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Abstract

The model M/G/1 is modified in the following manner. The server is idled when he

runs out of customers and resumes serving when the (m+l)st customers arrives, where

m > 0; m+1 is referred to as the "initial quorum"and m is the maximal queue size

(and system size) while the server idles or vacations. The modified model is designated

as M/G/I1(m). When m=O we have the regular M/G/1.

In Section 1 we derive the omni-equations for the backlog process B (equation

'* (1.17)) and for the delay process w (equation (1.24)) by exploiting the simple

relation between B and w in M!G/1(m), a relation which results in equation (1.12).

In Section 2 we derive several composition properties for the backlog and for the

delay. In particular, equation (2.8) says that the backlog is distributed like the sum of

th . backlog in M/G/1 and of a random variable which depends on the service time;
C and equation (2.9) says that the delay is distributed like the sum of the delay in M/G/1

and of a random variable which depends on the service time and on the interarrival

tim e . - , ,, (. ... I. . .

Notation

A = interarrival interval

X = arrival rate = 1/A
x = service duration

•L = 1/X

r = residual time ("residue") of x; x and r are related through the omni-equation

E4(x) - 4 (0) = ExE4'(r); cf. Krakowski (Sept. 1984)

w = delay encountered by a true or virtual customer; in regular M!G/1 we have w=B

B = backlog (unfinished work) due to incumbent customers; in regular M/G/1 we have

w =B

w. = delay when server works

B. = backlog when server works

m = maximal size of the queue when the server idles; m+1 is the "initial quorum"

N = size of the system

n = size of the queue

P1 = Pr(N=j)

.,"
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pi Pr(n=j)

Qj Pr(n=j and server idles) , 0 < j !_ m ; Q0 = P0

P. ; Pr(server works)

A' X, Y, and Z are defined by (1.5), (1.6) and (1.23)

d ( ) is an arbitrary well-behaved function of its argument(s); cf. Krakowski (1984,
1985); polynomials and their limits are well-behaved if their expectation is finite;
so is the step function; E4(z), the expectation of ( (z), is called the

- iomni-transform of z.

S'... The omni-convention calls for taking the expectation of each-side of an

omni-equation without explicitly showing the expectation operator; thus (y) - 4(z)
.. stands for E4)(y) = E4,(z)

A free copy of a random variable z is a random variable distributed like z but
Nl independent of z and of any other variable within the scope of the same expectation

operator (the expectation may be implied by the omni-convention)
-. ...

- - j*zdz ++ zj where j is a positive integer and the z are free copies of z (the

" "generic" random variable); O*z ; 0

-"
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Section 1. The Model M/G/1 With Initial Quorum

The regular model M/G/1 is modified as follows. The server is idled (or goes off
on vacation) each time he runs out of customers, and resumes serving at the instant of

-, the arrival of the (m+l)-th customer, where m>O. Thus m+1 constitutes an initial

quorum and m is the maximal queue size while the server idles; we can think of m

as a "limbo." We will designate this model as M/G/1/(m). Thus, when m = 0 we have

the regular M/G/1.

In a prior report (Krakowski, 1986) we dealt with the process "queue size" for

: i M/G/1(m). (Note: In that prior report m stands for the current m+1. The change
simplifies somewhat the typography of many formulas.) We have shown, in particular,

that for each 0 < j _ m

Q= = (1-p)/(m+l) and P. = X/p. (1.1)

where Qj= Pr(n=j; server idles) and P. = Pr(server works);

*and that

* "4(n) P-. [4 (0) ++, (m)I + p (n+h) (1.2)

where h = number of arrivals during the residue of x, the (generic) service time. To

". make this report readable without recourse to the report quoted above we rederive

(1.1). (We will not need (1.2) in this report.)

Consider the transition diagram for M/G/1/(3):

.--.- -, server works: R states

- ,I -- server idles: Q states
N=0 N=I N=2 N=3 N=4 N=4

The flow balance for the state "N=1; server idles" is XQ0 = XQI which says that the

S.frequency of entering this state equals the frequency of exiting it. The flow balance for

the state "N=2; server idles" is XQ 1 = XQ2 ; and for the state "N=3; server idles" the

flow balance is XQ2 = XQ3 . Hence we have 00 = Q 1 = Q 3. Clearly, for

arbitrary m we have 00 = Q; 0 < j -m. The value of P. follows from the global

balance of arrivals and departures: X = j-P.. Thus we have demonstrated (1.1).

"'
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In the model M/G/1/(m) the treatment of the delay, the theme of the current report,

is more complex than the treatment of the queue-size. It is also more complex and

more subtle than the analysis of the delay for the regular M/G/1. The instinctive

approach in analyzing the delay, in MIG/1/(m) as well as in M/G/1, is to establish a

balance equation for the virtual delay. This has been a simple task in M/G/1, mainly,

in our opinion, because in this model the process "virtual delay" and the process

"virtual backlog" are identical. In M/G/1/(m) when m>1 the two processes differ. It

turns out that the analysis of M/G/1/(m) is much simplified, and more insightful, if

one analyzes the backlog process B along with the delay process w; the backlog B
*% is the aggregate remaining service time for all incumbent customers. (Still, the direct

"instinctive" approach of balancing the virtual delay, or rather, in the omni-fashion, an
arbitrary function of this delay, is a viable approach.) And, of course, the process B

may be of interest in its own right and not as a mere stepping stone to analyzing w.

0 Note The actual delay experienced by a true customer has the same distribution as

the virtual delay; cf. Wolff (1982). This follows from the fact that a true
.. customer and a random observer see, stochastically speaking, the same

picture when the arrival source is poissonian. Using the same symbol w for

true and virtual delays should cause no ambiguity in the context of this

report.

The Static Balance A "random" observer will find, with probability Q0, that B = 0 and

N = 0; he will find, with probability Q p that N = 1 and the server idles and B =x;

and more generally he will find, with probability Qj where 0 j < m, that N = j and

the server idles B = j*x; and he will find with probability P. that B = B. Thus, since

each Qj= (1-p)/(m+l) and P. = p, we have

4(B) -1-P [qb(0*x) ++ b(m*x)] + p (B) (1.3)
m+1

When, e.g., m = 3 equation (1.3) becomes
S(B) 1 P [ (0) + (x)+ (2*x)+4(3*x)f + p((B,) (1.3a)

4

To find the omni-equations for the delay w which correspond to (1.3) and (1.3a) we

note that a virtual customer who finds, with probability Q j, (true) customers in the

limbo must await m - j additional customers to reach the quorum of m + I (this

quorum includes the virtual customer) and then must wait until the j senior customers

are served. The entire delay of our virtual customer is therefore (m-j)*A + j'x, where

4
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0 < j ! m; thus the delay of a cusomter who finds the server idle is composed of m

intervals. (When m = 0 there is no delay when the server idles, this being the regular

M!G/1.) Hence,

cd(w)= -__ [(m*A) + ((m-1)*A+x)++4,(m*x)]+p (w.) (1.4)
-m+1

When m = 3 equation (1.4) becomes
:" (1.4a)

4(w) =4 [4>(3.*i + (2*A+x)+ 4)(A+2 x)+ 4(3*x)a

+ p (w.)

". where w. is the delay conditioned upon the server working.

We simplify the typography of (1.4) and (1.4) by defining

(X) =fi - (j X) (1.5)
m+ I j=O

and

, d(Y) m 1 p((m-j) A+j*x) (1.6)

m j=0

v Then (1.3) and (1.4) become

-(B) =(1-p) (X)+ p04 (B.) (1.7)

mI and

(w) = (1-p) 4(Y) + p4 (w.) (1.8)

A key observation in our approach is that in the model M/G/1/(m) the virtual delay
and the backlog observed at an instant when the server works are one and the same

- -process; hence

B= w. (1.9)

* from which follows the weaker statement that

which merely says that B. and w. are identically distributed. Hence, from (1.8 and
(1.10) it follows that

;,4(w) =(1-p) (Y) + pd(B.) (1.11)

.1 5



"" It follows from (1.7) and (1.11) that

"(w) = (B) + (1-p)[(Y)- do(X)] (1.12)

Thus if we have an omni-equation for B we can transpose it with the aid of (1.12)

-' into an omni-equation for w. We now derive such an equation as balancing condition

for an arbitrary function of B.

The backlog B jumps to B + x with each arrival, these arrivals being of

frequency k. (Departures of serviced customers do not affect the balance since in our

model we assume that the value of a customer's service time is revealed at the instant'3

of his arrival.) On the other hand, while the server works, with probability P., he

keeps on reducing the backlog now denoted by B. at the rate dB. dt. Hence the

omni-balance for B is

X[ (B+x) - do(B)] = P. '(B.) (1.13)

According to the shifted renewal equation (Krakowski, September 1984)

d(B +x) - (B) = -X ('(B +r) (1.14)

' iwhere r is the residue of x; the differentiation is with respect to the entire

argument. From (1.13) and (1.14) we have

- x0 (B+r)= P '(B.)

m kwhich integrated typographically is

* p((B+r) = P. )(B.) (1.15)

Putting 1( ) = 1 we rederive P. = p and (1.15) becomes

, ,'. (B.) = do(B+r) (1.16)

From (1.17) and (1.16) we have

- o() (-p) do(X) + p ( (B +r) (1.17)

the sought for omni-equation for the backlog B. From (1.17) we can get, recursively,

successive moments of B and a convolution equation for the distribution of B. And

in turn, with the aid of (1.12), we can get the successive moments of w and a

L tconvolution equation for the distribution of w. Of course, all needed moments and

distributions of X and Y and Z have to be derived as a side exercise.

6
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Example: Find B and W
From (1.15) we have

...,~ ~ X P l [ + + m ' = lmK 1.8
+ 2(r+1) 2

and from (1.6) we have, similarly,

Y mA (1.19)

From (1.17) and (1.18) we have

B =4 mx + Pr (1.20)
" - 1-p

. From (1.12), (1.18) and (1.19) we have

w=B + (1-p)(Y-X) mx + P + (1-p)mA

m + pr (1.21)
S2x i-p

Thus, w is composed of m/X and the expected waiting time for a regular MI/G/1.

This is not incidental and we will take up the problem of composition properties in the

model MIG/1(m) in Section 2.
,. To complete the current section we derive the omni-equation for w. From (1.12)

and (1.17) we have

. 4(w) = (1-p){4(Y)-p[4)(Y+r) -4(X+r)]} +p (w+r) (1.22)

A comparison of equation (1.22) with the quite simpler (1.17)-even if we replace

.(X) by its explicit representation in (1.5)-will give the reader an idea about the
more extensive need for algebraic maneuvering in a direct derivation of (1.22) from

the omni-balance of the virtual delay.
The formal appearance of (1.21) is simplified by defining

"(Z) _ p(Y) -p[(Y+r) - (X+r) (1.23)

From (1.22) and (1.23) we have

.(w) =(1-p) (Z)+ pq(w+r) (1.24)

It is easy to verify that (1.24) leads to w as given in (1.21).

I.-
-' 7
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Section 2: Composition Theorems

When m = 0, i.e. when we consider the regular MIG/1/(O) alias M/G/1, we have

according to (1.5), (1.6) and (1.23)

(Xo ) = 0, pb(YO) =0, qb(Z o ) =0, (2.1)

We will use in this section, as we have just done in (2.1), a subscript serving as a
reminder of the size of m in the model. This is not a necessity, just a convenience;

most equations in this section relate a general MIG/1/(m) model to the regular

*-N'M/G/1/(0) so that the reminder-subscripts will identify the models. Thus we will write
Xm, Ym' Zm, BM and wm , in place of X, Y, Z, B and w. Equations

(1.17) and (1.22) for m = 0 are written now, taking into account (2.1),

* ,(B 0 ) = (1-p) (0) + p (B0 +r) (2.2)

and

b(Wo) = (1- p) (0) + p 4(wo+r) (2.3)

Equations (2.2) and (2.3) imply, as can be shown, that

-(BO) = (wo ) (2.4)

which we know from the structure of the regular M/G/1.

Let us now shift (2.2) by Xr thus obtaining

- . 4(B + Xm) = (1-p)-b(Xm) + pb(Bo+r+Xm) (2.5)

" From (2.5) and (1.17) we haa-e

,(Bi)-p4)(Bm+r) = (Bo+X m )- p( (Bo+r+X m ) (2.6)

Defining

. x'(B) d (b(B )-p (B +r) (2.7)

we write (2.6) as

- 'P(B m ) =x(B 0 +X )

8
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or, reverting to 4( ) in place of P(), as

d(B) = 4(B 0 +X) (2.8)

Equation (2.8) states that the backlog Bm in MI/G/1/(m) is distributed like the

convolution of BO , the backlog in MI/G/1, and Xm.

i !From (2.3) and (1.24) we derive in like manner

d(wm) = d(wo+Zm) (2.9)

thus showing that the delay in M/G/1/(m) is distributed like the convolution of wo

* . the delay in regular M/G/1, and Zm

The composition equations (2.8) and (2.9) should be especially useful

computationally when the distribution or moments of the delay wo  are known and

when m is treated as a parameter. Of course, the distribution, or moments, of Zm

have to be evaluated as a side exercise. Similar remarks hold for the distribution and

moments of B should the backlog be a process of interest. The labor involved may
." he formidable but in some practical applications it might be justified economically.

Another composition property for the delay wm is obtained as follows. Providing

(l.12) with m-subscripts we have

," w ) = (1 -)L[(Y ) -(Xm) + (Bm) (2.10)

Since in the regular M/G/1, i.e. in M/G/I/(0), B0 =w o  we can write (2.8) in the
i". form

l=(Bm) = )(w°+X m ) (2.11)

From (2.10) and (2.11) we have

.(w m ) =(l-p)I (Y)-(m)I+p(W+Xn) (212)

Equation (2.12) appears simpler numerically than (2.9), especially for the computation

*. . of moments.

9
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