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ABSTRACT

Econometricians must choose between many methods for estimating p, the
autocorrelation coeflicient, in a {irst order autoregressive process. This thesis examines
the performance of four estimators in a Monte Carlo simulation. The methods
examined are Durbin-Watson, Beach-MacKinnon, Theil-Nagar and Prais-Winsten.
The autocorrelation coeficient, p, was varied from .2 to .9 and each method provided
estimates of p and P, the regression cocflicient, for 1000 replications. The results
presented here are similar to those found in previous comparisons. Specifically,
Ordinary Least Squares was found to bec an efficient estimator of P when
autocorrelation is present only to a slight degree. Of the four estimators examined, the
performance of Theil-Nagar proved superior in estimating both p and f for small
values of the correlation cocficient. Beach-MacKinnon, on the other hand, while
containing a large bias in the estimation of p, is the more efficient estimator of § for
large values of p.
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I. INTRODUCTION

N A. BACKGROUND

: Autocorrelation exists in a regression model when the crror terms are no longer
independent but are correlated. In the examination of time series data autocorrelation
. is a common phenomenon and can lead to problems if Ordinary Least Squares (OLS)
*- estimation procedures are used. The purpose of this thesis is to examine and compare
four different estimates of the autocorrelation c_oe(ﬁcicnt, P, the estimation of which 1s
essential to the resolution of OLS deficiencies. The four estimators to be examined arc

the Durbin-Watson, Theil-Nagar, Beach-MacKinnon, and Prais-Winsten.

B. PROBLEM STATEMENT

In the standard regression model y=XB +e, y is a Tx1 vector of observations of
\ a dependent variable, X is a TxK design matrix and § is a KxI vector. The variable e
E‘_ is a Tx1 vector of unobservable random crrors with E(¢)=0 and covariance matrix,
j E(cc')=0‘21T. Thus, in the standard model, the random vector e contains elements
which are pairwise uncorrelated with identical means and variances. In the presence of
autocorrelation this strong assumption is violated. That is, the error terms arc no

longer independent but are correlated. The regression model becomes,

Yy = Xt[} + e t=1,2,....T (eqn I.1)
) where ¢, = pe, | + v,
- E(v,) = 0, and
- L(vw) = 621 .
4

This is known as a first order autoregressive or AR(1) process. As illustrated by
equation 1.1, ¢, is expressed linearly in terms of the ¢, | and another random error
. term v,. The assumption of zero mean and constant variance provides v, with all the
nicc propertics of ¢, in the standard model. This process may oceur for a variety of
reasons, some of which are:

I Omitted explanatory variables. 1{ a corrclated explanatorv variable has been
excluded from the design matrix its exclusion will be reflected in the correlation
of the raundom variable e.

v 2 A\Ii.\'{gvc{ﬁmtim of the mathematical form of the model. 1f the wrong mathematical
v relationship is chosen the values of ¢ may be dependent.




Dt e’ 2 )

3 Interpolations in the statistical observations. If the observational data is smoothed
autocorrelation may result.

4 Mispecification of the true random error. Dependence among the error terms may
occur naturally. "[Ref. 1:p. 204]

Utilizing OLS to estimate the regression coeflicient, B, in the presence of an AR(1)
process can lead to problems. Generally, there are two consequences to consider. The
first is that the OLS estimator of the coeflicients will be unbiased but will not be very
efficient. The second consequence is that the OLS variance estimator is biased. For

these reasons it is useful to investigate other methods to estimate B [Ref. 2:p. 439|.

C. ESTIMATORS

When p is known, the process is casily accounted for using Gencralized Least
Squarcs or Weighted Least Squares methods [Ref. 3). Ilowever, the usual situation is
that p is unknown and must be estimated. A number of methods have been proposed
to estimate p and properly account for OLS dcficiencies in estimating . Chapter 2 will

develop the four estimators mentioned above and examine the autocorrelation process.

D. SIMULATION

Each of the estimators considered here have the same asymptotic propertics
therefore any decision on which one to use must be based on small sample analysis and
Monte-Carlo evidence. Therclore, a simulation will be created in which the data is
generated according to guidelines presented in previous studies with equation 1.1 as the
model. The actual values of p will be varied from .2 to .9. The four estimation

techniques will then provide estimates of p and f for 1000 replications.

E. MEASURE OF EFFECTIVENESS

To provide an indication of which estumator performs best the mean square error
of both 6 and ’D\will be estimated for each estimator. Prior results for different scts of
estimators indicate that no one estimator will prove superior over the entire range of p

but that onc or two may out perform the others over specific intervals.
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, II. ESTIMATION
> A. GENERAL
o This chapter attempts to explore the theory behind both the first order process
and four ecstimators developed to properly account for it. Three of these
, (Durbin-Watson, Thicl-Nagar, and Prais-Winsten) are categorized as estimated
Cd
- generalized least squares estimators. The fourth (Beach-MacKinnon) is a maximum
" likelihood estimator.
L4
<
B. PROCESS
N The first order process can be written as
<
“
N Ve = XB + ¢ t=1,2,..,T (cqn 2.1)
2 wheree, = pe, | + v,
E(v,) = 0,
E(vv) = 0'2[,
. E(Vt2)= cvz, and
- E(vv)=0 for sxt.
; The parameter p is generally unknown and along with  must be estimated. The
- statistical propcrties of the random error, v, listed in equation 2.1 arc identical to those j
z listed for ¢ in the gencral lincar model. The statistical propertics of e under these new
. assumptions arc quite different. Judge |Ref. 4:p. 438] shows that
- j
: - |
v E(e,) = Y p'E(vy) = 0 (eqn 2.2) l
; (R4 ] ;
and
= E(e,2)=0,2=06,2/(1-p)% . (cqn 2.3)

The covariance between crrors s periods apart is no longer zcro and is given by

Ee,ep.)= Ll 4 )= (p%62)(1-p?) . (cqn 2.4)

10




The covariance matrix for e is now casily written as

P = E(ee)= (eqn 2.5)

p 1 . . . pl2
= ¢2,/(1-p?)
pT-1 T2

or utilizing the iollowing convention,

® = o2  (eqn 2.6)

where I’ =

Lo T-1
2 T.
p1 P’ pl-2
2 1 RE

=1//(l-p2)
T 2,13 |

Thus, the assumptions made about the error term, e, in the standard lincar model
‘ no longer hold for the autoregressive case. Specilically, due to autocorrclation the crror

R 21 ‘e ,2\{:
covariance matrix is no 1011gcr written as ¢ but 1s now ¢ v .

When an attempt is made to perform a least squares [it to the data in the presence
of an AR(1) process there are two problems to consider.

l l{l}l_c.lcas*t squares estimator f§ = (X'X) Ix v will be unbiased but will not be very
cflicient.

. . DAY ol A T
2 The least squares covariance matrix 6<(X' X I with 62 = (y-Xb)Y(v-Xb) (T-K)
will be a biased estimator ol the variance of™p.

In the presence of positive autocorrelation Judge [Ref. dip. 439] notes that with

OLS cstimation the bias of the standard crror of f will very likely appear as an

B

| TP




underestimate. Park and Mit/c{lell [Ref. Sp. 16] warn that OLS seriously
underestimates the variance of B for p > 0.4. This understatement makes the
cstimates themselves appcar much more significant than they actually are and makes

hypothesis testing of the slope cocfficients unreliable.

C. METHODS OF ESTIMATION
1. Generalized Least Squares Estimation
When apriori information is available about ‘¥, the most convenient estimate
for the regression coefficient, I[}, is obtained by applying lcast squares estimation

techniques to the transformed model,

Y* = X*B + e* (eqn 2.7)
where Y* = PY
X* = PX

e* = Pe,

The transformation matrix P is the TxT matrix

JI1-p2 0 0 0 0
-p 1 0 0 0 _
0 -p 1 0 0
P = 0 0 -p 1 0

0 0 0 . . . -p )|
where P'P = ‘l"l.

This mcthod is known as the Generalized Least Squares (GLS) estimation.
2. Estimated Generalized Least Squares
The usual case is that p is unknown and must be estimated. Once an estimate
for p (;)\) is computced one can substitutc‘;}iuto the P matrix and proceed with the GLS
method outlined above. This is known as Estimated Generalized Least Squares
(EGLS) estimation. The computational form of the alternative cstimators for p

discussed are as follows:
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a. Durbin-Watson

The statistic

7 7
d=Y @2 Y2 t=1..T (eqn 2.8)
€ 2 A _ f’/\
where e, = y;-X,

is often used to test for first order autoregressive errors. As the number of

observations (T) increases it can be demonstrated that d approaches the least squares
estimator of p or

D= 1-(d/2). (cqn 2.9)

The Durbin-Watson statistic is provided by most Icast squares computer packages and
is very easy to use. It also is an cxample of a two-stage estimator. That is, it first
estimates the correlation parametcr and then uses this estimate to compute the
generalized lcast squares cstimates for P.
b. Theil-Nagar
A modification of the Durbin-Watson estimator suggested by llenri
Theil and A. L. Nagar is

P = 1X1-2) + K3 (12 K. (cqn 2.10)

Theil and Nagar claim that this estimator is an improvement over Durbin-Watson if
the first and second diflerences of the explanatory variables are small when compared
to their corresponding ranges [Refl 6]. Like Durbin-Watson, it also is a two-stage
estimator.

¢. Prais-Winsten

A minimum sum of squarcs approach to estimating p yields,

A J A A A .
p=Y Tl /&2 =11 (eqn 2.11)

13
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This estimator can be employed in both a two step and an iterative procedurc. This
paper, however, considers only the following iterative form:
1. Set’p = 0.
2. Transform the variables in accordance with the transformation matrix and
equation 2.7. A
3. Calculate the least squares estimate of f3 c%ditional on p.
4. Calculate the cstimate of p conditional on B by using equation 2.11.
5. If the absolute difference inﬁfrom the previous iteration is sufficiently small (less
than 0.00001) stop. If not go to step 2. [Ref. 7:p. 2]

3. Maximum Likelihood Estimation
A maximum likelihood (ML) estimator is the value of 8 which maximizes the
value of the likelihood function L(8). Under the assumption that Y has 2 multivariate

normal distribution with mean X and covariance matrix 0‘2‘1’, the likelihood function
is '

LB.p.sD= C- (17262 )(y-XP)"P~1(y-XP) (cqn 2.12)
where C = -(T/2)lng?, + (1/2)ln (1-p?).

The ML estimators for B, p, and 0V2 are those values for which, )

dL/dP=0, 3L/dp=0, dL/dc% =0 . (eqn 2.13)

Solutions to equations 2.13 are very difficult to derive. Beach and MacKinnon
(Ref. 8:p. 54] use an ML estimator for sz and substitute into equation 2.12. The
result is the concentrated likelihood function,

L(B.p) = K-(T/2)In((y-XB) P L(y-xp)(1-pP) 1/ T) (cqn 2.14)
where K=(T,;2)In(T)-(T/2) .

They suggest maximizing L(J},p) with respecct to § with p held constant and then to
maximize with respect to p with f§ held constant. An algorithm to derive this ML
cstimate is -
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’ 1. Setp = 0.

y 2. Transform the variables in accordance with equation 2.7.

' 3. Calculate the least squares estimate of J conditio/n\al on f)\

S 4. Calculate the ML estimate of p conditional on J by solving a cubic equation of
S the untransformed residuals. (see [Ref. 8] for details)

. 5. If the absolute differcnce in';)\ from the previous iteration is sufficiently small (less

than 0.00001) stop. If not, go to step 2 [Ref. 7). (Note: The same procedure was

" employed for iterative Prais-Winsten mecthod except that equation 2.11 was used to
L estimate p.)

)

N

o This is not a comprehensive listing of all available estimators for a first order
- process. Other estimators are listed in Judge [Ref. 4].
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11I. COMPARISON

A.  GENERAL

The finite sampling properties of the estimators listed here have not been derived.
Choice of which estimator to use might be based on evidence obtained from Monte
Carlo simulations. This chapter explains a simulation used and provides a synopsis of
comparisons reported in the literature.

B. PREVIOUS COMPARISONS

There have been a number of studics of estimators for p . LEach has concluded
that OLS has serious deficiencics in the presence of autocorrclation. The majority of
these papers have scttled on two points. First, particularly in small sample sizes
(T<50) it is best to use ecstimators that consider all T observations. Ruao and
Grilitches concluded that using estimators such as Cochrane-Orcutt that ignore the
first observation can lecad to a substantial loss of efliciency [Ref. 9:p. 269]. These
results were further substantiated by Beach and MacKinnon. In an attempt to develop
a computationally efficient algorithm to maximize the likelihood function they
discovered (for p= 0.6, 0.8, 0.99) significant gains in efficiency to be made by
cmploying the first observation. Some of thesc gains arc in the neighborhood of 700
percent [Ref 8:p. 55]. Park and Mitchell concluded that retention of this first
observation substantially reduces the risk of collincarity as p approaches 0.9 [Ref. S:p.
10]. Kobayashi verificd theoretically the experimental results of Park and Mitchell. By
computing the asymptotic variances of scveral estimators he demonstrated that the loss
of efficiency of the Cochrane-Orcutt method was due primarily to ignoring the first
obscrvation. {Ref. 10:p. 951].

The sccond point is that the Prais-Winsten solution techniques outperform many
comparable estimators of thc correlation paramecter. Spitzer concluded that
Prais-Winsten “appeared to be the best of all the two stage cstimators.” [Refl 11:p.
44]. Park and Mitchell in a later study comparing Beach-MacKinnon with the iterative
Prais-Winsten  estimator concluded that the iterative Prais-Winsten performs

“appreciably better in estimating the autocorrelation coeflicient p” [Rell 7:p. S}

16
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Although there were no studies found specifically comparing the four estimators
presented here, ecach has demonstrated a superiority to OLS in the presence of a first
order process.

C. MODEL AND DATA GENERATION
Equation 2.1 was utilized as the model with the first term in the vector e
gencrated in the following fashion,

e1= vl/(l—p)l/z. (eqn 3.1)

In order to conform with previous comparisons, the data utilized in this
experiment is identical to that used in Beach and MacKinnon [Refl. 8] Two sample
sizes of 20 and 50 observations were used. The untrended explanatory variable, X, was
drawn from N(0, 0.0625) and the random ecrror, v, was drawn from N(0, 0.0036).
Although autocorrelation in theory may be positive or negative, in econometric data it

is almost always positive [Rell 1:p. 201). For this rcason p was varicd from 0.2 to 0.9.

D. VALIDATION

The data generation program was checked to ensure the normality of ¢ using the
Chi Square Goodness of Fit test. The normality assumption was accepted at a 0.3684
level. Finally, in order to ensure cach estimator performed properly the random
portion of the model, specifically the random variable V, was removed. This allowed
the estimators to function in a deterministic fashion. Data were then generated and
submitted to each estimator for values of p equal 0.2, 0.6, 0.8. The results are

presented in Table I, illustrate that the cstimators are {unctioning properly.

E. SIMULATION

For cach run the values of the regression cocllicients, By and B}, were sct to 1
and 1. The variables X, and v, were drawn from the normal distributions discussed
earlier. The dependent variable y, was calculated using equation 2.1. Since the
ultimate objective was to generate residuals to send to the four estimation routines, a
regression was then performed of y on X and residuals calculated using,

A A _
e = ¥y - X P t=12,..,T (eqn 3.2
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TABLE 1
ESTIMATES OF AUTOCORRELATION COLEFFICIENT

The values of the residuals were then sent to each estimation routine. Estimates of
f and p were determined for values of p equal to .2, .3, 4, .5, .6, .7, .8, and .9. Each

estimate was replicated 1000 times for the sample sizes of 20 and 50.

F. MEASURES OF EFFECTIVENESS
In order to compare the performances of the estimators, two MOE’s were used.
. A . . -
The mean square crror (MSI) of p was estimated for cach estimator. This represents
the expected squarcd error made in estimating p. The following computational form of
MSL was used,
AR

Y (p-p)¥1000 = 1,...,1000. (eqn 3.3)
-1

A
The successive values of MSI of p were then plotted against the actual p to

cxamine performance over the range of p.

The seccond MOE examined the rc]ativeACmcicncies of the regression coefTicient a
defined in [Ref. 7:p. 7). A ratio of MSE of B for a particular estimate to the MSE of B




Y
3 for the OLS estimate allows the examination of the relative gains in using particular
. techniques over OLS. Since the proper estimation of J} is paramount the efliciency of B
‘ is predetermined to be the most important MOE.
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IV. RESULTS AND CONCLUSIONS

A. GENERAL

The major emphasis of this thesis was to examine the performance of four
estimators of the autocorrelation coefficient, p, for a first order autoregressive process.
The estimators examined were Durbin-Watson, Theil-Nagar, Prais-Winsten, and
Beach-MacKinnon.

A Monte-Carlo simulation was performed for the following values of p: .2, .3, .4,
.5,.6,.7, .8, and .9. Each run was replicated 1000 times for sample sizes of 20 and 50.
The results are recorded in Table II . Irrespective of sample size, each of the methods
underestimate the true valuc of p but as the number of observations is increased from
20 to 50 the bias reduces. As was expected, no one estimator uniformly outperforms
the others. In both sample sizes, the two stage estimators (Durbin-Watson and
Theil-Nagar) achieve better results for small p. As the value of p increascs, the
iterative methods (Prais-Winsten and Beach-MacKinnon) perform best. With T=20

this transition occurs at p=.6 while at 50 obscrvations it occurs earlier at p=.4.

The discussion of the results will be divided into two sections. The mcasures of
effectiveness, as defined in Chapter 3 will first be applied to the simulation results for
T=20. This will be followed by an identical approach when the sampie size is
increased to 50.

B. SAMPLE SIZE 20

Since performance of an estimator is roughly indicated by its mean and variance,
mean square error (MSLE) of cach f)\ over the entire sample size was cstimated. The
results of these calculations arc presented in Table [11 along with a plot of MSE off)\
versus actual values of p in Figure 4.1 . They again indicate that the Theil-Nagar and
Durbin-Watson estimators arc better for smaller values of p (p <.06) and as p increascs
the Prais-Winsten p emerges as the best. On the basis of Iigure 4.1 alone,
Beach-MacKinnon's performance is clearly inferior.  However, in examining the
cfliciency of cach estimator in Table 1V, Beach-MacKinnon proves to be the most

cflicient in estimating B over the widest range of p. The tic in Figure 4.1 between

Theil-Nagar and Durbin-Watson is resolved in Table TV with Theil-Nagar proving to
£ gar p £
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TABLE 11
ESTIMATES OF AUTOCORRELATION COEFFICIENT
Sample Size 20
p DW TN PW BM
2 158 162 13 107
3 234 239205 193
4 310 316 .296 279
5 385 392 .387 .365
.6 460 467 478 .450
7 533 542 567 535
.8 .603 013 655 617
.9 667 681 .741 697
Sample Size 50
p DW TN Pw BM
2 173 .lel 170 178
3 279 253 .270 270
B 4 360 340 360 359
.5 451 432 403 453
.0 .544 523 .559 547
v 630 610 651 .040
.8 726 700 747 731
9 812 .796 .839 .820
21
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be uniformly more efficient than Durbin-Watson. Table 1V also demonstrates that for
p =.2 OLS is at least as eflicient as three of the four estimators.

C. SAMPLE SIZE 50

The results of the MSE calculations for T=150 are recorded in Table V along
with a plot of MSE of p versus the actual values of p in Figure 4.2. The
Durbin-Watson and Theil-Nagar estimators again perform the best for smaller values
of p (p <.4) and as p increases the Beach-McKinnon and Prais-Winsten estimators of
p contain the smallest MSE.

Once again even though the Prais-Winsten p has a smaller MSE than
Beach-MacKinnon, Table VI illustrates that Beach-McKinnon is a uniformly more
eflicient estimator of the slope coeflicient. For the smaller values of p (p<.4)
Theil-Nagar 1s more eflicient than Durbin-Watson. Table VI also illustrates that OLS

is at least as efficient as any of the other estimators when p is small.

D. SUMMARY

As was found in previous studies when autocorrelation is present only to a slight
degree (p<.2) the OLS estimator provides an cflicient estimate for the regression
coefficient, B. As the process becomes more significant however, all the estimators
outperform the OLS solution. In both sample sizes the performance of Theil-Nagar
and Durbin-Watson are nearly identical with respect to the MSE of p. However, when
efficiency of the slope cocflicient estimate is cxamined, Theil-Nagar proves to be the
better 2 stage estimator. Park and Mitchell [Ref. 7:p. 4] found that Prais-Winsten
performs better in estimating $. The rcsults presented here tend to dispute that
finding. For while Prais-Winsten has a uniformly smaller MSLE of p,
Beach-MacKinnon provides the most efficicnt cstimator of f . Spitzer, on the other
hand [Rel. 11:p. 44], which ranked two stage estimators as being the best for values of
p between .2 and .5, mirrors the results produced here. Apriori knowledge of the
neighborhood of p will be helpful in sclecting the appropriate estimation method. [For
both sample sizes Theil-Nagar appcars to be the best for small values of p.

Beach-MacKinnon, while containing a larger bias for p than docs Prais-Winsten, is a

much more cllicicent estimator of the slope coeflicient for larger valucs of p.

VIR
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<,
+ TABLE 111
: DATA PRESENTED IN FIGURE 4.1
-
Sample Size 20
} p MSEDW MSETN MSEPW MSEBM
. 2 7494 7485 8557 8594
y 3 6268 6244 7004 TS
3 4 5156 5124 5621 5787
- S 4159 4126 4400 4604
. 6 3278 3250 3342 3566
. N 2519 2495 2433 2662
o 3 1891 1860 1698 1916
9 Ad07 1357 JA141 1331

23
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TABLE 1V

EFFICIENCY OF REGRESSION COUTTICIENT ESTIMATIS

Sample Size 20
MSER (DW) MSEP (TN)

MSEB(OLS)  MSEB (OLS)

1.004 9794
9228 8967
8218 7929
7082 6751
5864 5484
4010 4207
3359 3020
2253 2087

MSEP (PW)

MSER (B\)

MSLp (OLS)

1.035
9442
8325
7024
5652
4329
3093
2077

MSEB (OLS)
1.041
9515
.8342
6959
S518
4135
2870
1892




a4
MSE OF ESTIMATE

b
%
. c
-2 A ,i
: Figure 4.2 [stimated mean square error of p vs. p (sample size = 50). i
¥
& TABLE V
%2 DATA PRESENTED IN FIGURE 4.2
Sample Size 50
ZEE p MSEDW  MSETN  MSEPW  MSEBM
o 2 7010 6766 7055 7065
- 3 5500 5399 5653 5578
; 4 4383 4196 4396 5578
R .5 3298 3151 3056 3156
o] 6 2358 2262 2116 2215
L 7 1578 1526 1357 1449
- 8 0906 0942 0773 0851
- 9 0500 0509 0360 0417
o
- 25
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’ TABLE VI
Eﬁ EFFICIENCY OF REGRESSION COEFFICIENT ESTIMATES
:’ Sample Size 50
p MSEP (DW) MSLP (TN) MSLP (PW)  MSEP (BM)
<
- MSEB (OLS)  MSEB(OLS)  MSEP (OLS)  MSEP (OLS)
- 2 1.073 1.041 1.046 1.058
i 3 9985 9482 9714 9562
s 4 8850 8255 8635 8255
- 5 7452 6859 7282 .6825
" 6 5920 .5420 .5870 5406
. 7 4366 4020 4453 4020
- 8 2889 2690 .3067 2700
2 9 1589 1505 1738 1505
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APPENDIX
PROGRAM LISTINGS

This appendix contains listings of the programs utilized in the analysis performed
herein. All of the functions are written in FORTRAN and contain the necessary
documentation. The Monte Carlo simulation was performed using the Advanced
Simulation and Statistics Package [Ref. [2] developed by P. A. Lewis. Since the
package only allows for the simultancous comparision ol 3 estimators, 2 functions were
developed for each sample size. The first, SIMS generates estimates for
Durbin-Watson, Theil-Nagar, and Prais-Winsten for a sample size of 20. SIMSA
meanwhile, generates estimates for Beach-MacKinnon [or the identical sample size.
Routines for Durbin-Watson and Theil-Nagar were included in SIMSA to ensure the
results were comparable to SIMS. SIMSB and SIMSC perform in a similar [ashion for
sample size of 50 and therefore were not included. The Advanced Simulation and
Statistics Package computes the mcan square error of/p\ for cach cstimator
automatically. The mcan square error for the B estimates was accomplished by the

MSLEB function.

SIMS
DIMENSION EHAT(20)
COMMON /MYDATA/ K,T,ANS,Y1,X
COMMON /DATA1/ IX1A,RHO
REAL*4 Y(5000),YMIN,YMAX,PMEAN(3)
CHARACTER*80 T1,T2,T3
INTEGER N,M,NE(8),L,D,RG,SEI,SVS,NEST,NSR,IX1,IX2,IX3
EXTERNAL DATGEN, DURWAT, BEAMAC, PRAWIN, LSEB, DCALC, TRANSF
EXTERNAL LNORM, SIMTBD,GMPRD
NR=20
T=20
K=2




........

2

" C
% OPEN (UNIT=19,FILE='MONICA')
» OPEN (UNIT=21,FILE='MARGE')
- OPEN (UNIT=51,FILE='AMBROSE')
£ OPEN (UNIT=41,FILE='DAT2')

;3 OPEN (UNIT=61,FILE='DAT3")

READ (19,*) ANS

§ 10 READ(19,*,END=999) N,M,L,D,RG,SEI,SVS,NEST,NSR
- READ(19,*)YMIN, YMAX

35 READ(19,*) (NE(I),I=1,L)

' READ(19,120) IX1,IX2,IX3

“s 120 FORMAT(I5,1X,15,1X,15)
= READ (19,115) T1
& 115  FORMAT(A80)
> READ(19,115) T2
o READ (19,115)T3
- READ(19,*) (PMEAN(CI),I=1,3)
o READ(19,*) RHO
3 READ(19,61)IX1A
61  FORMAT(I5)

% C  CALL FOR SIMTED

o CALL SIMTBD (IX1,IX2,IX3,Y,N,M,NE,L,D,NSR,RG,SEI,SVS,
N *YMIN, YMAX ,NEST,DATGEN, DURWAT , T1,DATGEN, BEAMAC, T2, DATGEN, PRAWIN, T3,
- *PMEAN)
< GO TO 10
’ 999  WRITE(6,*)'END OF DATA INPUT'
¥ STOP
v END
e K e e A Y T e R Ve e R e KA Fe AR e R K Y A ok e e R 0k e e ok Y e v e e dle R R e R SR A e e K e ke YK R Yo K e ok Tk K e e ok ok ke ok
C ¥ % KKK KK Kk K ke ok ok DATA GENERATION SUBROUTINE b2 22282282500 8.2.8.8.8.8.8.8.1
:‘ Je A Je ok e Je 3 3k e e e e k0 ek o kSt e sk R R oK 3 e ok ok ok ke T ok ke e sk e e T o ok e e ko e A o ok e ok ke ok

» SUBROUTINE DATGEN (IX1,EHAT,NR)
i DIMENSION BHAT(2),YSTAR(20),R2(20),U(20),

-, -~
o, Lt
'
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*E(20), YHAT(20),EHAT(20),XSTAR(20,2)
»ij * Y1(20),X(20,2),V(20)

' COMMON /MYDATA/ K,T,ANS,Y1,X
COMMON /DATA1/ IX1A,RHO

-

q
N INTEGER IX1,IX1A,NR
- C
. C
2 C GENERATE THE RANDOM ERROR
- c
-~ CALL SNOR (IX1,U,NR,1,0)
Y, C ADJUST THE VARIANCE OF R. E. IAW BEACH AND MACKINNON(1978)
& DO 38 I=1,T
- V(I)=U(I)*. 06
i 38 CONTINUE
(o C GENERATE THE ERROR FOR THE STAND LINEAR MODEL
‘ E(1)=V(1)/(1-(RHO**2))**0. 5
< D0 31 J=2,T
.o E(J)=RHO*E(J-1)+V(J) _
:§ 31 CONTINUE
C
N c
Eﬁ C GENERATE THE EXPLANATORY VARIABLES IAW RAO AND GRILITCHES (1969)
R C
o D0 32 I=1,20
o X(1,1)=1
" 32 CONTINUE
;E c CHANGE IX1 IN ORDER TO AVIOD COLLINEARITY

c IX1A=IX1+19
CALL SNOR(IX1A,R2,NR,1,0)
00 33 J=1,20
X(J,2)=R2(J)*. 25
33 CONTINUE

...,"-. .
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" C THE TRUE BETA EQUALS 1,1

-

: c
R C
X C GENERATE THE INDEPENDENT VARIABLE

A c

35 D0 35 I=1,20
3 YI(D)=(X(1,1)+%(1,2))+E(1)
< 35 CONTINUE

GENERATE THE LEAST SQUARES ESTIMATOR FOR BETA

CALL LSEB(X,Y1,BHAT)
c PRINT LSEB TO A FILE
s IF(ANS .EQ. 2) WRITE(61,201)BHAT

2 201  FORMAT(F11.8,2X,F11.8)

Y

. GENERATE YHAT
:i‘,
y-s
X DO 100 1=1,20 -
2 YHAT(1)=X(I,1)*BHAT(1)+X(I,2)*BHAT(2)
2 100 CONTINUE
- C

- c
L C  GENERATE EHAT

2 c

~ DO 50 1=1,20

E; EHAT(1)=Y1(1)-YHAT(I)

% 50 CONTINUE

5 RETURN

% END

C e K K R e Fe Yo de K K Fe R de ke KK KR K DURBIN WATSON ¥ Y 3K v e Yo T I ok K K ok ok e T ek ok Rk kA ok Wk R
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C THIS FUNCTION COMPUTES THE DURBIN-WATSON ESTIMATE OF RHO
REAL FUNCTION DURWAT (EHAT,NR,WI)
DIMENSION EHAT(20),X(20,2),Y1(20),XSTAR1(20,2),YSTARL(20),BHAT1(2)
COMMON /MYDATA/ K,T,ANS,Y1,X
CALL DCALC (EHAT,T,D)
DURWAT=1-D/2

CALL TRANSF(X,Y1,DURWAT,XSTAR1,YSTAR1)

CALL LSEB (XSTAR1,YSTAR1,BHATI1)

IF (ANS .EQ. 1 ) WRITE(21,701) BHAT1
701  FORMAT(F11.8,2X,F11.8)

RETURN
END

e % v v v e Yo e Fe e e vk ke ke e ok ok ok ok THEIL NAGAR K Fe v Y e sk P vk e e Ao Fe ok A e e e de e 3 e e e T e e ok vk ko

THIS FUNCTION COMPUTES THE THEIL-NAGAR ESTIMATE OF RHO
REAL FUNCTION THENAG (EHAT,NR,WI)
DIMENSION EHAT(20),YSTAR2(20),XSTAR2(20,2),BHAT2(2)
* Y1(20),%(20,2)
COMMON /MYDATA/ K,T,ANS,Y1,X
CALL DCALC (EHAT,T,D)
THENAG=( (T**2)*(1-D/2)+K**2)/(T**2-K**2)
CALL TRANSF(X,Y1,THENAG,XSTAR2,YSTAR2)
CALL LSEB (XSTARZ,YSTAR2,BHAT2)
IF (ANS .EQ. 1 ) WRITE(31,801) BHAT2
801  FORMAT(F11.8,2X,F11.8)
RETURN
END
Y K K Fe K W e e e KOsk FK R R K R K ok Fe ok ok ok PRAIS WINSTEN e K A e kA Ak ok ok e sk K Rk ok ok 0k Rk O K sk ok
THIS FUNCTION COMPUTES THE PRAIS-WINSTEN ESTIMATE OF RHO
REAL FUNCTION PRAWIN(EHAT,NR,WI)

OO O OO

-
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DIMENSION EHAT3(20),YHAT3(20),YSTAR3(20),BHAT3(2),
*EHAT(20),XSTAR3(20,2)
* Y1(20),X(20,2)
COMMON /MYDATA/ K,T,ANS,Y1,X
N=0
. RHO3=0
| 98  N=N+1
CALL TRANSF (X,Y1,RHO3,XSTAR3,YSTAR3)
CALL LSEB (XSTAR3,YSTAR3,BHAT3)
C GENERATE YHAT3 , ¥
DO 83 I=1,20
YHAT3(I)=X(I,1)*BHAT3(1)+X(I,2)*BHAT3(2)
83 CONTINUE
D0 4 I=1,T
EHAT3(I1)=Y1(I)-YHAT3(I)
CONTINUE ,

RHONUM=0 :
RHODEN=0 |
DO 5 I=2,T

RHONUM=RHONUM+( EHAT3(1)*EHAT3(I-1))
CONTINUE >

3 00 6 I=2,T-1
' RHODEN=RHODEN+( EHAT3(1)**2) 1
6  CONTINUE j
PRAWIN=RHONUM,/RHODEN r
C  CHECK FOR PRAWIN WHICH ARE OUT OF BOUNDS h
IF(PRAWIN. GE. 1) THEN
PRAWIN=0. 99999
ELSE IF (PRAWIN. LE. -1)THEN
PRAWIN=-0. 99999
END IF
C  COMPARISION OF RHO3 AND PRAWIN IF DIFF .LT. 0.0001 THEN END
IF(ABS(RHO3-PRAWIN). GT. . 0001)THEN

ol SN W )
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3 RHO3=PRAWIN
~

GO TO 98
ELSE

N PRAWIN=PRAWIN

;§ END IF
13 c IF (ANS .EQ. 1 ) WRITE(41,901) BHAT3

' CO1  FORMAT(F11.8,2X,F11.8)

N RETURN
N END

N c .

' c THE FOLLOWING SUBROUTINES AID IN THE COMPUTATION OF THE FOUR
- c ESTIMATORS OF RHO.

: C e K KK K KKK K KKk kK SUBROUTINE LSEB Y F Y Yo sk Ao A v Fe K e KR e e Tk Yk Kk R Ak ok e Kk ok
; c SUBROUTINE LSEB WILL COMPUTE THE LSE OF B

2 c

z SUBROUTINE LSEB(X,Y1,BHAT)

2 DIMENSION BHAT(2),Y1(20),X(20,2),XTRNSP(2,20),XI(2,2),H(2,20),
< *XPRIX(2,2)

- c X TRANSPOSE

v DO 40 I=1,20

. DO 41 J=1,2 _
N XTRNSP(J,1)=X(I,J)

- 41 CONTINUE

40  CONTINUE

- c MULTIPLY X TRANSPOSE AND X

¥ CALL GMPRD(XTRNSP,X,XPRIX,2,20,2)

5 C CALCULATE INVERSE OF X PRIME X

R DETR=1/(XPRIX(1,1)*XPRIX(2,2)-XPRIX(1,2)*XPRIX(2,1))

- XI(1,1)=DETR*XPRIX(2,2)

- XI(1,2)=DETR*(-XPRIX(1,2))

. XI1(2,1)=DETR*(-XPRIX(2,1))

% XI(2,2)=DETR*XPRIX(1,1)

; c MULTIPLY INVERSE AND TRANSPOSE

% CALL GMPRD(XI,XTRNSP,H,2,2,20)

LY

00 99 I=1,2

33
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BHAT(I1)=H(I,1)*Y1(1)+H(I,2)*Y1(2)+H(I,3)*Y1(3)
*+H(1,4)*Y1(4)+H(I,5)*Y1(5)
*eH(T,6)*Y1(6)+H(T,7)*Y1(7)+H(I,8)*Y1(8)+H(I,9)*Y1(9)
*+H(1,10)*Y1(10)+
*XH(T,11)*Y1(11)+H(I,12)*Y1(12)+H(I,13)*Y1(13)+H(T,14)*Y1(14)
*+H(1.15)*Y1(15)+
*H(T,16)*Y1(16)+H(T,17)*Y1(17)+H( L, 18)*Y1(18)+H(I,19)*Y1(19)+
*H(1,20)*Y1(20)
CONTINUE

RETURN

END

K % v kKR e ok kK ke KK SUBROUTINE DCALC R P Yo K KK P K e kv ke ke e e vk o ok ok v e A ke ok ke ke kK

SUBROUTINE DCALC WILL COMPUTE THE DURBIN STATISTIC D

SUBROUTINE DCALC(EHAT,T,D)
DIMENSION D1(20),D2(20),EHAT(20)
ONUM=0
DDEN=0
D0 1 1=2,T

D1(I-1)=(EHAT(I)-EHAT(I-1))**2
DNUM=DNUM+D1( I~1) —

CONTINUE

DO 2 J=1,T
D2(J)=EHAT(J)**2
DDEN=DDEN+D2(J)

CONTINUE
D=DNUM/DDEN
RETURN
END

W % v K Fe Ve e ke e ek e Kok e SUBROUTINE TRANSF A e de d T Je ke e ek K ke KRR A RO K KR

SUBROUTINE TRANSF IS DESIGNED TO TRANSFORM THE X'S AND Y'S
ACCORDING TO THE LEAST SQUARES RULE.
SUBROUTINE TRANSF(X,Y1,RHOHAT,XSTAR,YSTAR)

34
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DIMENSION Y1(20),YSTAR(20),X(20,2),XSTAR(20,2)
K=2
T=20

Y TRANSFORM

YSTAR(1)=((1~-(RHOHAT**2))**0. 5)*Y1(1)
00 7 I=2,20
YSTAR(I)=Y1(1)-(RHOHAT*Y1(I-1))

CONTINUE
X TRANSFORM

XSTAR(1,1)=(1-(RHOHAT**2))**0. 5
D0 9 J=2,K
XSTAR(1,J)=((1-(RHOHAT**2))**0. 5)*X(1,J)

CONTINUE

00 11 L=2,T
XSTAR(L,1)=1-RHOHAT

CONTINUE

D0 12 I=2,T
DO 13 J=2,K
XSTAR(I,J)=X(I1,J)-RHOHAT*X(I-1,J)
CONTINUE

CONTINUE

RETURN
END

35
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SIMSA

THE PURPOSE OF THIS PROGRAM IS TO RUN COMPUTE THE FOLLOWING
ESTIMATORS (DW TN BM) FOR A SAMPLE SIZE OF 20

DIMENSION EHAT(20)

COMMON /MYDATA/ K,T,ANS,Y1,X

COMMON /DATA1/ IX1A,RHO

REAL*4 Y(5000),YMIN, YMAX , PMEAN(3)

CHARACTER*80 T1,T2,T3

INTEGER N,M,NE(8),L,D,RG,SEI,SVS,NEST,NSR,IX1,1X2,IX3

EXTERNAL DATGEN, DURWAT, THENAG, BEAMAC, LSEB, DCALC, TRANSF

EXTERNAL LNORM,SIMTBD,GMPRD

NR=20

T=20

K=2

OPEN (UNIT=19,FILE='MONICA')
OPEN (UNIT=51,FILE='AMBROSE')
READ (19,*) ANS
READ(19,*,END=999) N,M,L,D,RG,SEI,SVS,NEST,NSR
READ(19,*)YMIN, YMAX
READ(19,*) (NE(1),I=1,L)
WRITE (22,105) (NE(I),I=1,L)
FORMAT(814)
READ(19,120) IX1,IX2,IX3
FORMAT(I5,1X,15,1X,15)
READ (19,115) T1
FORMAT(A80)
READ(19,115) T2
READ (19,115)T3
READ(19,*) (PMEAN(I),I=1,3)
READ(19,*) RHO
READ(19,61)IX1A
FORMAT(I5)
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CALL FOR SIMTBD

CALL SIMTBD (IX1,IX2,IX3,Y,N,M,NE,L,D,NSR,RG,SEI,SVS,
*YMIN, YMAX ,NEST,DATGEN, DURWAT, T1,DATGEN, THENAG, T2, DATGEN, BEAMAC, T3,
*PMEAN)
GO TO 10
999  WRITE(6,*)'END OF DATA INPUT'
STOP
END
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g SUBROUTINE DATGEN (IX1,EHAT,NR)
: DIMENSION BHAT(2),YSTAR(20),R2(20),U(20),
*E(20),YHAT(20),EHAT(20),XSTAR(20,2)
* Y1(20),X(20,2)

COMMON /MYDATA/ K,T,ANS,Y1,X

COMMON /DATA1/ IX1A,RHO

INTEGER IX1,IX1A,NR

GENERATE THE RANDOM ERROR

CALL SNOR (IX1,U,NR,1,0)

GENERATE THE ERROR FOR THE STAND LINEAR MODEL

E(1)=U(1)/(1-(RHO**2))**0. 5
DO 31 J=2,20
E(J)=RHO*E(J-1)+U(J)
31 CONTINUE
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GENERATE THE EXPLANATORY VARIABLES IAW RAQ AND GRILITCHES (1969)

DO 32 1=1,20
X(I,1)=1
CONTINUE

CHANGE IX1 IN ORDER TO AVIOD COLLINEARITY

IX1A=IX1+19
CALL SNOR(IX1A,R2,NR,1,0)
DO 33 J=1,20
X(J,2)=R2(J)*. 25
CONTINUE

THE TRUE BETA EQUALS 1,1

GENERATE THE INDEPENDENT VARIABLE

00 35 I=1,20
YI(I)=(X(1,1)+X(I,2))+E(I)
CONTINUE

GENERATE YHAT

CALL LSEB(X,Y1,BHAT)
BHAT(1)=1.3
BHAT(2)=1.1
D0 100 I=1,20
YHAT(1)=X(I,1)*BHAT(1)+X(I,2)*BHAT(2)
CONTINUE

GENERATE EHAT

38
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DO 50 I=1,20
EHAT(1)=Y1(1)-YHAT(I) 1
50  CONTINUE ’

ay O

N RETURN
: END

HHe Kk K R Ak Kk e AR K K KOk K ke DURBIN WATSON % e % K e R e ke ke ke ok e e K e ke e kK ok R ok ROk R ok

REAL FUNCTION DURWAT (EHAT,NR,WI)
DIMENSION EHAT(20),X(20,2),Y1(20),XSTAR1(20,2),YSTARL(20),BHAT1(2) i

r COMMON /MYDATA/ K,T,ANS,Y1,X |

: CALL DCALC (EHAT,T,D)

e DURWAT=1-D/2

p CALL TRANSF(X,Y1,DURWAT,XSTARI,YSTARL)

- CALL LSEB (XSTAR1,YSTAR1,BHAT1)

5 RETURN
N END

. ."’
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REAL FUNCTION THENAG (EHAT,NR,WI)
DIMENSION EHAT(20),YSTAR2(20),XSTAR2(20,2),BHAT2(2)
* Y1(20),X(20,2)
COMMON /MYDATA/ K,T,ANS,Y1,X
CALL DCALC (EHAT,T,D) |
|
|

[

THENAG=((T**2)*(1-D/2)+K**2)/(T**2-K**2)
Y RETURN
END °
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REAL FUNCTION BEAMAC(EHAT,NR,WI)
DIMENSION EHAT4(20),YHAT4(20),YSTAR4(20),BHAT4(2),
N *Y1(20),EHAT(20),X(20,2),XSTAR4(20,2)
COMMON /MYDATA/ K,T,ANS,Y1,X
9 N=0
RHO4=0
98  N=N+1
CALL TRANSF (X,Y1,RHO4,6XSTAR4,YSTAR4)
CALL LSEB (XSTAR4,YSTAR4,BHAT4)
BHAT4(1)=1.0
BHAT4(2)=1.0
GENERATE YHAT4
DO 83 I=1,20
YHAT4(1)=X(I,1)*BHAT4(1)+X(1,2)*BHAT4(2)
83 CONTINUE
D0 4 I=1,T
EHATA(I)=Y1(I)-YHAT4(I)
4 CONTINUE
SUM3=0
SUM2=0
SUM1=0
0o 71 1=2,T
SUM1=SUM1+(EHAT4(I)*EHAT4(I-1))
71 CONTINUE

It
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00 72 I=2,T
SUM2=SUM2+(EHAT4(I-1)**2)
72 CONTINUE

00 73 I=2,T
SUM3=SUM3+(EHAT4(1)**2)
73 CONTINUE

DENOM=(T-1)*(SUM2-(EHAT4(1)**2))
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A=(-(T-2)*SUM1)/DENOM
B=(((T~1)*(EHAT4(1)**2))-(T*SUM2)-SUM3)/DENOM
C=(T*SUM1)/DENOM

SMALP=B-((A**2)/3)

SMALQ=C-((A*B)/3)+((2*(A**3))/27)

THETA=ACOS( (SMALQ*(27**.5))/(2*SMALP*((-SMALP)**0.5)))

BEAMAC IS THE ITERATIVE RHO FOR THIS PROCEEDURE
BEAMAC=(-2*((-SMALP/3)**0.5))*COS((THETA/3)+(3. 1412/3))-(A/3)
CHECK FOR BEAMAC WHICH ARE OUT OF BOUNDS
IF(BEAMAC. GE. 1) THEN
BEAMAC=0. 99999
ELSE IF (BEAMAC. LE.-1)THEN
BEAMAC=-0. 99999
END IF
COMPARISION OF RHO4 AND BEAMAC IF DIFF .LT. 0.0001 THEN END
IF(ABS(RHO4-BEAMAC). GT. . 0001)THEN
RHO4=BEAMAC
GO TO 98
ELSE
BEAMAC=BEAMAC
END IF
IF (ANS .EQ. 2) WRITE (51,901) BEAMAC
901  FORMAT(F15.11)
RETURN
END

THE FOLLOWING SUBROUTINES AID IN THE COMPUTATION OF THE FOUR
ESTIMATORS OF RHO.
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SUBROUTINE LSEB WILL COMPUTE THE LSE OF B

SUBROUTINE LSEB(X,Y1,BHAT)
DIMENSION BHAT(2),Y1(20),X(20,2),XTRNSP(2,20),XI(2,2),H(2,20), '

*XPRIX(2,2)
C X TRANSPOSE i
DO 40 I=1,20 z
DO 41 J=1,2
XTRNSP(J,1)=X(I,J)
41 CONTINUE

40 CONTINUE R

C MULTIPLY X TRANSPOSE AND X
CALL GMPRD(XTRNSP,X,XPRIX,2,20,2)

C  CALCULATE INVERSE OF X PRIME X
DETR=1/(XPRIX(1,1)*XPRIX(Z,2)-XPRIX(1,2)*XPRIK(2,1))
XI(1,1)=DETR*XPRIX(2,2)

XI(1,2)=DETR*(=XPRIX(1,2))
X1(2,1)=DETR*(-XPRIX(2,1)) ’
XI(2,2)=DETR*XPRIX(1,1) 7

C  MULTIPLY INVERSE AND TRANSPOSE

CALL GMPRD(XI,XTRNSP,H,2,2,20)

DO 99 I=1,2

BHAT(I)=H(I,1)*Y1(1)+H(I,2)*Y1(2)+H(1,3)*Y1(3)
*+H(T,4)*Y1(4)+H(T,5)*Y1(5)
*+H(T,6)*Y1(6)+H(I,7)*Y1(7)+H(L,8)*Y1(8)+H(I,9)*Y1(9)
*+H(1,10)*Y1(10)+
*H(I,11)*Y1(11)+H(T,12)*Y1(12)+H(T,13)*Y1(13)+H(1,14)*Y1(14)

*+H(1,15)*Y1(15)+
*H(I,16)*Y1(16)+H(I,17)*Y1(17)+H(I,18)*Y1(18)+H(I,19)*Y1(19)+
*H(I,20)*Y1(20) Rk
99 CONTINUE !
RETURN
END A
c 12 2 322 2.2 22 2.8 % 4 SUBROUTINE DCALC 12 8232833333238 2 882 38 0.8.8.5.8.8.2.1 i
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0
e c SUBROUTINE DCALC WILL COMPUTE THE DURBIN STATISTIC D
3
SUBROUTINE DCALC(EHAT,T,D)
N DIMENSION D1(20),D2(20),EHAT(20)
- DNUM=0
;i DDEN=0
D0 1 I=2,T
K3 D1(I-1)=(EHAT(I)-EHAT(I-1))**2
- DNUM=DNUM+D1(I-1)
- 1 CONTINUE
- 00 2 J=1,T
2 D2(J)=EHAT(J)**2
y DDEN=DDEN+D2(J)
o 2 CONTINUE
d D=DNUM/DDEN
N RETURN
o END
. c
C A K K e K e e K v K v e R Kk Kk SUBROUTINE TRANSF P Yo K A K e Ak e e e K ke ke ek Rk R
A c
,ZE c SUBROUTINE TRANSF IS DESIGNED TO TRANSFORM THE X'S AND Y'S
> C  ACCORDING TO THE LEAST SQUARES RULE.
SUBROUTINE TRANSF(X,Y1,RHOHAT,XSTAR,YSTAR)
% DIMENSION Y1(20),YSTAR(20),X(20,2),XSTAR(20,2)
- K=2
- 1=20
a c Y TRANSFORM
- YSTAR(1)=((1~(RHOHAT**2))**0. 5)*Y1(1)
R DO 7 1=2,20
e YSTAR(I)=Y1(1)-(RHOHAT*Y1(I-1))
: CONTINUE
< X TRANSFORM
0 XSTAR(1,1)=(1-(RHOHAT**2))**0. 5
00 9 J=2,K
o XSTAR(1,Jd)=((1-(RHOHAT**2))**0. 5)*X(1,J)
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CONTINUE
00 11 L=2,T
XSTAR(L,1)=1-RHOHAT
CONTINUE
D0 12 I=2,T
00 13 J=2,K
XSTAR(I,J)=X(I,J)-RHOHAT*X(I-1,J)
CONTINUE
CONTINUE
RETURN
END
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MSEB
C THIS PROGRAM IS DESIGNED TO CALCULATE THE MEAN SQUARE ERROR OF
C THE BETA VECTOR
DIMENSION B1(5000),B2(5000),B3(5000),B4(5000),B5(5000),B86(5000),
*B7(5000),88(5000),B9(5000),B810(5000),BX(5000),BY(5000)
OPEN (UNIT=21,FILE='DAT1')
OPEN (UNIT=31,FILE='DAT2')
OPEN (UNIT=41,FILE='DAT3')
OPEN (UNIT=51,FILE='DAT4')
OPEN (UNIT=61,FILE='DAT5')

COUNT=1000
READ(21,900)(B1(I),B2(1), I=1,1000)
CALL MSEBET (B1,B2,COUNT,XMSEDW)
READ(31,900)(83(1),B4(1), I=1,1000)
CALL MSEBET (B3,B4,COUNT,XMSETN)
READ(41,900)(B5(1),B6(I), I=1,1000)
CALL MSEBET (BS,B6,COUNT, XMSEPW)
READ(51,900)(B7(1),B8(1), I=1,1000)
CALL MSEBET (B7,B8,COUNT,XMSEEM)
READ(61,900)(B9(1),B10(1), I=1,1000)
CALL MSEBET (B9,B10,COUNT,XMSEOLS)

900  FORMAT (F11.8,2X,F11.8)
WRITE(6,*)' MSEDW'
WRITE(6,*)XMSEDW

c
WRITE(6,*) 'MSETN!
WRITE(6,*)XMSETN

c
WRITE(6,*)'MSEPW'
WRITE(6,*)XMSEPW

c
WRITE(6,*) ' MSEBM!
WRITE(6,*)XMSEBM

c

a5




WRITE(6,*)"'MSELS'
WRITE(6,*)XMSELS
SToP

END
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SUBROUTINE MSEBET(BX,BY,AN,XMSEB)
DIMENSION BX(5000),BY(5000),SUM(5000)
PLACE=0
00 901 I=1,AN
SUM(I)=((BX(I)-1)*(BY(I)-1))**2
PLACE=PLACE + SUM(I)

901  CONTINCE
XMSEB=PLACE/AN
RETURN
END
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