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1. Introduction

The goal of calibrated spectral estimation is to determine sound pressure

level versus frequency, at the source, versus aspect angle. Mapping measured

spectra to the source and knowing aspect angle of the source require knowledge

of the location and heading of the source. Furthermore, when there are

multiple sources, they must be individually tracked, and their spectra must be

individually resolved to the extent possible. Consequently, multi-source

localization and tracking techniques comprise an important adjunct to

techniques for calibrated spectral estimation.

The localization objective is carried out using acoustic signals recorded

" 'undfrwater by a hydrophone array. In typical passive surveillance scenarios,

source location is inferred from (1) the relative arrival times and (2) the

relative Doppler shifts seen among signals received at the various sensors

[26]1.

The relative arrival time between two sensors is called the time-

difference of arrival (TDOA), and a large literature on delay estimation has

\. developed toward optimal and time-varying estimation of TDOAs (for example, a

special issve on this topic appears in [21]). Delay estimation can also he

papplied to the echoes seen at a single sensor due to multipath; in effect,
multipath reception can provide an extra "virtual sensor" located at the

mirror image of a real sensor in the reflecting surface.

Estimation of differential Doppler shift is not as well studied as the
delay estimation problem, and so it will probably remain a fertile research

area for some time. Unlike TDOA estimation which requires a broadband signal

- for its accurate measurement, differential Doppler can be measured in either

the narrowband or broadband case. The narrowband case is very

* . straightforward, involving only ratios of FFT peak frequencies, while

broadband spectral cross-correlation appears to offer significant

opportunities for improvement. There seems to be no mature treatment of

optimal broadband Doppler correlation such as exists for delay-based

correlation. An advantage of localization based on Doppler is that Doppler

shifts can be reliably measured at much greater range than TnOA under typical

4.
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circumstances.

When there is more than one source, localization is typically

accomplished by repeated application of the single-source methods. In the

case of measuring TDOAs, each source produces its own secondary peak in the

cross-correlation function between two sensors; if the peaks are resolved

(i.e., the signal bandwidths are sufficiently large and the TDOA times are

sufficiently separated), then there is no problem obtaining N TDOAs per sensor

in the case of N sources. However, it is then necessary to try, in principle,

all possible associations of TMOA to source; that is, N groups must be chosen,

each consisting of one TDOA from each sensor pair, and each group must have

TDOAs arising from one source only. While not imposing any fundamental

barriers, the association problem can vastly increase the computational burden

in the multi-source case relative to the single-source case.

1.1 The SPICE Project

The purpose of the SPICE project at SCT has been to develop new

techniques which aid in the detection and localization of multiple underwater
,ources. In this section, the major components of the project are summarized.

The first phase of the project was devoted to developing new methods for

high-resolution spectrum analysis. Improvements in spectral resolution (given

I fixed statistical stability) translate directly to greater tracking

accuracy. In many ways, this phase of the project was a follow-up effort to a

prior project entitled "Multi-Target Tracking Studies" (MTS) which started in

1979 (cf. SCT Reports 5334-01,02). A mature treatment of the high-resolution

techniques is presented in SCT Report 5498-04. See also SCT Report 5466-02.

All SCT Reports mentioned in this report should be requested from the Adaptive

Systems Department of the Advanced Technology Division of SCT.

The second phase of the SPICE project was devoted to developing,

simulating, and evaluating a novel multisource tracking algorithm devised by

Dr. Benjamin Friedlander. For source detection in a plane, the technique
involves finding intersections (one per source) of five or more hyperplanes in

5-space. The multisource tracking algorithm is fully described in SCT Report

2
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5466-05.

The third and final phase of the SPICE project was to develop more
•I traditional sonar signal processing facilities based on nonparametric spectral

estimation using an FPS array processor. Estimates of intersensor time delay,

J w multipath time delay, intersensor differential Doppler, and absolute Doppler

are all derived in one way or another from the FFT-based spectrum estimate.

Both narrowband and broadband Doppler estimation techniques have been

. developed. Differential and absolute Doppler estimates have been produced

from live sonar recordings. The high-resolution spectrum analysis program and

the FFT-based power spectrum estimator are documented in SCT Report 5466-

06B. The differential delay/Doppler techniques are described only in this

document.

Side investigations carried out on the SPICE project included a new

technique for delay estimation (SCT Report 5466-03) and the application of

this method to the tracking of multipath delay (SCT Report 5466-44). Also, aa constrained adaptive notch filter was developed to enable the real-time

- elimination of unwanted sinusoidal components ("Analysis and Performance

Evaluation of an Adaptive Notch Filter" by B. Friedlander and J. 0. Smith,

SCT ATD/ASD, 1982).

S- The present final report for the SPICE project includes all material not

appearing in prior reports, and provides a list of all reports and

publications deriving from the SPICE project.

. : 2. Guide to the Appendices

The appendices included here discuss the localization and tracking of

sources using TDOA and differential doppler measurements. Improvements to

currently existing systems are outlined, and several new computationally

--. ,efficient localization and tracking methods are presented. The associated

problem of measuring and tracking TDOA and differential Doppler values is also

" ;covered. Finally, an appendix discussing an interactive signal processing

*" development environment is included. Below, brief descriptions of the

appendices are given.

3



Appendix A discusses ideas for extending the Omni-Tracking System (OTS)

to handle multiple sources more effectively. A wide range of alternatives is

explored, from ways to use the existing system unmodified to a complete

replacement of OTS by a super-powerful, model-based, track finder.

Appendix B describes a fast track solver devised by Dr. Friedlander. It 7

uses simple features of "S-curves" measured in an absolute-Doppler path to

compute track parameters. While measurement of the required features (such as -'

minimum/maximum long-range Doppler) depends on a high signal-to-noise ratio,

the track parameters can be found very quickly relative to more commonly used

methods.

Appendix C documents various signal measurements which are useful for

multisource localization. Most of these are currently in use, and the

appendix serves as a review of some basic signal processing fundamentals. In

addition, the autocorrelogram and its use in localization (described in

Appendices A and B) are believed to be new ideas.

Appendix I) describes newly developed Spherical Interpolation method for

localizing a single source based on time-difference-of-arrival (TDOA)

measurements. The method is very fast computationally and surprisingly

accurate, coming close to the Cramer-Rao lower bound for unbiased estimators,

as shown in Appendix E.

Appendix F discusses track parameter estimation from multipath

information. Mathematical techniques analogous to those used to develop the

Spherical Interpolation method are used.

Appendix G describes the kind of interactive development environment we

feel is important to provide the underwater surveillance engineer. Its major

feature is malleability allowing all signal processing tools to be used in

interactive exploratory analysis with a complete set of signal display A

features and display controls. The reason for choosing an interactive

programming environment is that one cannot know in advance what signal _

processing procedures are going to be most effective for localizing a given

source. Instead, the measured data must be analyzed interactively for "

4-.



features which will give the source away to an automated analysis. Another

% important feature of the proposed system is the ability to record interactive

work for later compilation into an automated procedure. We believe such a

system can increase the effectiveness per man-hour of localization software

development by a large factor.

3. Conclusions

Several avenues for increasing the effectiveness of multisource

localization have been explored in this project. Here we will indicate what

appear to be the most promising directions for future development, based on

our results.

We feel that the most powerful approach to multisource localization is

the dynamic programming system which explicitly evaluates the likelihood of a

source track by comparing actual sensor measurements to synthetic measurements

N generated by a model of the source moving along the hypothesized track. Such

a framework provides for incorporation of all a priori knowledge about the

source and the scenario. This method is discussed briefly in Appendix A and

*to a greater extent in Appendix F.

S As discussed previously, relative time delay and relative Doppler shift

between sensors provide the basis for present localization systems. As stated

earlier, time-delay estimation is a relatively mature field, while Doppler

estimation, especially in the broadband case, has not been fully analyzed in

the literature. Specifically, broadband Doppler correlation methods (as

discussed in Appendices C and G) need to be analyzed in a manner analogous to

what Van Trees [25] has done for more conventional correlation methods.

Additionally, the problem of converting instantaneous TDOA and Doppler

measurements into source location and velocity estimates has not been

* thoroughly studied. In particular, currently, there appears to be only a few

computationally efficient, accurate source location estimators from TDOA

measurements (see appendices 0 and E), and no computationally efficient,

Laccurate estimators of source location and velocity from instantaneous doppler

or differential doppler measurements, although there are approximate solutions

to the 2-dimensional special case of a source far away from a linear array

[26].

5
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The very effective Spherical Interpolation method for localizing a source

from TDOA measurements (Appendices D, E, and F) warrants further study. In

particular, it seems quite possible that the same basic approach can be

applied to localization from differential Doppler measurements. If this is

true, and if the Doppler case is as close to optimal as is the TDOA case,

current practice in passive underwater surveillance will probably undergo a

major revision.
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Appendix A - Extending the OTS System to Multiple Sources

The Omni-Tracking System (OTS) [1] carries out the localization objective

for a single source. The OTS system estimates the track of a single

maneuvering source based on Doppler cross-correlograms, delay cross-

correlograms, or both. (The delay correlogram yields a time-difference of

' arrival (TDOA) versus time between each pair of sensors.)

.i 4 This appendix discusses alternatives for extending the operation of OTS

to multiple sources. Familiarity with the OTS is assumed.

A.1 Current Use of the OTS System in the Presence of Multiple Sources

I When there are multiple sources, the operator must correctly associate

correlogram peaks across time to obtain the differential Doppler or delay

corresponding to the same single source in each sensor pairing. Such an

association can be difficult, if not impossible, for an operator using only a

display of correlogram peaks versus time.

BEARTRK is the track-producing component of OTS. When the operator passes

J - the delay/Doppler information for a single source to BEARTRK, a nonlinear

Loptimization is performed with respect to the track parameters. Because the

optimization is nonlinear, convergence to the best estimate depends on

"v -initialization sufficiently close to the true track parameters. The use of a
gradient/Newton descent method indicates that the problem is too large for

exhaustive search. All such nonlinear optimization procedures carry the risk

of convergence to a false local minimum.

--. The ADEC program [2] is used to prepare line tracks through the

individual sensor spectrograms. An operator manually prunes the lines,

removing unwanted lines, filling in partially missing lines, and labeling the

, -image of each source line in each receiver. The frequency-versus-time tracks

so obtained are then divided into all possible pairings (pnint hy point) to

," produce differential Doppler estimates. To increase robustness, the Doppler

ratios for several lines may be averaged together (since they are assumed to

.'emanate from a single source). The Doppler ratios are then fed to BEARTRK for
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localization in the usual way.

ADEC is a non-coherent tracker for sinusoidal lines in noise, and it

performs line tracking in a manner somewhat similar to the coherent tracker

MAPLE [3,4]. ADEC operates by tracking peaks through time in the normalized

spectrogram, or LOFARGRAM. A running estimate of frequency fi(t) and

frequency rate di(t) is maintained for each line being tracked. The smoothed

frequency and rate estimates are used to predict the peak frequency for the

next time step, and this prediction defines the center-frequency of a search

window within which the peak of the power spectrum is found. The window width

is adaptive based on amplitude. The peak amplitudes are used to compute a

running figure of merit for the tracked line related to the likelihood

function for a sinusoid in white noise. The behavior of the incremental

likelihood variable with respect to various thresholds determines when a line

is detected, tracked, and declared finished.

The ADEC output is generated from the spectrogram at every sensor. For

* example, the lines in sensor 2 could be labeled as A2(t), B2(t), C2(t), and so

on. The operator then decides which lines in each spectrogram are from the -

same original line, and Doppler ratios of the form A2(t)/Al(t) are formed.

The Doppler ratio tracks are matched in BEARTRK by searching for the track-

parameters which best predict the observed Doppler ratios.

A.2 Block-Exhaustive Search in BEARTRK

A straightforward extension of the OTS system to multiple sources would

be to accept all of the correlogram peaks produced by CORAN (with little or no

pruning by the operator) and to fit multiple tracks to these peaks. If

BEARTRK would exhaustively search the parameter space, this extension would be

straightforward. However, because the track estimation is based on gradient

descent, it is typically not possible for the algorithm to explore different

associations of correlogram peaks to sources. (To do so would normally

require moving uphill on the error surface.) A multisource version of REARTRK

could be written which would combine coarse exhaustive search followed by

iterative fine tuning by gradient descent. The result would be several

locally optimal tracks among which the true tracks are assumed to lie. Only

2
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BEARTRK need be modified using this approach to OTS extension.

A.3 Exhaustive Search over CORAN-Peak Associations (DASY/PREP).

Instead of developing an exhaustive-search version of BEARTRK, the

association of CORAN peaks can be automated. In other words, the normally
manual association of correlogram peaks across time (to arrive at a path

corresponding to one source) can be carried out automatically. To try various

associations of correlogram peaks in the multisource case, BEARTRK, as is,

could be run in several passes, each of which is initialized to a different

sequence of correlogram peaks versus time. Each pass of BEARTRK would produce

a track estimate and a measure of fit. After all passes are complete, the

tracks can be sorted by measure of fit, and the best ones chosen as track

* estimates.

An operator can greatly reduce the number of CORAN peak association

tracks to be tried. In the automated case, some search heuristic reduction

analogous to that performed by the operator is desirable. As an example, if

there are 5 correlogram peaks per time step and 30 time steps, BEARTRK would

be called on the order of 530 . 1021 times if all possible associations were

to be tried. If BEARTRK could produce a track estimate in one second, this

process would take 30 trillion years. Thus, not only is exhaustive search of

the parameter space prohibitive for individual tracks, it is also beyond

present computing technology to try all possible associations of peaks to

4 correlogram lines. Clearly, it is necessary to prune the associations and

pass only a few "reasonable" possibilities to BEARTRK. One method for cutting

down the search possibilities is to apply the Viterbi Algorithm [5].

A.4 The Block-Iiterbi Algorithm (BVA).

The standard method for finding multiple paths through time in a
computationally feasible way is called dynamic programming or the Viterbi

algorithm [5]. The idea, in the first-order case, is to evaluate all paths in

parallel through time, saving only the best paths at each time step for

extension to the next. In the 5-peak, 30-step example above, there would be

on the order of 5 • 30 : 150 path "evaluations" per source in contrast to

3



1021. (A path is now defined as a connection of correlogram peaks through

time for a given sensor pair - this is not to be confused with a track which

still refers to the position and velocity history of a source through time.)

Unfortunately, the first-order Viterbi algorithm is not immediately

applicable to the line-association problem. To see this, consider that the

first time BEARTRK (or suitable replacement) is called to fit a track to the

first correlogram peak, it has only one point to work with from each sensor

pair. The track may be underdetermined. Therefore, we must be able to go to

a higher order Viterbi algorithm which looks at several time steps before

making a decision on path extension. A Kth-order Viterbi algorithm

exhaustively evaluates K time steps per path extension (placing the number of

path evaluations somewhere between 150 and 1021). That is, the first K time

steps are tested exhaustively, the winning Ns paths are extended by K points

in the same way, and so on. (Ns is the number of paths "kept alive" at each

step.) In the above example, if the order is K=3 and Ns=1 (one source), we

get 53(30/3)=1250 path evaluations for one source.

More generally, for Np peaks per correlogram, Nt time steps, Ns sources,

and order K time steps per path extension, the "block-Viterbi" algorithm (BVA)

requires at most

K BVA Path Evaluations
K

Typically, this number refers to the number of incremental path evaluations.

The cost of each "incremental evaluation" is the cost of updating likelihood

of the whole path to include K new steps forward. By using log likelihood to

evaluate the path, these updates are additive.

k k

In practice, the number Nk can be replaced by Nm where Nm  is the

maximum number of correlation lags a path can change in one time step

(typically only one or two). .N

There is still the problem that, far from CPA, the track estimate is very

noisy. This suggests starting the BVA at the average CPA time and working

outward into the past and future. This can be an important refinement because

4..



the Viterbi algorithm does not reconsider its early decisions.

A.5 Lag-Limited Exhaustive Association

Since a realistic correlation path cannot change very quickly from time

step to time step (say less than N correlation lags per time step),m
exhaustive search by dynamic programming can be made much more efficient when

this constraint is employed.

Wolcin [4] proposes an effective strategy for incorporating a time-rate-

.* of-change constraint in the context of using MAPLE [3,4] to track slowly

4 . changing sinusoidal frequencies in a spectrum. The idea is based on the

observation that each possible initial path point expands into a small "wedge"

of possible paths. For example, if Nm = (defined above), then the number

of points which must be considered at each time step grows as 1, 3, 5, 7, and

so on. At each time step, only two more points are within reach of a path

* from a given point at time 0.

Wolcin's idea is to choose a set of starting points which are close

enough together so that their "possible-path wedges" intersect half way across

the total time span. For example, if there were 30 time steps and N = I as. ' m

before, then path starting points would be chosen every 30 correlation lags,

because the two wedges emanating from starting points 30 lags apart will

overlap each other after 15 time steps. The supposition is that a true path

will "capture" one of the expanding wedges of exhaustive search; therefore, it

is not necessary to try all possible starting points to detect the presence

(and latter trajectory) of a path. However, to obtain the initial trajectory

of the path, the Viterbi algorithm is run backwards in time through the

4correlogram beginning at the final point of the captured path. As a final
, 1 , refinement, Wolcin recommends pursuing the path forward once again to verify

that the best path from the newly found correct starting point in fact ends on

the point used for the backward search. If the third pass diverges from the

latter path segment picked up on the first pass, the path is rejected.

Detected paths are then removed by zeroing the correlation bins through

which the path moved. This zeroing must be done in a manner matched to the

5o"~



analysis used in obtaining the correlogram. If the signal or analysis

bandwidth is small, for example, Lhen the correlogram paths are characterized

by wide peaks (covering multiple correlation lags). In this situation, a

simple zeroing of correlogram along the path lags is not efficient because

large sharp ridges will be left on either side of the zeroed path which can be

interpreted as two more paths running in parallel with the first. In general,

the path zeroing should consist of multiplication by an appropriate "window"

function whose shape equals the inverse of the expected cross-correlation peak

shape between signals received at two different sensors.
o.

A.6 Path Association be'ore Track Computation

All multisource tracking alternatives require a track-fitting procedure

(such as BEARTRK) to be called for each path evaluation. A potential speed-up

is to first determine a set of all feasible paths through the correlogram

peaks. The set of feasible paths is all possible paths minus those deemed

physically unrealistic. This automatic pruning step can greatly reduce the

size of the search space. Note that feasibility constraints are easily

incorporated into the Block-Viterbi Algorithm. The lag-limited search 4

described in the previous subsection is one special case of feasibility

constraints.

A.7 Dynamic Programming through Unprocessed Correlograms.

Instead of working with the output of CORAN, which consists of up to five

correlogram peaks for each time step, a multiple-path-finding algorithm can be

applied directly to the delay or Doppler correlogram for each sensor pair.

This allows peaks to be tracked across time frames in which they are

momentarily below the five largest peaks of the correlogram. In other words,

once a path is under way, the nearest local maximum (of sufficient amplitude)

in the correlogram can be taken as the continuation of the path, rather than

depending on the path continuation lying among the five largest correlogram

peaks. If there are time frames in practice where a correlogram peak is

missing, direct peak tracking in the correlogram should be considered.

Similarly, dynamic programming can be applied to the spectrogram (as in ADEC) l

or auto-Doppler correlogram (cf. Appendix C) for the purpose of measuring

-p 6
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w absolute frequency or Doppler versus time.

A.8 Dynamic Programming through Noise-Equalized Hydrophone Signals

Sinusoidal signal components can be tracked by a coherent estimator, as

is done by MAPLE [3,4]. Coherent processing yields a 3dB improvement in the

signal-to-noise ratio (SNR), relative to non-coherent processing, for every

doubling of the integration time.

The frequency estimate produced by a non-coherent frequency estimator is

. the (interpolated) location of the peak of the power-spectral density (PSD)

estimate. The PSD estimate is normally computed as a time-average of the

magnitude-squared FFT's of successive time frames [6]. The FFT length

determines the height of a sinusoidal peak above the noise floor.

A coherent frequency estimator conceptually maximizes the magnitude of

the inner product between the entire time signal and a sinusoid oscillating at

Sthe estimated frequency. The effective height of the sinusoidal component

S above the noise floor grows with the length of signal processed (3d8 for every

doubling of observation time). For the case of a single sinusoid in white

' Gaussian noise, this estimate coincides with the maximum-likelihood estimate

(also the minimum-variance estimate in the non-Gaussian white noise case) [7].

The use of a coherent estimate requires enough data to reach an effective

signal-to-noise ratio per bin much greater than zero. (The unaveraged

magnitude-squared of the Fourier transform of Gaussian white noise has a (chi-

squared) standard deviation equal to its mean [6].)

In the case of a time-varying frequency (due to Doppler), the maximum-

likelihood estimate requires searching over all possible time-varying

frequency histories and again maximizing the coherent inner product with the

entire time signal. The MAPLE algorithm provides an approximate solution to

this problem by using dynamic programming to incrementally maximize the inner

product of the time signal with a sinusoid having piecewise linear frequency

..variation. In addition, MAPLE allows a penalty to be placed on frequency

change, and it can be confined to search paths only in a small frequency

interval (e.g., the known sinusoidal frequency plus and minus the maximum

7
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*expected Doppler shift). It is straightforward to include all realistic

physical constraints associated with a Doppler-shifted sinusoidal underwater

source. The highly restricted variation in this case makes MAPLE not nearly

as computationally expensive as it is when searching a wide frequency region

and/or fast frequency variation. The MAPLE algorithm in its present form can

be used to greatly extend the range over which the Doppler-shift of individual .

sinusoidal lines can be tracked.

An important feature, not employed by MAPLE and normally employed by

Doppler processing within OTS, is the total spectral correlation used in the

Doppler correlogram. The Doppler correlogram is non-coherent, but uses the

whole spectrum in its Doppler estimate; MAPLE is coherent, but looks only at

one frequency at a time. (In cases of high SNR and multiple sources, MAPLE

has the advantage of not producing "cross-terms" associated with spurious

secondary correlations between the spectra of two different sources.) To

recover the whole-spectrum advantage of the Doppler correlogram in a coherent

tracker such as MAPLE, an extension is necessary: MAPLE can be modified to

simultaneously track a set of spectral lines, all derived from a single

Doppler track. Such a version of MAPLE would be exceedingly effective in

cases where the true sinusoidal frequencies are known. In operation, a single

value of Doppler (suitably constrained in its time variation and extent) would

be optimized using dynamic programming so as to maximize the inner product of

the time signal with the sum of Doppler-shifted sinusoids.

A.9 Dynamic Programming through the Track Parameter Space

The ideal application of dynamic programming is to directly evaluate the

likelihood of the sensor measurements as a function of time through all

possible source tracks. Searching directly through possible source tracks as

opposed to correlogram peak tracks or spectrogram peak tracks allows maximum

use of a priori knowledge regarding the physical constraints and

characteristics. Also, the likelihood computation is being applied to the

actual quantity of interest - the track - rather than some indirect

manifestation of the track such as its correlogram/spectrogram image in sensor

pairs. Finally, when the track space is searched directly, the track

parameter estimation function of BEARTRK is fully absorbed.

8 4
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The difference between this approach and that discussed in subsection A.2

is in the definition of sensor measurements which the track estimate must

S predict. Use of the raw sensor signals (or successive complex spectra as used

by MAPLE) instead of CORAN peaks allows incorporation of all known

environmental data such as signal-to-noise ratio, noise-floor shape,

interference activity, and measurement stability.

Full-scale dynamic programming techniques for multisource tracking are

" .described further in section 5 of Appendix G.

A.1O The Auto-Doppler Correlogram

The OTS system bases its track estimates on differential Doppler and/or

delay between sensors. It seems worthwhile to consider other sources of

information which may provide better track estimates even in the single-source

. " case. In Appendix C, the Auto-Doppler correlogram is described. Essentially,

-.. instead of cross-correlating the spectrum in one sensor with that in another,

the short-time PSD estimate in a single sensor is cross-correlated against the

PSD in the same sensor at a fixed time.

We have found that for individual spectral lines (visible in the

spectrogram of PSD versus time) the time of CPA can be estimated as the time

Iof maximum intensity for the line. By choosing the CPA time of a particular

.- line as the reference time for the auto-Doppler correlogram, the auto-Doppler

correlogram becomes largely "matched" to the spectrum of the source emitting

the reference line, and the peak track in the auto-Doppler correlogram is

likely to provide a good estimate of the absolute Doppler shift versus time

- "for the source whose CPA was determined. This procedure can be repeated for

each distinct time of CPA for each line in each sensor. Presumably, these

-" auto-Doppler correlograms would produce a set of absolute Doppler estimates

for each source present. This information can be combined with differential

Doppler estimates to sharpen the Doppler estimates. Also, the absolute

Doppler information is needed in the fast track solver described in Appendix
B3.

7,,'I
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A.11 Fast Estimation of Track Parameters

A further computational advantage can be obtained by using a path

evaluation method which is less comprehensive than BEARTRK when the goal is to

solve the path association problem across time and across sensor pairs. Once

the association problem is solved, REARTRK can be called to compute optimum

track estimates from single-source path data for each source. A fast track

solver is presented in Appendix B.
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Appendix B - Fast Estimation of Track Parameters

When tracking multiple sources, it may be necessary to try many different

N' associations of spectral peaks to lines and sources. In such a case, the

ability to quickly estimate accurate track parameters is essential.

B.1 A Fast Track Solver for the Single-source, Single-Velocity Case

The algorithm is a modified version of the one described in the SCT 85-

371 proposal. The principal modification, suggested by R. Bliss, is the

removal of the assumption that the range at CPA be comparable among the

various sensors.

The algorithm works by measuring "S-curve" parameters and inferring track

-a .. parameters. Ry "S-curve" we mean the general appearance of the Doppler vs.

2. "time observed at a single sensor when a source is passing by at a fixed speed.

-- In order to use the algorithm with the OTS system, it is necessary to

convert from intersensor Doppler (as measured by CORAN, for example) to an

estimate of absolute Doppler. Alternatively, an "auto-Doppler correlogram

(ADC) can be computed directly, wherein all spectrograms for a given sensor

are Doppler-correlated against the spectrogram at CPA in that sensor; this

will produce what we call an S-curve. The CPA frequencies measurable in the

. spectrogram can be used to convert the "cross-Doppler correlograms" (CDC)

-a aproduced by CORAN into equivalent ADC's, thus providing ADC's with the higher

noise immunity inherent in cross-correlations.

The output of ADEC (frequency tracks versus time) can be used directly to

provide S-curves. Dividing each line by its CPA frequency and averaging those

which appear to coincide (because they are from the same source) can be used

to increase noise immunity. Yet another alternative is to produce absolute

Doppler estimates using MAPLE.

8.2 Algorithm Description

Consider the case of Nr receivers and Ns=1 sources. The source isr °.

F,
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assumed to be heading on a fixed course and speed without acceleration. Given

the ADC's, there will exist exactly one S-curve for each sensor as shown in

Fig. 1. (In the multisource case, an isolated S-curve is hypothesized by some

choice of correlogram peak association over time. In the case of a single

source with multiple sinusoidal lines, the S-curves can be combined by

averaging.)

DOPPLER

d

A 4.- CPA

++

d.d
hAtAt d d+ d~ -

t

Figure 1. Doppler Shift vs. Time for a Constant-Velocity Source

The S-curve is expressed as

d(t) =1 -. cosrq vt - e =t) Doppler-shift vs. time(1c evt

4..

where v is source speed, c is sound speed, a. is the bearing of the source
from sensor i, and a is the bearing of the source track, as shown in Fig.

2.

2

.i. . . .



TARGE v
" X~2s= (XS 'Ys) / ...

4.'a.'.SENSOR
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(0,0)

Figure 2. Source-Sensor Geometry

, It is assumed that the sensor positions and the speed of sound are known
constants. From the S-curve in sensor i (Fig. 1) we compute

di = max di (t)• t

, ..)d"7A min d.(t)

Sti Time of CPA at sensor i => d(ti) 1 (2)

"~ax . +, ad.(t) adi(t)
-d ,+ di  1 at (ti)j = max a-- -- -(s)l

Inspection of (1) reveals that for a source speed of v the Doppler shift is
F.between d= (1 + v/c) and d-= (1 v/c) . Thus, the speed of the source

is estimated from each S-curve as

d. - d." vi  = c d + (3)
+ ddi +

-,. and the source speed estimate is given by a simple average:

NR

NR i~i 1

3
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Equation (1) also shows that, at CPA, K

+ V2
d. = (5) -

where Ri is the source-receiver range at CPA for the i-th receiver. Thus, an

estimate of range at CPA in each sensor is obtained as

N

R = R v2 (6)
R 1=1 Cdi

From Fig. 3, we find that the angle between the track and the line

between sensors i and j can be computed from

R. - R.
sin(yij = (7)

Rij "

where Rij is the distance hetween sensors i and j. Note that from these

measurements the sign of the angle yij is ambiguous. If ij denotes the

angle of the line from sensor i to sensor j, then the angle of the track can

be estimated as

eV(ij) : ij ± (8) 4

F.o

t 2

F,,

SEENSOR 21 2

(x ,,y
SENSOR 1

Figure 3. Two-Sensor Geometry
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Averaging over all pairings, and choosing a consistent set of signs in (8), we

obtain the track angle estimate as

"A A 1
0 v = (NR - 1)! e Ov(iJ)

ii

The values of Ov(i,i) can be examined for outliners and pruned accordingly.

From the measured CPA times ti, and the estimated ranges at CPA Ri , weL A

can use the track angle estimate to find an estimate R (i) of the range Ro0
of the source from the origin (0,0) at the time of CPA T with respect to

the origin. The (polar) coordinate system for this is shown in Fig. 4; in

" these coordinates, the track is the line orthogonal to the vector from the

origin to the point (Rot ev + ff/2) . Let sensor i have absolute polar

coordinates (r., tpi) " Then

. Ro(i) = Ri  - risin(e - i )  (10)

,-' The average over all sensors

L%":;" i R -  ZRomi (i

i=1

gives an estimate of the range from zero (0,0) at CPA.

%
'.%

0 =0

(0,0)

F i u re A bsno~te Onlar Coordinates

5
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Finally, given the angle ev of the track and the range Ro at CPA with

respect to the origin, the time of CPA to the origin T can be estimated by

averaging the CPA times ti at each sensor minus the time of travel from CPA at

the origin to CPA at sensor i:
NR

1 R ri cos( i - v)
Tz

= RiI ti +  V(12) ..

R i=1

The resulting parameters (Rol ey' z) are the track parameters output

by the algorithm.

6-,.
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Appendix C - Measurements for Localization

U In this appendix we describe measurements which are useful for multi-

source localization. The original data consist of NR digitized acoustic

hydrophone signals.

C.1 Primary Measurements: Auto- and Cross-Spectra

All information is derived from the measured power spectral density (PSD)

Si,t(w) in each sensor and the cross-spectral density (CSD) Sij,t(W)

between each pair of sensors. The PSD is computed as described in [1], and
*- the CSD computation is exactly analogous [2]. Briefly summarized, the PSD

S i't(w) is an average of squared-magnitude FFT's of successive blocks of

digitized pressure versus time in sensor i. Similarly, the CSD is an average

of the FFT at sensor i times the conjugate of the FFT at sensor j. Frequency

w = 2rf is in radians per second and is regarded as continuous via

interpolation of FFT bins when necessary. Time t is in seconds and is defined

as the mid-point of the averaging interval used to measure the PSD or CSO.

Time is also available continuously through interpolation.

The time-varying PS0 S i t (W) , regarded as a plot of power density

'* versus time and frequency, with i fixed, will be called the spectrogram of the

data from sensor i. Similarly, S (w) will be called the (complex) cross-

spectrogram.

C.2 Secondary Measurements: Auto/Cross Delay/Doppler Correlograms

Recall that the auto(cross)-correlation function is equal to the inverse

Fourier transform of the power(cross)-spectral density. Accordingly, we

'A define the delay auto(cross) correlogram as the two-dimensional distribution

obtained by replacing each slice along frequency (time fixed) of the cross-

spectrogram by its inverse FFT. The term "correlogram " alone will refer to a

delay cross-correlogram. The auto-correlogram can be useful for tracking

multipath delays.

% '1



C.3 Differential Delay Correlograms -

I
The correlogram between sensors i and j based on data centered at time t

-., is given by

1jw ~ Tdw
rij,t(t) = i SiTr (")e

where t is the correlation lag. The maximum of ri t(t) with respect to

t is normally defined as the time-difference of arrival (TDOA) between

sensors i and j.

C.4 Differential Doppler Correlograms

The second derived distribution is called the noppler correlogram. The

Doppler auto(cross)-correlogram between sensors i and j based on data centered

on time t is defined by

D t 4- fSi,t (,)Sj ,t(aw)dw (13)

where a is called the differential DopDler between sensors i and j at time

t. We have D ij,(8) = Djit (1/)/a . The Doppler auto-correlogram can be

denoted more simply by Dit () = D (8,t)

C.5 Computation of the Doppler Correlogram

The Doppler correlogram can he efficiently computed using an FFT

correlation facility [3]. The basic idea is to sample the power spectra

versus log frequency in order to convert the "stretch" operation applied to

Sj,t(w) in (13) to a simple shift operation. This converts equation (13)
into a normal cross-correlation.

The power spectra in equation (13) are transformed by the change of

variable

=mw (14)
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. to yield

t ( S t Sit (J) (15)i,t(T -si,t(W) = s

Equation (13) becomes

Dij,t(B) f T S',t( ) 'j,t(a + )ed- (16)

which is simply the cross-correlation of the exponentially sampled power

-. ,- spectra in channels i and j, weighted by frequency w = exp(") . The weight

S°"factor can be absorbed into the power spectra so that an unweighted cross-

correlation facility can be used:

:' "4 F~j't(a )  __ f _ S',t(w)S',t(5 + -)d- (17)

-wjt

where

5'S (-w) ew12S W2 ) ew/ 2S (ew) / S iC (W) (18)

C.6 Spectral Resampling

-4' In practice, the power spectra are available in sampled form

.. Sit(wk) : 2ik/N, kfl,2,...,Nf-I , where Nf is the number of uniformly

.4 spaced samples around the unit circle (typically the FFT size). In this

situation, the exponentially sampled replacement i() is computed using

digital interpolation.

-P '. Typically, the power spectrum is assumed to be bandlimited to less than

% one-half the sampling frequency fs. Unfortunately, this requires that the

corresponding autocorrelation function be of infinite extent in the lag

domain. Spectral interpolation is meaningful only when the corresponding

correlation function asymptotically approaches zero (excluding periodic

correlation functions which are easily interpolated with zeros between the

original spectral samples). Therefore, proper spectral interpolation is

carried out by first extending the autocorrelation function by means of

3.-4
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bandlimited extrapolationm [4] until the correlation function falls below the

minimum representable number (i.e., it is quantized to zero beyond some lag),

and then performing time-limited interpolation [S] in the frequency domain.

Time-limited interpolation in the frequency domain is accomplished by zero-

padding the extrapolated correlation function and taking the FFT.

A method for power spectrum interpolation which avoids bandlimited

extrapolation is as follows. Assume the autocorrelation function is Bartlett

windowed. That is, if ri ~(T) denotes the sample autocorrelation function

for sensor i at time t, the Bartlett (or triangular) windowed autocorrelation
ft...

is given by

N f-21 T-:
(T ri t(T Nf , Nf/2 (9r. t(r) - { Nf (19)

0 , f > Nf/2

The power spectrum then is the convolution of the true power spectral density
%I

(PSD) with a sinc 2 function (defined below) having a zero-crossing interval

equal to 4 spectral samples (or "bins").

When the periodogram method for PSO estimation is used [7], as we use

here [1], a length Nf/2 rectangular window is applied to the data segment, a

length Nf FFT is taken (with zero padding), and the magnitude squared is

averaged over successive blocks. In this case, the true PSD is convolved with

f- the same sinc 2 function as when Bartlett-windowing the true correlation

function.

Because the periodogram method of power spectrum estimation is an average

of the squared magnitude of finite-length transforms, time-limited

interpolation is a valid operation (assuming sufficient zero-padding so that

the operation of taking magnitude squared of the FFT results in a non-circular

Bartlett-windowed sample autocorrelation).

Given periodogram-method PSD samples S i,t(k), k = 2lINf

k 0, 1,2,..., Nf-1, the interpolated values are defined by

" 4.ft..
ftp
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Si't() Si t(wk)sinc(w WO (20)

%where

sine(w) 4- sin (w/2)Nff (21)

sinc/Z) N (21

In practice, the sinc interpolating function is normally symmetrically

windowed to the first K - 3 zero crossings in each direction. If s (W )
S s k

denotes this window function of length 2K + I spectral bins, then the

U interpolated values are approximated by

kk" S Wm - I Si  (Wk )Ws
(W W k)sinc~w - wk  (22).

Si t k=kl1 i t k

where

- (w) = 0.54 + 0.46 cos(w -- ) ,f T (Hamming window)

s f
. k I - max{0, w-w s}

-2 min{Nf/2, w + w (23)

.1m

-W s 21rKs/Nf

K , Number of zero-crossing retained per wingS

If the intersample spacing is to be greater than the original sample

spacing, it is desirable to smooth the power spectrum so that aliasing does

not occur in the lag domain. Let T' > I denote the desired maximum bin

4 spacing in the frequency domain. ( T' = I yields the original bin

spacing.) The ideal interpolation formula (20) extended to allow subsampling

without aliasing is then

S. ( ) S ' nc --Wk 24)
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-! The practical windowed version is analogous to (22). An efficient table-

lookup implementation of windowed-sinc interpolation is described in [6].

C.7 Exponentially Spaced Spectral Sampling

We prepare the sample PSD versus sampled log frequency "i t () by

resampling the linearly spaced frequency axis to produce

~ ) S, (e')
it i,t

It is necessary to choose the total frequency interval and sampling density

over which to perform this transformation. For convenience in later

processing, we specify (1) the highest frequency. wf to be retained after

mapping and (2) the number 1T of resulting samples in 7. () • The lower
f t

cutoff frequency is computed from these inputs along with the maximum allowed

bin spacing which is always set to the original bin spacing (to avoid loss of

spectral information in the retained band).

The resulting algorithm is as follows. Let P(k) denote the array

containing Si,t(Wk), k=,l,...,K Nf/2 , and let

7(k) 4 p(I 0r), T=O,I,. ,TT-I (25)

denote the corresponding resampled array, where k is the bin coordinate of
0 , .

the lowest frequency retained, and r>1 is the ratio of the sampling interval

increase. The requirement - 1 /N reduces approximately to theN N- _~ N reue aprxmteytfh
requirement w f(-i/r) < 2w/Nf which in conjunction with specification of

and lyields

ff

kfr

where k < Nf/2 is the bin coordinate of the highest frequency retained. ,_

f f
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THE SPHERICAL INTERPOLATION METHOD

OF SOURCE LOCALIZATION

J. 0. Smith and J. S. Abel

Systems Control Technology

1801 Page Mill Road

Palo Alto, CA 94304

ABSTRACT

A closed-form least-squares approximate maximum likelihood method for

localization of broad-band emitters from time-difference-of-arrival (Tr0A)

measurements, called the Spherical Interpoaltion (SI) method, is presented.

the localization formula is derived from least-squares "equation-error"

minimization. Computer simulation results show that the SI method has

variance approaching the Cramer-Rao lower Dound.

1. Introduction

The problem of auto'atically locating a radiating or reflecting source by

analyzing signals received from the object is a basic one having numerous

applications in defense, aerospace, geophysics, and industry. This paper

discusses a highly efficient solution to the problem of locating a source -ith

a passive, stationary sensor array.

A source reveals informat.)n about its location through the relative time

delays seen among the signals it radiates to a sensor array. In a constant-

oeiocity iiedium, the time difference of arrival (F fOA) between signals

received 4n a sensor pair will place t e source on a hypertoloid of revolution

Mth an ixis ionq :ne lire driwn etqeen -e sersors. : an n-::nensiona'

space, , sucn TmOA's from n nondegenerately placed sensor pairs are

necessary and sjfficient_ to jniquely deter'nine tne source location rs.

Source localization can therefore 'e performed ising n i sensors placed so

p., 1
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that they do not lie in a subspace of dimension less than n. However, to

miminize the effects of noise in the TDOA measurements, it is desirable to use

N > n+1 sensors and fit to all of the TDOA's by minimizing some measure of

inconsistency between the measured TDOA's and the TDOA's implied by the

estimated source location.

While an extensive literature exists on the problem of estimating TDOA's

from received signals [4], very few papers seem to be available on the problem

of converting TDOA values into source location [1,2,3,5,11,12].

Conventionally, source locations are estimated by intersecting hyperbolic

lines of position (LOP) determined by range difference measurements

[5,11,12]. However, finding the intersection of a set of hyperboloids is

computationally intensive, involving finding the minimum of a non-convex

function. R. 0. Schmidt [11 has proposed a formulation in which the source

location is found as a focus of a conic passing through three sensors.

Schmidt's method can be extended to an optimal closed-form localization

technique i]. n [2, a gradient search localization procedure is derived

for computing optimal source locations from noisy TOOA's. In [3], a formula

is given for single-source TDOA localization from four sensors, and can De

4.extended to an arbitrary number of sensors [3].

in [8], a closed-form localization technique, termed the Spherical-

Interpolation (SI) method, was described and was shown to perform better than

two related techniques [1,3]. In this paper, we present the SI method and

develop expressions for the variance of SI source location estimates in the

presence of noisy TDOA measurements. We give a geometric interpretation of

the source location estimates produced by the SI method and show that the SI

estimates are related to maximum likelihood estimates. In addition,

simulation results are presented in which the SI method shows noise immunity -

approaching the Cramer-Rao lower bound.

The structure of the paper is as follows. In section ? we derive tne SI

' " etnoG for closea-fori localization ,f 3 source in a field f i sensors. :"

section 3, simulation resuits are presented for two different soure locations

and t4o additive TDOA noise levels. Section a gives a geometric

4iterpretation of the S1 technique.

2
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2. Closed-Form Localization of One Source Using N Sensors

Let N denote the number of sensors, and let di j/c denote the TDOA

between sensors i and j ( l,j=l,...,N ) where c is the speed of

propagation. The vector of (x,y,z) spatial coordinates for the ith sensor

is denoted x., and the position of the source is denoted x . The distance
-s

between the source and sensor i is denoted by 0. =ix - x r!, and the1 -1 -S
distance fron the origin to the point x. is denoted R.. Similarly,

R s =ix ii. These quantities appear in Figure la.
5 --s

The TDOA between sensors i and j is equal to the range difference

(RD) dij divided by the speed of propagation, a constant velocity medium is

*assumed. It will be more convenient to work directly with RD's instead of

TDOA's.

. The localization problem is to determine x given d.. for i and j

between I and .N. Note that there are

rN, = N(N-i)
2) 2

distinct Rn's di.. (excluding i=j, and counting each d = -d.. pair once);

S however, any N-I RD measurements which form a "minimal spanning subtree"

determine all the rest (in the noiseless case). The redundancy of the

complete set of RD measurements is used to increase noise immunity.

We have the following basic relations:

""~~ ~~ i j D i -D, i .. I jl...N(

_. " 0 ix. - it (2)

2 -'1-2 i

xi s 2(x3,'> 2

R - 2x.- -

3
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2.1 The Equation-Error Formulation

We assume here that the set of Rfl measurements di. , for some

j, are available. To solve the localization problem, we first map the spatial

origin to an arbitrary sensor, say the jth. This gives

-- J - - ) j D : R s5

From (I) and (4) we have

S= .. . d. (5) 
.4*1 s 3 13 5 1

as illustrated in Figure lb. Substituting R + d.. for P. in (3) yields

- d. - 29 d. -. j - )
1s13 13 -1-

The jth equation is degenerate so we have N-I eouations in three unknowns

-s

As the delays are typically not measured precisely, we introduce a so-

called "equation error" [71 into the right-hand-side of (6), and minimize it

in a least squares sense to provide an estimate of the true solution. Without

loss of generality, let j=1. Then ( ) becomes

2 - d 2 2Rd T ' ,3,... , (7)
i il - s1-s

wnere . 1s the equation error to be minimized The set of 'I-! equations
f7) can be written in matrix notation as

=, 5 2P d 2S x p'
-s

wrlrt

".2r,6e

i- -
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2 221 2 Y2 z2 2

R2 d2 d z

U.31 d1 S x3  y 3  z3  3

RN Ni 1 Ni N YN N L
SIt is worth noting that, formally, equation (8) is linear in x given R

and it is linear in Rs given x s . Error vectors which are linear in the

unknowns y'ield closed-form least-squares solutions.

The formal least-squares solution for x aiven R is

xs = S- !- 2Rs_ (9)

where

S* ( sTs )WIsT (I0)

yields the unweighted least-squares solution. If it is desired to weight the

iIi RD's according to a priori confidence in each RD, then the weighted equation

error energy T W E is minimized for

S S ( ST W S ) T (1)

where W is positive definite.

To obtain a true least squares estimate for-x, it is necessary to

S' minimize j(or = c T ) with respect to x 4hile allowing R

to vary, maintaining the relation R :ix 1.
S -

!Unfortunately, this minimization is over a non-convex cost function, and

exhaustive search techniques lust Ie used in cener3l. However, in this ':se a

closed-form solution can be found qni,_h aooroximately minimizes J = w



)-a

,

2.2 The Spherical-Interpolation Method

The basic idea of the new closed-form solution is to substitute (9) into

(8) and minimize the equation error again, this time with respect to R .

This, surprisingly, yields a linear least squares problem for finding Rs, and

the solution is computationally inexpensive. The technique is made possible

by the fact that the formal least squares estimate of x given R in (8)
-s S

is itself linear in Rs  When the minimizing Rs value is found in this new

linear equation, the corresponding value of x (via (9)) is automatically a
-s

minimizer of the squared equation-error norm with respect to x given this
--R."

Rewriting the equation error (R) to eliminate x by subsituting the-- 5
value from (9), we get

= 2R sdd - S S ( - 2R sd) (I - S S - 2Rs1_d)-J

where I is the N-1 by N-1 identity matrix. Now, E is linear in the

single unknown Rs. Fnefine the r-i by N-i symmetric matrix

* T --iT
P4S S ~S( STWS ) S W

The rank of PS is at most 3 regardless of its order N-i. Also, PS is

idempotent ( P S p ) inally, the identity matrix minus an idempotent

matrix is idempotent, i.e., ( I - PS ) I - PS " Idemootent matrices are

projection operators; the operation PS x will remove components of x not

lying in the space spanned by the columns of S.

In the four-sensor case, P : I, and the error E is the zero vector.S
In the more general case of N > Li sensors,

= PS .F 2Rs_. (I - PS if-2Rs!) 112)

so that the equation-error energy becomes

-I%1



J e T e 2R) T (- 2RdJ

where,

= S

(or, to minimize j = £_TW , let r - P W P ) .Minimizing J with respect to

R is a form of weighted least squares in which the weighting matrix

T is idempotent of rank N-4. The missing dimensions reflect the degrees of

freedom removed by choosing sensor 1 as the origin and substituting in the

least-squares solution (9) for the three spatial source coordinates. The

solution is given by

- - - - (13)

2d T d

Substituting this solution into (9) yields source location estimate

; s - 2,sd)

Clearly, the computational burden of (14) is very low compared to iterative

nonlinear minimization. If iterative nonlinear minimization is desired (to

*obtain the lowest possible variance and bias), (14) provides an excellent

initial value for a general descent method.

Note that the pair (xs, Rs) minimizes the equation-error energy
T

j _ W e without the constraint Rs ; s . We expect that the pair

, , Rs : xsi) approximately minimizes J subject to the constraint

_ s I Rs " Therefore, we define the range estimate by

A

instead of using (13). Similarly, the bearing estimate 4s defined as the

vector of direction cosines from the origin at sensor I to the source:

A s xS
-.. S As

-7
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Note that the SI solution (14) is based on Rr~s measured relative to a

single reference sensor. When additional RDs are available, additional S1

source location estimates can be made, using different reference sensors, and :

the source location estimate could be computed as the weighted average of the "

S1 estimates.

d<

~2.3 variance of the SI Estimate ,

Here, we give expressions fo the variance of the unweighted S1 estimates

of source location, range and bearing. Assuming the RD variance is small

-.: compared to the RDI mean, the variance of the S1 estimator of source location

4%*

,. , is given by CIO]-,

,," Vatr ) d : ) R d - -) T
(1)'-

A

where the RD vector, d is assumed unbiased with covariance matrix Rt a

Accordingly, tne variance of the source range and source direction co sines

vector are given by

a)R aR"-

soue lociationestimates can be ad1e b using iffe n reere sesss, and

Ra( sd s
-) 2--1 -s 0I)"..

Recal -i : ~ls A/i( (17)

(as)e 3-- -ax

The sorcvte o;dcatio esiae evauldbapted a s() the eighteds veageh

-SS

'" aAd  axd
- -;-d

4- C} •

%'° C

compared toteR2matevrac fth etmtro orelcto
Real 4d n

is give by [1]2-&d

-9.e
44d

A d d ax-S



The derivative ad- may be evaluated using the chain rule:
4a

,. .w aR sd aRs  ad fT ()s
-'s R d -au = d - (2n)

where R _x sa and xs /R s  of have been used to evaluate .3R/axs  Using
" s a Is i

(19) and (20) in (18) we find,

T aAd + R s I + s + S )-- = 0

,y- and,

axss Ad- _ Rsl ) (21)

where

A T_

•. I Using the definitions for Q and R , we have,

-ss

and

-Xs p.L 1 T

- xs s -s -as

where P- represents a projection operator which removes components of a
is

vector along the direction of x . Substituting equations (21) and the above--s

into (16) and (17), we have the desired result:

'ar(xs)" (,& )AT (A, + R I )RdLAd-RsI "a ia-- .S s 6 d

Ia r 7arR " -sl '/ar~xs')'s

Varr T I 'ar(x )P(?

:5 R- 7 Pis -_
". . S

,-.% -~~~ ~ ~ ~ ~ . . .. .. .. .. .. . .. .. ..,._-.. .
• ,i " i"---Wiiw ~ i ,l~ m i~li~i. Wi i~ i ~ ll i . .. .. . . .| - 1



3. Simulation Results

This section presents simulation results on the performance of the SI

method on the problem of localizing a single source in the presence of

noise. The simulations were implemented in the Ctrl-C* language on a Vax

11/780 computer. The performance of the SI localizer is evaluated according

to the bias and variance of the source location estimate. The results show

that the variance of the SI method is given accurately by (22), and that

performance of the SI method is nearly optimal, i.e., the expected square

error in the source location estimate approaches the Cramer-Rao lower bound.

All simulations employed the 9-sensor array geometry shown in Figure 2,

with the two source locations shown and two levels of additive white noise in

the RD's. The sample bias and variance were obtained by averaging the results

of 1000-trial Monte-Carlo runs.

Typically, Rn estimates are zero mean with variance dependent only on the

signal-to-noise ratio (SNR) at each sensor [4,6]. When the source-to-sensor

range is comparable in all sensors, the SNR is normally comparable also. Our

simulated range difference estimates were generated by adding white Gaussian

noise to true RD values, corresponding to the case of uniform SNR across

sensors.

-e

.1*%

.

'F%

* Ctrl-C is a registered trademark of SCT. 4 ',
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Table 1. Enviromental information for the four simulation cases.

(Note: all distances are measured in meters.)

Run I Source location is: (390,160,170)

Range R : 454.5
s

Bearing cosines o: (.858,.352,.374)

RD noise standard deviation ad =0.1

Run 2 Source location x : (390,16n,170))? -s

Range R : 454.5
5

Bearing cosines ILs: (.858,.352,.374)

RD noise standard deviation d_. 1.0

Run 3 Source location x : (540,1360,11n)

' Range R : 1467

Bearing cosines : (.368,.q27,.075)

RD noise standard eviation = 0.1
ai

Run 4 Source location x : (540,136n,iIn)
-s

Range R : 14675

N Bearing cosines Lis: (.368,.927,.075)

RD noise standard deviation a 1.0

Table I describes the enviromental information (source location, range,

bearing, and additive noise level) for each of four 1000-trial MIonte-Carlo

runs (two source locations and two TDOA noise levels). For all runs, the nine

sensors were located at (0,0,0), (0,0,100), (0,0,200), (Io,o,0), (100,o,1o),

4 (100,0,200), (o,100,0), (n,lnO,lnn), and (0,101,200) meters.

I"%
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Table 2. Sample bias measurements, SI Method 1000 trials

Run Source Location Range Source Bearing (xlO4

x -x Rs Ys " s Y zs-z Rs- s  - y-y zz

1 0.099 0.019 0.025 0.10 -.019 -.50 -.46

2 3.73 10 0.81 3.24 2.2 -12 -22

3 0.95 2.5 0.042 2.7 -.60 -.22 -1.4

4 53. 143. 1.8 153. -35 2.4 -96

Table 2 shows the sample bias for each Monte-Carlo run, listing errors in

the Euclidean 3D source coordinates and errors in range. We find that the SI
method produces estimates with a bias which is small compared to the

quantities being estimated. Note that the bias in the source location and

range is positive, indicating that the source estimate is generally closer to

the origin than the true source. Also, the bias appears to be strong function

of additive noise level, perhaps increasing quadratically with an increase in
noise standard deviation.

|A

12
%Z2



Table 3. Sample standard deviation measurements, SI Method 1000 trials

Run Source Location Range Source Rearing (xlOQ)

£ a a2 ap a~ aYiy a

Sample 1 1.9 0.66 0.42 2.0 5.6 7.0 9.5

Standard 2 19. 6.5 4.1 20. 56 7n 95

Deviation 3 9.5 26. 0.58 27. 7.8 6.4 13

4 82. 220. 5.2 235. 78 63. 126

Standard 1 1.7 0.62 0.30 1.8 4.5 5.o 8.7

Deviation 2 17. 6.2 3.0 18. 45. 50. 87.

from (22) 3 9.3 25. 0.44 26. 6.2 3.0 12.

4 93. 248. 4.4 264. 62. 3n. 123.

Table 3 snows the sample standard deviations for each Monte-Carlo run,

again for both Euclidean and plane-projected polar coordinates and range. Due

to the source-sensor geometry, the bearing is more accurately estimated than

the range in all examples; this is typical when the source is several aperture

sizes away from the sensor array. Note the estimate variance of the SI method

appears to increase linearly with an increase in RD variance.
4. -

-' ., Table 3 also shows the standard deviation predicted by (22). Note the
agreement with the Monte-Carlo simulations.

.

4'
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Table 4. Sample RMS error measurements, 1000 trials.

Method Run Source Location Range Source Rearing (x14 )-

X s Ys z 2 s XQy Qz

1 1.9 0.66 0.42 2.0 5.6 7.n 9.6

Si 2 19. 6.6 4.2 2.2 56 71 98

3 9.6 26. 0.58 27. 7.8 6.4 13

4 98. 263. 5.5 280. 85. 63. 159.

1 1.7 0.62 0.30 1.7 4.4 5.n .6

C-R 2 17. 6.2 3.n 17. 44. 5n. 86.

Bound 3 9.3 25. 0.44 26. s.2 3.n 12.

4 93. 247. 4.4 263. 62. 30. 123.

The performance of the SI estimator can be evaluated by comparison to the 4

Cramer-Rao (C-R) lower bound, a lower bound on the variance of any inbiased

estimator [10]. Since the SI method is biased, the root-mean-squared (RMS)

error, defined by

/Bias7 , Variance

is compared to the C-R bound. Table 4 lists the Cramer-Rao lower bound

standard deviation rQ1 along with the RMS error for the SI estimator. As seen

in this table, the performance of the SI estimator is nearly optimal,

approaching the C-R bound. Note that the SI estimator appears to be

relatively unbiased, as the RMS error is nearly equal to the standard

deviation in all cases. Therefore, we expect (22) to accurately predict the

RMS error.

The extent to which the SI method is not an optimal 'east squares -etnod

is a fun:tion of the extent to which R computed by (13) is not equal to

I• computed by (14). It was therefore of interest to compare tnese

quantities. in the high-noise case i =) above, for both source

positions, the quantity i I i/R was typically less than .fl5 and

" - ..-.-. . - . ' -" ' ..., " .. -<-. 4-- .! Y . - . . .
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P almost never greater than 0.01. Thus, the SI method is very close to an

optimal least-squares equation-error method under the above conditions. It

would be of interest to find out when and if the disparity between

Rs and ixs becomes large, and, if so, what effect this has on the source

location estimate.

4. Geometric Interpretation

This section gives a geometric interpretation of the SI solution and

discusses it in light of the Monte-Carlo results presented above.

4.1 The Error Criterion

The goal is to localize the source x and therefore to minimize

,'x - x I for some norm. We will only consider L2 (sum-of-squares) norms.

Since only the RD measurement vector d is known, a natural formulation would

appear to be

Minimize il id - d(x )jIj (23)

x

s where d(Xs) is the vector of all measurable RDs corresponding to the source

location estimate x This error criterion is especially well-suited to the

case of zero-mean errors in the RD's. Indeed, if the RD errors are Gaussian

%< perturbations, then (23) provides the maximum likelinood estimate for

x (which is now regaroed as a parameter determining the mean d(x ) of the--..--s
.nultivariate normal distribution for d). For this reason, the solution to

(23) will be referred to as the maximum likelihood estimate of the source

location.

As mentioned in the introduction, solving (23) requires nonlinear

inlimization techniques. For this reason, the SI method does not solve

43',. :nstead, it approximately minimizes the L? ncr-. of an 'eauation error"

4hic. was chosen purely to simplify the solution. As seen in the Monte-Carlo

resilts, good estimates are obtained nonetheless.

Olacing sensor I at the origin as before, and using only N-I Pfls, all

V.
" . 15
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referred to sensor 1, (23) can be interpreted as finding the sphere, passing

through sensor 1, whose surface is as close as possible to heing d away -

from the ith sensor. This arrangement is shown in Figure 3 for the noiseless

case.

As seen in Figure d, the sphere of radius Rs, centered at x and
, --s

passing through sensor 1, is a surface of zero RD to sensor 1. The distance

from the sphere to sensor i is then di,. The problem is then to position

such that di . d. for every i. Accordingly, the error minimized in (23)

is equivalent to the sum of squared differences between the sphere-to-sensor

distance d and the measured Rf d for that sensor.

Since the sphere around the source must always pass exactly through

sensor 1, the solution is sensitive to the choice of sensor 1. Improved

results in the case of a systematic bias in measuring the Rn's relative to

sensor I may be obtained by removing the constraint that the source sphere

must pass through sensor 1. This can be accomplished by adding a constant

y to the RD vector, and solving for y as well as Rs and x *

4.2 Spherical Interpolation

We first show that the equation error (7) (approximately minimized by the

SI method) is closely related to the maximum likelihood error minimized in
2(23). Adding and subtracting R in the definition of the equation error (7)

gives (upon introducing hats to denote estimated quantities)

R2 2xTA A? 2 + 2
i -id R il + R , i 2,3..... I'

2 A2

ei = ;IX~ - xs - (R s - d i (24)

where x and R are the estimated source location and range, x. is the
-s S -1

itn sensor location (known exactly), and d is the measured range

difference. Let

'di - " -S :

, I

7 .ft
'-'m,',' "," °' '.

" ' "
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denote the RD predicted by the source location estimate s (cf. Figure 4).

Then (24) can be written as

i (Rs i - (R + il

2 ;
= 2R (d d d.i i i d i" ii (25)

= (di + ii 2R5)(d
il  dij)

Assuming that the noise in the delay estimates is small compared to the delay

values, £i can be written as

:< €i = 2(R + dil)(di - dil)

This form of the error displays the equation error as the maximum likelihood

error d. - times the term R + d.1 . When the source range is large

"% compared to the intersensor separation, the SI equation error reduces to

= 2Rs (dii - d ii)

The difference between the SI method and the maximum likelihood method is the

S. tendency of this error to pull the estimated source location toward the

e, origin, thereby making Rs and the equation error smaller. This contraction

* of the source estimate toward sensor 1 was consistently observed in the

simulations. Note that there is no difference between the maximum likelihood

solution and the SI method with respect to bearing estimation when

'

W- The above discussion leads naturally to a weighting function and an

iterative technique for obtaining the solution to (23). The weighting

matrix, W , in (11) should be given by,

W = diagf (26)

dd +-2

4here diag ) is a iiagonal matrix with v. as the element in the ith r

and column, and i I d 2R is given by a prior solution of (7), or

estimated from a )riori information. The solution of (23) is then found by

%L .

%"

"%. ' -" -.. * -
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iteratively solving (7) with successively updated values of W using (26).

Assuming this iteration converges, the weighting cancels the first term of

(25) and the maximum likelihood error remains. Conditions for the convergence

of this scheme to the solution of (23) need to be determined.

5. Summary
4.%

4-

In this paper, a closed-form solution for localizing a single source in

n-dimensions from TDOA information gathered from an N > n+1-sensor array was

described and evaluated by Monte-Carlo simulations. It was found that the SI

method exhibited an RMS localization error close to the Cramer-Rao lower

bound. Finally, in support of our simulation results, we showed that the SI

method is closely related to the maximum likelihood estimate for the case of

Gaussian TDOA measurement errors.
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Figure Captions

Figure 1. Oiiagrams illustrating notation and certain geometric relations for

the case of a single source x . Labels imbedded within a line

denote the length of the corresponding vector. For example,

Di = iLxi -x I.

Figure 2. Source-sensor geometry used in all simulations.

Figure 3. Sensor array, source and Rfn geometry. The sphere of radius

R drawn around the source is the surface of zero RD relative to
5

sensor 1. The perpendicular distance from the sphere to any sensor

is the RD for that sensor relative to sensor 1.

Figure 4. Geometric representation of the relationship given in equation (7).
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On the Efficiency of the Spherical Interpolation Estimator

N of Source Location Using Range Difference Measurements

J. S. Abel and J. 0. Smith

Systems Control Technology
1801 Page Mill Road

Palo Alto, California 94303

- Abstract. Cramer-Rao lower bounds are derived for the variance of unbiased estimators of source location,
- source range. and source direction given range-difference (RD) measurements. The Cramer-Rao bound (PB)

-,for range estimate variance is found to be a quartic function of source range. The 'Ro for bearing estimate
" variance is found to be insensitive to the source location, an inverse quadratic function of the sensor-array

solid-angle as seen from the source, and an inverse linear function of the spatial density of the sensors within
' -.i the array (assuming independent no measurements in each pair of sensors). The theoretical bounds are
* 'compared to empirical mean-squared errors obtained using a fast, suboptimal, least squares estimator of

source location called the Spherical Interpolation (st) method [11. The mi method estimates' mean-squared
errors are found to be in the range of 1.0 to 1.5 times the respective Cramer-Rao lower bounds.

I. Introduction

The problem of locating an object by analyzing signals received from it is a basic one in the fields of
Underwater acoustics, geophysics, aerospace and industry. It is therefore of interest to know how well a

'. sonrce localization algorithm can perform when the received signals are corrupted by noise.

A source tells of its location through the relative time delays measured among the signals it radiates to
the sensors of an array. In a constant-velocity medium, the time-difference-of-arrival (To,,A) between signals
received at two sensors is proportional to the difference in source-sensor range, termed range difference (PD),
and places the source on a hyperboloid of revolution about a line drawn between the sensors. in p iimensions.

D measurements from p non-coplanar sensor pairs (p - I sensors) are sufficient to localize a sonrce ;21.
" Typically, the nD's are not known precisely and the source location has to be estimated. The sonrce

location estimate will have. under suitable assumptions, an associated variance and bias. The Cramer-Rao
bound (,'rto) gives a lower bound on the variance of an unbiased estimator, and is often used in evaluating

Sthe performance of an estimator. An unbiased estimator which achieves the .'no is called efficient, it is well
known that all .Maximum Likelihood (Mt) estimators are efficient. Unfortunately, in the case of estimating

-. source location from noisy PD's, the ML estimator is expensive to implement, requiring nonlinear optimization
techniques. While much is known about the problem of estimating nov's from received signals (a recent special
issue on the topic is '131), there has been relatively little work on the estimation of source location from RD
measurements 1,2.3,4,5i.

This paper presents Cramer-Rao lower bounds on the variance of nnbiased estimates of source location,
,*. direction, and range from nD measurements. These bounds are then compared to the measured variances

of estimates obtained lising the Spherical fncerpolation J>t) method IL!. The i nethod provides a fast.
closed-form, least-squares type solution for source location from ro measurements, and is shown here to

- have rn (s error approaching the Cramer-Rao lower bound.
The organization is as follows. In section '2 the Spherical-Interpolation Method of -ource location

estimation is derived. [in section 13 the Cramer-Rao lower bounds on the variance of source location, bearing,
and range estimates are derived and discussed. Next, section 4 presents .onte-rarlo siinlation results
lemnonstrating the near-efficiency of the i technique.

U " 2. The Spherical-Interpolation Method for Closed-Form Localization

Let .V denote the number of iensors. and let 4i,) denote the ,[ between sensors and (, =
The vector of (z. ,. z} spatial coordinates for the .th zensor is denoted r,, and the position of rhe -ource is

b. "



denoted z. The distance between the source and sensor i is denoted by D, = x, - I, and the distance
from the origin to the point z, is denoted R1. Similarly, R. = I j. These quantities appear in Figure la.
Note that ',

di I. !=.LN (1)

The localization problem is to determine ;. given di, for z and I between I and N Note that there are
N(N - 1)/2 distinct P D 's di, (excluding i = ), and counting each d., = - d, pair once); however, any N - I
no measurements which form a "minimal spanning subtree' determine all the rest (in the noiseless case).
The redundancy of the complete set of riD measurements is used to increase noise immunity.

2.1. Equation-Error Formulation

To solve the localization problem, we first map the spatial origin to an arbitrary sensor, say the .th,
i.e., X . The or) d,, then reduces to ,-

and, from the definitions above,
d,, = (R- R2 247.,) - R. (2)

Adding R. to both sides of (2) and squaring gives

(d,1  .)2 = R:: - R12 - x.. x. (3)

Equation (3) is the Pythagorean theorem, illustrated in Figure lb. Moving all terms to the right side of (3),
the R terms cancel, and we are left with

R =: - d ' - 2R.d,, - (4)

The Ith equation is degenerate so we have N - 1 equations in three unknowns z.

As the delays are not known precisely, we introduce a so-called "linear equation error" '81 into the
right-hand-side of (4), and minimize it in a least squares sense to provide an estimate of the trite solution.
Without loss of generality, let = 1. Then (4) becomes

. - - 'R.dL - 3zZ., Z= 2. V (5)

where E, is the linear equation error to be minimized. The set of Y - i equations (5) can be written in
matrix notation as

: =,-R,d -S_ (6)

where

d S =(7)

It is worth noting that equation [6) is linear in r, given R., and it is linear in R, given i, Error vwctors
which are linear in the viknowns yield closed-iorm least squares -olutions.

The least q qares solution for z. given R. is

, ~~~SI 1' = ,v*- R. i) (

where the weighted linear equacion error energy J(_ij 5 -"W: is minimized for

S (Sw S w (T) W-.

€".2
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and W is symmetric positive definite (or simply diagonal and positive). If W = I, S V becomes the pseudo-
inverse of S.

To obtain a true least-squares estimate, it is necessary to minimize J(,z.) with respect to x. while
. allowing R. to vary, maintaining the relation R. = !11. 11. This, unfortunately, is a nonlinear minimization

problem, and serious difficulties can occur when J(.) is not a convex functional of x.. However, the
"-", nonlinearity can be eliminated as described in the next section.

2.2. The Spherical Interpolation Method
The basic idea of the .i solution is to substitute (8) into (6) and minimize the linear equation error

again, this time with respect to R.. This, surprisingly, yields a linear least squares problem for finding R.,
and the solution is quick and inexpensive. The technique is made possible by the fact that the formal least

Ssquares estimate of -. given R. in (6) is itself linear in R.. When the minimizing R. value is found in this
, .~ new linear equation, the corresponding value of x. (via (8)) is automatically a minimizer of the squared

equation-error norm with respect to x. given this R..

Rewriting the linear equation error defined in (6) to eliminate x. by subsituting the value from (8) yields

= - 2R.d - ss'VR( --- 2.,d) = (I - SS ,)(6 - 2Rd)

•-" where I is the Y - 1 by X - I identity matrix. Now, , is linear in the single unknown R.. Define the .X - 1
by N - I matrices

P =SSJV = S(SWS)-SW
. :. P: I SS;'V = I- P.

The rank of P. is at most 3 regardless of its order N -I, and PI has rank at least (N- I) -3. Also, P. and
P- are idempocent, i.e.. P, = P. and (pT): = Pt. Idempotent matrices can be interpreted as projection3 operators. For example. when W - I, the operator P... projects an (N - I)-vector into the subspace spanned
by the columns of S, and the operator P projects into the orthogonal complement of the subspace spanned
by the columns of S. Thus, for example, P.z is orthogonal to Pty for every pair of vectors z and y.

In the nondegenerate, four-sensor case, P,. = 13, and the error s is zero. In the more general case of X
sensors.

Pt P(6 - 2R~d)

so that

J'(R.) . _ = (6 - 2R.d) TPt WPt(6_ - 2R.d) (_- 2R.d)T W. (J -2R.d)

Minimizing J' with respect to R. is a form of weighted least squares in which the weighting matrix W is

of rank N - 4. The missing dimensions reflect the degrees of freedom removed by choosing sensor I as the
origin and substituting in the least-squares solution (8) for the three spatial souirce coordinates. Note that
when W = I. W._ = Pt. The least-squares minimizer of J'(R.) is given by

Substituting this solution into (8) yields the closed-form source location estimate

2IV f *dT W..d )

Clearly, the computational burden of (12) is very low compared ,o iterative nonlinear minimization.

Note that. in general. R. as computed by (11) is not necessarily equal to computed from (12),
except as the RD noise approaches zero. Therefore, we define the range estimate bv

',N
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Similarly, the bearing estimate is defined as the vector of direction cosines from the origin at sensor 1 to
the source:

± ,' (14)

3. The Cramer-Rao Lower BouLnd

The Cramer-Rao bound (,JRB) is a lower bound on the variance of an unbiased estimator 9,10,11.121;
estimators achieving this bound are said to be efficient. In this section ,IB's are derived for unbiased
estimators of source location, source range, and source direction based on RD information.

We first review the -nu, the reparameterization relation, and the information inequality. The variance
of estimating the .th element of 9 with an unbiased estimator j, based on an observation vector x is bounded
below by tie ith diagonal element of the inverse of the Fisher information matrix :91:

Var(j,) - E{fj:! E 2 {4 (15)

where Var( ) denotes variance, E { } denotes expectation, [M[, denotes the tth diagonal element of tie
matrix M, and -., is the Fisher information matrix for _, defined by [9I

If 4 is parametrized by t (i.e., = h(t)), the Fisher information matrix for t can be written in terms of the
Fisher information matrix for _ via the reparameterization relation [91

where, the (i, j)th element of 36't is 39,/,3t,. Finally, if is an lnbiased estimator of rhe calar (j), the
variance of " is bounded by the information inequality:

IT Var(j) > (j).:I( )(17)
We now derive the 'PB'5 for source location, range and direction. Defining J.(Z) as the ith element of

the Cramer-Rao lower bound on the variance of an unbiased estimator of sonrce location r., based on
,r estimates , is given by (15) as

Var(i,(t)) _ 77'] (18)

where. . is the Fisher information matrix for x.. Using the information inequality (17), the variances in
estimating source range and source direction from RD measurements are bounded below by P

Var(6. (2))

" Z

where .(z) is the ith element of ,.

S ince the iource location L, is a parameter in ,:eterniining the distribution .)f dhe D measurement
vector i. by die reparameterization relation (16), .r ,an be written as

C 4
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=
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and. as shown in Appendix A. assuming the RD estimates are Gaussian distributed with correlation matrix
,,, R.assunied independent if source location, : = R' nd

= ad)R1 d (21)) (i)(3. z. (3 z.

It should be noted chat. when the RD's are estimated from Gaussian signals, commonly used estimators are
unbiased and have 6,71

Rq (22)

where crI is the variance of each individual RD and is dependent only on signal and medium characteristics.

To find the Cramer-Rao lower bound on the variance of the source location estimate, it remains only
to find the sensitivity (derivative) of range difference with respect to source location '3d/uz.. Similarly, the

S" , PB's for range and bearing of the source are easily calculated after finding the sensitivities of range and
- bearing with respect to source location.

3.1. Sensitivity of Range Difference to Source Location

The derivative Jd/(z. can be evaluated by differentiating equation (6) in the noise-free case with respect
to z. and solving for 3d/,3z.. Setting = Q in (6) and differentiating with respect to X. yields

3~_2 '(4-S 2 - =O0 (23)
J3, .3z. 3:X

From (7), the ith element of d is R 2 - V so that k6 3z becomes

_ 2 .,3 3 d (2 4 )

where. A,4 is a diagonal matrix with d, = d,I as the tth row/column entry. The derivative, .3(R.d)/cz., isa evaluated ,tsing the product rule:

3(R.d) R d 3R. R d
=3z 3. : _ i = ._L -in(5

i where. R. = " has been used to evaluate .9R.,',x, = , z. . Substituting (24) and (25) into

(23) with 3r. 3z. I yields 3d/,3.:
" 3d ad

S - =-VA (26)

where
V . A-L

A A 1 - R.I (27)

a d O' -s

for Post-multiplying through (6) by ' >R., solving for 1'. and substitutinz into (27) produces a formula

for A in terms of 5 rather than d:

A = SP- R P  (23)

., ""  where
• p -.-P = =fl (

P_ (I-- P

~~ The idenipotent matrcie5 P_- and P are projection operators which remove the vector components per-
pendicular to -. and parallel to z,. respectively. Thus, % multiplies the -D subspace orthogonal to n. by
the matrix S. and it 'bends' the iD component parallel to fQ into the direction of .5caled by '2R..

*% ,*,
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:3.2. Cramer-Rao Bounds for Location. Range, and Bearing

The Cramer-Rao lower bound on the variance of an estimator of source location, i, from Gaussian

distributed RD measurements is obtained by using (26) in (21):

Var( i.)) > (29)

where

-- I

• , = z)R V
(a'VR V4,)L (30)

,% "2 (,I V ,J

The Cramer-Rao lower bound on the variance in estimating source range. R., from RD measurements
is similarly -.

Vart. .5 ) ".- ...) R : = n_=_ -

T= T AVR VA'V ). (31

For the bearing estimate " ., we need (using L. _ z., 1):[ O. = =_,z,): I ( ) R. -R-

The ,o for the bearing e-cinate, 1,, is thus .',

where

I . -- I

'- (34)

R- (,%Tv - .%)- ' P2.

Far-Field Analysis .P

In rhis :ection, we analyze the location. range, and bearing PD's in the "far field" (R. > 1, 7z)

and he "infinite-range case" (R. - m). These assumptions on the zcale of R. greatly simplify the PB
- expressions and give insight into the behavior of the bounds. We only consider the i.i.d. case R,, = (-I. as

is often done in practice 6.7I.

The far field :

The far tield of the sensor-array aperture is iefined by
, R. >> 4i~, .......V (5 '

*.N
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" At this range, we have A R.I A R.I, and from (22), (27), and (29)

,R I(A

Using (28) for A and (31) for the n-R variance of R, (36) gives the far-field range-variance bound as

Var(R4)Z 4aij I (37)

where
P U = I- U(UU)- UT

U =S,(:38)

where n- and - are any two mutually orthogonal vectors in 3-space which are also orthogonal to Q.. The
matrix P- is the idempotent projection into the orthogonal complement of the subspace spanned by the
columns oyU = S.

Similarly, the far-field bearing-variance bound is approximated by

" ( a(39)

,l5 -7

P~

and again U So-
We now discuss qualitative relationships revealed by the above formulas. Equations (37) and (39) show

that the far-field range estimate Cramer-Rao lower bound variance increases quartically with the range, and
the far-field bearing estinate deviation is constant with source range. Consequently. the mininum standard
deviation of a source location estimator increases with the square of the source range in the source direction,
and increases linearly with the range in the other directions.

Second from the far-field bounds, it is apparent that increasing the norm of A7": reduces the Cramer-
-. Rao bound variance in estimating source location, direction, and range. By the definition of A given in

(28), therefore, the far-field bounds are reduced when the size of S in the directions perpendicular to the
s'" ,,. source direction increases, or when the norm of 5 increases. The sizes of S and l are increased by placing

the sensors far from each other and far from sensor 1, as seen by the source, i.e. by increasing the size of the
array. The norm of 6 is also increased by aligning the array such that lines drawn between sensor I and the
other sensors tend to be perpendicular to the source, thereby decreasing d and increasing c. Increasing S

"' or " lowers the source estimate variance by increasing the effective aperture size of the sensor array. as seen

- from the source.
Third. the variances in the source location, direction, and range estimates are all proportional to the

I,) iloise variance.

To corroborate the above observations, the exact Cramer-Rao bounds were evaluated numerically and
compared to the far-field observations. Figure 2a shows the square root of the , -n3 range estimate standard
deviation plotted against range for the case of a 100-meter-wide, 200-meter-long 9-sensor prism-shaped array

. ocating a zource placed at various ranges along a line through the origin (see Monte-Carlo Ru I in Table
i). The range estimate 4tandard ,eviation can he seen to increase very linearly with the square o rhe range.
even at sniall ranges. Figure 2b shows the ' 3 direction-cosines estimate standard deviation plotted against
ratue for the case described above. The hearing estimate standard deviation can be see, ro be constatnt with
incr,,asin" range. except -t smnah ranges where there appears to he a point ot rnaximuni anglar rsolurion.
or hest focius.

4"

#'%

J. % .-. 7



..2

Lt

The Infinite-Range Case

In the infinite-range case. R. - o, only the source direction, 11. is of interest. At infinite-range equation

(6) gives
-S_. = _ , =-S'd (40)

where S' (S S)-ST. Note that by this defining relationsip, the infinite-range Q. is not constrained to
have unit norm.

The Fisher information matrix for the infinite-range Q. estimate is easily computed from ..at = Ri and
the reparameterization relation: accordingly the infinite-range Cramer-Rao bound for the bearing estimate

is

(41)-

where T 1
. R 1 j ST = S'R.LS" 7'(S'S)

Note that this bound is independent of source direction (since 2, I] is unconsrtained). It is also inversely
proportional to the square of the scale of the array, i.e., if the array were twice as large, the . variance in
estimating fQ. would be reduced by a factor of four. The bound is also inversely proportional to sensor-array
density; e.g.. if the number of sensors is doubled by measuring two independent I D estimates at each sensor
(thus doubling the length of S by repeating each row), the value of S"S doubles and the variance of .,

halves. In practice, the bound is inversely proportional to array density up to the density limit for which

the ro's can be assumed uncorrelated. As always, the -Rrn variance is proportional to the rD variance.

it is shown in Appendix B that the infinite-range lower bound (41) is achieved by the 'r method.

4. Monte-Carlo Simulation Results

This section presents Monte-Carlo simulation results comparing the performance of the *-T method to
tht Cranier-Rao lower bound. The simulations were implemented in the Ctrl-C* language on a Vax 11, 785
computer. Since the .t estimator exhibits a slight bias, rte root-nzean-squared (r,,) error, defined by,

'; q . ak E(_ . -z)
.

of the -t' method was compared to the Cramer-Rao lower bound standard deviation. It was found that the
.. -t method is nearly efficient in all cases tried.

The simulations employed the two nine-sensor arrays shown in Figure 3, with the two source locations ,..
shown and two choices of sensor 1. The RD measurements were simulated by adding i.i.d. white Gaussian

.. pseudo-random noise to the true RD values (corresponding to the practical assumption R, = j-12I i1.6,7!).
Sample bias, variance, and , .s error of the unweighted - method were computed by averaging the results
of 100-trial Monte-Carlo runs. The Cramer-Rao bounds for each Monte-Carlo run were computed using the
formulas given in section 3.2 above.

Table I describes the environmental information (source location, range, bearing, additive 7vD noise
, level, and sensor array) for each of the eight 100-trial Monte-Carlo runs.

Tables 2, 3 and 4 show the sample PN, error of the .[ source location, range and bearing estimates
and the corTesponding Cramer-Rao bounds for each of the Monte-Carlo runs. It should be noted that the
smpe biases of the i estimates, not shown here. were typically less than one tenth of the sample standard
deviation, and were never prominent in determining the .Ms error.

Front Tables 2. 3. and 4. as well as other results not presented here, the < Pstimarors of range. bearing,
and source location are seen to have P .t error in the range 1.0 to 1.3. trimes fhe amer-Rao lower bound
standard ,deviation. The -i estimator is therefore performing almost efficiently. it other terms, the -i
-estinator approximates the maximum likelihood estimator of softrce location given . ' measurements.

Ctrl-C is a .MatLab-based. high-level, 'matrix calculator:' language sold by SCT, Inc.

% V %



It is interesting to see that the choice of sensor 1 (the sensor to which the rn's are measured) has a

large effect on the Cramer-Rao lower bound (as much as a factor of two in standard deviation). It has

been observed that the range, and therefore source locatinn estimates, have smaller, ro for sensor I choices2which are either centrally located in the sensor array relative to the source or are closer to the source. Also

observed is the tendency for the -Rs to be smaller for source direction estimates for which sensor I is chosen

to be centrally located in the sensor array as seen from the source.

-' The above observations are consistent with the far-field analysis of section 3. For these sensor I choices,

R. is smaller and 11 !( is larger, both resulting in smaller Cramer-Rao lower bounds.

Also consistent with prior analysis is that the ,:no's obtained using the larger (prism shaped) array, are

lower than the corresponding bounds using the smaller (cube shaped) array. By the analysis of Section 3,

when the array size increases, the matrix S is larger, and the ,Po standard deviation is decreased.

The .41 technique is seen to achieve the Cramer-Rao lower bound for some choices of sensor 1, while

'' performing at as much as 1.5 times the 7rB for other choices of sensor 1 for the same source location, RD

noise. and sensor array. It has been observed, however, in all cases tried, that the choice of sensor I giving

the lowest ,'PB also gives the lowest rms error estimates using the :t technique. This suggests a three step

,.. procedure for locating a source: first, use an arbitrary sensor I to locate the source uising the -.i method;

* second, using this source location estimate, find the best choice for sensor I utsing the Cramer-Rao lower

bound formulas above; and third, use the si method to locate the source using RD measurements made

from the best sensor 1. A final refinement would be to perform Gauss-Newton descent on d - 1()1n2 to

converge to the optimal solution.

• .5. Summary

In this paper we presented Cramer-Rao bounds on the minimum variance in estimating sonrce location.

direction, and range from r o measurements. It was found that the, 'RB range estimate variance was a quartic

function of the source range. and sensitive to the sensor array. and the choice of reference sensor. The source

direction-cosines estimate variance was seen to be sensitive to the sensor array used, but insensitive to the

source location.

The 1i estimator of source location, direction, and range was described, and was shown to be asymp-

totically efficient (as the range approaches infinity) in the case of Gaussian distributed range-difference

measurement. Additionally. the 4i method was shown by computer simulation to a be in the range of 1.0 to

1.5 times the Cramer-Rao lower bound for a several near-field source locations.

Appendix A - Source Location Fisher Information Matrix for Gaussian Distributed Range-

Difference Measurements

" -" In this appendix, we derive the relationship (21).

Let p(dI r.) denote the probability density function of 4 given T., where d is a random (Y - 1)-vector,

and z. is a vector of dimension 3 which parametrizes the distribution.

, -In the Gaussian case, we have [141

where 5I = E{,i} is the mean (a function of j.) and R,, = r -i is the covariance matrix of the

random vector .1 (assnied independent of x}.

The Fisher information matrix is defined by r-1

:'.-. --- In v(" I -.) I'n Z _.).
.3r.

The log of the distriblition is

II P(1 .) I I2r IIi R,- R I

N... ,",
". : ,",',",.., ."_ • , . .- :. "" "th : -- " i ,
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so that

ax. (d - -,

Thus,
- (9 . f3 T 1Ld

The Cramer-Rao bound for an unbiased estimator of the parameter z, based on J observations is

Var(z.) > " =,

Appendix B - Efficiency of the Infinite-Range SI Bearing Estimator

For an estimator to be efficient, it must be unbiased and have variance equal to the Cramer-Rao lower
" bound. Here. we show that the unweighted Ai estimator of a. is efficient when the source is infinitely far

away from the sensor array, assuming it is based on unbiased Po estimates d with variance RI. (Efficiency of
the bearing estimator is defined relative to the RD distribution. Therefore, the underlying RD estimator itself
need not be efficient. It is also possible to allow the RD estimator to be biased as long as it is understood
that in this case an unbiased bearing estimate is one whose mean is the bearing corresponding to the mean
rD vector; in this case, the functional dependence of the biased RD mean on source bearing must be ::fined
and differentiable. We prefer to assume an unbiased RD estimator since the added complexity of allowing

rD bias does not appear to add significant practical value.)
We first show that the si estimate fl., of the infinite-range source direction-cosines vector. From (12).

in dIe limit as R. - cc.

- , = o (42)
R.

where. S" (S'S)-'S'. Taking expected values,

E(Q.,) = E(-S'i) = -s-S4) -s

by the linearity of expectation and the fact that the RD estimate is unbiased.

The variance of die 4i estimator is given by

Var(fL(z)) = E( ,.".) - E(f_.-lE(.z)T1

Substituting for Q -, we obtain
a

SVar(l(i S' E()- Efd)E(d) ] s'"

S'R,LS '

which is the Cramer-Rao lower bound given in (41). ",

4-
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Figure Captions.

Figure 1. Diagram illustrating notation and certain geometric relations for the case of a single source z.
Labels imbedded within a line denote the length of the corresponding vector. For example, D, = i - _. I.

Figure 2a. The square root of the Cramer-Rao bound standard deviation for estimating source range
plotted as a function of source range for the source direction, sensor array, and PD noise level given in Run
1. Table 1.

Figure 2b. The Cramer-Rao bound standard deviation for estimating source direction cosines plotted
as a function of source range for the source direction, sensor array, and PD noise level used in generating
Figure 2a.

Figure :3. Source-sensor geometry tased in all simulations.
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Table 1
:.K Monte-Carlo Runs

I..Run Source
Number Sensor 1 Location Array

(xIyqz) (xqyqz)
#meters meters#

.04.0 (1039,70

1(00,00) (160,390,170) 1
3 000)(6,9010.

4 (50,0,00) (160,390,170) 1

3(0,0,0) (160,390,170) 2

6 (50,0,00) (160,390,170) 2

7 (0,0,0) (820,350,560) 1

8 (50,50,50) (820,350,560)2

Sensor Array 1: 0 0 0 Sensor Array 2: 0 0 0
0 0 100 0 0 100
0 0 200 0 100 0
0 100 0 100 0 0
0 100 100 0 100 100

~ 00 100 200 100 100 0
100 0 0 100 0 100

100 0 100 100 100 100
100 0 200 50 50 50

=1.0 meters, 100 trials per MIC run
d
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Table 4 ::-
SI Method Source Range RMS Error,

Cramer-Rao Lower Bound ;,."1

Run RMS Error, Cramer-Rao Lower Bound (meters)

SI SI CRB R R
R R
S S "

R R R R R
S S S S S

1 19 20 17 1.06 1.14

2 14 17 9.8 1.45 1.75

3 35 37 25 1.42 1.49

4 18 19 19 0.99 1.01

5 131 135 110 1.19 1.23

6 114 120 76 1.50 1.58

7 185 188 145 1.28 1.30

8 118 118 119 0.99 0.99
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TRACK PARAMETER ESTIMATION FROM MULTIPATH DELAY INFORMATION

J. S. Abel and Khosrow Lashkari

Systems Control Technology, Inc.

1801 Page Mill Road

Palo Alto, California 94304

5,-

Abstract

It is desired to track the location of an underwater acoustic source with

range difference measurements from a stationary passive array. Many times,

the array has only one or two sensors, and the multipath and intersensor range

difference measurements are insufficient to localize and track a source moving

along an arbitrary path C1]. Here, we propose to track sources with I- or 2-

sensor stationary passive arrays by making the simplifying assumption that the

source's path can be described by a small set of so-called track parameters

and using the range difference information to estimate the track parameter set

rather than the source location as a function of time.

In tnis paper, we choose the track parameters to specify a straight-line,

constant-velocity, constant-depth path. Cramer-Rao hounds are presented for

estimating these track parameters from the time history of multipath and

intersensor range difference measurements. it is shown that this track e

parameter set cannot be accurately estimated from tne time history of I single

multipatn range difference witnout siae information (an independent velocity

estimate, for instance), although multipath and intersensor range difference

5Z%
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measurinents from a two-sensor array are generally sufficient to estimate the

track paremeter set. Computationally efficient techniques are presented

which estimate track parameters from range difference measurements taken from

1- and 2-sensor arrays.

Monte-Carlo simulations are presented which show that these techniques

have sample mean square error approximately equal to the Cramer-Rao bound
N.J when a single multipath range difference and an independent velocity estimate

are av.ailable. Te sample mean square error is shown to be in the range of

two to ten times the corresponding Crammer-Rao bounds when these techniques

- are applied to 2-sensor range difference data.

'-2

krS O

.. "

= • 
I.,

.4 I
%

I ,.,.- -- ,- ,..-- • , ,.. .. ... .- , , --. 1 L '. ,' - -- ' ,= '": " ""'~ :-.4=;



1. INTRODUCTION

The tracking of a radiating source by a sensor array is a basic problem

' in underwater acoustics. In this paper, we describe methods for tracking

sources using range difference measurements from passive stationary sensor

arrays when the number of sensors is small and multipath surface reflections

are present.

The signals recieved by the sensors of an array exhibit relative time

delays corresponding to a sources' location. The relative time delay between

* two sensors, termed time difference of arrival (TDOA) is proportional to the

source-sensor range difference (RO), and can be used to locate a source on a

hyperboloid of revolution about a line drawn through both sensors (a constant

velocity medium is assumed). In a p-dimensional space, N > p independent
* RD's are required to localize a source without additional information C1].

Accordingly, a target moving along an arbitrary path can be tracked in p

dimensions with N > p RD's by smoothing source location estimates obtained at

various times.

Much work has been done on tne problem of estimating TDOA's (a special

issue on the topic is C2] and recent studies on the performance of time delay

estimators include [3-10]). However, there is relatively little work on the

problems of estimating source locations from TDOA measurements [11-15] and

tracking moving sources using TDOA measurements from stationary passive arrays

[6-19].

-- RD information from I- or 2-sensor stationary passive arrays is

V insufficient to localize and therefore track a source moving along an

arbitrary path. However, if it is assumed that the source travels along a

path described by a parameter set, the problem of estimating a source's

location at many points in time (i.e., the problem cf tracking a source) is

reduced to the problem of estimating the parameter se, describing the source's

path and may be possible with relatively little RD information.

Many underwater sources of interest travel 3lony straight-1ine, constant-

depth, constant-velocity paths, specified ty so-called track parameters --

3



velocity, depth, bearing angle, and the radius and time of closest approach to

the sensor array. In this paper, computationally efficient techniques for

estimating a sources' track parameters from RD measurements taken from I- or

2-sensor stationary passive arrays in the presence of a surface multipath

reflection are presented and evaluated.

The structure of this paper is as follows. Section two describes the

track parameter estimation problem and reviews basic RD relationships. The

Cramer-Rao lower bound on the variance of estimating the track parameters

given RD and side information is derived in Section three. Track parameter

estimation methods are developed in Section four. Section five reports

computer simulation results. Section six contains concluding remarks.

'C'
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*' 2. The Track Parameter Estimation Problem

We consider the following scenario illustrated in figure 1. There is a

J" istationary passive I- or 2-sensor array listening to a target in the presence

of a surface multipath reflection. The source moves by the array at constant

velocity and constant depth along a straight line. Range difference

* •measurements (between the direct paths and/or multipaths) are available at

various points during some interval of time. The track parameter estimation

problem is to use the range difference measurements to estimate the parameters

describing the target's path. Below, track parameters are defined and RD

relationships are described for three arrays: single sensor, two-sensor

vertical, and two-sensor horizontal.

Denote L sl and L s2  as vectors containing the (x,y,z) coordinates of the

sensor locations for sensors 1 and 2. Denote p as the vector of track

parameters, and define

" ' o_=a r~6x Vy xT YT zT T{. _

Here, v and v are the x-axis and y-axis source velocities, z- is the
x. :y

source depth and XT and YT determine the time and range of closest approacn

of the source to the sensor array. At any time t. , the source location may

Oe given as

= "i 13 _ = ['T'Vxti YT'Vyti ZTI (2.2

where 13 is the 3 x 3 identity matrix. The range difference between the

' source aid the sensors at time ti is given by

a i = (I) - d _42(i) (2.3)
-12 --d I ' -

where x( ) denotes the i-tn component of tie vector x tne vector

2 contains the range differences for t.imes t., i1,...i, 3nd d ji) is-12 1 d3
given by

eS
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d(i) :L (i) - L . (2.4)
-di-T s

Single Sensor

In the case of a single sensor in the presence of a multipath reflection,

the track parameter vector, and the source and sensor locations can be given

as (see figure 2)

[v xTT

T YT ZTJ

Lr(i) = [xT-vti YT ZT]

L= [0 0 Zs] T  (2.5)

Here the x-y plane of the coordinate system is the ocean surface, positive

depth is measured into the ocean, and the coordinate system origin is at the

ocean surface above the sensor. Note, due to the radial symmetry of the

array, there are only four elements of p . The RD between the direct path

and multipath for the sensor location above is equivalent to the RD between

the direct paths to the sensor locations (see figure 2)

[0 0 zST (true sensor)

= [0 0 -Zs] T  (virtual sensor) *,

The RD vector is given as

d d - d (2.6)

where the i-th elements of d and d , the direct and multipath ranges, are

given by

d () L - L (i)I

r f- XT 'ti 2 Y2 + 2 1/2

64
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-d M L-L(i)ii;d (i) = -T

vt2 +y2 +2 1/2 2

U.

10 to [(XT vti )2  • i'T (zT  Zs)2 {2 ,

Two-sensor Vertical Array

Here, the track parameter vector and the source and sPnmnr inr.Atnc :2n

be given as (see figure 3)

: p - Iv xT  T ]

T~) =[XT'Vti YT ZT]T

= U T

Ls2 P 0 Zs21 T  Z 2  Z (2.8)

Again, due to the radial symmetry of the array, there are only four nonzero

elements of o . The intersensor RD vector is given as

d d d (2.9)

-12 -_dl -d 2

where the i-tin elements of !dI and d 2 , the direct path ranges, are given by

d ( (idl _S -5

.: 2 + 2 +2 1/2
, I(xT -vt + T z- zsl) ]

d -i j L (i)i

2d2  S2  ;-T

T  vti 3 YT +  LZT- + 2/2 (2.10)

Note that this intersensor ;D is :ne same as the multipatM RD measured from a

single sensor at r0, i(z z for the same set of target track
e ss2 sl I

parameters vitn p(l) given by ZT -(ZsZZs1) rather nhan z_.

7



Two-sensor Horizontal Array

With a horizontal array there is no longer radial symmetry, and the track

parameter vector and the source and sensor locations can be given as (see

figure 4)

n T
'V = -

L'X y -T YT TI

LT(i) = [xT-vxti YT'vyi ZT]

T
LS [xs  0 zs]

L 2 = ' Zs] (2.11)

The intersensor RD vector is given as

dd -d (2.12)
- -1 -t2

where the ith elements of d and d the direct path ranges, are given by

dd1(i) : ILi - LT(i),I
-S. S) ., '-"

dl -_s1 -_T

(x.Vx t. xs)2 + -yT-y i + ZTZs2 1/2

d (i) iL - L (i)iid2 -_S2 Z-T

.2 4X ti+x . ,2 + 2,1/2 (2.13)

SI + v YT-Vyti +z-Zs

Note that the array is symmetric about the x-axis, also the intersensor RD is

insensitive to tne sign of 'ZT-Zs)

-" .. "
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3. BOUNDS ON THE PERFORMANCE OF TRACK PARAMETER ESTIMATORS

In this section Cramer-Rao lower bounds on the variance of estimating

Z. track parameters from RD measurements are presented. It is shown here that

the minimum variance in estimating the track parameters P_ = [v xT YT ZT]T

1 from the time history of a sinqle multipatn RD is typically large compAr_ e to

the RD variance unless side information is available. It is also shown that

-'. side information may not be needed when a two sensor array is used and

intersensor RD information is available.

Lower bounds on the variance in estimating the track parameters

p = [v x Zr] T  are presented for the case of known velocity and a single
fmultipath RD available at N points in time. Lower bounds on the variance in

estimatiny the track parameters p_ = [v xT YT ZT T are presented for the case

of multipath and intersensor RD's available from a two-sensor vertical array

at N points in time. Finally, lower bounds on the variance in estimating the

track parameters p [vx vy XT YT ZT]T  are presented for the case of the
multipath and intersensor RD's available from a two-sensor horizontal array at

N points in time.
,'S

The variance of an unbiased estimator of a parameter a is bounded below

by the Crarmer-Rao lower bound [20-23]:

E T E -E (3.1)
.$ Ee~- _~3(J )1

where I is the Fisher information matrix for the parameter _ given by

[20]

-Ej[- logf _ T_ L logf (aI x)} (3.2)

where f(Ix) is the conditional probability density function of g ,iven x

and the estimate ) is based on data x . If the distribution on _ is

parameterized by t ,e.g. _ g(_) , then t~ne Fisher information matrix for

- can e qrit:en as 20]

T 13IiI j l ,t, 3.3

9--
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Finally, if x and y are drawn from independent distributions, then [20]

I + 1 (3.4)

.

IP a1 T1 (3.6)
a.-a

3.1 Single Sensor Case

Frm rtmm...... .,= **. , , ^ ,,g raier-Rau lwer bound for estimates of

?= Ev xT Y ZT]T  based on N single sensor RD measurements is

var( _) >Ip! (.

where adT 35

where d is a vector composed of RD nservations at times t. , i1,....N.

The derivative, ad/ap is easily evaluated from (1), and is given by

7
ad tl(xTvtlI (T_~ 1)P1 1YT1 TP Zs

"." . (3.7) ..

L tN(xT.vtN)PI (XT'VtN)PN "YTPN "ZTPN + zsPN J

where

%m +
Pi 1 + i I• ,do(i) - d i)= --T(3

m _ -M -d
And, assuming the R estimates are unbiased and Gaussian distributed with

correlation matrix Rd the information in d is given by [20]

5% -1 "

_" I R (3.9)-
d Rd

3.1.1 Ambiguity Issues

As shown below, the Cramer-Rao lower bound in (3.5) is typically very

large compared to the RD estimate varia_, ; therefore low variance unbiased

a 10
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track parameter estimates cannot be obtained without additional information.

For many sets of track parameters, during much of the observation time,

the term (xT - vt)2 will dominate d (i) and d (i) and I/d(i) and
T--d --fn

i/d m(i) can be approximated by,

I + 1 kd
T IXT.VtiI (1 + 2'

(XT -vti

k
, T i + k) (3.10)

ST vti (xT2Vti)

where k and k are constants depending on the track parameters and the~dd m a
sensor location. Using (3.10) in (3.8), we see that the four columns of -_

are approximately dependent on the three vectors,

- 2
t t ]

IiIx T- vtI 1 IX T Vt 11IxT-

1 N tN
-Nn-(3.11)

L J

Therefore, tIe matrix I , ' will be nearly singular and the

resulting bounds on the minimum variance of track parameter estimators will be

large compared to the variance in estimating the RD's.

This result can be seen by examininy the target/sensor geometry. As

illustrated in Fiyure 5, there are many sets of parameters which result in

roughly the same measurements d . Away from the sensor array, the

hyperboloids of constant RD can be ioproximated as cones. As a, result, the

differences in d between tne case of a target moving slowly close -y a

sensor and the case of a target moving more quickly, further from the sensor

can be small compared to the deviation in estimating d Consequently, there

V-1
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can be many sets of 'equivalent' track parameters for a given d and the

variance in estimating the track parameter set from measurements of d alone

is high.

3.1.2 a priori Estimate of v

Many times, an independent estimate of the target velocity is available,

through doppler measurements, for instance C24]. With an a priori estimate of

the target velocity (an unbiased Gaussian-distributed estimate with standard

deviation av is assumed) the Cramer-Rao lower bound on the variance of

estimating the track parameters is given by

var(p [v XT YT -i (3.12) -

I = TT ~ J [p -
where d T . T L "'

T-1 1 (3.13)SRd;~~ + (a4  v

ad
where =2_ [1 0 0 U] and - is given above.aa

When v is small enough, the columns of I are no longer linearly
v P

dependent and estimates of the remaining track parameters will have variance

corparable to the RD and velocity estimate variances (depending on the amount

of RD data available and the track parameters, see section 5, simulations).

As a result, the single-sensor track parameter estimation method described .

herein assumes an independent estimate of the velocity.

3.2 Two-sensor Vertical Array - |

When both inter-sensor RD and multipath RD measurements are available

from a two-sensor vertical array, tne Cramer-Rao loier ound %or estimatinoc

the set of track oarameters L /T -/7 zT 71 is vien )y I.

iarlp) 3.5)

12

II
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where, Ip is given below using (3.3) and (3.4)

II =1 +1 +1i~P P-1_ Pl -2 -12 d- d 2 (3.16)

T 11t 1 ~ 2 T ad 2  1~2 ~ 12 (.6

where and d12 are the two multipath and inter-sensor RD vectors

(assumed 'atistically independent), the matrices I I and I are

1 R

'aI R

d =R

-12 d12

and the derivatives 3d /ap_ and ad2/ap are given by (3.7) and d12/ ap is
-- 12

-~z z
t 'x.~-t1 p ( vtpI -YTP1 ..T - TTI + S

aAl2 -dl ' -2
'a- . a

- - Zsl s2
tN(XTVtNJN -(xT-vtN)PN, -YTPN "ZTP d N)T + 41 (N)

ddl(N) -2

. (3.17)

where 2(3.
.. = - I i

Note here that, by the arguments above, the derivatives d

a"d2/p_ and 2/ each have approximately linearly dependent columns.

However, unless the difference Zs2 - zsl is small compared to the size of

the array, the sum I + I + I will have linearly independent columns,
a-1  p2  a 12

and the Cramer-Rao lower bound on the variance of the track parameters will be

, U, comparable to the RD estimate variance (depending on the track parameters and

the amount of data available, see section 5, simulations).

, _13
2%



3.2 Two-sensor Horizontal Array

When both inter-sensor RD and multipath RD measurements are available
from a two-sensor horizontal array, the Cramer-Rao lower bound for estimatingT
the set of track parameters p = Cv v XT ZT] is given byx y'TY 1

var(.) I (3.18)

where, Ip is given as

I -- I + I + I:T

P- P-1 -2  k12

d d '!1 d d ad 1d
a p ( I 1  r-.' + ap- ! 2 +p ap 1 12 , (19a"

where d1 , d2, and d are the two multipath and inter-sensor RD functions,
1 -;-2 -12

Id I and I are
-1

: " I  
.-

I R -  -

.4-

n he -
da1 32 2

tt tP- -( pt±

1dlr Txtlx)l :1y~T1Tii T) (x I s:15 p -(YT-vyt 1 >1P -zTP +x~

x tv xtNXs)N N.' T_ y iOPN T_ x IN s)PN -(YTV'ytNPN -ZTPN ZSON

141
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qj.TLvtXtxs)PN t IYf'Vyti)PN "(XT 'xtN-Xs)pN "YTvyNN "ZTPN ]+ Zs+

t -(x -vt x)P t xs p l - y-v t p -ZTp + ,

' ap
- * 

--

2 -LN(XT'VxtN>N "tNXsPN tN(YTvytN)PN (XT'VxtN)PN+XsPN (YTytN) (ZTZs)PN

(3.20)

Provided x is large enough, we expect the sum I1  + 1 1 will not

contain linearly dependent terms and the Cramer-Rao lower bound on the track

parameter estimate variance will be comparable to the RD variance. (depending

on the track parameters and the amount of data available, see section 5,

simulations).
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4. Track Parameter Estimation

In this section closed-form equation-error methods are developed for

estimating track parmeters from a single multipath RD and a priori knowledge

of source velocity. These methods are extended to estimate track parameters

using intersensor RD measurements from 2-sensor vertical and horizontal

arrays. Finally, methods are presented for estimating track parameters from

intersensor and multipath RD measurements from 2-sensor vertical and -,

horizontal arrays without a priori knowledge the source velocity.

4.1 Single-Sensor Track Parameter Estimation: The Equation-Error Approach

In the case of a single sensor in the presence of a multipath reflection,

the functional form of the multipath RD is known in terms of the track

parameters. Therefore, a fit of a model d based on track parameters p can

be made to the measured d . The parameter estimates would then be chosen as

m in J -, d)(4 1

*. for some cost function J.

The minimization (4.1) is over a cost function which is typically non-

convex in p . Therefore, in general, computationaly expensive exhaustive

search methods must be used in finding a solution of (4.1). In this case the

computational burden can be overcome by choosing the cost function J so that

functions of the track parameters p appear as coefficeints in a linear

least-squares minimization, yielding a closed-form solution for p based on

the measured RD d the sensor location L and an a priori estimate of the

velocity v.

4.1.1 The Equation Error Method

Recall,

d - (4.2)- -. -

where,

1 6

J6 ...



p.

S(i) ((xTVti2 y  (ZT+Zs)] 1/2 (4.3a)

= - 2 2 2 1/2(4b
d4() = [(xT- vti) + YT + (zT-Zs) (4.3b)

What is desired is an expression relating functions of d(i) to d(i) and

d(i) , so that functions of the unknown track parameters appear as linear

coefficients which can be estimated using least-squares techniques.
-, Manipulating (4.2) gives the following relationship

- _ 1 2 2 2 (

J% In (4.4) d (i) and jd(i) are replaced with dm(i) and d(i) the values

predicted by the estimated track parameters _ = [v XT YT ZT] , and as the

delays d are not known precisely, an equation error is introduced

2 '2 2 2 '2d; [_ i) - d-Me(i - d_ (i)] - 44 (i). (i) = i  (4.5)

- We assume an a priori estimate of the velocity (denoted by v) is available,

-' and assign v = v . Using (4.3) in (4.5),
% .

d i 2(,)(z2 + t2 v 2

~ 2 - 24 + 2 .2 + 2 ^2+ d(i)t vjxT} - (i){xT I +T 16z 1ZT I (4.6)

A AT AT TT

where the remaining track parameters to be estimated are [xT YT ZT]
-' d(i) is the measured RD at time t. , and c. is the corresponding equation

error [251. Defining E as the vector with i-th element ., (4.6) becomes

; S -r=e (4.7a)

where,

!:2 -2 17b
X.. T + YT + TJ.b
-2

, T

17
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r _(4.7c)

d4()-4d 2(N) (z 2 t 2v2
s N

-8d 2 ()t v 4d 2 (1) -16z 2

S 
S

L8d (N~t v 4d() -1z (.d

Defining the cost function J as ,'

A T W (4.8)

where W is a positive-definite weighting matrix, the set of track parameters

minimizing J is given by

v1ql :fq

-(q2 - - /2 (4.9)

1/2q"

q3  "

where

q (ST WS)-I T Wr

Clearly, the track parameter estimates given in (4.9) are obtained with little

computational expense compared to global search methods.

The estimate p given in (4.9) will be referred to as the equation-error

estimate. The following sections discuss properties of the equation-error

estimate and oresent methods for extending the equation-error estimate to the

case of intersensor RD data from 2-sensor vertical and horizontal arrays.
.-

4.1.2 The Equation Error

Here we study the cost function minimized in obtaining the equation-error

18"

o5
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estimate. Using equations (4.4) and (4.6) the i-th equation error can be

written as,

-(i) 2 (i) - d2 (i) + 2dm(i)dd(i)] 2 
- 44(i)2(i) (4.10)

where d is the measured RD value, d is the RO estimated by the track

parameter estimates, and . andd are the direct and multipath ranges
given by the track parameter estimates. Rearrainging (4.10) gives

-(i) [2dm(i)d_ d 2(i) - d2(i d d2(i)) (4.11)

;. The factor d2(i) - d (i) is the difference betwee'n the square measured and

- ' estimated RD's, and should be much smaller than d,(i)dd(i) , the product of

the estimated direct and multipath ranges. Therefore, the i-th equation

'" .' error can be apporximated as

eA2 2id d()

- w(i)(d(i) - d(i)) (4.12)

where

Note that the cost function J = T T is made small by selecting track

parameters which have qw3 as small as possible such that d approximates

d . The factor w(i) is made smaller by selecting track parameters which

place the source closer to the point (0,0,0), recall Ls = [O 0 L.] . Thus,

it is expected that minimizing the unweighted equation-error (minimizing!~ ""j T will produce track parameter estimates with a bias in the
T

~direction IXT YT ZT] = [0 0O].

Minimizing j = C_ is equivalent to minimizing a weighted L norm of

the difference of the measured RD values ind the estimated PD values.

Specificly, the minimization J T is equivalent to the minimization

*T
- E A
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where _ d-d and & is a diagonal matrix with i-th row/column entry

given as w M).,.

*T
If it is desired to minimize J : - , the above suggests a %

weighting matrix and an iterative procedure for doing so: solve (4.7)

iteratively with weighting matrix

2
Wn+I diag{i/wf(i)} (4.13)

where diagx(i)} denotes a diagonal matrix with x(i) as the i-th row/column

entry, and w(i) is computed using track parameter estimates from the n-th
T

solution of (4.7) minimizing j = T W If the process converges, the

error minimized is

j* *1* (414

C*

Note that minimizing J rather than J places more relative weight on the RD

estimates taken when the source is closer to the sensor. The benefit of

minimizing J over J may be evaluated by the studying the Fisher information

matrix (3.12) for the relative importance of RD measurements as a function of

source range.

4.1.2 Variance of the Equation-Error Estimate

In this section we present expressions for the variance of the unweignted

equation-error track parameter estimates when RD and a priori velocity

information is noisy.
S.-

Velocity Known Precisely

We first derive an expression for the equation-error estimate variance

when the velocity is known precisely and the RO vector is unbiased with

variance R . When the RD standard deviation is small, the variance of the
d

track parameters can be given by [25]

932 32,
var(2 :' xT YT' R '-' r

20-j
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"' . where 3p/ad car be evaluated by the chain rule:

3, p p a _
- = L._ T (4.16)

apa
From (4.7), 7- is given as

. 0 0 0

- 1  0 __
ma PI

a. " 2p (4.17)

where p. is the i-th element of 2 Recall in the noiseless case,

and fr _S _ _ (4.18)

.ifferentiating (4.18) by d gives

as 32 aL
(4.19)

and solving for
"%,,

.. s , -- (4.20

where

ar3 2 di)v 2  2
-", diagj4d (i) + 8d(i)(vt + z}

i:: "" aS diag{-t6 _(i)ti vq1 
+ 8d_(i )q2 } (4.21)

.- ".'RD's Known Precisely

~When the RD's are known precisely and tne velocity estimate v is unbiased

,', -. with small variance av ' the equation-error estim.ate variance can be derive.d
Din a manner similar t

221

w" U s v th e e v can ne derlvei
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2T (4.22)var(2 1 v xT~ YT TI) (7Wav(TJ)(.2

a2.
where -5- can be evaluated by the chain rule:

Lap ap as 2 4 23]T77; : (T-) (T) v o o(4.23)

ap ag<-

the derivative -q is given in (4.17) ana the derivative 7 can be

evaluated as follows. In the noiseless case,

S q = r (4.24)

Differentiating (4.24) by v gives

a rl

aT + s V 7- (4.25)

and solving for

(S' S ST aS ar (4.26)

wnere

"() t 1

a- v 2  8_ (4.27

F2d (N)t1  0-- q:: 8..q (4.27)"

2( {)tN 0 )['

Estimated RD's and Velocity

Finally, if the estimates of d and v are independent, then the variance

of the equation error estimate p = ,v x_ YT z can be given aporoximateey as

tne sum of the variances calculated above

2- -- T - TVIar(,p) )vR~ (4T)Vat~~p) v) 3- v ;  ad d ""

22
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4.2 Two Sensor Track Parameter Estimation

In this section methods for adapting the equation-error estimate to
inter-sensor RD measurements from two sensor arrays are presented. In

addition, methods for estimating track parameters from two-sensor arrays

without a priori information are developed.

4.2.1 Track Parameter Estimation From Inter-sensor RD Estimates

The modification of the equation-error estimate (4.9) to make use of

"" * 2  inter-sensor delay information rather than multipath delay information is

straight forward. If the sensors are placed in a vertical array, the

intersensor RD is functionally equivalent to the single sensor multipath RD,

and only the target and sensor depths need to be adjusted:

Sv v

T I

-q2 - q / (4.29)2 YT q 3 -

LiT] 1/2  + j

L where

q-1

q2 S ST W S S W r

where S and r are as defined in (4.7) with d :d tne intersensor RD• ". ' _ 1 2

estimate and W is a positive definite weighting matrix.

in the case of a hnrizontal array, an equation-error estimate can be

derived in a manner similiar to (4.2) -- (a.9). : -oe 2.12',

2 ,2 2 2 2 2
i L 12  ) - i ' - 4 'i). ) 12i "4 K4.30)

4 

-2-
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where d is the intersensor RD, d is the target range to sensor I and
-;-12 --dl -

d2 is the target range to sensor 2.

Substituting (2.13) into equation (4.30),

S 2 )2
112(iW - .-12 () XT Vxt i  xs ) 2 Xs(XT-Vxti)

YT -vy i) + (zs-Zr
)2

+ 4xs(xT-'xti) 0 (4.31)

Denoting the track parameters to be estimated by _ [vx Vy XT YT ZT] and

2 as the measured inter-sensor RD, (4.31) becomes

2 22 2d2i)- 4d12(i)Et i v +. xj] .

+ 8 M2(i)ti{VxXT 4 VyT} - 4d1 2 (i)jx T + YT + 'ZT -Zs

-a t ;v + 4xfx} (4.32'

where an equation error e. has been introduced. The set of track parameters

minimizing J = W  are given by

2 2 112".; v 'v- -a 3 2
• y .3 ..p.=2

^xT  q 4

2 2 1/2
Y "-q 3q2 '1/ v 3 (4.33)

2 21 2221/2
s- 1 q2 - q4 ql-q 3q2''"_q3

,i Mnere v : v 2 v21 is -e a [riori velocity est'1?-e and

42
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Jq.

q STW S )-ISTW r
_q3

where

8 2 2 2- d2 (1) 4xt 4x1

1 12 1 -12 s I s

4d2 (1( 2v2  2

1rdI.2 (N) - 4d. 2 (N)(t v2 +

m:. andl W is a positive definite weighting matrix. Note that due to symmetries in
Sthe array, the signs of T and v ,and (z-Z) cannot be determined from
SRD information alone; however, the sign of YTVT can be estimated, and here,

"- % v > 0 and YTtakes the sign of YTVy

4.2 Combining estimates from two sensors

*. As shown in section 3, when R) information from more than one sensor is
. available, side information may not be needed to obtian low variance track

parameter estimates. Below methods for estimating track parameters from
inter-sensor and multipath RD information from two-sensor vertical and

*, horizontal arrays are given. These methods are not optimal and do not producePEML (minimum variance, unbiased)track parameter estimates, but provide a

computationally inexpensive alternative to the nonlinear optimization involved
in computing tie Ml track parameter estimates. ,f the resources are available

to compute the ML estimate via an iterative nonlinear minimization, for

example, these methods provide excellent starting points.

With data available from two sensors placed in a vertical array, sets of

25
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estimates, parameterized by v can be constructed using (4.9) and (4.29). A

line search over v can then be performed for the set of track parameters

minimizing some cost function. Emperically, it was found that minimizing the

following cost function gave relatively unbiased low-variance estimates for a

large range of noise levels for the track parameter sets used in the Monte-

Carlo simulations, see Section 5:

v (ZT12 (v) T ZT2(v)J (4.34)

where zT1 2 (v) is the depth estimate based on v using the intersensor RD

information, and ZT2 (v) is the depth estiamte based on v using multipath RD

information from the deeper sensor.

If the data is from two sensors placed in a horizontal array, sets of

estimates, parameterized by v based on individual sensor data can be generated

by (4.9). Estimates of V /v parameterized by v can be made based on inter.-x
sensor data form (4.33). Track parameter estimates can then be chosen by

finding the set of estimates producing the most consistent YTI' YT2' vx/'v

i.e. the set, minimizing the cost function A
Vx(V) YT1(v)'YT2(V),2 (

JL ( v 2xs (

where Vx (v) is the x-axis velocity estimate obtained from the intersensor RD

estimate using (4.33) and YTI and YT2 are the y-axis range estimates from the

multipath RD measurements and (4.9).

-V.-
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5. Simulation ResultsS
This section reports computer simulation results on the performance of

% Vequation-error estimates applied to noisy RD and velocity estimates. Sample

bias, standard deviation and RMS error, defined by

OL N
., sample bias a .1 " 6)N i; (6i

I N N 21/2
," sample standard deviation / _ N i)"-i=1 i l.

sample RMS error N 21 (5.1), ."(,- Z ie " J 3] 1 /

(where is the i-th sample estimate of the parameter a )were calculated by

averaging results of 100-trial Monte-Carlo runs and were compared to

theoretically calculated values and Cramer-Rao lower bounds. Simulations

S'were implemented in the Ctrl-C* language on a VAX 11/785 computer.

Results are given for sources moving along straight-line constant-

ivelocity paths by i- and 2-sensor arrays. Multipath and inter-sensor RD

estimates were calculated by adding white Gaussian noise to the true RO

vectors; velocity estimates (used in the 1-sensor simulations) were calculated

by adding white Gaussian noise to the true velocity.

Table I describes the enviromental data (sensor locations, track

parameters noise levels, etc.) for each of the Monte-Carlo runs (the source

# -'v trajectories and sensor locations are also shown in Figure 6). Note that in

the case of a single sensor or vertical array positioned at the origin,

V x Vy XT YT ZT] = [5 2 250 900 170] is equivalent to

-_ Iv xT YT ZT
T = [5.38 556.3 747.8 170]T; and [-3 1 140 400 11031

T
translates to [3.162 8.849 423.7 1101 . Each run used 100 points of

*aata: one RD sample every 10 seconds from time t, = -490 to t10 0 = 500

- seconds, and the total observation time is t = t1 00 - t' = 990 seconds. So

*Ctrl-C is a high-level matrix calculator language sold ny SCT, Inc.
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that all biases and deviations are measured in meters, the track parameter
UN

velocity is replaced here by the distance travelled during the observation
interval vt.

.:

Single sensor

Table 2 shows sample bias, standard deviation, RMS error, and theoretical

deviation (4.28) of the unweighted equation-error estimate (4.9) applied to

multipath RD estimates and velocity estimates from a single sensor (Monte-

Carlo runs 1 thru 4). Monte-Carlo runs 1 and 2 show the case of perfectly
known RD estimates and noisy velocity estimates, and runs 3 and 4 show the

case of noisy RD estimates and perfectly known velocity.

In these cases, the equation-error estimator is seen to be essentially

unbiased and to exhibit a standard deviation comparable to the RD and velocity

deviations. Note that the theoretical deviations given by equation (4.28)

agree very well with the sample RMS errors. Accordingly, it was noted that

the track parameter estimate standard deviation appears to increase linearly

with RD and velocity standard deviation. As expected (by the discussion of

the equation error, Section 4.1), the sample bias of the equation-error

estimate is negative in runs 3 and 4, indicating that the track parameter

estimate pulls the estimated source location closer to the origin than the

true source location.

Table 3 shows sample RMS errors theoretical deviations (4.28), and

Cramer-Rao bounds (3.12) of the equation-error estimator appled to RD and

velocity estimates from a single sensor (Monte-Carlo runs 5 thru 12). The

sample bias, not shown here, was noted to be small compared to the sample

standard deviation. The RMS error appears to be slightly smaller than

theroetically predicted, consistent with a possible small cross-correlation

between the RD and velocity noises seen in these relatively small sample-size

Monte-Carlo runs. The sample RMS errors (and theoretical deviations, appear

to be very close to the Crainer-Rao bounds indicating t hat 'me equatior-,r

estimate is using 'he RD and velocity information in an efficient Tnper )r

these cases.

.2
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p Two-snesor Vertical Array

Table 4 shows sample bias, sample standard deviation, sample RMS error
5and Cramer-Rao bounds (3.15) for equation-error estimates applied to RD

measurements from a two-sensor vertical array; a priori velocity estimates

were not given. The track parameter estimates were made from RD measurements

taken from the deepest sensor with velocity estimates determined by (4.34).

The equation-error estimate sample bias is seen to be a strong (perhaps

quadratic) function of the the R) noise deviation, and is comparable to the

sample standard deviation at the larger value of additive RD noise. The

sample standard deviation appears to be a linear function of the RD noise

deviation, and small compared to the track parameter values. The equation-
'p error estimate sample RMS error is seen to be about twice the Cramer-Rao

bound.

, ~.Two-sensor Horizontal Array

Taole 5 shows sample bias, sample standard deviation, sample RMS error,

and Cramer-Rao bounds for the case of the source moving past a horizontal

array. The track parameters were estimated by averaging tne translated track

parameter estimates given by (4.9) and (4.3) with a velocity estimated by

minimizing the cost function given in (4.35). Here, the tracK parameter

estimates are essentially unbiased and have a sample standard deviation which

is small compared to the track parameter value and appears to increase

linearly with RD standard deviation. The estimates have an RMS error of about

five to ten times the Cramer-Rao bound, dependiny on the track parameters.

Here, it appears that the track parameter estimation method is not using the

RD) information efficiently. However, depending on the application this

estimator might nave acceptable performance.

S.
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'I 29

-. --..- % .- . .-.- .- .o.- - ...-.-. " '.' " i'%,' °%' -.°",.- " %''........................-................J'.- ." - .



6. Summary
.

In this paper, we discussed the problem of tracking sources with

nultipath and intersensor range difference measurements form I- or 2-sensor

stationary passive arrays. RD data gathered from such arrays are insufficient

to track a source moving along an arbritrary path, and here, the problem of

describing the source's location as a function of time was reduced to the

problem of estimating a small set of parameters describing an assumed

straiyht-line, constant-velocity, constant-depth source path.

Cramer-Rao bounds were presented for estimating the track parameters from

the time history of multipath and intersensor range difference measurements.

It is shown that this track parameter set could not be accurately estimated

from the time history of a single multipath range difference without side

information. However, multipath and intersensor range difference measurements

from a two-sensor array were seen to be sufficient to estimate the track

parameter set when the sensors are appropiately placed and enough RD data is

available.

Linear least-squares equation-error techniques were presented which

estimate track parameters from independent velocity estimates and multipath

range difference measurements taken from a 1-sensor array. Analytic

expressions were developed for the variance of the estimate, and Monte-Carlo

simulations were presented wnich show that these estimators are relatively

unbiased and have sample RMS error which is given accurately by the analytic

expressions and is approximately equal to the Cramer-Rao bound.

Line-search methods were developed to estimate track parameters from 2-
5,

sensor RD data when no independent velocity estimates were available. The

sample mean square error of the track parameter estimates produced by these

methods was shown by Monte-Carlo simulations to be in the range of two to ten

times the corresponding Crainer-Rao hounds. These methods provide a

comoutationally inexpesive alternative to the nonlinear optimization required

in findiny tne ML estimate.
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Figure captions

Figure 1 RD Measurement Scenario. A radiating source is shown moving along

a constant-depth, constant-velocity, straight-line path. The

sensor is shown recieving signals from the source both directly

[] and from a surface multipath reflection.

Figure 2 Single Sensor RD Measurement and Source Track. Figure 2a shows

the sensor at L located on the z-axis and the source at L
-sd

The direct path and multipath lengths are shown as dd  and d .d m
Note that the multipath length d is the same as the direct path

m
length from the source to a 'virtual' sensor located at L .

-sm
Figure 2b shows the source's constant-velocity motion parallel the

x-axis and the sensor located at the origin of the x-y plane.

Figure 3 Vertical Array RD Measurement and Source Track. Figure 3a shows

sensors at L and L on the z-axis and the source at L"
n-s ~-s2 ;-

The direct path lengths from the source to the sensors are shown
as ddl and dd2 ; the multipaths are not shown. Figure 3b shows

the source's constant-velocity motion parallel the x-axis and the
sensors located at the origin of the x-y plane.

Figure 4 Horizontal Array RD Measurement and Source Track. Figure 4a shows

sensors at L and L at the same depth, and the source at-si -s2
L T The direct paths from the source to the sensors are shown
;-T*

and have lengths ddl and dd2 the multipaths are not shown.

Figure 4b shows the source's constant-velocity motion and the

sensors located on the x-axis.

Figure 5 Track Equivalence. Two sources moving along different constant-

velocity, constant-depth, straight-line paths are shown here to

produce similiar sets of single-sensor multipath RD
rneasuremen:s. Source I is shown moving along a constant-velocity,

constant-depth, straignt-line path producing RD measurements

[d1 d2 d3] at times [t 1 t 2 t 3 ] Source 2 is shown moving faster

at greater deotn along a constant-velocity, constant-deptn,

TV
.... - . ._- . .-.- .._-. .-. _ .. .. ..--.-. ,-. - -. '_. ,.-. ..".- .- -o. . .. . ' --. .," ".. ."-7:



straiqht-line path producing the same RD measurements at the same

t imes. -4

Figure 6 Simulation Source Tracks. The x-y plane source tracks used in

the Monte-Carlo simulations are shown as dotted lines, each dot

representing the source location at the time of an RD

measurement. The sensor locations in the x-y plane are shown as -'

squares; the vertical array and single-sensor array are

represented by the center square and the horizontal array is

represented by the two outer squares.
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Table 1
Monte-Carlo Runs

UL Run Track Noise Levels
Number Number (meters)

- 1 1 0 10
2 1 0 100
3 1 0.1 0
4 1 1.0 0

5 1 0.1 10
'"6 1 1.0 10

7 1 0.1 100
8 1 1.0 100

-- 9 2 0.1 10

12 2 1.0 100

. ,13 1 0.1 -
14 1 1.0 --

1. 15 2 0.1 -
16 2 1.0 --

Track parameter set #1: [v v YxT Y zr]=[5 2 250 900 170]
Track parameter set #2: [v v x r Y Zr]=[' 3 1 140 400 110]

Single Sensor Location: (0,0,300)
Vertical Array Sensor Locations: (0,0,100), (0,0,300)
Horizontal Array Sensor Locations: (200,0,300), (.200,0,300)

I. .

, .o .
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Table 2a
Track Parameter Estimate Bias,

Single-Sensor Array

Run Bias (meters)

... A A A A#XT'X YT'YT ZT -7 (V-V)t

I,'.

1 -0.058 -0.090 -0.018 -0.56

2 -0.58 -0.93 -0.18 -5.6

3 -0.030 -0.084 -0.009 0

4 -0.92 -1.8 -0.15 0

Table 2b
Track Parameter Sample Deviation,

Single-Sensor Array

Run Sample Deviation (meters)

# Gx (TY Uz Gvt

1 1.0 1.6 0.32 10

2 10 16 3.2 100

3 0.30 0.48 0.60 0

4 3.0 4.8 6.0 0

-a1
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Table 2c
Track Parameter Theoretical Deviation,

Single-Sensor Array

Run Theoretical Deviation (meters)

G."(x (TY hz (Tvt

1•1.0 1.6 0.32 10

2 10 16 3.2 100

3 0.32 0.46 0.60 0

4 3.2 4.6 6.0 0

Table 2d
Track Parameter RMS Error,

Single-Sensor Array

'%

Run RMS Error (meters)

""': Ox(5y (Tz CFv t

. .1.0 1.6 0.32 10

2 10 16 3.2 100

r,3 0.30 0.48 0.60 0

4 3.2 5.1 6.1 0

, - ..--- 4
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Table 3a

Track Parameter RMS Error,
Single-Sensor Array

Run RMS Error (meters)

# x cy cz vt : -
T

5 1.1 1.7 0.32 10

6 3.5 5.5 0.70 10 C[

7 10 16 3.2 100

8 11 17 3.2 100
-U

9 0.20 2.0 0.35 10

10 1.9 4.1 0.52 10 -

11 0.36 20 3.5 100

12 2.0 21 3.5 100

i *J.

o.'.,.

.,

1
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Track_  Table 3b
Track Parameter Theoretical Deviation,

Single-Sensor Array

Run Theoretical Deviation (meters)

* - 5 1.3 2.0 0.37 10

6 4.2 6.2 0.91 10

7 11 17 3.2 100

8 14 20 3.8 100

. 9 0.22 2.3 0.38 10

, 10 1.9 4.9 0.69 10

11 0.47 20 3.5 100

12 2.2 23 3.8 100

o% %|,
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Table 3c
Track Parameter Cramer-Rao Bound,,

Single-Sensor Array

Run CRB Deviation (meters)

(T (7'Z t-

5 1.1 1.6 0.32 10

6 3.0 4.1 0.59 10

7 10 16 3.2 99.8

8 11 16 3.2 100

9 0.17 2.0 0.35 10

10 1.7 3.3 0.47 10
5. 10

11 0.36 20 3.4 97.2

12 1.7 20 3.5 100

'A-"-"" . .' ."_- " ' ',-,.. ,',-•"-".. -'.","."',%.["¢'% %*_ ,.." % ," . ...- r.'' 'A" , . % 'o'
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, Table 5a
Track Parameter Estimate Bias,
Two-Sensor Horizontal Array

Run Bias (meters)

A A A AA

ft XT'XT YT'YT ZT'ZT (V-V.~t (v-vv)t

" 13 -0.11 -0.61 -0.10 2.9 -1.0

14 0.49 1.2 0.35 13 7.6

15 -0.49 -1.4 -0.25 6.7 -2.3

16 0.26 1.2 0.45 -14 5.3

Table 5b
":. Track Parameter Standard Deviation,

.}Two-Sensor Horizontal Array

Run Standard Deviation (meters)
'~~CT (TV #- y z ,t  (-7, t

xx YY

13 1.1 4.9 0.82 24 9.9

14 10 49 8.2 240 99

15 1.3 3.5 0.65 18 6.2

16 14 40 7.2 200 68

'4



Table 5c
Track Parameter RMS Error,
Two-Sensor Horizontal Array

Run RMS Error (meters)

CIV t 0Ivt

13 1.1 4.9 0.83 25 10

14 11 49 8.2 240 99

15 1.3 3.8 0.70 19 6.6

16 14 40 7.2 200 68

Table 5d
Track Parameter CRB,

Two-Sensor Horizontal Array :.,

Run CRB Deviation (meters)

GYx 17Y xY GvY :n In n n"

13 0.24 0.90 0.15 4.6 1.8

14 2.4 9.0 1.5 46 18

15 0.086 0.38 0.065 1.8 0.53

16 0.86 3.8 0.65 18 5.3
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Appendix G - A Flexible Sonar Signal Processing Workstation
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*" SUMMARY

A sonar signal-processing workstation is described which can be quickly

reconfigured on site to provide maximum responsiveness to new and changing

threats. The areas of new technology are

SL
0 A high-level programming environment tailored to digital signal

processing development and implementation;

o Sophisticated software tools specifically suited to underwater

- "detection, localization, and characterization.

S.- The workstation thus serves in two very distinct ways, first as the ideal

"°. algorithm development environment, and secondly as implementor of "production

algorithms."

Algorithms are developed interactively in a very advanced signal

processing language by a highly trained siqnal processing expert. A

successful high-level description can then be "compiled" directly into

" -" numerous low-level machine-code modules which can control a diverse

installation of signal processing hardware in real time.

The workstation is simultaneously capable of high-speed development when

adjusting to new threats and high-speed performance when implementing the
.d -d signal processing tools thus developed.

.5?
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1. INTRODUCTION

Many systems have been built to exploit the latest and most effective

techniques for signal processing in the context of underwater surveillance.

Software development for these systems has typically relied on the tools

provided by computer manufacturers. Once a system is developed for a

particular task, it is normally not easy to modify in the field on a

fundamental level, and the user may be forced to choose among a variety of

menu selections, unable to contribute fundamental enhancements to the system.

While appropriate for lowly skilled operators, such systems cannot be

developed on site, thereby significantly under-utilizing the experience and

insight of the highly trained operator. The system proposed in this paper

can close the gulf between designer and end-user; fundamentally new approaches

to target detection can be installed literally overnight.

This paper outlines a workstation concept one level higher than the

typical: In addition to providing a powerful set of tools for acoustic

underwater surveillance, we will provide a system maximally effective for

developing future surveillance systems. This allows maximum flexibility with

respect to countermeasures which may render existing systems ineffective.

.
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2. FEATURES OF THE SIGNAL PROCESSING DEVELOPMENT SYSTEM

Present-day software tools for maximally advanced development consist of

* ~the following features:

Interactive high-level language (with compiler)

Integrated editor

Self-documenting and self-checking applications tools

2.1 HIGH-LEVEL SIGNAL PROCESSING LANGUAGE

Modern software development systems include an interactive programming

*. language which supports the notation and needs of the application to the
greatest possible extent. In the case of underwater acoustic signal

processing, this language would support complex matrix operations, polynomial

manipulations, controllable numerical precision, and operations applied to an

indefinitely long sequence, to name a few. The language must also support the

development of concise mathematical notation as close as possible to that

used by a design engineer working with paper and pencil. The nearly

*mathematical descriptions manipulated by the design engineer are executed

interpretively in the development stage, allowing maximally high-level

debugging and evaluation, but the final equations are automatically translated

into ultra-fast machine instructions by a hard working compiler.

Unfortunately, there is no language for signal processing which achieves

a satisfactory percentage of the above goals. The principal language in

current use for signal processing is Fortran, although in the future, ADA will

be extensively used. While proposed changes to Fortran over the next decade

may give some support to treating arrays and even matrices as primitive

objects in the language, there is no real possibility of obtaining full

support of signal processing needs from either Fortran or ADA in the

foreseeable future.

* The best obtainable signal processing language to date appears to be

CtrlC (pronounced "control-see"), a software product of Systems Control

Technology (SCT). CtrlC is an extension of MatLab (for "matrix laboratory"),

-'. . - -, , . " --
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which is a numerical analyst's desk calculator language invented by Cleve

Moler at the University of New Mexico. MatLab expressions involve a single A

data type: matrices of double precision complex floating-point numbers.

MatLab expressions are extremely concise for linear algebraic equations. For

example, typing "x=b\A" in MatLab solves the matrix equation Ax=b using

Householder reductions followed by back-substitution (Dr. Moler is a leader in

the field of matrix numerical analysis and was involved in the development of
EISPAK for eigen analysis). If Ax=b is overdetermined, then a a numerically

I..H -1 Hrobust version of the least squares solution x = (A A) A b is produced.

MatLab contributed fundamental progress in the development of a high-level

syntax for digital signal processing operations.

CtrlC is the only extension of MatLab which supports user-defined

functions. This extension is critical for the use of CtrlC as a high level

signal processing language. The design engineer can very quickly build up a

large library of functions written in CtrlC. Compared with writing Fortran,

the CtrlC environment is about one order of magnitude faster for algorithm

development. This advantage is due to the high-level syntax and the fact that

it is interactive. To date, there is not yet a compiler for the CtrlC

language. Automatic translation from CtrlC to Fortran is one subtask of the

workstation development project.

2.2 INTEGRATED EDITOR
4.'

In addition to the language itself, a modern software development system
provides an "integrated editor" which "understands" the high-level language,

and contains tools fitted to the same application. For example, a signal

processing language editor would provide extensive display support for digital

signals and system diagrams. The editor should support both text and graphics

as program source. Text is used to describe mathematical functions in a

concise yet maximally clear manner, and block diagrams are used to describe

whole systems. (Block diagram notation is especially important when making

extensive use of parallel computation.) Diagram blocks can include text which

contains, for example, the mathematical expression for the function of that

box, or the name of a signal processing primitive and a pointer to the list of

parameter values for that instantiation of it. (Signal processing primitives

4-"-



very often have quite a few parameters which must be fixed by the designer.

It is normally necessary to effectively provide a table of parameters for each

processing box. They are easily managed via menu-style interfaces.)

In a well-integrated editor, a high level "expression" (mathematical

syntax or a piece of a system diagram) can be "evaluated" in the editor's

environment to produce high level objects which can be inspected or used in

subsequent operations. During system development, it is never necessary to

leave the editor. All results of all operations exist in forms which can be

further manipulated, displayed, or transformed within the editor. Later, when

the processing functions have been identified, and a complete system has been

configured, the collected functions and/or diagrams are then compiled by

another editor command, and the net result is a high-speed version of that

capability. The compiled code is then available as a (fast) primitive in the

editor. It is also available for installation as an operator's option in a

menu tree, or as a permanent ongoing real time process (such as needed for

automatic detection of a new threat).

SCT is presently committed to the development of the block-diagram

interface to CtrlC. Development of an integrated editor environment "around"

this facility and the CtrlC language is a subtask of the proposed workstation

development project.

2.3 SIGNAL PROCESSING TOOLS

In addition to the language and an integrated editor, there should be an

extensive library of sonar signal processing tools which support the design

engineer in every conceivable way. For example, primitive functions should

exist for computing the FFT, power spectral density, autocorrelation function,

cross-correlation, Doppler correlation, target localization from delay or

Doppler information, digital filter design, sampling-rate conversion, coherent

and non-coherent sinusoidal line tracking, peak finders, statistical

utilities, signal generators for testing, image processing utilities, and so

on. These primitives introduce higher level data types which can be given
1 "methods" describing how to display them, or even how to interpret them in

high-level expressions.

5
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All of the signal processing primitives above and more have been

developed in Fortran and CtrlC at SCT. Due to lack of a wide customer base,

only the most general signal processing utilities are being sold in the

commercial distribution of CtrlC. With a relatively small level of effort, a

complete installation of sonar signal processing tools into CtrlC can be

carried out at SCT. This alone would seem to provide the most advanced sonar-

signal-processing detection workstation in the world.

Part of the process of integrating signal processing tools into CtrlC is A

to supply intelligent defaulting of unspecified arguments, and consistency

checking for the arguments. Here the algorithm designer can save the user

from simple mistakes such as undersampling (which produces aliasing) and "do

the right thing" when various optional parameters are omitted in the
interactive calling sequence. Hardening of the user interface in this way is

expensive but very valuable. It and the function documentation (described -.

below) will account for nearly all of the time it will take to integrate

existing SCT acoustic surveillance tools into CtrlC.

2.4 SELF-DOCUMENTATION

Finally, given a powerful language and integrated editor, together with a

comprehensive set of primitive signal processing functions, there must be a

very extensive online documentation facility. This documentation should allow

the expert engineer to sit down and get to work immediately without reading
any manuals and with a minimum of "database queries" on his part. Fast

acquaintance with the enormous library of instantly available primitives is

made possible-by "keyword searching" through the function-names, or any of the

various levels of function documentation described below. If he knows the
name of the function he wants (or the first few characters of it), he can ask

for a display of the documentation for that function at one or more levels.

4_ He can be in middle of typing a call to a function in an expression and

request information (such as a description of the function's arguments) to be

N displayed in a side window without having to leave the expression he is

typing.

Each primitive function should be documented on several levels: (1) a

6



one-line description of what the function does, (2) a list of argument

mnemonics and their default values, (3) a list of one-line descriptions of the

function arguments, (4) a full description of the function's purpose and

useage, (5) high-level source code for the furction, and (6) application notes

* .and examples. Cross-references can be generated to pre-existing systems using

any given function (to allow inspection of parameters for comparable

situations in the past).

- 2.5 PROJECTED BENEFIT

In conclusion, development of the high-level workstation we propose

promises the following benefits:

o Subcontractor signal processing development will produce better

results per dollar by an order of magnitude or more.

o The time required to configure a new signal-processing system (made

g necessary, for example, by the need to track new types of targets),
*will be reduced by at least an order of magnitude.

These benefits are achieved by providing the best existing software

development tools, uncompromising high-speed implementation, and a complete

battery of all relevant signal processing techniques.

I7
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3. SCT BACKGROUND
"-4

The need for the advanced development environment discussed here has

become increasingly apparent after many man-years of signal processing

software development at SCT. SCT has accumulated an extensive capability in

signal processing and has devoted special emphasis over the past several years

to passive underwater surveillance systems. In addition to a full complement

of sonar signal processing utilities (many implemented on an FPS array

processor), SCT has developed an extremely powerful dynamic programming

approach to multitarget tracking. In related projects, extensive capabilities

in digital image processing have been developed over the years.

The comprehensive interactive programming environment will allow rapid
prototyping of signal processing systems on the basis of experiments with 4.4

realistic data. CtrlC, developed by SCT, provides an initial start in this

direction. While users of CtrlC are extrememly happy with it, the next

implementation will be far more powerful.

4
In the following two subsections, some existing signal processing

utilities and some CtrlC capabilities are listed.

3.1 EXISTING SONAR SIGNAL PROCESSING TOOLS AT SCT

For the past several years the Adaptive Systems Department of SCT has had

ongoing contracts with the Navy and others to develop new digital signal

processing techniques, mainly in the area of underwater surveillance. The

emphasis has been on spectrum analysis and source localization from multiple

hydrophone recordings. As a result, the following SOFTWARE capabilities now

exist:

- Power spectral density estimation using the FPS array-processor (AP)

- Estimation of crosscorrelation and autocorrelation functions on the FPS AP

- SCOT and PHAT normalized cross-spectra and correlati on FPS AP

- Synthetic FFT on the FPS for narrowband "zoom" (The F ,- maximum is 8K)

- Arbitrary FFT window generator

- General digital filtering on the FPS AP

<V.".._'-,-;. " . ~ ,-'' w w, ' : 4.- " ":•- .' .;. _____ ___,_-... . . . . . . .. . . . . . . . ............. LL..L_., Ir



- Sampling rate conversion on the FPS AP

- Digital filter design software to support the above

- Modified Yule Walker "high resolution" spectrum analysis

- Doppler cross-correlation (a broadband tracking technique)

- A multitarget localization program

- Adaptive tracking of multipath delay and multipath reflection coefficient

- Adaptive delay estimation

- Synthetic signal generation (1 or 2 sinusoids in white or filtered

noise), Gaussian noise generation, chirp sinusoid, impulse

- Spectral noise-floor equalizers
- Synthetic Doppler generator

- Signal statistics measurement

- Signal interpolation

- The Constant-Modulus Algorithm for multipath estimation and channel

equalization

- Recursive maximum likelihood method for adaptive filtering and estimation

- Overdetermined Instrumental Variables method for adaptive filtering
- Maximum A Posteriori Line Extraction (MAPLE) for coherent narrowband case

- ADEC for tracking noncoherent sinusoids in noise

- IEEE Programs for Digital Signal Processing

- EISPACK, LINPACK matrix analysis packages (e.g. least squares,

eigenvalues)

* - Graylevel 2D display (for spectrograms, correlograms, and the like)

- Graylevel output drivers for the HP LaserJet, Printronix, and DeAnza.

- Calibrated line-track display suitable for overlay on graylevel plot

- Utilities for reading and unblocking sonar data received on magnetic tape

" - Support utilities for data 10 in several formats.

Conversion programs exist for going between any pair of formats below:

16-bit packed integers (typical for raw data)
.32-bit floating-point (typical for intermediate data)

32-bit complex floating-point (used for some intermediate data)

CtrlC binary format (can load any data into CtrlC for examination)

MassLib format (SCTLIB image-processing tools require this format)

9
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All of the above programs are written in Fortran or CtrlC and currently run on

the Vax 11/785. In all, we have several hundred more general-purpose signal

processing utilities which combine to give a complete and well-rounded set of

tools. It is high time for a new phase aimed at integrating these tools in a

manner that will put them effectively in the hands of the capable user.

3.2 SUMMARY OF CURRENT CtrlC FEATURES

CtrlC is currently aimed primarily at the control design and general

signal processing community. A feel for the present CtrlC environment is

gleaned by typing HELP:

$ DO CTRLC

[> help

Ctrl-C Help Facility

Starting & Ending Examples Commands Summaries

Basics Graphics & Plotting Procedures & Functions

Files & Data Matrix Computations Control Systems

Filtering & Estimation Modeling & Simulation Signal Processing

Identification Numerics & Utilities Personalizing Ctrl-C

o Type help and the first unique letters of the topic for info

o Type help and the first letters of A tY topic to check for info

o If you are new to Ctrl-C, type 'help intro'

o For more information on how to use the Help Facility, type

'help help'

o More detailed information is available in your Ctrl-C manual

Appendix A contains a complete list of the functions presently delivered with

Ctrl C.

10
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4. AN EXAMPLE SCENARIO

In this section we try to convey a "feel" for the proposed system by

describing an imagined scenario in which an outside consultant has been called
" in to develop a new processing technique using the proposed signal processing

development system. To bring out as many novel aspects of the system as
possible, we assume the consultant has no prior experience with it. He has
been told only that he can push the 'help' button if he has any questions

about the system or what it can do.

The Scenario

-. An underwater acoustics expert has been asked to take a look at some

unidentified underwater signals which have been recorded by a sensor array.

It is thought that these sounds are emanating from a new type of underwater

vehicle. The objectives are to infer the power spectrum of this new source

(as a function of its orientation, range, velocity, and acceleration), and to

develop software for detection, localization, and tracking in real time.

The consultant sits down at the console and presses the help' key. An

"editor window" is formed containing a summary of further help topics. (This

is characteristic of the way all requests for information are handled: a new

editor window is created initially filled with the requested information.)

The help topic summary might look as follows:

Select any of the following:

* INTRO - Orientation for the new user

* HELP - How to use the HELP facility

* LANGUAGE - High level signal processing language tutorial/summary

* TOOLS - Heirarchical synopsis of available signal processing tools

* SYSTEM - Documentation of system utilities (editor, windows, etc.)

(Select by pointing to desired line with mouse and pressinq mouse button,

or type capitalized keyword above followed by the RETURN key.)
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The user then "clicks the mouse" on the INTRO line (or types INTRO

<RETURN>). The introduction provides a general overview of the system and

gives enough initial information to allow the user to proceed with the other

initial help' choices.

The format of each help topic is hierarchical. The goal is to make it

possible for a new user to obtain any level of detail in a logical manner, or

allow an experienced user to get a terse summary of features with one or two

mouse clicks. The menus at each level of the tree are arranged so that the

experienced user gets to the most often needed summary windows as fast as

possible (e.g. the mouse does not have to be moved). In all cases the help

information appears in a separate window away from the "working window" in

which the user is developing software.

The first time user will want to peruse the documentation for at least an

hour or so, skimming through much of the tutorial level information and

studying the terse summaries in more detail. The signal processing language

will take the most study time, although it will be very natural to use (being

closer to true mathematical notation than typical programming languages and

having less general data structures and data types to learn about). The

language tutorial will include examples and "worksheets" where the new user

can practice language features. The TOOLS help subtree is organized into

categories, much as the initial help display of CtrlC is currently presented

(see above). All told, it should not take more than one day to become fully

familiar with the general capabilities of the system and how to find specific

information when needed.

So, to work. Our acoustics expert wants first to see power spectrum

estimates from the three nearest sensors over time intervals centered about

CPA (closest point of approach). He therefore types

?siect<cr>

where <cr> denotes the RETURN key, and a window appears containing a list of

all tools with the word fragment 'spect' in their titles. Similar commands

create a list of tools with 'spect' in their one-line summaries, argument

12
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documentations, or full documentations. In this way the user can control the

depth of the keyword searching. In addition to keywords, he can specify so-

called "regular expressions" for the search key. Regular expressions are a

notation for complex pattern matching used in sophisticated text editors.

PThe function 'spectrogram' looks promising, so he clicks the mouse on

that line of the help window, or he simply types

spectrogram ?

where ? denotes <CONTROL>?. A function name followed by ? is a request for

a help window on that function. At any time a quick summary of the various

"* '?' options can be created by pressing the <HELP> key, selecting HELP, and

then selecting HELP SUMMARY. This window can be left open in the upper right-

hand corner of the screen for constant future reference if desired. The

screen is large enough for several windows to be open at once. Windows can be

shuffled around and resized at will. They can even be "buried" and later

"revived" like papers on a desk.

The next task is to apply the spectrogram function to each of the three

closest sensors. Suppose the passive sonar data for 10 channels exist in

files Cn.DAT, for n=1,2,. .. ,1. The time of CPA in each channel is estimated

by typing (notice that the text to the right of // represents comments)

EnergyEnv(x,span[5]) := {/ Define new function

/ Return energy envelope = unnormalized moving average of x(i)**2

xs=x.*x; // Array of x(i)**2

FOR i=l:LENGTH(x),.. // Lowpass filter (LENGTH is intrinsic)

* -, y(i)=SUM(xs(i-span+1:i)); // xs(i) = 0 for i<1. (SUM is intrinsic)

RETURN(y); // Signal envelope estimate

FOR i=1:10, [e(i),cpa(i)]=MAX(EnergyEnv(X(:,i)=GetSig("C"&i2s(i))));

The above is equivalent (except for the optimal argument 'span' whose default

value is 5) to the following Fortran:

13
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SUBROUTINE ENERGYENV(Y,X,tJ,ISPAN,WORK)

DIMENSION Y(H),X(N),WORK(N)

DO 10 1=1,N

WORK(I) = X(I)**2

10 CONTINUE

DO 20 I=1,N -

K=I

SUM=WORK(K)

DO 30 J=1,ISPAN-1

K =K- 1

IF (K.LT.1) GO TO 40

SUM = SUM + WORM()

30 CONTINUE

40 Y(I) = SUM

20 CONTINUE

RETURN

PARAMETER NMAX =10000

DIMENSION E(NMAX),ICPA(NMAX)

DIMENSION TEMP1(NMAX),TEMP2(NMAX),TEMP3(NMAX),X(NMAX,10)

NCHANS=10

DO 10 I=1,NCHANS

CALL GETSIG(N,TEMP1,MAKENAME('C',I),NMAX)

DO 15 J=I,N

X(J,I) = TEMPI(J)

15 CONTINUE

CALL ENERGYENV(TEMP2,TEMP1,10,5,TEMP3)

EMAX = TEMP2(1)

MAXLOC = 1

IF(N.LE.1) GO TO 30

DO 20 J=2,N

IF(EMAX.GE.TEMP2(J)) GO TO 20

EMAX =TEMP2(J)

MAXLOC = J

20 CONTINUE

14



* 30 E(I) = EMACS

ICPA(I) = MAXLOC

10 CONTINUE

N: END

s, Clearly, Fortran is not nearly as expressive as the (slightly extended)

CtrlC syntax above. In addition to eliminating manual handling of loop

2) counters in many situations, the CtrlC language provides for any size of input

-"whereas the Fortran version must predefine a maximum array size (and actually

allocate that much core memory whether or not it is ever used).

If a Fortran version is needed (e.g. for portability or compilation on a

fast processor), the CtrlC code can be automatically translated into Fortran
*by typing, for example,

Fp = FORT(EnergyEnv); // Fp is a string containing the Fortran

DISP(Fp); I/ Print the Fortran on the terminal

" SAVE Fp >FortSubs.F77 -append // Write to disk

If the above is being done often, a simple function 'SaveF77' can be

quickly defined so that the command 'SaveF77(EnergyEnv)' will accomplish the

same result.

The experienced user would have the function 'EnergyEnv' already defined,

and finding the time of CPA would involve only one line of CtrlC. The user

would have specified sometime earlier (typically in his automatic startup

options) that the file 'FortSubs.Olb' should be searched for any undefined

.functions. 'FortSubs.Olb' is library of COMPILED Fortran modules with a

directory of entry points at the beginning. The directory allows random

access within the file for fast selective loading as needed. After the

directory has been searched the first time, the directory is retained in core

- "to speed up any future searches for unrecognized functions.

.
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The three closest sensors are now found by typing

key = 1:10; II Passive sort key

[Ed,CPAd,key] = SORT(E,CPA,key); // Ed = E in descending order.

// Remaining args sorted passively. .'

Closest = key(1:3); // Take three closest

The channel numbers of the closest three sensors (as measured by maximum

signal energy at CPA) reside in the length three array 'Closest'. A

spectrogram of the closest sensor is obtained as follows:

Si = Spectrogram(X(:,Closest(l))); // Take numerous default parameters

Show(Sl); // Display spectrogram (2D gray or 3D) '-
aa

The default spectrogram parameters provide a standard "Lofargram" which
is a smoothed short-time power-spectral-density estimate (power density versus

time and frequency). The default arguments can be overridden in either a

"sticky" or "nonsticky" fashion. Sticky overrides become the defaults in

future calls to the function. A list of all of the arguments to Spectrogram

and their defaults is obtained in a side window by typing "Spectrogram( ?"

(<CONTROL>? inside a function call). The list of defaults can be edited right

there in the documentation window, and a command exists which installs the

edited argument information as new defaults. Nonsticky defaults are listed to

the right of the original defaults. Sticky defaults are obtained by typing

over the old default.

Having looked at the spectrograms, our consultant has determined that

there is very little narrowband information associated with the source, but

that there is a lowpass broadband "shelf" extending to about 800 Hz. By

comparing the measured spectrograms against "noise cuts" one hour earlier

(again quickly accomplished interactively in a few minutes), he has determined

that there is no useful information above 2KHz. Therefore, it will be good to

lowpass filter and reduce the sampling rate of the sensor channels down to

5KHz or so:
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for i=1:10, XR(:,i) : SrConv(X(:,i),50OO/Fs); // Fs : original sampling rate

Fs=5000'

X=Xr;

CLEAR(Xr); // Free up memory

Now the CPA times will be used to form an estimate of the power

spectrum. First, however, we plot the spectra at CPA in an overlay to check

for bad data (due to interference, low signal level, faulty sensor, or the

like):

FOR i=1:10, S(:,i) = ABS(FFT(Hamming(Xr(Cpa(i)-512:Cpa(i)+511)))) 2

S(:,11) = NoiseFloor; // Previously derived noise floor estimate

"' Show(S,'Overlay'); // All columns of matrix S plotted in overlay fashion.

Actually, it is more efficient to say "S(:,i)=(t=FFT(...)).*CONJG(t)"

instead of "S(:,i)=ABS(FFT(...)) 2 ," but that's a fine point. Note that each

.5 spectrum can be displayed using a different color in the overlay. Color

coding makes it possible to follow individual spectra in the overlay more

j easily.

From the spectral overlay, it is determined that only the closest seven

sensors have worthwhile measurements. We wish to average these to produce a

rsingle estimate of the source spectrum. However, it is not ideal to simply

average because some sensors have better looking spectra than others. A

weight function is formed from the energies at CPA as follows:

* W = Ed(1:7); // Weighting is proportional to energy at CPA

W = W/SUM(W); // Normalize

NN The estimate of the power spectrum is given by a weighted average of the

spectrum at CPA in each of the seven sensors closest to the source:

Starget = S(:,key(1:7))*W; // Yes, vectors can be used as indices

* The estimated target PSD can be hand edited in the waveform editor to

remove interference. Also it may be possible to extrapolate the source

spectrum in a physically plausible manner past the frequency where it dips

17
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below the noise floor. For example, if the spectrum is rolling off at 12dB

per octave when it merges with the background noise, it is reasonable to .i

extrapolate the 12dB per octave rolloff.

The consultant was mindful that the above process of estimating a power

spectrum by averaging CPA spectra might occur again. Therefore, near the

beginning of his session he started up a "history window," and every keystroke

typed is being saved in this window. The contents of the history window can
be written out to a disk file at any time and/or used as a "batch file" later

on. At any time he can "mouse over" to the history window and make edit

changes (to eliminate a typo or digression, for example), or he may even grab

a set of earlier commands and execute them. At all times the full power of

the editor is available in every window.

Now we have a preliminary estimate of the source power spectrum. Using

it and the noise cut, we can estimate a Wiener filter to be used in making

broadband differential Doppler measurements:

-4

Filt = Wiener(Starget,HoiseFloor); 4

S.-

"S. In reality a separate Wiener filter would be desired for each time step in the

". short-time spectra. Also it may be desirable to edit this weight function in

the waveform editor to downweight frequency bands of high "variance" in the
PSD estimate. That is, the Wiener filter only penalizes closeness to the

noise floor while in reality there should also be a penalty for

nonstationarity (or "spuriousness") over time. The spectral "reliability

measure" can be computed quantitatively or drawn according to the judgment of

the signal processing engineer. Whatever the ultimate weighting, let Filt'

contain the final spectral window.

Next we attempt to localize the target by estimating differential Doppler
tracks in the seven good sensor recordings. Differential Doppler is measured

by cross-correlating the Weiner and confidence-weighted spectra, after
resampling the frequency axis on a log scale. The details are similar to the

above examples and will appear in a forthcoming final report on a project of

this nature. (The work was fully carried out within CtrlC). Suffice it to

18



note that development of broadband Doppler correlation software was greatly

facilitated by the high-level interactive programming environment provided by

the present version of CtrlC. The planned extensions to CtrlC will take it

* far beyond the present capabilities.

After obtaining differential Dopplers plus, perhaps, differential time-

of-arrivals (from temporal cross-correlations) and multipath measurements,

along with their associated weight functions, the data are passed to a

comprehensive multitarget tracking facility (based on dynamic programming as

discussed in the next section). The results of localization can then be used

S -to deconvolve the propagation channel and obtain calibrated spectral

estimates as a function of orientation and all operating parameters of the

target.

The proposed system has been described from the point of view of a new

user trying to develop algorithms almost from scratch. This aspect of the

system has been stressed because it is the most unusual feature: algorithm

development is supported at the highest possible level.

To translate a finished algorithm design into a deployable form, it is

only necessary to "clean up" the code in the history window, translate various

* CtrlC functions into Fortran (or other suitable "intermediate code"), compile

the Fortran for the target machine (such as an array processoror "super

computer" configuration), and build a block diagram of the final processing

system. Each block in the diagram contains the name of the function that goes

into it. Block diagrams are not essential, but they are convenient

descriptions of complex, parrallel, real-time processing tasks. They also

serve better as "prints" for the final system. Using "software probes"

. - (controlled by the mouse) windows can be formed which display the waveform at

any point in the diagram (while it is executing in real time), or values can

be printed into a side window and further processed in an unrestricted manner

much as described above. Several windows can be set up to display waveforms

at several different points within the network. A waveform display window can

also be allocated to automatically display the results of each line of

Linteractive computation in the CtrIC language. At any time the user may move

over to the waveform and interactively manipulate it.
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This discussion has only scratched the surface of the capabilities of the

proposed system. Needless to say, a considerable effort will be required to -L

fully implement the concept. However, the commercial availability of good

interactive programming environments, together with SCT's experience and

progress to date in this area, render the project feasible.

J
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*' 5. DYNAMIC PROGRAMMING APPROACH TO MULTITARGET DETECTION

In this section we go into more detail regarding our dynamic programming

approach to target detection and localization. Essentially, sensor

measurements are compared to expected measurements given the target state, sea

state, propagation models, and clutter conditions. While such an approach is

clearly as powerful as any conceivable for target detection and tracking, it

demands extensive signal processing and modeling support such as can be
4 provided by the proposed system.

5.1 MULTITARGET DETECTION IN A VERY-LOW-SNR ENVIRONMENT

.- In our recent efforts on multitarget localization we have dealt with

cases where the frequency lines appearing in the Spectrograms (or other

"Grams") are relatively easy to recognize--at least by the human eye. In such

moderate-SNR cases it is possible to automate the line detection process using

some off-the-shelf line-tracking algorithms such as ADEC or MAPLE which we

S have done successfully.

When the SNR of the Spectrogram data falls under some critical minimum,

* the above line tracking algorithms collapse. In such cases we suggest to

apply a much more powerful approach which has been developed at SCT for the

problem of detecting/tracking very dim airborne targets as perceived in a set

of IR mosaic sensor imagery. This proprietary algorithm is based on what is

w ., referred to as Dynamic Programming Algorithm (DPA) or Viterbi Algorithm, and

can be shown to solve the detection/tracking problem optimally. In the

following we will describe the theory and possible implementation of this

algorithm.

Although the algorithm is very general, we prefer to describe it in the

context of our particular problem to be defined as follows. Having a set of

sensors and the various "Grams" that can be obtained from each (such as

LOFARgram, Spectrogram, Correlogram and Doppler Correlogram), detect,

localize, and track targets in the optimal way so as to incorporate all the
L available data and side information into the solution.
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For simplicity, let us assume that a Spectrogram output for each sensor

is the only type of measurement available. Further, we are looking for A

submarines which are known to emit a single narrowband frequency and to travel

at a constant velocity within some given speed window. The unknowns are (a)

the number of targets (which may also be zero) in the ocean volume under

surveillance. (b) the speed, location, and direction of each target.

Let us now imagine a single target travelling from point

(xl, Y, zl) to (x2, y2 ' z2) during the Spectrogram time period, say 10

minutes. For this target we can predict the Spectrogram lines that should

appear in each one of the sensors given their (x,y,z) coordinates. These

frequency

-. - , -

i, ti me
SENSOR n=1 SENSOR n=2 SENSOR n=3

Fig. 5.1. Spectrograms for 3 Sensors

lines may look like the dashed lines shown in Figure 5.1. We can thus always

calculate the expected noise-free Spectrograms for any number and location of

sensors for any given target trajectory and period of time.

If we now discretize the time/frequency Spectrogram images by, say, 10

seconds/1 Hz pixels, we will be able to store the above information in a

triply-indexed (3 dimensional) table. The table indices will be n for the

sensor number and (i,j) for the time/frequency pixel location; its entries

will be the calculated power at each pixel. In other words, we have mapped a

given general target trajectory into a triply-indexed table of expected

signals. The next step would be to also discretize the relevant ocean volume

into cells and map all possible (straight) target trajectories
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x _ (x1, YI' Z1  x2 ' Y2, z2) ' into tables using the procedure described

above.

We can now "matched filter" (MF) the actual (discretized) Spectrogram

data with the prepared bank of filters in parallel, and use their outputs to

I- determine the likelihood of each trajectory (see Fig. 5.2). It is clear that,

if no target is present, the outputs of all MFs will consist of noise only,

and when a target is present the MF that "fits" the trajectory will show the
maximum output. This way we will be able to detect and track simultaneously.

Actual measured
ipectroqrams

_____FILTER *1
(FITS TRAJECTORY &1)

FILTER *Z

FILTER 03

.

9, 9. 0

Figure 5.2. Filtering the spectrograms data through all Filters.

Each Filter "fits" a Particular Straight

' - Target Trajectory in the Ocean.
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The above-described conceptual algorithm amounts to an intensive

exhaustive search over all possible straight trajectories. In practice, we
are of course also interested in non-straight trajectories. It is easy to
realize that searching, even just for the straight trajectories, is a

monumental and infeasible computational task. There is, however, a feasible

way to do the equivalent of this and other exhaustive search problems; the
"magic" is to use the Dynamic Programming Algorithm (DPA) to do the above

search iteratively stage-by-stage which requires many orders of magnitude less

computations and memory. The way we can apply the DPA here is the following.

We define all possible short (say, 1-minute) and straight trajectory

segments as states, x - (x1,y1 ,z1 , x2 ' Y2 ' z2) , where the end points of each
state are given by their discrete ocean-volume indices. For each such state

we will calculate the table of expected Spectrogram discrete measurements for

all sensors. This table will of course be much smaller than the one required

to describe a complete trajectory. Next, we define the DPA stages to be 1-
minute intervals, for example. A set of k consecutive states,

x.k 1 0, 1 k

would thus describe a complete trajectory composed of short straight segments,
and, as such, would also allow curved trajectories (notice that the index k of

xk is now used as a stage number (related to time) and not as a discrete

volume index).

We now denote the set of single-stage discrete Spectrogram measurements

from all sensors by zk (the solid lines in Fig. 1) and the sequence of such

sets for all stages (the complete Spectrograms) by

zk  z z2  .,Zk•

The other required definitions, assumptions, and notations are:

P(XkIZk) a posteriori probability density function (PDF) associated

with a candidate trajectory, given all the measurements
Z k •
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wk = random forcing function at the k-th stage; w is assumed

white and independent of xo .

K'-. vk = measurement noise. v is white and independent of w and

, Using the above notation, we can formulate the general optimum estimation

problem as follows [1][2]. Given a known difference equation describing the

dynamical system

* " Xk+1 f(xk, wk) (5.1)

the a priori POF of the initial states p (xo) the statistics of v, p(vi)
0 1

and w, p(wi) i=1, ...,k , the measurements z., i=1,...,k and the known

measurements relationship

-" Zk h(xk, vk) , (5.2)

£ find the sequence of states (trajectory), Xk' that maximizes the conditional

POE

P(XkIZk) (5.3)

Notice that, in our case, (5.1) describes a simple straight-line extension of

states (or trajectory segements), where wk is the pixels quantization noise,

and (5.2) describes the multi-sensor Spectrogram measurements, where vk is

the measurements noise.

The basic idea of the proposed algorithm is to compute the likelihood

- function for all possible trajectories, and choose those having sufficiently

high likelihood as candidate detections. To see more clearly the factors that

enter this function let us consider what happens when we advance by one

stage. Using Bayes' theorem it can be shown that
"4

P(X 1z P(Zk+ I Ixk+1)P('k+ IIxk)(k+1 k+I  P(zk+lZk) P(XklZk) (5.4)
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(see [1]-[5]). The function p(zk+l Zk ) is used for normalization purposes
k+

only and need not be carried along.

p(Zk+llxk+I ) is the PDF of the measurements at the k+1-st stage, given
" that a particular state, xk+ contains a target. This PDF takes into

account the intensity of the return in the time/frequency pixels associated

with the given state and information about target signature. The probability

will be higher if the signature of the return associated with state

Xk+ 1 looks like a target, and lower if it does not have typical target

characteristics. This term will be in our case the output of the

x k+1 matched filter.

P(XklX k ) is the POF of a target being in state Xk+l , given that itk+11k k+
was previously in state x . It is here that we incorporate into the

algorithm information about target dynamics. Since a target can change its

course, speed and location only gradually, high probability will be given to a

state Xk+l consistent with previous target parameters (course/speed/
location), and low probability will be given to states corresponding to large

changes in target parameters.

We now split the required maximization of (5.3) as follows:

max p(Xk+lIZk+ I) : max[maxlp(Xk+lZ )1 (5.5) I
Xk+l Xk+ X k+1

Using (5.4) and defining the Merit Function, I(xk) , as the inner maximum
on the righthand side of (5.5), we can arrive at the recursion (see [2] and
[13]-[16])

t(Xk+l) : P(Zk+l Xk+l) max p(xk+llXk)l(Xk)} (5.6)
xk 2

which defines a first-order Markov relationship. Initially, I(xo ) p(x ) is --
0 0

the (equal) a priori PDF for all the states at stage zero. From (5.6) we see

that for each state, xk+, there is a certain xk that yields its maximal
I(xk) . This functional relationship can be expressed as

k+1

xk x(x ) (5.7)
k k k4-1

28

A ~~At2-A



The algorithmic interpretation of equations (5.6) and (5.7) is the

following.

a) Define a close set of discrete states (1-minute straight trajectory

segments) or alphabet which are sufficient to fully relate the state

T of the "system" at any given time (or stage).

b) Define the discrete stages (time intervals) so that the system

advances from one stage to the next stage.

c) Define the discrete Merit (or cost) Function for all states as in

* (5.6).
I.. ,

d) Start with any constant Merit Function at stage zero and calculate

(5.6) for all allowed states at the next stage.
.4o

e) At each stage replace the old Merit Function, I(xk) , by the updatedmk
one, I(xk+1) and store the optimal xk of (5.7).

f) The end reslt at the last stage is the (single) overall Merit

Function and the sets of xk for all stages. This is the point at

which we finally perform the (last) outside maximization of (5.5) and

find the single state having the largest Merit Function. This is the

last state of the optimal trajectory in the case where a single

target is known to exist.

g) Now go backward from this optimal last state and use the stored

xk data to retrieve the best previous state leading into the optimal

x . This process is called "retrieval" because, starting from the
0best last state, it is possible to read off the complete optimal

trajectory back to the first stage. In fact it is possible to read

off the whole trajectory leading to any state at the last (or other)

stage even if the state is not the one yielding the maximum Merit

r .Function. Thus, in our algorithm we do not perform the above last

. optimization and, instead, we retrieve all tra.-:tories whose final

Merit Function crossed some threshold. This modification allows for

29



- -_ , w. WL . :. . j -:Z , . .,16, q b .-  r 7o - . . - . - .. .-q. ;T- 7 7, 7

cases where it is not known in advance how many actual trajectories

(if at all) are present in the ocean volume of interest.

The process described above can be further explained by reference to

Figures 5.3 to 5.5. Figure 5.3 shows how the initially constant Merit

Function evolves throughout the stages until it manifests a distinct peak (for

a single-target case). The last optimal state of the trajectory in this

example is xk = Stn6 where n is the total number of states in the

alphabet. The "signal" to sidelobes "noise" can be used to measure our

confidence in the detection process. Figure 5.4 shows how the DPA proceeds

forward while looking backwards from each state to determine its optimal

previous state. Figure 5.5 shows the retrieval process for a simple 10-state

case. States #2 and #9 are retrieved here.

5.2 GENERALIZING THE DPA

The previous section explained the DPA application to the single-

frequency multi-target case through the use of the Spectrograms obtained from

several sensors. The main power of the DPA is that the very same general

formulation can take into account all the qiven a priori data and
measurements. For example:

- the term p(x ) can relate any a priori statistical knowledge about
de 0

the initial targets' parameters,

the choice of the alphabet of states, x, can incorporate any known

location and direction bounds in addition to the already accounted-

for speed bounds,

% the p(zklxk) term (the output of the multi-sensor Spectrograms

matched-filters) can incorporate other known frequencies or broadband

sources as well as Correlogram and Doppler Spectrograms measurements.

In summary, the optimality of this algorithm (assuming Normal

measurements noise) results from the application of matched-filtering to the
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data, and from the incorporation of all the a priori intelligence or other

data through the DPA. The DPA also makes this optimal detection/tracking

feasible in terms of computations/memory requirements.

5.3 COMPARISON WITH OTHER TRACKING ROUTINES

The "Maple" line-tracking routine [17] is an example of a "diminished-

scale" DPA application to the line tracking problem. It uses matched-

filtering like we do, but it tracks frequency trajectories defined in the

Spectrogram image and not physical submarine (x,y,z) trajectories defined in

the ocean volume. Although this algorithm is optimal for what it is doing, it

is far suboptimal from our viewpoint. First, it does not start frequency-line

trajectories everywhere, and second, more important, it does not incorporate

the signals from all sensors and all "Grams." Further, it cannot incorporate

a priori knowledge about the expected trajectory parameters or bounds.

The Maple-algorithm excellent performance can, however, serve as a

Uprecursor to the performance which is achievable by using our suggested full-

scale DPA.

4.
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7. PROPOSED STATEMENT OF WORK

.4

7.1 INTERACTIVE SIGNAL PROCESSING WORKSTATION

The workstation project will consist of the following tasks:

Task 1: Library Development

The large collection of existing Fortran and CtrlC signal processing

utilities needs to be organized into one package. A uniform style of

documentation is needed.

Task 2: Module Interface Development

Many of the signal processing modules need a "generic interface" which is

called interactively by the user. An interface routine provides (for example)

argument defaulting, argument checking, dynamic allocation, and automatic type

conversions when necessary. Currently, such modules are used to install

Fortran subroutines in CtrlC.

Task 3: CtrlC Language Extensions

Numerous new language facilities are planned for CtrlC to further enhance

its expressive power. For example, the macro capability will be made much

more powerful. In addition, new high-level debugging aids are planned.

Task 4: CtrlC Environment Extensions

This task includes development of all general display and user interface

capabilities. To harness similar existing capabilities as much as possible,

CtrlC will be ported to a high quality interactive programming environment

which supports multiple process windows. The necess-y CtrIC specific

enhancements will then be installed.
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Task 5: CtrlC HELP Extensions

This task involves installing the user-dirc ed documentation facility

described in this paper. In essence the proposed help facility is a

particularly easy to use relational database.

Task 6: CtrlC to Fortran Compiler

It is desired to be able to translate the CtrlC high-level language into

highly portable Fortran.

Task 7: Block-Diagram User Interface

* The generic block diagram capability is being developed in a separate

project. This task involves fully integrating the block diagramming facility

into the system environment.

Task 8: The Integrated Editor

4 .Hopefully the desired editor will be largely provided with the target

interactive programming environment. Even so, some customization of the

rI editor will be desirable. integration with the block diagram facility is

desired.

! 7.2 DYNAMIC PROGRAMMING FOR MULTITARGET DETECTION AND TRACKING

_,. {,The DP algorithm has been developed at SCT for the problem of

." ,.'. detecting/tracking aircraft from space as they are observed in an IR imagery

set. The algorithm development got to the point of successful demonstration

by simulation, yielding results which are in excellent agreement with the

theoretical performance estimates. In the following we suggest to develop a

similar algorithm for the ocean underwater surveillance problem along the same

lines that led us to the existing algorithm.
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Task 1: Algorithm Development

We will develop the Dynamic Programming Algorithm for the underwater

surveillance problem as outlined in the preceding text. This will include

defining states, stages, transitions and measurements functions, and the Merit

Function.

Task 2: Analysis

The purpose of the analysis effort is to optimize the algorithm and to

predict its performance in term of probabilities of detection and of false

alarm. Optimization of the algorithm will include tradeoffs between

performance and computational cost.

Task 3: Simulation

The purpose of the simulation work is to verify and complement the

analysis. Each of the analytical results need to be validated by

simulation. Also, various cases whose performance is difficult to analyze,
*. need to be evaluated by simulation. An example of such a case is that of

*' targets which exit or enter the relevant ocean volume during the current K-

frame processing interval.
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Appendix A

In this appendix, the result of the CtrlC "BROWSE" command is listed.p
The BROWSE command lists all major functions in the CtrlC environment

organized by topic.

A.1.0 CTRL-C INFORMATION ADN ASSISTANCE

browse - displays this CTRL-C command synopsis list

help - help facility

intro - a quick introduction for the new user

logo - graphs CTRL-C logo

news - news on updates and new additions

what - lists current User-Defined Functions and libraries

f, who - lists current variables

why - gives succinct answers to any questions

A.2.0 STARTING, INTERRUPTING, AND ENDING THE CTRL-C SESSION

exit - end CTRL-C session and save current workspace

quit - end CTRL-C session and do not save current workspace

resume - resume CTRL-C session with workspace from last session

$ - interrupts the session and allows a VMS command to be typed

tY - aborts CTRL-C

tC - local CTRL-C abort, stops current command

A.3.0 BASICS

A.3.1 SETTING THE OPERATING ENVIRONMENT

char - character set replacement

chop - truncate arithmetic

clear - erase variables, functions, or libraries from work space

disp - displays variables containing text

hard - specifies the hardcopy device type for graphics
"  lines - sets maximum number of lines of a matrix that are displayed
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long - sets long numerical output display format

page - clears alphanumeric CRT screen

semi - cause or suppress printing of operation results

short - sets short numerical output display format

term - specifies the terminal type for graphics

A.3.2 SPECIAL SYMBOLS

- used in forming vectors and matrices (also used for macros)

-see[

< - means "get input from file" or less than

> - means "send output to file" or greater than

- indicates precedence in arithmetic expressions in the usual way

) - see(

= - used in assignment statements

. - Decimal point. Element-by-element operations. Kronecker products.

- continuation of a statement onto the next line

- separates matrix subscripts and function arguments

- Ends rows. Suppresses printing of commands.

/ - matrix right division computed by Gaussian elimination

// - comment statement, function definition

- matrix left division computed by Gaussian elimination

- matrix transpose, quote to delimit character strings

+ - matrix addition

- - matrix subtraction

* - matrix multiplication

- raises matrices to powers

- used in subscripts and FOR iterations

$ - interrupts the session and allows a VMS command to be typed

A.3.3 SPECIAL PERMANENT VARIABLES -uI

ans - variable created when expressions are not assigned

eps - floating point relative accuracy

flop - count of floating point operations

hard - specifies the hardcopy device type for graphics
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pi - 3.1415926536

term - specifies the terminal type for graphics

A.3.4 PROGRAM FLOW STATEMENTS

else - used with if

end - delineates 'for', 'while', and 'if' statements

exit - terminates a 'for' or 'while' loop; or ends session

for - repeat statements a specific number of times

if - conditionally execute statements

while - repeat statements while an expression is true

A.4.0 GRAPHICS

awin - split screen or window on terminal in alphanumeric mode

disp - compact matrix print as +, -, and blank

erase - erases entire plotting surface

page - clears alphanumeric CRT screen

plot - X-Y point, bar and line plots

pline - GKS polyline primitive

pmark - GKS polymarker primitive

p3d - 3-dimensional plotting of a matrix

replot - repeat plot to a hardcopy file

redterm- redirect terminal graphics to a file

redhard- redirect hardcopy graphics to a file

text - GKS text placement primitive

title - plot titles for PLOT and P3D

window - specifies the window for subsequent graphics commands

xlabel - X-axis labels for PLOT

ylabel - Y-axis labels for PLOT

A.5.0 PROCEDURES AND USER-DEFINED FUNCTIONS

ascii - converts variables from decimal to ASCII

base - converts numbers to different bases

echo - echoing of the commands
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emode - stops CTRL-C if an error occurs

do - runs a CTRL-C procedure located in a file

disp - displays variables as character strings

edf - edit a function using the EDT editor

deff - define a procedure to be a function

glob - defines global variables within functions

input - prompts user for input

str - Number to string conversion

lib - function library maintainer

pause - pause until <cr> entered

return- returns from a user function

A.6.0 DISK FILES

diary - saves a "diary" of the session in a disk file

key - saves all keyboard input in a file

load - loads variables from a file

print - prints variables on a file with 132 columns

save - saves variables on a file wc

A.7.0 MATRIX ANALYSIS

A.7.1 ElEMENT BY ELEMENT MATRIX FUNCTIONS

abs - absolute value or magnitude

conj - complex conjugate
imag - imaginary part

max - largest value

min - smallest value

prod - product of elements

real - real part

round - round to nearest integer

sum - sum of the elements of a matrix

.4m
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A.7.2 SQUARE MATRIX ELEMENTARY FUNCTIONS

atan - arctangent

cos - cosine

exp - matrix exponential

log - natural logarithm

inv - inverse of a matrix

sin - sine

sqrt - square root

A.7.3 MATRIX PROPERTIES

cond - condition number in 2-norm

det - determinant

r norm - singular values, 1-norm, infinity norm, and F-norm

rank - rank of a matrix

rat - remove roundoff error

rcond - estimate of the condition of a matrix

A.7.4 MATRIX DECOMPOSITIONS AND FACTORIZATIONS

chol - Cholesky factorization

eig - eigenvalues and eigenvectors

geig - generalized eigenvalues using the QZ algorithm

hess - Hessenberg form

lu - factors from Gaussian elimination

orth - orthogonalization

qr - orthogonal-triangular decomposition

schur - Schur decomposition

rref - reduced row echelon form of a rectangular matrix

svd - singular value decomposition

A.7.5 MATRIX DIFFERENTIAL EQUATION SOLUTIONS

are - algebraic Riccati equation solution

dare - discrete algebraic Riccati equation solution

'I'.

~43

w ". % ' " ,_-_ % ". " " " • . . . " _% % . . . -. ", ". ". " * . , " *.%" .. * , * % - . ' -* . " .- , - . -



lyap - Lyapunov equation solution

dlyap - discrete Lyapunov equation solution

A.7.6 OTHER OPERATIONS

cony - convolution and polynomial multiplication

deconv- deconvolution and polynomial division

pinv - pseudoinverse

poly - characteristic polynomial

roots - find polynomial roots

kron - Kronecker tensor product

size - row and column dimensions of a matrix "4.

sort - sorting

less - less than or greater than -

A.7.7 MATRIX BUILDING FUNCTIONS

diag - puts in/ takes out vectors on matrix diagonals

eye - generates identity matrices

hilb - generates an inverse Hilbert matrix

nagic - generates a magic square

ones - generates a matrix of ones

rand - generates random numbers and matrices
tril - lower triangular part"

triu - upper triangular part

A.8.0 CONTROL DESIGN AND ANALYSIS

A.8.1 CONTINUOUS-TIME SYSTEMS DESIGN

s = are(a,b,q,r) algebraic Riccati equation solution
[k,p] = lqe(a,b,c,q,r) optimal LQG estimator design

[k,s] = lqr(a,b,q,r) optimal LQG regulator design
[k,s] = lqry(a,b,c,d,q,r,n) LQG regulator design with output weighting

[k,s] = impl(a,b,c,f,q,r) implicit model following gain calculation
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k = place(a,bp) regulator and estimator pole placement

(SI SO)

r rloc(n,d,k) root loci Analysis Time domain

y = impul(a,b,c,iu,t) impulse response

. y = step(a,b,c,d,iut) step response

y = ramp(a,b,c,d,iu,t) ramp response

y = simu(a,b,c,d,u,t) simulation with arbitrary inputs Frequency

domain

[m,p] = bode(a,b,c,d,iu,w) Bode and Nichols frequency response
"[r,i] = nyqu(a,b,c,d,iu,w) Nyquist frequency response

'.= freq(a,b,c,d,s) complex frequency response

sv = sigma(a,b,c,d,w) singular value frequency response (sigma
., plot)

w l ogspace(dl,d2) frequency vector generation Conversions

c2d - continous to discrete state space

c2dt - continuous to discrete state space with pure delay

psit - intermediate discrete conversion function

ss2tf - state space to Laplace tranfer function

tf2ss - Laplace transfer function to state-space

A.8.2 DISCRETE-TIME SYSTEMS DESIGN

s = dare(a,b,q,r) discrete algebraic Riccati equation

[k,p] = dlqe(a,b,c,q,r) optimal LQG estimator design

[ [k,s] = dlqr(a,b,q,r) optimal LQG regulator design

x = dlyap(f,q) discrete Lyapunov equation solution

r = rloc(n,d,k) root loci Analysis Time domain

y = dsimu(phi,gam,c,d,u) simulation with arbitrary inputs

Frequency domain

[m,p] = dbode(a,b,c,d,iu,w) Bode and Nichols frequency response

" g,= freq(ab,c,d,s) complex frequency response

w = logspace(dl,pi) frequency vector generation Conversions

4 ss2tf - state space to Z-transform

tf2ss - Z-transform to state-space

S4
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A.8.3 OTHER BUILDING STATE-SPACE SYSTSEMS

series - series connection

paral - parallel connection

interc - block diagram system interconnection

System Matrix properties

ctrb - controllability staircase form

obsv - observability staircase form

minreal - minimum realization

balreal - balanced realization

gram- controllability and observability gramians

stair - staircase algorithm

tzero - transmission zeros

A.9.O DIGITAL SIGNAL PROCESSING -

conv - convolution

deconv - deconvolution

fft - 1 and 2 dimensional FFT

ifft - I and 2 dimensional inverse FFT

tdlf - tapped-delay-line filter

maxlike - maximum likelihood identification

rml - recursive maximum likelihood for ARMAX model

Typing 'BROWSE >filename' will send this listing to a file where you may
print it on your local hardcopy device.
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Appendix B

*. In this appendix, the currently existing version of CtrlC is used in a

simple filter design exercise:

// Example: Design of an FIR bandpass filter using windowing

// Step 1: Specify desired frequency response over the first

//. half of a 512 point sequence:

Hfd = [O*ones(1,25) ones(1,20) O*ones(1,212)]; // [000011110000] (Bandpass)

I/ Step 2: Reflect about point 1 (mod 512) for the remainder of the

II // sequence. The frequency specification must be symmetric

-/ in order to have real filter coefficients.

. Hf = [Hfd Hfd(256:-1:2)]; // Desired magnitude frequency response

Ht = ifft(Hf); // Step 3: Create corresponding impulse response

* // Step 4: Window the impulse response for shorter filter length

NN = 50;n = 1:nn;

w = 0.5*(ones(n) - cos(2*pi*n/(NN-1))); // Use a Hanning window

b = [ht(488:512) ht(1:25)].*w;

// Step 5: Find actual frequency response

ht = [b O*ones(1,512-NN)];

Hf2 = fft(ht); // True complex frequency response

Overlay(Db(Hf),Db(Hf2)); // Plot overlay of desired and obtained F.R.
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acquired extensive experience in applied digital signal processing.

In 1977, Dr. Smith was awarded a Hertz Foundation Graduate Fellowship,

and in the Fall of that year he became a full-time graduate student at

*. Stanford in the Electrical Engineering Department. The first year was devoted

. rto completing course work for the Master's degree, and he received his M.S. in

1978 with a near perfect GPA.

.- "In the summer of 1978 Dr. Smith returned to ESL to implement the dynamic-

programming component of an automatic language discriminator. The

discriminator produced a forced decision among five different languages based

on the likelihood of the estimated phoneme transition probabilities.

* "Also in the summer of 1978, Dr. Smith performed consulting work for Total

Technology Inc. His task was to model optical transfer functions of phosphor

screens used in image-intensifier tubes. This was Dr. Smith's first

involvement with the field of system identification which became a major

, * emphasis of his thesis work.

In the summer of 1979, Dr. Smith worked in the Acoustics Research

Department of Bell Laboratories in Murray Hill New Jersey. With Jont B.

Allen, he designed, implemented, evaluated, and published a new technique for

* adaptive delta modulation (ADM). The new ADM coder operated with a variable

sampling rate which was slaved to the measured input signal bandwidth.

In the summer of 1980, Dr. Smith returned to ESL to carry out research

applying linear prediction techniques to FSK demodulation. Two novel

algorithms were developed, evaluated, and documented in an internal final

report.
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Also in the summer of 1980, Dr. Smith performed consulting services for

Narendra Gupta of Integrated Systems Inc. His task was to implement a .

maximum-likelihood system identification program which was based on a state-

space model explicitly parametrized in terms of second-order mode frequencies,

bandwidths, gains, and initial conditions.

In the summer of 1980, Dr. Smith took a brief visiting position at the

Computer Audio Research Laboratory, University of California, San Diego.

There he installed the IEEE Programs for Digital Signal Processing on a Vax

11/780 mainframe computer and produced user-interface software in the C

programming language which made extensive use of the Unix pioes facility. The

result was an elegant and powerful set of signal processing tools which

continue to be widely distributed by UCSD in the public domain.

By 1980 Dr. Smith had completed his Ph.D. course work at Stanford, and he

devoted the next two years to his thesis research. The first area of intense

study was system identification. During this time Prof. Lennart Ljung was a

visiting professor at Stanford, and Dr. Smith benefited greatly from pursuing

problems under Prof. Ljung's direction. In addition to developing techniques

for system identification, Dr. Smith developed several contributions to

digital filter design (a closely related area). His work in both areas

concentrated on effective manipulation of the error criterion minimized by

modeling techniques. Some of the most useful improvements were obtained

through the use of conformal mapping techniques and other preprocessinq

steps. He proved that there is no upper bound on the number of false local

minima when miiimizing output error with respect to even a single filter

pole. His thesis contains what is perhaps the first use of Hankel norm theory

to obtain a globally convergent algorithm for optimally approximating a

complex desired frequency response with a recursive digital filter. The Ph.D.

degree was awarded in June 1983. Later that year he was elected to the Sigma

Xi society.

In the Fall of 1982, Dr. Smith joined the Adaptive Systems Department of

the Advanced Technology Division of Systems Control Technology (SCT) in Palo

Alto California. He worked half time until December 1982 whereupon he became

a full time SCT emrloyee. He continued full time until October of 1984 at
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which time he reduced his commitment to 60 percent in order to make time to

teach a two-year course sequence in digital signal processing at Stanford.

Dr. Smith has worked exclusively on projects directed by Dr. Benjamin

". Friedlander at SCT for the past three years.

Tasks at SCT

The overall theme of recent research in the Apdaptive Systems Department

at SCT has been to develop modern algorithms which address problems

fundamental to target localization based on multiple hydrophone recordings.

The principal new technologies brought to bear on the localization objective

"" have been drawn from the most recent advances in system identification and

parametric spectral estimation. Complementing this line of research, Dr. Smith

has developed more traditional sonar signal processing.facilities for

nonparametric spectral estimation based on the FFT.

The first project assigned to Dr. Smith in 1983 was to develop an

adaptive time-delay estimation algorithm using fundamental formulations from

*recursive system identification. This effort resulted in a highly efficient

and accurate method with a very rapid tracking capability in the time-varying

case. The heart of the method was a novel intersample interpolator developed

by Dr. Smith for his thesis applications.

The adaptive delay estimation technique was next extended in two

straightforward ways to the problem of adaptively tracking multipath delay.

The techniques were compared in a precise way to the maximum likelihood

. ~estimator for the multipath estimation problem. Theoretical characterizations

of the asymptotic properties of the estimates were carried out, including

' . global convergence studies, derivation of asymptotic parameter variance (with

comparisons to the Cramer-Rao lower bound), analysis of multipath

detection/false-alarm probabilities, and the effects of multipath on target

localization.

A third task was to develop an adaptive notch filter algorithm, again

applying the latest results in recursive identification as well as some new

theorems on rational transfer functions developed by Dr. Smith in the course

51
pr



of his thesis work.

A task carried out in parallel with the above identification projects was

the ongoing evolution of the Modified Yule-Walker (MYW) method for ARMA

spectral estimation. More recent variations of the MYW approach have been

termed Optimal Instrumental Variable methods. The MYW methods can be viewed

as variations of Prony's method for pole-zero digital filter design using
estimates of the correlation function in place of the filter impulse response.

The numerous MYW enhancements were aimed at achieving reduced variance

and bias in the parameter estimates for a given number of data observations.

Dr. Smith performed all simulations and software development for these studies

and contributed major implementation decisions. Very significant improvements

over the original MYW technique were realized. To aid in the dissemination of

these superior techniques, Dr. Smith wrote highly portable Fortran versions of

the MYW methods.

A later task was to implement a technique for multiple target

localization from narrowband Doppler measurements. The method consists of

finding intersections between hypersurfaces in a five-dimensional space. Each
target appears (in the noiseless case) as a point of intersection of all the !

surfaces. Dr. Smith developed novel means of analyzing the behavior of this

algorithm in the presence of noisy measurements. Dr. Smith also developed a

clustering algorithm for the technique, including a method for determining the

number of targets, associating spectral lines to targets, and assigning points

of intersection to targets. As in all projects on which he worked, Dr. Smith

was responsible for all software development and computer simulations.

In another parallel series of projects, Dr. Smith developed recursive

identification counterparts to the Constant Modulus Algorithm (CMA) which is a

novel method of adaptive channel equalization pioneered by J. R. Treichler.

Dr. Smith's enhancements included extension to a nonrecursive channel model

(ideal for removing multipath distortion), a real-signal version with

convergence properties as good as the complex-signal version, a quadratic

Newton-method to replace fixed-step-size gradient descent, an interference

rejection technique, and more. In addition, Dr. Smith first proved global
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convergence of the CMA from an arbitrary starting point for the model-complete

case. This was perhaps the first global convergence proof in the system

identification literature which involved a prediction error quadratic rather

Pthan linear in the model parameters. The notion of "persistently exciting"

was generalized to the nonsingularity of a rank four "covariance tensor."

To obtain useful benchmarks of comparison between the ARMA spectral

estimation methods (MYW) and the perceived standard practice, Dr. Smith

"* developed an implementation of the periodogram method for spectrum estimation

(PMPSE) using the FPS array processor. The PMPSE essentially averages the

-Y squared magnitude of successive overlapped, Hamming-windowed, short-time

FFT's. In an internal report by Dr. Smith containing the MYW and PMPSE

programs, a review of the theoretical asymptotic performance of both

approaches was included. Dr. Smith also developed a wide variety of spectral

displays, including ordinary line plots, "waterfall diagrams," encoded gray-

.. level laser-printer plots, and he investigated the benefits of using edge-

enhancement algorithms already available at SCT.

To allow benchmark comparisons between the new techniques developed by

Dr.'s Friedlander and Smith and previously existing localization systems, Dr.

Smith is currently finishing up a replication of what is considered standard

low-level sonar signal processing practice. Estimates of intersensor time

delay, multipath time delay, intersensor differential Doppler, and absolute

Doppler are all derived in one way or another from the FFT-based spectrum

" estimate (using the PMPSE). Both narrowband and broadband Doppler estimation

-" techniques have been developed. Excellent differential and absolute Doppler

,. estimates have been produced from live sonar recordings.
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YAIR BARNIV, Senior Engineer

Dr. Barniv received his B.S. degree in Electrical Engineering from
Israel-Institute-of-Technology in 1963. He received his M.S. and Ph.D.
degrees in communications, stochastic processes, and signal/image processing ,

from Carnegie-Mellon University (CMU) in 1978 and 1981, respectively. His
Ph.D. thesis work was on "Multi-Sensor Image Registration".

Dr. Barniv served as a commissioned officer in the Israeli Air-Force from
June 1963 until May 1968, working in maintenance and development of airborne
and ground radars, and fire control systems. He was also responsible for air
traffic and automatic landing instrumentation (GCA).

From May 1968 to September 1977, Dr. Barniv was with Israel Aircraft :
Industries (IAI). Until January 1970, he served as an electrical and control
engineer designing a ground-based navigation system. From January 1970 to
April 1971, he worked as a control engineer and designed the control loops for
a missile, including the autopilot, the guidance, and the homing laws and
logic. He also conducted air-tunel measurements and the necessary
aerodynamic data extraction.

Between April 1971 and January 1974, Dr. Barniv was with a Systems
Engineering Group, whose tasks included performance estimation, feasibility,
and cost-effectiveness studies in fields such as electro-acoustics, electro-
optics, radar, and navigation systems.

From 1974 to May 1975 he served as a senior systems engineer, heading a
group tasked with preparing overall specifications for a missi e design
project, and coordinating the design and implementation activities and final
integration. He developed the simulation programs and used them to optimize
the design parameters and define the limits of performance. He was also
responsible for the planning and management of the flight test program and
evaluation.

From May 1975 to September 1977, he headed the Systems Engineering Group
working on the control issues of the Mass Transit System for the City of
Tel-Aviv. His task was to study existing systems from the point of view of
automatic train control, operation, and supervision; this study included the
issues of communications and control and man-machine interfaces.

From September 1977 Dr. Barniv worked on his Ph.D. thesis at Carnegie-
Mellon University, and in May 1979 joined SCI as a research engineer. He is
currently working in the areas of synthetic-aperture-radar, flight path
optimization, closed-loop ECM techniques against various types of radars,
missile's miss-aistance optimization. and dynamic programming application to
mosaic sensor tracking.
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