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ABSTRACT

Econometricians must choose between many methods for estimating p, the

autocorrelation coefficient, in a first order autoregressive process. This thesis examines

the performance of four estimators in a Monte Carlo simulation. The methods

examined are Durbin-Watson, Beach-MacKinnon, Theil-Nagar and Prais-Winsten.

The autocorrelation coeficient, p, was varied from .2 to .9 and each method provided

estimates of p and JI, the regression coefficient, for 1000 replications. The results

presented here are similar to those found in previous comparisons. Specifically,

Ordinary Least Squares was found to be an efficient estimator of P when

autocorrelation is present only to a slight degree. Of the four estimators examined, the

performance of Theil-Nagar proved superior in estimating both p and 11 Ftr small

values of the correlation coeficient. Beach-MacKinnon, on the other hand, while

containing a large bias in the estimation of p, is the more eflicicnt estimator of J for

large values of p.

Accesnic For

r jTc TAiA
U:i. .ii ,i ced ElJust i 1' Lo-at " on

By-
Distri but ion/

Availability Codes

Avnil and/or
Dist Special

3



AL

TABLE OF CONTENTS

1. IN TROD UCTION .............................................. 8

A. BACKG ROUN D '.......................................... 8

B. PROBLEM STATEMENT .................................. 8

C. ESTIM A TO RS ............................................ 9

D . SIM U LA TION ............................................ 9

E. MEASURE OF EFFECTIVENESS ........................... 9

II. ESTIM A TIO N ................................................ 10

A . G EN ERA L .............................................. 10

B. PR O C ESS ............................................... 10

C. METHODS OF ESTIMATION ............................. 12

1. Generalized Least Squares Estimation ...................... 12

2. Estimated Generalized Least Squares ....................... 12

3. Maximum Likelihood Estimation .......................... 14

III. CO M PA R ISON ............................................... 16

A . G EN ERA L .............................................. 16

B. PREVIOUS COMPARISONS ............................... 16

C. MODEL AND DATA GENERATION ....................... 17

D . VA LIDA TION ........................................... 17

E. SIM U LA TIO N ........................................... 17

F. MEASURES OF EFFECTIVENESS ......................... 18

IV. RESULTS AND CONCLUSIONS ................................ 20

A . G EN ERA L .............................................. 20

B. SA M PLE SIZE 20 ........................................ 20

C. SA M PLE SIZE 50 ........................................ 22

D . SU M M A RY ............................................. 22

APPENDIX : PROGRAM LISTINGS .................................... 27

LIST OF REFEREN CES ................................................ 47

4



INITIAL DISTRIBUTION LIST ......................................... 48

"; 5
'-

po

p.

t.% , ° ." .% "." o% " " % " % % • % • , °"• % ° - % - • " " " " /" .', % " .'



LIST OF TABLES

aI. ESTIMATES OF AUTOCORRELATION COEFFICIENT..........18
II. ESTIMATES OF AUTOCORRELATION COEFFICIENT..........21

*Ill. DATA PRESENTED IN FIGURE 4.1.......................... 23
*IV. EFFICIENCY OF REG RESSIO N COEFFICI ENT

ESTIMATES ............................................. 24
V. DATA PRESENTED IN FIGURE 4.2..........................2 5
VI. EFFICIENCY OF REGRESSION COEFFICIENT

ESTIMATES ............................................. 26

6



LIST OF FIGURES

4.1 Estimated mean square error of p vs. p (sample size = 20) .............. 23
4.2 Estimated mean square error of p vs. p (sample size = 50) ............. 25

J.

4.

,.
,.

4



I. INTRODUCTION

A. BACKGROUND

Autocorrelation exists in a regression model when the error terms are no longer

independent but are correlated. In the examination of time series data autocorrelation

is a common phenomenon and can lead to problems if Ordinary Least Squares (OLS)

estimation procedures are used. The purpose of this thesis is to examine and compare

four different estimates of the autocorrelation coefficient, p, the estimation of which is

essential to the resolution of OLS deficiencies. The four estimators to be examined are

the Durbin-Watson, Theil-Nagar, Beach-MacKinnon, and Prais-Winsten.

B. PROBLEM STATEMENT

N In the standard regression model y=Xp3 +e, y is a Txl vector of observations of

a dependent variable, X is a TxK design matrix and PI is a Kxl vector. The variable e

is a Txl vector of unobservable random errors with E(e)=0 and covariance matrix,

E(ee')= a21T . Thus, in the standard model, the random vector e contains elements

which are pairwise uncorrelated with identical means and variances. In the presence of

autocorrelation this strong assumption is violated. That is, the error terms are no

longer independent but are correlated. The regression model becomes,

Yt = XtP + et t = 1,2,.,T (cqn 1.1)

where et = P et.l + vt,

E(vt) = 0, and

E(vv') = IT21

This is known as a first order autoregressive or AR(1) process. As illustrated by

equation 1.1, et is expressed linearly in terms of the et. 1 and another random error

term vt. The assumption of zero mean and constant variance provides vt with all the

nice properties of et in the standard model. This process may occur for a variety of

reasons, some of which are:

1 Omitted explanatory variables. If a correlated explanatory variable has been
excluded fion the nesign matrix its exclusion will be reflected in the correlation
of the random variablee.

2 is weci/7cation of the mathenzatical f,r, of the model. If the wrong mathematical
relafioriship is chosen the values oFe may be dependent.

5% % , . % " . °* ° ° .- •o • % % " ." % % % '-r ,
° ,

% " % % ' .% ' *' ".



3 Interpolations in the statistical observations. If the observational data is smoothed
autocorrelation may result.

4 Mispecification of the true random error. Dependence among the error terms may
occur naturally. [Ref. l:p. 204]

Utilizing OLS to estimate the regression coefficient, I0, in the presence of an AR(l)

process can lead to problems. Generally, there are two consequences to consider. The

first is that the OLS estimator of the coefficients will be unbiased but will not be very

efficient. The second consequence is that the OLS variance estimator is biased. For

these reasons it is useful to investigate other methods to estimate PI [Ref. 2:p. 4391.

C. ESTIMATORS

When p is known, the process is easily accounted for using Generalized Least
Squares or Weighted Least Squares methods [Rcf. 31. 1 lowever, the usual situation is

that p is unknown and must be estimated. A number of methods have been proposed

to estimate p and properly account for OLS deficiencies in estimating I. Chapter 2 will

develop the four estimators mentioned above and examine the autocorrelation process.

D. SIMULATION

Each of the estimators considered here have the same asymptotic properties

therefore any decision on which one to use must be based on small sample analysis and

Monte-Carlo evidence. Therefore, a simulation will be created in which the data is

generated according to guidelines presented in previous studies with equation 1.1 as the

model. The actual values of p will be varied from .2 to .9. The four estimation

techniques will then provide estimates of p and 03 for 1000 replications.

E. MEASURE OF EFFECTIVENESS

To provide an indication of which estimator performs best the mean square error

of both p and I"will be estimated for each estimator. Prior results for different sets of

estimators indicate that no one estimator will prove superior over the entire range of p

but that one or two may out perform the others over specific intervals.

*9



If. ESTIMATION

A. GENERAL
This chapter attempts to explore the theory behind both the first order process

and four estimators developed to properly account for it. Three of these

(Durbin-Watson, Thiel-Nagar, and Prais-Winsten) are categorized as estimated

generalized least squares estimators. The fourth (Beach-MacKinnon) is a maximum

likelihood estimator.

B. PROCESS
The first order process can be written as

Yt = XtP + et t 1,2,...,T (eqn 2.1)
where et = p etI + vt,

E(vt) = 0,

E(vv') = 21,

E(vt2) = '2, and

E(vtvs)= 0 for set

The parameter p is generally unknown and along with I must be estimated. The

statistical properties of the random error, v, listed in equation 2.1 are identical to those

listed for e in the general linear model. The statistical properties of e under these new

assumptions are quite different. Judge [Ref. 4:p. 438] shows that

. E(et) = p'E(Vti) = 0 (eqn 2.2)

and

E(et2)= 2  v,0(l-p) 2  (eqn 2.3)

The covariance between errors s periods apart is no longer zero and is given by

E(etct s)= [(et +set)= (pc 2aJ(4l-p2 ) . (eqn 2.4)

10
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The covariancc matrix for e is now casily written as

(D = E(cc') (eqn 2.5)

1 p p T-1

p 1, FP-2

-2 &2 /(!-p2)

T-1 T-2 .

or utilizing the lollowing convention,

(D=a 2t1r (eqn 2.6)

w~here '
i2 p T-1

p p pT-
2 1 F-

p p p'l~

T- I1F-2 T-3p p p . . . 1

Thus, the assumptions made about the error term, e, in the standard linear model

no longer hold for the autoregressive case. Specifically, due to autocorrelation the error
covariance miatrix is no longerwitna ~2 bu2so

When an attempt is made to performi a least squares fit to the data in the presence

of an A R( I) process there are two problems to consider.

I The least squares estimator j~=(X'X)- VXy will be unbiased but will not be verx'

2 The least squares covariance miatrix G(-~ with (-= (y-Xb)Y(y-Xb) ('-K)
will be a biased cstirnator ul thc variance of 3.-

In the presecec of positive aUtocorrclation Judge IRcf. 4:p. 4391 notes that with

OLS estimiatin the bias of the standard error of'~ will very likely appear as an

IIr
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underestimate. Park and Mitchell [Ref. 5.p. 161 warn that OLS seriously

underestimates the variance of Ji for p > 0.4. This understatement makes the

estimates themselves appear much more significant than they actually are and makes

hypothesis testing of the slope coefficients unreliable.

C. METHODS OF ESTIMATION

1. Generalized Least Squares Estimation

When apriori information is available about T, the most convenient estimate

for the regression coefficient, "[, is obtained by applying least squares estimation

techniques to the transformed model,

-Y*= X*P + e* (eqn 2.7)

where Y* PY
""X* =PX

- Pc.

The transformation matrix P is the TxT matrix

- /1-P 2  0 0 0 0

,P 1 0 0 0

0 -P 1 0 0

P 0 0 -p 1 0

-w"

0 0 0 -P

where P'P = F-'l.

This method is known as the Generalized Least Squares (GLS) estimation.

2. Estimated Generalized Least Squares

The usual case is that p is unknown and must be estimated. Once an estimate

for p (p) is computed one can substitute p into the P matrix and proceed with the GLS

method outlined above. This is known as Estimated Generalized Least Squares

(EGLS) estimation. The computational form of the alternative estimators for p

discussed are as follows:

.2
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a. Durbin- Wl'atson

The statistic

d . , 2 2 2 t

d (et-et) et  ,...,T (eqn 2.8)

where et -

is often used to test for first order autoregressive errors. As the number of

observations (T) increases it can be demonstrated that d approaches the least squares

estimator of p or

A
p =1- (d/2) . (eqn 2.9)

The Durbin-Watson statistic is provided by most Icast squares computer packages and

is very easy to use. It also is an example of a two-stage estimator. That is, it first

estimates the correlation parametcr and then uses this estimate to compute the

generalized least squares estimates for P.

b. Theil-Nagar

A modification of the Durbin-Watson estimator suggested by lenri

Theil and A. L. Nagar is

p = (T 2(l-(d/2)) + K2) /( 22 - K2). (cqn 2.10)

Theil and Nagar claim that this estimator is an improvement over Durbin-Watson if

the first and second differences of the explanatory variables are small when compared

to their corresponding ranges [Ref. 6]. Like Durbin-Watson, it also is a two-stage

estimator.

c. Prais- Vinsten

A minimum sum of squares approach to estimating p yields,

A A

p=y 'cteti /e2 t= I,...,T (eqn 2.11)
where Ct v

13
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This estimator can be employed in both a two step and an iterative procedure. This

paper, however, considers only the following iterative form:

1. Set p = 0.

2. Transform the variables in accordance with the transformation matrix and

equation 2.7. A

3. Calculate the least squares estimate of 0 conditional on p.
A

4. Calculate the estimate of p conditional on P by using equation 2.11.A

5. If the absolute difference in p from the previous iteration is sufficiently small (less

than 0.00001) stop. If not go to step 2. [Ref. 7:p. 2]

3. Maximum Likelihood Estimation
A maximum likelihood (ML) estimator is the value of 0 which maximizes the

value of the likelihood function L(O). Under the assumption that Y has a multivariate

normal distribution with mean XP and covariance matrix ( 2r, the likelihood function

is

L(p,p,0"2)= C- (1/2a 2 v)(Y-Xp)''l(y -XP) (eqn 2.12)

where C = -(T/2)lna 2 v + (1/2)ln (1-p2)

The M L estimators for 11, p, and a. 2 are those values for which,

L/3P=0 , aL/ p=0 , cL/Oa 2 v = 0 . (eqn 2.13)

Solutions to equations 2.13 are very difficult to derive. Beach and MacKinnon

[Ref. 8:p. 541 use an ML estimator for av2 and substitute into equation 2.12. The

result is the concentrated likelihood function,

L(p,p) = K-(T,/2)ln((y-XIY)'I' (y-Xp)(l-p 2 ) I/I) (eqn 2.14)

where K = (Ti2)ln(T)-(T/2).

They suggest maximizing L(P,p) with respect to P] with p held constant and then to

maximize with respect to p with JI held constant. An algorithm to derive this MI.

estimate is

14



A

1. Set p = 0.

2. Transform the variables in accordance with equation 2.7.

3. Calculate the least squares estimate of PI conditional on p.

4. Calculate the ML estimate of p conditional on fI by solving a cubic equation of

the untransformed residuals. (see [Ref. 8] for details)

5. If the absolute difference in p from the previous iteration is sufficiently small (less

than 0.00001) stop. If not, go to step 2 [Ref. 7]. (Note: The same procedure was

employed for iterative Prais-Winsten method except that equation 2.11 was used to

estimate p.)

This is not a comprehensive listing of all available estimators for a first ordcr

process. Other estimators are listed in Judge [Ref. 4].

15
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III. COMPARISON

A. GENERAL

The finite sampling properties of the estimators listed here have not been derived.

Choice of which estimator to use might be based on evidence obtained from Monte

Carlo simulations. This chapter explains a simulation used and provides a synopsis of

comparisons reported in the literature.

B. PREVIOUS COMPARISONS

There have been a number of studies of estimators for p . Each has concluded

that OLS has serious deficiencies in the presence of autocorrelation. The majority of

these papers have settled on two points. First, particularly in small sample sizes

(T<50) it is best to use estimators that consider all T observations. Rao and

Grilitches concluded that using estimators such as Cochrane-Orcutt that ignore the

first observation can lead to a substantial loss of efficiency [Ref. 9:p. 2691. These

results were further substantiated by Beach and MacKinnon. In an attempt to develop

a computationally efficient algorithm to maximize the likelihood function they

discovered (for p = 0.6, 0.8, 0.99) significant gains in efficiency to be made by

employing the first observation. Some of these gains are in the neighborhood of 700

percent [Ref. 8:p. 55]. Park and Mitchell concluded that retention of this first

observation substantially reduces the risk of collinearity as p approaches 0.9 [Ref. 5:p.

10]. Kobayashi verified theoretically the experimental results of Park and Mitchell. By

computing the asymptotic variances of several estimators he demonstrated that the loss

of efficiency of the Cochrane-Orcutt method was due primarily to ignoring the first

observation. (Ref. 10:p. 9511.

The second point is that the Prais-Winsten solution techniques outperform many

comparable estimators of the correlation parameter. Spitzer concluded that

Prais-Winsten "appeared to be the best of all the two stage estimators." IRef. l l:p.

44]. Park and Mitchell in a later study comparing Beach-MacKinnon with the iterative

Prais-Winsten estimator concluded that the iterative Prais-Winsten perl'orms

"appreciably better in estimating the autocorrelation coefficient p" [Ref. 7 :p. 5].

16



Although there were no studies found specifically comparing the fbur estimators

presented here, each has demonstrated a superiority to OLS in the presence of a first

order process.

C. MODEL AND DATA GENERATION

Equation 2.1 was utilized as the model with the first term in the vector e

generated in the following fashion,

el= vl/(I-p)l/ 2 . (eqn 3.1)

In order to conform with previous comparisons, the data utilized in this

experiment is identical to that used in Beach and MacKinnon [Ref. 8). Two sample

sizes of 20 and 50 observations were used. The untrended explanatory variable, X, was

drawn from N(0, 0.0625) and the random error, vt, was drawn from N(0, 0.0036).

Although autocorrelation in theory may be positive or negative, in econometric data it

is almost always positive [Ref. l:p. 201]. For this reason p was varied from 0.2 to 0.9.

D. VALIDATION

The data generation program was checked to ensure the normality of e using the

Chi Square Goodness of Fit test. The normality assumption was accepted at a 0.3684

level. Finally, in order to ensure each estimator performed properly the random

portion of the model, specifically the random variable V, was removed. This allowed

the estimators to function in a deterministic fashion. Data were then generated and

submitted to each estimator for values of p equal 0.2, 0.6, 0.8. The results are

presented in Table I, illustrate that the estimators are functioning properly.

E. SIMULATION

For each run the values of the regression coefficients, I0 and 01, wcre set to I

and 1. The variables X t and vt were drawn from the normal distributions discussed

earlier. The dependent variable Yt was calculated using equation 2.1. Since the

ultimate objective was to generate residuals to send to the four estimation routines, a

regression was then performed of y on X and residuals calculated using,

A
t= Yt xtl t = 1,2,...,". (eqn 3.2)

17
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TABLE I

ESTI MATES OF AUTOCORRELATION COEFFICI ENT

p DW TN PW BM

.2 .19 .19 .19 .19

.6 .59 .60 .58 .60

.8 .78 .80 .77 .80

The values of the residuals were then sent to each estimation routine. Estimates of

l and p were determined for values of p equal to .2, .3, .4, .5, .6, .7, .8, and .9. Each

estimate was replicated 1000 times for the sample sizes of 20 and 50.

F. MEASURES OF EFFECTIVENESS

In order to compare the pcrformances of the estimators, two MOE's were used.

The mean square error (MSI-) of p was estimated for each estimator. This represents

the expected squared error made in estimating p. The following computational form of

MSE was used,

(p-_ pij)2 /l00 i =  !,...,1000. (eqn 3.3)

A
The successive values of NISI of p were then plotted against the actual p to

examine performance over the range of p.

The second NIOE examined the relative efficiencies of the regression coefficient

dcfined in [Ref. 7 :p. 71. A ratio of MSI- of for a particular estimate to the MSE of J

18
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for the OLS estimate allows the examination of* the relative gains in using particular
A

techniques over OLS. Since the proper estimation of is paramount the cfl-iciency of

is predetermined to be the most important MOE.

19



IV. RESULTS AND CONCLUSIONS

A. GENERAL

The major emphasis of this thesis was to examine the performance of four

estimators of the autocorrelation coefficient, p, for a first order autoregressive process.

The estimators examined were Durbin-Watson, Theil-Nagar, Prais-Winsten, and

Beach-M acKinnon.

A Monte-Carlo simulation was performed for the following values of p: .2, .3, .4,

.5, .6, .7, .8, and .9. Each run was replicated 1000 times for sample sizes of 20 and 50.

The results are recorded in Table 1I . Irrespective of sample size, each of the methods

underestimate the true value of p but as the number of observations is increased from

20 to So the bias reduces. As was expected, no one estimator unifornly outperforms

the others. In both sample sizes, the two stage estimators (Durbin-Watson and

Theil-Nagar) achieve better results for small p. As the value of p increases, the

iterative methods (Prais-Winsten and Beach-MacKinnon) perform best. With T= 20

this transition occurs at p = .6 while at 50 observations it occurs earlier at p = .4.

The discussion of the results will be divided into two sections. The measures of

effectiveness, as defined in Chapter 3 will first be applied to the simulation results for

T = 20. This will be followed by an identical approach when the sample size is

increased to 50.

B. SAMPLE SIZE 20

Since performance of an estimator is roughly indicated by its mean and variance,

mean square error (MSE) of each p over the entire sample size was estimated. The
AN

results of these calculations are presented in Table Ill along with a plot of MSE of p
versus actual values of p in Figure 4.1 , They again indicate that the Theil-Nagar and

I)urbin-Watson estimators are better for smaller values of p (p < .6) and as p increases

the Prais-Winsten p emerges as the best. On the basis of Figure 4.1 alone,

Beach-MacKinnon's performance is clearly inferior. lowever, in examining the
efficiency of each estimator in Table IV, Beach-MacKinnon proves to be the most

clicient in estimating JI over the widest range of p. The tie in Figure 4.1 between

Theil-Nagar and l)urbin-Vatson is resolved in Table IV with Theil-Nagar proving to

20
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TABLE 11

ESTIMATES OF AUTOCORRELATION COEFFICIIENT

'~

Sample Size 20

p DW IN 13W BM
.2 .158 .162 .113 .107
.3 .234 .239 .205 .193

.4 .310 .316 .296 .279

.5 .385 .392 .387 .365

.6 .460 .467 .478 .450

.7 .533 .542 .567 .535

.8 .603 .613 .655 .617

.9 .667 .681 .741 .697

Sample Size 50

p DW TN PW BM

.2 .173 .161 .170 .178

.3 .279 .253 .270 .270

.4 .360 .340 .360 .359

.5 .451 .432 .463 .453

.6 .544 .523 .559 .547

.7 .630 .610 .651 .640

.8 .726 .700 .747 .731

.9 .812 .796 .839 .820

21

,_ " ' " ,,. '4.Z-. ,,.."2 ., - '.. 'j. '. -. -. . -, - " p



-I 7 .-. 1 -7 - -.

be uniformly more efficient than Durbin-Watson. Table IV also demonstrates that for

. p = .2 OLS is at least as efficient as three of the four estimators.

C. SAMPLE SIZE 50

The results of the MSE calculations for T= 50 are recorded in Table V along

,, with a plot of MSE of p versus the actual values of p in Figure 4.2. The

Durbin-Watson and Theil-Nagar estimators again perform the best for smaller values

of p (p <.4) and as p increases the Beach-McKinnon and Prais-Winsten estimators of

p contain the smallest MSE.

Once again even though the Prais-Winsten p has a smaller MSE than

Beach-MacKinnon, Table VI illustrates that Beach-McKinnon is a uniformly more

efficient estimator of the slope coefficient. For the smaller values of p (p <.4)
Theil-Nagar is more efficient than Durbin-Watson. Table VI also illustrates that OLS

is at least as efficient as any of the other estimators when p is small.

D. SUMMARY

As was found in previous studies when autocorrelation is present only to a slight

degree (p < .2) the OLS estimator provides an efficient estimate for the regression

coefficient, P. As the process becomes more significant however, all the estimators

outperform the OLS solution. In both sample sizes the performance of Theil-Nagar

and Durbin-Watson are nearly identical with respect to the MSE of p. However, when

efficiency of the slope coefficient estimate is examined, Theil-Nagar proves to be the

better 2 stage estimator. Park and Mitchell [Ref. 7:p. 4] found that Prais-Winsten
performs better in estimating P. The results presented here tend to dispute that

finding. For while Prais-Winsten has a uniformly smaller MSE of p,

Beach-MacKinnon provides the most efficient estimator of' j . Spitzer, on the other

hand [Ref. 1 l:p. 44], which ranked two stage estimators as being the best for values of

p between .2 and .5, mirrors the results produced here. Apriori knowledge of the

neighborhood of p will be helpful in selecting the appropriate estimation method. For
both sample sizes Theil-Nagar appears to be the best for small values of p.
Beach-MacKinnon, while containing a larger bias for p than does Prais-Winsten, is a

much more efficient estimator of the slope coefficient for larger values of p.

-. 22
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Figure 4.1 I'stimated mean square error of p vs. p (sample size 20).

': TABLE I II

"-" ~DATA IPIU SI'E I) IN FIGURE 4.1

Sitiple Size 20

-'.p MSEDW NISETN NISEPW MSIEBM

"".2 .7494 .7485 .8557 .8594
.3 .6268 .6244 .7004 .7115

.4 .5156 .5124 .5621 .5787

.5 .4159 .4126 .4400 .4604

.6 .3278 .3250 .3342 .35o66

.7 .2519 .2495 .2433 .2662

.8 .1891 .1860 .1698 .1916

-o]i.9 .1407 .1357 .1141 .1331
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TIiCFN(Y)i RE!GREiSSIO)N (O!::CIN 'TMT

Sample Size 20
1) NSEP1 (I)w ) NxtSVl (-FN) MSis p (m'v) ,ISLIT (I'NI)

IsLP M(L~s) NMsfll (01.s) -vSf:pI (01,s) Nftsxl (oI.s)
.2 1.004 .9794 1•035 1.041

.3 .92 28 .8967 .9442 .951!5

.4 .8218 .7929 .8325 "8"4

.5 .7082 .6751 .7024 .6959

.6 .5S64 .5484 .5652 .5515

•.7 .4610 .4207 .4329 .4135

.8 .3359 .3020 .3 09 3 .2S70

¢ . .2251 .2087 .2077 .1892

p..
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Figure 4.2 Estimated mean square error of p vs. p (sample size = 50).

TABLE V

DATA PIESENILI) IN FIGURE 4.2

Sample Size 50
p MSEI)W MSETN MSEPW NSIBM

.2 .7010 .6766 .7055 .7065

.3 .5500 .5399 .5653 .5578

.4 .4383 .4196 .4396 .5578

.5 .3298 .3151 .3056 .3156

..6 2358 .2262 .2116 .2215

..7 .1578 .1526 .1357 .1449

.8 .0906 .0942 .0773 .0851

. .9 .0500 .0509 .0360 .0417

25
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TABLE VI

LFEIILI1NCY OF REGRESSION COITFI [('IIENT SI'MATES

Sample Size 50
p MSI]1 (DXW) MSL (TN) NISL (PW) MSEP (BN)

-S

MSI-0 (01S) MSEJ3 (01.S) MStI-- (OlS) MSEP (OLS)
.2 1.073 1.041 1.046 1.058

.3 .9985 .9482 .9714 .9562

.4 .885(0 .8255 .8635 .8255

.5 .7452 .6859 .7282 .6825

.6 .5920 .5420 .5870 .5406

.7 .4366 .4020 .4453 .4020

.8 .2889 .2690 .3067 .2700

.9 .1589 .1505 .1738 .1505

.42

26



% I

APPENDIX

PROGRAM LISTINGS

This appendix contains listings of the programs utilized in the analysis performed

hcrein. All of the functions are written in FORTRAN and contain the necessary

documentation. The Monte Carlo simulation was performed using the Advanced

Simulation and Statistics Package [Ref. 121 developed by P. A. Lewis. Since the

package only allows for the simultaneous comparision of 3 estimators, 2 functions were

developed for each sample size. The first, SIMS generates estimates for

Durbin-Watson, Theil-Nagar, and Prais-Winsten for a sample size of 20. SIMSA

meanwhile, generates estimates for Beach-MacKinnon for the identical sample size.

Routines for I)urbin-Watson and Theil-Nagar were included in SIMSA to ensure the

results were comparable to SIMS. SIMSB and SIMSC perform in a similar fashion for

sample size of 50 and therefore were not included. The Advanced Simulation and

Statistics Package computes the mean square error of ^p for each estimator

automatically. The mean square error for the ji estimates was accomplished by the
MSEB function.

SIMS

DIMENSION EHAT(20)

COMMON /MYDATA/ K,T,ANS,Y1,X

COMMON /DATA1/ IX1A,RHO

REAL* 4 Y(5000),YMIN,YMAX,PMEAN(3)

CHARACTER*80 T1,T2,T3

INTEGER N,M,NE(8),L,D,RG,SEI,SVS,NEST,NSR,IX1,IX2,1X3

EXTERNAL DATGEN, DURWAT, BEAMAC, PRAWIN, LSEB, OCALC, TRANSF

EXTERNAL LNORM,SIMTBD,GMPRD

NR=20

T=20

K=2

C

C

27
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'p C

* OPEN (UNIT=19,FILE='MONICA')
dC OPEN (UNIT=21,FILE='MARGE')

C OPEN (UNIT=51,FILE='AMBROSE')

C OPEN (UNIT=41,FILE='DAT2')

4,.. OPEN (UNIT=61,FILE='DAT3')

READ (19,-) ANS

10 READ(19,*,END=999) N,M,L,D,RG,SEI ,SVS,NEST,NSR

READ(19,*)YMIN,YMAX

READ(19,*) (NE(I),I=l,L)

READ(19,120) IX1,1X2,1X3

120 FORMAT(15,1X,15,1X,15)

READ (19,115) Ti

115 FORMAT(A80)

READ(19,115) T2

READ (19,115)T3

READ(19,*) (PMEAN(I),I=1,3)

READ(19,-) RHO

READ(19,61)IXlA

61 FORMAT(15)

C

C CALL FOR SIMTBD

C

CALL SIMTBD (1X1,IX2,IX3,Y,N,M,NE,L,D,NSR,RG,SEI ,SVS,
* *YMIN,YMAX,NEST,DATGEN,DURWAT,T1,DATGEN,BEAMAC,T2,DATGEN,PRAWIN,T3,

*PMEAN)

GO TO 10

999 WRITE(6,*)'END OF DATA INPUT'

STOP

4 END

C

C *******DATA GENERATION SUBROUTINE

C

SUBROUTINE DATGEN (IX1,EHAT,NR)

DIMENSION BHAT(2),YSTAR(20),R2(20),U(20),



*E(20),YHAT(20),EHAT(20),XSTAR(20,2)

*,Y1(20),X(20,2),V(20)

COMMON /MYDATA/ K,T,ANS,Y1,X

COMMON /DATA1/ IX1A,RHO

INTEGER IX1,IXIA,NR

C
C

C GENERATE THE RANDOM ERROR

C

CALL SNOR (IXl,U,NR,l,0)

C

C ADJUST THE VARIANCE OF R. E. IAW BEACH AND MACKINNON(1978)

DO 38 I=1,T

V(I)=U(I)*. 06

38 CONTINUE

C

C GENERATE THE ERROR FOR THE STAND LINEAR MODEL

C

E(1)=V(1)/(1-(RHO**2))**0.5

00 31 J=2,T

E(J)=RHO*E(J-1)+V(J)

31 CONTINUE

C

C

C GENERATE THE EXPLANATORY VARIABLES IAW RAO AND GRILITCHES (1969)

C

DO 32 I=1,20
X(I,1)=1

32 CONTINUE

C CHANGE IXI IN ORDER TO AVIOD COLLINEARITY

C IX1A=IX1+19

CALL SNOR(IXIA,R2,NR,1,O)

DO 33 J=1,20

X(J,2)=R2(J)*.25

33 CONTINUE

29
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a,. C
C

C THE TRUE BETA EQUALS 1,1
i*" C

C GENERATE THE INDEPENDENT VARIABLE

C

DO 35 I=1,20

YI(I)=(X(I,1)+X(I,2))+E(I)

35 CONTINUE

C

C GENERATE THE LEAST SQUARES ESTIMATOR FOR BETA

c

CALL LSEB(X,Y1,BHAT)

C PRINT LSEB TO A FILE

IF(ANS .EQ. 2) WRITE(61,201)BHAT

'- 201 FORMAT(F11.8,2X,F11.8)

C

C GENERATE YHAT

C

DO 100 1=1,20

YHAT(I)=X(I,1)*BHAT(1)+X(I,2)*BHAT(2)

100 CONTINUE

C

C

C GENERATE EHAT

C

DO 50 1=1,20

EHAT(I)=Y(I)-YHAT(I)

50 CONTINUE

C

C

RETURN

END

C * DURBIN WATSON ***************************

30
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*C THIS FUNCTION COMPUTES THE DURBIN-WATSON ESTIMATE OF RHO

REAL FUNCTION DURWAT (EHAT,NR,WI)

DIMENSION EHAT(20) ,X(20,2) ,Y1(20) ,XSTAR1(20,2) ,YSTAR1(20) ,BHAT1(2)

COMMON /MYDATA/ K,T,ANS,Yl,X

CALL DCALC (EHAT,T,D)

OUR WAT= 1-0/2

C

CALL TRANSF(X,Y1,DURWAT,XSTAR1,YSTAR1)

CALL LSEB (XSTAR1,YSTAR1,BHAT1)

IF (ANS .EQ. 1 ) WRITE(21,701) BHAT1
701 FORMAT(Fl1.8,2X,FI1.8)

C

C

* C

RETURN

END

* C

* C

C THEIL NAGAR

C THIS FUNCTION COMPUTES THE THEIL-NAGAR ESTIMATE OF RHO

C REAL FUNCTION THENAG (EHAT,NR,WI)

DIMENSION EHAT(20),YSTAR2(20),XSTAR2(20,2),BHAT2(2)
*,Y1(20) ,X(20,2)

COMMON /MYDATA/ K,T,ANS,Y1,X

CALL DCALC (EHAT,T,D)

THENAG=( (T**2)*( 1-D/2)4K**2)/(T**2-K**2)

CALL TRANSF(X,Y1,THENAG,XSTAR2,YSTAR2)

CALL LSEB (XSTAR2,YSTAR2,BHAT2)

IF (ANS .EQ. 1 ) WRITE(31,801) BHAT2
801 FORMAT(F11. 8,2X, Fl. 8)

RETURN

* END

* C PRAIS WINSTEN

C THIS FUNCTION COMPUTES THE PRAIS-WINSTEN ESTIMATE OF RHO

REAL FUNCTION PRAWIN(EHAT,NR,WI)

31



DIMENSION EHAT3(20) ,YHAT3(20) ,YSTAR3(20),BHAT3(2),

*EHAT(20) ,XSTAR3(20,2)

*,Y1(20),X(20,2)

COMMON /MYDATA/ K,T,ANS,Y2,X

N=O

RH03=0

98 N=N+1

CALL TRANSF (X,Y1,RHO3,XSTAR3,YSTAR3)

CALL LSEB (XSTAR3,YSTAR3,BHAT3)

C GENERATE YHAT3

DO 83 1=1,20

YHAT3(I)=X(I ,1)*BHAT3(1)+X(I ,2)*BHAT3(2)

83 CONTINUE

* DO 4 I=1,T

EHAT3( I)=Y1( I)-YHAT3( I)

*4 CONTINUE

C

RHONUM=O

RHODEN=O

DO 5 I=2,T

RHONUM=RHONUM+(EHAT3(I)*EHAT3(I-1))

5 CONTINUE

C

DO 6 I=2,T-1

RHODEN=RHODEN+( EHAT3( I)**2)

6 CONTINUE

PRAWI N=RHONUM/RHODEN

C CHECK FOR PRAWIN WHICH ARE OUT OF BOUNDS

IF(PRAWIN. GE. 1)THEN
PRAWIN=0. 99999

ELSE IF (PRAWIN. LE. -1)TIIEN

PRAWIN=-O. 99999

END IF

C COMPARISION OF RHO3 AND PRAWIN IF DIFF .LT. 0.0001 THEN END

IF(ABS(RHO3-PRAWIN). GT. . 01)THEN

32
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RHO3=PRAWIN

GO TO 98

ELSE

PRAWIN=PRAWIN

END IF

C IF (ANS .EQ. 1 ) WRITE(41,901) BHAT3

C01 FORMAT(F11.8,2X,F11.8)

RETURN

END

C

C THE FOLLOWING SUBROUTINES AID IN THE COMPUTATION OF THE FOUR

C ESTIMATORS OF RHO.

C ******* SUBROUTINE LSEB *

C SUBROUTINE LSEB WILL COMPUTE THE LSE OF B

C

SUBROUTINE LSEB(X,Y1,BHAT)

DIMENSION BHAT(2),YI(20),X(20,2),XTRNSP(2,20),XI(2,2),H(2,20),
*XPRIX(2,2)

C X TRANSPOSE

DO 40 I=1,20

DO 41 J=1,2

XTRNSP(J,I)=X(I,J)

41 CONTINUE

40 CONTINUE

C MULTIPLY X TRANSPOSE AND X

CALL GMPRD(XTRNSP,X,XPRIX,2,20,2)

C CALCULATE INVERSE OF X PRIME X

DETR=I/(XPRIX(1,1)*XPRIX(2,2)-XPRIX(1,2)*XPRIX(2,1))

XI(1,1)=DETR*XPRIX(2,2)

XI(1,2)=DETR*(-XPRIX(1,2))

XI(2,1)=DETR*(-XPRIX(2,1))

XI(2,2)=DETR*XPRIX(1,1)

C MULTIPLY INVERSE AND TRANSPOSE

CALL GMPRD(XI,XTRNSP,H,2,2,20)

DO 99 I=1,2

33
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BHAT(I)=H(I,1)*Y1(1)+H(I ,2)*Y1(2)+H(I ,3)*Y1(3)

-S *+H(I,4)*Yl(4)+H(I,5)*Y2(5)

*+H(I,1O)*Yl(1O)+

*H(I,11)*Y1(ll)+H(I,12)*Y1(12)+H(I,13)*Yl(13)+H(I,14)*Y1(l4)

*+H(1 15)*Yl(15)+

V... *H(I,20)*Y1(20)

99 CONTINUE

RETURN

END

C SUBROUTINE DCALC***************

C SUBROUTINE DCALC WILL COMPUTE THE DURBIN STATISTIC D

C

SUBROUTINE DCALC(EHAT,T,D)

DIMENSION Dl(20),02(20),EHAT(20)

ONUM=O

OOEN=O

DO I I=2,T

DNUM=DNUM+DJ( I-1)

I CONTINUE

DO 2 J=1,T

V. D2(J)=EHAT(J)**2

DDEN=0DEN+D2(J)

2 CONTINUE

D=DNUM/DOEN

* RETURN,

END

C

C SUBROUTINE TRANSF

C

C SUBROUTINE TRANSF IS DESIGNED TO TRANSFORM THE X'S AND Y'S

C ACCORDING TO THE LEAST SQUARES RULE.

SUBROUTINE TRANSF(X,YI,RHOHAT,XSTARVYSTAR)

34



DIMENSION Y1(20),YSTAR(20),X(20,2),XSTAR(20,2)

K=2

T=2 0

C Y TRANSFORM

YSTAR(1)=((1-(RHOHAT**2))**O. 5)*YI(1)

DO 7 I=2,20

7 CONTINUE

C X TRANSFORM

XSTAR(1,1)=(1-(RHOHAT**2))**O. 5

DO 9 J=2,K

XSTAR(1,J)=((l-(RHOHAT**2))**. 5)*X(1,J)

9 CONTINUE

DO 11 L=2,T

XSTAR( L, 1)=1-RHOHAT

11 CONTINUE

DO 12 I=2,T

DO 13 J=2,K

XSTAR(I,J)=X(I ,J)-RHOHAT*X(I-1,J)

13 CONTINUE

12 CONTINUE

RETURN

END

C, 35



SIMSA

C THE PURPOSE OF THIS PROGRAM 1S TO RUN COMPUTE THE FOLLOWING

C ESTIMATORS (OW TN BM) FOR A SAMPLE SIZE OF 20

DIMENSION EHAT(20)

COMMON /MYDATA/ K,T,ANS,Y1,X

COMMON /DATA1/ IX1A,RHO

REAL*4 Y(5000),YMIN,YMAX,PMEAN(3)

CHARACTER-80 Ti, T2 ,T3

INTEGER N,M,NE(8) ,L,D,RG,SEI ,SVS,NEST,NSR,IX1,IX2,IX3

EXTERNAL DATGEN, DURWAT, THENAG, BEAMAC, LSEB, DCALC, TRANSF

EXTERNAL LNORM,SIMTBD,GMPRD

NR=20

T=20

K=2

C

C

C

OPEN (UNIT=19,FILE='MONICA')

OPEN (UNIT=51,FILE='AMBROSE')

READ (19,-) ANS

10 READ(19,*,END=999) N,M,L,D,RG,SEI,SVS,NEST,NSR

READ(19,*)YMIN,YMAX

READ(19,*) (NE(I),I=1,L)

WRITE (22,105) (NE(I),I=1,L)

105 FORMAT(814)

READ(19,120) IX1,IX2,IX3

120 FORMAT(I5,1X,15,1X,I5)

READ (19,115) Ti

115 FORMAT(A80)

READ(19,115) T2

READ (19,115)T3

READ(19,*) (PMEAN(I),I=1,3)

REAO(19,*) RHO

READ(19,61)IX1A

61 FORMAT(I5)
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C

C CALL FOR SIMTBD

C

CALL SIMTBD (IX1,1X2,1X3,Y,N,M,NE,L,O,NSR,RG,SEI,SVS,
-YMIN,YMAX,NEST,DATGEN,DURWAT,T1,DATGEN,THENAG,T2,DATGEN,BEAMAC,T3,

J *PMEAN)

GO TO 10

999 WRITE(6,*)IEND OF DATA INPUT'

STOP

END

C

C DATA GENERATION SUBROUTINE

C

SUBROUTINE DATGEN (IX1,EHAT,NR)

DIMENSION BHAT(2),YSTAR(20),R2(20),U(20),
*E(20) ,YHAT(20) ,EHAT(20) ,XSTAR(20,2)

*,Y1(20) ,X(20,2)

COMMON /MYDATA/ K,T,ANS,Y1,X

COMMON /DATA1/ IXIA,RHO

INTEGER IX1,IXlA,NR

C

C

C GENERATE THE RANDOM ERROR

C

N CALL SNOR (IX1,U,NR,1,O)

C

C

C GENERATE THE ERROR FOR THE STAND LINEAR MODEL

C

* E(1)=U(1)/(l-(RHO**2))**O. 5

D0 31 J=2,20

E(J)=RHO*E(J-1 )+U(J)

31 CONTINUE

C

37



C GENERATE THE EXPLANATORY VARIABLES IAW RAO AND GRILITCHES (1969)

C

DO 32 1=1,20

,. X(I,1)=1

,-, 32 CONTINUE

, C CHANGE IXI IN ORDER TO AVIOD COLLINEARITY

C IXIA=IX1+19

CALL SNOR(IXIA,R2,NR,1,0)

DO 33 J=1,20

X(J,2)=R2(J)*.25

33 CONTINUE

C

C

C THE TRUE BETA EQUALS 1,1

C

C

C GENERATE THE INDEPENDENT VARIABLE

C

DO 35 1=1,20

YI(I)=(X(I,1)+X(I,2))+E(1)

35 CONTINUE

C

C

C GENERATE YHAT

C

CALL LSEB(X,Y1,BHAT)

C BHAT(1)=1.3

C BHAT(2)=I. 1
DO 100 I=1,20

YHAT( I)=X( I, 1)*BHAT( 1)+X( I,2)*BHAT(2)

100 CONTINUE
C

C

C GENERATE EHAT

C

38
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DO 50 I=1,20

EHAT( I)=Y1( I)-YHAT( I)

50 CONTINUE

* C

RETURN

END

C ***********DURBIN WATSON

* C

REAL FUNCTION DURWAT (EHAT,NR,WI)

DIMENSION EHAT(20),X(20,2),Y1(20),XSTAR1(20,2),YSTAR1(20),BHAT1(2)

COMMON /MYDATA/ K,T,ANS,Y1,X

CALL DCALC (EHAT,T,D)

DURWAT=1-D/2

CALL TRANSF(X,Y1,DURWAT,XSTAR1,YSTAR1)

CALL LSEB (XSTAR1,YSTAR1,BHAT1)

* C

* C

C

RETURN

END

C

C

C THEIL NAGAR

* C

REAL FUNCTION THENAG (EHAT,NR,WI)

DIMENSION EHAT(20),YSTAR2(20),XSTAR2(20,2),BHAT2(2)

*Yl(20),X(20,2)

COMMON /MYDATA/ K,T,ANS,Y1,X

CALL DCALC (EHAT,T,D)

THENAG=((T**2)*( 1-D/2)+K**2)/(T**2-K**2)

RETURN

END

C

C BEACH MACKI NNON
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C

REAL FUNCTION BEAMAC(EHAT,NR,WI)

DIMENSION EHAT4(20),YHAT4(20),YSTAR4(20),BHAT4(2),

*Yl( 20) ,EHAT( 20),X20,2),XSTAR4( 20 ,2)

COMMON /MYDATA/ K,T,ANS,Y1,X

N=O

RH04=0

98 N=N+1

CALL TRANSF (X,Y1,RHO4,XSTAR4,YSTAR4)

CALL LSEB (XSTAR4,YSTAR4,BHAT4)

C BHAT4(1)=1.0

C BHAT4(2)=1.0

C GENERATE YHAT4

DO 83 I=1,20

YHAT4(I)=X(I,1)*BHAT4(1)+X(I,2)*BHAT4(2)

83 CONTINUE

DO 4 I=1,T

EHAT4( I)=Y1( I)-YHAT4( I)

4 CONTINUE

SUM3=0

SUM2=O

SUMIO0

DO 71 1=2,T

SUM1=SUM1+( EHAT4( I)*EHAT4( I-i))

71 CONTINUE

C

DO 72 1=2,T

SUM2=SUM2+(EHAT4( I-1)**2)

72 CONTINUE

C

DO 73 I=2,T

SUM3=SUM3+( EHAT4( I)**2)

73 CONTINUE

C

DENOM=(T-1)*(SUM2-(EHAT4( 1)**2))

S. 40)



A=(-(T-2)*SUM1)/DENOM

C

B=(((T-1)*(EHAT4(1)**2))-(T*SUM2)-SUM3)/DENOM

C

C=(T*SUMI)/DENOM

C

SMALQ=C-((A*B)/3)+( (2*(A**3) )/27)

C THETA=ACOS((SMALQ*(27**. 5))/(2*SMALP*((-SMALP)**O. 5)))

* C

C BEAMAC IS THE ITERATIVE RHO FOR THIS PROCEEDURE

BEAMAC=(-2-( (-SMALP/3)**O. 5))*COS((THETA/3)+(3. 1412/3))-(A/3)

*C CHECK FOR BEAMAC WHICH ARE OUT OF BOUNDS

IF(BEAMAC. GE. 1)THEN

BEAMAC=0. 99999

ELSE IF (BEAMAC. LE. -I)THEN

BEAMAC=-O. 99999

END IF

C COMPARISION OF RHO4 AND BEAMAC IF DIET JL. 0.0001 THEN END

IF(ABS(RHO4-BEAMAC). GT. .0001)THEN

RH04=BEAMAC

GO TO 98

ELSE

BEAMAC=BEAMAC

END IF

IF (ANS .EQ. 2) WRITE (51,901) BEAMAC

901 FORMAT(F15. 11)

RETURN

END

* C

C THE FOLLOWING SUBROUTINES AID IN THE COMPUTATION OF THE FOUR

C ESTIMATORS OF RHO.
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C ******* SUBROUTINE LSEB

C SUBROUTINE LSEB WILL COMPUTE THE LSE OF B

C

SUBROUTINE LSEB(X ,Y1 ,BHAT)

DIMENSION BHAT(2) ,Y1(2 0),X(20,2),XTRNSP(2,20) ,XI(2,2),H(2, 20),

*XPRIX(2,2)

C X TRANSPOSE

DO 40 I=1,20

DO 41 J=1,2

41 COTINUEXTRNSP(J,I)=X(I,J)

41 CONTINUE

C MULTIPLY X TRANSPOSE AND X

CALL GMPRD(XTRNSP,X,XPRIX,2,20,2)

*C CALCULATE INVERSE OF X PRIME X

DETR=1/(XPRIX(1,1)*XPRIX(2,2)-XPRIX(1,2)*XPRIX(2,1))

XI( 1, 1)=DETR*XPRIX(2,2)

XI(1 ,2)=DETR*(-XPRIX(1 ,2))

XI(2, 1)=DETR*(-XPRIX(2,1))

XI(2,2)=DETR*XPRIX( 1,1)

*C MULTIPLY INVERSE AND TRANSPOSE

CALL GMPRD(XI,XTRNSP,H,2,2,20)

DO 99 I=1,2

BHAT(I)=H(I,l)*Yl(l)+H(I,2)*YI(2)+H(I,3)*Yl(3)
*+H(I,4)*Y1(4)+H(I ,5)*Y1(5)

*+H(I ,6)*Y1(6)+H( I,7)*Y1(7)+H(I ,8)*Y1(8)+H(I ,9)*Y1(9)
*+H(I ,10)*Y1(1O)+

*H(I,11)*Y1(ll)+H(I,12)*Yl(12)+H(I,13)*Y1(13)+H(I,14)*Yl(l4)
*+H( I, 15)*Y1( 15)+

*H( I, 16)*Y1( 16)+H( I, 17)*Y1( 17)+H( I, 18)*Y1( 18)+H( I, 19)*Y1( 19)+

*H(I ,20)*Y1(20)

99 CONTINUE

RETURN

END

C ******* SUBROUTINE DCALC
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C SUBROUTINE DCALC WILL COMPUTE THE DURBIN STATISTIC 0

C

SUBROUTINE DCALC(EHAT,T,D)

DIMENSION Dl(20),D2(20),EHAT(20)

DNUM=0

DDEN=0

DO 1 I=2,T

DlI1=(HTI)EA(I1)*

DNUM=DNUM+D1( I-i)

-p1 CONTINUE

DO 2 J=1,T

* D2(J)=EHAT(J)**2

ODEN=DDEN+D2(J)

2 CONTINUE

0-ONUM/ODEN

RETURN

END

C

C SUBROUTINE TRANSF

C

a..C SUBROUTINE TRANSF IS DESIGNED TO TRANSFORM THE X'S AND Y'S

C ACCORDING TO THE LEAST SQUARES RULE.

SUBROUTINE TRANSF(X,Y1 ,RHOHAT,XSTAR,YSTAR)

DIMENSION Y1(20),YSTAR(20),X(20,2),XSTAR(20,2)

K=2

T=2 0

C Y TRANSFORM

YSTAR(1)=((1-(RHOHAT**2))**O. 5)*Y1(1)

DO 7 I=2,20

7 CONTINUE

C X TRANSFORM

XSTAR(1,1)=(1-(RHOHAT**2))W*O. 5

DO 9 J=2,K

XSTAR(1,J)=((l-(RHOHAT**2))**0. 5)*X(1,J)
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*9 CONTINUE

DO 11 L=2,T

XSTAR( L, 1)=l-RHOHAT

11 CONTINUE

DO 12 I=2,T

DO 13 J=2,K

XSTAR( I,J)=X( I,J)-RHOHAT*X(I-14,J)

13 CONTINUE

12 CONTINUE

RETURN

END
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MSEB
C THIS PROGRAM IS DESIGNED TO CALCULATE THE MEAN SQUARE ERROR OF
C THE BETA VECTOR

DIMENSION B1(5000),B2(5000),B3(5000),B4(5000),B5(sooo),B6(5000),
*B7(5000) ,B8(5000) ,B9(5000) ,B1O(5000) ,BX(5000) ,BY(5000)
O P N ( N T 2 , F L = D T 1

OPEN (UNIT=21,FILE='DAT1')

OPEN (UNIT=31,FILE='DAT2')

OPEN (UNIT=41,FILE='DAT3')

OPEN (UNIT=51,FILE='DAT4')

COUNT= 1000

READ(21,900)(B1(I),B2(I), I=1,1000)

CALL MSEBET (B1,B2,COUNT,XMSEDW)

READ(31,900)(B3(I),B4(I), I=1,1000)

CALL MSEBET (B3,B4,COUNT,XMSETN)

READ(41,900)(B5(I),B6(l), I=1,1000)

CALL MSEBET (B5,B6,COUNT,XMSEPW)

READ(51,900)(B7(I),B8(I), I=1,1000)
* CALL MSEBET (B7,B8,COUNT,XMSEBM)

READ(61,900)(B9(I),BlO(I), I=1,1000)
* CALL MSEBET (B9,B1O,COUNT,XMSEOLS)

900 FORMAT (F11.8,2X,F11.8)

WRITE(6,*) 'MSEDW'

WRITE(6 ,*)XM1SEDW

C

WRITE(6,*) 'MSETN'

WRITE(6 ,*)XMSETN

C

WRITE(6,*) 'MSEPW'

WRITE(6,*)XMSEPW

* C

* WRITE(6,*)IMSEBMI

WRITE(6,*)XMSEBiM

C
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-) WRITE(6,*)IMSELSI

WRITE(6,*)XMSELS

STOP

END

-~ C *********SUBROUTINE MSEBET

SUBROUTINE MSEBET(BX,BY,AN,XMSEB)

DIMENSION BX(5000),BY(5000),SUM(5000)

PLACE=O

DO 901 I=1,AN

PLACE=PLACE + SUM(I)

901 CONTINUE
XMSEB=P LACE/AN

RETURN

END
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