

MICROCOPY RESOLUTION TEST CHART INATIGNAL BUREAU OF STANDARDS 1.46 - A

É

10,378,62,51

AFIT/GEM/LSM/86**5-2**

11 C C

ECONOMIC FEASIBILITY OF FUEL CELL ENERGY SYSTEMS FOR SELECTED FACILITIES ON WRIGHT-PATTERSON AFB, OHIO

THESIS

Stephen A. Bird Captain, USAF

AFIT/GEM/LSM/86S-2

Approved for public release; distribution unlimited

The contents of the document are technically accurate, and no sensitive items, detrimental ideas, or deleterious information is contained therein. Furthermore, the views expressed in the document are those of the author and do not necessarily reflect the views of the School of Systems and Logistics, the Air University, the United States Air Force, or the Department of Defense.

Accession For 1715 - FRAT t parts to 1...... . . 04.0

AFIT/GEM/LSM/86S-2

ECONOMIC FEASIBILITY OF FUEL CELL ENERGY SYSTEMS FOR SELECTED FACILITIES ON WRIGHT-PATTERSON AIR FORCE BASE, OHIO

THESIS

Presented to the Faculty of the School of Systems and Logistics of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Engineering Management

Stephen A. Bird, B. S. Captain, USAF

September 1986

Approved for public release; distribution unlimited

Acknowledgements

I wish to thank Lt Joseph Fellner, from AFWAL/POO5-2, and Mr Don Roth and Ms Shirley Holloway, from the 2750th CES/DEEX, for providing literature and assisting me in locating data essential to this effort.

In particular, I wish to thank my thesis advisor, Major Phillip E. Miller, whose advice and encouragement were vital to my accomplishment of this thesis.

Finally, a special thanks to my wife, Bao, whose cheerful attitude and patience made this experience bearable.

Contents

		Page
Acknowledg	gements	ii
List of Fi	igures	v
List of Ta	ables	vi
Abstract		
I. Intro	Dduction Background Problem Statement Investigative Questions Scope and Limitations	1 1 2 3 3
II. Liter	rature Review	5
	Air Force Policies and Goals Advantages of Fuel Cell Systems The Fuel Cell Fuel Cell Efficiency and Losses Fuel Cell Energy System Components Fuel Cell System Configurations Recent Feasibility Studies	5 6 8 9 12 14
III. Metho	odology	19
	Overview Facility Selection	19 20
	Configuration Fuel Cell Sizing System Cost Estimate Life-Cycle Cost Analysis	21 26 30 32
IV. Deter	rminations and Findings	35
	Existing System Energy Consumption Fuel Cell Sizing Fuel Cell Thermal Energy Transfer Fuel Cell Energy System Cost Estimate Fuel Cell Power Plant Electrical and Thermal Interface Operations and Maintenance Life-Cycle Cost Analysis Sensitivity Analysis	35 36 42 43 43 44 47 49 50

3

bio a caracteria de constructional de la caracteria de la caracteria de la caracteria de la caracteria de la c

÷ .

Page

V. Conclusions and Recommendations for Future Study	52
Conclusions	52 55
Appendix A: Facility Electrical Energy Consumption Data	57
Appendix B: Estimation of MFH Unit Cluster Hot Water Requirements	69
Appendix C: Fuel Cell Power Plant Sizing and Thermal Output Calculations	71
Appendix D: Fuel Cell Energy System Thermal Transfer Calculations	74
Appendix E: Fuel Cell Power Plant Natural Gas Consumption	80
Appendix F: Sample Cost Escalation Calculation	82
Appendix G: Life-Cycle Cost Analysis Calculations and Summary	83
Bibliography	99
Vita	101

SANSAN RECEIPTING REED

<u>___</u>

A 1 4 4

List of Figures

Ç

7.

7

Figure		Page
1.	Schematic Diagram of a Hydrogen - Oxygen Fuel Cell	8
2.	Block Diagram of a Fuel Cell Energy System	10
3.	Fuel Cell Power Plant Heat Recovery System	11
4.	Fuel Cell Operation in a Fixed Power Level Mode	13
5.	Thermal to Electric Ratio	16
6.	Discounted Benefit to Cost Ratio for Fuel Cells	17
7.	Proposed MFH Fuel Cell System	24
8.	Proposed Large Facility Fuel Cell System	26
9.	Fuel Cell Size Determination Using Electricity and Natural Gas Costs	28
10.	Fuel Cell Operating Efficiency	29
11.	Fuel Cell Sizing Example	31
12.	Annual Average of Daily Electrical Demand: Individual Page Manor Unit	39
13.	Annual Average of Daily Electrical Demand: AFIT, Building 641	4 0
14.	Annual Average of Daily Electrical Demand: Reconnaissance Systems Lab, Building 485	41
15.	Facility Heat Exchanger Performance Chart	75
16.	Low Grade Heat Exchanger Performance Graph	77
17.	High Grade Heat Exchanger Performance Graph	78

v

List of Tables

Ι.	Average Monthly and Average Annual Electrical Demand (KW)	36
II.	Facility Thermal Energy Consumption (KBTU)	37
III.	Fuel Cell Power Plant Size	38
IV.	Fuel Cell Energy System Thermal Transfer	42
۷.	Fuel Cell Power Plant Cost Data	43
VI.	Fuel Cell Power Plant Installed Cost Ranges (\$000)	44
VII.	Fuel Cell Electrical and Thermal Interface Cost	46
VIII.	Fixed and Variable O&M Costs	48
IX.	Fuel Cell Power Plant Size Adjustment	72
х.	Final Fuel Cell Power Plant Size and Thermal Output	73
XI.	Fuel Cell Heat Exchanger GPM Output Requirement	75
XII.	Fuel Cell Thermal Energy Transferred to Facility	79
XIII.	Annual Fuel Cell Power Plant Natural Gas Consumption	8Ø
XIV.	Energy Unit Cost and Annual Savings/ Consumption Calculations	83
XV.	UPW Discount Factors Adjusted for Average Fuel Price Escalation by End-Use Sector and Major Discount Rate = 7 Percent	88
XVI.	UPW Factors for Finding the Present Value of Future Nonfuel Annually Recurring Amounts	89

and the second second

R.

AFIT/GEM/LSM/86S-2

AND AND AND AN ANALYSING AN AND AND

Abstract

This thesis developed life-cycle costs of retrofitting fuel cell powered energy systems into existing facilities on Wright-Patterson Air Force Base (WPAFB), Ohio. These lifecycle costs were compared with existing costs for providing facility energy via commercially supplied electricity and natural gas and/or base generated steam. Three facilities representative of the main facility types on WPAFB were examined: Military Family Housing (MFH) units, an office/classroom building, and an office/lab building. An analysis of the cost comparisons was performed to determine if fuel cell energy systems can be economically competitive with existing facility energy utilization systems. The results of this analysis are contained in Chapter IV.

ECONOMIC FEASIBILITY OF FUEL CELL ENERGY SYSTEMS FOR SELECTED FACILITIES ON WRIGHT-PATTERSON AIR FORCE BASE, OHIO

I. Introduction

Background

Presidential and Congressional directives concerning energy usage by the Air Force are translated into policy by the Air Force Energy Plan. This plan is developed annually to assist Air Force installations and activities in the preparation and implementation of their energy programs. Three of the facility energy goals set by the plan and of particular significance to this study are: first, the installation of least life-cycle cost energy conservation retrofits in buildings; second, the use of advanced energy technology to provide facility energy; and third, the reduction of the use of petroleum-based fuels [7:2].

An energy system that has the potential to help achieve all three of these goals is based on a device called a fuel cell. A fuel cell can be thought of as a type of battery in that a direct current flows when the positive and negative terminals are connected. However, unlike a battery that must be recharged from a source of electrical energy (a generator), a fuel cell converts chemical energy into electrical and heat energy by means of a chemical reaction between hydrogen (the fuel) and oxygen. Thus, a fuel cell

can generate electricity with the continuous input of hydrogen and oxygen gas without the need for periodic recharging [2:2].

The Department of Energy (DOE) and the Air Force have already studied several market areas where fuel cell energy systems would be economically competitive with conventional facility energy systems which usually rely on purchased electricity and heating oil. In general, the study found that on a national basis, on-site fuel cell power systems could reduce the energy resource requirements for commercial buildings by 30 percent [2:6]. An energy system that the Air Force believes can significantly reduce consumption of energy resources is certainly worthy of further investigation.

Problem Statement

Recent studies of fuel cell energy systems have shown that installation of these energy systems in certain types of facilities is economically feasible [2:75]. The purpose of this study is to determine the economic feasibility of installing such systems at WPAFB. This study is divided into two main parts. The first part identifies the advantageous features of a fuel cell energy system, such as high relative efficiency and low noise and exhaust emissions. By optimally matching these features to specific facilities at WPAFB, the energy saving potential

can be maximized. The second part of this study is an economic analysis of the installation and operating costs of a fuel cell system at the facilities chosen.

Investigative Questions

A certain amount of background was needed to explain the basic operation and advantages of a fuel cell energy system. This and other information was obtained by means of research of applicable documents and evaluation of data collected to provide answers to the following list of questions:

-What are the current DOE and Air Force policies regarding the potential use of fuel cell energy systems?

-What are the advantages of a fuel cell energy system when compared to conventional energy systems?

-How does a fuel cell operate?

-What are the results of recent feasibility studies?

-Would certain facilities at WPAFB benefit in terms of energy cost reduction from the installation of a fuel cell energy system?

Scope and Limitations

This thesis states the current DOE and Air Force policies regarding fuel cell systems; states the advantages of such a system over conventional energy systems; describes the operation of a fuel cell energy system; describes recent feasibility studies; provides a cost estimate for the

retrofit of a fuel cell system into certain existing facilities at WPAFB, OH; and presents a life cycle cost analysis that determines if a fuel cell system installation would be cost effective.

SKARI SSAMMAN SARASSA MAAAAAAA SAMAAAAA AAAAAAAA

Computer program models have been used in a number of fuel cell feasibility studies to simulate the operation of various system configurations in a wide range of facility types (e.g.,office buildings, hospitals, apartments etc.), and geographic areas. Instead of developing yet another computer model, the author used the findings and recommendations of these feasibility studies to develop a fuel cell energy system retrofit scheme for specific application to three facilities typical of the types existing at WPAFB.

II. Literature Review

Air Force Policies and Goals

ファイクリング

The 1985 Air Force Energy Plan lists several goals for reducing facility energy consumption. Goals applicable to this study are first, to install least life-cycle cost energy conservation retrofits in all buildings over 1,000 square feet in floor area; second, the use of advanced energy technologies to supply facility energy requirements; and third, a 45 percent reduction in the use of petroleum fuels from 1975 levels. All four of these goals are to be achieved by the year 2000 [7:53].

In support of these goals, the Air Force Engineering & Services Center (AFESC) at Tyndall AFB, FL has been assigned the responsibility for the research and development (R&D) of facilities energy systems. These systems include all heating and air conditioning systems and power systems that augment or replace commercial utilities. A major part of AFESC's R&D efforts is directed at monitoring the development of new facilities related technology. As new technologies become cost effective, AFESC recommends their incorporation into Air Force facility energy systems [7:13,84]. As one of these new technologies, fuel cell systems have proven to be cost effective in experimental installations such that routine installation of mass produced fuel systems is expected to begin in FY 89.

Additionally, current FY 86-90 funding for fuel cells is at \$28 million. If fuel cell prices drop as expected, the Air Force expects fuel cells to supply approximately 0.266 trillion British Thermal Units (BTU) of facility energy by 1991 [7:71].

Advantages of Fuel Cell Systems

A fuel cell energy system has several significant advantages over conventional energy systems. First, fuel cells are very efficient- over 80 percent of the chemical energy released by the fuel can be recovered as electricity and heat. Second, they can operate at high efficiency under partial load. Third, they do not contribute significantly to air, water or noise pollution. Fourth, they can be designed to operate on several types of hydrocarbon fuels such as coal derived gas, distillates, methane, etc., as well as synthetic fuels currently under development. Fifth and finally, the fuel cell is modular, so that systems can be configured to match a wide range of load requirements [6:265-269].

The Fuel Cell

In order to obtain the desired magnitude of power output, fuel cell energy systems contain many individual fuel cells connected together in what are called "stacks". Several different types of fuel cells have been developed; however, their principles of operation are similar to that

of the hydrogen-oxygen type. This type of fuel cell consists of four main parts: a porous hydrogen electrode, an electrolyte, a porous oxygen electrode, and an electrical load (Figure 1) [2:28]. At the hydrogen electrode a source of hydrogen gas (H_2) is introduced, where it becomes chemisorbed (attached via a catalyst) to the electrode surface. The catalyst causes the hydrogen molecule to split apart into two individual hydrogen atoms by lowering the activation energy necessary to cause chemical reaction. The hydrogen atoms then migrate into the porous electrode, where each interacts with a hydroxyl ion (OH⁻) to form water and to release two electrons. The electrons flow through the electrical load where the electron flow (current) performs work such as operating an electric motor, lights etc. The electrons then flow into the oxygen electrode where, in a similar process as occurs at the hydrogen electrode, the electrons combine with water molecules (H_{20}) and oxygen (O_2) that has been previously chemisorbed into the electrode. The combination of two electrons with two oxygen atoms and one molecule of water produce a hydroxyl ion (OH⁻) and a perhydroxyl ion (O_{2H}^{-}) . The catalyst also helps break down the non-useful perhydroxyl ion into a useful hydroxyl ion and an oxygen atom. Finally, the hydroxyl ions migrate across the electrolyte to the hydrogen electrode to complete the overall chemical reaction [1:26-33; 12:338].

The function of the electrolyte is to act as a barrier between the electrodes to prevent the hydrogen and oxygen gases from combining directly and also to provide a medium through which the water molecules and hydroxyl ions migrate [2:32].

Figure 1. Schematic Diagram of a Hydrogen-Oxygen Fuel Cell [2:28]

Fuel Cell Efficiency and Losses

As previously described, fuel cells convert chemical energy directly into electrical energy without having to go through an intermediate step where thermal energy is added (e.g., the burning of coal or oil to produce steam in order to run a steam turbine-generator). For this reason, fuel cells are inherently more efficient than conventional coal or oil fueled electrical generating plants. In fact, energy systems that depend on this intermediate step have a practical maximum efficiency of only 35 percent, while fuel cell systems have demonstrated efficiencies of over 80 percent if the heat generated by the fuel cell is utilized (e.g.,to augment facility space heating) [2:36; 7:71]. Fuel cell energy conversion losses are mainly due to the heat generated by the chemical reactions taking place within the cell, the resistance to current flow within the electrodes, and the loss of energy (i.e.,difference in potential or voltage) between the electrodes. This energy loss allows the hydroxyl ions to migrate across the electrolyte at a sufficient rate to produce an adequate amount of electron flow (current) [12:338].

Fuel Cell Energy System Components

A fuel cell produces direct current electricity with inputs of a fuel (hydrogen gas in this example) and air (a source of oxygen). Since most facilities require alternating current power and because pure hydrogen gas is not a commonly available fuel, two other components must be added to a fuel cell to form a practical energy system.

First, to produce pure hydrogen, a component called a reformer must be provided. This device processes liquid or gaseous hydrocarbon fuels (usually natural gas) with steam produced from heat generated by the fuel cell. This process

reduces or "cracks" the hydrocarbon molecules into their component parts, one of these parts being hydrogen gas. The second component required to make up a fuel cell energy system is an inverter. This solid state device takes the direct current produced by the fuel cell and converts it into alternating current. The output can then be fed into a transformer to obtain the desired voltage level (Figure 2) [2:21].

and the second secon

Another component that is not directly related to producing electrical power, but is nevertheless essential for the fuel cell to operate, is the heat exchanger. This device performs the same function as an automobile radiator in that it removes excess heat generated, in this case, by the chemical reactions taking place in the fuel cell power section.

1ø

Present fuel cell system designs utilize two, waterto-water heat exchangers. One removes low grade heat up to 180 degrees Fahrenheit (°F), and the other removes high grade heat up to 275 F (Figure 3) [19:2-5].

AND ALLER PROPERTY IN CONTRACT

Figure 3. Fuel Cell Power Plant Heat Recovery System [2:22]

Also, Taylor states that the amount of heat a fuel cell can transfer is directly related to the temperature difference between the supply water (i.e., water heated by the operating fuel cell), and the return water(i.e., the supply water returned back to the fuel cell after thermal energy has been extracted). That is, the greater the temperature difference between the supply and return water, the greater the thermal energy or heat transfer rate [20:424]. Most facility heating systems; however, are designed with relatively small supply/return water

temperature differences. This fact tends to reduce the amount of fuel cell thermal energy that can be transferred efficiently.

Fuel Cell System Configurations

SAMAGE DIDIDIDI DIDIDIGE MANAGEM AND

The Gas Powercel National Market Report [sic] cites two basic configurations for facility fuel cell power systems: grid connected and grid independent. A grid is simply a term used for the existing commercial electrical power network [13:4-5].

A grid connected system would be dependent on the electrical grid for peak power requirements above the capacity of the fuel cell electrical output. Conversely, the fuel cell could sell back electricity to the grid during time periods when the electrical demand of the connected facility is low.

A grid independent system would not use power from the grid except possibly as an emergency back up power source. The capacity of a fuel cell in this configuration would have to be sized to equal the peak electrical load of the facility. The main disadvantage of this configuration is the large quantity of unused capacity that would not be utilized during off-peak periods. The grid connected configuration, on the other hand, allows a variety of operation modes that can be matched to the electrical and thermal load patterns of the facility proposed for fuel cell power application [13:4-6].

The Report also describes four system operating modes: fixed power level, electric load following, thermal load following, and programmed operation [13:4-5]. Operating a fuel cell in a fixed, maximum power level mode has the advantage of allowing the fuel cell to operate at its maximum efficiency, but only if the power capacity of the cell is kept small enough so that it can be run at full power continuously. The disadvantage of the fixed power mode of operation is that the amount of the total facility energy requirement that can be supplied is only about 30 to 40 percent (Figure 4) [13:10].

E

Both electrical and thermal load following modes are similar in that either the facility electrical or thermal load requirement is monitored by a control system that, in turn, adjusts the level of the fuel cell output to match that of the load monitored. For example, a typical fuel system operated in an electrical load following mode would provide electrical power up to the capacity of the fuel cell. Additional load requirements would be met by the connected grid. Thermal load requirements would be met in varying degrees depending on the facility thermal to electric load ratio. Additional thermal load requirements would be met by the existing furnace, boiler or other thermal energy source of the facility [5:8,9].

Finally, the programmed mode of fuel cell system operation combines the advantages of all three of the previous modes of operation by means of a more complicated load monitor and control system. This system would be able to switch from mode to mode to provide the most energy for the lowest cost. The system designer would determine the mode switch points by comparing purchased energy cost with the cost of energy produced by the fuel cell system in providing the electrical and thermal load requirements of the facility [13:4-12].

Recent Feasibility Studies

Aimone describes a study completed in 1979 by United Technologies Corporation in which several building types (offices, restaurants, apartments) in various geographic locations were examined to determine the energy and economic trade-offs between a fuel cell-heat pump energy system that satisfied facility electrical and heating requirements and

the existing gas fired furnaces that provide heat only for each facility. The major findings of the study were first, that the fuel cell-heat pump system energy savings ranged from 10 to 50 percent depending on the type and location of the facility, and second, that both the energy savings and the life cycle cost of the system depends heavily on the ratio of the thermal to electric energy requirements of the facility. Specifically, if a facility requires thermal energy (space heating, hot water) in an amount at least four times that of the electrical energy required (measured in equivalent thermal units of BTU's) then the fuel cell system will consume less natural gas fuel in providing both the electrical and thermal energy requirements of a facility than that consumed by the existing gas furnace system in providing thermal energy only (Figure 5). As the thermal to electric energy ratio drops below four, the existing gas furnace system becomes more cost effective because increasing amounts of thermal energy generated by the fuel cell would not be utilized and would have to be either stored at an additional cost or ejected into the atmosphere. In summary, this study showed that it is important to use the heat generated by a fuel cell system to the maximum extent possible in order to achieve maximum cost effectiveness [2:75-85].

CALLER CONTRACTOR

Trocciola evaluated the feasibility of using a megawatt size fuel cell power plant to supply the electrical and

Figure 5. Thermal to Electric Ratio [2:83]

thermal requirements of the Air Logistics Center (ALC) at Tinker AFB. The power plant selected for the study was an 11 megawatt phosphoric acid fuel cell system. The nominal operating parameters of this system were developed by the Electric Power Research Institute in 1981.

The study began by describing various performance, environmental and cost pay back parameters required to meet the ALC mission and then compared the ll megawatt system with each parameter. Cost comparisons were made with the fuel cell system that included either 50 percent or 100 percent generated heat usage versus using electrical power from the existing base grid, as well as, versus a grid plus emergency diesel generator system (Figure 6).

As can be seen from Figure 6, the fuel cell system compared favorably with both conventional utility systems.

With States and States and States and

لمتدادين

Figure 6. Discounted Benefit to Cost Ratio for Fuel Cells [21:5-12]

For example, for a 50 percent recovery of heat, a fuel cell system can have an installed cost of as much as \$1000 per kilowatt (KW) and still have a benefit to cost ratio of (i.e., break-even cost) of "1". Trocciola also notes that since the fuel cell system is independent from electric utility outages, it can be used as the primary source of power with the commercial grid assuming the role as an emergency power source. Thus, the fuel cell system has an additional advantage of eliminating the need for emergency generators [21:2-7 - 6-1].

The studies reviewed indicate that the thermal output of a fuel cell must be effectively utilized to reduce the cost of providing thermal energy to a facility, before a fuel cell power system can be cost competitive with existing facility energy sources. However, the thermal transfer system (i.e., heat exchangers, piping, pumps and controls) may be too costly to achieve a cost to benefit ratio of "1" or greater. The existing thermal energy generation and distribution system of a particular facility may or may not be able to be modified to allow fuel cell thermal energy to be transferred within economic feasibility limits. For this reason, the application of a fuel cell system is site specific.

It was the author's intent then, to determine if a fuel cell energy system would be economically feasible if installed in three, site specific facilities representative of the main facility types at WPAFB.

III. Methodology

Overview

BARRELLA BARRALLA BARRALAS BARRALAGO

22122222

In determining what facilities on WPAFB were to be studied, personnel from the 2750th Civil Engineering Squadron were contacted to obtain data on current energy costs, actual or estimated values of electric and thermal energy loads for various facilities, and related subjects. A selection of facilities was made based on the amount and quality of facility energy consumption data available, the thermal and electric load requirements of the facility, and the author's desire to evaluate a cross section of facility types on WPAFB.

Performance characteristics and configurations of fuel cell energy systems were obtained by surveying additional literature from the Department of Energy, the Gas Research Institute, United Technologies Corporation, and other sources. The author evaluated and compared energy consumption data and design information from fuel cell energy system reports with desired characteristics of system simplicity and low installation and maintenance costs. The results of this evaluation process were used to develop an energy system configuration capable of supplying a certain percentage of the total facility energy needs more efficiently, for each of the facilities selected for study.

Life cycle costs were developed to compare each proposed system with the existing facility energy system. Finally, a sensitivity analysis was attempted to determine at what cost per kilowatt a fuel cell energy system at WPAFB would be cost competitive with commercially supplied electric power.

Facility Selection

<u>t</u>-4

Three factors were involved in the selection of facilities for this thesis: the metered facility energy consumption data available, the thermal and electrical load requirements of the metered facilities, and the logical desire to study a reasonably good cross section of facility types on WPAFB.

A historical record source for metered energy consumption of 22 individual facilities, plus energy consumption for two Military Family Housing (MFH) areas, was located at the utility monitoring and billing section (DEEX) of the 2750th Base Civil Engineer. The metered data consists of half-hourly consumption readings for electricity and steam or high temperature hot water, and a graph showing peak, average, and low consumption levels for each hour of the day for a month long period [24]. A sample of this data is located in Appendix A. The advantage of having metered energy consumption available was that it eliminated the need to make many of the consumption estimation calculations contained in several other fuel cell studies reviewed.

2Ø

A decision had to be made when the other two facility selection factors were addressed. In order to obtain a good cross section of the various types of facilities on WPAFB, facilities were chosen that did not have relatively coincident thermal and electrical loads nor advantageous thermal to electric load ratios. It was the author's intent to study three facilities representative of the types on WPAFB, regardless of their thermal/electrical usage patterns, because it would be useful to know at what purchased utility cost a break-even point could be reached for typical base facilities (e.g., for future fuel cell system installation programming purposes).

Three metered facilities that the author felt were representative of a significant number of facilities on WPAFB were; first, Page Manor MFH units; second, an office/classroom type facility, the School of Systems and Logistics, Air Force Institute of Technology, Building 641; and third, an office/laboratory type facility, Reconnaissance Systems Evaluation Lab, Building 485.

Determination of Fuel Cell System Configuration

Recent studies of various fuel cell system configurations attempt to find ways to maximize the use of the thermal energy generated by the fuel cell for the least cost. All of the studies surveyed integrated the fuel cell into the existing facility energy system where practical (e.g., gas boilers were retained to augment the thermal

energy supplied by the fuel cell). The systems developed in these studies varied considerably in complexity.

ŀ

The 40KW test system installed at the Air Force Museum, WPAFB, used simple, hot water coil space heaters to utilize the fuel cell thermal output [20:2]. One system, proposed by Wakefield, for an apartment building would use multiple energy transfer components. The fuel cell would provide electrical power to satisfy the building demand, plus operate a vapor compression chiller to provide chilled water air conditioning. An absorption chiller, fueled by hot water supplied from the fuel cell and an existing hot water boiler, would provide additional chilled water to augment the vapor compression chiller. Space heating and domestic hot water would be supplied by the fuel cell thermal output, a heat pump with electrical resistance powered by the fuel cell, and finally, by additional hot water from the existing hot water boiler. All of these systems would be integrated via water pumps, piping, mixing valves, and a monitor/control system [22:4-36]. The majority of studies surveyed, however, were developed around fuel cell systems of moderate complexity.

In order to determine the proposed complexity level for the fuel cell system studied in this thesis, the author recognized that adding complexity almost always increases cost and reduces reliability. This is especially true when the main component of the system under study, the fuel cell,
is still in the experimental development stage. While a more complex system would probably increase energy savings, the author felt that determining the feasibility of a relatively simple fuel cell system would be more logical given the still largely estimated operational capabilities of the fuel cell.

The fuel cell energy system proposed for the multiunit MFH facilities consists of a central fuel cell with a hot water distribution system that would serve MFH clusters of 5 to 19 units in size. The fuel cell would be grid connected to the existing electrical system and provide a portion of the electrical load requirements of the housing cluster. Space cooling would continue to be provided by the existing unitary air conditioners. The fuel cell thermal output would augment the domestic hot water requirements of the housing cluster by means of a water-to-water heat exchanger installed inside a central, hot water holding tank connected via underground piping to the existing gas hot water heaters located in each MFH unit.

Hot water flow from the holding tank to the facility would be regulated by a temperature modulated, three-way valve to permit maximum utilization of the hot water generated by the fuel cell. That is, the valve controlling the fuel cell heat exchanger output would open first. Then, as the requirement for hot water increased above the quantity that could be supplied by the fuel cell, the valve

Legend for Figures 7 & 8

- E: Electrical Power a. Commercial Grid b. Fuel Cell Output
- EX: Existing Steam Converter, Bldg.641; or Boiler, Bldg.485
- G: Grid Interconnect Unit

FC: Fuel Cell

- HEX: Heat Exchanger a. Water-to-water
 - b. Water-to-air
 - D. Water-to-ar

HWR: Hot Water Return

- HWS: Hot Water Supply
- NAG: Natural Gas
- T: Hot Water Storage Tank
- WH: Water Heater
- (): Water Pump
- Three-way Valve

controlling the output of the water heater would open to satisfy the additional requirement (Figure 7).

The fuel cell systems proposed for the other two facilities are similar. Both facilities have large, central, heating, ventilating and air conditioning (HVAC) systems. Unlike the MFH system, the main use of the thermal output of the fuel cell would be for space heating. Hot water from the integral fuel cell heat exchangers would be pumped through water-to-water heat exchangers installed in the facility hot water supply main line, thereby transferring the fuel cell thermal output to the facility hot water distribution system. As in the MFH system, the flow of the fuel cell generated hot water would be controlled by a thermostatic, three-way valve (Figure 3).

Additional thermal energy from the fuel cell could have been extracted via water-to-air heat exchanger coils installed in the facility HVAC duct systems; however, the cost to modify the HVAC system would have been prohibitive. In Acre's study involving a proposed fuel cell installation at McClellan AFB, CA, he determined that the cost of providing large (area) heat exchangers and extensive duct modification required to allow a reasonable amount of thermal energy transfer from the fuel cell to the facility would have been too expensive relative to the energy savings incurred [1:51].

Figure 8. Proposed Large Facility Fuel Cell System

Fuel Cell Sizing

Bollenbacher's study revealed that the optimum size for a fuel cell power plant was a strong function of the commercial natural gas and electricity rates available at the proposed site [5:21]. He developed a series of graphs that showed linear plots of the estimated optimum fuel cell size for various natural gas and utility costs in 1981 dollars. The author plotted the FY 81 gas and electricity costs, \$4.29/10⁶ BTU and \$11.80/10⁶ BTU respectively, for WPAFB on these graphs and found that the optimum fuel cell size ranged from 10 to 30 percent of the peak electricity load of the facilities examined in Bollenbacher's study

(Figure 9) [5:18]. These percentages changed only slightly when the cost of steam (\$4.10 per 10⁶ BTU, used in lieu of natural gas as the heat source in one of the office facilities in this thesis) was substituted for natural gas. These percentage boundary limits were used as one constraint to determine fuel cell size.

An additional sizing constraint was the desire to keep the fuel cell running continuously and at a power level of at least 50 percent (Figure 10). This mode of operation keeps the operational efficiency of the fuel cell on a high level, thus allowing maximum cost benefit to be achieved. Also note that the thermal output of the fuel cell is relatively constant above the 50 percent power level. This fact brings up the final sizing constraint which is based on the facility monthly thermal energy consumption.

As stated previously, the thermal energy generated by a fuel cell must be utilized to the maximum extent possible to reduce the overall cost of providing electrical and thermal energy to a facility. For this reason the annual thermal output of a fuel cell size chosen within the 10 and 30 percent band should not be greater that the annual facility thermal requirement. However, this final constraint may not be able to be followed if the facility thermal requirement is smaller (or larger) than the thermal output of the 10 percent (or 30 percent) sized fuel

*

Figure 9. Fuel Cell Size Determination Using Electricity and Natural Gas Costs [5:Fig 14]

cell. In such cases, the life-cycle cost analysis would be based on the smallest (or largest) fuel cell size within

Figure 10. Fuel Cell Operating Efficiency [6:266]

the constraint band.

60513653 R.444466

The should be

The fuel cell sizing boundary limits, operating power level, and annual facility thermal requirement constraints were analyzed with metered energy consumption data for the facilities studied. In order to perform this analysis, records of the average electricity consumption of four months representative of the seasons (January, April, July, and October) were obtained for each facility from the 2750th Base Civil Engineer utility monitoring section (Appendix A). Six electricity consumption values were then chosen at four hour intervals from each of the four, monthly consumption records for each facility. Each of these six sets of four

consumption values was averaged and then plotted to produce an average daily facility electrical load graph. The fuel cell size boundary limits were overlaid on these graphs, and the size of the fuel cell was then determined for each facility using the minimum operating power level and the annual facility thermal requirement constraints as weighting factors for choosing the percentage size value within the boundary limits. Figure 11 is a sample illustration of this process. Note that the peak demand value listed is higher than the highest point on the graph. This is because average demand values were used to develop the graph. To determine the size of the fuel cell, note that a 50 KW unit would be able to operate at a power level of at least 50 percent capacity since the lowest average electrical demand level is 25 KW. However, the annual facility thermal energy consumption of 1,500 K(thousand)BTU's is less that the maximum annual thermal output of a 50 KW fuel cell of 1,642.5 KBTU's. Therefore, the adjusted fuel cell size would be (1500 KBTU/1625.5 KBTU) x 50 KW = 45.7 KW. This sizing process is described in more detail in Appendix C.

System Cost Estimate

The fuel cell system cost estimate addressed three areas: the fuel cell power plant cost, the electrical and thermal interface costs, and the annual operation and maintenance costs.

3Ø

Figure 11. Fuel Cell Sizing Example

C

In an attempt to obtain an approximation of the cost of a fuel cell power plant, several studies were reviewed [5,17,22]. Estimated installed costs for fuel cell power plants of common size were found to range from \$820/KW to \$1509/KW. Because of this wide cost variance, three system costs were developed (based on the low, average, and high estimated fuel cell costs) for use in the life-cycle cost analysis. The thermal and electrical interface costs were determined by conventional construction cost estimating techniques, using material and labor costs contained in cost estimating manuals.

Operation and maintenance(O&M) cost estimates, like those for the fuel cell power plant, varied significantly. Annual fixed O&M costs ranged from \$15.33 per KW of fuel cell size to 2.5 percent of the fuel cell power plant cost, and the range of variable O&M costs was \$.009 to \$.021 per kilowatt-hour of annual fuel cell power plant production. Thus, three corresponding O&M cost values were calculated (low, average, and high) and applied to each of the three fuel cell power plant costs.

These sets of fuel cell power plant and O&M cost data were used in the life-cycle cost analysis to develop a set of benefit to cost ratios. It was the author's intent to plot these ratios versus total fuel cell system cost per KW to determine the sensitivity of a fuel cell energy system to changes in the fuel cell power plant and O&M costs. Figure 6 is an example of this graphical process.

Life-Cycle Cost Analysis

Life-cycle cost calculations were made following the prescribed format contained in <u>Engineering Technical Letter</u> (ETL) 82-4: Energy Conservation Investment Program (ECIP). The following constraints stated in ETL 82-4 applied to this analysis:

a. Fuel cell economic life - 25 years.

- b. Actual (1986) facility energy costs formed the base values for the analysis.
- c. Annual energy cost escalation 7 percent.

Appendix G contains applicable excerpts from attachment 1 to ETL 82-4, <u>Life-Cycle Cost Analysis Summary</u>, which describes a step by step process for completing a cost analysis summary. The deciding factor used to determine if a project is cost effective or not is the savings to investment ratio. This ratio consists of the total lifecycle energy savings in dollars divided by the total investment cost of the energy saving project. Thus, the savings to investment ratio is simply another name for the benefit to cost ratio mentioned heretofore.

Three types of costs were required to complete the life-cycle cost analysis summary. The first was the investment cost. This cost was the total installed cost of the fuel cell energy system minus any salvage value. Note that the construction cost was multiplied by an energy credit cost reduction factor of 0.9. This factor is based upon a ten percent tax credit allowed by the DOE for energy conservation projects. The second type of cost required for the cost analysis was the difference in energy use between the existing system and the proposed system. Annual increases and/or decreases in consumption of the fuels applicable to the study were calculated and then converted

into dollars. These annual savings and/or cost values were then converted to a single, present worth value using the uniform present worth discount factors contained in Appendix G, Table XV. The third type of cost, non-energy cost, was calculated in a similar manner. This cost was divided into two additional categories- recurring (e.g., operations and maintenance) cost, and non-recurring (e.g., parts replacement) cost. However, the cost value used in this section was the annual recurring O&M cost that contained both fixed and variable costs. Thus, the nonrecurring cost part of the life-cycle cost summary was not used. Therefore, a single, present worth cost value was calculated using the annual recurring O&M cost value.

a she she sa a she she she she she

Finally, the energy and non-energy present worth costs were added together and then divided by the total investment cost to obtain the savings to investment (i.e., benefit to cost) ratio [6:1-3].

IV. Determinations and Findings

Existing Energy System Consumption

The electrical demand data used to develop the average daily electrical load graphs for the three facilities examined in this thesis is contained in Appendix A. The particular values that were used to determine an average daily electrical demand value at six, four hour intervals are shown bounded by a rectangle. Table I lists these values, plus the average of each set. These set average values were the six data points used to plot a graph of the annual average of daily electrical demand for each of the three facilities examined. Note that the demand values used in the graph of the Page Manor MFH were for an individual unit. That is, the annual average demand values listed in Table I were divided by the total number of individual MFH units (i.e., 1,471).

The monthly and annual thermal energy consumption for each facility is listed in Table II. Average daily thermal demand graphs were not required, because the fuel cells, as sized, operated at either full load or close to full load continuously. Thus, the thermal output of all three fuel cells was relatively constant. Therefore, the thermal energy supplied to each facility was not demand dependent, and only the total annual thermal requirement of each facility was needed to determine what fraction of

		-			
			Page Ma	anoi mrn	
Time	Jan	Apr	Jul	Oct	Annual Average
0400	1096	964	1232	990	1070
0800	1528	1310	1512	1434	1446
1200	1720	1626	2214	1646	1801
1600	1722	1676	3828	1856	227Ø
2000	2294	2114	3572	2310	2572
2400/0000	1478	1370	2544	1268	1655
			Build	ing 641	
0400	42	44	130	92	77
0800	104	116	204	176	127
1200	118	132	214	196	165
1600	106	122	166	160	138
2000	60	74	106	120	90
2400/0000	32	30	52	58	43
			Build	ing 4 85	
0400	96	144	178	100	129
0800	142	184	230	150	176
1200	150	196	234	154	175
1600	150	186	224	130	172
2000	100	148	186	102	134
2400/0000	94	144	182	96	129

Table I

Average Monthly and Average Annual Electrical Demand (KW)

facility thermal energy was supplied by each fuel cell system.

Fuel Cell Sizing

Using the annual average electrical load values from Table I, fuel cell sizing graphs were drawn (Figures 12, 13 and 14). Sizing boundaries of 10 and 30 percent of

2

Month	MFH Unit Cluster	Building 641	Building 485
Jan	18,930	183,032	713,227
Feb	n	124,106	652,521
Mar	n	64,675	794,725
Apr	82	6,789	424,258
May	11	6,463	281,154
Jun	87	0	400.949
Jul	PT	Ō	350.000
Aua	n	3,200	11
Sep	51	5,727	61
Oct	11	4,948	61
Nov	91	15,160	310,440
Dec	ti	176,562	535,810
Total	227,166	590,612	5,513,084

Facility Thermal Energy Consumption (KBTU)

facility peak demand, plus the minimum operating power level and annual facility thermal requirement constraints were then applied.

In the case of Page Manor MFH, additional sizing constraints were imposed in order to determine the fuel cell size for a typical MFH unit cluster instead of only for a single MFH unit.

In order to minimize the cost of distributing thermal energy recovered from the fuel cell and make maximum use of the existing MFH low voltage electrical distribution system, sizing corresponded to clusters of MFH units with common electrical distribution systems. Although the MFH unit clusters vary in size from 5 to 19 units, the majority

of unit clusters were found to be in the range of 6 to 10 units. Therefore, an average unit cluster size of 8 was chosen for evaluation. Table III shows the results of the sizing calculations performed in Appendix C. Note that the fuel cell sizes chosen were below the areas where the electrical demand fluctuates. The small dip in the MFH demand plot, between 0230 and 0630 hours, amounted to only about a 1.5 percent difference in the total daily fuel cell electrical output and was therefore considered insignificant. Thus, the fuel cell power plants chosen operate in the fixed power level mode (i.e., at 100 percent rated power continuously).

Table III

Fuel Cell Power Plant Size

Facility	Power Plant Size (KW)
MFH Unit Cluster	7
Building 641	28
Building 485	94

The fuel cell sizes determined were not rounded up to possible future generic sizes of say, 10 KW and 100 KW, because the author expects future fuel cell designs to be sufficiently modular to allow fuel cell "stacks" rated at 2 KW, for example, to be combined until the desired KW rating is produced.

Figure 12. Annual Average of Daily Electrical Demand: Individual Page Manor MFH Units

and the second secon

Figure 13. Annual Average of Daily Electrical Demand: AFIT, Building 641

Ķ

Figure 14. Annual Average of Daily Electrical Demand: Reconnaissance Systems Lab, Building 485

Fuel Cell Thermal Energy Transfer

The fuel cell power plant thermal output calculated in Appendix C was transferred to each facility through the fuel cell heat exchangers and thence to the facility heating system by means of another water-to-water heat exchanger located inside the facility mechanical room or, in the case of the MFH unit cluster, located next to a central, hot water storage tank near the fuel cell power plant.

In order to determine how much of the fuel cell heat was actually transferred to the facility heating system, the gallons per minute (gpm) flow of heated water required from the fuel cell heat exchangers had to be calculated. This heated water flow rate was then used with fuel cell and facility heat exchanger performance data to determine the quantity of thermal energy transferred to each facility. Table IV summarizes the quantities calculated in Appendix D.

Table IV

Fuel Cell Energy System Thermal Transfer

 Facility		Thermal	l Transfer	Percent Fuel Cell Thermal Output
MFH Unit	Cluster	13,130	BTU/hour	50%
Building	641	37,100	BTU/hour	35%
Building	485	124,350	BTU/hour	35%
 				~~~~~~~~~~~~~~~~~~

The author determined that for Buildings 641 and 485 the thermal output from the fuel cell could be obtained only from the high grade heat exchanger. The reason for this was because the large flow rate of high temperature water required made it thermodynamically impossible to mix any of the low grade heat exchanger water with that of the high grade heat exchanger.

## Fuel Cell Energy System Cost Estimate

<u>Fuel Cell Power Plant</u>. Table V summarizes the cost data used to determine three sets of fuel cell power plant costs used in the life-cycle cost analysis. All costs were escalated to 1986 dollars by means of historical cost indices contained in <u>Means Electrical Construction Cost</u> <u>Data 1986</u>. A sample cost escalation calculation is contained in Appendix B.

#### Table V

## Fuel Cell Power Plant Cost Data

Source	Power Plant Installed Cost,'KW	O&M Costs Fixed Variable
[5:33]	\$1509	2.5% \$.009/KWH System Cost
[17:28]	\$1347	\$15.33/KW \$.021/KWH
[22:5-23]	\$820	None \$.016/KWH

The installed cost ranges (low, medium, and high) of the three fuel cell sizes previously determined are summarized in Table VI.

#### Table VI

	Fuel	Cell	Power Plant	Installed Cost Ra	nges (\$000)
Facil	ity	<u>KW</u>	Low(\$820/K	W) <u>Avg(\$1347/KW)</u>	High(\$1509/KW)
MFH C Clust	Init er	7	5.7	9.4	10.7
Bldg.	641	28	23.0	37.7	42.3
Bldg.	485	94	79.8	114.6	149.5

Electrical and Thermal Interface. The electrical interface requirements for all three fuel cell energy systems were essentially the same. The fuel cell power plant was located close to the main distribution transformer in the case of the MFH unit cluster and close to the main electrical entrances of Buildings 416 and 485.

Commercial power from the electrical grid was connected to the fuel cell via a grid interconnect unit. This unit contained impedance matching and synchronizing circuits to make the fuel cell generated power compatible with the commercial grid, plus automatic switches to disconnect the fuel cell in case of failure or in case of a commercial power outage.

The estimated cost for the grid interconnect unit was based on a synchronizing unit for a diesel generator, plus the cost for a circuit breaker of appropriate size.

⋒⋽⋑⋐⋺⋧⋐⋇⋨⋜⋹⋎⋧⋐⋼⋎⋧⋐⋼⋎⋎⋐⋼⋎⋨⋐⋼⋎⋳⋐∊⋎⋳⋐∊⋎⋳⋐∊⋎⋳*⋶∊*⋎⋳⋏

The fuel cell could be used to provide partial facility power in the case of a commercial power outage. However, to prevent overloading the fuel cell, only essential circuits, with a combined load not exceeding the KW rating of the fuel cell, could be connected.

The thermal interface requirements were also similar in configuration; however, the MFH unit cluster system required a more extensive underground hot water distribution system, plus a hot water holding tank. The two large facilities, on the other hand, required relatively short lengths of distribution piping, but needed water-to-air heat exchangers to reduce the return water temperature to the fuel cell.

The average size of piping required for each system was estimated using the gpm values calculated in Appendix D, and the estimated length of pipe required. These values were used in conjunction with a pipe sizing graph contained in the ASHARE Handbook [3:32].

Prices for the other interface components were picked to correspond as closely as possible with the KW, BTU and gpm ratings previously determined. For example, the flow rate of the water-to-water heat exchanger for Building 641 was calculated to be 5.4 gpm. The closest heat exchanger

size listed in the cost data used was a 7 gpm unit priced at \$600. Therefore, this was the price used in the interface cost estimate. All prices listed in Table VII include materials and installation.

22. A.M. Y. A.M. A.M. K. A.

11

# Table VII

ANAL MANANA CARRESS DAVIDADA DAVADADA KARASAN

Fuel Cell Electrical and Thermal Interface Cost

	MFH Unit	Cluster	Building 641	Building	485
Electrical Service [14:224]	\$690		\$855	\$255Ø	
Grid Unit [14:177,315]	\$787		\$1215	\$1567	
Water-to- Water Heat Exchanger [15:179]	\$350		\$600	\$1307	
Water-to Air Heat Exchanger [15:181]	N/A		\$342	\$875	
Circulating Pump(s) [15:145]	\$478		\$344	\$435	
3-Way Valve(s) [15:204]	\$150		\$422	\$936	
Storage Tank [15:183,196]	\$1380		N/A	N/A	
Hot Water Piping System [15:92,98,187	\$4192 n /]		\$1204	\$1617	
Total Matls.	\$8027		\$4982	\$9287	

• • • • • • •	Table VII	(Continued) .	• • • • • • • • •
25 Percent Overhead & Profit [15:9]	\$2007	\$1246	\$2322
Subtotal	\$10034	\$6228	\$11609
15 Percent Design[15:7]	\$1505	\$934	\$1741
Grand Total	\$11539	\$7162	\$13350
		~~~~~~~~~~	

Operations and Maintenance. The three O&M cost ranges listed in Table V are divided into two categories- fixed and variable. The fixed cost is static in that it is based on one finite value (i.e., 2.5 percent of fuel cell system cost or \$15.33/KW of fuel cell size). The variable cost, on the other hand, depends on the operating time of the fuel cell system.

In order to determine the fixed cost factor of 2.5 percent of the fuel cell system cost, Bollenbacher's value for the fuel cell power plant installed cost (\$1509/KW) was multiplied be each of the three fuel cell sizes previously determined. Each of these values was then added to the corresponding electrical and thermal interface cost for each installation listed in Table VII.

The annual KWH generated by each fuel cell was required to determine the variable cost. The number of hours of fuel cell power plant operation per year was based on a 97 percent operational reliability factor

(354 days/year or 8496 hours/yr) stated in Appendix E. Each fuel cell KW size was then multiplied by 8496 hours/yr to obtain the annual KWH power production. Table VIII lists the fixed and variable O&M costs for each fuel cell system.

CONTRACTOR SALARSEN REALESSON

BERTHER BEERS AND REPAREMENTS

Table VIII

Fixed and Variable O&M Costs

Fixed	MFH Unit Cluster	Bldg. 641	Bldg. 485
2.5% System Cost [5:Table V]	\$465	\$1,181	\$3,778
\$15.33/KWH [17:28]	\$107	\$429	\$1 ,44 1
None [22:S-23]	\$Ø	\$Ø	\$0
	• • • • • •	•••••	
Variable			
\$0.009/KWH [5:Table V]	\$535	\$2,141	\$7,188
\$0.021/KWH [17:28]	\$1,249	\$4,996	\$16,771
\$0.016/KWH [22:S-23]	\$952	\$3,806	\$12,778

Thus, the total annual O&M cost for each fuel cell system ranged from \$952 to 1,366 for the MFH unit cluster, \$3,322 to 5,425 for Building 641, and \$10,956 to \$18,212 for Building 485.

Life-Cycle Cost Analysis

MARKARA MAMMARKA ROMANNA MARKARA

The life cycle cost analysis summaries for the three facilities studied are contained in Appendix G. The author found that none of the fuel cell energy systems was cost effective over the expected 25 year lifetime. All three systems did save energy initially (Item 2F3, Appendix G), but when the uniform present worth discount factors were applied, an overall life-cycle cost for energy was incurred instead of a savings.

Another significant factor in the life-cycle analysis that caused the fuel cell energy systems to show a net loss, was the O&M cost (Item 3A, Appendix G). Indeed, the O&M cost actually exceeded the initial cost of the fuel cell energy system in four out of the nine life-cycle cost analysis summaries. To illustrate the magnitude of the O&M cost, the life-cycle O&M cost values divided by the number of days in 25 years resulted in a daily O&M cost that ranged from a low of \$1.22 per day for the MFH unit cluster system, to a high of \$23.31 per day for Building 485. Perhaps even more realistic would be the daily cost range condensed into the 11 day downtime period previously estimated (i.e., 97 percent reliability or 354 day uptime per year). Within this 11 day period the daily O&M cost ranged from \$40.33 per day to \$770.25 per day.

One factor not included in the life-cycle cost analysis summaries was the reduction in KW demand that

would have resulted if each fuel cell was operated continuously at its maximum capacity. Operating at 100 percent capacity, without any downtime for maintenance or system failure, would ensure that the local electric utility company would measure a KW demand reduction identical to that of the rated KW of the fuel cell power plant. However, even if this ideal condition were met, the author determined that the savings in reduced KW demand charges amounted to only a five to nine percent reduction in the total non-energy savings cost (Item 3A, Appendix G). Therefore, KW demand reduction savings had no effect on the outcome of the life-cycle analysis summaries.

Using the total investment and the savings to investment ratio (SIR) values (Items 1F, and 6, Appendix G), a sensitivity analysis was then attempted to determine if the fuel cell energy systems proposed would be cost effective.

Sensitivity Analysis. The author's original intent in performing a sensitivity analysis was to develop a set of SIR's, three for each fuel cell energy system, and plot them on a graph versus the dollars per kilowatt (\$/KW) installation cost similar to the graph shown in Figure 6. Since each point plotted would have been determined from a different set of installation and O&M costs, the curve produced by joining the points would have shown the sensitivity of the energy system to the combination of the

different sets of installation and O&M costs. It was also hoped that at least one of the energy systems would have an SIR of one or greater, indicating that that system was cost effective.

South and the second second second

However, after the nine life-cycle analysis summaries were completed, all of the resulting SIR's were found to be negative. Because of this fact, it would have been pointless to attempt to plot any of the negative SIR values or, even if plotted, to extrapolate beyond the negative SIR points in an attempt to determine at what \$/KW value the fuel cell energy system would be cost effective (i.e., have a breakeven cost). That is, conclusions concerning fuel cell energy system breakeven costs could not be drawn from such a graph because the negative numerator (savings) of the SIR could only become smaller (less negative in this analysis) if the denominator (cost of the energy system) of the SIR, increased. In other words, both the SIR and the \$/KW values must be positive in order to produce a graph from which breakeven costs can be determined.

In spite of the negative SIR values, it may be of some use to future investigations to note that the average \$/KW installed cost of the three systems studied were \$2586/KW for the MFH unit cluster, \$1330/KW for Building 641, and \$1231/KW for Building 485. The relatively high \$/KW value for the MFH unit cluster was due to the cost of the hot water distribution system to the eight MFH units.

V. Conclusions and Recommendations for Future Study

Conclusions

COCI ROCCARDA DEVELOPER CONTRACTA CONSTRUCTS

Although this thesis has shown that a fuel cell energy system, operated in a fixed power level mode, would not be cost effective for three, site specific installations, this does not mean that such systems would never be cost effective. As indicated in the life-cycle cost analysis, the two, main limiting factors in preventing achievement of a cost effective system were; first, the high cost of natural gas relative to that of electricity or coal derived steam; and second, the high cost of O&M for the energy system.

Assuming the life-cycle discount factors for the energy sources used in the cost analyses (electricity, natural gas, and coal derived steam) were reasonably accurate, then in order to increase the possibility of achieving an energy savings, the gas to electricity conversion efficiency of the fuel cell power plant must be improved and the thermal transfer capability of the fuel cell energy system needs to approach 100 percent.

Estimates of future fuel cell gas to electrical conversion efficiency range as high as 53 percent versus the 40 percent used in this study [17:30]. Therefore, a 50 percent conversion efficiency would not be unrealistic to expect in an actual installation. This efficiency equates

natural gas cost of each of the three proposed systems (Item 2D5, Appendix G).

In order to approach a 100 percent utilization of the fuel cell thermal output (especially the low grade thermal output) without costly facility HVAC system modifications, the energy system would have to be designed as part of a new HVAC system. This would mean the fuel cell energy system would need to be incorporated into the design of a new facility or HVAC system replacement in an existing facility due to a significant change in the heating or cooling loads (i.e., the installation of a large computer system, for instance).

Using the life-cycle cost analysis summary for Building 641 (Appendix G, page 71) as an example, and assuming that a major HVAC system replacement allowed for the use of 100 percent of the thermal energy from the fuel cell power plant, the amount of thermal energy transferred to the facility would increase from 315 MBTU/year to 900 MBTU/year. If the 10 percent reduction in natural gas required to operate the fuel cell was included as well, the life-cycle energy savings would change from -\$40,831 to +\$15,627. Although this would still not result in a SIR of plus one or greater, it does indicate that future fuel cell installations should be able to provide substantial energy savings.

The other main limiting factor, the O&M cost, appears to be too high especially when compared with the installed system cost. The annual O&M expenditure amounted to between seven and fifteen percent of the installed system cost. Using the previously cited life-cycle cost analysis summary for Building 641 and the seven percent uniform present worth factor (Appendix G, page 65), the cumulative, annual recurring O&M cost would exceed the system installed cost after only approximately 10 years. In light of this, the possibility of power plant replacement could be a means to reduce the high O&M cost, because a new unit should be less costly to maintain. At 10 years, again using a seven percent time value for money, the power plant replacement cost would be almost double the 1986 cost of \$27,110; however, this replacement cost does not take into account the probable increased efficiency of the fuel cell power plant nor the reduced \$/KW installed cost resulting from better design and a higher power plant production rate. However, because evaluation of the fuel cell as a commercially viable power system is continuing, it is not possible to state with certainty that future technological advances will significantly reduce O&M costs.

In conclusion, the findings of this thesis show that the life-cycle cost effectiveness of a fuel cell energy system, operated in a fixed power level mode, depends mainly on the cost of the power plant fuel (natural gas)

and the cost of O&M for the system. The initial installed cost of the system, on the other hand, had less impact on the outcome of the life-cycle cost effectiveness.

Recommendations for Future Study

The purpose of this thesis was to determine if a fuel cell energy system would be cost effective if installed at three facilities typical of the type located on WPAFB. While none of the proposed installations proved cost effective, future studies could be made using, or perhaps developing, different power plant sizing criteria. One advantage of a larger sized power plant that could be explored, for example, would be the cost effectiveness of selling fuel cell generated electric power back to the local commercial utility company during periods of low facility electrical demand.

Another area of possible research would be to perform life-cycle analyses on facilities on WPAFB or other bases that had more advantageous thermal to electric load ratios. Because this thesis was primarily concerned with facilities typical to WPAFB, the thermal to electric ratios of the three facilities chosen were not as high as they would be if the ratio was of primary importance to facility selection. In fact, the thermal to electric ratios for the three facilities studied were quite low. The ratios, determined by dividing the annual facility thermal consumption by the annual facility electrical consumption,

were; 0.26 for the MFH unit cluster, 0.20 for Building 641, and 1.20 for Building 485. If a study concentrated on facilities that could utilize most of the thermal energy of fuel cells that were sized to meet the total electrical loads, then the life-cycle SIR values might become one or greater even if the O&M costs remained high.

Instead of addressing facility sized fuel cell energy systems, a study of multi-megawatt sized systems could be pursued. These large systems would probably be integrated with existing, base operated heating plants. The thermal energy generated by these fuel cell power plants could be used to preheat the combustion air for the heating plant boilers. During the summer months, the thermal energy might have to be ejected into the atmosphere; however, the electrical generation efficiency of the fuel cell power plant would still be higher than the efficiency of a typical, coal fired, steam turbine generating plant of a local utility company.

Feasibility studies in these and other areas would be useful to DOD and USAF energy program and policy managers in making decisions concerning the installation of fuel cell energy systems. Such studies would provide more detailed information on energy system installations at specific bases and facilities using actual utility costs incurred by bases, as well as, more detailed electrical and thermal interface cost estimates.

Appendix A

Facility Electrical Energy Consumption Data

UL FER	86 03:0			CONCE SUMM			<u> PAGE</u>	1
		-	PAG	E MANOR MFH	ł			
HEY: EB	Carlo and	-00169	· DEVIC	E: 448 DP&L	- W	LIF &	L NWE	
		<u></u>						
C12 OFIN	ee imr	Q 11	CHAIN COL					
1465	;			·		++++		<u> </u>
	:				+	+		
	,				+	**** +		
····	<u></u>			<u>++++</u>	+ +	**	+	
	1		4	* * * *	· * + + + ·	*	+ *	
- <u></u>	<u></u>		+ ++ ++	**	** -		~ _++ +	
	;		-	****	* -		4-1-	
	, + +		* * * * * * *				÷	
	· • • •	+	4					
		*****					-	
	· · · · · · · · · · · · · · · · · · · ·							
EBT	123	456	7890	12345	6783	5010	<u> </u>	
						<u>-</u>		
EET	<u></u>	<u>+ 405</u>	+HIGH	E97	-LOW	*AVG	+H10H	
00120	1185	1220	<u> </u>	12:30	1501	1738	2120	
<u>- (11 - 11 - 11 - 11 - 11 - 11 - 11 - 1</u>	1	<u></u>		12:00	147.5	1740		
0.000	2011-1 2017 T	111	19.01	14:00	1200	1700		
02:30		1130	1.306	14:30	1374	1/4	2150	
03:00	THE N	1114	1296	15:00	12/4	1676	2052	
<u>63.36</u>		1104	1286	15:30	1372	1710	2084	
04:00		1096		16:00	1448	1722		
04130 55×55	ಾಗಿದ್ದು. ಪ್ರಕಾರ	1955	1274	16:30	1448	1760	2074	
		1112	1 7-2-4	17:00	1400	1010		
04:00	2000 - 200 2007 - 20	1 1 7 7	1.200	17:30	1700	1718		
(16.5 30)	55.0	1305	15.22	19190	1944	2000		~
07:00	c, c -	1455	1276	19:00	2020	~ > / ~	2610	
	101.6	1535	1900	14/ 563	2020			
08:00	1174	1525	18.27	20:00	1000	2204	 	
	1 ()	15.14	1738	20:30	-005	<u></u>		
02:00	1097	1510	16.96	201200	1000	2242	2540	
02:20	1	1552			4.000		2000	
1	1474	1500	4777	ビエ・ ペワー つうし	1070	21/5 2024	24/4	
101.20	1426	14 24	1945		1020	<u></u>		
10-20	1400	1034	1000	لات الملك	1/38	1976	2240	
22:00	<u> </u>	1018	1776	0	1058	1814	062	
	1470				1404	144	1814	
12:00	1712	1720		24:00	1318	1478	1630	
	-LOWEST	-		+H	IGHESTA	•		
OL JAN	50 17:0	<u> </u>		27 JAN BE	20:00	2668		
23 JAN	86 11:0	0 43	92	05 JAN SA	20:30	2624		
IS JAN	86 05:0	<u>0 7</u>	29	05 JAN 86	19:00	2614		

Copy available to DTIC does not permit fully legible reproduction

WFAFE	<u>e4 oc+c</u>	ENI	RGY USA	GE SUMMA	КY —	F	PAGE 1
	0.500AA£	-00145	PAGE MA	NOR MFH			
					•••		- •••
- <u>↓</u> 1 <u>AF</u> F	6:4T HR	; <u>1_</u> 1 <u>2</u> ;4 <u>2</u> 43 }+;+;-	- <u>t</u> er <u>t</u> er				
4ù¿ù	÷				+ ++		
	+ !				+		
	i 1		±	+			±
	! 		++ 				+
	;+ :_+		++ +			****	.
	+	+++		****	***		*
	; *	+ ***	+++			·	- *
	<u></u> *	***	<u>, ett.</u> 20 		_ <u></u>	_	
	<u>.</u>						
	<u> </u>						
	<u></u> ooo	ممممه	<u>-0-1-1</u> -	111	- + };}	<u></u>	<u> </u>
EST	123	- 4 5 6 7 8	: 9 0 1	2345.	6789 	012	34
EST OC: 20	-LOW	#AVG +H]	GH M D-	EST		#AVG	+HIGH
01:00	950	1158 18	36	13:00	1242	1634	3142
02:00	874	1050 1002	-1 -20	14:00	1274	1652	3370
03:00	864 854	-101615 996 - 15	74 602	<u>-14:80</u> 15:00	- 1242- 1252	- 1654- 1690	8412 8574
00:00	<u> </u>	964 14	26	15:50	<u>1290 -</u>	1515	<u></u>
			<u></u>		1029		
05:00 05:00	842 		126 166	17:00 - 17:20	-1860	1/96 <u>1960 -</u>	
04:00	864 886	1064 16	10 64	18:00 <u>18:30</u>	1360	1918	4060
07:00 -07:20	874 840	1244 10	.52 M.S.	19:00	1414	1976	3704 2517
08:00	1058	1310 18	36	20:00	1738	2114	3520
08:30 09:00	<u>1154</u> 1210	<u>173414</u> 13841	.98	20:20 21:00	1750 1782	- <u>2186</u> 2182	_ 7594 3628
09:00	1220	<u>1450 2;</u> 1508 21	70	21:20	1210	<u>- 2050</u> 2012	
<u>10-20</u>	404	1522	20	20:00	1574		
11:00 <u>11:00</u>	1306	15/4 2:	₩2 144	<u></u>	1028 - <u>1199 -</u>	1718 <u>-1580 -</u>	2764
12:00	1306	1626 28	30 	24:00	1080	1370	2278
	-LOWEST	- 	-	+H	IGHEST+		
		· · · · ·			17.00		

Γ.

Ç,

weight and the second s

· . .
		<u> </u>	DACE	MANOR MEH			
171 E	BOLGAR	00107		TANUK MIH Et Aar Detel	. 44	DE SI	_ + WI
	<u>15 TH</u>	<u> 11 - 11 - 1</u>		<u> </u>			
5108	1			+ +	· · · · · · · · · · · · · · · · · · ·	+ - + +	
	i			+ + +	+	+ +	
	<u>i</u>			++ + +	<u> </u>	·	ŧ →
	и •			e4			لم الم
				**		** **	
	. 4		++	***		* * *	
	· · · · ·		++	****		-	¢
<u> </u>	; <u> </u>		، ماهندان المسلس	*			
	1 4:	 ++-	+ +				*
	44.44.4		**				
		- d - d -	*				
		ي باد ري وله	· &			_	
	1						
		·					
	; 						
÷							
					$\frac{1}{6}$ $\frac{1}{7}$ $\frac{1}{8}$	<u>+</u>	
		· ·					
		* 6V0	+HICH	ES7	-LOW	*AVG	+HIGH
00:30				12:30	4	2202	4206
01:30				1.24 040		じじょう たたんた	
12:00			110	14: .			4555
02:20	1150	1973	<u> </u>	14:20	2548	2508	4914
00:00	1274	12.74 • 5.74	1942	15:00	2764	24.04	44.812
		1792	 			12020	<u> </u>
04.00		1700		16:00	2002 7939		9274 7934
		17.20		17:00	2998	3574	7032
	1111	a - a	05.45			2074	# 15 / /
<u>. 25:30</u>		1 / /+ 1		17:30	2746		
<u>05:30</u> 05:00	1121	1745	2528	<u>17:30</u> 18:00	<u> </u>	3948	<u> </u>
<u>- 25: 20</u> 04: 00 04: 20 07: 00		1708 1708 1745	2528 2570	17:30 18:00 18:30	2830 2830 2884	3948 3864 5495	5108 5084 5084
03:20 04:00 04:00 03:20 07:00 07:20		1705 1705 1745 1775 1914	2528 2570 2484 2786	17:30 18:00 18:30 19:00 19:30	2830 2884 1642 2128	3948 3864 38698 3698	5025 5105 5084 5000 4946
07:20 02:00 02:20 07:00 07:30 08:00	1180 1180 1285 1241 1414 1511	1741 1755 1745 1775 1775 1914 [2044]	2528 2570 2484 2786 2786	17:30 18:00 18:30 19:00 19:30 [20:00]	27%8 2830 2884 1642 2128 2624	3948 3864 3698 3698 3636 [<u>3572]</u>	5108 5108 5082 5000 4948 4928
25:20 02:00 03:00 03:00 07:00 07:00 08:00 08:00	1120 1225 1241 1451 1451 1450 1511 1420	1741 1758 1745 1772 1914 2044 2011	2528 2570 2434 2784 2786 3154	17:30 18:00 18:30 19:00 19:00 19:00 20:00 20:30	2994 2994 1442 2129 2624 2624 2290	3948 3864 3698 3698 3636 [<u>3572]</u> 3496	5108 5084 5084 5000 4944 4924 4924 4774
23:20 02:00 02:00 02:00 07:00 07:00 07:00 08:00 08:00 08:00 08:00 08:00 08:00	1189 1189 1284 1244 1644 1644 1644 1644 1644 1644 164	1741 1708 1745 1772 1914 2044 2012 2044 2012	2528 2570 2434 2786 2786 3196 3190 310	17:30 18:00 18:30 19:00 19:00 <u>19:00</u> <u>20:30</u> 20:30 21:00	27%8 2830 2884 1642 2128 2624 2220 2560	3948 3864 3698 <u>2636</u> <u>2636</u> <u>2572</u> 3496 3586	50000 5000 5000 4946 4926 4776 4726
23:20 02:00 02:00 07:00 07:20 07:20 07:20 07:20 05:20 05:20		1741 1755 1743 1771 1814 12044 2511 2428 2572	2528 2579 2434 2786 3196 3196 3198 3198 3599	17:30 18:00 18:30 19:00 19:00 20:30 20:30 21:30 21:30	17% 2830 2884 1642 2128 2624 2290 2560 2582	3948 3864 3698 3698 <u>3698</u> <u>3698</u> 3698 3698 3596 3590 3496 3590	5108 5084 5084 4946 4924 4924 4776 4924 4924 4924 4924 4924
23:30 02:00 02:00 03:30 07:00 07:30 08:30 08:30 08:30 08:30 08:30 08:30 08:30 08:30 08:30 08:30 08:30	11888 14888 14888 14888 14844 1884 1884	1741 1758 1741 1751 1751 1751 1751 1751 1751 1751	2528 2570 2484 2786 2786 3196 3190 3358 3522 4004	17:30 18:00 18:30 19:00 19:00 <u>20:00</u> 20:30 21:00 21:30 22:30	2748 2830 2884 1642 2128 2624 2290 2560 2560 2582 2298 2278	2014 2864 2698 2698 2698 2698 2698 26972 23496 2586 2590 2586 2590 2586 2590 2586 2590 2586 2590 2586 2590	5108 5108 5084 5000 4944 4914 4914 4914 4914 4914 4911 4951 495
23:30 04:00 04:00 04:00 07:00 07:30 08:30 08:30 08:30 08:30 08:30 08:30 10:00 10:00 11:00		1745 1755 1745 1751 1751 1751 1751 1751	2570 2454 2786 2786 2786 3196 3110 3358 3522 4006 3756	17:30 18:00 18:30 19:00 19:00 <u>20:30</u> 20:30 21:00 21:30 22:30 23:00	17% 2830 2834 1642 2108 2624 2624 2560 2560 2582 2582 2582 1985	2770 3943 3864 3698 3698 3698 3698 3698 3496 3586 3592 3482 3586 3482 3276	5088 5088 5088 5086 4006 4006 4006 4024 4024 4776 4024 4776 4024 4742 4080 4080
23:20 03:200 03:200 03:200 07:200 07:200 08:200 08:200 08:200 08:200 08:200 08:200 08:200 08:200 08:200 10:00 11:00 11:00	1188 1288 1288 1242 1444 1444 1644 1644 1644 1644 1658 18659 18659	1775 1775 1775 1775 1914 2044 2515 2426 2572 2775 2945 3074 2210	2578 2570 2484 2786 2786 3196 3196 3110 3858 3522 4004 3786 4074	17:30 18:00 18:30 19:00 19:00 20:30 20:30 21:00 21:30 22:00 22:30 23:00 23:30	27% 2830 2884 1642 2128 2624 2290 2560 2560 2582 298 2278 1988 1868	2948 3864 3698 3698 3698 3698 3698 3698 3590 3590 3590 3590 3590 3590 3590 3482 3590 3482 3590 3482 3590 3482 3590 3482 3592 3482 3592 3482 3592 3482 3592 3482 3592 3482 3592 3482 3592 3493 3592 3592 3592 3592 3592 3592 3592 35	5000 5000 5000 4946 4924 4924 4774 4924 4742 4924 4742 4991 4780 8920
25:20 04:00 05:20 07:00 07:20 08:20 08:20 08:20 08:20 07:20 10:00 10:00 10:00 11:00 11:00 12:00	1188 1488 1444 1444 1514 1614 1825 1825 1825 1974 1974 1974 1974	1775 1775 1775 1775 1914 2044 2515 2426 2572 2772 2965 2074 2915 29258	2578 2570 2484 2786 3196 3196 3110 3858 3552 4004 3752 4074 4352	17:30 18:00 18:30 19:00 19:00 20:30 20:30 21:00 21:30 22:30 23:00 23:30 24:00	2748 2830 2884 1642 2128 2624 2624 2560 2560 2560 2582 2582 2582 2582 2582 2588 2588 1986 1868 1664	2948 3864 3698 3698 2636 2572 3496 3592 3482 3592 3482 3028 2726 2724 2724	5000 5000 5000 4946 4926 4924 4924 4924 4924 4924 4922 4920 8920 8920 8856
25:20 02:00 03:20 07:00 07:30 08:20 08:20 08:20 08:20 08:20 08:20 08:20 08:20 08:20 08:20 10:20 10:20 11:20 12:20 12:20	1189 1489 1489 1241 1481 1482 18958 18959 18958 18959 18958 18959 18050	1741 1758 1741 1771 1914 12044 1211 2426 1572 1772 2948 2074 2948 2074 2948	2528 2570 2454 2786 3196 3196 3196 3196 3196 3196 3196 319	17:30 18:00 18:30 19:00 19:00 20:30 20:30 21:00 22:30 23:00 23:30 24:00	2749 2830 2884 1642 2128 2624 2624 2624 2560 2560 2560 2582 278 278 278 278 1986 1868 1664	3948 3864 3698 3698 3698 3698 3698 3698 3596 3596 3596 3596 3596 3482 3596 2586 2724 2724	5108 5084 5084 4946 4924 4924 4776 4924 4776 4924 4776 4722 4780 4780 2450 8920 8920
23:26 03:00 03:20 07:00 07:30 08:30 08:30 08:30 08:30 10:00 10:00 11:30 12:30 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00	1189 1488 1242 1614 1612 1802 1802 1802 1802 1805 1805 1805 1805 1805 1805 1805 1805	1761 1754 1751 1751 1914 2044 2011 2426 2572 2572 2572 2565 2074 2210 3258	2528 2570 2454 2786 3176 3176 3110 3358 3522 4004 3754 4004 3754 4074 4352 4074	17:30 18:00 18:30 19:00 19:00 <u>20:30</u> 20:30 21:00 21:00 22:30 23:00 23:30 [Z4:00] +H 14 JUL ST	2749 2830 2884 1642 2128 2624 2624 2560 2560 2560 2582 2788 2778 1988 1868 1664 1664 1664	3948 3864 3698 2636 <u>3698</u> 3496 3496 3590 3492 3492 3492 3492 3492 3492 3492 3494 3494	5108 5084 5084 5084 4944 4944 4944 4776 4924 4776 4924 4742 4927 4920 8920 8920
25:20 04:00 04:00 07:00 07:20 08:20 08:20 08:20 08:20 08:20 10:20 10:20 11:20 11:20 12:20 12:20 07:00 10:20 10:20 10:20 10:20 10:20 10:20 10:20 10:20 10:20 10:20 11:20 12:20	1189 1189 1241 1414 1511 1420 1800 1800 1800 1800 1800 1800 1800 18	1741 1752 1752 1752 1752 1752 1752 1752 2424 2572 2772 2945 2074 3212 3258 	2528 2570 2484 2786 2786 3176 3110 3858 3522 4006 3552 4006 3552 4006 3552 4074 4352 4074	17:30 18:00 18:30 19:00 19:00 20:30 20:30 21:30 22:00 22:30 23:30 23:30 24:00 14 JUL ST 14 JUL ST	2749 2830 2884 1642 2128 2624 2290 2560 2560 2560 2560 2560 2560 2560 256	2948 3864 3698 3698 3698 3698 3692 3498 3592 3498 3498 3498 3498 3498 3498 3498 3498	5108 5108 5084 5000 4944 4744 4744 4742 4742 4742 4750 2920 3856

Ker Street

. 1997 oradaria to 1999. I 1997 degitar to 1999. I

1.0

WF HF H			ENERGY US	AGE SUMMA	Γ Υ	F	AGE 1
OI NOV	85 02:05		PAGE_N	ANDE MEH			
	02044E	$\frac{00165}{00167}$		44P DESL	<u>_w</u>	1107	
NET EF	V20446 V	00167	L'EVICE.	HHD LFRE	e	EX VE	
01 007	85 THRU	31 (HCT 85				
							_
3738	1			+	+ +	+	
	1			<u>++</u>	+ + +++	+	
	i.			+ +		+	
				+			
	1		++			+	
	1		+		•	****	+
	1		+		*	**	+
	<u> </u>		+	*	****	- *	+
	1 4-4 1 a	-	**** ***	****	* ~	· *	
	· · · · · · · · · · · · · · · · · · ·					<u> </u>	*
						-	*
		***-					-
			-				
	1						
	<u> </u>						
.•.	i ,		-				
	· · · · · · · ·	1.0.0	00011		1 1 1 1		
FST	103.	4 5. 7.	78901	0345	 . 7 s s	010	2 <u>2</u>
					<u>.</u>		<u> </u>
EST	-100	⊧AVG	+HIGH	EST	-L0W	*AVC	+HIGH
00:30	74	1174	1836	12:30	1392	1680	3044
01:00	<u></u>	1106	1768	13:00	68	1624	3176
01:30		1074	1638	13:30	1326	1712	3336
02:00		1044		14:00	1322	1756	3378
02:00		1020	1002	14:30	1350	1222	2426
03:30	852	788	1452	15:30	1390	1020	35.74
04:00	872	990	1424	16:00	Ū.	1856	3444
04:30	374	992	1358	16:30	1480	1994	3738
05:00		1036	1408	17:00	1570	2000	3480
05:30	942	1148	1458	17:30	1640	2040	3662
06100	<u> 732</u>	1 - 6 6	1640	18:00	446	2038	0544
00430	704 I 710	12004	1734	18:00	1704	2102	いこうび
07:30	656	1396	1744	19:30	1532	2280	3544
08:00	1164	1434	1766	20:00	1848	2310	3358
08:30	1280	1452	1816	20:30	1906	2282	3374
09:00	1338 1	1486	2008	21:00	1856	2198	3118
09:30	1362 3	1548	2108	21:30	177é	2078	2898
10:00	1362 1	1570	2292	22:00	1618	1912	2718
10.20	1410	1070 1644	ビンワビ つちんや	22:30	1488	1530	2478 5505
10:30		1636	2788	23:00	1128	1378	
10:30 11:00 11:30	7 4		2022	24:00	1028	1248	2006
10:30 11:00 11:30 12:00	1416	1646 1	<u> </u>			the second second	
10:30 11:00 11:30 12:00	1416	1646					
10:30 11:00 11:20 12:00	1416	1646	2734	+H	IGHEST+		
10:30 11:00 11:20 12:00	-LOWEST- 85 16:00	1646	0	+H 13 OCT 85	<u>IGHEST+</u> 16:30	3738	
10:30 11:00 11:30 12:00 02:007 04:007	734 1416 -	1646 <u>-</u>	0	+H 13 OCT 85 13 OCT 85	IGHEST+ 16:30 17:30	3738 3662	

New York

ŝ,

60

permit a construction of duction

OF FEB 3	56 11:10	· · · · · · · · · · · · · · · · · · ·	BIIT	DING 641			<u> </u>
	1 1 12 11 1	111 111		FI FULLET		- gine	1. 1. 1. 1
	-/		1. C. V. I. C.	T. LOOAT-I	SW-ON	DCD0	LOW Tr
UT JAN 8	-6 THRU	31.0	<u> </u>	- <u></u>			
164	<u></u>		+++	****			
2.121-1	1 1		+		+		
· · · · · · · · · · · · · · · · · · ·			*		+		
			+				
	1 1			*****	•		
	· · · · · · · · · · · · · · · · · · ·		4++++	*** ****	++ -	+	
	i 		** +	~	* *	÷+	
		* * *	*		*	++	
		+ +			*		
	· · ·		4		*	****	
		****				+	
	عديد بالم عل	۰. ۲	-				* #
	* 1 *						- #
o ;			-		~		
	$\overline{0}$	oto u 	0 0 0 1	<u></u>	<u></u>		
EST	123	4 5 6	7 8 9 0	123450	5789	90123	4
EST	一生已的	*445	+HIGH	EST	-LOW	#AVG H	нісн
00130	12	32	62	12:30	46	116	160
01:00				13:00	44	116	142
02:00	<u>نہ ن</u>	34	76	14:00	44	114	140
1121-200	14	0.0	76	14:30	46	114	158
	<u> </u>	- 40		15:00	46	114	160
04:00	14	42	78	16:00	42	106	152
1, 5 mg T _217_5	1 44	22	88	16:30		70	140
<u>- 05:00</u> - <u>05:30</u>	<u> </u>	 		17:00	14	86	130
053 00	12	50	20 SÚ	18:00	14	66	110
06:30	14	43	76	18:30	18	6.4	102
07:00		<u>58</u>		19:00	18	62	108
08:00	52 T	104	144	20:00	16 16	<u>60</u>	98 Q/
08430	242	110	1-4	20:30	16	58	86
09:00		110	158	21:00	18	56	84
104.00 104.00	24 32	110	158	21:30	16	40 20	76
10:30	-18	114	102	22:30			68
11:00	34	112	158	23:00	16	3:4	6.6
12:00	44 F	118	160	24:00	14	34	66
							<u> </u>
	LOWEGT-			+H1	GHEST+	,	
10 JAN 8	4 01:00 A 17:20	1	2	BO JAN SE	12:00	164	
		4 4	<u> </u>	OPIN CO	100.00	102	

61

Copy available to DTIC does not permit fully legible reproduction

WFAFB	<u>5. 09:7</u>	<u>.</u>	ENERGY	USAGE SUMM	ARY		PAGE 19
			BUI	LDING 641			
LEV: EBO	020641	-00260-	<u> </u>	E:	<u>GE</u>	<u> </u>	<u>6_140</u>
01_AFE	. THE	1A	FE SIL				
540							
	 		++		+		
	<u> </u>			·····			
	; !		+		+ +		
					+		
	 ¦		·		<u> </u>	* ++	
		++			<u> </u>		
		+++	**	*********	**		
			*		*	++	
	++++				<u></u> ##	++	<u></u>
	<u>++</u> .	<u>*</u>	*			****	<u>+ + + + </u>
	•	****	• 			₩ ¥	
	****					 **	****
ů.							
	ففف	مەمە	0-0-0-1	1 1 1 1 1	1 1 1	1 2 2 2	
EST	123	4 5 6	7890	12345	6789	9012	3 4
EST	-LOW	*AVG	+HIGH	EST	-LOW	#AVG	+HIGH
00:30	12	<u>28</u> 30	<u>68</u>	12:30	<u>18</u> 29	<u> </u>	<u></u>
01:30				13:30	50		
02:00	12	32	78 70	14:00	50 50	134	252
03:00	10	3:4	82	15:00	52	132	252
03:30	10	<u>40</u>	15.4	15:30	<u> </u>	108	<u> </u>
	10 10	L <u>44</u>	j 154 <u>144</u>	14:30		122] 220 - <u>206</u>
05:00	10	<u>64</u>	140	17:00	0	<u>94</u>	196
0 6:00	10	58	142	19:00	<u>10</u>	 78	176
06:30	<u>ŀ.</u>	- 54	<u> 178 </u>	18:30	17		17.
07:30	ہ 1ù		206 <u>204</u>	19:00 <u>19:30</u>	10 14	68 <u>70</u>	172
08:00	10	116	232	20:00	14	74	164
09:00	12	128	246	21:00	<u> </u>	<u>68</u>	106
09:30	_ 20	130	75.A	<u></u>	<u>ir</u>		<u></u> <u></u>
10:00	26 	132	248 248	22:00	14	38 <u></u> 32	78:
11:00	28	132	256	29:00	12	34	74
12:00	<u>0</u> 18	132	<u> </u>	24:00	<u> </u>	30	<u>70</u>
					• 6		J
22 APR P	LOWEST-		<u>(</u>	++ <u>- 30 Apr 87</u>	HIGHESTA	- 	
12 APR E	6 06:30	,	ć.	SO APR BO	09:30	256	
12 AFR 8	6.07:00	L	ŀ	<u> 30 Apr 3</u> /	11:00		

Personal Annalise Annalise

62

Copy available to DTIC does not permit fully legible reproduction

A A B		ENERGY U	AGE SUMMAR	Y .	F'ŕ	WE 15
<u>ere Hukt</u>		BUIL	DING 641			······································
WINT II	02.641 00.	200 DEV10E:	F0641-1 5	W-OR	BLDG	
	<u>ere naku i</u>	<u> </u>				
23-0	•	***	*******			
		****	+			
	<u>.</u>		+			
		*	****	+		
	1	******	*	++++4	-	
	+··+··	4: ⊢ k	•		++++	
			**			
	:			**		
·		4		****	› 	
	, , , , , , , , , , , , , , , , , , ,				*	
~	· · · · · · · · · · · · · · · · · · ·					
					<u> </u>	<u></u>
	e The second second		~		⊷ي ⊷ دد عد عد	
·	······································				~~~~~	
	•					
C	•	· · · · · ·				
		<u>) 0 0 0 0 1 1</u> No 7 6 7 6		$\frac{1}{-5}$	<u> </u>	
<u> </u>					• I _ C	• • •
	<u>3</u>	- +HIGH	EST	-LÜH	*AV6 +	HIGH
00 30	36	52 174	12:30	102		
01:00	36 5	24) 1722 541 1723	13:30	104	210 017	-/ -7A
02:00	36		14:00	104	216	230
02 5	36	<u> 158 </u>	14:30	102		274
03 (Ú)	36	54 140 15 150	15:00	84	200	270
04:00		30 1 1 72	16:00	1 <u>,</u>	166	242
04:3	38		14:20	_ 26 _		228
05	36 1		17:00	34	140	214
05:2	<u> </u>		17:30		132	<u>- 206</u> - 565
00:30 05:30	24 2 26 1	107 - 107 10 - 209	18:30	36	128	202
07:05	105 1	19. <u>2</u> 34	19:00	36	126	200
07-20 08-00			19:30		125	198
06:00			20:00	2.2	L_106	152
09100	612	2011 <u>- 2011</u> 2011 - 2014	21:00	40	5.4	182
09:20	<u>98 2</u> .	10 270	21:30	4 ()	54	182
10:00	95 20	28 272 Na 070	22:00	40	52	178
11.00	104 1	<u></u>	23:00	<u>- 00</u> 36	<u> </u>	174
12:20	104	274	23:30	36	50	172
12:00	104 2	4 172	24:00	38	52	148
<u> </u>	-100555-	·		<u>GHESTA</u>		
TT JUL	85 04:00	32	08 JUL 85	14:00	280	
12 102	45 04+00		15 JUL 85	13:00	278	<u></u>
<u> </u>	<u>85 04:00</u>	7:4	15 JUL 85	14:00	278	

5

CANCELER AND STRUCTURE

~

and the state of the

بالمواقع المواقع

63

S Marian Section - Caller Date and the sector of the secto

				. <u> </u>		
NEAFE 01 NOV	85 08:07	ENERGA L	ISAGE SUMMAR	RΥ	F é	46E 1 ₽
		BUIL	DING 641	-11	T.0. T.C.	1.115
IEY: EP	020641 002	EQ DEVILE	: P0641-1		<u>PLIM</u>	I.WL
<u>01 007</u>	<u>85 THRU 3</u>	<u>1 OCT 85</u>				
266	1	+	+ +++			
	1	*****	· • •			
		+		+		
	1		******	+ ++		<u></u>
	<u> </u>	~~*** * 	**	+	·	
	+		· · · · · · · · · · · · · · · · · · ·	**		
	¦ ++ + !++++	*		* ***	** ****	- -
		*				+
	i ## ++		_		*	
	t in genzenden den an				*	
	1 - N N F F N 1 1 				****	
	;					
Ú.	;	<u> </u>				
<u> </u>	<u>-00000</u> -12345	<u> 0 0 0 0 1</u> 8 7 8 9 0	<u>1 1 1 1 1 1</u> 1 2 3 4 5 6		$\frac{2}{0}$ $\frac{2}{1}$ $\frac{2}{2}$ $\frac{3}{2}$	<u> </u>
51 00:30	-LUW +AV 34 5	6 +HIGH 8 122	12+30	-LOW 124	*AVG + 198	-HIUH 252
01:00	30 5	© 124	12:00	2	192	266
02:00	30 6	2 128	14:00	70	174	254
<u>02:30</u> 63:06	<u>32 6</u> 34 6	<u>4 132</u> A 134	14:30	70	190	240
03:30	32 9	<u>140</u>	15:30	62	176	
04:00	26 (9 30 17)	2 160	16:00	0 (36	<u>160</u>	216
02400	32 10	2 146	17:00	36	148	198
<u>05030</u> 16400	$-\frac{22}{32}$ 10	<u>m 142</u> 8 154	$\frac{17:30}{18:00}$	<u> </u>	134	<u>188</u> 172
064.20	32 13	0 190	18:30	36	132	170
07190 <u>67</u> 190	- 15 39 _15	2 218 8 240	19:00	36 36	132 129	174 162
08:00	e.4 17	6 246	20:00	36	120	154
<u></u>	$\frac{-6}{-63}$ 18	$\frac{0}{2}$ $\frac{240}{250}$	21:00	<u> </u>	<u></u> 76	$\frac{120}{126}$
<u>094-30</u> 100-00	80 18	<u>e 250</u> 0 254	21:30	<u>34</u>	<u></u>	124
10:25 10:25	A;;j;;	<u>a 255</u>	22:30	34	<u>- 60</u>	122
2.2.3.9.40 1.5.4.55	80 12 71 10	2 260 - 0 158	234 <u>00</u> 234 20	34	58	122
12:00	124 19	6 238	24:00	32	56	130
	-LUWEST-		+H1	GHEST+		
<u>er ort :</u>	5 16:00	<u> </u>	24 OCT 85	13:00	266	
11 017 :	50-0-2400 E5-04:20	30	24 UUT 85 24 OCT 85	13:30	교수요 258	
(017.8) E		6013.43			1.117++	1.50
					1.184E1	

mate to provide a second contact contact

AND THE REPORT AND THE PROPERTY AND THE

t

UFAFB			ENERGY (USAGE SUMM	AF:Y	F	AGE 1
UI FER	16 IQ: 10		81111	DINC (25	· · · · · · · · · · · · · · · · · · ·		
LITE LD	010430	00206		FG485-1	TODOLV	A BLIN	S F.WD
			1321 214				
UL CHAIN -	se innu	ب لات					
÷ - ^k ,	1		++++	*******	++		
	· · · · · · · · · · · · · · · · · · ·				+		
	;		+		*		
	!	+	, 				+ + +
	;		***	***	***	4	
	,		*				
	· · · · · · · · · · · · · · · · · · ·	*	,		* *	*****	
	, 4 - 4 - 4 ; - 4 - 4						·
	:						
	{			-			
			-		-		
·	• •	<u> </u>					<u> </u>
	<u>.</u> 		0001	<u></u>	1 1 1		
EST	123	4 5 4	7880	12345	678	9012	3 4
EBT	-LOW	+AV5	+H16H	EST	-LOW	*AVG	+нісн
-00130 -01:00	쇼핑 것 4	94 02	156	12:30 13:00	80 78	150 150	
<u></u>			1.00	12:20	 5-6	122	
02:00			156	14:30	82	152	
03:00	é.e.	~4 	159	15:00	<u>80</u>	154	224
04:00	63	96	150 140	16:00	≘: 4	150	224
04-30 05+00	60 70	96 54	160	16:30	82 54	144	215
05:30		96	162	17:30	80	124	188
06:00	72	- <u>98</u> -	160	18:00	<u></u>	112	176
06:30	82	106	186	19:00	66	108	162
	7 <u>8</u> г		194	17:30	66	10-	158
[08:00]	<u></u>	142		20:20		100	156
09:00	ŝo	14	222	21:00	68	98	158
09:30	78	150	228	21:30	70		156
10:30		<u>350</u> 152		22:00	64		160
11:00	48	146	228	23:00	6.6	с 4	158
12:00	84 82 [150	228	24:00	60 64	94	158 158
							
UZ OAN :	-LUWEST-		.4	H STAR SO	H16HEST <u>8 13:30</u>	+	
CO INN	64 11+00		10	04 JAN S	4 14:00	200	

بالمسكيد والمسترجرة جرة جرازين

ترديحه والمرادية

2

F

.

65 Charles and a second

· · · · · ·

WFAFB	S4 02:1	LÓ.	ENERGY	USAGE SUMMA	λF:Υ	F'	AGE 16
	<u></u>		BUI	LDING 485			
KEY: EB	020495	_00266	<u> </u>	E: PG485-1	1000134	S. BLDG	_ <u>1:1+12</u>
01 AFR	96THE	<u>u 30</u>	4FR 84				
AF /							
	<u>. </u>		<u>_</u>	++ +			
			<u>at at at at</u>		· · · · · · · · · · · · · · · · · · ·		
	1		++		+		
	·	···-	**	*********	**		
	<u>.</u>	+			* ++-	<u>+++</u> +	
	; ++++++ <u>! ++++</u> #	*****	**		** 	+ ++	+++ ***
	1					*	
	<u>!</u> !	<u></u>					
				-			
	;				-		
	<u>.</u>						
	; !						
Ŭ.	;				-	-	
ECT	<u></u>	L <u>U.U.U</u> (A F A	<u>. 0 0 0 1</u> 7 8 8 0		1111	0 1 2	<u> </u>
			/ U / U				·
EST OO:20		*AVG	+HIGH	EST	-L0W	*AVG	+H1GH
01:00	118	144	162	13:00	120	1-24	226
01:30		144	164	132.30	<u> </u>	1.076	
02:00	114 116	<u>142</u> <u>162</u>	164	14:00 		196	
03:00	120	142	144	15:00	120	196	228
04:00	118	14	160	16:00	<u>118</u> 60	194	0.54
UA: CU		144	164	14:30		1.84	<u></u>
05:00 05:20	118	144	162	17:00	0	168	208
06:00	116	146	176	18:00	118	156	174
06:30	118	154		18:30	<u> </u>	1.57	170
07:00	120	166	204 	19:00	116	150	170
06:00	122	184	216	20:00	116	148	168
08:30	<u>120</u> 120	<u>189_</u> 190	<u></u>	20:30	120	143	169
09:30	120	104	230	21:30	<u> </u>		164
10:00	120	196	228	22:00	120	146	164
11:00	120	198	232	23:00	116	146	<u> </u>
11:30		1 -1				<u></u>	_164
12:00	120	196	226	24:00	118	144	166
-	-LOWEST	-		+H	IGHEST+		
11 APR	<u>:6 21:3</u>	<u>ت</u> . ن	<u>.</u>	OF APP 54	14:30		
		~ ^ /	м Ф	OF APP OF	1.8+00	- 34 	

Copy available to DEC does not permit fully legible reproduction

66

للمعدد

<u>- 1 ALU</u>	850 (134 5 49	BI	110100485			
'E∕: CP	<u>020417 001</u> ;	A DEAIC	E: F0485-1_	<u>1000EN/</u>	<u> </u>	I WE
12 JUL	ed thru di	<u></u>				
545	,		- + ++++++			
	;	****	++ + +	<u> </u>		
	,	4-		+		
	· •		* ***	, ++		
	<u> </u> + + + + + + + + + + + + + + + + + + +	****		₩ ₩ ₩	+ ++++	+++
	;	• •-		****	** ** *	··
	1. S. e. 1. 19 35 5 19 19 19 19 19 19				4: p p.	k: 4% 4%
	· ·					
_	; 					-
<u> </u>				<u> </u>		
	· ·					
	• }					
	<u></u>	3 6 0 6 1	1111	1 1 1 1		
<u> </u>			1 2 2 2 4 C 4	2 / 2 Z	· · · · · · ·	<u>-</u>
	-LOW 84V	- साटम्	EST	-104	+AVI -	FH16H
			13:00	130	240	
01-10	12. 17	<u> </u>	13:30	130	240	200
i Cillin Gradi All's tradi		•.••	14:00 14:50	123	141	್ರೆ.ಭಷ್ ಕಾರ್ಷ
02000			15:00	130	238	
			15:30	132	<u></u>	
04:00	12- <u>[176</u>		[16:00]	104 104		-/-
			17:00	118	-200	240
25:10	124 123	244	17:30	_1 <u>2</u> 8	196	236
06:10	1981 - 1981	120	18:00	130	1 22	230
J2:			18:30	132	1.42	4
an a	الأكم الاست		12400	102	188	
08:00	720		20:00	120	184	<u> </u>
08.12	132 230	- 296	20:30	124	190	236
0:00		294	21:00	130	188	226
07:30	126 236	2:04	21:30	124	186	228
10:00	172 204	302	22:00	124	198	230
10130	125 234	294	22:30	126	186	230
11:00		- ···	23:00	124	$1 \in i$	
11.50	130 234	<u>30s</u>	23:30	124	186	230
	1-6 234		24:00	128	162	
12:00				CUE - To		
12:00	-LOWEBT-		+H)	URCS IT	.	
	-100551- 5 19:00	102	(H+ 30 JUL 08 크로 더 37	12:30	312	

Copy available to DIIC does not

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>-01 NUV</u>	<u>15 (7:4</u>	5/	ENERGY D BUI	JEAGE SUMMAR LDING 485	₹Y	F	AGE 14
I OCT SE THEU 21 OCT SE 262 ! + +++ ++++++++	LEY: EB	020485	00246	DEVIC	E: F0485~1	1000EVA	BLDG	HWE!
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	01 QCT :	BE THR	0 21 0	<u>CT 85</u>				
	262	<u>.</u>		+ +++	<u> </u>			
Image: constraint of the second se		;	+		* +	+		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		i 1				+		··· <u>·</u> ································
Image: Constraint of the second sec		· ; ; + + + + + +	++++			+++ ++		+++
N ++ 0 1			+				<u> </u>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		·	*	**				
Image:			*			*4	<u></u>	<u> </u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		di. di. di. di. di. di. di. d	- 4- 45 fr			****	*****	***
$\begin{array}{c c c c c c c c c c c c c c c c c c c $: {						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $; ;			-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, , ,				-		
E37 -L0W $\diamond AV6$ $\diamond H16H$ EST -L0W $\diamond AV6$ $\diamond H16H$ 00:30 68 174 12:30 76 156 258 01:00 68 100 176 13:00 4 150 222 01:30 74 100 100 13:30 74 154 262 01:30 74 100 178 14:30 78 152 258 02:30 74 100 178 14:30 78 150 256 03:400 74 98 176 15:00 78 150 256 03:30 70 98 176 15:00 74 102 178 17:00 74 142 240 04:50 74 102 178 17:00 74 141 190 05:30 74 102 178 17:00 74 102 184 04:30 74 102 178 17:00 74 102 182 05:30 74 <t< td=""><td>EST</td><td><u>000</u> 123</td><td><u>000</u> 45%6</td><td>$\frac{0}{7}$ $\frac{0}{8}$ $\frac{0}{7}$ $\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{9}$</td><td>$\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{6}$</td><td></td><td>$\frac{2}{0}$</td><td>2 2</td></t<>	EST	<u>000</u> 123	<u>000</u> 45%6	$\frac{0}{7}$ $\frac{0}{8}$ $\frac{0}{7}$ $\frac{1}{9}$ $\frac{1}{9}$ $\frac{1}{9}$	$\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{6}$		$\frac{2}{0}$	2 2
0.01300 6.80 0.74 121300 76 154 255 011000 6.8 1000 176 121300 74 150 262 011300 74 1000 176 131300 74 154 262 011300 74 1000 175 141300 74 152 258 021300 74 1000 178 141300 78 1500 250 031300 74 98 176 151000 78 1500 2500 031300 74 98 176 151000 78 1500 2500 2500 2144 2400 2462 2144 2400 21600 2144 2900 284 2144 2900 284 21600 2162 2162 2162 2162 2162 2160 21600 2162 21600 2162 2162 2162 2162 2162 2162 2162 2162 2162 <th< td=""><td>····</td><td>,</td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td></th<>	····	 ,	<u> </u>					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00130 - E24	-LUN 68	≁AV0 C©	174	12:30	-LUW 76	₩₩₩₩ 156	258
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01:00	6.8	100	174	13:00	4	150	242
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01:30	74	100	100	13:30	74	154	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	02:00	74	100	178	14:30	78	152	· · · · · · · · · · · · · · · · · · ·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	02400	74		176	15:00	78	150	250
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	03:30	70	<u>. 98 .</u>	170	15:30	76	146	240
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	04:00	74	100	178	16:00	Ŭ	130	230
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>; () () () () () () () () () () () () () </u>		<u> </u>	178	16:20	76		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00000	74	102	175	17:00	74	114	190
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	74	118	204	18:00	76	10	190
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	02330	76	134	228	18:30	7	102	182
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	07:00	74	136	236	19:00	78	102	182
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	07:30	6.6	140	240	19:30	74	102	182
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	OB:00	74	150	252	20:00	74	102	182
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.00	74	150	44	20:30	70	100	186
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	02100	76	152	170 755	21:00	45	100	180
10:50 74 107 234 $22:00$ 74 78 174 $10:50$ 34 145 246 $22:30$ 74 98 176 $11:00$ 74 154 254 $23:00$ 74 98 176 $11:00$ 74 154 254 $23:00$ 70 94 174 $12:00$ 76 150 254 $23:30$ 70 96 172 $12:00$ 78 154 254 $24:00$ 64 96 172 $-L0WEST +H10HEST+$ $-L0WEST +H10HEST+$ 02.027 $251.13:00$ 262	10+20		124		21:30	- 12		178
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10:40	7 4 34	1.2 1	 	-2.00 55.50	74	70 00	174
1:30 76 150 254 23:30 70 96 174 12:00 78 154 24:00 66 96 172 -LOWEST- +HIGHEST+ +HIGHEST+ +HIGHEST+ - - - 02 057 95 16:00 0 01 007 85 13:00 262 06 007 85 13:00 4 01 007 85 13:30 262 17 007 85 10:30 34 01 007 85 12:30 258	11:00	74	154		23:00	74		178
12:00 78 154 254 24:00 64 96 172 -LOWEST- +HIGHEST+ 02 05T 95 16:00 0 01 02T 85 13:00 262 06 0CT 85 13:00 4 01 0CT 85 13:30 262 17 0CT 85 10:30 34 01 0CT 85 12:30 258	1:30	76	150	254	23:30	70	04	174
-LOWEST- +HIGHEST+ 02 001 85 16:00 0 01 001 85 13:00 262 06 001 85 13:00 4 01 001 85 13:30 262 17 001 85 10:30 34 01 001 85 12:30 252	12:00	7⊜	154	_54	24:00	6.6	96	172
02 05T 85 16:00 0 01 00T 85 13:00 262 06 0CT 85 13:00 4 01 0CT 85 13:30 262 17 0CT 85 10:30 34 01 0CT 85 12:30 252	· <u> </u>	-LOWEST-			+H:	IGHEST+	- <u></u>	
O6 OCT 85 13:00 4 01 0CT 85 13:30 262 17 OCT 85 10:30 34 01 0CT 85 12:30 252	02 0CT :	95 <u>16:0</u> 0	۱	<u>.</u>	01 00T 85	13:00	242	
17 OCT 85 10:30 3401 OCT 85 12:3058	06 OCT :	85 13:00)	4	01 007 85	13:30	262	
	17 OCT :	85 <u>10:</u> 30) 3	4	01 007 85	12:30		

Appendix B

Estimation of MFH Unit Cluster Hot Water Requirements

Average occupancy per MFH unit cluster(8 units): 24 Gallons of 140 degree hot water required per day:[23:B200] 20 gal/person for first 16 persons = 320 gal 5 gal/person for remaining 8 persons = 40 gal 20 gal for each automatic washer = 160 gal Total 520 gal/day Average Ground Water Temperature: 52°F [11:C-48] Gas Water Heater Efficiency: 0.75 [23:B200] Daily Hot Water Thermal Requirement:

520 gal/day X 8.25 BTU/gal-°F X (140°F - 52 F) 0.75

= 503,360 BTU/day [23:B203]

Annual Thermal Requirement:

503,360 BTU/day X 365 days/year = 183,726 KBTU/year 1000 BTU/KBTU

Fuel Cell to MFH Unit Cluster Hot Water Distribution Heat Loss:

Approximately 400 linear feet of insulated pipe (average diameter of one inch) was required to distribute the fuel cell generated hot water to 8 MFH units. The heat loss was estimated to be 10 BTU/foot/hour [ll:Hla]. Therefore, the annual heat loss was:

10 BTU/foot/hour X 8760 hours/year X 400 feet of pipe 1000BTU/KBTU

= 35,020 KBTU/year

ab da si si s

Assuming 500 gal storage tank size with 3 inches of insulation, the estimated heat loss is 8,400 KBTU/year [10:134]

Total Annual MFH Unit Cluster Thermal Requirement:

Hot Water 183,726 KBTU/year Distribution Heat Loss 35,040 Storage Tank Heat Loss 8,400 Total Annual Heat Requirement 277,166 KBTU/year

(Listed in Table II as 18,930 KBTU/month)

Appendix C

Fuel Cell Power Plant Sizing and Thermal Output Calculations

To determine the size of the fuel cell power plant for each facility, the first two sizing constraints were used initially to obtain an approximate power plant KW size. Then the thermal output of the power plant was estimated using ratio multipliers based on the rated thermal output of an operational 40 KW power plant described in Taylor's report, namely, 150,000 BTU/hour or 1,314,000 KBTU/year [20:423].

The ratio multiplier was determined by dividing the power plant estimated annual thermal output into the annual facility thermal requirement. This ratio multiplier was then used to adjust the approximate power plant KW size.

For example, assume the first two sizing constraints indicated that a 50 KW power plant would be practical. If the annual thermal load of a facility was 1,500,000 KBTU/year, the thermal output constraint would require the power plant size be adjusted by the following method.

50 KW power plant thermal output:

1,314,000 KBTU/year X $\frac{50 \text{KW}}{40 \text{KW}}$ = 1,642,500 KBTU/year

Size adjustment due to lower facility thermal requirement: 1,500,000 KBTU/year(facility requirement) 1,642,500 KBTU/year(fuel cell output) X 50 KW = 45 KW

The adjusted fuel cell power plant sizes for the three facilities studied are shown in Table IX.

Table IX

Fuel Cell Power Plant Size Adjustment

<u>Facility</u>	Ratio Multiplier	Approx. Size	Thermally Adj. Size
MFH Unit Cluster	227,166 KBTU/year 262,800 KBTU/year	8 KW	7 KW
Bldg. 641	590,612 KBTU/year 2,759,400 KBTU/year	84 KW	18 KW
Bldg. 485	5,513,084 KBTU/year 3,087,900 KBTU/year	94 KW	168 KW

Note that the adjusted power plant sizes for Buildings 641 and 485 were not within the 10 and 30 percent boundaries of the first sizing constraint. In these cases, the power plant sizes chosen were the lower boundary limit of 28 KW for Building 641 and the upper boundary limit of 94 KW for Building 485. The author considered the first sizing constraint of primary importance because it was based on actual unit costs for electrical and thermal energy at WPAFB. Thefore, the first sizing constraint was observed in all three sizing determinations.

The size adjusted fuel cell power plant thermal outputs for the KW sizes chosen were determined as previously shown in this appendix. Table X shows the final fuel cell sizes and their corresponding thermal output.

Ta	ble	e X
----	-----	-----

Final Fuel Cell Power Plant Size and Thermal Output

<u>Facility</u>	Fuel Cell Size	Thermal Output
MFH Unit Cluster	7 KW	26,250 BTU/hr
Bldg. 641	28 KW	105,000 BTU/hr
 Bldg. 485	94 KW	352,500 BTU/hr

Appendix D

Fuel Cell Energy System Thermal Energy Transfer Calculations

The gallon per minute (gpm) of hot water flow to the fuel cell heat exchangers required to transfer the fuel cell generated thermal energy was determined from the BTU/hour output rating of the fuel cell power plant and the temperature difference between the supply and return water required by the facility heat exchanger to provide the required temperature rise to water in the facility heating system. Figure 16 is a sizing chart from a heat exchanger manufacturer and shows the temperature of the supply (heating) water required to obtain a certain temperature rise in the facility (heated) water. Note that the maximum heating water temperature of the return heating water back to the fuel cell heat exchanger(s).

The temperature values indicated in Figure 16 were used in the following formula to produce the gpm values shown in Table XI. The formula used to calculate the gpm values is shown below:

GPM BTU/hr [4:6] = Fac. Temp. Change F X 8.33* Btu/gal- °F X 60 min/hr

 BTU/hr factor varies with average facility water temperature.

					2	30° ł	EATI	NG V	VATE	R			
Heated	Water					TEN	PERAT	URE DI	ROP				
In	Out	5*	10*	15*	20*	302	Q	50*	60*	70*	P	90.	100°
40	60 80 100 120 140 160 180	4.25 8 90 14 09 20 02 27 04 35 74 47.39	4.33 9.07 14.38 20.47 27.70 36.74 48.99	4.41 9.26 14.69 20.94 28.40 37.80 50.74	4.50 945 15.00 21.43 29.14 38.95 52.66	4 68 9 85 15 69 22 50 30 78 41 52 57 14	4,88 10,30 16,46 23,70 32,65 44,56 62,84	5.10 1079 17.31 2507 34.83 4824 70.51	5.34 11.34 18.27 26.64 37.40 52.88	5.61 11 96 19.38 28 48 40.54 58.99	5 92 12 66 20 65 30 67 44 47	6.26 13 47 22.16 33.35 49.69	6 65 14 42 23 97 36.77
9	70 90 110 130 130	4 43 9.33 14.85 21.26 	-4.52 9.52 15.17 21.76 29.76	4.61 9.72 15.51 22.29 	4.70 9.93 15.87 22.85 31.45	4 90 10 38 16 64 24 09 33 39	5 12 10 87 17 51 25 49 35 66	5.37 11 43 18 49 27,10 38 35	5 64 12 05 19 61 28 99 41 64	5.94 12.76 20.91 31.25 45.80	6 29 13 58 22 45 34 03 51 37	6.69 14.55 24.31 37.59	7.15 15 70 26 63 42 42
	190	52 95	55.05	57.38	60.01	66 43	75.33	35.01	61.73				
60	80 100 120 140 160 180 200	4 65 9.82 15.73 22.72 31.36 42 92 60 75	4 74 10.03 16.10 23.30 32 28 44 43 63 74	4.84 10.25 16.48 23.91 33.25 46.09 67.19	4.94 10.49 16.89 24.56 34.31 47.91 71.23	5(16 10,99 17,77 26,01 36,68 52,20 82,09	5,41 11,55 18,78 27,68 39,52 57,72	5.68 12.19 19.92 29.64 43.00 65.28	5.99 12.91 21.25 31.98 47.45	6.34 13.74 22.83 34.88 53.48	6.74 14.72 24.74 38.62	7.21 15.90 27.14 43.73	7.77 17.35 30.29
(70) (70)	175 180 185 210 230	2.91 6.09 9.60 13.54 37.30	3.06 6.43 10.17 14.41 41.17	3.24 6.82 10.84 15.43 46.43	3 44 7.29 11.64 16.68 54.33	3 99 8 54 13 86 20 20	485 10.66 17.92 27.80	6.71 16.10					
180	185 190 195 200 220 240	3.51 7.45 11.93 17.13 57.44	3.74 7.97 12.84 18.58 70.53	4.02 8.61 13.96 20.42	4.36 9.40 15.40 22.85	534 1183 2017 3204	7.47 18.24						
190	195 200 205 210 230 25 0	4.47 9.67 15.89 23.67	4.86 10.60 17.63 26.72	5.36 11.82 19.99 31.19	6.01 13.51 23.52 38.90	8.55 21.42							

Table XI

Fuel Cell Heat Exchanger GPM Output Requirement

Facili	ity	Fuel Cell Output	Facility Heat Exchanger Supply & Return Water Temperatures
MFH Un Cluste	nit ∍r	26,250 BIU/hr	230 to 150°F
Bldg.	641	105,000 BTU/hr	230 to 190°F
Bldg.	485	352,500 BTU/hr	230 to 200°F

Facility Water Temperature Rise Requirement	BTU Factor	Required GPM
52 to 140°F	8.33	0.7
170 to 190°F	8.10	5 .4
180 to 200°F	8.06	24.3

With the required gpm flow calculated, the next step was to match the gpm flow to the fuel cell heat exchanger performance data. This data was in the form of two graphs (Figures 17 and 18) developed from data obtained from an operational 40 KW fuel cell power plant manufactured by United Technologies Corporation.

The graph values were converted by a size ratio multiplier to obtain approximate gpm and thermal output values for each size fuel cell. For example, the graph gpm and BTU/hour values would be multiplied by 7KW/40 KW to obtain approximate heat exchanger output values for the 7 KW fuel cell power plant.

After comparing these heat exchanger performance graphs with the return water temperatures of 190°F and 200°F for Buildings 416 and 485, respectively, it became apparent that some means to reduce the return water temperature was required. Note, for example, that a return water temperature of 190°F is off the performance graphs of both the high and low heat exchangers.

76

Figure 16. Low Grade Heat Exchanger Performance Graph [1:27]

In order to reduce the return water temperature, the author considered the addition of water-to-air heat exchangers in the return air ducts of the HVAC systems of these facilities. This option was not used due to the extensive facility HVAC modifications required, and also because the heat exchanger could not be used during the summer months when cooling air was required by the facility.

1997 - SSASSAS - SAAAAAA

Figure 17. High Grade Heat Exchanger Performance Graph [20:424]

The approach chosen was to install a water-to-air heat exchanger at the fuel cell power plant site. The output of this heat exchanger would be modulated by a temperature controlled three-way valve such that 145 °F return water would be made available to the high grade heat exchanger year round. The return water temperature was kept as high as practical to limit the thermal energy loss to the atmosphere.

Using the same formula stated at the beginning of this appendix, the size of the water-to-air heat exchangers were estimated to be 68,000 BTU/hour for Building 641 and 283,000 BTU/hour for Building 485. An additional heat exchanger was not required for the MFH unit cluster system because the

return water temperature of 150°F would drop approximately 5°F traveling through the relatively long return water piping system.

1

Reaction Consider Systems Distances Distances

The actual gpm and temperature values taken from the heat exchanger graphs are listed in Table XII. Also listed is the amount and percentage of fuel cell generated thermal energy able to be transferred to the heating system of each facility.

Table XII

Fuel Cell Thermal Energy Transferred to Facility

Facil	<u>ity</u>	GPM	Temperature	Thermal	Transfer	Percent
MFH U Clust	nit er	0.73*	232 °F	13,130	BTU/hr	50
Bldg.	641	3.10	230 °F	37,100	BTU/hr	35
Bldg.	485	10.60	230 °F	124,350	BTU/hr	35
* Co	mbine	d output	of high and lo	w grade 1	neat excha	ingers:

(290 °F X .35 gph) + (177 °F X .37 gph) = (232 °F X .73 gph)

Appendix E

Fuel Cell Power Plant Natural Gas Consumption

The natural gas consumption of the fuel cell power plant was calculated based on a gas to electricity conversion efficiency of 40 percent [6:265]. The author also used Wakefield's estimate of operational reliability of 97 percent (i.e., 354 days per year) [22:H-3]. Table XIII lists the annual consumption values, determined by the formula below, for each facility.

Fuel Cell KW X 24 hr/day X 354 days/yr X 3413 BTU/KW 0.4 efficiency

X $\frac{1}{1031 \text{ BTU/cu ft of gas}}$ = Cubic Feet of Natural Gas Consumed per Year

Table XIII lists the annual consumption values for each facility.

Table XIII

Annual Fuel Cell Power Plant Natural Gas Consumption

Facility	Annual Gas Consumption(cu ft)
MFH Unit Cluster	485,859
Building 641	1,968,748
Building 485	6,609,369

The capacities of the existing natural gas distribution systems at all three facility locations were found to be adequate to handle the additional load of the fuel cell installations. The increase in gas consumption, assuming a conservative estimate of no reduction in existing consumption, was less than one percent for the MFH unit clusters and Building 485. For Building 641, an abandoned three inch gas line to the facility would easily handle the fuel cell power plant gas requirement.

Appendix F

Sample Cost Escalation Calculation

The first fuel cell power plant installed cost shown in Table III is \$1509/KW. The original cost, \$1203/KW, was obtained from Bollenbacher's study and was estimated in 1981 dollars [5:Table V]. To convert to 1986 dollars for the life-cycle cost analysis, historical cost indices from [14] were used as follows:

Present Cost = Previous Cost(1981 Dollars) X July 1985 Index (1986 Dollars)

X 1.063(Est. 6.3% Annual Inflation 1985 to 1986) [14:406] Substituting Actual Data:

Present Cost = $\frac{1203}{KW} \times \frac{189.1}{160.2} \times 1.063 = \frac{1509}{KW}$ (1986 Dollars)

This method was also used to convert O&M costs to 1986 dollars

Appendix G

Life-Cycle Cost Analysis and Summary

The unit costs for energy and the annual energy savings and consumption were calculated as shown in Table XIV. These values were used in Part 2 of the <u>Life-Cycle</u> Cost Summary.

Table XIV

Energy Unit Cost and Annual Savings/Consumption Calculations 1986 Energy Unit Cost per Million BTU (MBTU) Fuel \$0.0485/KWH * X 1000KBTU/MBTU = \$4.18/MBTU Elec \$5.23/1000 cu ft * 1.031 MBTU/1000 cu ft = \$5.07/MBTU Gas Steam \$4.91/MBTU * * From 2750th/DEEU Annual Energy Savings - Gas or Steam Facility 13,130 BTU/hr ** X 8496 hr/yr = 112 MBTU/yr MFH Unit 1,000,000 BTU/MBTU Cluster (Gas) 37,100 BTU/hr ** X Bldg. 416 315 MBTU/yr (Steam) 124,350 BTU/hr ** X Bldg. 485 = 1057 MBTU/yr (Gas) * From Table IV

. . . . Table XIV (Continued) Annual Energy Savings - Electricity MFH Unit 7 KW X 8496 hr/yr X Ø.Ø166 MBTU/KWH = 690 MBTU/yr Cluster Bldq. 11 28 KW X Х = 2759 MBTU/yr641 Bldq. 94 KW X n Х = 9264 MBTU/yr485 Annual Energy Consumption - Natural Gas MFH Unit 485,859 cu ft X .001031 MBTU/cu ft = 501 MBTU/yr Cluster Bldg. = 2030 MBTU/yr 1,968,748 cu ft X 11 641 Bldg. 6,609,369 cu ft X 99 = 6814 MBTU/yr 485 Cu ft consumption values from Table XIII

1

2

1.1

₩ ささく

z

SASSISS A AREALING

Ĩ, 200 - 200

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963 A

LIFE-CYCLE COST ANALYSIS SUMMARY (Attachment 1 to ETL 82-4)

General

The Life-Cycle Cost Analysis Summary is to be used for determining Savings to Investment Ratios (SIR) for complete ECIP projects and for discrete portions of projects. In using this form, the cost of construction; supervision; inspection and overhead (SIOH); design costs, salvage value; unit costs of energy and recurring and nonrecurring non-energy costs are determined as of the date the analysis is made.

ڡڎڛٳڛۄڮڛٳڮڸڐڲڮۯڛٳڗؖڛٳڮڝڮڝٳڝڮڝؿڝٳڝۯڝؿۑڮڮڝڮڝڮڝڮڝٳڝڮڝٳڛڮڝڮڛڮڝ

Title_Block

Identify project title and if applicable, the discrete portion of the project being analyzed. The installation region is determined by its location (see Table XV).

Line 1 Investment Costs

and the provide state of the provide state of the state o

All investment costs are determined as of the date the analysis is made. For determining SIR for energy conservation retrofits the total of the construction, SIOH and design costs must be reduced to 90 percent of the original estimated cost. Salvage value is the residual value of existing equipment removed as a result of the retrofit project. Investment costs do not include energy audit costs, preliminary design, not analysis costs since these efforts are required by Executive Order, legislation, or DoD requirements and are therefore considered sunk costs.

Line 2 Energy Savings

By definition ECIP projects must save energy, therefore there will always be an overall energy cost savings. The overall savings may include increases in use of one fuel and a decrease in use of another. For each fuel, attach computations to show and substantiate the energy savings (2.) claimed. Use conservation factors to convert to MBTUS. The cost per METU (1) is the cost of energy

to convert to MBTUs. The cost per MBTU (1) is the cost of energy at the installation on the date of the analysis. Care must be taken to use the same conversion factors used in (1) to develop the appropriate unit cost, eg. electric cost of \$50/mwh = \$4.31/MBTU, using 11.6 METU/mwh. The annual savings is the product of (1) x (2). The discount (UPW) factors (4) are obtained from Table XV.

The discounted savings (5) are determined by multiplying (3) x (4).

Line 3 Nen-Energy Savings

Annual recurring savings/costs will include items such as electrical demand savings, operator/maintenance savings (labor and material).

le de la companya de la comp For annually recurring savings/costs obtain the discount (UPW) factor from Table XVI Section 3D calculations assures project qualification based on the criteria requirement that 75 percent of the discounted cost savings must be derived directly from energy (MBTU) savings. [Maximum allowable non-energy savings equals discounted energy savings divided by .75 multiplied by .25, -i.e., $(1 \div .75 \times .25 = .33$ factor.)] If applicable, the retrofit will qualify for inclusion in the program only if (SIR) line 3D1b is equal to or greater than 1.

Line 4

First year dollar savings equals 2F3 + 3A (3B1d ÷ years economic life). NOTE: First year dollar savings is defined as the summation of the first year energy and non-energy savings plus the total nonrecurring, non-energy savings divided by the economic life of the retrofit action.

<u>Line 5</u>

Total net discounted savings equals 2F5 + 3C.

Line 6

Project qualifies for inclusion in the program, if not previously, disqualified in Test 3D, and SIR on Line 6 is equal to or greater than 1.

Energy Conversion Factors

a. For purpose of calculating energy savings, the following conversion factors will be used:

Purchased Electric Power11,600 BTU/kwhDistillate Fuel Oil138,700 BTU/galResidual Fuel Oil149,690 BTU/galNatual Gas1,031,000 BTU/1000 cu. ft.LPG, Propane, Butane95,000 BTU/galBituminous Coal24,580,000 BTU/Short TonAnthracite Coal25,400,000 BTU/Short TonPurchased Steam1,340 BTU/1b

The conversion factors for fossil fuels should be used only if actual fuel BTU content is not known. If known, actual values should be used.

b. Purchased energy is defined as being generated off-site. For special cases where electric power or steam is obtained from on-site sources, the actual average gross energy input to the generating plant will be used.

- c. The term "coal" does not include lignite. Where lignite is involved, the Bureau of Mines average value for the source field shall be used.
- d. Where refuse derived fuel (RDF) is involved, the heat value shall be the average of the RDF being used or proposed or 6,000,000 ETU/Short Ion if not known.

TARLE XV UNA DESCURT PACTORS ADJUSTED FOR AVENUE FUEL FRICE ESCALATION BY ND-458 SECTOR AND MAJOR FUEL DISCOURT MAYS - 7 FRECENT DOS Region 5 (Minnesola, Misconain, Michigan, 1111inole, Indiana, Ohio)

N	8	-	~	m	4	ŝ	•	2	•	•	9	11	n	2	2	2	91	1	2	61	R	21	8	23	24	X
TRAVERORINE	BALEAD	16.0	1.7	2.58	3.%	4.10	4.62	5.52	6.21	6.87	7.51	61.0	0.72	67. 6	9.8 3	10.36	10.96	11.33	11.79	12.22	12.64	9.11	13.43	13.00	14.15	14.50
	NO	6. 0	1.64	2.68	8 4 . E	1.23	£.	2. 23	6.26	6.07	1.43	1.9.1	. .	8.0	4-6	8.	10.26	10.64	10-11	11.35	11.67	11.97	12.25	12.52	<u>n.n</u>	10.61
اد	NUTCHS	6.93	1.62	2.69	3.53	16.4	5.20	6.9	6. B	7.68	0.48	9.27	10.0	10.00	11.54	12.27	12.97	13.66	11.33	8.I	13.61	16.23	16.63	17.42	17.9	11.54
NUN SOC	0153N	6.93	3.1	2.60	3.53	1.37	5.20	6.02	6.03	7.62	9.40	9.15	9.8	30.69	11.79	11.96	12.61	13.24	13.95	11.13	ม 8.8	15.55	16.00	J6.6 0	17.10	17.59
B	DIST	16.0	1.7	2.59		1.17	1.91	5.9	6-13	7.16	7.87	8.57	9.2	9.92	10.57	11.20	31.12	12.41	12.9	1 3. 55	1.9	14.61	15.13	15.63	16.12	16.59
		0.96	1.6	2.72	9. 6	4.18	4.81	5.3	5.92	6.40	. 3	7.27	7.67	. 8	27.0	0. X	5	£.	8 .6	. .	10.21	10.45	10.6 8	10.69	11.08	11.26
	DNL		1.0	2.68	. 46	1.24		2.5	8.3		.47	1.01	.53	8.0	3.	16.0	8.0	E.0	8.1	3.	R	8		1.61	8	
ł	SKOUM	0.94	1.83	2.9		1.37	5.20	8	6.13	7.64		9.21	9.96	10.69	11.40	01.21	N. 77. 11	11.42 10	11.05 11	N.65 U	15.24 LI	15.01 12	16.31 IL	16.91 12	21 69-71	EI E6-11
New CLI	OISA	0.93	1.01	2.66	3.47	5.1	5.01	5.74	8.8	1.1	1.7		9.6	6.67	10.26	10. M	11.40	н.н	12.46	12.9K	1 3.4 5	13.92	11. M	14.83	15.27	15.69
В	UKST ¹	0.91	1.76	2.59		4.17	2.4	5.71	6.46	2.2	1.93	2.	a. (2.3	10.64	п.27	N. 1	12.45	1).03	11.54	14.10	14.61	11.21	15.59	16.06	16.52
		0.%	1.07	2.71	3.47	4.17	4.80	5° %	5.92	6.42	6.87	0.1	1.71	8.10	* .	19.0	9.14	9.6	9.74	10.01	10.27	10.51	10.73	10.94	61.11	11.31
	NUCLE	0.94	1.64	2.71	3.55		5.21	6.03	6.94	7.65	6.43	9.20	9.6	10.66	11.36	12.01	12.69	EE.EI	N. (1	14.53	11.21	15.66	16.20	16.72	17.22	17.N
BTIN	547	0.92	1.7	2.60	8	4.16	16.4	5.6	8	7.08	R	9	8.6	2.6	10.33	10.92	11.4	12.0	12.57	19.61	13.56	14.04	1.5	11.9	15.37	15.7
HISH	DIST	16.0	1.7	2.60	8	4.16	4.92	5.66	8	1.00	N. 7	. 4	9.11	9.74	10.15	10.9	11.51	12.06	12.59	01.01	13.59	14.07	14.53	1.9	15.42	15. M
		0.96	1.67	2.71	1.47	4-17	80.4	5.9	5.93	9	6.87	16-1	7.7	0.10	0.47	20.0	9.14	9.6	9.74	10.01	10.27	10.51	10.73	10.94	11.14	и.х
	8	ľ	1	-				•		•	9		12	12	14	51	2	11		1	2	21	8	2	2	2

JI Books the generation and an

Study Pariod (Tears)	UTH Pactor (d=.07)	UPW Factor (d=.10)	
1	0.93	0.91	
2	1.81	1.74	
3	2.62	2-49	
4	3.39	3.17	
5	4.10	3.79	
6	4.77	4.36	
7	5.39	4-87	
	5.97	5.33	
9	6.32	5.76	
10	7.02	6.14	
	7 80	6 SD	
	7 84	6.81	
18	8.36	7.10	
LL 1	8.75	7.37	
15	9.11	7.61	
14	0 4 6	7 • 9	
10	8-42 8 34	/ + 04 8 D2	
1/ 1/	3.70	5.20	
16	10.34	8.36	
20	10.39	8.51	
91	10 84	8.65	
41 77	11.06	0:0J 8.77	
23	11.27	8.88	
24	11.47	8.98	
25	11.65	9.08	

Table XVI UPW Pactors for Finding the Present Value of Future Nonfuel Annually Recurring Amounts¹

ALESSESSE POTOTE AND ALESSES AND ALESSES

All and the second second second

SAMAANAA WAXAAAA MAADAAAA DAAAAAA

¹The formula for finding the present value (P) of an annually recurring uniform amount (A) is the following:

$$P = A \cdot \frac{(1+d)^n}{d(1+d)^n} = A \cdot UPG Factor,$$

where d = the discount rate; and z = the number of years over which A occurs.

> Copy available to DTIC does not permit fully legible reproduction

LIFT-CYCLE COST ANALYSIS SUMMARY ENERCY CONSERVATION INVESTMENT PROCEAM (ECIP)

LOCATION: Wright-Patterson AFF. ON ELGION NO. 5 PROJECT NUMBER TROJECT TITLE MFH Unit Cluster Fuel Cell Energy System FISCAL TEAR _ BE DISCRETE PORTION RAME _ ANALYSIS DATE AUC 86 ICONOMIC LIFE 25 YEARS FREPARED BY S. FITC 1. INVESTIGAT A. CONSTRUCTION COST (Pwr. Plant & Elec/Therm. Interface) \$ 17,120 1. 510E * C. DESIGN COST* 1 = 551 D. ENERGY CREDIT CALC (1A+1B+1C)X.9 I. SALVACE VALUE OF EXISTING EQUIPMENT (0%) \$ 15.551 T. TOTAL INVESTIGHT (11-12) * Included in Construction Cost 2. ENERCY SAVINGS (+) / COST (-) ANALYSIS DATE ANNUAL SAVINGS, UNIT COST & DISCOUNTED SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED C057 SAVINCS \$/HETU(1) HETU/YR(2) SAVINCS(3) FACTOR(4) SAVINCS(5) FUEL \$ 32.474 690 \$ 2.884 11.26 A. ELEC \$ 4.18 B. DIST C. RESID . 5 972 - 110 5.07 30.301 D. NC 12.5 I. COAL -4.0E7 >4.0E7 912 J. TOILL 301 3. NON ENERCY SAVINCS(-) / COST(-) \$ -950 A. ANNUAL RECURRING (+/-) (1) DISCOUNTED SAVING/COST (3A X 3A1) \$ -11.091 E. NOW RECURRING SAVINGS(+) / COST(-): Included in Annual Recurring Cost ITEM SAVINGS(+) YEAR OF DISCOUNT DISCOUNTED SAV-COST (-)(1) OCCURRENCE(2) FACTOR(3) _INDS(-) COST(-)(4) \$_------C. TOTAL C. TOTAL HOW ENERGY DISCOUNTED SAVINGS(+) / COST(-) (3A2-3Bd4) \$<u>-1</u>1,091 D. PROJECT NON ENERGY QUALIFICATION TEST (1) 252 HAR HON ENERGY CALC (275 X .33) \$_ N/4 a IF 3D1 IS - OE > 30 GO TO ITEM 4 6 IF 3D1 IS < 30 CALE SIR = (275-301)+17= E IF 3DIE IS -> 1 CO TO ITTE 4 C IF 3D16 IS < 1 PROJECT DOES NOT QUALITY 4. FIRST YEAR DOLLAR SAVENOS 273+3A+(3B)d - YEARS ECONOMIC 1171) 5 -4(\$-15.177 5. TOTAL NET DISCOUNTED SAVINGS (275+30) 4. DISCOUNTED SAVINGS RATIO (IF < 1 PROJECT DOES NOT QUALITY) (SIR)=(3-1F)= -. ??

90

Augula da a con con constante and and set to constante a constante

ዸዀቘዹዺዹቘኯቘጜኯቚጚኯቚጟቝዄዀጟዀጟዀጟዀጟዀዀዀዀዀዀዀዀዀዀዀዀዀዀ፟፟ዀኯ፟

LIFE-CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROCEAN (ECIP)

1.

LOCATION: Wright-Patterson ATE, OH REGION NO. 5 PROJECT NUMBER
PROJECT TITLE MFH Unit Cluster Fuel Cell Energy SystemFISCAL YEAR _ 86
DISCRETE PORTION NAME
ARALYSIS DATE AUG 86 ECONOMIC LIFE 25 YEARS PREPARED BY S. Fard
<pre>1. INVESTIGNT A. CONSTRUCTION COST (Pur Plant & Elec/Therm Interface) \$ 20.065 E. SIDE * C. DESIGN COST * D. ENERCY CREDIT CALC (1A+1B+1C)X.9 E. SALVAGE VALUE OF EXISTING EQUIPMENT(0%) F. TOTAL INVESTIGNT (1F-1E) * Included in Construction Cost 2. ENERCY SAVINGS (+) / COST (-) ANALYSIS DATE ANNUAL SAVINGS, UNIT COST & DISCOUNTED SAVINGS</pre>
COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED FUEL \$/HETU(1) HETU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS(5)
A. ELEC $\frac{5}{4.18}$ 690 $\frac{5}{2.884}$ 11.26 $\frac{5}{32.474}$ B. DIST $\frac{5}{5}$ $\frac{5}{$
F. TDTAL 301 \$011 \$011 3. KON ENERCY SAVENCES(+) / COST(-) A. ANNUAL RECURRING (+/-) \$1.356 (1) DISCOUNT FACTOR (TABLE A) 11.65 (2) DISCOUNTED SAVENC/COST (3A X 3A1) \$15.797
3. NON RECURRING SAVINGS(+) / COST(-): included in Annual Recurring Cost ITEM SAVINGS(+) YEAR OF DISCOUNT DISCOUNTED SAV- COST (-)(1) OCCURRENCE(2) FACTOR(3) INCS(+) COST(-)(4) aS
C. TOTAL HOW ENERCY DISCOUNTED SAVINGS(+) / COST(-) (3A2+3B64) \$-15.79-
D. FROJECT NON ENERGY QUALIFICATION TEST (1) 252 NAT NON ENERGY CALC (275 7 .33) <u>S N/A</u> a IF 3D1 IS - DE > 3C CO TO ITEM 4 b IF 3D1 IS < 3C CALC SIR - (2P5+3D1)+ 1F= c IF 3D1b IS - > 1 GO TO ITEM 4 c IF 3D1b IS < 1 PROJECT DOES NOT QUALIFY
4. FIRST YEAR DOLLAR SAVENGS 2F3+3A+(3B1d + YEARS ECONOMIC LIFE) S
5. TOTAL NET DISCOUNTED SAVINGS (255+30) \$-19.864
6. DISCOUNTED SAVINGS RATIO (IF < 1 PROJECT DOES NOT QUALIFY) (SIR)-(3-1F)1.05

Contrar on a shifts to 1070 C does with

LIFE-CYCLE COST ANALYSIS SCHMARY ENIRCY CONSERVATION INVESTMENT FROCKAM (ECIP) LOCATION: Wright-Petterson AFR. OH RECION NO. 5 PROJECT NUMBER TROJECT TITLE MFH Unit Cluster Fuel Cell Energy System FISCAL TEAR ______ DISCRETE PORTION NAME ANALYSIS DATE AUG EG ECONOMIC LIFE 25 TEARS FREPARED ET S. Bird 1. INVESTICAT A. CONSTRUCTION COST (Fwr. Plant & Elec/Therm. Interface) \$ 22.102 1. SIDE * ---C. DESIGN COST * D. ENERGY CREDIT CALC (1A+1B+1C)X.9 16 26 L. SALVACE VALUE OF EXISTING EQUIPMENT (01) 10,802 F. TOTAL DRVESTIGHT (11-12) f Included in Construction Cost 2. ENERCY SAVINOS (+) / COST (-) ANALYSIS DATE ANNUAL SAVINGS, DNIT COST & DISCOUNTED SAVINGS DISCOURT DISCOUNTED ANNUAL \$ COST SAVINCS METU/YR(1) SAVINCS(3) FACTOR(4) SAVINCE(5) FF1 \$/HETU(1) _11.26 690 2.884 \$ 32.474 A. ELEC 4.18 \$ B. DIST C. RISID D. NG 18. 5- 15 I. COAL .087 - i -**>:**-4.087 I. TOIM 301 912 3. NON ENERGY SAVINGS(-) / COST(-) s -1,000 A. ANNUAL RECURRING (+/-) (1) DISCOURT FACTOR (TABLE A) (2) DISCOUNTED SAVING/COST (3A X 3A1) \$ -11.650 E. NON NICURAINC SAVINCS(-) / COST(-): Included in Annual Recurring Cost DISCOUNTED SAV-BAVINCS(+) YEAR OF DISCOUNT TIEX COST (-)(1) OCCURRENCE(2) FACTOR(3) INDS(+) COET(-)(4) **E**. C. TOTAL \$_------C. TOTAL HON ENERGY DISCOUNTED SAVINGS(+) / COST(-) (3A2+3B64) \$_-11,65C D. PROJECT NON ENERGY QUALIFICATION TEST (1) 251 MAX HON ENERGY CALC (275 X .33) \$ N/4 a IT 3D1 IS - DE > 30 GO TO ITEM 4 b IT 3D1 IS < 30 CALT SIR - (275-301)+17e 17 3016 15 - > 1 CO TO 1728 4 d IF 3D16 IS < 1 PROJECT DOES NOT QUALIFY <u> - 8 E</u> 4. TIRST YEAR DOLLAR SAVINGS 273+3A+(3B) + YEARS ECONOMIC LIFE) \$ -15,737 5. TOTAL NET DISCOUNTED SAVINGS (275+30) 6. DISCOUNTED SAVINGS RATIO (IT < 1 PROJECT DOES NOT QUALITY) (SIR)-(8-17)- -.70

الديريدينينيذلالا

Copy available to DTIC does not permit fully legible reproduction

المرجود والمواجد والمواجع ومحاج ومحاج والمعتي والمعتي والمعتي والمعتي والمعتان والمعتان والمعتان والمعتان والم

والمتحد والمتحد والمحتج والمحتج
LIFE-CYCLE COST ANALYSIS SUMMARY ENTROY CONSERVATION INVESTMENT PROCKAM (ECIF)
LOCATION: Unichi-Patterson AFP OH REGION NO. 5 PROJECT NUMBER
FROJECT TITLE Building 641 Fuel Cell Emergy System FISTAL TEAR 86
DISCRETE FORTION HAND
AUVITSIS DATE AUG EE ECONOMIC LIFE 25 TEARS PREPARED ET S. Bird
<pre>1. INTESTIGNT A. CONSTRUCTION COST (For Plant & Elec/Therm Interface) \$ 40.284 B. SIDE * C. DESION COST * L. ENTROY CREDIT CALC (1A+1B+1C)X.9 L. SALVACE VALUE OF EXISTING EQUIPMENT(C%) -\$ (</pre>
COST SAVINGS ANNUAL S DISCOUNT DISCOUNTED FIEL S/HETU(1) HETU/YR(1) SAVINGS(3) FACTOR(4) SAVINGS(5)
A. FLEC $\frac{4.18}{2.750}$ $\frac{2.750}{5.11.533}$ $\frac{31.26}{31.26}$ $\frac{120.857}{5.120.857}$ E. LIST $\frac{5}{2.00}$ $\frac{-2.030}{5.100}$ $\frac{5.10.207}{18.50}$ $\frac{5.100.812}{5.100}$ E. COALWY $\frac{5.00}{2.00}$ $\frac{-2.030}{31.6}$ $\frac{5.10.207}{13.01}$ $\frac{5.20.126}{5.20.126}$ WY Steam Flant Fuel F. TCTAL $\frac{1.044}{5.2.783}$ $\frac{2.783}{-40.831}$
3. NON ENERGY SAVENOS(-) / COST(-) A. ANNUAL RECURRING (+/-) (1) DISCOUNT FACTOR (TABLE A) (2) DISCOUNTED SAVENG/COST (3A X 3A1) S -3.322 S -38.701
<pre>E. NOW RECURPTING SAVINGS(-) / COST(-): Included in Annual Recurring Cost ITEM SAVINGS(+) YEAR OF DISCOUNT DISCOUNTED SAV- COST (-)(1) OCCURPENCE(2) FACTOR(3) INCS(+) COST(-)(4)</pre>
6.707A2 S S
C. TOTAL HOW INTERDY DISCOUNTED SAVINGS(+) / COST(-) (3A2+3B64) 5-38.701
D. PROJECT NON EMERGY QUALIFICATION TEST (1) 251 MAX NON EMERGY CALC (275 X .33) <u>S K/4</u> a IT 3D1 IS - DE > 30 GO TO ITEM 4 b IT 3D1 IS < 30 CALC SIR - (2F5-3D1)+1F= c IT 3D1b IS - > 1 GO TO ITEM 4 c IT 3D1b IS < 1 PROJECT DGES NOT QUALIFY
4. FIRST YEAR DOLLAR SAVENOS 2F3+3A+(3B1d + YEARS ECONOMIC LIFE) S520
5. TOTAL NET DISCOUNTED SAVINOS (255+30) S-79.532
6. DISCOUNTED SAVINGS RATIO (IF & J PROJECT DOES NOT DUALITY) (SIR)-(5-17)1 70

Bernit Litz lugible reproduction

LIFE-CYCLE COST ANALYSIS STMMARY ENERGY CONSERVATION INVESTMENT PROCEAM (ECIF) LOCATION: Deich:-Patterson AFF. OH __ RECION NO. 5 FROJECT NUMBER _ PROJECT TITLE Building 641 Fuel Cell Energy System _ TISCAL TEAR _ 86 DISCRETE PORTION NAME AJULYSIS DATE AUE 86 ECONOMIC LIFE 25 TEARS FREPARED IT S. Bird 1. INVESTIGAT A. CONSTRUCTION COST (Pur Plant & Elec/Therm Interface) \$ 44.745 E. SIDE * C. DESIGN COST * <u>...(.</u>2) D. ENERCY CREDIT CALC (1A+1B+1C)X.9 L. SALVAGE VALUE OF EXISTING EQUIPMENT(CL) f. TOTAL INVESTIGHT (II-IE) \$ 40,273 Included in Construction Cost 2. ENERCY SAVINGS (+) / COST (-) ANALYSIS DATE ANNUAL SAVINGS, UNIT COST 4 DISCOUNTED SAVINGS COST SAVINCS ANNUAL S DISCOUNT DISCOUNTED TITL \$/HETU(1) METU/YR(2) SAVINCS(3) FACTOR(4) SAVINCS(5) 11.26 A. ELEC 4.18 2.750 \$<u>11.533</u> \$ 120 857 E. DIST 5 C. RESID 5 5 5 D. NC <u>5 2.0</u> E. COAL** <u>5 4,01</u> .030 <u>s -10,207</u> 5-10(. 514 16.5-1.54 315 \$ 20,126 13.01** Steam Flant Fuel -40.E31 >= -40.E31 F. TOTAL \$_2.783 1.044 3. NON ENERCY SAVINCS(+) / COST(-) A. ANNUAL RECURRING (+/-) -5.425 (1) DISCOUNT FACTOR (TABLE A) <u>1. tr</u> (1) DISCOUNTED SAVING/COST (3A X 3A1) -63.201 E. NON RECURRING SAVINGS(+) / COST(-): Included in Annual Recurring Cost ITEN SAVINGS(+) YEAR OF DISCOUNT DISCOUNTED SAV-COST (-)(1) DCCURRENCE(2) FACTOR(3) INCS(+) COST(-)(4) ε. C.TOTAL \$ -------C. TOTAL HOW ENERGY DISCOUNTED SAVINGS(+) / COST(-) (3A2-3b64) \$-63.201 D. PROJECT NON ENERGY QUALIFICATION TEST (1) 251 MAX NON ENERGY CALC (275 X .E3) \$____ N/# a IF 3D1 15 - DE > 30 GC TO ITEM 4 b IF 3D1 IS < 30 CALC SIR = (176-301)+1F= c IF 301b IS - > 1 CO TO ITER 4 C 17 BD16 15 < 1 PROJECT DOES NOT QUALITY 4. FIRST YEAR DOLLAR SAVENOS 273+34+(3816 + YEARS ECONOMIC LIFE) \$ -1.6-1 5. TOTAL NET DISCOUNTED SAVINOS (275+30) \$-104.031 6. DISCOUNTED SAVINGS RATIO (IF < 1 PROJECT DOES NOT QUALITY) (SIR)-(8-17)- -2.58

1

٠z

94

مر المراجع الم المراجع المراجع

LIFT-CYCLY COST ANALYSIS STMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)
LOCATION: Wright-Patterson ATE, OH REGION NO FROJECT NUMBER
FROJECT TITLE Building 641 Fuel Cell Energy System TISCAL TEAR 66
DISCRETE FORTION RAME
ANALYSIS DATE AUE 86 ECONOMIC LIFE 25 TEARS FREPARED BY S. Pard
<pre>1. INVESTIGNT A. CONSTRUCTION COST (Pwr. Plant & Elec/Therm Interface) \$ 30,122 L. SIOE * C. DESIGN COST * D. ENERGY CREDIT CALC (1A+1B+1C)X.9 E. SALVAGE VALUE OF EXISTING EQUIPMENT(0%) F. TOTAL INVESTIGNT (1I-1E) * Included in Construction Cost 2. ENERGY SAVINGS (+) / COST (-) ANALYSIS DATE ANNUAL SAVINGS, UNIT COST & DISCOUNTED SAVINGS</pre>
COST SAVINCS ANNUAL \$ DISCOUNT DISCOUNTED FUEL \$/HBTU(1) METU/YR(2) SAVINCS(3) FACTOR(4) SAVINCS(5)
A. ELEC 5 4.18 2.759 5 11.533 11.26 5 120.857 B. DIST 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
3. NON ENERCY SAVINGS(+) / COST(-) A. ANNUAL RECURRING (+/-) (1) DISCOUNT FACTOR (TABLE A) (2) DISCOUNTED SAVING/COST (3A X 3A1) 53.E06 53.E06 544.340
<pre>b. NON NECURAINC SAVINCS(+) / COST(-): Included in Annual Recurring Cost ITEM SAVINGS(+) YEAR OF DISCOUNT DISCOUNTED SAV- COST (-)(1) OCCURRENCE(2) FACTOR(3) INCS(+) COST(-)(4) b \$ b \$ c \$ c \$ d.TOTAL \$</pre>
C. TOTAL HON ENERGY DISCOUNTED SAVINCS(+) / DOST(-) (3A2+3B64) \$-44.340
D. PROJECT NON EMERCY QUALIFICATION TEST (1) 251 KKR NOM EMERCY CALC (275 X .33) \$ N/4 = IF 3D1 IS - DE > 3C GO TO ITEM 4 = IF 3D1 IS < 3C CALC SIR - (2F5-3D1) + 1F- c IF 3D1b IS - > 1 GO TO ITEM 4 c IF 3D1b IS < 1 PROJECT DOES NOT QUALIFY
4. FIRST YEAR DOLLAR SAVINGS 273+3A+(3Bld + YEARS ECONOMIC LIFE) S-1.023
5. TOTAL NET DISCOUNTED SAVINGS (2F5+30) 5-E5.17:
6. DISCOUNTED SAVINGS RATIO (IF < 1 PROJECT DOES NOT QUALIFY) (SIR)-(3-1F)3.14

renter and the second from with

LIFE-CYCLE COST ANALYSIS SCHAMA ENERGY CONSERVATION INVESTMENT FROCHAM (ECIF) RECIDE NO. 5 PROJECT NUMBER LOCATION: Unicht-Patterson AFE. OH PROJECT TITLE ______ Building 485 Fuel Cell Energy System FISCAL TEAR ______ 86 DISCRETE PORTION RAME AULITSIS DATE AUF 66 ICONDUIC LIFE 25 TEARS FREPARED BY S. Bard 1. INVESTIGAT A. CONSTRUCTION COST (Pwr Plant & Elec/Therm Interface) \$ 139,968 E. SIDE " *** C. DESIGN COST * D. ENERGY CREDIT CALC (1A+1B+1C)X.9 L. SALVAGE VALUE OF EXISTING EQUIPMENT(CL) F. TOTAL INVESTIGHT (11-11) -5 £ 125.971 * Included in Construction Cost 2. ENERCY SAVINGS (+) / COST (-) ANALYSIS DATE ADRIVAL SAVINCE, DNIT COST & DISCOUNTED SAVINCE SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED METU/YR(1) SAVINGS(3) FACTOR(4) SAVINGS(5) COST SAVINCS FUEL S/HETU(1) A. ELEC 4.18 38.724 264 11.26 5 236 030 E. DIST C. ALSID D. NG 20 3 2 5 18.5-I. COAL -100 -16 >5-100 -16 \$ 9.536 F. TOTAL 3.507 3. NON EMERGY SAVINCS(+) / COST(+) A. ANNUAL RECURRING (+/-) -18,182 (1) DISCOURT FACTOR (TABLE A) (2) DISCOUNTED SAVING/COST (3A X 3A1) -211,820 E. NOW ADDURAING SAVINGS(-) / COST(-): Included in Annual Recurring Cost ITTM SAVINCS(-) YEAR OF DISCOUNT DISCOUNTED SAV-COST (-)(1) OCCURRENCE(2) FACTOR(3) INDS(-) COST(-)(4) Ł <u>---</u> ؟ C. TOINL ---C. TOTAL HOW ENERGY DISCOUNTED SAVINGS(-) / COST(-) (342-3864) \$ -211.820 D. PROJECT HON ENERGY QUALIFICATION TEST (1) 251 HKX HON ENERGY CALC (275 X .23) N /4 \$ * IT 3D1 IS = O2 > 30 GO TO ITEM 4 b 27 3D1 15 < 30 CALC SIR = (275-3D1) + 17-c 27 3D1 25 - > 1 CO TO ITER 4 d IF 3DIB IS < 1 PROJECT DOES NOT QUALITY 4. TIRST YEAR DOLLAR SATENCE 273+3A+(32)C + YEARS ECONOMIC 1172) s -8.646 5. TOTAL NET DISCOUNTED SAVINOS (275-30) \$-316.934__

5. DISCOUNTED SAVINGS RATIO (IT < 1 PROJECT DOES NOT QUALITY) (SIR)-(5+1F)- -2.52

Copy available to DTIC does not permit fully logithe up decisin 3

- - -

LIFE-CYCLE COST ANALISIS SURGARY EXERCY CONSERVATION INVESTMENT PROCEAM (ECIF) IDEATION: Wright-Patterson AFE. OF ILCION NO. 5 FROJET NUMBER PROJECT TITLE _ Building 485 Fuel Cell Energy System TISCAL TEAR _ 86 DISCRETE PORTION NAME AUALYSIS DATE AUE 86 ECONOMIC LIFE 25 TEARS PREPARED BY 5. Fird 1. INVESTIGAT A. CONSTRUCTION COST (Pwr Plant & Elec/Therm Interface) \$ 155,196 1. SIDE * _---C. DESIGN COST * ---139.676 D. ENERGY CREDIT CALC (1A+13+1C)X.9 (I. SALVACE VALUE OF EXISTING EQUIPHENT (CL) \$ 139.676 7. TOTAL DRVESTMENT (11-11) * Included in Construction Cost 2. ENERCY SATINGS (+) / COST (+) ANALYSIS DATE ANNUAL SAVINCS, DNIT COST & DISCOUNTED SAVINGS SAVINCS ANNUAL \$ DISCOUNT DISCOUNTED COST \$/HBTU(1) METU/YR(2) SAVINCS(3) FACTOR(4) SAVINCS(5) FUEL 4.18 \$ 38,724 11.26 \$ 436.032 A. ELEC 9.264 E. DIST C. RESID \$-25 1KF 16.5-- 5 757 D. NC <u>. 517</u> 5.07 <u>i 46</u> I. CDAL -105-114>8-105,114 \$ 9,536 3,507 F. TOTAL 3. NON EMERCY SAVINCS(-) / COST(-) s_-10.966 A. ANNUAL RECURRING (+/-) (2) DISCOUNTED SAVING/COST (3A X 3A) (1) DISCOUNT FACTOR (TABLE A) \$_-127.754 E. NON AZCUBRING SAVINGS(-) / COST(-): Included in Annual Recurring Cost ITEN SAVINGS(+) YEAR OF DISCOUNT DISCOUNTED SAV-COST (-)(1) OCCURRENCE(1) FACTOR(3) INCS(+) COST(-)(4) £. \$____ e.metal ---C. TOTAL HOW ENERGY DISCOUNTED SAVINGS(+) / COST(-) (3A2+3b84) 5-127.754 D. PROJECT NON EMERCY QUALIFICATION TEST (1) 251 HAR NON EMERCY CALC (275 X .33) N/4 \$ a IF 3D1 IS - OE > 30 GO TO ITER 4 + 17 3D1 15 < 30 CALC SIR = (276-301 + 17= E IT 3DIB IS - > 1 CO TO ITEH 4 C IT 3D16 IS < 1 PROJECT DOES NOT QUALIFY **s** -1.430 4. FIRST YEAR DOLLAR SAVINGS 273+3A+(3B)C + YEARS ECONOMIC LIFE) s-232.868 5. TOTAL NET DISCOUNTED SAVINGS (255+30) 6. DISCOUNTED SAVINCS RATIO (IF < 1 PROJECT DOES NOT QUALITY) (SIR)=(3+1F)= -1.67

CALLER CONTRACT

.

.

.....

Cour excitation is white done not

LIFE-CYCLE COST ANALYSIS SURAARY ENERCY CONSERVATION INVESTMENT PROCEAM (LCIP) LOCATION: Wright-Patterson AFE. OH LECION NO. 5 FROJET NUMBER PROJECT TITLE Building 485 Fuel Cell Energy System TISCAL YEAR _ 86 DISCRETE POLTION NAME ADALYSIS DATE AUG 86 ICONOMIC LIFE 25 YEARS PREPARED IT 5. Bird 1. INVESTIGAT A. CONSTRUCTION COST (Pur Plant & Elec/Therm Interface) \$ 90.430 1. SIDE * C. DESIGN COST * ۶1. D. ENERGY CREDIT CALC (1A+1B+1C)X.9 25 I. SALVACE VALUE OF EXISTING EQUIPMENT (0%) T. TOTAL INVESTMENT (11-11) \$ 81.387 * Included in Construction Cost 2. ENERCY SAVINUS (+) / COST (-) ANALYSIS DATE ANNUAL SAVINGS, UNIT COST & DISCOUNTED SAVINGS ANNUAL S COST SAVINCS DISCOUNT DISCOUNTED METU/YR(2) SAVINCS(3) FACTOR(4) SAVINCS(5) TTL \$/HETU(1) A. ELEC \$<u>38.724</u><u>11.26</u> \$ 4.18 <u>9.264</u> \$ 436,032 B. DIST C. ADSID D. NC 757 5.07 5-20 1FE . . 18.5-S-541 146 E. COAL -105 -14>5-105.114 9.536 J. JDIAL 3.507 5 3. NON EMERCY SAVINCS(-) / COST(-) A. ANNUAL RECURRING (+/-) \$<u>-12.77</u>8 (1) DISCOURT FACTOR (TAPLE A) (2) DISCOUNTED SAVING/COST (3A X 3A1) \$ -148.864 E. FON AZCURRING SAVINGS(-) / COST(-): Included in Annual Recurring Cost SAVINCS(-) YEAR OF ITTH DISCOUNT DISCOUNTED SAV-COST (-)(1) OCCUPRENCE(2) FACTOR(3) INCS(+) COST(-)(4) ş_---C. TOIL ---C. TOTAL HON ENERGY DISCOUNTED SAVINGS(+) / CDET(-) (342+3B64) \$-148.864 D. PROJECT FON ENERGY QUALIFICATION TEST (1) 251 MAX NOW ENERGY CALC (275 X .33) N/4 A IT 3D1 IS - DE > 30 GO TO ITEM 4 b IF 3D1 IS < 3C CALC SIR = c IF 3D1b IS -> 1 CO TO ITEH 4 SIR = (2F5+3D1)+1F= d IF 3D16 IS < 1 PROJECT DOES NOT OUALIFY 4. TIRST YEAR DOLLAR SAVENOS 273+3A+(3216 - YEARS ECONOMIC 1171) : -3,242 5. TOTAL RET DISCOURTED SAVINGS (2F5+3C) \$ -253,978 6. DISCOUNTED SAVINES RATIO (IT < 1 PROJECT DOES NOT QUALITY) (SIR)=(3-17)= -3.12

CONTRACT BEASEASS FALLER

3 s a 3**31** warmats of son logation set collection

Bibliography

- Acres, W., Lt Col, et.al. <u>40 Kilowatt Fuel Cell Power</u> Plants for the McClellan Air Force Base Radar Approach <u>Control (RAPCON) Facility</u>. AFWAL Report TR-83-2012. Defense Technical Information Center, Alexandria VA, June 1983.
- Aimone, M. <u>On-Site Fuel Cell Energy Systems: The U.S.</u> <u>Air Force Field Test Demonstration Plan</u>. AFWAL Report TR-80-2118. Contract F33615-77-C-2059. Defense Technical Information Center, Alexandria VA, Dec 1980 (AD-A100743).
- 3. ASHRAE Handbook. 1977 Fundamentals. American Society of Heating, Refrigerating, and Air Conditioning Engineers Inc. Atlanta GA, 1977.
- Bell and Gossett. <u>Type "WU" Heat Exchangers</u>. Product Bulletin C-130.1A. Fluid Handling Division, ITT Corp., Morton Grove IL, 1984.
- 5. Bollenbacher, G. Economic Competitiveness of Fuel Cell Onsite Integrated Energy Systems. Lewis Research Center, Cleveland OH, Aug 1983 (NASA TM-83403).
- 6. Bryant, R.C. <u>Managing Energy for Buildings</u>. Government Institutes, Inc., Rockrutle MD, Feb 1983.
- 7. Department of the Air Force. <u>1985 Air Force Energy</u> <u>Plan. Washington DC: Government Printing Office, 1985.</u>
- Department of the Air Force. Annual Construction Pricing Guide for FY 87 thru 91 Program. Washington DC:HQUSAF, Aug 1985.
- 9. Department of the Air Force. Engineering Technical Letter 82-4: Energy Conservation and Investment Program (ECIP). Washington DC: HQUSAF, 10 Nov 1982.
- 10. Department of Energy. Energy Conservation In Existing Buildings. Guide DOE/CS-0132. National Technical Information Service, Springfield VA, 1 Feb 1980.
- 11. Department of Energy. Guidelines for Saving Energy In Existing Buildings. Guide DOE/ECM-2. National Technical Information Service, Springfield VA, 1975.
- 12. Hill, Phillip G. Power Generation. Cambridge MA: MIT Press, 1977.

- Knable, S. et.al. The Gas Powercel National Market Report: Characterization of the Onsite Fuel Cell Market. Gas Research Institute, Chicago IL, Dec 1985.
- 14. Mahoney, W., et.al. <u>Means Electrical Construction Cost</u> Data 1986. R.S. Means Co., Kingston MA, 1985.
- Moylan, J., et.al. <u>Means Mechanical Construction Cost</u> <u>Data 1986</u>. R.S. Means Co., Kingston MA, 1985.
- 16. National Bureau of Standards. <u>Technical Guidelines for</u> <u>Energy Conservation</u>. Report NBSIR 77-1238. Washington DC: Government Printing Office, 1977.
- 17. Patel, P.S., et.al. "Techno-Economic Evaluation of a Direct Fuel Cell System," <u>National Fuel Cell Seminar</u> <u>Abstracts.</u> 25-31. Defense Technical Information Center, <u>Alexandria VA</u>, Nov 1983 (AD-A145645).
- 18. Pine, G.D., et.al. <u>Development of an Energy Consumption</u> and Cost Data Base for Fuel Cell Total Energy Systems and Conventional Building Energy Systems. Contract W-7405-eng-26. National Technical Information Service, Springfield VA, July 1980 (ORNL/CON-38).
- 19. Staniunas, J.W. On-Site Fuel Cell Application Analysis. AFWAL Report TR-83-2014. Contract F33600-81-C-0582. Defense Technical Information Center, Alexandria VA, Feb, 1983 (AD-A129388).
- 20. Taylor, R.W., et.al., "Site Selection, Design, and Data Analysis of an Onsite Fuel Cell Cogeneration System," Association of Energy Engineers Conference, 28-30 Nov 1984. 421-426. Association of Energy Engineers, Atlanta GA, Nov 1984.

- 21. Trocciola, J.C. <u>Megawatt Fuel Systems Analysis</u>. AFWAL Report TR-83-2013. Contract F33600-81-C-0582. Defense Technical Information Center, Alexandria VA, Feb 1983 (AD-A129398).
- 22. Wakefield, R.A., et.al. <u>Study of Fuel Cell On-Site</u>, <u>Integrated Energy Systems in Residential/Commercial</u> <u>Applications</u>. National Technical Information Service, Springfield VA, Feb 1983 (AD-Al29388).
- 23. Water Products Co. <u>Residential Sizing</u>. Product Catalog B200. AO Smith Co., Kankakee IL, Dec 1980.
- 24. WPAFB. "Energy Usage Summary," Computer Print Out. 2750th/CES, Bldg. 22, WPAFB OH, Jul 1985 - Apr 1986.

Captain Stephen A. Bird was born on 20 July 1947 in Phoenix, Arizona. He graduated from Flagstaff High School in 1965 and received a Bachelor of Science Degree in Electrical Engineering from Northern Arizona University in 1975. He received his commission in the USAF on 15 December 1976 after completing OTS at Lackland AFB, Texas. His last assignment prior to entering the School of Systems and Logistics, Air Force Institute of Technology, was at HQ USAFE Ramstein AB, Germany where he was a project manager under the deputy chief of staff, Engineering & Services.

> Permanent Address: P.O. Box 1177 Camp Verde, Arizona 86322

VI·LV

	LASSIFICATION OF TH	IS PAGE					
			REPORT DOCUM	ENTATION PAG	E		
EPORT UNCLA	SECURITY CLASSIFIC	ATION		16. RESTRICTIVE N	ARKINGS		
. SECURI	TY CLASSIFICATION A	UTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT			
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE				 Approved for public release; distribution unlimited 			
PERFORMING ORGANIZATION REPORT NUMBER(S) AFIT/GEM/LSM/86S-2				5. MONITORING ORGANIZATION REPORT NUMBER(S)			
NAME OF PERFORMING ORGANIZATION School of Systems (If applicable)			6b. OFFICE SYMBOL (If applicable)	. 7. NAME OF MONITORING ORGANIZATION			
and I	and Logistics AFIT/LS				St. 1		
Air F Wrigt	ss <i>(City, State and ZIP Co</i> Force Institute ht-Patterson AF	of Techr B, Ohio 4	010gy 5433 -6583	76. ADDRESS (City,	State and ZIP Co	ode)	
B. NAME OF FUNDING/SPONSORING ORGANIZATION (11 applicable)				9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
k. ADDRESS (City, State and ZIP Code)				10. SOURCE OF FUNDING NOS.			
				PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT
1. TITLE (1	Include Security Classifica	ition)		-			
'ERSON	NAL AUTHOR(S)			1	<u>l</u>		
JA TYPE C	DF REPORT	136. TIME C	OVERED	14. DATE OF REPO	RT (Yr., Mo., Da:	y) 15. PAGE	COUNT
MS Th	nesis	FROM	то	1986 Septem	nber	112	2
7. FIELD 10	COSATI CODES GROUP SL 02 ACT (Continue on reverse E: ECONOMIC FE SELECTED FA	IB. GR.	18. SUBJECT TERMS (Fuel Cells, Power Suppli d identify by block number OF FUEL CELL E ON WRIGHT-PATTE	Continue on reverse if no Electric Power es, Hydrogen C "" NERGY SYSTEMS RSON AIR FORCE	FOR BASE, OHI	tify by block numb on, 1 Cells 10	
Title Thes	is Chairman: Pi It	hillip E. nstructor	Miller, Major, of Logistics M	USAF anagement	Defa for Re. Air Force In: Wright-Patter	CLAVER Learch and Professi situate of Technolog son AFB OH 4543	Saf186 lonal Development 7 (Mor
Title Thesu Distrie 	LS Chairman: P In BUTION/AVAILABILITY FIED/UNLIMITED S OF RESPONSIBLE INDI Lip E. Miller, 1	AME AS RPT. VIDUAL	Miller, Major, of Logistics M CT DITICUSERS D	USAF anagement 21. ABSTRACT SECU UNCLASSIFIE 22b TELEPHONE N (Include Area Co 513-255-50	URITY CLASSIF	ICATION	MBOL

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

This thesis developed life-cycle costs of retrofitting fuel cell powered energy systems into existing facilities on Wright-Patterson Air Force Base (WPAFB), Ohio. These life-cycle costs were compared with existing costs for providing facility via comercially supplied electricity and natural gas and/or base generated steam. Three facilities representative of the main facility types on WPAFB were examined: Military Family Housing (MFH), an office/classroom building, and an office/lab building. An analysis of the cost compairsons was performed to determine if fuel cell energy systems can be economically competitive with existing facility energy utilization systems. The results of this analysis are contained in Chapter IV.

