1984

calls : SEARCH
called by : MAIN
variables

~ s

token = scanned identifier token.
lenth = length of scanned identifier
Latin_Id = the trancslated identifier in Latin farm

last change : Aug 2, 1786

Comment

P

The Frocedure will look up an Arabic identifier 1f not
in the list it will insert the Arabic token in the list.
The token will be assigned & Latin label for the use of
the FASCAL compiler. The meaningless label will have the
form of Id_### . Where the '#' 1s an integer.

NMote: code segments of this module is taken from

"FRINCH HANSEN ON FASCAL COMFILERS" 1985
see thesis references

LRSS RS R EE IR S E ST RS S S L LS LL LR LE R LR L EL L L F 8 E E E T

T

142

r

Furnction Hash_key { return the hash key of 3

(token: token_5Str; { the identifiers. ¥
lenth:line_range

)rinteger:

CONST W = T2E173; { I2768 - 255, overflow chek 3
N = Maxkevs: { Prime number for words sizel
VAR sum,i :integer;: { sum is the token ord. valuel
BEGIN
sum = Qj
i HE B
WHILE 1 <= lenth DO
REGIN
sum := {(sum +0ORD(token(.I.7’) MOD W;
ig= 1 + 1; ’
END;
Hash_Fey:= (sum MOD N) + 1;
ENDj;

Frocedure INSERT

{ token :token_Str;
lenth:line_range;
index 1i1nteger;
FeyMo :rinteger

VAR myn : 1nteger;
pornter : wordpointer;
temp : Latin_toleng —_—

FEOCEDURE
T NGC VAR Latin_i1d @ Latin_token);

VAR

certF s o straing 0513
bb ST

L&SE TDEN_NO OF

Y : BEGIN
STR(Iden _no:1,TEMF) ;
lLatin_id := CONCAT{'id_", TEMF);
EMND ¢
L. . 29 : BEGIN
STR(Iden_No:2,TEMF) 3
Latin_id := CONCAT('id_ ' TEMF);
END3
BEGIN
STR(Iden_No: 3, TEMF) ;

1o, .9

~
O

l.atin 1d:= CONCAT (' id ", TEMF);
END;

143

A NN OGO
PR o T T N M 0 -

Lo

o Y A N RN SN R - She

EEGIN { insert Identifier
{ spelling table ¥
characters :1= characters + lenth;
m := lenth;
n := characters - m;
WHILE (m » Q) DO
EEGIN
ArabicSpell (. m+n .):= token(.m.);
m:= m — 13
ENDj
ID NO(temp):
NEW (pointer); { Insert word record infol
pointer™.l,atin_Id := temp;
pointer~.NextWord Hash (.FeyNo.);
pointer ™. Index 1= 1ndex;
pointetr~.lenth := lenth;
pointer~.lastchar := characters ;
WRITELN(dictionary, ' ‘Y
pointer~.l.atin_Id, " ‘ytoken) ;

Hash (. FeyNo.) := pointer;

END;

FUNCTION
FOUND
(token : token_5tr;
lenth : integer;
pointer: WordFointer
): boolean;

VAR same : boolean:
m,n : integer;

EBEGIN
IF Fointer™.lenth
same 1= false

lenth THEN

ELSE
BEGIM
same = true;
m := lenth;
m := pointer™.lastchar — m3
WHILE same AND (m > 0O) DO
EEGIN
same 1= toben(.m.? = ArabilicSpell (.m+n.
m =m - 1 3
EMND;
Bl
FOUND = zame;
F8D 3

145

in

L)
W

[
Bt N

'y '-A
ROALS

N Y .
., A

\.-- - .
AP >
b I‘-":‘ﬁl_‘l: (

4y
i

]
L XA

P
<
A

Frocedure

Search
(token : token_5tr;
lenth : integeri { token length >
VAR Latin_Id : Latin_token { returned Latin token?
)3
L AR ERAEERRAEFEERERAXRERE AR AKX B REFEAEEERAR KRR RN R %S]
{ Comment:

The module will call function Hash_key to get the
token key and then look the key up in a hash table.
The hash table content 1s pointers, pointing at
word records. The recards has the length of token
location in symbol table, Latin Identitier number,
the next word in the linked list.

IF the pointer resulted from the Key number i1is nil,
that means the word is nat in the table. That means the
word must be inserted if there is room in the spelling
table. Ingcertion is made by procedure INSERT. If the
pointer ig pointing at a record, or linked list of
recaords, function .

FOUND is called to verity the spelling.

T O FAARHEE KRR AA RN AL RERAEEEREEAECFELLALEEER LRSS LR %L T

VAR FeyNo : integer; { global variables for SEARCHI
done : boalean;
Fointer : wordpointer;

EEGTIM { SEARCH ¥
FeyNo := Hash_key(token,lenth);
pointer := hashi{.FeyNo.);
done := false;
WHILE not (done) DO

r

{ insert new id. 1f size and 7

IF (pointer = nil) THEN{ and number within limits 5
BEGIN { add identifier ¥
Iden_MNo = Iden_No + 1 g

I
INSERT (toren,lenth,Iden_No,FeyNo};
Latin_Id = hash(.keyNo.) ".lLatin_Id;
JdJone = true;
i

FLGE IF FOUMD (token,Tok _lLen,pointer) THEN

BEGTNM
Latin_Id = pointer™.lLatin_Tcd;
done t=trues

ERD

146

ELSE
pointer := pointer .nextword

P

PAPS AP p N N -

RN .

.

‘ol gt

LIS

L)
4

b
b S

BEGIN;
SEARCH
END; <

FROCEDURE

< Map_Ilden_To_Latin

(Token, Tok_Len, Latin_Id);
MAF-IDENTIFIER-TO-LATIN 3

GET_LATIN_SFEC_CHAR

¢ token ttoken_Str ;
VAR Latin_char :1char
)3

VAR Arb_char:stringllls;

EEGIN

Arb_Char:

¥FRC
FRE
F97
¥94
+AB
k¥4
¥AB
¥AD
A7
¥96
073
¥BA
¥EBD
FAE
95
¥Asb
FEBER
FAC
ENDj

LN

>)-,’. . s,,.'\ ..-;,". L

=tpken(.1.);
CASE ORD

¢ Arb_Char } OF

Latin char t= T3 Arabic greater fthan
Latln_chdr s= ‘<30 Aragbic less than
Latin_char := "1';{ Arabic sguare bracket
Latin _char == "[C7 ;<
Latin_char s i Arabic RIGHT parenthesis
Latin_char 1= ('3 { ==== LEFT SEEES
Latin_char := "+';{ Arabic Flus
Latin char = "—-"3;<{ Minus
Latin_char = "/ 31 Divide
Latin_char = " _ "3 Under_Score
Latin_char = "#"31 Multiply
Latin_char = ": 3¢ Colon
Latin_char = "=7";1{ Equal
Latin_char 1= °, ;< Numeric comma
Latin_char = """3{ Hat
Latin_char = ". 34 Feriod
Latin_char 1= "3 ;1& Semicolon
Latin_char = ", ;< Comma

148

; el et N UL T IR R B DI RN
OV L L S R} LR S e AT A T T e T \ ., \.
- '~' Y '."\'-.{-K'.'" Ao -r‘.‘ \-'L ool -"»."\" '\
T8 0. Syl S Py N R v »

J*-\ “'»\-"

’

N
? END;
* Frocedure

w2 LATIN_INT
' (token :token_Str:
. Tok_Len:line_range;
o VAR Lat _Int:Stri0)3
", «
ib VAR ind @ integer:
s BREGIN { for each digit map to
{ Latin digit
e tor ind:= 1 to Tok_Len DO
':: CASE ORD(tuken{.ind.)) of
1N FEO : Lat_Int(.ind.) = "0O7;
*;4 ¥R : Lat_Int(.ind.) = "1';
0o ¥B2 @ Lat_Inti{.ind.) 1= "2
¥EZ ¢ Lat_Int(.ind.) = "33
2] ¥E4 : Lat_Int(.ind.) := "47;
it ¥BS : Lat_Int(.ind.) 1= "5°;
“ FB6 : Lat _Int(.ind.) = &3
ﬂ;: FE7 : Lat_Int(.ind.) = 773
<y ¥EB : Lat_Int(.ind.) = "8";
FBS @ Lat_Imt(.ind.)? = 93
A" END H
;;: Lat_Int (.00 = token(.0.3; { set length of tolen
&
- END;
-.4
FROCEDURE
RA FRINT _ERROR_MESSAGES;
:% var ind : integer;:
A BEGIN
ﬁi WRITELN (" **x ERROR ON LINE NO. ",line_no);
for ind := 1| to line_size do write (line(.ind.?);
A WRITELN;
s
1;: IF long_token IN error_set THEM
'_ﬂ WRITELN(® has lang token *#*x°, token);
39 O IF long_comment IN ervror_set THERN
WRITELMN(® has long comment#**%*’' token); 3
3:: IF long_literal Str in error_set THEN
e WRITELMN O UNCILOSED QUOTES "I
35 IF Illegal _Char IN error_set THEN
S
= WRITELM (==ss=ss===== Character number “LNext Loo
v - ‘° 1im out of rangessmm=ms=s=c) g
o END;
-
y 4+
149
L LE STl T Lo DTy TP T) 0 A N

o omain

BEGIN

OFEN_FILE;

INITIALIZE; l
While not(eof(infile)) AND(error_set = [1) DO

BEGIN { Line process 3

FILL _BUFFER (line,next _loc,line_no,line_csize);
WHILE rnot (RBUFFER_EMFTY (next_loc,line_size!) AND
{ error_set = [1) DO
BEGIN { Taken process 7
TOREN_AMD_TYFE(next loc,token,Tok_Len,
Tok Type,Match_Ind);
[F Debug_On THENM '
WRITELNC token = ' ,token, lenght= ',
Tok _len, ” NMNext_lLoc = '~ ,Next_ lLaoci;

CASE Tok_Type of

blanks : FOR i = 1 to Tok_Len DO
write(outfile, ' ");

coment : IF Comment_On THEN

write(outfile,token’;
literal _Str : write(outfile,token);
reserved_word: write (QUTFILE,
res_word(.match_1nd.).Englishi;
rdentifiler : 1IF (Iden_No < 1000) AND
(characters < MazChar) THEN
BEGIN
MAaF _IDENM_TO _LATIN(token,Tok _Len,Latir 12
— writeloutfile,latin_Id’;
END;
1ntegerl : BEGIN
LATIN_INT (tokern,Tok _lLen,Lat_Int);
writefoutfile,lat_Intyr;
EMND
funch_operator: FEGIN
GET_LATIN_SFEC_CHAR (token,latin_chtiari:

write(outfile,latin_char);

END3
contrl _cod D WRITELMO line ",line_nao:d
Control code was ignored '
1llegal : REGIN
FRINT ERROR_MESEAGES
EMND;
ErDs I CALBE 3
END; O WHILE TOEEN

<. WEITELM outrfile);
e END;
ﬁ' IF error_=set - [1 THEM WRITELMN(error on token tvpe)i

v CLOSEC out f1le):

d g AL il s AR adih -l bt il i a3 o ki alld ek has la® el il Sack Kad ot dad el Ao ol gak Aok Aok Aol B Sad Aoh 8ok ok Al ik B A A AN g

it CLOSE(infile):
3N CLOSE(dictionary 13
END.

L I 4 -

- v
"

151

: e e
x Tl S Tl

-,

::’

o sp

Ry e

- - . ; > AN U TR IC U ,
"«\ nh ho‘!'&‘,’l‘!'t RS Zah 3.; YOOI)R "n !'\ ' .?h ’h‘!\' .'n.!.» R

Loaan ahl aid oRa oL ol b ol Al a4 Lk ol ka3 T -) § ‘g

APPENDIX I

TEST RUNS

Test Run 1 H ‘T___L‘-‘j—] | _f Lo | -0 L

§ 7Y = adbJl soe s b
Gb = od b)b
L T’ +] oo 3 ﬁ.u_-&' l
I HERWELE S
§ogdbie 1 pasiacd

E oy Ly
$ owdilbd] YV Tadbldl_sae o) 1 0o 1 dnlb P
HIP OIS S vy N
L]
Jees] (FC e) Lo
Ly | S
£l 4+ e Ty uihoe
S poxd oL piyoda it gu¥l [dmosddadb) 1,35}
S { romd [peBeladbipwn¥i. 0 pdhelas il) g]
e e =
e

Source Code

e 152
o
M

} Test Run 1

E
b'
|
E
;

program id_1;

id _70id_81.
id_70id_81.

const
type 1id_3
var id_7 =
1 id_8
b begin
whileft id_
begin
id 8 ==
read (
write (
end;
end.

id_1 1S _Jeosd | el
id_2 o db] s
id_3Z wd U |
id ___4 fLu.'Y |
id_S o d |
id_6 =) |
id_7 d_o i
id _8 __1..6."3..9
Dictionary Table
id_2 = 32

= record

id_4 string [Z01 ;
id_5 @ integer ;
id_6 : boolean ;
end ;
array [1.. id_2Z1 of id_Z ;

: integer;
I2) do
id 8 + 1

id_4,id_70id_87.id_5);
id_4,id_70id_81.id_5);

Generated Code

g ’f'_-

-\'\Q\’\‘u‘-'~'~3\;‘

L
\ ﬁl e

~5 \..I\‘.A“'- ', .'.
.5 \Lﬂ\;\ mn_\h,\' ERE S -.\’.',1:«‘.1

¢ T L i il id L o ad ol aa-one oo oRA ddoods iAo ga o ad a4 Bad uac ey £l aad gau Bat gnt Bat £a9 Aot Sab Sar Sad Sukinm 64 A0 Ak i an e aid o &8 |

3
o
)
>
LS
o
X I : 25 vyl EC S
N Test Run 2 . A I
. H ‘f’r = Lf_l.b_J | _ D eaz o L
e O a8 = wdibdl ik
.: s L Y +] abadue g fx,u..“,' | -
':‘ : a'_.."_'u‘.’ H _;_o_x.J |
:. H sz..b_;_.o . ‘.“J"f’;"J |
L o Ly .
) §oudlbdl JT [aebll aae o.] 1 Guo ot aulbh s
oy H Poteinad 3 _;.6:-1;_0
" Al oy
" : \ J_'R.J ! (YT __).5'/3..0) L_a_l_.‘.__;
e. B R
:0::)+ G =1 iy
§ (gomd | [pie T Mo s pu¥ | o [pddolandh) 1,5
o H (_}.o_w_] | . [_}-\;:'3..0] Lf_.l.b . f’..u.l'y 1. C _}(}:‘3_0 Ja b) PO !
b« LAl g
- —
b/t
bt
) Source Code
-' N
b | _ e Low) id 1
A4‘ Cl_g_l.b_Jl__;,_\,_.: ld_:'
N o U | id_7
\ j P id_4
o | id_5
2 7'1 ,_ya_i_;‘_] | 1d _\f) ;
, Lt id_7 ;
W, o id & |
1y |
" |
1
) Dictionary Table !
\ 1
-:‘
=S
-
- :
A
v
+,
4
4
(..
-3

-

154

-
aa s

.";
w"‘
v

DO RIIIONC™ MR T A A 3 AN LN WL L LA A S S AN S L N
PANSNHNIRRXIC 48 P4 Dot o e AR S RN B AN S AL £ St B ..‘ WARY

.,

3

)
!
!
\
A
)
y
%
Test Run 2

' program id_1:
i const id_ 2 = 32 ;

type id_3% = record

id_4 : string [30]3 ;
| id_5S : integer ;
) id_& : boolean ;
X end ;
\ var id_7 : array [1.. id_21 of id_3 ;
1id_8 : integer;
. begin
& while(1d_8 < 32) do
: ’ begin
X id_ 8 := id 8 + 1 3
? read (id_70id_8l.id_4,id_70id_8l.id_5);
C . write (id_70id_83.id_4,id_7[0id_8l.id_5S)
end;
) end.
J
J
Generated Code

!,
'
4
o
)
3
‘é
A
"
L)
\ 155
s
L}
]
‘\. LRI I T L I R o L I R L) A N R I UL A I e I O S I I IR I BN I N P TR T T I) .
".’»‘?*:‘?k‘, LAl p’ '.\'. “{7 - .f Y -(‘.;\! \.‘:f < -..',. ~ \- «‘ - - ‘7 1’._(.._}._‘4’.‘.-_;.’ {. ‘ , ‘. "r-.‘ » \: "

-

Test Run 3

L+ =t R

Elag s dain) e zolo o
H]O = —l_Lj_l-b_’ |__._\,J_.: () L,
SO ol bwdou 8 (Lu.'y | RS e 4
ST bl sy Ly
HEC TRV S RN Iy
TR
) H d“'Lﬂ'JI X]V\—-V =:_l-=".5—’|
Ol | o jed s 2l Gale’ =:rpeed]
£OEVIASsOT TEraslydd
S(oslygd]lspu¥l) Jog
ﬁ (\J_J l—Q-J l & ﬁ_U.‘.Y l) _}b_u.n_g_'-_ﬁ l
I S
Source Code ¢
156
N ~ - ‘

h
v

“u,
>

>
"

0

e
Pl
>
=

,‘.J
O,

[¢

f‘ Test Run 3

,; program 1d_1{input,output):
:3_ const id_2 = 19;

%2 var 1d_% @ stringl801;
o id_4: stringlfl123;

w id 5 : real:

y » begin
o0 id_Se= 122.7 % id_4

< 1d_Ze=s Toleamgsd | o) e plle 3alo’ g
o 1id_4:="¢YAVv+0Y 7 i

v concat (id_73,id_4);
writeln (id_7Z,id_4);

o
b end.
Sy
o

‘F:
%

(M

Generated Code

r::'

.'Jn_

Pf'
Lo,

'

)

id_1 St ozm

w3 id_Z G F= N
- id_= oy |
- id_4 e bgd]
_ : id_ 5 NERWE
&

Dictionary Table

L angh it Lad SaN Sataber unc Aak saoh dah Sk Sall S et hd - idi R A ALS A an AR MR- o~ el e Sl oad yade $ad s d woa and-de b A A R ace b e m-h htieaie bug el s aad B ol abd Al - b~ ahi el ol

R LIST OF REFERENCES

Y 1. Proceedings of the International Symposium for
> Standardization of Codes, Character Sets and Keyboards
> for the Aradb ILangquade in Computers, 1-4 June 1980 in
W Riyadh, Saudi ‘Arabia, Saudi Arabian Standard
Organization, 1984.

N 2. BCON Programmer's Manual, Arabic-Latin Information
Systems, Inc., Montreal, Canada, 1985.

P 3. Hansen, Per B., Brinch Hansen on PASCAL Compilers,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1985.

: 1:': 158

Aho, Alfred V., Sethi, Ravi, and Ullman,

Schlidt, Herbert,

Tremblay, Jean-Paul and Sorenson, Paul G.,

=, . A,
AL AR A AR RR T o Ta

Col il

BIBLIOGRAPHY

Jeffrey, D.
Compilers: Principles, Technique and Tools. Addison-

Wesley Publishing Company, Reading, Massachusetts, 1986.

1

Advanced Turbo PASCAL: Programming and
Technique. McGraw~Hill Book Company, Berkeley,

California, 198s6.

The Theory and.
Practice of Compile Writing. McGraw-Hill Book Company,

New York, New York, 1985.

159

A" T T A L LRI T o T TAE A 7 SR T LS ",‘",\"‘,q"y.' Wb\ %\ Y
§ W ,‘us!hh« "‘.' 3 ‘ : a~u0‘~.4 & “ ’ *"‘ 2 L AL, *I\ 'o‘:'» '!‘l-

.l'.-.‘" N '.‘;‘ s

"
A..‘"

g [
»»1

u I\J'P .

,A',g.arl)

&4.;;:::

l'l.
bt %

i.

LA

R/
<
5

f\.‘

L "ol S

LN

10.

\ \ %
‘tl*.t’\ﬁa‘#»"l."'?‘ﬁa.l’n,.=“‘~ .'i K

INITIAL DISTRIBUTION LIST

Library, Code 0142
Naval Postgraduate School
Monterey, California 93943-5002

Prof. Daniel Davis, Code 52Vv
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

Cdr. Ron Rautenberg, Code 52Rt
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

Prof. Kamil Said, Code 56Si

Department of National Security Affairs
Naval Postgraduate School

Monterey, California 93943-5000

Major Abdul-Latif Alzayani
Department of Operations Research
Naval Postgraduate School
Monterey, California 93943-5000

Major Hamad Al_Yosefi
20907 East Borough Drive
Fort Collins, Colorado 80525
Major Abdullaziz I. Al-Hudaithi
20907 East Borough Drive
Fort Collins, Colorado 80525
CPT Abdulkareem Al-Juhaiman
1596 W. Straford Drive
Chandler, Arizona 85224

Royal Saudi Air Defense Forces Training
Riyadh, Saudi Arabia

Prof. Ahmed Lakhdar Gazal
Director De L'Iera

P.O. Box 430

Rabat, Morocco

160

e
* -

T Y

™ Y. NIRRT T s Ny
e DDA L S U '0!"':1., N

O 230 eI N

R

¥ » a -

No.

L A

Copies

2

R T s T T U R S Yo
Ca " W i -;'& VLRI 37
N ’ N Ag° S) 0L !

Maana 3 hat ol mav _hat Ral ¥ henl Nat o ¥ ol Sl | -.w.-‘-.~-—'r—-—\1

11. Director General of Saudi Arabian 1

$ Standards Organization
" Riyadh, Saudi Arabia

. 12. CPT Sadek S. Alju-aiman 10
(n P.0O. Box 5233

- Riyadh 11422

. Saudi Arabia

MR, 13. Defense Technical Information Center 2
Cameron Station
) Alexandria, Virginia 22304-6145

-
o o oA

YY)

S

%

S
AR

Y,

16l

LANAEIN

k)

o

)
& 1,
\.’

-y v . L3 B

o VR S e
Q‘h. LN "s AN A ’!‘. o) Q‘ “"l!t‘?’b, ‘."“ (\ &

e

™

R A 30 o

