
ESD-TR-86-276 MTR-10067

THE APPLICATION OF ANNA AND FORMAL METHODS
AS AN ADA PROGRAM DESIGN LANGUAGE

By

C. M. BYRNES

OCTOBER 1986

Prepared for

DEPUTY COMMANDER FOR DEVELOPMENT PLANS AND SUPPORT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE

Hanscom Air Force Base, Massachusetts

Approved for public release;
distribution unlimited.

Project No. 5720

Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract No. F19628-86-C-0001

Amism

When U.S. Government drawings, specifications
or other data are used for any purpose other
than a definitely related government procure-
ment operation, the government thereby incurs
no responsibility nor any obligation whatsoever;
and the tact that the government may have for-
mulated, furnished, or in any way supplied the
said drawings, specifications, or other data is
not to be regarded by implication or otherwise
as in any manner licensing the holder or any
other person or conveying any rights or permis-
sion to manufacture, use, or sell any patented
invention that may in any way be related
thereto.

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

dim I d. 6J> §vr\
JUNE I. R. BABSON, Major, USAF
Chief, Computer Technology,

Operations & Support Division

FOR THE COMMANDER

Director, Software Design Center

Deputy Commander for Development

Plans and Support Systems

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION

UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADING SCHEOULE

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

MTR-10067 ESD-TR-86-276

5. MONITORING ORGANIZATION REPORT NUMBERISI

6a. NAME OF PERFORMING ORGANIZATION

The MITRE Corporation

Sb. OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION

6c. ADDRESS (City, Stale and ZIP Code)

Burlington Road
Bedford, MA 01730

7b. ADDRESS (City. State and ZIP Code)

ga NAME OF FUNDING/SPONSORING
ORGANIZATION

Deputy Commander for (cont)

8b. OFFICE SYMBOL
(If applicable)

XRS

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F19628-86-C-0001
8c ADDRESS (City. State and ZIP Code)

Electronic Systems Division, AFSC
Hanscom AFB, MA 01731-5000

10. SOURCE OF FUNDING NOS

PROGRAM
ELEMENT NO

11. TITLE (Include Security Classification!

THE APPLICATION OF ANNA AND FORMAL (cont)

PROJECT
NO

5720

TASK
NO.

WORK UNIT
NO

12. PERSONAL AUTHORISI

Byrnes, C. M.
13a. TYPE OF REPORT

Final
13b. TIME COVERED

FHOM TO

14 DATE OF REPORT (Yr . Mo.. Day)

1986 October
15. PAGE COUNT

52
18. SUPPLEMENTARY NOTATION

COSATI CODES

FIELD SUB. GR

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Ada PDL
ANNA
Buhr Design Methodology

CAIS
DOD-STD-2167
Formal Methods

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

As part of its support for the introduction of Ada* technology into Air Force projects,
the MITRE Software Center began an investigation into how Ada could be used as a
Program Design Language (PDL) within the framework of the software development process
called for in DOD-STD-2167 and its associated Data Item Descriptions (DIDs). This
investigation also looked into the use of formal software development methods within
an Ada PDL. The investigation took the form of a model design exercise called the
Micro Interactive Monitor System (MIMSY). Project documentation and two preliminary
designs were produced. These designs used a combination of Buhr's diagram notations
and Luckham's ANNotated Ada (ANNA) language and Task Sequencing Language (TSL) as the
program design languages. This report summarizes the work performed and the lessons
learned about Ada PDLs, ANNA, TSL and formal methods.

*Ada is a trademark of the Ada Joint Program Office.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED C SAME AS RPT. G OTIC USERS D

21 ABSTRACT SECURITY CLASSIFICATION

Unclassified

22». NAME OF RESPONSIBLE INDIVIDUAL

Diana F. Arimento

22b TELEPHONE NUMBER
(Include Area Code)

(617)271-7454

22c OFFICE SYMBOL

Mail Stop D230 L
DD FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

8a. Development Plans and Support Systems

11. METHODS AS AN ADA PROGRAM DESIGN LANGUAGE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGf

ACKNOWLEDGMENTS

This document has been prepared by The MITRE Corporation under
Project No. 5720, Contract No. F19628-86-C-0001, ESD/MITRE Software
Center General Support. The contract is sponsored by the Electronic
Systems Division, Air Force Systems Command, Hanscom Air Force Base,
Massachusetts 01731.

The author thanks everyone at MITRE who worked on the MIMSY
project; especially Marlene Hazle, Steve Litvintchouk, Shabbir
Dahod, Maryellen Costello, Diana Parton, John Maurer, and Mark
Gerhardt.

111

TABLE OF CONTENTS

Section Page

1 INTRODUCTION 1

1.1 RATIONALE FOR THIS INVESTIGATION 1

1.2 APPROACH TAKEN 1

2 MIMSY'S FUNCTIONALITY 5

2.1 OPERATIONS TO BE PERFORMED 5

2.2 MAJOR MIMSY COMPONENTS 5

3 DESIGN METHODOLOGY USED WITH MIMSY 7

3.1 DESCRIPTION OF DESIGN METHODOLOGY 7

3.2 DESCRIPTION OF DESIGN NOTATION 8

3.3 RATIONALE FOR USING THIS DESIGN METHODOLOGY 9

4 RELATIONSHIP OF ANNA TO FORMAL METHODS 13

4.1 ANNA IMPROVES ADA'S COVERAGE OF FORMAL METHODS 13

4.2 ANNA IS WELL-INTEGRATED INTO ADA 14

4.3 TSL COVERS ADA TASKING 15

4.4 ANNA USABLE WITH DIFFERENT APPROACHES 16

4.5 AN ANNA EXAMPLE FROM MIMSY 17

4.6 ANNA TOOLS 17

4.7 TSL TOOLS 18

5 MIMSY'S USE OF FORMAL METHODS 19

5.1 BUHR DIAGRAM'S RELATIONSHIP TO FORMAL METHODS 19

5.2 MIMSY USED ALGEBRAIC SPECIFICATION APPROACH 20

TABLE OF CONTENTS (Concluded)

Section Page

5.3 MIMSY USED ANNA AND TSL AS THE PDL 21

5.4 USE OF ANNA WITH CAISETTE PACKAGE 23

5.5 ADVANTAGES OF USING FORMAL METHODS IN MIMSY 24

5.6 REVIEW PROCESS WHEN USING FORMAL METHODS 26

6 CONCLUSIONS 27

APPENDIX A ANNA EXAMPLE 29

APPENDIX B CAISETTE EXAMPLE 33

LIST OF REFERENCES 43

vi

LIST OF ILLUSTRATIONS

Figure Page

1 ANNA Example: Preconditions and Postconditions 30

2 ANNA Example: Package Axioms 31

3 CAISette Without ANNA or TSL (OPEN and CLOSE) 34

4 CAISette Without ANNA or TSL (PUT) 35

5 CAISette Example With ANNA (OPEN) 36

6 CAISette Example With ANNA (CLOSE) 37

7 CAISette Example With ANNA (SETPOSITION) 38

8 CAISette Example With ANNA (PUT) 39

9 CAISette Example With TSL (OPEN and CLOSE) 40

10 CAISette Example With TSL (PUT) 41

VII

SECTION 1

INTRODUCTION

1.1 RATIONALE FOR THIS INVESTIGATION

The growing interest in using Ada as a Program Design Language
(PDL) as well as an implementation language has led to several
different proposals for how to use Ada as a Design Language. More
and more projects require the use of Ada as a PDL in an attempt to
standardize on a common PDL and to ease the transition to Ada as the
implementation (programming) language. Ada is much more rigorously
defined than most PDLs, and Ada has a much richer set of constructs.
Using Ada as a PDL will represent a major change to most current
software designers.

Recently the government software development and documentation
standards have changed with the introduction of DOD-STD-2167 IDOD85]
and the revisions to MIL-STD-483A, MIL-STD-490A and MIL-STD-1521B.
With the use of Ada as a PDL likely in some of the documents called
for in DOD-STD-2167 and its associated DIDs, project managers need
some guidance about how Ada as a PDL relates to the other design
documentation. Examples of the use of Ada as a PDL and a documenta-
tion "boilerplate" will be useful to current and future projects.

There is a growing awareness in the software development field
of the importance of formal mathematical methods in producing
accurate and reliable software. Many of the advanced features in
Ada (such as packages, strong typing and overloading) were included
in the language to help support some formal methods. While the Ada
language (as defined in MIL-STD-1815A) contains support for some
formal methods, there are other formal methods that are not directly
supported by the syntax and semantics of Ada. Several recent Ada
PDL proposals have tried to improve Ada's support of these missing
formal methods through extensions to the language and through
support tools [Inte84]. As the need for highly accurate and
reliable software grows, the need for Ada PDLs that support many
types of formal methods will grow also.

1.2 APPROACH TAKEN

The MITRE Software Center decided to investigate the use of Ada
as a Program Design Language (PDL), including formal methods and
within a DOD-STD-2167 framework, by performing a small design exer-
cise. The problem that was chosen was a subset of the functionality

of the APSE Interactive Monitor (AIM) [TI83]. Because of a limit on
the personnel, resources and time that were available, only a very
minimal subset of the AIM functionality was implemented. Our system
was called the Micro Interactive Monitor SYstem (MIMSY).

To enhance the realism of the design exercise, all the Software
Center personnel who participated were assigned roles corresponding
to the acquisition jobs called for in DOD-STD-2167. One person was
assigned the job of "customer," responsible for seeing that MIMSY
can perform the functions required. As an aid to the design process
the customer was assumed to be knowledgeable of Ada and formal meth-
ods as well as MIMSY's functionality. While this may not always be
a realistic assumption in real acquisitions, having a knowledgeable
customer limited the amount of training that would have been needed
to convince the customer of the need for Ada and formal methods.
The customer had an "advisor" to provide technical guidance; this
advisor corresponded to the kind of support that MITRE would supply
to a real customer.

The remaining participants in the MIMSY exercise were formed
into a "contractor" team corresponding to an independent company
that had been awarded the MIMSY contract. Five people, all with
some experience in using Ada and formal methods, made up the team
that actually designed MIMSY. One person had the job of "project
leader," with overall responsibility for getting the design and the
documentation done on time. Another person had the responsibility
for Configuration Management (CM) and Quality Assurance (QA),
corresponding to an independent CM/QA department within the con-
tractor. Three other people were the designers of MIMSY. They
worked collectively designing the earliest stages of MIMSY, and then
later worked separately on designing a major component of MIMSY.

Most of the documents called for in DOD-STD-2167 for the early
stages of a project's development were produced. This included a
Statement Of Work (SOW), a Software Development Plan (SDP), a
Software Requirements Specification (SRS) and a Software Top Level
Design Document (STLDD). While the SDP and the SRS were primarily
English text, the STLDD was primarily Ada PDL text. Both iterations
of the STLDD were approximately 40 pages long, with 85% of each
document being Ada PDL.

To more easily use formal methods in the design process, a PDL
was chosen that supports a wide variety of formal methods. The ANNA
[Luck84] language was chosen because it is based on Ada and because
ANNA has support for formal methods missing in Ada through struc-
tured comments. Work is currently underway at Stanford University
on tools that can recognize ANNA'S structured comments and produce
code to check whether design constraints are being met. While the

MIMSY team did not have access to these tools, ANNA was used anyway
because it provided a precise notation for expressing the design.
The current version of ANNA has no support for Ada tasks but a
tasking constraint language called TSL [Helm85], written by the same
computer scientists who built ANNA, has been written that does
support design using Ada tasks. MIMSY used TSL together with ANNA
whenever Ada tasks were used in the design.

The design methodology that was used on MIMSY was Buhr's system
design methodology [Buhr84] with Ada. While this design methodology
makes heavy use of the Ada language and the formal methods which Ada
directly supports, Buhr's methodology does not support the formal
methods that ANNA adds to Ada. Rather than trying to develop a
design methodology specifically for ANNA or using a design method-
ology specifically created to use a wide range of formal methods,
MIMSY tried to use ANNA'S formal methods with an existing design
methodology. One goal of the MIMSY project was to see how well
formal methods could be used with existing design methodologies.

Formal reviews of the MIMSY documentation were conducted in
accordance with DOD-STD-2167. The SDP and the SRS were reviewed at
a Software Specification Review (SSR). Two different Preliminary
Design Reviews (PDRs) were conducted on the STLDD. The second PDR
was needed to add detail and answer customer questions that were
raised at the first PDR. In addition to the MIMSY participants,
outside MITRE personnel were invited to these reviews so more people
could see the advantages/problems of using Ada, ANNA, formal methods
and DOD-STD-2167 together.

SECTION 2

MIMSY'S FUNCTIONALITY

2.1 OPERATIONS TO BE PERFORMED

When completed, the MIMSY system will allow a user to control
the output of one or more Ada applications programs on the screen of
a terminal. MIMSY will provide a primitive horizontal windowing
capability that allows a user to set aside certain lines of the
screen for the output from an Ada program, and then be able to
scroll through the output of a particular window. The user inter-
face and appearance on the screen are similar to that of DEC'S
"lsedit" editor [DEC85a] or the "emacs" [Stal85] editor.

In addition to a primitive window manager, MIMSY allows the
user to control the Ada applications programs that are creating the
output being displayed in the windows. A user can create, suspend,
resume and terminate an Ada applications program under MIMSY's
control. While MIMSY was required to be portable to a number of
different Ada operating environments, both MIMSY and the applica-
tions programs that it is controlling were assumed to be implemented
first on top of DEC'S VMS operating system. Development of MIMSY
would be done in Ada using the DEC Ada system [DEC85b].

MIMSY's functionality is a subset of the functionality provided
[TI83J. AIM allowed control of the input to the applications pro-
gram as well as the output from them. AIM also provided a user
interface to the full CAIS [KIT84] functionality while MIMSY pro-
vides only a small subset. With the completion of the AIM project,
it will be interesting to compare its approach with the more formal
approach taken with MIMSY.

2.2 MAJOR MIMSY COMPONENTS

There are four major components to the MIMSY system. The
interfaces to and operations performed by these components are
discussed in detail in MIMSY's STLDD. A brief summary of these
components' functionality is included below as a point of reference
for this presentation.

The Keyboard Controller processes all the keystrokes typed at a
user's keyboard. This component handles functions such as echoing,
command line editing (backspace key) and determination of command

completion (newline character). Completed commands are sent to the
next component for analysis.

The Command Interpreter validates any user commands for cor-
rectness. MIMSY has a few well-defined commands. Any misspellings
or non-existent commands are reported as errors to the user through
a message displayed on the terminal's screen. The user often refers
to previously created screen windows and applications processes in
commands; the Command Interpreter ensures that these names are still
valid references.

The Structure Manager encapsulates the control of the main data
structures in MIMSY. This includes the data structures controlling
the positioning and contents of the windows on the screen, and the
structures that control the applications programs. MIMSY makes
extensive use of tasking in these data structures to maximize con-
currency between the applications programs.

The CAISette component is an attempt to provide an operating
system-independent interface to the underlying support environment.
The CAIS [KIT84] is an example of such an interface for Ada pro-
grams, but MIMSY did not need all the CAIS functionality. To mini-
mize the amount of work that would be needed on this interface, a
CAISette was defined that contained only those CAIS functions
necessary to support MIMSY. The CAISette defines not only the
functional interface but also the behavioral model of the underlying
support environment, so anyone porting MIMSY to another environment
will be aware of what MIMSY assumes about its environment.

SECTION 3

DESIGN METHODOLOGY USED WITH MIMSY

3.1 DESCRIPTION OF DESIGN METHODOLOGY

The design methodology used during the design phase of MIMSY
was an actor and object oriented methodology similar to those used
in SMALLTALK [Gold83] and PAMELA [Cher85]. The design methodology
makes extensive use of Ada tasking, with active tasks initiating
operations and passive tasks providing services. Each of the major
MIMSY components was designed as a task, with the task entry points
and parameters defining the messages that could be passed between
tasks. Major objects within each component were also designed as
tasks, although the details of the tasking structure within a major
component were hidden from the other components.

An important part of the design methodology is to identify
which tasks are active and which are passive. Since MIMSY's primary
function is to respond to commands typed by a user, the KEYBOARD
CONTROLLER component was made the primary active object. All the
other components of MIMSY serve the requests generated by the
KEYBOARD CONTROLLER (and therefore the user).

MIMSY is required to manage the user's terminal screen, pro-
viding multi-windowing for multiple user programs. This requires
the management of data flows to and from multiple concurrent user
programs, yet at the same time managing the display of a terminal
screen that must be updated sequentially. To minimize the complex-
ity of the data flows in MIMSY, the design methodology calls for
each of the major data structures to have its own task to manage it.
The STRUCTURE MANAGER component of MIMSY is responsible for the data
structures that control the windows on the screen and the user's
programs. This design methodology leads to a STRUCTURE MANAGER that
is a hierarchy of data structures and objects (and their tasks) that
are dynamically created and destroyed (terminated) in response to
user commands.

The design methodology uses extensive data abstraction, where
all the data structures and objects are defined in terms of the
operations that can be performed on them. Data abstraction calls
for restrictions to be placed on the operations on the data types.
In MIMSY's case these restrictions had both a static and a dynamic
component. Static restrictions are the classical enumerations of
the operations that are allowed and the allowable range of values on
the data types. Dynamic restrictions depend on the current state of

the data types and objects. These dynamic restrictions are typi-
cally represented as axioms that relate previous states with what
are now legal operations on the data types. In a system like MIMSY,
the extensive use of tasking can lead to rapidly changing states.
The design methodology tries to limit the complexity of the data
type restrictions by structuring the objects (and their tasks) so
the restrictions can be expressed in a hierarchy.

3.2 DESCRIPTION OF DESIGN NOTATION

The design methodology described in the previous section
results in a variety of design products that are used to capture
design decisions for the benefit of the coders, reviewers (custo-
mer), designers and future maintainers. Two different design
notations were used to capture MIMSY's design. These two design
notations try to find a balance between a high level pictorial
representation of the design (used to rapidly convey the essence of
the design) and a detailed description of the design (used to docu-
ment detailed design decisions).

The highest levels of MIMSY's design was represented with Buhr
diagrams [Buhr84]. Buhr diagrams provide a series of graphical
icons that may be connected to show the flow of control and data in
a design. The complexity of a design (i.e., cluttered pictures) can
be limited through hierarchies of Buhr diagrams. Buhr defines a
one-to-one mapping between the icons of the graphical representation
and the Ada code skeletons that can represent the icons. The icons
for Ada tasks are especially expressive, allowing a designer to
capture the behavior of tasks by graphically expressing the nature
of a task's entry calls (selective entry, timed wait, etc.).

The lower (and more detailed) levels of MIMSY's design were
represented in ANNA text [Luck84]. While Buhr diagrams can be used
to express the structure of the Ada packages, tasks and subprograms,
the diagrams do not allow the structure of data or the restrictions
on subprogram calls to be expressed. Preconditions, postconditions,
exception propagation rules and other detailed design decisions were
captured in ANNA text.

Currently the ANNA language cannot be used to express restric-
tions on the actions of Ada tasks that might exist in the design.
This shortcoming has been overcome by ANNA'S companion language, the
Task Sequencing Language (TSL) [Helm85]. TSL was defined as an
extension to ANNA, so TSL and ANNA text may be combined in the same
design. TSL allows restrictions on the actions of Ada tasks to be
defined, much like ANNA allows restrictions on the actions of

8

subprograms and packages to be defined. MIMSY's designers used ANNA
and TSL together to capture the details of how the system was to
function.

ANNA has no support for capturing the design management infor-
mation called for in DOD-STD-2167, so MIMSY's designers invented
their own constructs for capturing such information. In MIMSY's
case, structured comments were used with the V character used as
the sentinel character. Design management information, such as
requirements traceability and change logs, consisted of a reserved
keyword (such as "Change Log") followed by a natural language
description of the design management information. Additional sup-
port tools could have been built to extract this information and
create management reports and/or the documentation called for in
DOD-STD-2167.

MIMSY's designers worked from a high level description of the
system to a detailed description. MIMSY's design was first docu-
mented at a high level with Buhr diagrams. A single high level
diagram of the MIMSY system was broken down into a Buhr diagram for
each of the four major MIMSY components. Each of the component's
Buhr diagrams was further broken down into more detailed Buhr
diagrams. The most detailed Buhr diagrams describe all the tasks
that exist in MIMSY and all the major subprograms that implement
MIMSY functionality.

With the graphical representation of the design complete, the
designers then began to transcribe the diagrams into PDL text. The
Buhr diagrams have a mapping to Ada constructs defined for them, so
the designers had little trouble creating Ada package and subprogram
specifications from the diagrams. The designers then added the ANNA
and TSL text into the Ada text created from the diagrams. The ANNA
and TSL text captured the increased detail, restrictions and system
behavior that could not be represented in the diagrams.

The ANNA and TSL text had the same organization as the MIMSY
components and subcomponents, so each component had its own collec-
tion of ANNA and TSL text that described its design. The most com-
mon method used by a MIMSY designer to show that the ANNA and TSL
text for a component was consistent was proof by induction. Most of
these inductive proofs used a few basis cases then recursive induc-
tion steps that were similar to Lisp code.

3.3 RATIONALE FOR USING THIS DESIGN METHODOLOGY

The design methodology and design notations used in MIMSY pro-
vided a good match between the needs to design a system and fulfill

the original requirements of the MIMSY investigation (as outlined in
Section I of this document). The methods and notations were very
"Ada-like" in that the syntax and semantics of the Ada language was
used as much as possible. The addition of the formal notations of
ANNA and TSL just completes the formalization process begun by using
Ada as a PDL.

The design methodology used in MIMSY was chosen because it
allows the system behavior as well as the system's structure to be
expressed in Ada PDL. Used properly, Ada tasking can be the most
expressive notation to describe a system's behavior. MIMSY has
extensive requirements for the independence and concurrency of the
windows, user tasks, keyboard, etc. The Ada language defines almost
every construct of the language except task entries as being re-
entrant. One goal of the designers was to make the components of
MIMSY as reentrant as possible, with those parts of the system that
must have their actions serialized controlled by tasks. The design
methodology's use of the Ada task as the primary design paradigm
does not artificially constrain the designers in their use of Ada.

Both the Buhr graphical notation and ANNA/TSL make extensive
use of the syntax and semantics of the Ada language. Their con-
structs are the same as the constructs provided in the Ada language.
Neither is an attempt to graft some other design paradigms or con-
structs on the Ada language; as a result, designers who are familiar
with Ada have less difficulty in working with Buhr and ANNA. If Ada
is really going to be used as a PDL, then any annotations and gra-
phical representations used with Ada should be based on the Ada
language.

DOD-STD-2167 implies the use of a top-down design methodology,
although it is possible to use it with other design methodologies
such as bottom-up. The method of starting with increasingly
detailed Buhr diagrams and then moving to Ada/ANNA/TSL text fits the
description of a top-down methodology. Since many systems are also
developed using a top-down methodology, the lessons learned in MIMSY
have some applicability to real system designs. This may change in
the future when large libraries of reusable Ada (or ANNA) packages
allow many systems to be designed from the bottom up.

Many existing design methodologies and notations make extensive
use of graphics. Designers find graphics to be a convenient way to
express a system's design in just a few pages, particularly to non-
technical reviewers. The introduction of Ada as a PDL will not (and
should not) change a designer's preference for the use of graphical
notations, especially at the highest levels of a design. MIMSY
chose to use graphical notation in its designs. Buhr diagrams were

10

chosen because they were the most expressive notation that was
well-integrated with the Ada language.

The use of ANNA and TSL to formally define the restrictions and
behavior of MIMSY provided the designers with an opportunity to see
how the increased use of formal methods might improve a design. One
problem with many designs is that important design decisions are
either ambiguously captured or are not written down at all (remain-
ing inside the designer's head). When a coder or maintainer at-
tempts to change the system at some point in the future, the lack of
complete design documentation may lead to the introduction of errors
and/or excessive maintenance costs. One of MIMSY's major require-
ments was that it be maintainable; the introduction of formal
methods into the design is an attempt to make the system more main-
tainable. ANNA and TSL were created to improve Ada's support for
formal methods. MIMSY's designers decided to use them as they pro-
vided the best opportunity to increase formalism in Ada PDLs.

11

SECTION A

RELATIONSHIP OF ANNA TO FORMAL METHODS

4.1 ANNA IMPROVES ADA'S COVERAGE OF FORMAL METHODS

While Ada's constructs provide support for many formal methods,
there are some formal methods that Ada does not cover. ANNA tries
to improve Ada's coverage of formal methods by providing new and
modified constructs that a designer or coder can use with Ada. The
constructs described below allow a designer to use some of the
classical techniques of formal methods with systems written in Ada.

ANNA provides the constructs to allow the use of first order
predicate logic in Ada. The "exists" and "for all" quantifiers
allow a designer to formally specify restrictions on an Ada data
type, important if abstract data types are to be used extensively.
ANNA allows the use of logical implication and equivalence operators
in quantified expressions.

While Ada's strong type checking provides one level of precon-
ditions and postconditions, ANNA provides the constructs for the
full use of preconditions and postconditions beyond type checking.
Annotations can be placed on individual statements (as in classical
weakest precondition notations), on groups of statements (e.g., for
loop invariants) and on Ada subprograms and packages. ANNA provides
constructs for defining the propagation of Ada exceptions, which
allows both the designer and user of an Ada construct to know
exactly what conditions may lead to an exception and what the state
of the software will be if exceptions are propagated.

Ada packages will tend to be the primary means of organizing an
Ada program. Systems built with Ada will be hierarchies of (re-
usable) Ada packages. Just as packages are the primary building
block of Ada, packages are also the primary building block of ANNA.
The main ANNA constructs for describing restrictions and system
behavior are package annotations, so there is no separation between
the primary building blocks of Ada and ANNA.

ANNA provides the additional constructs to allow axiomatic
descriptions of a package's behavior to be built. These axioms can
be used to specify how the subprograms, data types and objects of a
package relate to one another. Mathematical induction can be used
to define the actions of a package after many state changes have
occurred.

13

4.2 ANNA IS WELL-INTEGRATED INTO ADA

ANNA was designed, constructed and documented to allow ANNA
annotations to be fully integrated with MIL-STD-1815A Ada [D0D83].
ANNA'S reference manual [Luck.84] has the same organization [D0D83].
All the new ANNA constructs are defined as extensions to Ada's
syntax and semantics. Note that ANNA inherits some of Ada's short-
comings as well. For example, Ada programs have been shown to be
very difficult to formally verify for correctness because of Ada's
support for type attributes, tasking, etc. ANNA was not designed to
solve all of Ada's problems; instead ANNA provides more annotations
to the existing Ada semantics to provide improved formal methods
support.

All ANNA constructs are defined as a syntax that appears inside
Ada comments. Unique sentinel characters are placed after the Ada
"—" comment indication. For ANNA this sentinel character is '|'
(or M') and ':', for TSL the character is '+'. This means that an
Ada compiler is unaffected by ANNA'S and TSL's statements because
they are hidden inside comments. Only ANNA/TSL tools (and human
readers) use these statements to further explain the program.

ANNA provides constructs for annotating almost all of Ada's
constructs, tasks being the major exception. Ada's access types,
records, exceptions, generics, packages and other constructs all
have ANNA constructs associated with them. Because ANNA (with TSL)
covers the entire Ada language, designers and coders using Ada are
not tempted to use subsets of Ada in an attempt to stay within the
annotation language's limitations. ANNA does not try to "glue on"
the formalism of some existing formal methods system; ANNA has been
created just to deal with Ada. As a result, designers who under-
stand Ada's model of computation will have less difficulty using
ANNA than trying to use some other annotation language that was
originally built for a different model of computation.

The semantics for the elaboration, visibility, scope and other
attributes of ANNA statements are the same as for the Ada constructs
they are annotating (TSL uses different scope and visibility rules).
The ANNA reference manual [Luck84] shows that each ANNA statement
could be replaced in-line by Ada statements that would actually do
the checking done by the ANNA statement. This mapping would not be
possible if ANNA statements were outside Ada's semantics.

In many instances the restriction a designer might want to
place on the behavior of an Ada construct might be expressed through
some additional Ada text. ANNA allows designers to place additional
Ada text (called "virtual Ada") in Ada designs. Virtual Ada has the

14

same syntax and semantics as regular Ada, the only difference being
that virtual Ada is placed in structured comments that have the ':'
character as the sentinel character. Virtual Ada can be used in
combination with ANNA text; together they can be used to create very
expressive specification of the non-commentary Ada text.

4.3 TSL COVERS ADA TASKING

Currently the ANNA language does not cover Ada tasks. Instead,
tasks are covered by a separate but compatible annotation language
called TSL. TSL could be used only with Ada tasking constructs
(task, task types, entries) but recent changes to TSL allow it to be
used with other Ada constructs such as subprograms.

TSL assumes that all the "events" associated with Ada tasking
can be placed into a single stream. This stream of "events" would
contain all the task creations and terminations, entry calls,
accepts and rendezvous, etc. TSL allows the designer to restrict
the ordering of events in the event stream. These restrictions can
be used by a designer to prevent common concurrency problems such as
deadlock. TSL annotations can also be used to better specify the
conditions that a task expects to see at some point in its
execution.

While ANNA is oriented to both static and dynamic analysis of
Ada programs, TSL is oriented almost entirely towards dynamic
analysis. The non-determinism in Ada's tasking model makes it very
difficult to predict ahead of time the exact ordering of events in
the Ada task event sequence. TSL provides a notation that allows
run-time monitors to catch incorrect sequences of task events.

Because there is only one task event sequence, the sequence may
contain events of tasks that are not of interest to TSL statements.
TSL handles this and other complications of checking the sequence of
events in much the same way as Prolog [Cloc81] handles the search of
its data base. As with Prolog, TSL statements define a "pattern"
that is matched against the actual contents of the event sequence.
TSL has operators similar to Prolog's "cut" that can be used to
limit the complexity of the event sequence matching. This contrast
between TSL's Prolog-like approach and ANNA'S predicate calculus
approach helps explain why ANNA and TSL are currently two separate
languages.

While the ANNA language's definition [Luck84J is stable at this
point, the language definition of TSL (Helm85] is still subject to
change. For example, based on the experiences of early TSL users
(such as MIMSY), TSL has added user-defined "events" to the type of

15

events that can be placed in the task event sequence. This allows a
user to place events such as certain subprogram calls or changes to
key objects with the other tasking events such as accepts and
releases.

4.4 ANNA USABLE WITH DIFFERENT APPROACHES

There are many different approaches to using a formal method to
design software. For example, the use of data abstraction can be
broken down into the algebraic specification approach versus the
abstract model approach [Berg82]. Each approach has its own advan-
tages and disadvantages; ANNA can be used with either approach.

The algebraic specification approach builds the description of
the data abstraction from low-level axioms. ANNA package axioms can
be used to provide these low-level axioms for an Ada abstract data
type. Since ANNA'S package axioms use a form similar to classical
data type axioms, a designer experienced in the classical forms has
little difficultly in learning to use ANNA'S axioms.

The abstract model approach builds the abstract data type from
previously defined (and proven) data types and concepts. These pre-
viously defined data types provide a model on which the new abstract
data type is built. An Ada programmer might view this approach as
an example of reusability.

ANNA supports the abstract model approach by reusable Ada
libraries that encapsulate (or model) the concept needed by the
abstract data type under construction. For example, a library can
contain the Ada functions and ANNA axioms to check whether an
abstract data type has the properties of a group or monoid. This
library would be built as a "virtual" Ada package, allowing for
reusability. If designers have some of these reusable libraries at
their disposal, the specification of the properties of a new
abstract data type becomes less verbose than if all the individual
axioms had to be repeated.

In formal methods the full specification of how a system is
supposed to work is built up on layers of theorems and lemmas. The
proof that the system meets its specification can be done by first
proving the lower level theorems (by showing that all the axioms and
conditions hold) and then showing that the lower level theorems
prove the correctness of the higher level theorems and then finally
the entire system. ANNA supports this approach because the software
can be built with layers of Ada packages. If the lower level
packages can be shown to be consistent with the higher level ones,
the entire system can be shown to have the correct behavior.

16

4.5 AN ANNA EXAMPLE FROM MIMSY

Appendix A of this document (Figures 1 and 2) contains an
example of some ANNA text that was written for the MIMSY project.
In this case, it is part of the annotation for the STRUCTURE MANAGER
component of MIMSY. The text shown is part of the package specifi-
cation for STRUCTUREMANAGER; the real package specification is more
verbose. Some of the details have been eliminated so the highlights
of the package can be seen.

In this example the preconditions and axioms are trying to show
that the first thing that a user of this package must do is call
START; attempts to ANALYZE a COMMAND or TERMINATE are illegal. One
of the things the START procedure does is establish the MAXIMUM
NUMBER OF screen VIEWPORTS and user PROCESSES that can exist at any
one time. Once these numbers have been established, they must not
be changed by a call to ANALYZE_COMMAND. Calls to START after the
initial call are illegal. A call to TERMINATE_ALL prevents any
further calls to the main procedure of STRUCTUREMANAGER, which is
ANALYZE_COMMAND.

Note the use of induction inside the axioms for this package.
The two axioms for ANALYZE_COMMAND show that the maximum number of
viewports and processes remain the same no matter what kind of
ANALYZECOMMAND is issued. The "for all C : COMMANDRECORDS" allows
this to be stated for any type of command that was analyzed.

4.6 ANNA TOOLS

Currently ANNA is useful primarily as a rigorous notation that
designers can use to specify the behavior of Ada software. ANNA'S
situation is similar to that of Ada's before the availability of
robust, validated Ada compilers. The rigor of the notation makes it
useful to those software engineers who are conversant in the lan-
guage, but wider use must await the necessary software tools.

In ANNA'S case these tools are currently under development at
Stanford University and in Europe under the ESPRIT program [ESPR85].
These tools will allow the ANNA text, currently hidden from the Ada
compiler, to be analyzed. An early version of these tools would
check the syntax of the ANNA for syntactic correctness. This early
tool would create a DIANA [Goos83] syntax tree (in addition to
checking for simple errors). The DIANA tree would be used as the
input into later, more detailed analysis tools. Such an analysis
tool would convert all the ANNA statements (as well as all the
virtual Ada statements) into compilable Ada statements. The entire
design is then compiled, linked and executed just like any other Ada

17

program. The execution of the design (using Ada's execution model)
provides additional checks on the validity of the design. If an
ANNA constraint is violated, the predefined exception
"ANNAEXCEPTION" is raised in the program unit where the constraint
is violated.

To provide designers and coders guidance with the use of ANNA
and its tools, several large projects have begun that will build
programming environments that support the software lifecycle,
including the use of ANNA as a PDL. The PROSPECTRA [ESPR85] project
in Europe is the largest example of this. These environments would
integrate ANNA tools with other lifecycle tools. The development of
these tools is still some time in the future, although the MIMSY
project showed that ANNA and TSL as a notation is useful to a pro-
ject when few or no tools are available.

4.7 TSL TOOLS

Also under development are the TSL tools that allow for
run-time checking of the Ada task event sequence. These tools
involve changes to the Ada support environment to create and manage
the task event sequence [Helm84]. These tools also make sure that
Ada tasks place their events into this sequence.

The introduction of TSL statements will provide the (modified)
Ada support environment with constraints to check against an actual
tasking sequence of events from an executing design. As with ANNA,
the primary method of checking the design becomes the execution of
the design itself. Longer range goals would add additional design
checking mechanisms such as symbolic execution to ANNA and TSL. In
either case, the use of executable designs will be a sharp contrast
from the state of the practice in the use of Program Design
Languages.

18

SECTION 5

MIMSY'S USE OF FORMAL METHODS

5.1 BUHR DIAGRAM'S RELATIONSHIP TO FORMAL METHODS

As discussed in earlier sections, MIMSY used a design method-
ology that used Ada tasks as the primary design paradigm, with Ada's
tasking model used as the mechanism for data and control flow among
the entities of the design. MIMSY's designers tried to follow good
design practices by using hierarchies to hide details of the design
until lower levels when the details are necessary. In MIMSY's case
Buhr diagrams were constructed with incremental refinement, where a
top level diagram was refined into lower level Buhr diagrams that
contained more and more detail.

One complication that the designers encountered was how to
refine one Buhr diagram into its lower level diagrams. On one hand,
the designers wanted to use traditional information hiding, placing
only the minimum amount of detail necessary in a higher level. On
the other hand, enough detail had to be provided to higher levels of
the design to provide enough information to satisfy the formal
methods being used. A system built with hierarchies will want to
prove that important attributes and behaviors are maintained among
levels (and so the entire system). The information needs of formal
methods and data abstraction/information hiding can come into
conflict.

One example of where this conflict arose was in the Structure
Manager component in MIMSY. Using the design methodology lead to a
decision to use dynamically created and terminated tasks in the
structure manager to control the windows and processes a user might
create. Initially the designers hoped that the implementation
details of using tasks within the body of Structure Manager could be
hidden from the caller. Yet the ANNA and TSL statements that would
be appearing in the package specification for Structure Manager
needed to know something about the behavior and restrictions being
implemented in the body. Eventually the users and designers of
Structure Manager had to compromise about how much information is
visible in the package specification.

When the designers using Buhr diagrams go from one level of
detail to the next, they need to specify the behavior of the lower
levels as well as the interfaces. The icons in the Buhr diagrams
have good support for specifying the interfaces between levels.
Support for behavior is not as strong; some tasking behavior can be

19

described in the diagrams but not much else. As designers moved
from the Buhr diagrams to the more detailed presentation provided by
ANNA and TSL, they wanted to capture the intended behavior to be
implemented in the lower levels of the design without unduly
constraining the eventual designers and coders of the lower levels.

An example of this occurred in MIMSY with the CAISette compo-
nent, which encapsulated the interface to the underlying Ada support
environment. Since many different components would be using
CAISette to access the support environment, there were many assump-
tions that designers made of CAISette that the eventual coders of
CAISette would have to consider. Some of these issues are discussed
in detail later. A compromise used in MIMSY was to use virtual ANNA
and TSL statements to define the intended behavior of CAISette. The
eventual coders of CAISette are not bound to implement the virtual
Ada constructs, as long as the behavior of the CAISette implementa-
tion matches the behavior of the virtual ANNA.

The hierarchy of Buhr diagrams containing MIMSY's design had
different designers creating the different levels. This required
that the designers be very precise in their designs for both the
diagrams and the eventual translation to ANNA/TSL text. The need
for precise specifications of the components would have been true if
MIMSY had been designed from the bottom up with reusable Ada
packages. A package could not have been "reusable" unless its
specification provided enough behavioral and interface information
to allow a designer to determine how (and if) this package could be
reused in the current design. Designers should be able to assess
the reusability of a package without having to read all the details
of that package's body.

5.2 MIMSY USED ALGEBRAIC SPECIFICATION APPROACH

As discussed earlier, MIMSY could have chosen to use either the
algebraic specification or the abstract modeling approach to
abstract data types. The abstract modeling approach could have been
useful to MIMSY in designing several of the components. For exam-
ple, the CAISette package controls the display of lines of text on
the user's screen. The control and display characters necessary to
properly display a line of text on the screen in its proper position
could have been modeled on sequences.

If a pre-existing data type called "sequence" existed, CAISette
could have based the messages (characters) that are sent to the
terminal on the sequence data type. The sequence data type could be
constructed such that its axioms proved that the sequence did not
allow messages (characters) to become interspersed. Then the only

20

thing that the designer of CAISette would have to do would be to
show that CAISette used the sequence data type correctly in the new
data types which controlled the user's screen.

Unfortunately MIMSY did not have any such "sequence" data type
to use in modeling the new data types needed for CAISette and the
other components. Without a library of reusable abstract data type
models (or the time necessary to create them), MIMSY used the alge-
braic specification approach. As a result, components such as
CAISette convey the same amount of information about their restric-
tions and behavior, but these specifications are much more verbose
than if simple references to reusable data modeling packages had
been used.

Mature tools and notations used with data abstraction, such as
AFFIRM [Gerh80], come with a library of reusable lower level data
types. AFFIRM has an extensive set of data types and theorems for
dealing with sequences. The library of sequence data types makes it
easier for an AFFIRM user to create (model) their own data types,
and the library of sequence theorems provides an AFFIRM user with a
ready list of important properties that the user's data types should
satisfy.

ANNA users need to develop their own libraries of reusable
abstract models. The models that might go into this library
(sequences, numbering systems, etc.) will depend on the applications
that the users are designing systems for. Users must weigh the
costs of creating and maintaining such a library versus the future
benefits in savings to later designs.

5.3 MIMSY USED ANNA AND TSL AS THE PDL

MIMSY's designers used a combination of ANNA and TSL as the
Program Design Language (PDL) for MIMSY. MIMSY's design was done to
the Preliminary Design level of detail. As a result, the Prelimi-
nary Design document consisted of the Buhr diagrams and Ada package
specifications (with the ANNA and TSL statements placed in the
package specification). Only a limited amount of information was
placed in the package bodies, so information on how the bodies of
the packages will be designed is deferred until Detailed Design.

MIMSY's designers did not have access to any ANNA or TSL tools,
not even to tools that would have checked the statements for syn-
tactic correctness. An Ada compiler was used to check Ada state-
ments, but the ANNA and TSL statements were hidden from it in
comments. The ANNA/TSL statements were used as an expressive nota-
tion for formally specifying the design's restrictions, assumptions

21

and behavior. Any checking or "execution" of ANNA or TSL statements
had to be done by hand.

One tool that was available to the MIMSY designers was a modi-
fied version of Digital Equipment Corporation's language-sensitive
editor "lsedit" [DEC85a]. This structured editor can use a user-
defined template that defines the syntax of a programming language.
The editor comes with a template (that is similar to a Backus-Naur
Form syntax definition) for the major languages supported by the
computer. MIMSY's designers modified the template for Ada to
include additional syntax definitions for ANNA'S structured com-
ments. Once the editor's basic functions were mastered, the addi-
tional support for ANNA did not require learning any additional
commands. While the use of this editor was no guarantee of semantic
correctness of the code, its template-driven style did allow MIMSY's
designers to concentrate on the details of the design instead of on
the details of ANNA'S syntax. Users of an expressive, Ada-based PDL
such as ANNA should consider using a good editor in the creation of
their text to limit the number of simple syntax errors that might
otherwise creep in.

Because the design team did not have any experience in using
ANNA, a series of informal classes and seminars were held before the
design effort began. Fortunately, MIMSY's designers had a good
educational background in the formal methods being used in MIMSY.
Everyone was familiar with preconditions, postconditions, axioms,
induction, recursion, etc. The training consisted of reading and
then discussing the ANNA and TSL reference manuals as well as some
of the classic papers in data type abstraction by Guttag [Gutt78].
This training reduced the amount of confusion and misconceptions
that would have otherwise damaged MIMSY's design. The use of formal
methods and notations in a design should be preceded by a careful
analysis of the current levels of experience in the formal methods
to be used and the formal notations and tools that will be part of
the design effort.

One aspect to the quality of a design is the degree to which
the design considers all the "special cases" that might occur.
Examples of special cases include initialization, shut-down, over-
loading, illegal inputs, etc. The ANNA and TSL languages have the
rigor and notation for expressing all these special cases. Once a
designer has mastered all the ANNA and TSL constructs that could be
applied to an Ada construct (such as exceptions, packages, tasks,
etc.), the designer tries to be as expressive as possible by seeing
if an Ada construct needs to have all its associated ANNA or TSL
constructs included with it. This naturally leads the designer to
consider special cases such as initialization and termination.

22

This tendency may have been helped by using the structured
"lsedit" editor. In using the editor the designer is presented with
a menu of choices for which (ANNA) construct is to be used. Cur-
rently this menu corresponds to the ANNA BNF syntax that defines
which kinds of ANNA statements can be associated with which kinds of
Ada statements. Often the different ANNA statements correspond to
how special cases are to be handled. A more powerful version of
such an editor might organize its menu explicitly by special cases
so the designers are further encouraged to consider these cases.

During a formal review of a design, the reviewers will demand
to see evidence that important issues such as steady state opera-
tions, system response to commands and special cases have been
addressed. The use of ANNA and TSL and the PDL provided proof to
the reviewers that these issues were considered. Because the use of
formal methods and a rigorous notation such as ANNA should limit the
amount of ambiguity in the design, the reviewers, designers and
managers (as well as future maintainers) should all be able to read
MIMSY's PDL and come away with the same understanding of the system.

5.4 USE OF ANNA WITH CAISETTE PACKAGE

The interface to the underlying support environment (such as
the operating system) was encapsulated in the CAISette package.
MIMSY's CAISette package is based on the CAIS [KIT84] interface
standard. Only those CAIS functions needed by MIMSY were included
in CAISette; other CAIS functions were not included.

One problem with the CAIS specification is that it does not
fully define the restrictions and behavior of the subprogram that
might be called. If MIMSY's CAISette package were defined to the
same level of detail as the CAIS specification, it might look
something like the first package (Figures 3 and 4) in Appendix B.
All the examples in Appendix B are for a small part of the CAISette
package, in this case from the scrolling terminal. Only the high-
lights of this package are presented.

Figures 5 through 8 in Appendix B replace the informal comments
from the first example (Figures 3 and 4) with ANNA statements that
define when exceptions are raised, etc. This second example is less
ambiguous than the first. The second example provides a much more
detailed interface for CAISette's users and designers. What is
still missing are the details of the behavior of a scrolling termi-
nal. The second example does not answer important questions such as
whether concurrent output to the terminal is serialized or is inter-
spersed.

23

Figures 9 and 10 in Appendix B contain just TSL statements for
the scrolling terminal package. To save space, the ANNA statements
from the second example are not repeated. In the actual CAISette
package specification both ANNA and TSL statements are used.

This third example uses "virtual Ada" to define a task type
that controls the output requests to an open terminal. The messages
being sent to the screen (consisting of cursor positioning commands
and the characters to be displayed) are serialized and output one at
a time. This means that the user of CAISette does not have to worry
about two tasks sending a string to the screen and having the
strings being interspersed. One string will be output in its proper
position, then the other string will be output in its position.

Note that the use of the "virtual" task does not force the body
of CAISette to be implemented with a task to serialize screen out-
put. For example, some Ada support environments will, by default,
serialize the output requests so the programmer does not have to add
any additional code to achieve this behavior. If MIMSY is ever
implemented on a support environment that does not serialize its
output, then the "virtual" tasks would likely be implemented with
real tasks in the body of the CAISette package. This is another
example of information hiding and design decision deferral until
necessary.

5.5 ADVANTAGES OF USING FORMAL METHODS IN MIMSY

The use of the formal methods described in this document on
MIMSY lead to benefits for both the current designers and reviewers
of MIMSY, as well as for future coders, users and maintainers. As
with many of the proposals for improving software engineering prac-
tices, the increased use of formal methods should increase the
quality and decrease the overall life cycle costs of software. The
use of formal methods in this project should help MIMSY in achieving
these goals.

By using a formal notation as the PDL, MIMSY allows for the
possibility of design analysis by ANNA and TSL tools when those
tools become available. One of MIMSY's requirements was that it
should support portability to other support environments and allow
more functions to be added. These future upgrades should be less
costly and time-consuming if the maintainers can analyze the effects
of their changes (possible introduction of errors to existing code,
new and excessive performance delays, etc.) before the changes are
committed to code. Future ANNA tools should allow for the creation
of executable designs. If the maintainers can begin the maintenance
cycle by working on the design documents (instead of working from

24

the implementation code), maintenance is more likely to result in a
usable system at less cost.

One technique used to validate system characteristics such as
the user interface is the construction of a rapid prototype. This
rapid prototype might be used by the customer during a formal review
to determine if the user interface is satisfactory. If the customer
finds (through hands-on experience) that the user interface is
satisfactory, then the customer will approve the interface, and
expect to see a similar interface in the final system.

One potential problem with rapid prototypes is that unless
project management control is exercised, the rapid prototype and the
actual system can become two divergent products. While developed
independently, the rapid prototype and the actual system must remain
compatible (have the same user interface behavior for example) or
else the knowledge (and customer acceptance) gained from the rapid
prototype cannot be inserted back into the actual system. Since the
customer will have used and approved the rapid prototype, the cus-
tomer may end up preferring the rapid prototype over the actual
system.

Part of MIMSY's development plan calls for the development of
rapid prototypes to validate the user interface for controlling the
windows and user processes. By rigorously defining the interfaces
and behavior (with ANNA and TSL) of MIMSY, rapid prototype builders
and the designers/coders should be able to proceed from the same
high-level design document and not end with incompatible products.
The system behavior of the final MIMSY product should be the same as
the behavior of the rapid prototype shown to the customer.

One way of validating a product is to build test cases that
provide inputs to the system as well as to define what the expected
outputs should be. Typically these test cases are constructed from
the original system requirements. These test cases are applied to
the completed system during final customer acceptance tests. If the
tests are successful then the system is accepted.

The use of a formal specification and design language (such as
ANNA) should provide a more precise definition of system behavior.
This should lead to the construction of more comprehensive test
cases. Since the use of ANNA and TSL (used with a good ANNA tool
set) can produce executable designs, this allows the application of
test cases at the Preliminary and Detailed Design Reviews as well as
the final customer acceptance review. The early applications of
these test cases can identify problems with the design early in its
life cycle, when such errors are cheaper to fix than during final
testing.

25

The use of a formal design notation such as ANNA should reduce
the possibility of different interpretations of the design docu-
ments. Already this section has shown how the same design document
might be used by the designers, coders, rapid prototype builders,
test case writers and customers. If the design documents were in a
natural language, each user of the document might read something
different from the ambiguous text. A formal design notation can
reduce the possibility of this occurring.

5.6 REVIEW PROCESS WHEN USING FORMAL METHODS

The preliminary design documents, consisting mostly of ANNA/TSL
text and supporting Buhr diagrams, were reviewed by the "customer"
at a Preliminary Design Review. As with most formal reviews, the
design documents were distributed to the attendees ahead of time for
their review. The actual review consisted of a presentation of the
design by the design team, followed by questions and comments on the
design by the customer.

The primary medium for both the presentation of the design and
the customer questions about the design were the ANNA axioms and
pre/postconditions. The discussion on how MIMSY would operate in
steady state and exceptional conditions was done by tracing the flow
of control and data through the axioms. Customer questions about
the current state of the system or the assumptions being made by a
MIMSY component were answered by referencing the appropriate axiom.
Special cases are discussed by tracing the raising and propagation
of exceptions. The use of ANNA as the design notation eliminated
many of the questions about what a particular sentence of the design
document really means.

The design review of MIMSY went as well as it did because the
customer reviewers had a good background in both the formal methods
being used and in the ANNA and TSL languages. As a result, the
customer did not require a lot of education before the design docu-
ments were delivered. While the use of a formal notation such as
ANNA on MIMSY requires high skill levels of both the designers and
the customer, the advantages gained from an unambiguous design
offset any costs from using skilled people on the project.

26

SECTION 6

CONCLUSIONS

While the MIMSY project involved relatively few people working
on a project for a short time, it did confirm the usefulness of for-
mal mathematical methods to the design of a system. MIMSY's "custo-
mers" judged the designs as being much more readable than the typi-
cal acquisition design document. All of the reviewers felt that
they were able to grasp the functionality as well as the behavior
that was in MIMSY's design.

The object orientation of the design methodology promoted
information hiding, reusability and other concepts of software
engineering. The notations provided by Ada, ANNA and Buhr diagrams
all supported an object orientation. The Buhr diagrams provided a
high level graphical representation of what was defined in detail in
the textual Ada, ANNA and TSL.

Formal methods need to be applied to a system's behavior as
well as its functionality. Ada's execution model provides a founda-
tion for describing the behavior of a system. ANNA and TSL allow
additional aspects of system behavior (beyond what Ada provides) to
be formalized.

The use of Ada's (tasking) model supports executable designs
and prototypes. There is no need to step outside of the PDL used
with MIMSY in order to create an executable design or prototype.
The design documents and the prototypes remain compatible.

Real-time embedded systems must be very robust, able to respond
to a wide variety of inputs and error conditions. The rigor of ANNA
encouraged designers and reviewers to cover more of these special
cases in the design.

Building a design in hierarchies requires that all levels of
the design have their functionality and behavior well-defined. The
higher levels of the design will be created according to assumptions
of the functionality and behavior of the lower levels. ANNA and TSL
provide notations that can precisely define component behavior. If
components are to be reused in different designs or systems, then
their functionality and behavior must be precisely defined or else
that component will not be very reusable.

Ada components, which are expected to be extensively reused,
are especially vulnerable to different interpretations of system

27

behavior. The CAIS is supposed to be extensively used, yet the
behavior of a CAIS implementation is subject to a variety of inter-
pretations. ANNA'S expressiveness points out the lack of behavioral
requirements in existing specifications such as the CAIS.

Designers and reviewers need training in design methodology and
notations of formal methods. Formal methods become useful only when
all the audiences of the design can understand them. A design nota-
tion should not become an obstacle to understanding the system's
design.

Formal methods are not part of the state of the practice.
Experience in using formal methods on real systems is needed before
formal methods become commonplace. The designers of real-time sys-
tem have typically not had the opportunity to use formal methods in
large real time embedded systems. The complexity of these systems
also gives their designers the greatest need for formal methods.

Designers need reusable design paradigms (perhaps from earlier
experiences) which can be used with ANNA and TSL. Otherwise the
designers will have to start from scratch when formal methods are
introduced.

Good ANNA and TSL tools are needed to use ANNA on real work.
Trying to use formal methods by hand on large projects can be very
tedious and expensive. A support environment is needed to make
these formal methods cost effective on large projects.

MIMSY's use of the modified "lsedit" editor made using ANNA
easier. This relieved the designers from having to remember all the
details of ANNA'S syntax.

The use of formal methods is only one part of the activities
involved in creating a large scale software system. The other
activities will have their own methodologies and support environ-
ments. ANNA tools must be part of an overall Ada programming and
lifecycle support environment. Formal methods should not be treated
in isolation but should instead be an integral part of the design.
This means configuration management, change control and the other
project activities called for by DOD-STD-2167.

ANNA and TSL do not address the design management information
called for in DOD-STD-2167. This information is easier to collect
and manipulate if it is kept with the design documents (such as PDL)
that it describes. Users have to tailor ANNA to capture design
management information (change logs, requirements traceability).

28

APPENDIX A

ANNA EXAMPLE

29

with SCREENCONTROLLER, PROGRAM_CONTROLLER; package
STRUCTURE_MANAGER is

MAXIMUM_NUMBER_OF_VIEWPORTS : NATURAL;
MAXIMUM_NUMBER_OF_PROCESSES : NATURAL;

type COMMANDRECORDS is record
PROCESS_NAME : PROCESS_NAMES;
VIEWPORT_NAME : VIEWPORT_NAMES;
COMMANDTYPE : COMMANDTYPES;

end record;

procedure START;
—| where
— preconditions
—| in MAXIMUM_NUMBER_OF_VIEVPORTS'DEFINED = FALSE and
—j in MAXIMUMNUMBEROFPROCESSES'DEFINED = FALSE,

— postconditions
—| out MAXIMUM_NUMBER_OF_VIEVPORTS =
— j (TERMINAL_CAP.NUMBER_0F_LINES-2)/2,
—| out MAXIMUMNUMBEROFPROCESSES =
—| (TERMINAL_CAP.NUMBER_OF_LINES-2)/2;

procedure ANALYZE_COMMAND(COMMAND_RECORD: in COMMANDRECORDS);
—| where
— preconditions
—| in MAXIMUM_NUMBER_OF_VIEWPORTS'DEFINED = TRUE and
—j in MAXIMUM_NUMBER_OF_PROCESSES'DEFINED = TRUE,

procedure TERMINATE_ALL;
—| where
—j out SCREEN_CONTROLLER.NUMBER_OF_VIEWPORTS = 0 and
—I PROGRAM_CONTROLLER.NUMBER_OF_PROCESSES = 0;

Figure 1. ANNA Example: Preconditions and Postconditions

30

axiom
for all SM : STRUCTURE_MANAGER'TYPE; C : COMMAND_RECORDS =>
STRUCTURE_MANAGER'INITIAL.MAXIMUM_NUMBER_OF_VIEWPORTS'DEFINED

- FALSE,
STRUCTURE_MANAGER'INITIAL.MAXIMUM_NUMBER_OF_PROCESSES'DEFINED

= FALSE,
SM[ANALYZE_COMMAND(C)].MAXIMUM_NUMBER_OF_VIEWPORTS -

SM.MAXIMUM_NUMBER_OF_VIEWPORTS,
SM[ANALYZE_COMMAND(C)].MAXIMUM_NUMBER_OF_PROCESSES =

SM.MAXIMUM_NUMBER_OF_PROCESSES,
SM[TERMINATE_ALL].SCREEN_CONTROLLER.NUMBER_OF_VIEWPORTS - 0,
SM[TERMINATE_ALL].PROGRAM_CONTROLLER.NUMBER_OF_PROCESSES = 0;

end STRUCTURE MANAGER;

Figure 2. ANNA Example: Package Axioms

31

APPENDIX B

CAISETTE EXAMPLE

33

package CAISETTE is

package CAISSCROLLTERMINAL is
—/
—/ DESCRIPTION:
—/ This package encapsulates all the functions necessary to
—/ control a CRT scrolling terminal such as a VTlOO-class
—/ terminal. The terminal must be capable of supporting
—/ direct cursor addressing and be able to output bold
—/ (highlighted) as well as normal characters.

procedure OPEN (TERMINAL : in FILE_TYPE ;
NODE : out NODETYPE;
MODE : in FILE_MODE := INOUTFILE);

— raise STATUSERROR if the terminal is already open
— will open the terminal and pass the NODE back to caller

procedure CLOSE (NODE : in NODETYPE);

— raise STATUSERROR if NODE isn't an open terminal
— will close terminal, preventing any further output
— attempts

procedure SETPOSITION (NODE : in NODETYPE;
POSITION : in POSITIONTYPE);

— NODE must be a currently open terminal
— will move the terminal's cursor to the position given

Figure 3. CAISette Without ANNA or TSL (OPEN and CLOSE)

34

procedure PUT (NODE : in NODETYPE;
ITEM : in CHARACTER);

— puts a character on terminal's screen at current
— cursor position. NODE must be an open terminal.

procedure PUT (NODE : in NODETYPE;
ITEM : in STRING);

— puts a string on screen at current cursor position.
— NODE must be an open terminal.

end CAISSCROLLTERMINAL;

private
type NODE TYPE is new TBD; end CAISETTE;

Figure 4. CAISette Without ANNA or TSL (PUT)

35

package CAISETTE is

package CAISSCROLLTERMINAL is
--/
—/ DESCRIPTION:
—/ This package encapsulates all the functions necessary to
—/ control a CRT scrolling terminal such as a VTlOO-class
—/ terminal. The terminal must be capable of supporting
—/ direct cursor addressing and be able to output bold
—/ (highlighted) as well as normal characters.

procedure OPEN (TERMINAL : in FILETYPE ;
NODE : out NODETYPE;
MODE : in FILEMODE := INOUTFILE);

—| where
— preconditions
—| TERMINAL_EXISTS(TERMINAL) /= TRUE =>
— | raise INTENTION_VIOLATION,
—I TERMINAL_NOW_OPEN(TERMINAL) /= TRUE =>
— I raise STATUSERROR,

— exceptions will not affect package state
— | raise INTENTION_VIOLATION =>
—| CAISSCROLLTERMINAL = in CAISSCROLLTERMINAL,
— | raise STATUSERROR =>
—| CAIS_SCROLL_TERMINAL = in CAIS_SCROLL_TERMINAL,

— postconditions
—| out TERMINAL_NOW_OPEN(TERMINAL) = TRUE,
— | out CURRENT NODE (TERMINAL) = NODE;

Figure 5. CAISette Example With ANNA (OPEN)

36

procedure CLOSE (NODE : in NODETYPE);
—| where
— preconditions
— I not exist T : FILE_TYPE => CURRENT_NODE(T) = NODE and
—| TERMINAL_NOV_OPEN(T) = TRUE => raise STATUSERROR,
— j raise STATUS_ERROR =>
—I CAIS_SCROLL_TERMINAL = in CAIS_SCROLL_TERMINAL,

— postconditions
— | out TERMINAL_NOV_OPEN(T) = FALSE,
—j out CURRENTPOSITION = (ROW => 1, COLUMN => 1);

—| axiom
—j for all P : CAIS_SCROLL_TERMINAL'TYPE; S,T : FILEJTYPE;
— j N,M : NODE_TYPE; D : OPEN_DISPLAY =>

basis step, initially no terminals are open

—| CAIS SCROLL TERMINAL'INITIAL.TERMINAL NOW OPEN(T) = FALSE,

induction step, if terminal last mentioned in OPEN then the
terminal is still open, if last mentioned in CLOSE then
the terminal still closed.

P[OPEN(S,N)].TERMINALNOWOPEN(T) =
if S = T then TRUE else P.TERMINALNOWOPEN(T),
P[0PEN(S,N)1.CURRENT_N0DE(T) =
if S = T then N else P.CURRENTNODE(T),
P[CLOSE(N)].TERMINAL_NOW_OPEN(T) =
if exist U : FILEJTYPE => CURRENTNODE(U) = M and N = M
and U = T then FALSE else P.TERMINAL JJOWOPEN(T),
P[CLOSE(N)].CURRENT POSITION = (ROW => 1, COLUMN => 1),

Figure 6. CAISette Example With ANNA (CLOSE)

37

procedure SET_POSITION (NODE : in NODETYPE;
POSITION : in POSITIONTYPE);

where — preconditions
not exist T : FILE_TYPE => CURRENTNODE(T) = NODE and
TERMINALNOWOPEN(T) = TRUE => raise STATUSERROR,
POSITION.ROW > SCREENSIZE.ROW or POSITION.COLUMN >
SCREENSIZE.COLUMN => raise LAYOUTERROR, — postconditions
out CURRENT_POSITION.ROW = POSITION.ROW and
CURRENTPOSITION.COLUMN = POSITION.COLUMN;
function UPDATE_POSITION (POSITION : POSITIONTYPE;
ITEM : CHARACTER) return POSITIONTYPE;
where return P : POSITIONTYPE =>
if ITEM = ASCII.BS
then if POSITION.COLUMN > 1
then P.COLUMN = POSITION.COLUMN - 1
else P.COLUMN = POSITION.COLUMN
end if
P.ROW = POSITION.ROW
else if ITEM = ASCII.LF
then if POSITION.ROW < SCREENSIZE.ROW
then P.ROW = POSITION.ROW + 1
else P.ROW = POSITION.ROW
end if
P.COLUMN = POSITION.COLUMN
endif
else if ITEM = ASCII.CR
then P.COLUMN = 1
P.ROW = POSITION.ROW
endif
else if ITEM = ASCII.HT
then P.COLUMN=P.COLUMN + 8 - ((P.COLUMN - 1) mod 8)
P.ROW = POSITION.ROW
endif
else if ITEM >= ASCII.SP and ITEM <= ASCII.TILDA
then P.COLUMN = POSITION.COLUMN + 1
P.ROW = POSITION.ROW
endif
else P = POSITION
endif

Figure 7. CAISette Example With ANNA (SETPOSITION)

38

procedure PUT (NODE : in NODEJTYPE;
ITEM : in CHARACTER);

—| where
— preconditions

—| not exist T : FILE_TYPE => CURRENT NODE(T) = NODE and
—| TERMINALNOWOPEN(T) = TRUE => raise STATUSERROR,

— postconditions
— | out CURRENTPOSITION =
—| UPDATE_POSITION(CURRENT_POSITION,ITEM);

procedure PUT (NODE : in NODEJTYPE;
ITEM : in STRING);

—| where
— preconditions

—| not exist T : FILEJTYPE => CURRENT NODE(T) = NODE and
—j TERMINALNOWOPEN(T) = TRUE => raise STATUSERROR,

— postconditions (see axioms, uses recursion of PUT(char)

—| axiom
—j for all P : CAISSCROLLTERMINAL'TYPE; N : NODEJTYPE;
— j C, D : CHARACTER; S : STRING =>

— strings are output as characters with head recursion

—| P[PUT(C & S)] = P[PUT(C);UPDATE_POSITION(CURRENT_POSITION);
— I PUT(S)],
—| P[PUT(C & D)] = P[PUT(C);UPDATE_POSITION(CURRENT_POSITION);
— j PUT(D);UPDATE_POSITION(CURRENT_POSITION)];

end CAISSCROLLTERMINAL;

private
type NODE TYPE is new TBD; end CAISETTE;

Figure 8. CAISette Example With ANNA (PUT)

39

package CAISETTE is

package CAISSCROLLTERMINAL is
—/
—/ DESCRIPTION:
—/ This package encapsulates all the functions necessary to
—/ control a CRT scrolling terminal such as a VTlOO-class
—/ terminal. The terminal must be capable of supporting
—/ direct cursor addressing and be able to output bold
—/ (highlighted) as well as normal characters.

task type DISPLAY_EMULATOR is
entry PUT (ITEM : in CHARACTER);
entry FINISHED;

end DISPLAYEMULATOR;

—: type 0PENED_DISPLAY is access DISPLAYEMULATOR;

procedure OPEN (TERMINAL : in FILEJTYPE ;
NODE : out NODEJTYPE;
MODE : in FILE_MODE := INOUT_FILE);

—+ when OPEN activates ?E where E is of type
—+ DISPLAY_EMULATOR then ?E running
—+ before ?E accepts at PUT;

procedure CLOSE (NODE : in NODEJTYPE);

—+ when not ?P calling ?E at PUT
—+ where ?P is of type CAIS_SCROLL_TERMINAL.PUT
—+ and ?E is of type DISPLAY_EMULATOR
—+ then CLOSE calling ?E at FINISHED
—+ before ?E terminated;

procedure SETPOSITION (NODE : in NODEJTYPE;
POSITION : in POSITIONJTYPE);

—+ when ?E accepts SETPOSITION at PUT
—+ where E is of type DISPLAYEMULATOR
—+ then POSITIONING_STRING'LENGTH occurences of
—+ (?E accepts PUT => ?E releases PUT) before ?E
—+ releases SET POSITION;

Figure 9. CAISette Example With TSL (OPEN and CLOSE)

40

procedure PUT (NODE : in NODETYPE;
ITEM : in CHARACTER);

—+ when ?E accepts CAISSCROLLJTERMINAL.PUT at PUT
—+ where E is of type DISPLAYEMULATOR
—+ and where GRAPHIC_RENDITION_SUPPORT = BOLD then
—+ BEGIN_BOLD'LENGTH + 1 + END_BOLD'LENGTH occurences of
—+ (?E accepts PUT => ?E releases PUT) before
—+ ?E releases CAISSCROLLTERMINAL.PUT;

procedure PUT (NODE : in NODETYPE;
ITEM : in STRING);

—+ when ?E accepts CAISSCROLLTERMINAL.PUT at PUT
—+ where E is of type DISPLAYEMULATOR
—+ and where GRAPHIC_RENDITION SUPPORT=PRIMARY_RENDITION
—+ then ITEM'LENGTH occurences oT (?E accepts PUT =>
—+ ?E releases PUT)
—+ before ?E releases CAIS_SCROLL_TERMINAL.PUT;

—+ when ?E accepts CAISSCROLLTERMINAL.PUT at PUT
—+ where E is of type DISPLAY_EMULATOR
—+ and where GRAPHIC_RENDITION_SUPPORT = BOLD then
—+ BEGINBOLD'LENGTH + ITEM'LENGTH + ENDBOLD'LENGTH
—+ occurences of (?E accepts PUT => ?E releases PUT) before
—+ ?E releases CAISSCROLLTERMINAL.PUT;
end CAIS SCROLL TERMINAL; end CAISETTE;

Figure 10. CAISette Example With TSL (PUT)

41

REFERENCES

Berg82 Berg, H. K., et al., Formal Methods of Program Verification
and Specification, Prentice-Hall, 1982.

Buhr84 Buhr, R.J.A., System Design With Ada, Prentice Hall, 1984.

Cher85 Cherry, George, "The PAMELA Methodology, A Process-Oriented
Software Development Method for Ada," Proceedings of
SIGAda/AdaJUG Conference, Association of Computing
Machinery, 1985.

Cloc81 Clocksin, William and Mellish, Christopher, Programming in
Prolog, Springer-Verlag, 1981.

DEC85a Digital Equipment Corporation, VAX Language-Sensitive
Editor, AA-DB33A-TE, March, 198F!

DEC85b Digital Equipment Corporation, Developing Ada Programs on
VAX/VMS, AA-EF86A-TE, February, 1985.

D0D83 Department of Defense, Ada Joint Program Office, Ada
Language Reference Manual, ANSI/MIL-STD-1815A-1983, 1983.

DOD85 Department of Defense, Defense Software Development
Standard, DOD-STD-2167,
June, 1985.

ESPR85 European Strategic Programme for Research in Information
Technology (ESPRIT), PROgram Development by SPECification
and TRAnsformation (PROSPECTRA) Project Summary, ESPRIT
Programme of the Commission of the European Communities,
1985.

Gerh80 Gerhart, Susan, et al., An Overview of AFFRIM: A
Specification and Verification System, PR-79-81, USC
Information Sciences Institute, 1980.

Gold83 Goldberg, Adele, Smalltalk-80: The Language and Its
Implementation, Addison-Wesley, 1983.

Goos83 Goos, Gerhard and Wulf, William (editors), DIANA, An
Intermediate Language for Ada, Lecture Notes in Computer
Science 161, Springer-Verlag, 1983.

43

REFERENCES (Concluded)

Gutt78 Guttag, John, Horowitz, Ellis and Musser, David, "Abstract
Data Types and Software Validation," Communications of the
ACM, Volume 21, Number 12, December lTHT.

Helm84 Helmbold, David and Luckham, David, Debugging Ada Tasking
Programs, Technical Report 84-262, Stanford University,
July 1984.

Helm85 Helmbold, David and Luckham, David, "TSL: Task Sequencing
Language," Ada in Use, Proceedings of the Ada International
Conference, Volume V, Issue 2, Association of Computing
Machinery, 1985.

Inte84 The Byron User's Manual, Version 1.1, Intermetrics, Inc.,
1984.

KIT84 KIT/KITIA, Common APSE Interface Set (CAIS), Version 1.4,
1984.

Luck84 Luckham, David, et al, ANNA, A Language For Annotating Ada
Programs, TR-84-261, Computer Systems Laboratory, Stanford
University, 1984.

Stal85 Stallman, Richard, GNU Emacs Manual, Emacs Version 16, June
1985.

TI83 APSE Interactive Monitor, Program Performance
Specification, CDRL Seq. No. A001, Texas Instruments
Incorporated, 1983.

44

