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ABSTRACT

The problem is to protect a set of t targets by n perfect

interceptors against an attack by m perfect weapons. If the

defender solves for an optimal preallocated preferential defense

and associated game value assuming m1 attackers, and the attacker

knows the assumption of the defender and utilizes m2 attackers,

he may be able to achieve significantly more damage than had the

defender assumed that there would be m2 attackers. The paper

treats the robustness of preallocated preferential defense to

assumptions about the size of the attack and presents results of

an alternative approach.
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PREFACE

Thiz study was conducted as part of the Independent Research Program

of the Institute for Defense Analyses, under which significant issues of

general interest to the defense research cormunity are investigated.
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I. INTRODUCTION

* In [8] Strauch analyzed preallocated preferential defense

of ICBMs, where the attacker does not know the number of inter-

ceptors assigned to defend each ICBM. Using the expected

survival rate as the objective function, he treated the problem

as a two-person zero-sum game and solved for the optimal strat-

egies of the attacker and defender. He assumed that both the

attacker and the defender are aware of the size of the attacking

missile force and interceptor forces to be used in the engagement,

and that both the attacking weapons and defending weapons a.e

perfect. In this paper we seek to explore the results u.oder

Strauch's model when the defender is unable to determine tihe size
of the attacking force and employs a strategy optimized with
respect to an incorrect assumption.

The preallocated preferential defense problem with perfect

weapons was also studied by Matheson in [5]. Later, he solved

the more general problem with imperfect defenders [6]. Three

preallocated preferential defense computer models allow for
imperfect as well as perfect defenders ([3], [4] and [7]). While

the present paper treats in some detail the case of perfect

attacking and defending weppons, the same approach can be used to
explore the preallocated preferential defense problem with

imperfect weapons.

Section II contains a summary of Strauch's model, including

its optimal strategies and resultant payoff.

Section IIT discusses theoretical and computational aspects
of the determination of expected target survival rate when the

defender employs the preallocated preferential defense specified

by Strauch but the attacker behaves differently.

Section IV presents numerical results covering a wide

spectrum of attack and defense resources and strategies.

J
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Section V compares results given in Section IV with those

for robust preallocated preferential defense as treated in [1].

A computer model implementing the theory of [1] is documented

in [2].

2



II. STRAUCH'S GAME

In this section is summarized the basic framework and the
results of the game presented by Strauch in [2]. The essential
outline of this scenario is a two-player, zero-sum game where one
player, using m attacking missiles, attempts to destroy a field

of t targets defended by his opponent with n interceptors. All
targets are of equal value. Each missile or interceptor may

attack or defend one target. At a given target all the inter-
* ceptors defending it have one opportunity to attack one incoming

missile each. Afterwards, the surviving missiles, if any,

proceed to attack the target. We assume perfect reliability,

i.e., the probability that an interceptor will destroy an
* attacking missile and the probability that any nissile which

survives interception will destroy the target are one. Thus, a

target is destroyed if the missiles attacking it outnumber the
interceptors defending it. The attacker and the defender assign,
respectively, missiles and interceptors to the targets without
either party being aware of his opponent's exact allocation. It
is also assumed that both players are able to ascertain correctly

the size of the force their opponents have deployed.

We wish to find the optimal strategies available to the
attacker and the defender. The attacker's strategy is specified
as a set of x i's, each defined as the ratio of the number of

targets assigned i attacking missiles per target to the total

number of targets:

x = attacker's strategy

= (x 0 , x 2 , ... , xi, ... , XM),

where

xi = the fraction of targets
assigned i attacking missiles

3



Each strategy is subject to the following conditions:

1) All the targets are accounted for:

m•xi = 1•

i=0

2) The number of missiles assigned is
equal to the number available:

E(i = = m/t = mean number of missiles

i=O per target.

The defender's strategy is defined similarly:

y = defender's strategy

- (Y0, Y2, -'-- YJ Yn)'
where

yj = the fraction of targets
assigned j interceptors,

n

j=0

and
n

E J )= Q = n/t = mean number of interceptors

J=0 per target.

Given any pair of strategies, we are able to calculate

the expected number of targets that will survive. Let us consider

the situation at a single target. The probability that it will

41
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be attacked by i missiles and be defended by j interceptors is

equal to the product of xi and yj. We know that a target will

be saved if j is greater than or equal to i. Thus the probability

of survival for any target is equal to the sum of all xi'Y

where j>i:

m nv S(x, y) = xi.y 3  (2.1)L i=0 j=i

Since the expected value of a sum of random variables is equal

to the sum of the expected values of the random variables, the

expected number of targets that will survive is t-v. Thus, v

is also equal to the expected value for the ratio of the targets

that survive over all the targets. We assume that the attacker

desires to minimize (and the defender to maximize) this value.

There exist two alternative cases, henceforth known as the

attack dominated game and the defense dominated game. The attack

and defense dominated games correspond respectively to the

expected survival rate for any target being less than or greater

than 1/2. If P and v are integers, then the game is attack

dominated if U > v and defense dominated otherwise. (When p and

v are not integers this relation does not hold exactly. This

situation arises because the defender wins ties and the

allocations must be in integers.) For simplicity's sake, we

only exhibit the solution for this integer case in the following

analysis and in the examples of Section IV. (For the general

solution, consult the Appendix of [2].)

L
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If the game is attack dominated, Z, the maximum number of

interceptors a defender would wish to place at any one target, is

2u-1. The optimal strategy for the attacker is to assign his

missiles in such a way that the number of missiles attacking

any target appears to be a number chosen randomly between 1 and

2, or:

xi = 1/A, 1 < I < (2.2)

The optimal strategy for the defender is to do the same thing at

as many targets as possible, with the remaining targets receiving

zero interceptors:

yj = 2v/(W(Z+l)), 1 < j < 2 (2.3a)

Y0 = 1 - 2v/(21+) . (2.3b)

The probability of survival for a given target is:

v = v/(2p-l) . - (2.4)

If the game is defense dominated, then Z = 2v. The optimal

strategy for the defender is to assign interceptors in such a way

that the number of interceptors for each target appears to have

been chosen randomly between zero and 2:

yj = I/(Z+l), 0 < j < 2 . (2.5)

The optimal strategy for the attacker is to attack as many targets

as possible, as if the number of missiles chosen for each target

was selected randomly between 1 and 2:

6



x= 2v/W((+l)), 1 < i < (2.6a)

x= 1 - 20/(2+i) . (2.6b)

Under this regime, the probability of survival.is:

v = i-u/(2v+l) . (2.7)

To illustrate this result we consider two numerical

examples. In both cases the defender has n 6000 interceptors

to protect t = 1000 targets:

1) Let m (the number of attacking missiles) = 9000. Then

P = m/t = 9, v = n/t = 6

Both P and v are integers; the game is attack dominated and

£ = 2p-l = 17

The attacker's optimal strategy is:

x = 1/A = 1/17, 1 < i < 17

The defender's optimal strategy is:

Y0 = I-2v/(Z+l) = 1/3

yj = 2v/(Z(Z+!)) = 2/51, 1 < J < 17

The expected survival rate is:

v = v/(2p-l) 6/17 = .3529

7



2) Let m = 3000. Then

S=m/t = 3, v= n/t= 6

The game is defense dominated and

V.=2v = 12

The attacker's optimal strategy is:

x= l-2u/(.z(+l)) = 7/13

xi = 2v/(X(Z+I)) = 6/156, 1 < i < 12

The defender's optimal strategy is:

yj = 1/(Z+l) = 1/13, 0 < j < 12

The expected survival rate is:

v = 10/13 = .7692

In summary, there exist an optimal attack strategy which

we will call x* and an optimal defense strategy which we call

y*. As discussed above, both x* and y* are determined by the

players using the information available to them, namely, the

number of attacking missiles, the number of interceptors and

the number of targets, or:

x* = x*(m, n, t) , y*(m, n, t)

For each combination of m, n, and t, the pair of optimal

strategies x* and y* defines an expected target survival rate,

which we denote by v*:

8



v*= S(x*, y*)

A player, whether attacker or defen'-r, will not do worse than

v* if he plays his optimal strategy x* or y*. Thus, v* represents

an equilibrium for this game, and we call v* the "optimal game

value."

Note that a proof of the results presented in this section

may be found in the Appendix of [2].



III. ALTERNATIVE STRATEGIES

The assumption that the defender is aware of the correct

attack size is a strong one. Consider the situation where the

defender optimizes against an attack mA choosing yA = y*(mA n,t).

If the actual attack size turns out to be m, different from mA

then the defender may not be acting optimally and thus subject

to exploitation by the attacker.

The attacker will behave in one of two ways:

I) The attacker will use x* regardless of what the

defender does.

II) The attacker will be able to discover the

defender's strategy, yA, and optimize against

it.

Assumption I implies that the attacker is unable to establish

with certainty the defender's planning strategy. From Section

AA
• ~II, we are able to solve explicitly for x* and yA given m, n,

t, and mA. To find the survival rate of this scenario, we simply

apply equation 2.1 to x* and 7A. We denote the resulting value

for the expected target survival rate as

vI = S(x*, yA)

We would expect vI to be less than or equal to v* for a given

m, n, and t, since the defender is not utilizing the correct

optimal strategy and thus may suffer as a result. He will at

best achieve a survival rate equal to the optimal game value,

since the attacker is employing x*.

Under Assumption II, the attacker is informed of the

defender's strategy. (Actually, simply knowing mA would be

sufficient because the attacker may then reconstruct yA with the

10



information available to him.) Now that he is aware of how the

defender is deviating from the optimal defensive strategy, the

attacker can construct a strategy, which we denote by xA, that
A Awill enable him to take full advantage of y To find x we

set up a linear minimization program with equation 2.1 as the

objective function:

m n A
min xi-Y A

i=0 j=i

subject to:

xi= 1

• i-xi = m/t

xi0O, i=O, ... , m

The fact that the attacker knows the y As makes the objective

function linear. The two linear constraints are identical to

the conditions which define a permissible attacker's strategy.

Therefore, any simplex routine should provide a solution to the

program, with the optimal attacker's strategy and the resulting

expected target survival rate:

x = xA (m, t, y )

viI =S(xA, yA)

We would expect vii to be less than or equal to both v* and vi,
Abecause the attacker is able to use the optimal attack x

against yA rather than simply x*.

1X2



IV. EXAMPLES

We illustrate the methodology and results of Section III by

examining solutions for three different numbers of interceptors:

n = 3000, 6000, and 9000. The number of targets for all the

examples is set at 1000. For each value of n we solve for v*,

v I and vii, under various defender assumptions regarding the

attack size. The attack sizes range from 1000 to 18,000 for

n 3000 and 6000, and from 1000 to 24,000 for n 9000.

Case I: t = 1000, n 3000

AA) Let m < 3000

When the anticipated number of attacking missiles is less

than the number of interceptors, the defender believes he

dominates the game and employs the same strategy so long as m

is equal to or less than n.

AThe defender's strategy y is:

A
yj = 1/7 0 < < 7

For m < 3000, Figure 4.1a shows that v*, vI, and vII are equal.

Clearly, so long as the actual attack size is less than the

defense size, the defende.- will be deploying his interceptors

optimally even if m A is not the actual attack size. A single

strategy will guarantee the defender the optimal game value for

all m < n.

As Figure 4.1a demonstrates, v I remains equal to v* even

when the real attack size is greater than the assumed attack
A

size. Apparently, the use of x* against y will not give the

attacker any result less than the optimal game value. This is

not surprising. Either player in a two-person zero sum game

12
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can expect the game va:ue 1!f he employs any combination of his

"active" strategies, if his op,.onent uses his optimal strategy.

A valid "combination cf active str.-ategies for the defender" in

this game is one in which no target 1s assigned more than Z

interceptors, as defined in Section HI. Now let us suppose that

the game is attacker dominated and the defender prepares against

the correct attack size. The maximum number of missiles, P.,

he assigns to any target must be greater "han the maximum number

he assigns when he believes the game to be defender dominated.

Thus, whenever the defender believes he dominrates and the attacker

employs x*, the expected rate of survival for the targets will

not differ from v* for any attack size.

Curve C1 of the same graph, however, shows that v YT does

deviate significantly from v*. Every attack size greater than

L4000 results in an expected survival rate less than v*. At

N m = 7000, all tne targets are destroyed. Since the maximurn numberIi of interceptors allocated to a target is 6, the attacker, by

attacking each target with 7 missiles, can knock them all out.

No longer restricted to using x*, the attacker is able to
A A

M capitalize on y by using x

We now look at what happens when the defender believes

that the game is attacker dominated.

B) Let mA = 6000

AThe defender's strategy y is:

A
Y.0 =1/2

Ay =1/22 1 < j <ll

Comparing curves A and B2 of Figure 4.1b, we note that for

m < 6000 vI is smaller than v*, but after the two converge at

14
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6000, vI remains equal to v*. The reason why vI does not equal

v* for the entire range of attack sizes is that (unlike in A)

the maximum number of missiles the defender puts at a target

when he overestimates the attack size is larger than ' For

example, let the actual attack size be 3000. For i = 3 and

v = 3, k = 6, whereas the maximum interceptors the defender

deploys at a target under yA is 11. Therefore, yA does not

satisfy the condition we described earlier for a valid "combination

of active strategies." Intuitively, one may consider this as

having "wasted" interceptors by putting more than Z at any target.

When the defender underestimates the attack size (mA < M), this

is no longer the case. vI and v* are equal.

v II(curve C2 ir Figure 4.1b), as expected, is significantly

lower than vI and v*. At m = 1000 the attacker is able to take

advantage of the fact that half of the targets are undefended

even though the interceptors outnumber the attacking missiles.

The expected survival rate is less than 60% of the optimal game

I value. Between 1000 and 6000, the difference shrinks until the

expected attack size equals the real attack size. The defender's

strategy is optimal (cnly) at this point. For m > 6000, vii

diverges from v* and is reduced ýo zero at m = 12,000. Since

the maximum number of interceptors located at any target is 11,

the attacker can destroy all the targets by attacking each target

with 12 missiles. m = 12,000 is the minimum attack size that

makes this deployment feasible.

C) Let !A = 9000

The defender's strategy is:

A.z PY
0 = 2/3

A= 1/51 1 <j < 17

16



As Figure 4.1b and 4.1c shoW, the qualitative behavior for

m = 9000 is very similar to that for m = 6000. When the defender

overestimates the attack size, vI is lower than v*, but when he

underestimates, they are equal. With v11 , when he overestimates

attack strength (m < mA), he suffers by leaving too many targets

without protection. When he underestimates attack strength he

leaves his defenses too widespread and is obliterated. Quanti-
A =A=tatively v i (mi = 9000) is lower than vI (m = 6000) for

small attack sizes. But when the attack size turns out to be

large it takes 6000 more attacking missiles to destroy all the

targets.

Figure 4.1d combines Figures 4.1a, 4.1b and 4.1c to allow

cross-comparison.

Case II: t = 1000, n = 6000

A) Let mA < 6000

The defender believes that he dominates. The defender's

strategy is:

Ay. 1/13 0 < j < 12

The values for v*, vi, and vii are displayed graphically

on curves A, B1, and CI of Figure 4.2. A review of Figure 4.1a

verifies that the qualitative results are comparable to that for

Case I. Just as in Case I, when the defender believes that he

dominates, vI is identical to v*. vii is equal to v* as well,

until the game becomes attacker dominated. When the attacker

is able to use xA, all the targebs are annihilated at m = 13,000.

For attack sizes less than 6000, the defender behaves optimally.

But when the game turns out to be attacker dominated, yA leaves

the defender very vulnerable.

17
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AB) Letm = 9000

The defender believes the attacker dominates the game. The

defender's strategy is:

y0 = 1/3

A

y A= 2/51 , <ij < 17

As in Case II, part A) above, this is analogous to the

results in Case I. (Compare Figure 4.2 with Figure 4.1d). The

qualitative characteristics are the same as the other "defender

thinks attacker dominates" examples. Quantitatively, vii and

v* are equal at m = mA = 9000. As in Case I, part C), if the

attacker knows the defender's planning strategy, then all the

targets are destroyed when the attack size reaches 18,000.

Case III: n = 9000

A) Let mA < 9000.

The defender believes that he dominates. The defender's

strategy is:

A = 1/19 0 < < 18*Yj 11 --j <1

B) Let mA = 12,000

The defender believes that the attacker dominates. The

defender's strategy is:

AYO= 1/4

32 0 < j < 23

21



The qualitative results are similar to the first two cases. See

Figure 4.3.

22
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SECTION V. COMPARISONS WITH ROBUST STRATEGIES

As shown above in Section IV, when the defender does not

estimate correctly the actual attack size, Strauch's preallocated

preferential defense may lead to very poor results relative to

the game value. In [1], Bracken, Brooks, and Falk propose an

alternate, "robust", defense that can achieve expected survival

rates which are as close as possible to the game values v* over

a range of attack sizes. The criterion used for robustness is
the ratio of the expected survival rate of a particular strategy

y to the game value. The optimal robust defense is the strategy
that maximizes the minimum of these ratios over a range of

attack sizes. We assume that the attacker can discover and

therefore optimize against whatever strategy the defender employs
1and that the defender is aware of this1. It turns out that this

problem may be formulated as a linear program. The solution of

this program yields the robust defense for the specified range

of attack sizes. We denote this defense as yR (), where T

represents the range or set of attack sizes for which the defense

is robust. We designate the attacker's strategy that minimizes

the expected survival rate against this defense as x R and the

expected survival rate as vR:

y R = S(xR, yR)

For each of the three defense sizes examined in Section IV
Rwe solve for two strategies y one with A1 = {1000, 2000,

12,0001 and one with = A = {1000, 2000, ... , 18,0001.R yR
x is then determined against each for each attack size from

1000 to 27,000.

1!This assumption corresponds to that of Case II,II in [1].
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Results for n = 3000 are given in Figure 5.1. Utilizing
yR(1) (see D1 on the graph) guarantees the defender at least

65% of the game value from 1000 through 12,000 attackers. Where

C1 and C2 go to zero quickly as attack size increases, D1 goes

to zero at about the same attack size as C However, D1 is much
better than C3 for small attacks. Utilizing yR(A2) (seebette than2 (se on

the graph) the defender improves considerably his chances for

saving a significant number of targets against very large attack

sizes, at some expense to smaller attack sizes. Below 12,000

yR(Al) does better, but above it yR(K2) does better. yR(A 2 )

guarantees over A2 at least 57% of the game value and will not

yield a zero expected survival rate until the attack size

reaches 27,000.

As shown in Figure 5.1, the robust strategies do not perform

better than those based on Strauch's defense over all attack

sizes. They may not even be superior over a majority of attack

sizes. (Compare C2 and C3 with D1 ). What the robust strategy

accomplishes is to provide insurance against doing very poorly

relative to the game value for any attack size. If a defender

is both concerned with maintaining some level of survival against

large attacks and with avoiding disproportionate losses against

smaller attacks, the robust strategy is preferred.

Figure 5.2 presents results for n = 6000. The qualitative

behavior is similar to that for n = 3000. When the defender has

6000 interceptors at his disposal, yR(Al) will guarantee over

Al an expected survival rate of 83% of the game value, and yR(A 2 )

will guarantee over A2 70% of the game value. Naturally yR(A 1 )

does better than y R(T 2 ) for attack sizes less than or equal to

12,000, while the opposite is true for attack sizes greater than

or equal to 18,000. y (A 1 ) will not yield an expected survival

rate of zero until m = 18,000, thus avoiding the early collapse

to zero of Strauch's defense for mA < 6000. At the same time,

while maintaining only slightly lower resistance to higher attack

25
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sizes (12,000 to 18,000) than Strauch's defense for mA = 9000,

the robust defense for A avoids very bad results (relative to

the game value) for small attack sizes (1,000 to 3,000). y R( 2 )

gives up some of yR(A 1 )Is advantages against smaller attack sizes
in order to achieve greater survivability against very large

attacks. Like its counterpart for n = 3000, y R(A) will not

yield an expected survival rate of zero until m = 27,000.

Figure 5.3 presents results for n = 9000. yR(l) ensures

over A 1 a vR which is 96% of v* and yR(K 2 ) ensures over T2 a

vR which is 82% of v*.

As all of the examples demonstrate, using Strauch's pre-

allocated preferential defense when the defender must protect

himself against a wide range of attack sizes can lead to serious

difficulties for relatively small and large attacks. A robust

strategy, however, enables the defender to achieve expected

survival rates "close" to the game value without doing badly at

either end of the range of possible attack sizes. Indeed, even

when the attack size can be narrowed to within a fairly small

region, the robust preallocated preferential defense methodology

is still applicable, for as A approache, a single attack size,

y (A) approaches y* for that attack size.
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APPENDIX

Tables 1, 2 and 3 contain the numerical values plotted in

Figures 4.1, 4.2 and 4.3 of Section IV.

Table 4 contains the robust defense strategies of the

examples of Section V, together with formulas for computing the

optimal attack strategies. Table 5 contains the numerical

values plotted in Figures 5.1, 5.2 and 5.3.
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Table 4

Robust Defense Strategies for Section V

n= 3000 n =6000 n= 9000

y,,,. R y - yR) yi( R) yi(A l) yi(R 2 )

0 .442 .510 .234 .349 .087 .225
1 ,093 .082 .0614 .0514 .051 .01432 .093 .082 .064 .054 .051 .043

3 .093 .082 .o64 .054 .051 .043
.062 .055 .064 .054 .051 .043

5 .039 .035 .064 .054 .051 .043
6 .015 .024 .038 .054 .048 .043
7 .015 .018 .038 .044 .048 .043
8 .015 .014 .038 .033 .048 .043
9 .015 .006 .038 .014 .048 .033

10 .015 .006 .038 .014 .048 .023
11 .015 .006 .038 .014 .048 .023
12 .015 .006 .038 .014 .048 .023
13 .015 .006 .038 .014 .048 .023
14 .015 .006 .038 .014 .048 .023
15 .015 .006 .038 .014 .048 .023
16 .015 .006 .038 .014 .048 .023
17 .008 .006 .025 .014 .048 .023
18 .000 .006 0 .014 .048 .023
19 .000 .006 0 .014 .044 .023
20 .000 .006 0 .014 .000 .023
21 .000 .006 0 .014 .000 .023
22 .000 .006 0 .014 .000 .023
23 .000 .006 0 .014 .000 .023
24 .000 .006 0 .014 .000 .023
25 .000 o006 0 .014 .000 .023
26 .000 .003 0 .007 .000 .023
27 .000 .000 0 .000 .000 .000

RFor every attack size m, let x be defined as follows

Rxi = 1.0 i = m/t

Rxj = 0 j 34 m/t

This strategy will be optimal against all six yR listed

above.
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Table 5
Expected Survival Rates for Section V

n= 3000 n= 6000 n= 9000
m

A1  A2  A1  A2  A1  A 2

1000 .5576 .4901 .7634 .6506 .9126 .7750
2000 .4646 .4086 .6998 .5964 .8619 .7319
3000 .3717 .3270 .6362 .5422 .8112 .6889
4000 .2787 .2453 .5726 .4880 .7605 .6458
5000 .2168 .1907 .5090 .4338 .7098 .6028
6000 .1774 .1561 .4454 .3796 .6623 .5597
7000 .1620 .1321 .4071 .3254 .6147 .5166
8000 .1465 .1145 .3689 .2819 .5672 .4736
9000 .1311 .1010 .3306 .2487 .5196 .4305

10000 .1157 .0952 .2923 .2345 .4721 .3973
11000 .1003 .0894 .2540 .2203 .4245 .3739
12000 .0848 .0837 .2158 .2061 .3769 .3505
13000 .0694 .0779 .1775 .1919 .3293 .3272
14000 .0540 .0721 .1392 .1777 .2818 .3038
15000 .0385 .0664 .1010 .1635 .2342 .2804
16000 .0231 .0606 .0627 .1492 .1867 .2570
17000 .0077 .0548 .0245 .1350 .1391 .2337
18000 .0000 .0491 .0000 .1208 .0916 .2103
19000 .0000 .0433 .0000 .1066 .0440 .1869
20000 .0000 .0375 .0000 .0924 .0000 .1635
21000 .0000 .0317 .0000 .0782 .0000 .1402
22000 .0000 .0259 .0000 .0640 .0000 .1168
23000 .0000 .0202 .0000 .0498 .0000 .0935
24000 .Q000 .0144 .0000 .0356 .0000 .0701
25000 .0000 .0086 .0000 .0213 .0000 .0467
26000 .0000 .0029 .0000 .0071 .0000 .0234
27000 .0000 .0000 .0000 .0000 .O00U .0000
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