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ABSTRACT

The problem is to protect a set of t targets by n perfect
interceptors against an attack by m perfect weapons. If the
defender solves for an optimal preallocated preferential defense
and associated game value assuming my attackers, and the attacker
knows the assumption of the defender and utilizes m,
he may be able to achieve significantly more damage than had the
defender assumed that there would be m, attackers. The paper
treats the rcbustness of preallocated preferential defense to
assumptions about the size of the attack and preéents results of

an alternative approach.

attackers,
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PREFACE

This study was conducted as part of the Independent Research Program
of the Insititute for Defense Analyses, under which significant issues of

general interest to the defense research community are investigated.
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I. INTRODUCTION

In [8] Strauch analyzed preallocated preferential defense
of ICBMs, where the attacker does not know the number of inter-
ceptors assigned to defend each ICBM. Using the expected
survival rate as the objective function, he treated the problem
as a two-person zero-sum game and solved for the optimal strat-
egies of the attacker and defender. He assumed that both the
attacker and the defender are aware of the size of the attacking
missile force and interceptor forces to be used in the engagement,
and that both the attacking weapons and defending weapons a.ce
perfect. In this paper we seek to explore the results under
Strauch's model when the defender is unable to determine the size
of the attacking force and employs s strategy optimized with
respect to an incorrect assumption.

The preallocated preferential defense problem with perfect
weapons was also studied by Matheson in {5]. Later, he solved
the more general problem with imperfect defenders [6]. Three
preallocated preferential defense computer models allow for
imperfect as well as perfect defenders ([3], [4] and [7]). While
the present paper treats in some detall the case of perfect
attacking and defending weavons, the same approach can be used to
explore the preallocated preferential defense problem with
imperfect weapons.

Section II contains a summary of Strauch's model, including
its optimal strategies and resultant payoff.

Section IIT discusses theoretical and computational aspects
of The determination of expected target survival rate when the
defender employs the preallocated preferential defense specified
by Strauch but the attacker hehaves differently.

Secticn IV presents numerlical resuits covering a wide
spectrum of attack and defense rescurces and strategies.
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Section V compares results glven in Sectlon IV with those
for robust preallocated preferential defense as treated in [1].
A computer model implementing the theory of [1] is documented
in [2].
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IT. STRAUCH'S GAME

In this section is summarized the basic framework and the
results of the game presented by Strauch in [2]. The essential
outline of this scenario is a two-player, zero~sum game where one
player, using m attacking micsiles, attempts to destroy a field
of t targets defended by his opponent with n interceptors. All
targets are of equal value. Each missile or interceptor may
attack or defend one target. At a given target all the inter-
ceptors defending it have one opportunity to attack one incoming
missile each. Afterwards, the surviving missiles, if any,
proceed to attack the target. We assume perfect reliability,
l.e., the probability that an interceptor will destroy an
attacking missile and the probability that any nissile which
survives interception will destroy the target are one. Thus, a
target 1s destroyed if the missiles attacking it outnumber the
interceptors defending it. The attacker and the defender assign,
respectively, missiles and interceptors to the targets without
either party being aware of his opponent's exact allocation. It
is also assumed that both players are able to ascertain correctly
the size of the force their opponents have deployed.

We wish to find the optimal strategies available to the
attacker and the defender. The attacker's strategy is specified

as a set of x,'s, each defined as the ratio of the number of

i
targets assigned i1 attacking missiles per target to the total

number of targets:

X = attacker's strategy
= (xo, Koy weey Xg5 enes xm),
where
X; = the fraction of targets

assigned 1 attacking missiles




Each strategy is subject to the following conditions:

1) All the targets are accounted for:

m
}E:Ki =1 .
i=0

2) The number of missiles assigned is
equal to the number available:

m .
Z(i-xi) =y = m/t = mean number of missiles
i=0 per target.

The defender's strategy is defined similarly:

y = defender's strategy

= (yo’ y2’ AR | yJ’ MR ] yn),

where
yj = the fraction of targets
assigned j interceptors,
n
. =1
273
J=0
and

n
2:(j'y ) = v = n/t = mean number of interceptors
§=0 J per target.

Given any pair of strategies, we are able to calculate
the expected number of targets that will survive. Let us consider
the situation at a single target. The probability that it will
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be attacked by i missiles and be defended by j interceptors is
equal to the product of Xy and yj‘ We know that a target will

be saved if j is greater than or equal to i. Thus the probability
of survival for any target is equal to the sum of all xi-yj

where j>1i:

m n
v =8(x, y) = Z E Xg°¥y (2.1)
i=0 Jj=i

Since the expected value of a sum of random variables is equal
to the sum of the expected values of the random variables, the
expected number of targets that will survive is tev. Thus, Vv
is also equal to the expected value for the ratio of the targets
that survive over all the targets. We assume that the attacker
desires to minimize (and the defender to maximize) this value.

There exist two alternative cases, henceforth known as the
attack dominated game and the defense dominated game. The attack
and defense dominated games correspond respectively to the .
expected survival rate for any'target being less than or greater
than 1/2. If p and v are integers, then the game is attack
dominated if u > v and defense dominated otherwise. (When u and
v are not integers this relation does not hold exactly. This
situation arises because the defender wins ties and the
allocations must be in integers.) For simplicity's sake, we
only exhibit the solution for this integer case in the following
analysis and in the examples of Section IV. (For the general

solution, consult the Appendix of [2].)
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If the game is attack dominated, 2, the maximum number of

interceptors a defender would wish to place at any one target, is
2u-1l. The optimal strategy for the attacker is to assign his
missiles in such a way that the number of missiles attacking

any target appears to be a number chosen randomly between 1 and
%, or:

x, =1/2, 1 <1 <2 . (2.2)

i

The optimal strategy for the defender is to do the same thing at
as many targets as possible, with the remaining targets receiving
zero interceptors:

yy = 2v/(2(2+1)), 1 < J < & (2.3a)
Yo = 1 - 2v/(2+1) . (2.3b)
The probability of survival for a given target is:
v = v/(2u=-1) . . (2.4)
If the game is defense dominated, then 2 = 2v. The optimal
strategy for the defender 1s to assign interceptors in such a way
that the number of 1nterceptofs for each target appears to have
been chosen randomly between zero and %:

Vi = 1/(2+1), 0 < j < 2 - (2.5)

The optimal strategy for the attacker is to attack as many targets

as possible, as 1f the number of missiles chosen for each target

was selected randomly between 1 and £:
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x; = 2u/(0(241)), 1 <1 < 2 (2.6a)

Xg = 1~ 2u/(L+1l) . (2.6b)

Under this regime, the probability of survival.is:

v = l-u/(2v+1l) . (2.7)

To illustrate this result we consider two numerical
examples. In both cases the defender has n = 6000 interceptors
to protect t = 1000 targets:

f; 1) Let m (the number of attacking missiles) = 9000. Then
p=m/t =9, v=n/t =6 .
Both 1 and v are integers; the game is attack dominated and
g = 2p-1 =17 .
The attacker's optimal strategy is:
X, = /% = /17, 1 <1 <17 .

;- The defender's optimal strategy is:

3 ¥g = 1-2v/(1+1) = 1/3

C ys = 2v/(2(2+1)) = 2/51, 1 < J <17 .

The expected survival rate 1s:

f v = v/(2u=1) = 6/17 = .3529 .

-3
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iy .
S 2) Let m = 300C. Then

]
N

i B =m/t =3, v=n/t
Jitd The game is defense dominated and

23 g = 2v = 12

The attacker's optimal strategy is:

Y xg = 1-2u/(2(241)) = 7/13
Xy = 2u/(e(2+1)) = 6/156, 1 < 1 < 12
;5 The defender's optimal strategy is:

ot y; = 1/(s41) = 1/13, 0 <§ <12 .
?%? The expected survival rate is:

é?
e v = 10/13 = .7692 .

In summary, there exist an optimal attack strategy which
we will call x¥ and an optimal defense strategy which we call

v*¥. As discussed above, both x¥ and y*¥ are determined by the

] players using the information available to them, namely, the
bt el

§§ number of attacking missiles, the number of interceptors and
?i the number of targets, or:

by

|

45 x*¥ = x*¥(m, n, t) , y* = y*¥(m, n, t)
‘::;";

ﬁ% For each combination of m, n, and t, the pair of optimal

strategies x*¥ and y* defines an expected target survival rate,
which we denote by v¥;
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v¥ = S(x¥, y¥) .

A player, whether attacker or defen cr, will not do worse than

v¥ if he plays his optimal strategy x* or y¥. Thus, v¥ represents
an equilibrium for this game, and we call v¥ the "optimal game
value."

Note that a proof of the results presented in this section
may be found in the Appendix of [2].
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IIT. ALTERNATIVE STRATEGIES

The assumption that the defender is aware of the correct

s

attack size is a strong one. Consider the situation where the

defender optimizes against an attack mA, choosing yA = y*(mA,n,t).

A
L If the actual attack size turns out to be m, different from mA,
§5 then the defender may not be acting optimally and thus subject
Y'Q,'
%% to exploitation by the attacker.
W
§§ The attacker will behave in one of two ways:
§§ I) The attacker will use x* regardless of what the
o defend
ﬁﬁ efender does.
&
%ﬁ II) The attacker will be able to discover the
i defender's strategy, yA, and optimize against
3;;;.:: it.
£§ Assumption I implies that the attacker is unable to establish
et with certainty the defender's planning strategy. From Section
§ﬁ II, we are able to solve explicitly for x* and yA given m, n,
4% t, and mA. To find the survival rate of this scenario, we simply
;§ apply equation 2.1 to x¥* and yA. We denote the resulting value
- for the expected target survival rate as
E% 2
?rtsﬁ
t
%g vp = stxx, yh
¥*

We would ezxpect Vi to be less than or equal to v¥ for a given
; m, n, and t, since the defender is not utilizing the correct
§§ optimal strategy and thus may suffer as a result. He will at
(= best achieve a survival rate equal to the optimal game value,
since the attacker is employing x¥.

g Y
W"E:” I‘I I

g ey i

Under Assumption II, the attacker is informed of the
defender's strategy. (Actually, simply knowing mA would be

- -
Kol

it
L/
e sufficient because the attacker may then reconstruct yA with the
%
B 10
e

224

4
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;
)



A R R X R T T & e T N T W T TN U N W MY R GO 0§ S5 W W g g T 1 vy { g

information available to him.) Now that he is aware of how the

defender is deviating from the optimal defensive strategy, the

attacker can construct a strategy, which we denote by xA, that

will enable him to take full advantage of yA.

set up a linear minimization program with equation 2.1 as the

To find xA, we

objective function:

: m n A
0 D DD D
i=0 j=i

% subject to:

L |

2% =t

Dol =/

{

] Xiio, i=0, ..., m

The fact that the attacker knows the y?'s makes the objective
function linear. The two linear constraints are identical to
the conditions which define a permissible attacker's strategy.

g Therefore, any simplex routine should provide a solution to the
program, with the optimal attacker's strategy and the resulting
‘fﬁ expected target survival rate:

A - xA(m, t, yA)

o vpp = SO v

g We would expect Vi1 to be less than or equal to both v¥ and Vs
E
: because the attacker is able to use the optimal attack xA

}a against yA rather than sinply x¥.

11
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15 IV. EXAMPLES

St We illustrate the methodology and results of Section III by

g{l examining solutions for three different numbers of interceptors:

.%g; n = 3000, 6000, and 9000. The number of targets for all the

] examples is set at 1000. For each value of n we solve for v¥,
Vi and ViTs under various defender ass.umptions regarding the

attack size. The at%tack sizes range from 1000 to 18,000 for
n = 3000 and 6000, and from 1000 to 24,000 for n = 9000.

e I
e

Pl
L)

s
Pk ey

Case I: t = 1000, n = 3000

4 el
52

[

A

A) Let m~ < 3000

AR Yy i

2
%

i Ty Rt dad Rt 3 g
4 "o M) r“ kﬁ;’n o
K i

When the anticipated number of attacking missiles is less

L o

than the number of interceptors, the defender believes he
dominates the game and employs the same strategy so long as m

o

o

is equal to or less than n.

éﬁ? The defender's strategy yA is:

: A .
3 y; =T , 03T .
%% For m < 3000, Figure 4.la shows that v¥, vi, and v ; are equal.
%ﬁ Clearly, so long as the actual attack size 1is less than the

gy

A

defense size, the defender will be deploying his interceptors
optimally even if mA is not the actual attack size. A single
strategy will guarantee the defender the optimal game value for
all m < n.

As Pigure 4.la demonstrates, v, remains equal to v¥ even

I
when the real attack size is greater than the assumed atfack

size. Apparently, the use of x¥ against yA will not give the
attacker any result less than the optimal game value. This 1is

not surprising. Either player in a two-person zero sum game

12

ARSI EAINARN S RT N T E TR T on, w7 RS s TN AT M TR TR M R R ML M TR T R R 7 R L T e e Y W LT S W N T W N e e T T T



foial Sk ad wab val ol alrale-d S8 -ake- dbe ity i Aii-Aie Ao Shs AW Shy fls SEL AL Sle STy B s g

n=3000

i \ t=1000
P 0.8 mA <3000

0.6 C Vi

EXPECTED SURVIVAL RATE
T
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7-23-88-24

Figure 4.la. EXPECTED SURVIVAL RATES FOR n = 3000, mA < 3000
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can expect the game value 1f he employs any combination of his
"active" strategies, if his op.vnent uses hils optimal strategy.
A valid "combination cf active strategles for the defender" in
this game is one in which no target 1is assigned more than ¢
interceptors, as defined in Sectior II. Now let us suppose that
the game 1s attacker dominated and the defender prepares against
the correct attack size. The maximum number of missiles, £,

he assigns to any target must be grea:er than the maximum number
he assigns when he believes the game to be defender dominated.
Thus, whenever the defender believes he dominates and the attacker
employs x¥, the expected rate of survival for the targets will
not differ from v¥ for any attack size.

Curve C1 of the same graph, however, shows that Ve does
deviate significantly from v¥. Every attack size greater than
4000 results in an expected survival rate less than v¥, At

m = 7000, all tne targets are destroyed. Since the maximum number
of interceptors allocated to a target is 6, the attacker, by
ttacking each target with 7 missiles, can knock them all out,.

No longer restricted to using x¥*, the attacker is able to

capitalize on yA by using xA.

We now look at what happens when the defender believes
that the game is attacker dominated.

B) Let m® = 6000
A
The defender's strategy y is:
A _
Yo = 1/2
A _ .
yj = 1/22 1<js<11

Comparing curves A and B2 of Figure 4.1b, we note that for
m < 6000 vy is smaller than v¥, but after the two converge at

14
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6000, Vi remains equal to v¥, The reason why Vi does not equal
v¥ for the entire range of attack sizes 1s that (unlike in A)

the maximum number of missiles the defender puts at a target

when he overestimates the attack size is larger than 2. For
example, let the actual attack size be 3000. For u = 3 and

v = 3, ¢ = 6, whereas the maximum interceptors the defender
deploys at a target under yA is 11. Therefore, yA does not
satisfy the condition we described earlier for a valid "combination
of active strategies."™ Intuitively, one may consider this as
having "wasted" interceptors by putting more than 2 at any target.
When the defender underestimates the attack size (mA < m), this

is no longer the case. v, and v¥ are equal.

I
VIt (curve C, ir Figure 4.1b), as expected, is significantly
lower than £ and v¥, At m = 1000 the attacker is able to take
advantage of the fact that half of the targets are undefended
even though the interceptors outnumber the attacking missiles.
The expected survival rate is less than 60% of the optimal game
value. Between 1000 and 5000, the differernce shrinks until the
expected attack size equals the real attack size. The defender's
strategy is optimal (cnly) at this point. For m > 6000, Vo1
diverges from v*¥ and is reduced *o zero at m = 12,000. Since
the maximum number of interceptovrs located at any target is 11,
the attacker can destroy all the targets by attacking each target
with 12 missiles. m = 12,000 is the minimum attack size that
makes this deployment feasible.

C) Let mA

= 9000 .
The defender's strategy is:
yg = 2/3

y?=l/51, 1< j <17

16
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3 As Figure 4.1b and U4.1lc show, the qualitative behavior for
m = 9000 is very similar to that for m = 6000. When the defender

overestimates the attack size, v, is lower than v¥, but when he

I
underestimates, they are equal. With v_.., when he overestimates

attack strength (m < mA), he suffers byIieaving too many targets
without protection. When he underestimates attack strength he
leaves his defenses too widespread and is obliterated. Quanti-
tatively vy (mA = 9000) is lower than b (mA = 6000) for

small attack sizes. But when the attack size turns out to be
large it takes 6000 more attacking missiles to destroy all the

targets.

Figure U4.1d combines Figures 4.1a, 4.1b and U4.1lc %o allew
cross-comparison.

Case II: t = 1000, n = 6000

A) Let mA

< 6000
The defender believes that he dominates. The defender's
strategy is: '

y§ =113, 03 <12

The values for v¥, Vis and vip are displayed graphically

;ﬂ on curves A, Bl’ and C, of Figure 4.2. A review of Figure 4.la

1
verifies that the qualitative results are comparable to that for
Case I. Just as in Case I, when the defender believes that he

dominates, Vi is identical to v¥. iz equal to v¥ as well,

v

f' until the game becomes attacker domiggted. When the attacker

i is able to use XA, all the targets are annihilated at m = 13,000.
For attack sizes less than 6000, the defender béhaves optimally.
But when the game turns out to be attacker dominated, yA leaves

= the defender very vulnerable.
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| B) Let m® = 9000

The defender believes the attacker dominates the game. The
defender's strategy is:

yg = 1/3

y§'=2/51 , l<j< 17

As in Case II, part A) above, this 1s analogous to the
results in Case I. (Compare Figure 4.2 with Figure 4.1d4). The
qualitative characteristics are the same as the other "defender
thinks attacker dominates" examples. Quantitatively, Vi1 and
v¥ are equal at m = md = 9000. As in Case I, part C), if the
attacker knows the defender's planning strategy, then all the

targets are destroyed when the attack size reaches 18,000.

Case III: n = 9000

A

A) Let m~ < 9000.

The defender believes that he dominates. The defender's
strategy is: ‘

y; = 1/19 , 0<j <18

i

A

B) Let m = 12,000

The defender believes that the attacker dominates. The
defender's strategy is:

A _
Vo = 1/4
A-_
vy = 3/92 , 0 < j < 23

21
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The qualitative results are similar to the first two cases. See
Figure 4.3.
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SECTION V. COMPARISONS WITH ROBUST STRATEGIES

As shown above in Section IV, when the defender does not
estimate correctly the actual attack size, Strauch's preallocated
preferential defense may lead to very poor results relative to
the game value. In [1], Bracken, Brooks, and Falk propose an
alternate, "robust", defense that can achieve expected survival
rates which are as close as possible to the game values v¥* over
a range of attack sizes. The criterion used for robustness is
the ratio of the expected survival rate of a particular strategy
y to the game value. The optimal robust defense is the strategy
that maximizes the minimum of these ratios over a range of
attack sizes. We assume that the attacker can discover and
therefore optimize against whatever strategy the defender employs
and that the defender is aware of thisl. It turns out that this
problem may be formulated as a linear program. The solution of
this program yields the robust defense for the specified range
of attack sizes. We denote this defense as yR(K), where A
represents the range or set of attack sizes for which the defense
is robust. We designate the attacker's strategy that minimizes
the expected survival rate against this defense as xR, and tae
expected survival rate as VRt
VR = S(xR, yR)

For each of the three defense sizes examined in Section IV
we solve for two strategies yR: one with Kl = & = {1000, 2000,
..., 12,000} and one with K2 = A = {1000, 2000, ., 18,0001}.
xR is then determined against each yR for each attack size from
1000 to 27,000.

;
“This assumption corresponds to that of Case II,II in [1].
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Results for n = 3000 are given in Figure 5.1. Utilizing
E‘ yR(Kl) (see D, on the graph) guarantees the defender at least
3 65% of the game value from 1000 through 12,000 attackers. Where
- C1 and 02 go to zero quickly as attack size increases, Dl goes
to zero at about the same attack size as C,. However, D, is much

1 1
d better than C, for small attacks. Utilizing yR(K2) (see D

the graph) thg defender improves considerably his chances ?or
saving a significant number of targets against very large attack
sizes, at some expense to smaller atfack sizes. Below 12,000
yR(Kl) does better, but above it yR(Kz) does better. yR(Kz)
guarantees over Kz at least 57% of the game value and will not
yield a zero expected survival rate until the attack size

reaches 27,000.

on

As shown in Figure 5.1, the robust strategies do not perform
better than Those based on Strauch's defense over all attack
sizes. They may not even be superior over a majority of attack
sizes. (Compare C, and C3 with Dl)‘ What the robust strategy
accomplishes is to provide insurance against doing very poorly
relative to the game value for any attack size. If a defender
is both concerned with maintaining some level of survival against
large attacks and with avoiding disproportionate losses against

smaller attacks, the robust strategy is preferred.

G LA

Figure 5.2 presents results for n = 6000. The qualitative
behavior is similar to that for n = 3000 When the defender has
6000 interceptors at his disposal, y (A ) will guarantee over
A, an expected survival rate of 83% of the game value, and yR(A )
will guarantee over A2 70% of the game value. Naturally y (A )
does better than y (A ) for attack sizes less than or equal to
12,000, while the opposite is true for atftack sizes greater than
or equal to 18,000. yB(Kl) will not yield an expected survival
rate of zero until m = 18,000, thus avoiding the early collapse
to zero of Strauch's defense for m" < 6000. At the same time,

while maintaining only slightly lower resistance to higher attack

25
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i sizes (12,000 to 18,000) than Strauch's defense for m> = 9000,
e the robust defense for Kl avoids very bad results (relative to
Ay the game value) for small attack sizes (1,000 to 3,000). y (&)
,%x gives up some of yR(Kl)’s advantages against smaller attack sizes
;?5 in order to achieve greater survivability against very large

o attacks. Like its counterpart for n = 3000, y"(K;) will not

%g yield an expected survival rate of zero until m = 27,000.

%é Figure 5.3 presents results for n = 9900. yR(Kl) ensures
HE over Ki a vp which is 96% of v¥ and yR(Kz) ensures over Kz a

R vp which is 82% of v¥,

&

§§§ As all of the examples demonstrate, using Strauch's pre-
}§§ allocated preferential defense when the defender mus®t protect

N himself against a wide range of attack sizes can lead to serious
_g% difficulties for relatively small and large attacks. A robust
;%% strategy, however, enables the defender to achieve expected

%%? survival rates "close" to the game value without doing badly at
w? either end of the range of possible attack sizes. 1Indeed, even
g;i when the attack size can be narrowed to within a fairly small

%& region, the robust preallocated preferential defense methodology
fﬁﬁ is still applicable, for as A approache. a single attack size,
?& yR(K) approaches y* for that attack size.

§§§

A

.}"& ‘;
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APPENDIX

Tables 1, 2 and 3 contain the numerical values plotted in

Figures 4.1, 4.2 and 4.3 of Section IV.

Table 4 contains the robust defense strategies of the

examples of Section V, together with formulas for computing the

optimal attack strategies. Table 5 contains the numerical
values plotted in Figures 5.1, 5.2 and 5.3.

PR

31

P IS SR ST SOL T S SNE ST "IN S SN S VR UL T T .. S SR P SR e P, CINL. SRS LN SN T




IR IR Nl NS Nat T B Ay SR T AN R LA LI LNt S AL AN D

0 L580" 0 LS80° 0 LGg0° LG80"
9610° 6060° 0 6060° 0 6060° 6060 °
26£0° 8960 0 8960 0 8960° 8960 "
8850 rEOT" 0 REoT" 0 n€0T REOT
©1g8L0° TittT® 0 TTTT" + 0 TTITT TTTT"
0860° 002T" 0 0ceT” 0 002T" 002T"
9LTT" HOET"® 0 HOET® 0 HOEL" HOET "
ELET X4 T qGH0° 6SHT" 0 6cht” 6echt”
69GT"* 6LGT" 6060° 6LGT" 0 6LGT" 6LGT"
G9LT" g9LT1* 7WoEeT” q9.l1° 0 G9LT" G9LT"
T96T" T96T" gI8T" 0002 " . 0 000z 0002 "
LS12" LG12" £Lee" goge 0 goge " goeez "
ggees’ g€qee” Lele: Lele- 0 Lele: Lele’
6hGe” Y 1T 2gIE” cgIE " 6SHT" EEEE” Eeee”
Gniz” Gniz" 9€9E * 9 o€ * 982t ° 92 ° 9821 °
151 99g¢ ° 160%° ohlti® hWTLG® WTLSG® WILG .
LETE " 0T6S"° Shay” W69 ” ERTL” eRtTl” ERTL”
geee” GG6.L" 0005 Lyeg’ T.G8" T.G8® TLS98”
(uyIIa (u)Ia (uyIIa (uy Ta (uyEIa (uyfa -

= (u) g2
0006 = u 0009 = ,u 000€ >
000€ = Uu 000T = 3

PT " PUB °T'f ‘4T 4 ‘®BI'f $9anITd J0J SanTeA TBOTIdUNN
T 2TAaBg




B L RIS SRS UL ST AL =R e T A

IS a el Tl e LA IGE T

0 WTLT® 0 WTLT® RILT® 0008T
26£0° gTgT" 0 gTIgT" gTQT 000LT
wglo" GE6T” 0 GE6T” GE6T " 00091
9LTT" 6902 ° 0 6902 " 6902 ° 0005T
69ST" geze” 0 zzze” zeee” 000kT
196T" (010] FA 0 00fc - 010}/ F 000¢T
ggee” 6092 " 690" 6092 6092 ° 0002T
Grle” L68e* gEST" L6ge" L682° 000TT
LETE" 8GTEL " goge: 3G1E " gGTE " 0000T
62G¢ ° 62GE * LLOE® 62GE AT 0006
226¢ " 226€ " 9 Qe * 0004 * 0004 * 0008
wich” HiEh* q19% ° CToN* "SI * 0004
90L% cebh” 6geS” GRES” GgeS” 0009
8605 ° LLLS” €GT9- €919 €GT9° 0004
060G " 1299" £269° £269° £269° 0004
2ggs” 99%.L* c69.L"° 269l 269.L" 000¢
JATAH T1EQ" cong” 2948’ cong”’ 000¢
L999° GST6" 1€26° T€26" 1€26° C00T

(uyTIa (u)Ta (uyTIa (u)Ta
- (W) x4
0006 = ,u 0009 > ,u
0009 = U 000T =

2'h 9an3Td J0J SanTeA TEOTJILUWNY

2 9Ta®RL

oy

(2]
M

T e R a0 e A T L IV X

PO e ety mlw ALa EPg WEe Ry RFn Whe_ Bh 8k APe Ary dlw S8 By a5

NEIEFY W e pr b Ay S | A, eyt e




DLW SN LT L AT WA W 0 TN BN S Wl L T ol e Yl X L R AT LN LN L Sl P e R TR D2 e LRSI T -

0 Q16T 0 Q16T " GT6T" 000fwe
92¢0° 0002 0 0002 oooe” 000€2
2690 €602 0 £€602" €602 00022
QL60° a6T2 "’ 0 g6ie- G6Te" 00012
HOET® goge: 0 goge " goge " 00002
0€9T" 2ene 0 gEqe " 2eqe” 0006T
LG6T" TLGE" 9260° TLG2" TLG2" 0008T
g€gee” lele: €Got" Lele- Lele: 000.T
6092" £o62" 6LGT" g€o6e- €062 0009T
ge6e” £0T1E " Gote" €oTE" €0TE " 000GT
192¢" £egeee ge€ge” geee” geeee 0004T
L8eE " 009€ " gG1E 009¢€ " 009¢ 000ET
ET6E " €16€" hg9t * €T6E " £T6E " 0002T
6€eSh* 6ECH " TTeh " 9g2h ° 9geh * 000TT
G96GH * Go%y* LELY® LELY” LELn 0000T
T684° 9006 €926 £€926" €926 0006
LT2G" 1946" 68LG" 68LG" 68LG" 0C0g
€466 91T9" 9TE9" 9T1€9" 91€9" 000.
0L86° 0L99° ehg9 " chg9” chg9”’ 0009
96T9° Ggeal: 89¢lL "’ 89¢ /L 89t * 0006
2es9” 0g8LL" G68.L-° G68lL° G68L" 0004
889" GeEQ " X4 N TeHe " Teyg” 000¢
Wil 0688 ° Lh68° Ly68° Lh68° 0002
006GL"° TN wlh6° tlh6"* wlh6: 0001
(uyLLa (uyLa (uyIIa (uyLa

) — : (u) g
0002T = W 0006 > ,u
0006 = 000T = 3

€ 9an3Td J0J SONTBA TBOTJISUNN
€ 91dqey,

ok L
A A

o

34




Ll 3 m,,”nl DA R R A

FYOUY TR UYL= T # O 7 R R e

Table 4
Robust Defense Strategies for Section V
n = 3000 n = 6000 n = 9009
L
vy @D | vNEY | yiED | yNEY NED | viEy
0 L4482 .510 .234 . 349 .087 .225
1 .093 .082 .064 . 054 .051 .0b43
2 .093 .082 .064 .054 .051 .043
3 .093 .082 .064 .054 .051 .043
h .062 .055 .064 .054 .051 .043
5 .039 .035 .064 .054 .051 .043
6 .015 .024 .038 .054 .048 .043
7 . 015 .018 .038 .0ul .048 .043
8 .015 .014 .038 .033 .048 .043
9 . 015 .006 .038 .014 .048 .033
10 . 015 .006 .038 .014 .048 .023
11 .015 .006 .038 .014 .048 .023
12 . 015 .006 .038 .014 .048 .023
13 . 015 .006 .038 .014 .048 .023 .
14 .015 .006 .038 .014 .048 .023
15 . 015 .006 .038 .014 .048 .023
16 .015 .006 .038 .014 .048 .023
17 .008 .006 .025 .014 .048 .023
18 .000 .006 e .0L4 .048 .023
19 .000 .006 c .014 .obl .023
20 .000 .006 0 .014 .000 .023
21 . 000 .006 0 .014 .000 .023
22 .000 .006 0 .014 .000 .023
23 .000 .006 0 .014 . 000 .023
24 .000 .006 0 .01l .000 .023
25 .000 ;006 0 .01l .000 .023
26 .000 .003 0 . 007 .000 .023
27 .000 .000 0 . 000 .000 .000
For every attack size m, let xR be defined as follows
? = 1.0 i=m/t
? =0 J # m/t
This strategy will be optimal against all six yR listed

above.

35




AR T LA TS TIETIRITE T E T R R R R N R R N AN P Y A A AT R R URA A TN Er A Y NE WU WWVITE UV VI "L o0 sty sy e ™ -

Table 5
Expected Survival Rates for Section V

n = 3000 n = 6000 n = 9000
m
Ay Ay Ay Ay Ay Ay
1000 | .s5576 | .4901 | .763% | .6506 | .9126 | .7750
2000 | .4646 | .4086 | .6998 | .s964 | .8619 | .7219
3000 | .3717 | .3270 | .6362 | .5b22 | .8112 | .6889
Booo | .2787 | .2u53 | .5726 | .4880 | .7605 | .6458
5000 | .2168 | .1907 | .5090 | .4338 | .7098 | .6028
6000 L1774 L1561 . 4454 .3796 .6623 .5597
7000 | .1620 | .1321 | .4071 | .3254 | .6147 | .5166
8000 L1465 L1145 . 3689 .2819 .5672 L4736
9000 | .1311 | .1010 | .3306 | .2487 | .5196 | .4305
10000 | .1157 | .0952 | .2923 | .2345 | .B721 | .3973
11000 | .1003 | .0B94 | .2540 | .2203 | .4245 | .3739
12000 | .0848 | .0837 | .2158 | .2061 | .3769 | .3505
13000 | .0694 | .0779 | .1775 | .1919 | .3293 | .3272
14000 | .o5B0 | .o721 | .1392 | .1777 | .2818 | .3038
15000 | .0385 | .0664 | .1010 | .1635 | .2342 | .2804
16000 | .0231 | .0606 | .0627 | .1492 | .1867 | .2570
17000 | .0077 | .os48 | .o2u5 | .1350 | .1391 | .2337
18000 | .0000 | .obo91 | .0000 | .1208 | .0916 | .2103
19000 | .0000 | .0433 | .0000 | .1066 | .ohko | .1869
20000 | .0000 | .0375 | .0000 | .0924 | .0000 | .1635
21000 | .0000 | .0317 | .0000 | .0782 | .0000 | .1402
52000 | .0000 | .0259 | .0000 | .0640 | .0000 | .1168
23000 | .0000 | .0202 | .0000 | .0498 | .0000 | .0935
2000 | .a000 | .o144 | .0000 | .0356 | .0000 | .o0701
25000 | -.0000 | .0086 | .0000 | .0213 | .0000 | .0L6T
26000 | .0000 | .0029 | .0000 | .0071 | .o0000 | .023%
27000 | .0000 | .0000 | .0000 | .0000 | .000L | .0000
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