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Ultimately the success of any machine translation system rests in the quality of the text
it produces as its output. Professional human translators, as a rule, must be native
speakers of the language that they are translating into; otherwise they will not fully
appreciate the nuances or idiomatic meanings of the word choices in the target language, or
the inferences that are invited by alternative syntactic phrasings. If such choices are not
made deliberately, with an appreciation of their consequences, then they are very likely to
be made badly, and the sense of the original text distorted.

It would seem however that this fact is not well appreciated by the bulk of the machine
ptranslation community, since the generation programs that they employ are based largely ontemplate-driven, fill-in-the-blank designs that have not been state of the art for more than

fifteen years. Such programs have intrinsic limitations. They must deal with the language

in fixed chunks, each with only minimal possibilities for variation and thus only the
K shallowest capacity to accomodate to their context. Large texts built from such rigid pieces

have an awkward, mechanical style.
It is possible that such limitations do not pose a problem for MT, since the kinds of

texts that it is presently important to translate: commercial notices, training manuals, etc.,
do not demand a high prose style or sophisticated knowledge of nuance. Yet if that is the
case now, it will not remain so for long. Improving capacities in language analysis and
representation will soon make it possible to deal with sophisticated texts such as newpapers
or contracts, and the need for equal sophistication in generation will follow. The
generators in MT systems will have to know how to convey whether a piece of information
is new or old, whether it can be communicated tacitly by inferences from the choice of

' wording or phrasing or must be spelled out explicitly. There must be effective models of
the choices a given language offers and their consequences if used. There must be ties to
inference systems and to models of the common sense expectations of a reader of the target
language. Above all there must be a rich understanding of the grammatical capacity of the
language, of the dependencies between the alternatives it offers and how they may be
navigated by the procedures of the generator as it constructs the output text. Simple
generation systems do not have such abilities.

Artificial intelligence research in generation independent of MT has taken considerable
strides however. It is in a position now to supply the generation capacities that strong MT
systems will need. There is now a relatively sophisticated appreciation of what alternative
designs for a generator are possible and of their consequences. Generation systems have
been developed that are capable of quite delicate decisions of phrasing and content flow.
Large syntactic grammars have been developed and are being exercised. Theories of the[ organization and construction of large texts and dialogs are being tried out. Text planning,
rather than syntactic realization, has become the research frontier. Today's questions are:
What model should a conceptual-level program have of the linguistic resources a language
puts at its disposal? In what kind of theoretical vocabulary should it do its "linguistic
reasoning"?

This paper examines the nature of generation systems today, the problems they have
been designed to deal with, their strengths and their weakness. Its goal is to give the MT
community a sense of what has been accomplished, and indirectly to show where MT
researchers could consider adopting or adapting some of the Al work. This work on
generation need not be done by Al people alone: MT can, for example, contribute to Al

,- research on the planning-level by sharpening our collective understanding of the "carrying
capacity" of the different parts of a language through cross-language comparisons that try
to fit the ideas carried by the linguistic devices of a source language into the alternative
devices of a target language. At lower levels, MT as a task can provide more linguistically
demanding sources for generation than most any of today's expert systems. At the same
time it is clear that generation is done for very different reasons in the two camps. The Al
context is more like that of people dealing with each other in normal life--of which
translation is not a customary part. Nevertheless, translation is a normal hum.n capacity,
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and a considered comparison of the generation process in both contexts should tell us more
about the nature of generation as a module within the human mind than could either by
itself.

1. INTRODUCTION
The circumstances in which generation takes place during MT are different from those

in a natural language interface. For the Al program using its NL interface, the purpose of
generation is to deliberately construct a fluent and grammatical text that meets the
communicative goals that the underlying program has specified. The MT program has no
access to the goals the author of its source text may have had, and must either infer them or
do without. In the interface, the generator works from a clean slate: it can choose whatever
words, whatever syntactic constructions, that it believes will accomplish the goals. It also
has a relatively free hand with stylistic matters such as sentence length or the complexity of
the clause structure. The generator for the MT program, on the other hand, has the option
of carrying over the wording and phrasing choices from the source text, and can follow the
sentence length and complexity of the source as closely as it wishes.

These differences are both strengths and weaknesses for generation in MT. A
weakness pragmatically because it may be difficult to adapt the processes and
representations of highly skilled, interface-oriented generation systems to MT because of
the very different presumptions about the kinds of structure-fixing information that are
available. A weakness theoretically because MT encourages "early", cross-level transfer,
i.e. taking words, or at a higher level syntactic constructs, from the source text over to their
apparent counterparts in the target language at the moment they are recognized. This is the
usual practice in MT (Slocum, 1984), since the alternative--waiting until entire segments of
the text have been understood at a conceptual level, and the intentions of speaker recovered, -
then generating from those intentions--presumes that the MT system has access to a rich
conceptual model of the subject matter of the text and a speaker's goals in talking about it,
which is not at all the case in main-stream MT research. 2 Without knowledge of the
intentions behind the use of a given linguistic device, the program is choosing the target
language device blindly without the benefit of knowing its context of use.

The very same property can also be a strength, since it does, after all, make MT
conceivable without the guidance of a conceptual model. Multi-topic, broad spectrum
models with sufficient common sense to be of any use in a realistic MT domain are decades
away from being realized (Lenat 1985). The cross-level, early transfer of constructions
between languages may even be a considerable help if it is used with an eye towards
identifying or constraining what the speaker of the original text's intentions may have been
and thus how they can best be conveyed in the phrasing of the output text. (Remember that
while the interface-based generator knows for sure what what the "speaker" that it is
working for intends, an MT has no such privileged knowledge and must deduce it from
what it reads.)

As a way of making it clearer what is at issue, it is worth looking closely at the nature
of what today's generation program must accomplish in its normal behavioral nitch: what is
the information flow; what implications does this have for its organization; what are the
distinguishable components and the relationships between them.

1.1 Basic organization: generation versus comprehension
As a field, computational linguistics has far more experience in, and brings more

sophistication to, the problems of language comprehension than of generation. There is a

2 A good example of an MT system that does analyze the source text as thoroughly as the language
comprehension system of an NLP interface is the recent work by Steve Lytinen at Yale (1984).
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4
tendency therefore to look at generation in the same kind of terms as comprehension; a
tendency that should be dispelled, since to understand the issues in language generation
research one must learn to see it as a problem of construction and planning rather than

* analysis.

As a process, generation has its own basis of organization. Language comprehension
typically follows the traditional stages of a linguistic analysis: morphology, syntax,
semantics, pragmatics/discourse, moving gradually from the text to the intentions behind it.
Generation has the opposite information flow: from intentions to text, content to form.
What information is already known and what must be discovered is quite different than in .
comprehension, and this has many implications. The known is the generator's awareness
of the underlying program's intentions, its plans, and the structure of any text the generator
has already produced. Coupled with a model of the audience, the situation, and the
discourse, this information provides the basis for making choices among the alternative
wordings and constructions that the language provides--the primary effort in constructing a
text deliberately.

With its opposite flow of information, it would be reasonable to assume that the
generation process can be organized like the comprehension process but with the stages in
opposite order, and to a certain extent this is true: pragmatics (goal selection) typically
preceeds consideration of discourse structure and coherence, which usually preceed
semantic matters such as the matching of concepts to words. In turn, the syntactic context
of a word must be fixed before the precise morphological and suprasegmental form it
should take can be known. One must however avoid taking this as the driving force in a
generator's design, since to emphasize this ordering of linguistic representational levels
would be to miss generation's special character, namely that generation is above all a
planning process. Generation entails realizing goals in the presence of constraints and
dealing with the implications of limitations on resources, e.g. the specific expressive
capacities of the devices a given language happens to have, or the limited space available in
a sentence or paragraph for expressing ideas given the constraints of the prose style that has
been choosen.

Once one accepts the view that generation is planning, it is natural to organize its
particulars around the efforts involved in making decisions: decisions to use certain words
or syntactic constructions, decisions to post constraints on later decisions. The criteria for

" the diviion of the process into components now follow from the character of the decision-
making involved, which will vary along the following three dimensions: (1) What
information does the decision draw on: Properties of lexical items? Conceptual attributes?
Details of planned but not yet realized rhetorical structures? Details of the text's surface
structure? (2) What is the decision dependent on? What other generation decisions, if
made differently, would force a change in this decision? If the generation process is to be
indelible (i.e. never retracting its decisions), then this dependency structure will have to be
respected in the order in which individual decisions are made. (3) How should the
decision's conclusion(s) be represented? Does a conclusion dictate linguistic actions or just

K constrain other decisions? Can it be acted on immediately, or must it be scheduled for"N
C. execution at a later moment and if so, how is that moment described?

The decision-mal'ing perspective as an organizational criteria for generation yields an
ordering on events based principally on what dependencies govern a given decision and
v" hat representations will supply any needed reference information. In most cases this
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tends to reinforce a breakdown into stages like the ones identified by linguists, but only
because that is a natural order in which to make the decisions.

*.

2. TERMINOLOGY
Before proceeding further, it will be important to establish a working vocabulary for

describing the parts of the generation process. To begin with, there are the informal terms
that are constantly used for effect if not for specific meanings: "higher", "later" and other
vague terms of that sort. There is a fairly consistent temporal orientation that generation '

researchers have informally adopted, and a corresponding spatial orientation, though it is
less established. Intentions and concepts, the starting point for generation in an interface,
are "earlier" and "higher"; linguistic matters are "later" or "down" from the concepts, with
the conventional linguistic derivational geography: discourse, semantics, syntax,
morphology, phonetics and speech, running from higher to lower in that order when they
are discussed as a linear progression. Higher entities are more abstract, lower ones more
concrete.

The question of what goes into a generation "system" or a "generator", or of where to
draw the boundaries between components will be answered differently depending upon
who one talks to. More often than not it varies simply according to what aspects of the
problem a research group has chosen to work on simultaniously. Some projects take "the
generator" to encompass all of the processing that is not domain-specific reasoning (Mann
& Moore, 1981), others are comfortable restricting the term to cover only the linguistic
processing, omitting the establishment of goals and the planning of content and large-scale
organization (McDonald, 1983). This appears to be an issue of taste and the structure of
research projects rather than one with technical consequences. Bearing in mind then that
not all researchers in generation would agree with this breakdown, the rest of this section
briefly introduces the processing elements that take part in generation, proceeding from
early to late in the process. In the rest of this paper, references to "the generator", when ,

not otherwise specified, will be to the linguistic processor that is responsible for realization.
When the generation system is part of a man-machine interface it will have some

relationship to the other major component in that interface, the language comprehension
system. Some kind of bridge, a representation of as a whole, must be
maintained to insure that the information is available to support cohesive linguistic choices
and interpretations across the turns of a dialog. Managing this representation and directing
the overall communication activity should be some kind of discurs controller (see for
example Bruce, 1975; Wilensky et al., 1984; or Woolf, 1984). In most ordinary cases,
however, this controller will not be a separate module but just the executive portion of the
underlying program, the non-linguistic, domain-oriented program that human users employ
the interface to talk to. What this underlying program is: a cooperative database, expert
diagnostician, ICAI tutor, commentator, apprentice, advisor, presently is of no significant
influence in how the generation system is designed.

MT systems of course will usually have no counterparts to any of these "supra-
generation" modules. They do have the pragmatic equivalent of the "urge to speak" by
which those modules set the process in motion; the question is whether what then ensues ".
involves processing of the same kind, and then whether it is profitably broken down into
the same kinds of stages.

Within an interface, the generation process starts when some event within the
underlying program leads to the need for it to speak: perhaps to answer a question, to give
an explanation or pose a question of its own, or in a sophisticated underlying program,
perhaps to interrupt the user's activities in order to point out an impending problem. Once :-
the process is initiated, three activities take place: (1) identifying j i the utterance is toLhe

achieve, (2) planning how the goals may be achieved by evaluating the situation and
available communicative resources, and (3) realizing the plans as a text. I:or a computer,
goals would usually be to impart certain information to the audience or to prompt them to

.................................................
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some action or reasoning. People, of course, talk for social and psychological reasons as
,.. well as practical ones, but this need is beyond the ken of today's computer programs.

Planning involves the selection (or deliberate omission) of the information to be conveyed
directly in the text (e.g. concepts, relations, individuals). A coordinat'ng rhetorical
framework or schema for the utterance as a whole must also be adopted (e.g. temporal
progression, compare-and-contrast). Particular perspectives may be imposed to aid in
signaling intended inferences.

The non-linguistic plan or specification is typically called a m . The mental
image often evoked by the term "message" is of written notes passed from one person to
another, for instance as the result of a telephone conversation; however this image is much

4too simple. Researchers who study both planning and realization continually make the point
that there is no clean boundary between the two activities (see for example Appelt, 1980 or
Danlos, 1984): Planning proceeds by progressive refinement and must appreciate the
linguistic consequences of its decisions. The realizations of the largest, most
encompassing relations in the message create a grammatical context that imposes
constraints on what can be planned for their arguments. Goals may emerge or change in
priority opportunistically as planning and even realization proceeds. Thus though it is
usually profitable to think in terms of an abstract "message" that defines and controls what
the later linguistic processing is to produce, one must be careful not to presume from that
that the generation process divides into two distinct stages or even that the message is
constructed all at one time before any actual text production has begun.

Realization is the process of manifesting the planner's directives as actual text. This
process has a counterpart in every MT system, since the equivalent of these directives will
be the system's model of the source text being translated. Realization depends upon a

. sophisticated knowledge of the (target) language's grammar and rules of discourse
coherency; most realization components typically maintain a syntactic representation of the
text as it is being assembled. Usually it is only the realization process that has any direct
knowledge of a language's grammar . The form this knowledge takes is one of the greatest
points of difference between generation projects, though all projects largely agree on the
function it should serve.

The purpose of grammar in generation is very different than in traditional linguistics.
There a grammar is a body of statements in a notation, with the chief interest of the
theoretician being on the structure and expressive capacity of that notation rather than the
particulars of what rules a given language needs. In generation the function of a
grammar is to define and constrain linguistic choices. Choices are dependent on
the goals and situation; consequently the information in the grammar must be tied to some
kind of model of language use. Generation researchers ask what circumstances lead to the
choice of one alternative over another--what functions do the various constructions of the
language serve that will make them able to fullfill a given goal or fit a given discourse
situation.

3. WHY DOES GENERATION SEEM TO BE A SIMPLE PROCESS?
A generation system can be no better than the underlying program it is working for. If

the program has only simple thoughts, the generator will only be able to say simple things.
Measured in terms of the inferential content and structural relations that would make a text
interesting linguistically--i.e. a design challenge to the researcher on generation--nearly all
candidate underlying programs "think simple thoughts" even today.

It is then no accident that until the early 1980's generation was considered by most
people in Al to he a relatively simple problem. The level of skill that generators had toexhibit was minimal because only minimal demands were made on them. Taking a

statement in an internal representation of the sort people used in the middle 1970's, say
-(#SupFort3 :1 Ioc(kf :block3), coupling it with attributes stored separately for the

individuals, and producing "The big red tock %u/plorts a green one" requires such a simple

! Iih
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7 5
computational apparatus (typically a technique known as "direct replacement", see below)
that the design is usually not worth publishing :oday. 3

Output from Anthony Davey's program PROTEUS (1974), commentating a game of
Tic Tac Toe that it played with a user.

"The game started with my taking a corner, and you took an adjacent one. 1
threatened you by taking the middle of the edge opposite that and adjacent to
the one which I had just taken but you blocked it and threatened me. I
blocked your diagonal and forked you. If you had blocked mine, you

4. would have forked me, but you took the middle of the edge opposite of the
corner which I took first and the one which you had just taken and so I won
by completing my diagonal."

The monologue produced by John Clippinger's program ERMA (1977) modeling an
actual psychoanalytic patient talking to her therapist. Text segments in parenthesis
are what ERMA was planning to say before it cut itself off and restarted. This is an
actual paragraph from a transcript of the patient reproduced in every detail.

"You ki ow for some reason I just thought about the bill and payment again.
(You shouldn't give me a bill.) <Uh> I was thinking that I (shouldn't be
given a bill) of asking you whether it wouldn't be all right for you not to give
me a bill. That is, I usually by (the end of the month know the amount of the
bill), well, I immediately thought of the objections to this, but my idea was
that I would simply count up the number of hours and give you a check at
the end of the month."

FIGURE ONE

When the people developing the generator have the opportunity also to develop the
underlying program and thereby to insure that it can supply interestingly rich perspectives
and intentions, a considerable level of sophistication can be achieved in the text. Figure
One shows examples of the output from two such cases, both of them developed around S
1974. Anthony Davey's Tic-tac-toe program was a player as well as a commentator. It
had a rich conceptual model of the game, and consequently could use terms like "block" or
"threat" with assurance. Its heuristics for grouping the descriptions of moves together into
complex sentences were based on notions of salience and tactical consequences. John
Clippinger's emulation of one paragraph of speech by a psychoanalytic patient was the
result of a computationally complex model of the patient's thought processes: from the first
identification of a goal, through planning, criticism, and replanning of how to express it,
and finally linguistic realization. Clippinger's program had a multiprocessing capability--it
could continue to think and plan while talking. This allowed him to develop a model of
"restart" phenomena in generation including the motivation behind fillers like "uh" or
dubitives like "you know".

But such "double work" in a research effort is unusual, and work on generation has
suffered as a result of the high costs of getting a research effort started. In working on
parsing it is clear what one begins with--the words of a text--and one can chose to recover
as little or as much of the text's semantic and pragmatic analysis as one likes. Generation
on the other hand requires one to take a stand on the nature of conceptual representation and

3 This example comes from Terry Winograd's 1970 thesis (see Winograd, 1972), where the amount of code
for generation was only about 2% of what went into comprehension, and virtually none of it supported a
model of grammar. (Pronouns were introduced into output by reparsing the output and doing substitutions.)

.
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intention before one can even begin. To start from anything less abstract, for example to
take the input to be a hierarchical structure of verb-like relations over noun-like objects
(such as one might get from a composition-driven semantic interpretation component), is to
see generation as just a matter of linearization plus local grammatical realizati-'n rules. 4

When one looks at the apparent capabilities and knowledge that people have about their
own generation, it becomes difficult to believe that the process or its input could be that
simple. Consider the versatility of form and use that the native human speaker can make
use of in our simple example. There was no grammatical requirement to say "a green one ",
and not "a green block": a contextual influence, presently not well understood, determines
this alternation, taking into account the possible ambiguity of the pronoun on the one hand
and the cohesion effect that it brings on the other. More obviously, we can ask why the
sentence should be couched as a statement about the red block (its subject) rather than
appearing in the passive mood as a statement about the green block. Mood is not a feature

. that can be decided in isolation from the context of what else is being said and the intentions
behind it--it can require reasoning. For example since the option to use either active or
passive is not available with every verb or set of adjuncts, this choice can influence the
other, more abstract choices that feed it.

Native speakers have knowledge about the uses to which phrases can be put that is
beyond the ken of simple generators that do not incorporate a grammar designed to support
the kind of linguistic reasoning that generation calls for. Consider wanting to use the
Support assertion as an attribute of the green block, for example as a way to distinguish it
from the other green blocks: "...the green block that's supported by the big red one".
How does the generator represent to itself in a general way the fact that the relative clause is
available as one of the realizations of the assertion? What gives the planner that feeds the
generator assurance that such a usage is possible in this case? Can the generator use its
representation of the syntactic structure of the declarative form of the assertion in producing
the relative clause, or should it have an independent linguistic origin?

These are not simple questions to answer. Furthermore it is not even possible to begin
without adopting an anchoring framework for the generation process as a whole by which

" to coordinate the individual answers. Yet the "startup" costs on any such framework are
high: the way information and decision making flow through the process makes it very
different in intrinsic character from the other language processes one might look to for
direction. When coupled with the further difficulty of finding a strong underlying program

Uto work with, the net effect of these problems has been that until recently very little work
on generation has in fact been done. Few people worked on generation during the last
decade (or stayed with the problem for more than a year or two) either because they found
the task too simple to be interesting (when working forwards from the sorts of texts that
reasoning programs needed at that time), or because they found it too difficult to make any
headway (when working backwards from the complexities of actual human texts).

4 One of the earliest efforts in generation, that of Bob Simmons and Jonathan Slocum (1972), saw the
S'.problem in just those terms. The input to their system was a semantic network structured by case-frame

relationships such as "theme", "locus" or "mood"; its output was single, simple sentences like "What did
the merry widow dance?". As pointed out by Bonnie Webber (1971), the surface form of the output was
latient in the already linguistic vocaoulary that they used in their input representation; all that remained was
to read the structure out and make the necessary morphological adjustments.

For this to be a reasonable general approach, the underlying program must use these same case-based
networks in the inteuial repre.sentation that it uses for reasoning, in effect "thinking in English". If that is
not the case (and it rarclv is). some kind of planning and selection facility must mediate between the
internal representalio and the input language to the generator. Neil Goldman (1974) did just this as he
generated paraphrascs of expressions in conceptual dependency representation: he used a set of discrimination
nets to chose lexical heads and subcategorization frames, which he then expressed in Simmons and
Slocum's notation ftr rc,lizittion by their generator.
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Today there are candidate underlying programs, available from other research efforts.

that are sophisticated enough in their reasoning to need sophisticated generators to voice
their thoughts. As a result, the startup costs of good research on generation are more easily -,

paid and more people are entering and staying with the area. This same increase in
program sophistication is making other researchers in Al more appreciative of the need for
careful generation because they see the difference that a slight change in wording can make
and realize that perspective and context need to be considered in what their program says--

they are looking for new approaches to generation to replace their template-based standbys.
Before looking at the new work however, it is important to have a clear understanding of'
how the old technique works.

5. THE DIRECT REPLACEMENT TECHNIQUE

"Direct replacement" is the name that generation researchers have given to the informal,
"natural" technique for text generation from internal representations that non-generation
researchers tend to use (see Mann et at., 1982). It is a more informative term for what is
informally known as "using templates", and has been independently rediscovered countless
times. One of its major benefits, often overriding its deficiencies in grammar and text
construction, is that it allows the programmer to use expressions directly from the internal
representation of his program, thereby eliminating any need for a text planner or explicit
representations of goals. Good descriptions of how the technique has been used in specific
projects can be found in Swartout (1981), Chester (1976), or Forbus and Stevens (1981). '

In examining any approach to realization--the part of generation most concerned with
linguistic matters--there are three things to be considered: (1) What is the knowledge of
natural language grammar: how is it represented; how is it brought into play during the
processing? (2) What is the control structure: what determines what action these systems
will take next; what possibilities for variation are there, and how are they embodied? (3)
How does the approach organize the knowledge of how to realize specific objects
(relations, attributes, etc.) from the underlying program: how is it embodied; how is it
incorporated into the control structure?

As an example, we can look at the what was involved in the production of the sentence
below, which is extracted from the standard dialog of Terry Winograd's SHRDLU program
(1972). Because of its use of pronouns, SHRDLU was a bit more fluent than most direct
replacement generators are programmed to be, but it is otherwise quite typical.

(Said in answer to the question "How did you do it?", which referred to an
earlier directive to "stack up both of the red blocks and either a green cube or a
pyramid'.)
SHRDLU: "By putting a large red block on the table; then letting go of it; then

putting a large green cube on it; then letting go of that cube, then
putting the red cube on that cide; then letting go of that cube."

SHRDLU's generation knowledge, like the rest of its linguistic knowledge, was
represented procedurally. Specialist programs or code fragments would be associated with
terms in the internal representation by attributes indicating what they were to be used for.
Special "data driven" interpreters would dynamically combine these fragments into full
programs as the situation warranted. SHtRDLU's generation program for the event type
#puton, for example, is this fragment of Lisp code:

(append (vbfix 'put) objl 'on obj2)

While inelegant by today's standards because it calls Lisp functions directly
("append") rather than employing an abstract schema, this specialist program is never the
less illustrative of the genre. The underlying message for the example text is the list below
of events extracted from SltJkINA's model of its history. This list is tken directly from the

- II
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10
model; the individual assertions are in the very same representation that SHRDLU used for
its internal reasoning.

(#puton :56 :table)

(#ungrasp :B6)

(#puton :B3 :B6)

(#ungrasp :B3)

(#puton :B1 :B3)

(#ungrasp :Bl)

To produce the text, each of the the assertions in the message, e.g. (#puton :B6

table), is interpreted as though it was an instruction in a special kind of program. The
term #puton becomes, in effect, a function call whose arguments are the objects : B6 and
:table. The specialist generation program just shown is #puton's definition, and the
arguments will be bound to the program's formal parameters obj 1 and obj2. The Lisp
function vbf ix ("verb fix") is one of SHRDLU's internal routines. It is responsible for
specializing the form of the verb to the grammatical context. The model of context that
SHRDLU used was about as simple as one could imagine: when answering a "how" or a
"when" question use the ending "+ing"; when answering "why" questions use the
infinitive.

The generation process consists simply of the interpreter scaning the message from
beginning to end as a stream, replacing expressions and subexpressions directly with the
values returned by their generation functions. No intermediate representations mediate
between the internal expressions and the words--hence the name "direct replacement". For
example, when the generation process has finished evaluating the second element of the
first expression in the list, it will look like this:

1 (append '(putting)

'(a large red block)

'on <== next expression to evaluate

:table )

Literals like "on" are already words and are unchanged by the process; the sentence
initial preposition "by" is introduced directly in the same way. Terms from the model like
:B6, and in a moment : table, are replaced by lists of words assembled by the specialized
generation program the programmer has associated with them. Embedded function calls
like the one to vbf ix are executed as they are reached, and are expected to return words. A
generation interpreter like this is easy to write: with a good programming environment a
competent Lisp or Prolog programmer can turn one out in an afternoon.

Returning now to the original questions: knowledge of grammar, control structure, and
the realization of specific object types, we have seen that with direct replacement there is no
explicit model of natural language grammar. Grammatical relations are manifested in the

. output text ad hoc by specialist routines that are incorporated into the replacement stream
explicitly whenever they are needed. This piecemeal, directly programmed approach to
grammar is effective enough in the construction of simple sentences, but breaks down as
the complexity of the grammatical relations increases. The difficulties of embodying the
grammatical situation in a programs state without the mediation of an explicit linguistic
representation e',cntually require a programming tour de force to overcome and lead to a
design that is unwieldy and av\kward to extend. The pragmatic limit in grammatical
complexity is using a suhbordinatcd clause: the effort required to adapt a declarative sentence
to be a relative clause, or to for"n flrrY wants to go home" from a composite internal
cxprcsion like w ,it k ,i: r y, -r . Hi II r y)) is too much for generators without
proper grammars
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Control is vested directly in the conceptual representation. As just illustrated,
messages are built from expressions in the underlying program's internal representation
and are treated as executable generation programs. The natural structure of the expressions
defines the order in which their elements will be evaluated and the phrases of the text will
appear: a list will be enumerated element by element; a structured object (e.g. a frame or a
database record) might be read out field by field.

This control technique is convenient and immediate. There are no wasted actions, and
no need to define a control structure somewhere else in the generator's design. Its ,.
drawback is that the organization of the output text is in lock-step with that of the message.
This enforced isomorphism is an inescapable consequence of the design. It is not
troublesome if the underlying program's internal representation has been designed with
natural language in mind (see for example Swartout, 1981). However it is problematic in
two cases: (1) where the same internal expression can be viewed from several different
perspectives depending on the situation, with a different organization of the text appropriate
in each case; and (2) when it would be best stylistically to combine several independent
expressions into one cohesive linguistic unit.

The knowledge of how to choose words to realize individual objects or relations is
vested in the set of specialist programs, usually one for each expression type. SHRDLU's
generation specialist for blocks is typical. It was organized as a function from an individual
block (say :B6) to a list of words, and used a very simple algorithm that is the model for
many other systems: start with the common noun that names the kind of the object
("block"); add enough of the object's attributes to distinguish it from all the other such
objects in the scene. Attributes that can be realized as a single adjective like size or color
are placed before the common noun; relations like support are placed afterwards; the
determiner "the" is placed at the front of the word list to indicate that the phrase refers to an
individual object. The list returned as the realization of :B6 would be roughly as shown
below.

'the (#size :B6 (200 200 600)) (#color :B6 #red) 'block ) 4

In fact SHRDLU's actual list was more ad hoc, since its generation procedure had no
way to distinguish an occurance of an assertion like (#color :B6 #red) that was
intended as a description of : B6 (and consequently should be realized as just an adjective)
from one intended as an independent statement (and realized as a clause). This is an
endemic problem in direct replacement systems, and stems from the central aspect of their
design, namely that realization goes dirctly from the conceptual representation to words
without employing any intermediary structure. If one added to the block specialist's output
list an annotation giving the perspective under which the two assertions were to be viewed,
then that annotation could serve as the basis for distinguishing the adjective realization from
the clause, and most of the problem would be taken care of. Annotating an expression
inorder to describe to the generator its intended use provides a context for its realization.
Without a distinguishing context any generator will be forced to always realize a given
object in the same way each time (barring deliberately random variations).

The relation that prompts the mention an object in the first place, for example the
#puton event with its reference to the objects :B6 and :table, also introduces a context
that can be relevant in deciding the object's realization, one that the generation process
should not overlook. A subtle deficit of typical implementations of direct replacement is
that they bar any possibility of representing this context because of the timing of when they
realize a relation compared to when they realize its arguments: A practically automatic
design choice in building any special purpose evaluation function is to follow the protocol
used by Lisp and other main-stream functional programming languages, "applicative
order". In this protocol, the arguments to a relation (function call) are evaluated before the
relation is. In the present case this can mean that, e.g., the final forms of the noun phrases
are choosen befr the linguistic form of the verb can be known. This is one of the reasons
why all but the simplest grammatical forms can be difficult for a direct replacement
generator to produce, since the generator is committed to the wording for embedded
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elements before it can know what grammatical constraints the embedding relation is going
to impose. We will return to this issue later in the section on description-directed
generation, where an alternative, "normal order", evaluation protocol makes this sort of
context available in a natural way. -

5. MODERN APPROACHES TO GENERATION
VI. Natural language generation is becoming an increasingly popular research topic: There

have been a significant number of Ph.D. theses presenting artifical intelligence approaches
to generation in recent years: McDonald 1980; Appelt 1981; McKeown 1982; Tait 1982;

- Conklin 1983; Hoenkamp 1984; Danlos 1984; Kukich 1985; Jacobs 1985, as well as some
closely related theses on problems involving text planning: Clancy 1980; Swartout 1981;
Woolf 1984; McCoy 1985. 5 In addition, three international workshops on generation have
been held in since 1983, with the 1986 workshop in Nijmegen expected to have more than
60 participants, and there have been full sessions on generation at recent national and
international artificial intelligence conferences (two sessions at UCAI-85).

Generation is emerging as a recognized research area. Its practitioners are young,
vigourously engaged with their work, and strongly mutually identifying. The intellectual
climate within the gener;ion community is not unlike that of the language comprehension
community of about 1914, with a roughly similar number of players and a similar feeling in

k the air that significant things are happening. Unfortunately, as with comprehension in "'
1974, it is presently very hard to sort the different research efforts on generation into
coherent schools of thought. This is in part because even now there are not so many
researchers following any given approach that it can be properly called a "school" (as for
example the use of ATNs versus lexically activated deamons typify different schools in
language comprehension research). A confounding problem is that individual generation
systems are unusually hard to compare, again because generation starts with an empiricallyU unknown representation: the thoughts, conceptualizations, and intentions of the human
mind. Different projects inevitably work from different representations and focus on
different technical problems. This lack of a common starting point has made it hard for
researchers to build on each other's work, or even to replicate each other's examples.
Nevertheless the commonalities are there, and can be expected to be more salient in the
future.

One common point is an overriding concern with two matters: the diversity of forms in
natural languages, and how the generation process should be controlled. Diversity of form
is a matter that is easily overlooked in studies of language comprehension. There, two
ostensibly synonymous alternative forms will end up converted to the same "cannonical
representation" because the differences between them will play no role in the reasoning of
the underlying program. To the generation researcher, however, it is a nagging problem.
Whenever the grammar defines an alternative, as for example between active and passive
versions of the same clause, between the quantifiers "some" and "any", between
expressing references to natural kinds as bare plurals ("whales") versus false definates
("the whale") versus prototypes ("a whale"), and on and on, the realization procedure must
make a choice. Omitting the alternatives is both dull and inappropriate, since no surface
alternatives are truely snomymous in all contexts (i.e. the choice without consequences for
what is communicated), and crutial distinctions can be lost if some alternatives are
arbitrarily not made available. The generation researcher's problem is to learn when and in

-' The previous spitc tit thliscs on generation was a full six years earlier in 1974, with Clippinger, Davey,
,rod Goldman. Thicr rcscmich built directly on the first rush of significant results in natural language
UMIIs.mAndifg d ;cI fCAs before, specifically the work of Winograd (Clippinger and Davey) and Schank
(Goldman).
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what way(s) differences are consequential and how they are governed by situation and the
speaker's intent.

Approaches to the question of choice are inexorably tied up with approaches to control.
Which of two alternatives the generator picks has obvious consequences for what actions it
takes next, and the way in which linguistic knowledge is represented has consequences for
how alternatives are defined and when they are considered. Every surface text, however
small, is the result of dozens of choices, and it is not reasonable, at least not from an
engineering standpoint, to combine these choices into massive single discriminations. This
leads to the question of how to order choices and how to represent the intermediate results.
What awareness does the generator have of the dependencies between choices? How are
these dependencies represented and made to influence the control algorithms?

These will be the themes for the rest of this paper as we look at the different
approaches that are now being taken to the representation of grammar and the organization
of the realization process. The earlier stages of generation, the identification of goals and
the planning of what should be said, will not be discussed here, partly because there is not
nearly as much commonality in the approaches or even the themes of approaches in text
planning as there is in realization, and more because it is difficult to discuss goals or
planning technique separately from the underlying program being worked with; a proper
treatment thus would take the discussion too far afield.

6. MIXING CONTROL WITH THE STATEMENT OF THE GRAMMAR

The first question to be asked when looking closely at a particular approach to
grammar in generation is the relationship of the grammar to the rest of the realization *

process. Logically it would seem that dealing with the information content of the message
should take priority over accomodating the stipulated regularities of a language's grammar. L7#
This is the stance taken in the direct replacement approach, where realization routines call _
grammatical functions when they need them (recall vbf ix), but of course that approach has
severe limitations in its capacity for linguistic expression, making it suspect. (The
grammatical complexity of even standard newspaper prose is well beyond what can be
programmed without an explicit grammar.).

By the same token, many of the details that make a text grammatical arguably do not
and should not be expected to have any counterparts in the thoughts of any underlying
program and thus must be independently supplied. Person and number agreement of
subject and verb are an obvious case in English, as are relative pronouns (e.g. "who" vs.
"whom"), the infinitive marker "to", the lack tense on most subordinated verbs, and so on.
Such details must come from somewhere other than the message, and some aspect of the
realization process must supply the representations and control resources to insure that they
are used correctly. One plausible desiderata on the design of grammars for generation is
thus that they coordinate the expression of the purely linguistic relations of the language
while minimizing their intrusion into the process of realizing the information and rhetorical
goals given by the message.

6.1 Augmented transition networks in generation
Almost immediately after Woods' defined the augmented transition network (ATN)

formalism for language parsing, it was applied to generation by Jonathan Slocum and Bob
Simmons (1972). The ATN was a natural approach to take to the representation of a
grammar at that time, and, for the (admittedly quite simple) messages that Simmons and
Slocum were working with, satisfied the condition of supporting the production of
linguistic relations without adding any complications to the realization process.

ATNs for generation (see also Shapiro, 1982) have essentially the same organization
as their parsing counterparts, with the obvious exception that where a parser will scan a
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word from the input text as an action on an arc, these generators will produce one. Their
network organization mimics the recursive and sequential phrasal consitutent patterns of the
language: there is a network for clauses, one for noun phrases, etc.; the clause network
first looks for conditions in the message affecting whether there is an initial complement (as
in questions or relatives), then determines and produces the subject, the verb and its
auxiliaries, the verbal complements, and so on in left to right surface order. Grammatical
function words like "to" or "the" are produced by arcs that are taken automatically once the
grammatical character of the phrase has been determined. Subordinate clausal morphology,
the bane of direct replacement designs, is supplied by optional arcs under the control of
registers that are set by push operations in the dominating network where the grammatical
function of the clause is defined. These grammatical activities take place transparently as a
by-product of the motion through the networks induced by the examination of the message.
They are easy to state in the notation of the grammar since they are just another part of the
ATN's procedural representation of the possible surface structures that sentences in the
language can have: a different structure for each coherent pathway through the networks.

The possibilities for control in an ATN are exhaustively defined by these pathways.
Determination of which alternative path is taken is done by tests on the arcs, which apply
predicates to the message structure. Depending on the state of the message (as defined by
the tests) a particular sequence of arcs is traversed, and thus a particular text produced with
the word choice and ordering given by the associated arc actions. This control technique is
the diametric opposite of the more common "message as program" design (e.g. direct

C" replacement), where initiative rests in the structure of the message rather than of the
grammar. Its benefit is to simplify the statement of grammatical constraints (stated tacitly
by the restrictions on possible next states imposed by the network structure), since they fall
out directly from the extensional description of surface forms that the ATN supplies.

The ATN control protocol has two deficits: it wastes tests; and its tests must be very
closely tied to the conceptual represention of the particular underlying program it is
working with. The waste is simply that most tests will turn out to be false: only one of the
arcs coming out of any node is going to be the correct one to take. With a reasonably high
branching factor (reflecting the large number of alternative surface sequences that a
language like English provides), it is unlikely that the correct arc will happen to always
have been ordered early in the arc set. The tying of predicate definitions to the particulars
of the underlying program's conceptualizations is a consequence of the ATN design having
placed responsibility for determining the surface form of the text (i.e. the network path)
within the grammar, rather than as a separate part of the realization component. To move
an ATN-based generator to a different underlying program than the one for which it was
originally developed, one with a different representional formalism or even just a different
world view, will force changes in most all of the predicate definitions. (To this author's
knowledge no ATN generator has ever been moved between programs; it is easy to see
why.)

One final point about the ATN as a generation formalism is the unusual fact, for an
ATN, that they do not ever backup (Stuart Shapiro, pers. comm. 1979). They make no
use of the nondeterminism that the ATN formalism provides for, i.e. they have no need for
the indeterminancy of categorization that parsers need when scanning the words of a text
and predicting, top down, what structure it has. This should not be unexpected--generation
is a matter of planning rather than analysis; its information flow is the addition of
constraints and the progressive refinement of a completely identified intention and content,
not the tentative increase in the specificity of identification that characterizes parsing.

1-" 6.2 Systemic grammars

The ATN approach to generation places control of the generation process squarely
Within its grammar. This drastically simplifies the programming effort required to define
the procedures for constructing grammatically complex linguistic forms over what a direct
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replacement approach would have required, and makes it practical to use them in generation
systems. However when viewed as planners, ATN generation systems suffer from too
tight a coupling between perception and action: no sooner is the conceptual source of, e.g.,
the subject noun phrase found in the message than it is passed through the NP network of
the grammar and realized as a stream of words. This hinders efforts to plan in progressive
stages, determining and propagating sets of constraints or partial descriptions of what is to
be generated, which is a more controllable technique than working directly in terms of
surface forms that are constructed in detail as soon as they are selected.

By contrast, the linguistic school known as "systemic grammar" views surface forms
as the consequences of selecting a set of abstract, functional features. The interpolation of
an intermediate, abstract level of representation between the message and the output text
allows the specification of the text to accumulate gradually, giving constraints an
opportunity to propagate and influence later decisions, as is customary in modem planning
designs. As this is not general planning, the constraints are quite specific: they are features
that describe the possible functions that texts can serve, an apt theoretical vocabulary when
decisions are based on how well alternatives fit intentional and communicative goals.

It is this concern for directly representing the choices a language provides and their
functional consequences that has given systemic grammar its special significance in
generation research. It is the only well known linguistic formalism with this special focus,
the only one that makes the specification of possible choices the core of its notation. The
founder of the systemic tradition, Michael Halliday, believes that language function has
been neglected in linguistic theory in favor of the classification of language structures.
While structure (e.g. the patterns of word and phrasal categories, clause and adjunct types
etc.) is more accessible to study, explanatory theories of the structure that a language can
have are arguably of little consequence without companion theories of the functions the
structures can serve. Without theories that attempt to capture the criteria that govern when
particular structures are used--the situational and intentional factors that contribute to the
decisions made during generation--one cannot be sure that the modularity proposed in
structural theories is in fact well founded.

I11 place figure two about here I1]
As in an ATN, grammaticality of the text is insured by forcing the generation process

to stay within predefined paths in the systemic network; however here the paths do not
define surface phrasal sequences but dependencies between abstract text characteristics.
Individual features are selected independently, subject only to the dependencies defined by
"systems" that group the features into networks of disjoint classes (see figure). Choice
systems are given either as conjuncts (leading curled brace): where one choice must be
made from each of the systems named on the right, or as disjuncts (leading square brace):
where only one of the alternative features listed may be selected. The selection of a feature
opens the system that it names (n.b. this feature will be the label on the horizontal line
projecting leftwards from the system), which means that a choice from that system must
now be made. Specific feature choices early, leftward, in the network, force later choices
to be made among the features systems to the right that are dependent on them (as indicated
by the connecting lines), while making other sets of choices irrelevant.

Two important generation systems have been based on systemic grammar, Anthony
Davey's PROTEUS (1974/1978), and William Mann and Christian Mattheissen's NIGEL --

(1982, 1985). NIGEL is the largest systemic grammar in the world and very likely one of
the largest machine grammars of any sort. Besides the quite important contribution simply
of articulating a systemic grammar so thoroughly, Mann and Mattheiessen have developed
a technique for formalizing the usage criteria that govern the choices the grammar defines,
which they term "inquiry semantics" (Mann, 1983). For each choice system in the
grammar a set of criterial predicates (tests) known as a "chooser" is defined. These tests
are given as functions from the internal state of the planner and underlying program to one
of the features in the system the chooser is associated with. The generation process
consists of starting at the leftmost entry system of the nextwork and evaluating sucessive

.
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choosers to determine the path through the network (i.e. the feature set) that best captures

,-. the speaker's intentions. Davey's PROTEUS employed a very similar control protocol.

The systems and dependencies of the grammar are arranged into connected networks
whose modularity matches the large-scale structural options of the language. There is a
network for clauses, one for noun phrases, adjective phrases, and adverbials--all of the
major phrasal categories of English. (In Davey's published grammar, the clause network
includes alternatives for verb structure and prepositional complements, and incorporates P
the differences between major, subordinate, and relative clauses). Sentences are
constructed recursively from the large structural elements downward: A sweep through the
choice systems of the clause level network selects a specific subset of the concrete
functional features given at the network's rightmost edge. These features collectively
specify the structural form of the clause, and impose functional constraints on the
conceptual elements it embeds. The "realization" of this feature set (done by an
independent module) yields a sequence of grammatically and functionally marked words
and embedded elements not unlike the lists found in the intermediate stages of a direct
replacement generator. The functional analysis then applies recursively to the now
constrained elements, making the decisions required by the connectivity of the systems

r: inorder to functionally specify the form of the noun phrases, the subordiate clauses, and so
on that the elements will become. The process of specifying functions and realizing them as
form continues until all the conceptual elements referred to in the message have been
realized as words, whereupon the accumulated word string is printed out. Careful attention
to how much functionality is encoded at each sucessive system of alternative features in the
network allows dependencies to propagate consistently (n.b. the presence of disjunctive
systems means that several loci of decision-making will be operating simultaniously in a
network). The result is that all decisions can be made indelibly, i.e. without ever needing
to backup to an earlier system to remake the decision, and the generation process as a
whole can operate in time proportional to the depth of its networks.

7. STATING THE CONSTRAINTS OF THE GRAMMAR INDEPENDENTLY
In their overall design, the ATN and systemic grammar approaches to generation differ

only in the kind of information they encode in their networks: ATNs specify choices
between alternative surface structure patterns; systemic grammars specify choices betweenp alternative sets of abstract functional features. Both use their networks as their control
structure, making the definition of the grammar and the definition of the actions the
generator can take inseparable. Both presume that it is simpler to state the realization rules
for underlying program objects by having tests in the grammar look back to the message
(which is most likely just to be the unsorted state of the underlying program at the time the
generator is called), than to organize the rules around the message objects and have them
project forward to linguistic structures. Consequently both designs impose on their
underlying programs the specific world view--set of conceptualizations--that is tacit in their
grammars. 6 This is not necessarily bad: the hypothesis that one's language shapes one's
thought has a long and serious history in studies of human linguistics (in an early form as

-"' the Shapir-Whorf hypothesis). It does however carry the pragmatic implication that
compatibility at the conceptual level must be carefully considered when either approach to

. generation is used in a man-machine interface.

6 Of course the caual dependency may go the other way: the conceptual model of the underlying program
may have been %orked out first and the tests of the grammar then made to conform to it; the rigidity of the
final combination %iIl be the same. Given that today the linguist is usually considerably ahead of the
domain specialist in the delicacy of the conceptual discriminations that he is interested in studying, the
usual dependencies Aill be from grammar to program.
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World view and grammatical model are decoupled in other modem designs, designs
which, as it happens, are also message driven rather than controlled from their grammars.
We will look first at functional unification grammars, where a general purpose, "weak
method" for control has been adopted, and then at the description-directed approach, where
control is vested in the message and especially also in a model of the text's syntactic surface
structure acting as an intermediate representation. In both cases a key question is how the
design insures that all of the grammatical dependencies between decisions about form will
be respected when this is no longer automatically guarenteed by the control structure.

7.1 Functional unification grammars

General principles of parsimony suggest that a grammatical representation that can be
employed both for generation and understanding should be preferred to one that can not.
The grammars of theoretical linguists are not specific to either direction, but by the same
token they are also not grammars for processing: they capture only the abstract capacities
and interior relations of a language, and not its relationships to the uses that a speaker might
put it to or how it would enter causally into the psychological processes by which "
generation, comprehension, or learning are accomplished in specific situations. The
models of language use that have been developed are almost without exception strongly

..-.. directional: one cannot take a typical grammar for comprehension and "reverse" it to supply
a grammar for generation. Functional unification grammar (FUG), a representation
developed by Martin Kay (1979, 1984), is specifically put forward as a reversible model,
where the rules of the grammar may be employed in either direction without changing the
way that they are represented. The best known syntactic-level FUGs are the TELEGRAM
grammar developed by Doug Appelt (1985) for his generator, and the realization
component developed by Steve Bossie (1981) for use with the text planning system of
Kathy McKeown (1985).

The figure shows a fragment of a FUG taken from Appelt's grammar (1985, pg.108).
It defines the possible constituent roles for the components of noun phrases. The enclosing
brackets define systems of features and values. Square brackets define conjunctive sets: a
noun phrase must specify a value for each of their features. Curly brackets define
disjunctive sets: the noun phrase must meet any one of the listed feature-values.

[[[ insert Figure Three about here I]]
The structure of an FUG--sets of equations that define feature/value pairs--suggests no

immediate procedural interpretation beyond the "outer versus inner" segmentation of the
hierarchical groupings; this lack of procedure in the representation's interpretation is a
requirement of any potentially bi-directional formalism. The computational role of the
FUG is as a set of constraints that any independently defined text construction procedure
must meet. This makes it not a source of control but a filter on the control options of some
other source or sources: in this instance the weak method known as nondeterministic
unification. We will look at Appelt's use of a FUG as an example.

The focus of Appelt's work on generation is on the planning process, and relatively
few details of how his planner initiates and regulates the realization process are available.
However it seems fair to characterize those aspects of his design as message-directed, in
the sense that it is objects and relations selected by the planner that initate realization, under
the direction of concept-specific specialist programs as in direct replacement designs. 7 The
specialists invoked by the text planner begin the proess by building skeletal descriptions of

7 Appelt's KAMP planner feeds the linguistic levels of processing incrementally, specifying additional
conceptual information for realization, as well as where it should appear, whenever the decision to include
that information is made during the planning process. Given this, it makes no sense to say that there is
ever an explicit "message" in the sense of a structure planned as a unit and then realized without further
intervention by the planner.
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the constituents that the text is to include, for example that there is to be a clause with a
certain main verb and two NPs with certain lexical heads. (The referents of these phrases
will be indicated by pointers back into the underlying program model that can be referred to
as needed.) The FUG is then used to extend such skeletal descriptions with the additional
linguistic features that are required for the text to be grammatical.

The extension of the specialists' descriptions is done by merging them with the
grammar, constituent by constituent. This works because the grammar is effectively a
maximal description of the possible constituents, functional relationships, and constraints
of the language. It defines the linguistic resources that the specialists can draw on, and
specifies grammatical details that no conceptual-level planner would be concerned about.
The merger of the initial, partial description of what the specialists want said with the
grammar's description of what the language permits is so organized that only extensions
consistent with the grammar will occur. The grammar supplies the constraints that
proposed functional descriptions must meet, and, through its disjunctive feature sets,
supplies the choice sets from which many of the extensions will come. The merger is
governed by the semantics of the unification operator: features from the grammar may be
added if they contradict none that are already present or if they subsume them.

The specialist's partial descriptions will prompt the addition of the features from the
grammar that are tied to those in the description by functional links (see Kay 1984 for
details). This instantiation of previously unspecified features then has a ripple effect
throughout the whole system: Other features that are dependent on a just instantiated
feature force further unifications cyclically until a grammatically complete description has
been formed. During the process feature values in the description will force selections
among the disjunctive specifications in the grammar. For example specifying a verb will
force the grammatical subcategorization feature to take a compatible value, which in turn
will impose constraints on the selections available to the noun phrases that the
subcategorization pattern governs. The completed description will amount to a rooted tree
of feature specifications as defined by the "pat" (pattern) feature that dictates the sequential
order of constituents at each level. The actual production of the text is performed by
scanning this tree and reading out the words in the lexical features of each constituent.

From the point of view of grammar development, FUGs are a satisfying treatment
because they allow one to state the facts of the language compactly, i.e. interactions
between statements need not be explicitly spelled out in the notation since they will come

Uabout automatically through the action of unification. However, from a processing point of
view, this convenience comes with a price, since one must be willing to live with the tacit
control structure that does the "behind the scenes" merging of descriptions and grammar.
In the present implementations, this is nondeterministic unification. If efficiency of
execution is not relevant then this of course is no problem, however there are indications
(Graeme Richie, 1986) that the computational properties of FUGs make general operations
over them NP-complete. Since language is a very specific phenomena, one would hope
that equally specific, more computationally efficient processing schemes would suffice,
rather than having to rely on such a general, and therefore powerful, mechanism. The next
approach to be discussed, description-directed generation was designed with such
efficiency concerns in mind.

Before leaving this section, it is important to point out that recent work by Tony Patten
(1985) uses a systemic grammar in very much the same way that FUGs are used. In
Patten's approach, operations at a semantic level (of the same kind as performed elsewhere
by planning level specialists) specify a set of output features within the systemic grammar,
i.e. features at the rightmost edge of the network. These are the equivalent of the initial

- flunctional description that drives a FUG. A backwards and then forwards chaining sweep
through the syvstcm net\ oik determines what additional linguistic features must be added to
the specification for a grammatical text to result, just as unification does with the FUG.
This points out that systemic grammars can be viewed just as reference constraint sets and
need not dictate the total control flow as is usually done.

...........................-. .....
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8. MULTI-LEVEL, DESCRIPTION DIRECTED GENERATION
The principal deficit of the direct replacement approach is its difficulties with grammar,

i.e. the awkwardness of maintaining an adequate representation of the grammatical context,
or of carrying out grammatically mediated text-level actions such as producing the correct
syntactic form for an embedded clause. In other respects, however, the message-directed
control flow that drives direct replacement has a great deal to recommend it. Compared
with grammar-directed control schemes, message-directed control is more efficient, since
every action will contribute to the eventual production of the text. Message-directed control
also gives a planner a very clear semantic basis for its communication to the realization
component, since the message can be viewed simply as a set of instructions to accomplish
specific goals. The question then becomes: is there a way of elaborating the basic,
message-directed framework so as to overcome the deficits that plague direct replacement
approaches while still keeping the computational properties that have made it attractive?

A number of generation researchers have independently choosen the same solution: to
interpose a level of explicitly linguistic representation between the message and the words
of the text (McDonald, 1975, 1984; Kempen and Hoenkamp, 1982; Jacobs, 1985;
Swartout, 1984). They believe that employing a syntactic description of the text under
construction is the most effective means of introducing grammatical information and
constraints into the realization process, in particular, that it is a better locus for grammatical
processing than a separately stated, active grammar.

The specifics of their individual treatments differ, but a common thread is clearly
identifiable: Realization is organized as choices made by specialists, where the form of the
choice--the output of the specialist--is a linguistic representation of what is to be said, i.e. a
structural annotation of the syntactic relations that govern the words to be said (and
embedded conceptual elements), rather than just a list of words. These representations are
phrase structures of one or another sort--hierarchies of nodes and constituents--of
essentially the same kind that a theoretical linguist would use. They employ functional
terms like "subject" and "focus", and are most aptly characterized as a kind of "surface
structure" in the generative linguist's sense, e.g. they undergo no derivation, and are a
proper and complete description of the syntactic properties of the text that is produced.

It will be convenient to restrict the present discussion to only one examplar of this
approach; taking advantage of an author's prerogative, I will describe my own (c.f.
McDonald, 1984; McDonald & Pustejovsky, 1985b; McDonald, Pustejovsky & Vaughan,
1986). As it is the historical outgrowth of a direct replacement system, 8 it will be useful to
organize the discussion in terms of how it extends that approach and addresses its deficits.
This will be folded into the standard description of how it deals with the three general
concerns one should have in examining a generation system: how it organizes its
knowledge of grammar; what its control structure is; and what its approach to realization is.

Referring to our approach as "multi-level, description-directed generation" emphasizes
specific features of its architecture 4nd control protocols that we consider important; it is,
however, too large a phrase to use conveniently. The name of the computer program that
implements the design, MUMBLE (McDonald, 1977,1983), will serve as a compact,
agentive reference. Characterizing MUMBLE as multi-level draws attention to the fact that it
carries out operations over three explicitly represented levels of representation
simultaneously: message, surface structure, and word stream. Description-directed is the
name we have given to its control protocol, which is a specialization of the common
programming technique known as data-directed control. Under this protocol, the data in

8 This author's interest in natural language generation began in 1971 while he was working on extentions
to the grammar and parser in Winograd's SHRDLU program. As already discussed, SHRDLU employed a w
classic direct replacement technique for its generation. It was observations of the shortcomings of that
design that were the original motivation for the research. The influences of systemic grammar and data-
directed programming style also stern from that time.

. . . . . . . .. .. ... . . . . . .. " -
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the representations at the three levels is interpreted directly as instructions to the virtual
machine that constitutes the generator proper. Since each of these representational
structures is also a valid description of the text at its own level of abstraction and theoretical
vocabulary, this characterization of the protocol emphasizes the fact that the particulars of
how the person developing the messages or syntactic structures chooses to design them has
immediate consequences for the generator's performance (McDonald, 1984). The feedback
that this gives a developer has proven to be invaluable in refining the notations and their
computational interpretations in all parts of the system.

MUMBLE's virtual machine is the embodyment of our computational theory of
generation. It consists of three interleaved processes that manage and carry out the
transitions between the representational layers. (1) Phrase stcture execution interprets the
surface structure, maintaining an environment that defines the grammatical constraints
active at any moment, and producing the word stream as its incremental output. (2)
Attachment interprets the message, transferring its component units to positions within the
surface structure according to the functional relationships between them and their role in the
message. (3) Realization takes the individual elements of the message into surface structure
phrases by selecting from linguistically motivated classes of parameterized alternative
forms. A minor fourth process, operating over the word stream, morphologically
specalizes individual words to suit their syntactic and orthographic contexts (e.g. the
article"a" going to "an" before vowels); later versions of MUMBLE that produce speech
should be much more active at this level.

Thus, as seen by the developer of a text planner that would pass messages to MUMBLE
for it to produce texts from, the virtual machine appears as a very high level, task-specific
language, with its own operators and intermediate representations. To a lesser extent this is
true also for the linguist writing generation-oriented grammars for MUMBLE to execute,
since the virtual machine includes no presumptions as to what specific syntactic categories,
functional relations, or syntactic constructions the natural language includes. Instead it
supplies a notation for defining them in terms of primitive notions including the dominates
and proceeds relations of phrase structure, bound thematic relations, configural regularities
such as "head" or "complement" from X-bar theory, and the tree combination rules of Tree
Adjoining Grammars (Kroch & Joshi, 1985).

As a message-directed design, MUMBLE is best discussed by reference to a concrete
example message, situation, and resulting output text. To miminize the distraction that

1. introducing an actual underlying program from one of our generation projects would entail,
a relatively obvious excerpt from a message will have to suffice. Figure Four shows a
generated output paragraph describing a legal case from the UMass Counselor Project
(McDonald & Pustejovsky 1986). The structure below it is the message responsible for its
second sentence, which details the events that were relevant to the court's decision. Using
this example, we will look at MUMBLE's knowledge of grammar: how it is manifest, and
how it has its effects, interleaving discussion of realization and control at convenient
places.

ol I
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"In the Telex case, Telex was sued by IBM frr -misappropriating irade secrets
about its product Merlin. One of the managers of the Merlin de:-olopment
project, Clemens, left IBM to work for Telex, where he helped to develop
Telex's competing product, the 6830. The key fact in the case was that Clemens
brought a copy of the source code with him when he switched jobs. The court
held for IBM."

(temporal-sequence
(left-to-work-for (#<role #<project-manager Merlin>>

#<Clemens>)
(named-company #<IBM>)

(named-company #<Telex>))
(helped-to-develop (named-person #<Clements>)

(#<kind product>
#<competition-by #<Telex>>
#<name "6830">) ))

FIGURE FOUR

As previously discussed, one of the concomitant features of a message-directed
approach is that items9 directly from the underlying program are part of the messages.
(These are indicated here by enclosing angle brackets, #< ... >.) Once in a message, such
items become instructions to the generator, and as such need interpretations, i.e. associated
functions from the item, and the linguistic and pragmatic environment, to the surface
specification of some text or text fragment. However, considered in terms of the space of
texts that might realize them, real program objects are large and vague as present day
programmers tend to use them: they stand in many different relationships to other objects
and to the underlying program's state, and consequently can have many different
interpretations depending on the context and the speaker's intent.

We take it to be part of the job of a text planner to choose among these relationships .

and to indicate in the message the perspective from which an object is to be viewed. The
perspective on the first occurance of Clemens, for example, is indicated to be his role as
(former) manager of the Merlin project. Adopting a specific perspective often amounts to
selecting a specific wording (often jast of the lexical head, e.g. "manager"; but also entire
conventional phrases such as "leave <employerl> to work for <employer2>"). These
examples indicate that many of the terms in a message are surface lexical relations (e.g.
"helped to develop") rather than a more abstract conceptual vocabulary; this has the
deliberate corollary that syntactic realization will usually occur after key words have been
chosen. The text planner must therefore understand a good deal about how alternative
word choices cover the semantic fields of the situation it is trying to communicate, and
what emphasis and what presupposed inferencing by the audience a given choice of
wording will convey. This appears to us to be a choice that is best made at a conceptual
level (i.e. during message construction), since it does not depend in any crutial way on the
details of the grammatical environment, the arguments of Danlos (1984) notwithstanding
(cf. McDonald et al. 1986).

Even though the key lexical choices for an item will have occuned before it has been
s) ntactically realized, these message-level lexical decisions can draw on the grammatical
context in which the text for it is going to occur. In particular, grammatical constraints le
imposed by the syntactic relations in which the text will stand will filter out grammatically

o The word "item", and at other times the word "object", is intended as a general term that denotes
representtional data structures in an underlying program without regard to the kind of real world entity that
they model. individuals, kinds, relations, constraints, attributes, states, actions, events, etc.

o-...
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inconsistent possibilities from the planner's choice set. 10 This is possible because the
'- .K realization of messages is hierarchical, following the message's compositional structure top

down, i.e. the message is interpreted much as a conventional program would be. The
surface syntactic realization of the higher, dominating conceptual elements of the message
is thus available to define and constrain the interpretations (i.e. linguistic iealizations) of the
lower, more embedded elements. This protocol for "evaluation" of arguments is known as
no rmal QrL and is in direct contrast with the previously discussed applicative order
protocol used in most direct replacement designs.

The perspective that the text planner chooses to impose on an item from the underlying
Mprogram is represented at the message-level by designating the realization! to be used

for it. Realization classes are MUMBLE's equivalent of the "specialist programs" in direct
replacement. They are linguistic entities rather than conceptual, and are developed by the
designer of the grammar using control and data structures defined in the virtual machine.
New underlying programs are interfaced to MUMBLE by developing a (possibly very

J% ,"minimal) text planner and assigning program items (or item types) to pre-defined realization
classes. A relatively self-contained example of a class, "locative-relation", developed
originally for use with Jeff Conklin's program for describing pictures of house scenes (see
Conklin, 1984) is shown below:

(define-realization-class Locative-relation
:parameters (relation argl arg2)
:choices

((Argl-is-Relation-Arg2)
"The driveway is next to the house"
clause focus(argl)

( (Arg2-has-Argl-Relation-Arg2)
"The house has a driveway in front of it"
clause focus(arg2) )

( (There-is-a-Arg l-Pelation-Arg2)
"There is a driveway next to the house"
root-clause shifts-focus-to(argl)

( (Relation-Arg2-is-Argl)
"Next to the house is a driveway"
root-clause shifts-focus-to(argl)

final-position(argl)
(with-Argl-Relation-Arg2)
"...with a driveway next to it"
prepp modifier-to(argl) ))

The choices grouped together in a realization class will all be effective in
communicating the conceptual item assigned to the class, but each will be appropriate for a
different context. This context-sensitivity is indicated in the annotation accompanying the
choice, for example "focus", which will dictate the grammatical cases and surface order

10 This filtering is automatic if the relevant parts of the text planner are implemented using the same

abstract control device &i MLMBLE uses for its own decisions, i.e. parameterized, pre-computed annotated
choice sets of the sort employed for realization classes (see text). The descriptions of the lingustic characterand potential of the choicc, that the annotation provides are the basis for filtering out incompatible choices

on grammatical grounds, just as occurs at the syntactic level in selections within a realization class.
This technique is pro% ing convenient in our own work with some simple text planners; however we

can see a point wheie the requirement that the full set of alternatives be pre-computed may be unnecessarily
hmiting or possibly pschologically unrealistic, in which case an alternative design, presumably involving
dynamic construction of the choice , will be needed and an alternative means of imposing the grammatical
constraint, will have to be found. Flor a discussion of another planning-level control paradigm that has
been used with MU1lt1. ,. see Conklin (1984) or MIcDonald & Conklin (1983).

I.
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given to the arguments, or the functional role "modifier-to", which will lead to realization
as a postnominal prepositional phrase. These annotating characteristics indicate the
contexts in which a choice can be used. They act both as passive descriptions of the choice
that are examined by other routines, and as active test predicates that sample and define the
pragmatic situation in the text planner or underlying program. Such terms are the basis of
MUMBLE's model of language use--the effects that can be achieved by using a particular No
linguistic form; as such they play the same kind of role as the "choosers" or the controlling
functional features in a systemic grammar like Mann's NIGEL.

The surface structure level, the source of grammatical constraints on realization, is
assembled top down as the consequence of the interpretation and realization of the items in
the message. In the example message (repeated below), the topmost item is a "sequence"
of two steps, each of which is a lexicalized relation over se, oral program objects on which K.
a particular perspective has been imposed.

(temporal-sequence
(left-to-work-for (#<role #<project-manager Merlin>>

#<Clemens>)

(named-company #<IBM>)
(named-company #<Telex>))

(helped-to-develop (named-person #<Clements>)

(#<kind product>
#<competition-by #<Telex>>
#<name "6830">) )

One of the goals of a multi-level approach is to distribute the text construction effort
and knowledge throughout the system so that no level is forced to do more of the work
than it has the natural capacity for. Thus for example in the interpretation of the first item
the message, temporal-sequence, MUMBLE is careful to avoid taking steps that would
exceed the intent of the planner's instruction by being overly specific linguistically: As a
message-level instruction, temporal-5equence says nothing about whether the items it
dominates should appear as two sentences or one; it says simply that they occured after
one another in time and that their realizations should indicate this. Since there is no special
emphasis marked, this can be done by having them appear in the text in the order that they ,.
have in the message. The decision about their sentential texture is postponed until a
linguistic context is available and the decision can be made on an informed basis.

This delay is achieved by having the Attachment process, which moves items from the
message to the surface structure according to their functional roles, wait to position the
second item of the sequence until the first has been realized. Only the first item will be
moved into the surface structure initially, and it will appear as the contents of the second
sentence as shown below in Figure Five. Note that a message item is not realized until it
has a position, and then not until all of the items above it and to its left have been realized
and the item has been reached by the Phrase Structure Execution process that is traversing
the surface structure tree and coordinating all of these activities. By enforcing this
discipline one is sure that all the grammatical constraints that could affect an item's
realization will have been determined before the realization occurs, and consequently the
virtual machine does not need to make provisions for changing an item's realization after it
is finished.

Considered as a function, a realization class such as "Left-to-work-for" specifies the
surface form of a grammatically coherent text fragment, which is instantiated when the
class is executed and a specific version of that phrase selected. Given its lexical specificity,
such a class is obviously not primitive. It is derived by sucessive specializations of two,
linguistically primitive subcategorization frames: one built around the verb class that
includes "leave" (shown below) and the other around the class containing "work for ". The
specialization is done by a definition-time currying operation wherein arguments to the
subcategorization frames are bound to constants (e.g. the verb "leave"), producing new
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" k realization classes of reduced arity. On its face, a class built around variants on the phrase
"<employee> leaves <companyl> to work for <cornpany2>" is more appropriate to a
semantic grammar (cf. Burton & Brown, 1977) than to a conventional syntactic phrase
structure grammar. This choice of linguistic modularity does however reflect the actual
conceptual modularity of the underlying program that drives the example," I and we believe
this is an important benefit methodologically.

r(define-phrase subject-verb-locative (subj vb loc)

:specification (clause
subject subj
predicate (vp

verb vb
locative-complement loc ))

Comparing MUMBLE's organization of grammatical knowledge with that of the two
grammar-directed approaches that have been discussed, we see that it resembles an ATN
somewhat and a NIGEL-style systemic grammar hardly at all. ATN designs are based on
procedurally encoded surface structures, which are executed directly; MUMBLE represents
surface structure explicitly and has it interpreted. ATNs select the surface form to be used
via a recursive, phrase by phrase, topdown and left to right consideration of the total set of
forms the grammar makes available (i.e. alternative arc sequences), and queries the state of
the underlying program to see which form is most appropriate. MUMBLE also preceeds
recursively, topdown and left to right, but the recursion is on the structure of an explicitly
represented message. Conceptual items or item types, through the the realization classes
that the planner associates with them, control the selection and instantiation of the
appropriate surface forms directly.

MUMBLE "packages" linguistic relations into constituent phrases; it does not provide an
unbundled, feature-based representation of them as a systemic grammar does. It cannot,

N for example, reason about tense or thematic focus apart from a surface structure
configuration that exhibits them. This design choice is deliberate, and reflects what we take

, -. to be a strong hypothesis about the character of linguistic knowledge. This hypothesis is
roughly that the space of valid feature configurations (to use systemic terms) is smaller,
less arbitrary, and more structured than a feature-heap notation can express (see McDonald
et al. 1986 for details). Since our notation for surface structure incorporates functional

U .annotations as well as categorical, and especially since it is only one of three
representational levels operated over in coordination, we believe that organizing linguistic
reasoning in terms of packaged, natural sets of relations will provide a great deal of

. leverage in research on text planning and computational theories of language use and
communicative intention.

Nowhere in MUMBLE is there a distinct grammar in the sense of a set of rules for
- -deriving linguistic forms from primitive features. Rather MUMBLE manipulates a collection

of predefined linguistic objects--the minimal surface phrases of the language and the
composite phrases derived from them. The phrases are grouped into the realization classes-
-the projected linguistic images of different conceptual types and perspectives. When
selected and instantiated to form the surface structure they take on an active role (through

., 1 As it happens. Leave-to-work-at is a primiti,e conceptual relation in the legal reasoning system that

seres here as the undetl[ing program (Rissland & Ashley, submitted). The causal model that the phrase
c% okes in a person, i.e. that working for the new company is the resn why the employee is leaving (cf.

4m a l.wd hist. ,,r w, 'r'.s ho. irlfriend ") is e-,capsulated in this relation, and suppresses the causal
modl from consideration by the legali reasoner's aules. This encapsulaticrn is deliberate. Reasoning
,, stems should tunehtion at the conccqtual level best suited to the task. This does however imply that some
komponent of the nxuA Ihug.gc i lteilace must now bridge the conceptual ground between the internal
rnod i , i d the lexi.1] til rr, of the Iming ,tige; see Pustejovsky (this volume) for a discussion of how this
niiN he doti,
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interpretation by the three processes), defining the order of further actions by the generator,
defining the contraints on the realization of the embedded items from the message now at
some of its leaf positions, and defining the points where it may be extended through further
attachments from the message level. Figure Six shows a snapshot of the surface structure
for the first part of the text in the example, and can illustrate these points. At the moment of
this snapshot, the Phrase Structure Execution process has traversed the structure up to the
item #<telex> and produced the text shown; its next action will be to have that item
realized, whereupon the realizing phrase (an NP like the one for #<IBM>) will replace
#<telex> in the surface structure and the process will traverse it and move on (see figure
two).

The first thing to consider is the differences in the details of this surface structure
representation compared with the more conventional trees used by generative grammarians.
Two of these are significant in this discussion. The first is the presence of functional
annotations over each of the constituents (indicated by labels inside square brackets).
Terms like "subject" or "prep-complement" are used principally to summarize the
grammatical relations that the constituents are in by warrant of their configurational
positions, which makes these labels the source of most of the grammatical constraints on
message item realizations. The functional annotations also play a role in the dynamic
production of the word stream: Here this includes providing access to the subject when the
morphological process needs to determine the person/number agreement for tensed verbs,
and supplying grammatical function words like "of' or the infinitive marker "to" directly
into the word stream. 12

Formally the representation is not a tree but a sequential stream (as indicated by the
arrows): a stream of annotated positions that are interpreted, in order, as instructions to the
Phrase Structure Execution process. The grammar writer defines the interpretation an
annotating label is to have, e.g. specifying control of morphological effects or function
words, constraints to be imposed on realizations, or establishing salient reference positions
(like the subject). Various useful technical details are expedited by defining the surface
structure as a stream rather than a tree (see McDonald & Pustejovsky 1985b). The stream
design provides a clean technical basis for the work of the Attachment process, which
extends the surface structure through the addition of successive items from the message.
The extensions are integrated into the active grammatical environment by breaking inter-
position links in the stream and kniting in the new items along with any additional covering
syntactic nodes or functional constituent positions needed to correctly characterize the
linguistic relationship of the new material to the old.

In the present example, the second item of the message's temporal sequence item, the
lexicalized relation "helped-to-develop", remains unattached--its position in the surface
structure unestablished--until enough linguistic context has been established that a -.

reasonable decision can be made about stylistic matters, e.g. whether the item should
appear as an extension of the first item's sentence or start its own. Since the functional
constraints on a temporal sequence's realization prohibit embedding the second item
anywhere within the first, the only legal "attachment points" for it (i.e. links it could be knit
in at) are on the trailing edge of the first item's sentence or as a following sentence. In

12 Introducing the closed class words that indicate syntactic function into the text as an active consequence

of traversing the corresponding part of the surface structure tree, rather than having them first appear in
constituent positions at the tree's leaves, is an experimentally motivated design decision. It is intended to
explore the computational consequences of employing grammars that distinquish the sources of closed and
open class words: positing that the open class words have a conceptual source and the closed class,
"function" words a purely syntactic source. The two word classes are distinguished psycholinguistically,
e.g. they have very different behaviors in exchange errors (see Garrett 1975); if this empirical difference can
be given a successful computational account, then that account can serve to anchor other aspects of the
grammar's design and eventually lead to psycholinguistic predictions derived from the consequences of the
computational design (McDonald 1984).

. -;.
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terms of our theory of generation, attachment points are grammatical properties of phrasal
configurations: places where the existing surface structure may be extended by splicing in
'auxiliary" phrases (i.e. realizations of message items), for example adding an initial
adjunct phrase to a clause or embedding the NP headed by "manager" inside the selector' one of'. Every phrasal pattern (as indicated by the annotating labels) h'as specific places
where it can be extended and still be a grammatically valid surface structure; the
grammatical theory of such extensions is developed in studies of Tree Adjoining Grammars.')':',ii i (Kroch & Joshi 1985).

What attachment points exist is a matter determined by the grammatical facts of the
language; which points are actually used in a given situation is a matter of stylistic
convention (see McDonald & Pustejovsky 1985a). In this case there is a very natural,

- - compactly realized relationship between the first and second temporal events: the final item
in the realization of the first event, the Telex company, happens to be where the second
event occurred. As neither clause is particularly complex syntactically, the attachment point

." that extends the final NP of the first event with a relative clause is taken and the second
event knit into the surface structure there, to be realized when that position is reached in the
stream.

9. RELATING MODERN GENERATION APPROACiHES TO MT
Like the Al generation researchers themselves, the principal problem for MT

researchers who want to take advantage of any of the modem work on generation is what
to start from. They cannot just take a generator design "off the shelf' and use it without

" modification--MT sy stems do not have the information about intention and conceptual
perspective that the Al designs presume is available to guide decisions. Conceivably this

* information could be deduced as the source text is parsed, but only at the cost of includinggl a deep conceptual model of the subject matter of the text, which is unrealistic for practical
* systems.

It would however be a mistake to think that generation in MT must be limited by the
depth of the source analysis. The only things that a reconstruction of the author of the
source text's intent provides is the freedom to be unconstrained by the the specific way that
the information in the source text was structured, i.e. by starting the generation at its first

Hi stage, the identification of the speaker's goals, one can make arbitrary choices of wording
or even of the relations to use in planning how the text will be organized. One must ask
though if this freedom is really necessary. Is there that much conceptual incompatibility

. between languages that isomorphic source and target texts cannot be accepted? The
translation of literature does seem to require this, but that is a creative activity usually done
by professional writers and poets; it may not be translation so much as a retelling of the

._ story in another language and culture. If that were taken as the goal of MT, the field would
have fallen prey to the superhuman human fallacy: expecting to formalize a natural ability
that only exceptional people have.

, *. But if an MT is not to start generating where an interface generator would, then where
should it? The key to answering this question comes in a notion mentioned briefly at the
beginning of this paper, that of "structure-fixing information". If we view a text as the set

*. . .o... + - - . . . ~ • "4
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of decisions that are made during its construction, J3 then the structure-fixing informalionl
for that text is the information that directs those decisions. In an interface generator, the
initial structure-fixing information is supplied entirely by the pragmatic state of the
underlying program, supplemented eventually by the structures produced by the planner
and linguistic generator as the process proceeds. In an MT system, the situation is VA
reversed: the most readily available information is the linguistic and rhetorical structure
recovered by the parser as it processes the source text; pragmatic information about the
original speaker's state is either never adduced at all or at best only tentatively asserted. To
utilize the parser's information it must be converted into terms a generator can use, and fed
to it at the appropriate moments.

Because it has "been there before" during the parsing of the source, an MT system is
able to directly contribute structure-fixing information to almost all the decision points in
the generation process, especially, of course, those involving word choice and syntactic
structure. To use this information to best advantage, it should be couched in a form that a
powerful generator can use (i.e. one that could be used, by itself, in an interface with a .
conversationally adroit underlying program). This would not be direct translation of the
source forms: if that sufficed then MT would be a solved problem. Rather what is required
is to view the parser's output as though it had been produced by a generator--as though it
were a reflection of decisions a generator had made. This requires expressing the results in
a compatible terminology (e.g. parse trees, functional features, etc.), and drawing on a
mapping from the outputs of the generator's decisions back to the decisions themselves.

*: Seen from that perspective, a parser's analysis can be made to constrain the generator's
decisions: only decisions consistent with those imputed to the original speaker will be
allowed. The structure-fixing information produced by the parser feeds the generation
process wherever it can apply to a decision of the target language that had a counterpart in
the source language, while decisions unique to the target language are done on the basis of
a priori principles or by employing heuristic extensions of the source language decisions as
narrowing constraints.

Once the parsers in mechanical translation systems can be made sensitive to the
concerns that drive the rhetorical decisions of generators, then their output texts may cease
to be so mechanical in their texture. Nearly any generation system can reproduce the case
frame information that standard parsers recover, but the best ones use information about the
pragmatic situation and the speaker's intent to communicate whether that information is
new, salient, conventional, etc.. When parsers can notice these perspectives in source texts
and associate them with the generation decisions that could have lead to them, then we
should expect that MT output should be able to be every bit as good as any text produced
from an interface.

13 What constitutes a "decision" during generation will always be relative to the type of approach. In
particular, decisions must be considered against the background of the specific kinds of objects that the
approach takes to be involved in the generation process: arcs (in an ATN), abstract features (in FUGs or
most systemic grammars), word sequences and domain-level conceptual objects (in direct replacement), or
surface structure phrases (in MUMBLE and other systems that use a linguistic intermediate representation).
A generator's decisions always lead to operations over these objects (comparison, selection, omission.
constraint, etc.), meaning that since thcse objects are all quite different in nature, the "decisions" in each of
these approaches will be equally different.

• -
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