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1. Introduction

The goal of calibrated spectral estimation is to determine sound pressure
level versus frequency, at the source, versus aspect angle. Mapping measured
spectra to the source and knowing aspect angle of the source require knowledge
of the location and heading of the source. Furthermore, when there are
multiple sources, they must be individually tracked, and their spectra must be
individually resolved to the extent possible. Consequently, multi-source
localization and tracking techniques comprise an important adjunct to
techniques for calibrated spectral estimation.

The localization objective is carried out using acoustic signals recorded
undarwater by a hydrophone array. In typical passive surveillance scenarios,
source location is inferred from (1) the relative arrival times and (2) the
relative Doppler shifts seen among signals received at the various sensors

(26].

The relative arrival time between two sensors is called the time-
difference of arrival (TDOA), and a large literature on delay estimation has

developed toward optimal and time-varying estimation of TDOAs (for example, a
special issue on this topic appears in [21]). Delay estimation can also be
applied to the echoes seen at a single sensor due to multipath; in effect,
multipath reception can provide an extra "virtual sensor" located at the
mirror image of a real sensor in the reflecting surface,

Estimation of differential Noppler shift is not as well studied as the
delay estimation problem, and so it will probably remain a fertile research
area for some time. Unlike TNOA estimation which requires a broadband signal
for its accurate measurement, differential Doppler can be measured in either
the narrowband or broadband case. The narrowband case is very
straightforward, involving only ratios of FFT peak frequencies, while
broadband spectral cross-correlation appears to offer significant
opportunities for improvement. There seems to be no mature treatment of
optimal broadband Doppler correlation such as exists for delay-based
correlation, An advantage of localization based on Noppler is that Noppler
shifts can be reliably measured at much greater range than TNOA under typical

kit S W 8 £ bl
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When there is more than one source, localization is typically

[Ny

accompiished by repeated application of the single-source methods. In the
case of measuring TDOAs, each source produces its own secondary peak in the

cross-correlation function between two sensors; if the peaks are resolved 53
(i.e., the signal bandwidths are sufficiently large and the TDOA times are -

sufficiently separated), then there is no problem obtaining N TDOAs per sensor e
in the case of N sources. However, it is then necessary to try, in principle, e
all possible associations of TNOA to source; that is, N groups must be chosen,
each consisting of one TDOA from each sensor pair, and each group must have ;:
TDOAs arising from one source only. While not imposing any fundamental
barriers, the association problem can vastly increase the computational burden

| TAN

in the multi-source case relative to the single-source case.

A

1.1 The SPICE Project

Al

The purpose of the SPICE project at SCT has been to develop new
techniques which aid in the detection and localization of multiple underwater
sources. In this section, the major components of the project are summarized. -

The first phase of the project was devoted to developing new methods for N
high-resolution spectrum analysis. Improvements in spectral resolution (given
fixed statistical stability) translate directly to greater tracking
accuracy. In many ways, this phase of the project was a follow-up effort to a ~d
prior project entitled "Multi-Target Tracking Studies" (MTS) which started in
1979 (cf. SCT Reports 5334-01,02). A mature treatment of the high-resolution a
techniques is presented in SCT Report 5498-04. See also SCT Report 54AA-02,
A1l SCT Reports mentioned in this report should be requested from the Adaptive
Systems Department of the Advanced Technology Division of SCT.

The second phase of the SPICE project was devoted to developing,

simulating, and evaluating a novel multisource tracking algorithm devised by

E 3

Dr. Benjamin Friedlander, For source detection in a plane, the technique
involves finding intersections f(one per source) of five or more hyperplanes in
5-space. The multisource tracking algorithm is fully described in SCT Report

------
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The third and final phase of the SPICE project was to develop more
traditional sonar signal processing facilities based on nonparametric spectral
estimation using an FPS array processor. Estimates of intersensor time delay,
multipath time delay, intersensor differential Doppler, and absolute Doppler
are all derived in one way or another from the FFT-based spectrum estimate.
Both narrowband and broadband Doppler estimation techniques have been
developed. Differential and absolute Doppler estimates have been produced
from 1ive sonar recordings. The high-resolution spectrum analysis program and
the FFT-based power spectrum estimator are documented in SCT Report 5466-
06B. The differential delay/Noppler techniques are described only in this
document.

Side investigations carried out on the SPICE project included a new
technique for delay estimation (SCT Report 546A6-03) and the application of
this method to the tracking of multipath delay (SCT Report 54kh6-04). Also, a
constrained adaptive notch filter was developed to enable the real-time
elimination of unwanted sinusoidal components ("Analysis and Performance
Evaluation of an Adaptive Notch Filter" by B. Friedlander and J. 0. Smith,
SCT ATD/ASD, 1982).

The present final report for the SPICE project includes all material not
appearing in prior reports, and provides a Tist of all reports and
publications deriving from the SPICE project.

2. Guide to the Appendices

The appendices included here discuss the localization and tracking of
sources using TDOA and differential doppler measurements. Improvements to
currently existing systems are outlined, and several new computationally
efficient localization and tracking methods are presented. The associated
problem of measuring and tracking TDOA and differential Doppler values is also
covered, Finally, an appendix discussing an interactive signal processing
development environment is included. Relow, brief descriptions of the

appendices are qiven,
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Appendix A discusses ideas for extending the Omni-Tracking System (0TS) a“
to handle multiple sources more effectively. A wide range of alternatives is ij
explored, from ways to use the existing system unmodified to a complete ,
replacement of OTS by a super-powerful, model-based, track finder. {ﬁ
Appendix B describes a fast track solver devised by Dr. Friedlander, It SE
uses simple features of "S-curves" measured in an absolute-NDoppler path to "
compute track parameters. While measurement of the required features (such as A
minimum/maximum long-range Noppler) depends on a high signal-to-noise ratio, }i
the track parameters can be found very quickly relative to more commonly used .
methods. -
Appendix C documents various signal measurements which are useful for Ei
multisource localization. Most of these are currently in use, and the =
appendix serves as a review of some basic signal processing fundamentals., In >
addition, the autocorrelogram and its use in localization (described in =
Appendices A and B) are believed to be new ideas. -
:§
Appendix 1) describes newly developed Spherical Interpolation method for )
localizing a single source based on time-difference-of-arrival (TDOA) 5&
measurements. The method js very fast computationally and surprisingly -
accurate, coming close to the Cramer-Rao lower bound for unbiased estimators, ;;
as shown in Appendix E. -
~
Appendix F discusses track parameter estimation from multipath i:
information. Mathematical techniques analogous to thase used to develop the ~
Spherical Interpolation method are used, fﬁ
Appendix G describes the kind of interactive development environment we ﬁi
feel is important to provide the underwater surveillance engineer. Its major o
feature is malleability allowing all signal processing tools to be used in 2
interactive exploratory analysis with a complete set of signal display w
features and display controls. The reason for choosing an interactive
programming environment is that one cannot know in advance what signal E;
processing procedures are going to be most effective for localizing a given
source., Instead, the measured data must be analyzed interactively for ;ﬁ ‘
: <
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! i’ features which will give the source away to an automated analysis. Another
L s important feature of the proposed system is the ability to record interactive
i work for later compilation into an automated procedure. We believe such a
o t
Hg system can increase the effectiveness per man-hour of localization software :
development by a large factor.
l! '
C 3. Conclusions :
< ,:
e Several avenues for increasing the effectiveness of multisource
o« localization have been explored in this project. Here we will indicate what \
> appear to be the most promising directions for future development, based on
Ll
. our results.
. f:
.
(]

We feel that the most powerful approach to multisource localization is
- the dynamic programming system which explicitly evaluates the likelihood of a
source track by comparing actual sensor measurements to synthetic measurements
generated by a model of the source moving along the hypothesized track, Such
. a framework provides for incorporation of all a priori knowledge about the
S source and the scenario. This method is discussed briefly in Appendix A and
‘ to a greater extent in Appendix F.

B Ay

As discussed previously, relative time delay and relative Doppler shift

between sensors provide the basis for present localization systems. As stated b
earlier, time-delay estimation is a relatively mature field, while Doppler

estimation, especially in the broadband case, has not been fully analyzed in

the literature. Specifically, broadband Noppler correlation methods (as

discussed in Appendices C and G) need to be analyzed in a manner analogous to :
what Van Trees [25] has done for more conventional correlation methods,

e Additionally, the problem of converting instantaneous TDOA and Doppler

) measurements into source location and velocity estimates has not been

et

o )-.4

{j thoroughly studied. In particular, currently, there appears to be only a few
g, computationally efficient, accurate source location estimators from TDOA
F o measurements (see appendices D and E), and no computationally efficient,
1 accurate estimators of source location and velocity from instantaneous doppler
: . or differential doppler measurements, although there are approximate solutions
i; to the 2-dimensional special case of a source far away from a linear array
[26].
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The very effective Spherical Interpolation method for localizing a source

from TDOA measurements (Appendices D, E, and F) warrants further study. In ;?
particular, it seems quite possible that the same basic approach can be .
applied to localization from differential Doppler measurements. If this is ES
true, and if the Doppler case is as close to optimal as is the TDOA case,

current practice in passive underwater surveillance will probably undergo a FE

major revision,
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Appendix A - Extending the 0TS System to Multiple Sources

The Omni-Tracking System (0TS) [1] carries out the localization objective
for a single source. The 0TS system estimates the track of a single
maneuvering source based on Doppler cross-correlograms, delay <¢ross-
correlograms, or both. (The delay correlogram yields a time-difference of
arrival (TNOA) versus time between each pair of sensors.)

This appendix discusses alternatives for extending the operation of 0TS

to multiple sources. Familiarity with the 0TS is assumed.

A.1 Current Use of the 0TS System in the Presence of Multiple Sources

When there are multiple sources, the operator must correctly associate
correlogram peaks across time to obtain the differential DNoppler or delay
corresponding to the same single source in each sensor pairing. Such an
association can be difficult, if not impossible, for an operator using only a
display of correlogram peaks versus time,

BEARTRK is the track-producing component of (7S. When the operator passes
the delay/Doppler information for a single source to BEARTRK, a nonlinear
optimization is performed with respect to the track parameters. Because the
optimization is nonlinear, convergence to the best estimate depends on
initialization sufficiently close to the true track parameters. The use of a
gradient /Newton descent method indicates that the problem is too large for
exhaustive search. All such nonlinear optimization procedures carry the risk
of convergence to a false local minimum,

The ADEC program [2] is used to prepare line tracks through the
individual sensor spectrograms. An operator manually prunes the lines,
removing unwanted lines, filling in partially missing lines, and labeling the
image of each source line in each receiver, The frequency-versus-time tracks
so obtained are then divided into all possible pairings {pnint by point) to
produce differential Noppler estimates. To increase robustness, the Noppler
ratios for several lines may be averaged together (since they are assumed to

emanate from a single source), The Noppler ratios are then fed to BEARTRK for
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localization in the usual way.

ADEC is a non-coherent tracker for sinusoidal lines in noise, and it
performs line tracking in a manner somewhat similar to the coherent tracker
MAPLE [3,4]. ADEC operates by tracking peaks through time in the normalized
spectrogram, or LOFARGRAM., A running estimate of frequency fi(t) and
frequency rate di(t) is maintained for each line being tracked. The smoothed
frequency and rate estimates are used to predict the peak frequency for the
next time step, and this prediction defines the center-frequency of a search
window within which the peak of the power spectrum is found. -The window width
is adaptive based on amplitude. The peak amplitudes are used to compute a
running figure of merit for the tracked line related to the likelihood
function for a sinusoid in white noise. The behavior of the incremental
likelihood variable with respect to various thresholds determines when a line
is detected, tracked, and declared finished,

The ADEC output is generated from the spectrogram at every sensor, For
example, the lines in sensor 2 could be laheled as A2(t), B2(t), C2(t), and so
on. The operator then decides which lines in each spectrogram are from the
same original line, and Doppler ratios of the form A2(t)/Al(t) are formed.

The Doppler ratio tracks are matched in BEARTRK by searching for the track-
parameters which best predict the observed Doppler ratios.

A.2 Block-Exhaustive Search in BEARTRK

A straightforward extension of the 0TS system to multiple sources would
be to accept all of the correlogram peaks produced by CORAN (with little or no
pruning by the operator) and to fit multiple tracks to these peaks. If
BEARTRK would exhaustively search the parameter space, this extension would be
straightforward., However, because the track estimation is based on gradient
descent, it is typically not possible for the algorithm to explore different
associations of correlogram peaks to sources. (To do so would normally
require moving uphill on the error surface.,) A multisource version of REARTRK
could be written which would combine coarse exhaustive search followed by
iterative fine tuning by gradient descent, The result would be several
locally optimal tracks among which the true tracks are assumed to lie, Only
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¥ BEARTRK need be modified using this approach to 0TS extension.

n

A.3 Exhaustive Search over CORAN-Peak Associations (DASY/PREP).

] E; Instead of developing an exhaustive-search version of BEARTRK, the
association of CORAN peaks can be automated. In other words, the normally
) ! manual association of correlogram peaks across time (to arrive at a path
o corresponding to one source) can be carried out automatically. To try various
} N associations of correlogram peaks in the multisource case, BEARTRK, as is,
pE could be run in several passes, each of which is initialized to a different
. sequence of correlogram peaks versus time. Each pass of BEARTRK would produce
y E; a track estimate and a measure of fit., After all passes are complete, the
A tracks can be sorted by measure of fit, and the best ones chosen as track
\ E§ estimates.

An operator can greatly reduce the number of CORAN peak association
tracks to be tried. In the automated case, some search heuristic reduction
analogous to that performed by the operator is desirable, As an example, if
there are 5 correlogram peaks per time step and 30 time steps, BEARTRK would
530 n 1021

to be tried. 1f BEARTRK could produce a track estimate in one second, this

be called on the order of times if all possible associations were

‘S Ay &
L

process would take 30 trillion years. Thus, not only is exhaustive search of
the parameter space prohibitive for individual tracks, it is also beyond

? S

present computing technology to try all possible associations of peaks to
SRS correlogram lines. Clearly, it is necessary to prune the associations and

- pass only a few "reasonable” possibilities to BEARTRK. One method for cutting
.- down the search possibilities is to apply the Viterbi Algorithm [5].

A.4 The Block-Viterbi Algorithm (BVA).

o

B The standard method for finding multiple paths through time in a

:j computationally feasible way is called dynamic programming or the Viterbi

‘- a1gorithm [5]. The idea, in the first-order case, is to evaluate all paths in
N ;; parallel through time, saving only the best paths at each time step for

L. extension to the next, In the 5-peak, 30-step example above, there would be

on the order of 5 . 30 = 150 path ‘"evaluations" per source in contrast to



=
2
) 1021, (A path is now defined as a connection of correlogram peaks through
time for a given sensor pair - this is not to be confused with a track which ;;
- still refers to the position and velocity history of a source through time.) -
: X
; Unfortunately, the first-order Viterbi algorithm is not immediately v)
’ applicable to the line-association problem, To see this, consider that the =
. first time BEARTRK (or suitable replacement) is called to fit a track to the ;f
first correlogram peak, it has only one point to work with from each sensor .
pair. The track may be underdetermined. Therefore, we must be able to go to ;:
a higher order Viterbi algorithm which looks at several time steps before
i making a decision on path extension, A kth_order viterbi algorithm
ii exhaustively evaluates K time steps per path extension (placing the number of
- path evaluations somewhere between 150 and 1021). That is, the first K time .
x steps are tested exhaustively, the winning Ng paths are extended by K points i:
: in the same way, and so on. (Ng is the number of paths "kept alive" at each ~
; step.) In the above example, if the order is K=3 and Ng=1 (one source), we ;3
' get 53(30/3)=1250 path evaluations for one source.
."‘:
. More generally, for Np peaks per correlogram, Ny time steps, Ng sources, -
= and order K time steps per path extension, the "block-Viterbi" algorithm (BVA) jb
g requires at most "
K 7 BVA Path Evaluations e
; Typically, this number refers to the number of incremental path evaluations. &;
. The cost of each "incremental evaiuation" is the cost of updating likeiihood
of the whole path to include K new steps forward. Ry using log likelihood to f;
5 evaluate the path, these updates are additive. .
In practice, the number Nk can be replaced by N; where Nm is the e
maximum number of correlation lags a path can change in one time step .
(typically only one or two). ?5
There is still the problem that, far from CPA, the track estimate is very ;:
noisy. This suggests starting the BYA at the average CPA time and working -
outward into the past and future. This can be an important refinement because ~
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the Viterbi algorithm does not reconsider its early decisions.

g 3

A.5 Lag-Limited Exhaustive Association

o~
L
$ :; Since a realistic correlation path cannot change very quickly from time
s step to time step (say less than Nm correlation lags per time step),
3 !5 exhaustive search by dynamic programming can be made much more efficient when
E G‘ this constraint is employed.
<2
A Wolcin [4] proposes an effective strategy for incorporating a time-rate-
S : of-change constraint in the context of using MAPLE [3,4] to track slowly
N ‘€Z changing sinusoidal frequencies in a spectrum. The idea is based on the
- observation that each possible initial path point expands into a small "wedge"
2 &; of possible paths. For example, if Nm = 1 (defined above), then the number
~ of points which must be considered at each time step grows as 1, 3, 5, 7, and
; i: so on, At each time step, only two more points are within reach of a path
f . from a given point at time 0.
I. Wolcin's idea is to choose a set of starting points which are close
: . enough together so that their "possible-path wedges" intersect half way across
$ Ej the total time span. For example, if there were 30 time steps and Nm =1 as
before, then path starting points would be chosen every 30 correlation lags,
!l because the two wedges emanating from starting points 30 lags apart will
2 overlap each other after 15 time steps. The supposition is that a true path
S 3: will "capture" one of the expanding wedges of exhaustive search; therefore, it
e is not necessary to try all possible starting points to detect the presence
e (and latter trajectory) of a path. However, to obtain the initial trajectory
AN of the path, the Viterbi algorithm is run backwards in time through the
5 correlogram beginning at the final point of the captured path. As a final
: {3 refinement, Wolcin recommends pursuing the path forward once again to verify
' that the best path from the newly found correct starting point in fact ends on
- the point used for the hackward search, If the third pass diverges from the
<

latter path segment picked up on the first pass, the path is rejected.

e a A &

-
o’ .

Detected paths are then removed by zeroing the correlation bins through
which the path moved. This zeroing must be done in a manner matched to the

‘e .\._'\ R
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analysis used in obtaining the correlogram., [f the signal or analysis
bandwidth is small, for example, ihen the correlogram paths are characterized
by wide peaks (covering multiple correlation lags). In this situation, a
simple zeroing of correlogram along the path lags is not efficient because
large sharp ridges will be left on either side of the zeroed path which can be
interpreted as two more paths running in parallel with the first. In general,
the path zeroing should consist of multiplication by an appropriate "window"
function whose shape equals the inverse of the expected cross-correlation peak
shape between signals received at two different sensors.

A.6 Path Association be“ore Track Computation

A1l multisource tracking alternatives require a track-fitting procedure
(such as BEARTRK) to be called for each path evaluation., A potential speed-up
is to first determine a set of all feasible paths through the correlogram
peaks. The set of feasible paths is all possible paths minus those deemed
physically unrealistic. This automatic pruning step can greatly reduce the
size of the search space. Note that feasibility constraints are easily
incorporated into the Block-Viterbi Algorithm, The lag-limited search
described in the previous subsection is one special case of feasibility
constraints.

A.7 Dynamic Programming through Unprocessed Correlograms.

Instead of working with the output of CORAN, which consists of up to five
correlogram peaks for each time step, @ multiple-path-finding algorithm can be
applied directly to the delay or Doppler correlogram for each sensor pair.
This allows peaks to be tracked across time frames in which they are
momentarily below the five largest peaks of the correlogram. In other words,
once a path is under way, the nearest local maximum (of sufficient amplitude)
in the correlogram can be taken as the continuation of the path, rather than
depending on the path continuation lying among the five largest correlogram
peaks, If there are time frames in practice where a correlogram peak is
missing, direct peak tracking in the correlogram should be considered.
Similarly, dynamic programming can be applied to the spectrogram (as in ADEC)
or auto-Doppler correlogram (cf. Appendix C) for the purpose of measuring
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absolute frequency or Doppler versus time,

A.8 Dynamic Programming through Noise-Equalized Hydrophone Signals

Sinusoidal signal components can be tracked by a coherent estimator, as
is done by MAPLE [3,4]. Coherent processing yields a 3dB improvement in the
signal-to-noise ratio (SNR), relative to non-coherent processing, for every
doubling of the integration time.

The frequency estimate produced by a non-coherent frequency estimator is
the (interpolated) location of the peak of the power-spectral density (PSD)
estimate. The PSD estimate is normally computed as a time-average of the
magnitude-squared FFT's of successive time frames [6], The FFT length
determines the height of a sinusoidal peak above the noise floor,

A coherent frequency estimator conceptually maximizes the magnitude of
the inner product between the entire time signal and a sinusoid oscillating at
the estimated frequency. The effective height of the sinusoidal component
above the noise floor grows with the length of signal processed (3dBR for every
doubling of observation time). For the case of a single sinusoid in white
Gaussian noise, this estimate coincides with the maximum-likelihood estimate
(also the minimum-variance estimate in the non-Gaussian white noise case) [7].
The use of a coherent estimate requires enough data to reach an effective
signal-to-noise ratio per bin much greater than zero. (The unaveraged
magnitude-squared of the Fourier transform of Gaussian white noise has a (chi-
squared) standard deviation equal to its mean [f].)

In the case of a time-varying frequency (due to Doppler), the maximum-
likelihood estimate requires searching over all possible time-varying
frequency histories and again maximizing the coherent inner product with the
entire time signal, The MAPLE algorithm provides an approximate solution to
this problem by using dynamic programming to incrementally maximize the inner

product of the time signal with a sinusoid having piecewise linear frequency
variation. In addition, MAPLE allows a penalty to be placed on frequency
change, and it can be confined to search paths only in a small frequency
interval (e.g., the known sinusoidal frequency plus and minus the maximum
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expected Noppler shift), It is straightforward to include all realistic
physical constraints associated with a Doppler-shifted sinusoidal underwater
source. The highly restricted variation in this case makes MAPLE not nearly
as computationally expensive as it is when searching a wide frequency region
and/or fast frequency variation. The MAPLE algorithm in its present form can
be used to greatly extend the range over which the Noppler-shift of individual
sinusoidal lines can be tracked.

An important feature, not employed by MAPLE and normally employed by
Noppler processing within 0TS, is the total spectral correlation used in the
Doppler correlogram. The Doppler correlogram is non-coherent, but uses the
whole spectrum in its Doppler estimate; MAPLE is coherent, but looks only at
one frequency at a time. (In cases of high SNR and multiple sources, MAPLE
has the advantage of not producing "cross-terms" associated with spurious
secondary correlations between the spectra of two different sources.) To
recover the whole-spectrum advantage of the Doppler correlogram in a coherent
tracker such as MAPLE, an extension is necessary: MAPLE can be modified to
simultaneously track a set of spectral lines, all derived from a single
NDoppler track. Such a version of MAPLE would be exceedingly effective in
cases where the true sinusoidal frequencies are known. In operation, a single
value of Noppler (suitably constrained in its time variation and extent) would
be optimized using dynamic programming so as to maximize the inner product of
the time signal with the sum of Noppler-shifted sinusoids,

A.9 Dynamic Programming through the Track Parameter Space

The ideal application of dynamic programming is to directly evaluate the
likelihood of the sensor measurements as a function of time through all

possible source tracks. Searching directly through possibie source tracks as :i
opposed to correlogram peak tracks or spectrogram peak tracks allows maximum -
use of a priori knowledge regarding the physical constraints and

characteristics. Also, the likelihood computation is being applied to the

actual quantity of interest - the track - rather than some indirect ~
manifestation of the track such as its correlogram/spectrogram image in sensor ii

pairs. Finally, when the track space is searched directly, the track
parameter estimation function of BEARTRK is fully absorbed. o
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The difference between this approach and that discussed in subsection A,2
is in the definition of sensor measurements which the track estimate must
predict. Use of the raw sensor signals (or successive complex spectra as used
by MAPLE) instead of CORAN peaks allows incorporation of all known
environmental data such as signal-to-noise ratio, noise-floor shape,
interference activity, and measurement stability.

Full-scale dynamic programming techniques for multisource tracking are
described further in section 5 of Appendix G.

A.10 The Auto-Dopplter Correlogram

The QTS system bases its track estimates on differential Doppler and/or
delay between sensors. It seems worthwhile to consider other sources of
information which may provide better track estimates even in the single-source
case. In Appendix C, the Auto-Noppler correlogram is described. Essentially,
instead of cross-correlating the spectrum in one sensor with that in another,
the short-time PSD estimate in a single sensor is cross-correlated against the
PSD in the same sensor at a fixed time.

We have found that for individual spectral lines (visible in the
spectrogram of PSD versus time) the time of CPA can be estimated as the time
of maximum intensity for the line. By choosing the CPA time of a particular
line as the reference time for the auto-Doppler correlogram, the auto-Ooppler
correlogram becomes largely "matched" to the spectrum of the source emitting
the reference line, and the peak track in the auto-Doppler correlogram is
likely to provide a good estimate of the absolute Doppler shift versus time
for the source whose CPA was determined. This procedure can be repeated for
each distinct time of CPA for each line in each sensor. Presumably, these
auto-Doppler correlograms would produce a set of absolute Doppler estimates
for each source present, This information can be combined with differential
Doppler estimates to sharpen the Doppler estimates. Also, the absolute

Doppler information is needed in the fast track solver described in Appendix
8.
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A.11 Fast Estimation of Track Parameters

A further computational advantage can be obtained by using a path
evaluation method which is less comprehensive than BEARTRK when the goal is to
solve the path association problem across time and across sensor pairs., Once
the association problem is solved, BEARTRK can be called to compute optimum
track estimates from single-source path data for each source. A fast track
solver is presented in Appendix B,
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Appendix B - Fast Estimation of Track Parameters
When tracking multiple sources, it may be necessary to try many different
associations of spectral peaks to lines and sources. In such a case, the

ability to quickly estimate accurate track parameters is essential,

B.1 A Fast Track Solver for the Single-source, Single-Velocity Case

The algorithm is a modified version of the one described in the SCT 85-
371 proposal. The principal modification, suggested by R. Bliss, is the
removal of the assumption that the range at CPA be comparable among the
various sensors.

The algorithm works by measuring "S-curve" parameters and inferring track
parameters. By “S-curve" we mean the general appearance of the DNoppler vs.
time observed at a single sensor when a source is passing by at a fixed speed.

In order to use the algorithm with the 0TS system, it is necessary to
convert from intersensor Doppler (as measured by CNRAN, for example) to an
estimate of absolute Doppler. Alternatively, an "auto-Doppler correlogram "
(ADC) can be computed directly, wherein all spectrograms for a given sensor
are Doppler-correlated against the -spectrogram at CPA in that sensor; this
will produce what we call an S-curve. The CPA frequencies measurable in the
spectrogram can be used to convert the "cross-Doppler correlograms” (CDC)
produced by CORAN into equivalent ADC's, thus providing ADC's with the higher
noise immunity inherent in cross-correlations,

The output of ADEC (frequency tracks versus time) can be used directly to
provide S-curves, Dividing each line by its CPA frequency and averaging those
which appear to coincide (because they are from the same source) can be used
to increase noise immunity. Yet another alternative is to produce absolute
Doppler estimates using MAPLE,

B.2 Algorithm Description

Consider the case of N. receivers and NS=1 sources, The source is
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assumed to be heading on a fixed course and speed without acceleration, Given
the ADC's, there will exist exactly one S-curve for each sensor as shown in
Fig. 1. (In the multisource case, an isolated S-curve is hypothesized by some
choice of correlogram peak association over time., In the case of a single
source with muitiple sinusoidal lines, the S-curves can be combined by
averaging.)

>

DOPPLER
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- 4—— CPA
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+ -
+! d. -d.
d, = _i___1
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- +
d
\ di 1 i
TIME
t

Figure 1. Doppler Shift vs. Time for a Constant-Velocity Source

The S-curve is expressed as
d(t) =1 - % cos[ev(t) - ei(t)] = Dopplier-shift vs, time (1)
where v is source speed, ¢ is sound speed, ei is the bearing of the source

from sensor i, and 9v is the bearing of the source track, as shown in Fig.
2.
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. Figure 2. Source-Sensor Geometry
=
L. It is assumed that the sensor positions and the speed of sound are known
. constants. From the S-curve in sensor i (Fig. 1) we compute
' d; & max d, (t)
i i
t
5 d7 4 min d, (t)
,..' 1 t 1
. t. % Time of CPA at sensor i => d(t;) =1 (2)
,.
. v ooad. (t) ad. (t)
; +'4 1 - 1
. di © |—g—(t;)| = max| ()|
) S
T
Inspection of (1) reveals that for a source speed of v the Noppler shift is
3 :— between d' = (1 +v/c) and d” = (1 - v/c) . Thus, the speed of the source
T is estimated from each S-curve as
S, d} - d
. :1 V.i = C -———-——-+ = (3)
iy d1 * d1'
. x" and the source speed estimate is given by a simple average
E . (e)
v V = iy v 4
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where R; is the source-receiver range at CPA for the i-th receiver.

estimate of range at CPA in each sensor is obtained as

QZ

1 cd

!

1NR
R, =
kT

—

From Fig. 3, we find that the angle between the track and the line

between sensors i and j can be computed from

R. - R,

. _ J 1
s1n(y1j) "_—E;;—‘

where Rij is the distance hetween sensors i and j. Note that from these
measurements the sign of the angle Y4 is ambiguous. If 4y denotes the
angle of the line from sensor i to sensor j, then the angle of the track can

be estimated as

-

Y
eV(1’J) = ¢1J t YTJ

(x2 Y, )

SENSOR 2

(x1 sY1 )

SENSOR 1

Figure 3. Two-Sensor Geometry
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Averaging over all pairings, and choosing a consistent set of signs in (8), we
obtain the track angle estimate as

N 1 TR
8, = —7 ] 8,(i,j)
v INR 1! ] v
The values of gv(i,j) can be examined for outliners and pruned accordingly.

From the measured CPA times ti, and the estimated ranges at CPA R;, we
can use the track angle estimate to find an estimate Ro(i) of the range R,
of the source from the origin (0,0) at the time of CPA LS with respect to
the origin. The (polar) coordinate system for this is shown in Fig, 4; in
these coordinates, the track is the 1ine orthogonal to the vector from the

origin to the point (Ro, 9, + n/2) . Let sensor i have ahsolute polar
coordinates (ri, wi) . Then

~ -

Ry(1) = Ry - rysin{e, ~y;) (10)

The average over all sensors

N
R 44 zRﬁ() (11)
R4 i
o "My ;L) No

gives an estimate of the range from zero (0,0) at CPA,

(0,0)

Figure 4, Absolute Pnlar Coordinates




Finally, given the angle év of the track and the range ﬁo at CPA with
respect to the origin, the time of CPA to the origin T, can be estimated by
averaging the CPA times t; at each sensor minus the time of travel from CPA at
the origin to CPA at sensor i:

N -
. R r. cos(y; - 8,)
e 21 ty + ——p——— (12)
R i=

A ~

The resulting parameters (ﬁo, 9, Tz) are the track parameters output
by the algorithm.
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Appendix C - Measurements for Localization
In this appendix we describe measurements which are useful for multi-
source localization. The original data consist of Np digitized acoustic

hydrophone signals.

C.1 Primary Measurements: Auto- and Cross-Spectra

A1l information is derived from the measured power spectral density (PSD)

S1 t(w) in each sensor and the cross-spectral density (CSD) S. (m)
between each pair of sensors. The PSD is computed as described 1n [1],

the CSD computation is exactly analogous [2]. Briefly summarized, the PSD
Si,t(“) is an average of squared-magnitude FFT's of successive blocks of
digitized pressure versus time in sensor i. Similarly, the CSD is an average
of the FFT at sensor i times the conjugate of the FFT at sensor j. Frequency
w = 2nf is in radians per second and is regarded as continuous via
interpolation of FFT bins when necessary. Time t is in seconds and is defined
as the mid-point of the averaqing interval used to measure the PSD or CSD.
Time is also available continuously through interpolation.

The time-varying PSD S1 t(m) , regarded as a plot of power density
versus time and freguency, with i fixed, will be called the spectrogram of the

data from sensor i, Similarly, Sij t(“) will be called the (complex) cross-

spectrogram,

C.2 Secondary Measurements: Auto/Cross Delay/Doppler Correiograms

Recall that the auto(cross)-correlation function is equal to the inverse

Fourier transform of the power(cross)-spectral density. Accordingly, we
define the delay auto(cross) correlogram as the two-dimensional distribution
obtained by replacing each slice along frequency (time fixed) of the cross-
spectrogram by its inverse FFT, The term "correlogram " alone will refer to a
delay cross-correlogram. The auto-correlogram can be useful for tracking
multipath delays.
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N C.3 Differential Delay Correlograms ~
! 3

The correlogram between sensors i and j based on data centered at time t .
Xy

.o is given by

47
LA

: 1 T jmtdw
-1 a
:2 where t is the correlation 1ag. The maximum of rij t(E) with respect to .
:ﬁ t is normally defined as the time-difference of arrival (TDOA) between .,
- sensors i and j. g
:; C.4 Differential Noppler Correlograms ;i
s -
';2 The second derived distribution is called the Noppler correlogram, The ~
- Doppler auto(cross)-correlogram between sensors i and j based on data centered =
N
o on time t is defined by »,
. .-f_,
.:_~ 1 T i
-, Dij, ¢ (8 'E" [S j ¢ (Bw)dw (13) o
p - 4
where 3 1is called the differential Noppler between sensors i and j at time
‘;f t. We have D i, (s) = D (1/3)/3 . The Doppler auto-correlogram can be :i
f: denoted more s1mp1y by D ;(s) = Dii t(3) . ’
o C.5 Computation of the Noppler Correlogram v
M
[~
4: The Doppler correlogram can he efficiently computed using an FFT i:
~ correlation facility [3]. The basic idea is to sample the power spectra -
;j versus log frequency in order to convert the "stretch" operation applied to -
My .
- Sj t(“) in (13) to a simple shift operation. This converts equation (13)
_:. into a normal cross-correlation. j;
-
. The power spectra in equation (13) are transformed by the change of
S
" variable
\
"
hY
@ = Ing (14) s
o«
v i
-" \
) v
‘ 2
>
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Equation (13) becomes

» RS
3 B " -
LY = v -—\ W
NG -
}: which is simply the cross-correlation of the exponentially sampled power
. }j spectra in channels i and j, weighted by frequency « = exp(w) . The weight
b factor can be absorbed into the power spectra so that an unweighted cross-
SR correlation facility can be used:
": .-:'
s 1 _
S - | | -
:_-: . n'ij,t --—_: f S‘i,t(w)sj,t(s + w)da (17)
1 * B -
3
[ where
s @) eVt @) = e () = /as (u) (18)
N it i,t i,t i,t
Pl
Y C.6 Spectral Resampling
¢ o
2 4
5 In practice, the power spectra are available in sampled form
£ N Si ¢(w) = 2nk/N, k=0,1,2,...,Nc-1 , where N¢ is the number of uniformly
P ’
N spaced samples around the unit circle (typically the FFT size). In this
N ;? situation, the exponentially sampled replacement S' ( k) is computed using
‘ . L]
Ly T digital interpolation.
2
,: £ Typically, the power spectrum is assumed to be bandlimited to less than
‘: . one-half the sampling frequency f.. Unfortunately, this requires that the
"
' corresponding autocorrelation function be of infinite extent in the lag
. domain, Spectral interpolation is meaningfu! only when the corresponding
SO correlation function asymptotically approaches zero (excluding periodic
M correlation functions which are easily interpolated with zeros between the
A 2 original spectral samples). Therefore, proper spectral interpolation is
!J carried out by first extending the autocorreiation function by means of
A
.: '..
\ -
} 3
o
N
h, -
o
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bandlimited extrapolationm [4] until the correlation function falls below the

minimum representable number (i.e., it is quantized to zero beyond some lag),
and then performing time-limited interpolation [5] in the frequency domain.

Time-limited interpolation in the frequency domain is accomplished by zero-
padding the extrapolated correlation function and taking the FFT.

A method for power spectrum interpolation which avoids bandlimited
extrapolation is as follows. Assume the autocorrelation function is Bartlett

windowed., That is, if rs t(r) denotes the sample autocorrelation function

for sensor i at time t, the Bartlett (or triangular) windowed autocorrelation
is given by

N -ZITl
f
- A {P.i’t(‘r) _Nf-— Y ‘T‘ < Nf/2

() 8
"2t 0L x| > N2

The power spectrum then is the convolution of the true power spectral density

(PSD) with a sinc? function (defined below) having a zero-crossing interval
equal to 4 spectral samples (or "bins"),

When the periodogram method for PSD estimation is used [7], as we use
here [1], a length N¢/2 rectangular window is applied to the data segment, a
length Ng¢ FFT is taken (with zero padding), and the magnitude squared is
averaged over successive biocks., In this case, the true PSD is convolved with
the same sinc2 function as when Bartlett-windowing the true correlation
function,

Because the periodogram method of power spectrum estimation is an average
of the squared magnitude of finite-length transforms, time-limited
interpolation is a valid operation (assuming sufficient zero-padding so that
the operation of taking magnitude squared of the FFT results in a non-circular
Bartlett-windowed sample autocorrelation).

Given periodogram-method PSD samples Si t(mk), w, = Zv]/Nf .

k =0,1,2,..., N.-1, the interpnlated values are defined by
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N It . .
S'l,t (“’) -Z S, ,t(mk)smc(w - wk) (20) N
' k*-@ .
\" -
e where Y.
*
e, sin{w/2)N )¢
. . A f
.\I smc(w) = mm-f—— (21)
o~ In practice, the sinc interpolating function is normally symmetrically
-~ windowed to the first Ky = 3 zero crossings in each direction, If ws(mk)
N denotes this window function of length 2Ks + 1 spectral bins, then the
[ interpolated values are approximated by
. k ,
2 S, a) = TS, dule - u )STNC(s - ) (22) ;
, )= 1S Ll dagle - w)sincls - o ;
k-k1 g
f' where
. Ne 21\'KS )
::; us(u,) = 0.54 + 0,46 cos(w ??;) ) 'w‘ < 'N;‘ (Hamming window)
k 4 max {0, w-w_}
|' 1 ’ s
<, 2 min{N /2 + w, | (23)
o, 2 {(Ne/2, v + ag] 3
) :
A x
i:
! KS = Number of zero-crossing retained per wing !
4'.:
‘.
v [f the intersample spacing is to be greater than the original sample
spacing, it is desirable to smooth the power spectrum so that aliasing does
not occur in the lag domain. Let T' > 1 denote the desired maximum bin
7 spacing in the frequency domain., ( 7' = 1 yields the original bin
v spacing.) The ideal interpolation formula (20)) extended to allow subsampling
without aliasing is then
N
o~ ! ': ) W-w -
Si,ple) 25w k= Si,pla)sine (=) 24)
}e
)
2 5
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The practical windowed version is analogous to (22). An efficient table- )

lookup implementation of windowed-sinc interpolation is described in [6].

C.7 Exponentially Spaced Spectral Sampling

[EAANTY R P A

(@) by Iy

We prepare the sample PSD versus sampled log frequency Si

ot
resampling the linearly spaced frequency axis to produce

— 4 o
'Si,t(w) 51. ,t(e )

It is necessary to choose the total frequency interval and sampling density

over which to perform this transformation.. For convenience in later
processing, we specify (1) the highest frequency. wg to be retained after

mapping and (2) the number TW_ of resulting samples in ‘Ki (@) . The lower

f t ‘e
cutoff frequency is computed from these inputs along with the maximum allowed i
bin spacing which is always set to the original bin spacing (to avoid loss of

spectral information in the retained hand),

The resulting algorithm is as follows. Let P(k) denote the array -

containing Si,t(“k)’ k=0,1,...,K. < Nf/z , and let

f

SN

P(k) & P(k‘or?), x=0,1,...,R-1 (25)

denote the corresponding resampled array, where ko is the bin coordinate of
the lowest frequency retained, and r>1 is the ratio of the sampling interval

el

increase. The requirement 'EW - ;N-l < Zv/Nf reduces approximately to the
requirement wf(l-l/r) < Zw/Nf which in conjunction with specification of
and N yields
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where k. < N./2 1is the bin coordinate of the highest frequency retained. - i
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Appendix D - The Spherical Interpolation Method of Source Localization
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THE SPHERICAL INTERPNOLATION METHOD
OF SOURCE LOCALIZATION

J. 0, Smith and J. S. Abel
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ABSTRACT

A closed-form least-squares approximate maximum likelihood method for
Tocalization of troad-band emitters from time-difference-of-arrival (TNOA)
measurements, called the Spherical [ntaerpoaltion (SI) method, is presented.
rhe localization formula is derived from least-squares "equation-error”
minimization, Computer simulation results show that the SI method has
variance approaching tne Cramer-Rao lower opound.

1. Introduction

The problem of automatically locating a radiating or reflecting source by
analyzing signals received from the object is a basic one having numerous
applications in defense, aerospace, geophysics, and industry. Tnis paper
discusses a highly efficient solution to the problem of locating a source with
a passive, stationary sensor array.

A source reveals infarmat.on about its location through the relative time
delays seen among the signals it radiates %o a sensor array. In a constant-
velocity medium, <he time difference of arrival (TNOA) hetween signals

raceived n 3 sensor pair will nlace the source on a nvpertolnid of revolution
#1%h an 2xis 2iong Tne line drawn hetaeen Tne sensnrs, 1 an n-aimensiona’

space, ~ suchr TNOA's from n  nondegenerataly ;lacad sensor pairs are

i~

necessary and sufficiant %0 uniquely determine tne source jocation 7§17

Source iacalization can therafore he performed using -1 sensors slaced so

N e e .
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that they do not lie in a subspace of dimension less than n. However, to
miminize the effects of noise in the TNOA measurements, it is desirable to use
N > n+l sensors and fit to all of the TNOA's by minimizing some measure of
inconsistency between the measured TDOA's and the TDOA's implied by the
estimated source location,

While an extensive literature exists on the problem of estimating TDOA's
from received signals [4], very few papers seem to be availahle on the problem
of converting TNOA values into source location [1,2,3,5,11,12].
Conventionaily, source locations are estimated by intersecting hyperbolic
lines of position (LNP) determined by range difference measurements
[5,11,12]. However, finding the intersection of a set of hyperboloids is
computationally intensive, involving finding the minimum of a non-convex
function, R, 0. Schmidt (1] has proposed a2 formulation in which the source
location is found as a focus of a conic passing through three sensors.
Schmidt's method can be extended to an optimal closed-form localization
technigue 78]. [n (217, a gradient search localization procedure is derived
for computing optimal source locations from noisy TNPOA‘s. 1In [3], a formula
is given for single-source TDOA localization from four sensors, and can pe
extended to an arbitrary number of sensors [8].

in [8], a closed-form localization technique, termed the Spherical-
Interpolation (SI) method, was described and was shown to perform better than

two related techniques [1,3]. In this paper, we present the SI method and
develop expressions for the variance of SI source location estimates in the
presence of noisy TDOA measurements. e give a geometric interpretation of
the source location estimates produced by the SI method and show that the SI
estimates are related to maximum likelihood estimates. In addition, e
simulation results are presentad in which the SI method shows noise immunity -
approaching the Cramer-Rac lower bound.

The structure of the paper is as follows, 1In secticn 2 we derive tne SI
metnod for closea-form localization 3f 3 sourca in a fiald of 4 sensors. In Q)
section 3, simulation rasuits are presented for two diffarent source locations
and two additive TDOA noise levels., Section 4 gives a geometric o

interpretation of the SI technigue. -
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2. Closed-Form Localization of One Source Using N Sensors

Let N denote the number of sensors, and let di./c denote the TDCA
between sensors i and j ( i,j=1,...,N ) where ¢ 1is the speed of
propagation. The vector of (x,y,z) spatial coordinates for the ith sensor
is denoted 54, and the position of the source is denoted 55. The distance
between the source and sensor 1 is denoted by Di = "11 - 55"’ and the
distance from the origin to the point ii is denoted Ri' Similarly,

RS = ”55"' These quantities appear in Figure la.

The TDOA between sensors 1 and j 1is equal to the range difference

(RD) dij divided by the speed of propagation, a constant velocity medium is
assumed. Tt will be more convenient to work directly with RD's instead of
TDOA's.

The localization prodblem is to determine 55 given dij for 1 and j
between 1 and !N. HNote that there are

Ay N(N=1) z
Vo) ~ 2 )
distinct RN's dij (excluding 1i=j, and counting each dij z 'dji pair once);

however, any N-1 %D measurements which form a "minimal spanning subtree"
determine all the rest (in the noiseless case). The redundancy of the
complete set of RD measurements is used to increase noise immunity.

4e have the following basic relations:

4 4 0; - 0y T2 1,eayly, G210 N (1)
D1 2 1%, = X! (2)
D? = 'ii12 - 2<51,55> + 1551‘ \

2 2] - 25_’..x - Q;T) v
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2.1 The Equation-Error Formulation

We assume here that the set of RN measurements di" i=1,...,N, for some
j, are available. To solve the localizatian problem, we first map the spatial
origin to an arbitrary sensor, say the jth. This qives

%Q.:ﬂ
o=t = 17 (4)
J ) Vi T s
From (1) and (4) we have
= + = ! (
D} DJ i3 Qs + dTJ (5)

as illustrated in Figure 1b, Substituting Rs +d.. for 0. in (3) yields

.2 2 T - =S
R T W ()

The jth equation is degenerate so we have N-1 eguations in three unknowns
X .
_.s
As the delays are typically not measured precisely, we introduce a so-
called "equation error” (77 into the right-hand-side of (A), and minimize i%

in a least squares sense to provide an estimate of the true solution. Without
Toss of generality, let j=1. Then (&) becomes

. 32 2 T i =
; Ri - d].1 - Zdeil - 25L55 , =2 2,3,...,N (7)

wnere £ is the equation erraor to be minimjzed The set of .1 equations
{7} ¢an %e written in matrix notation as

£ =35 -2®d - 25 x [2)
= s— = ;

wnerz
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It is worth noting that, formally, equation {8) is linear in X given R _,

and it is linear in RS given 15. Error vectors which are linear in the

unknowns yield closed-form ieast-squares solutions.

The formal least-sguares solution for L3 gaiven RS is

*

1 A
X =75 (8- R4

—~
O
~—

where

S £(s's)7s [10)

yields the unweighted least-squares solution. If it is desired to weight the
RD's according to a priori confidence in each RD, then the weighted equation
21ror energy gTH e s minimized for

4 T '1

St=LSHS)STH (11)

where W is positive definite.

To obtain a true least squares estimate for 15, it 1s necassary to
minimize J = sTe (or g =¢'W ¢) with respect to Xq ~#hile allowing R
== = = — s
to vary, maintaining the relation R_ = 1X 1
3

Ynfortunataly, this minimization is over a ron-convex ccst function, and

axnaystive search tachniques must 5e used in general. However, in th

£3ase

W,

is
. . . . . . L T
closed-farm solution can be found w~nich approximately minimizes <

1
J

3
2




D MM A N

o~

EeN
-
b
.'J-
2.2 The Spherical-Interpolation Method *
o
The basic idea of the new closed-form solution is to substitute (9) into Tﬁ
(8) and minimize the equation error again, this time with respect to R ~
This, surprisingly, yields a linear least squares problem for finding Rs’ and -
the solution is computationally inexpensive, The technique is made possible
by the fact that the formal least squares estimate of x_ given R_ in (8) .
is itself linear in Rs' When the minimizing RS value is found in this new =
linear equation, the corresponding value of X (via (9)) is automatically a o
minimizer of the squared equation-error norm with raspect to X given this =
Rs' - -
%
it
Rewriting the equation error (R) to eliminate X by subsituting the
.
value from (9), we get E;
o
*, , * \ R
e=3 - ZRSQ -SSs (5 - ZRSQ) = (I -85S (s - 2ng) Ff
™=
where 1 1is the N-1 by N-1 identity matrix. Now, ¢ 1is linear in the e
£ _— Py
single unknown RS. Nefine the M-1 by N-1 symmetric matrix Q{
* -1.7 .
P 2SS =s(sWs)s =
pr
The rank of PS is at most 3 regardless of its order N-1. Also, Pg is 3
idempotent ( Pg = PS ) . Finally, the identity matrix minus an idempotent >
2 .
matrix is idempotent, i.e., ( I - PS 7= 1 - PS . ldempotent matrices are 23
projection operators; the operation PS X will remove components of X not
lying in the space spanned by the columns of S. ii

In the four-sensor case, PS = I, and the error ¢ 1is the zero vector. N
»

In the more general case of N > 4 sensors,

L
.L [N \ ~ . - ‘.:!
£=Pg s - Ry 2 (1 - Py s -2Rd] (12) =
30 that the equaticn-error energy becomes '_,v
S
A .
e m et et - . . . - . cta - e
P PCIC E  PPCE AP a NG g A PO A ST SR SO LS UG C R C O S s
'),21’\ ..... aY A % T I N “~ “~
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(or, to minimize J = ¢'We , tet T4 PLW PL ) . Minimizing J with respect to
R is a form of weighted least squares in which the weighting matrix

.S
T is idempotent of rank N-4. The missing dimensions reflect the degrees of
freedom removed by choosing sensor 1 as the origin and substituting in the
least-squares solution (9) for the three spatial source coordinates. The
solution is given by

AR

2d Td
Substituting this solution into (9) yields source location estimate

~

X
Jal

* - ,14)
=3 S (8- R \

Clearly, the computational burden of (14) is very low compared to iterative
nonlinear minimization. If iterative nonlinear minimization is desired (to
obtain the lowest possible variance and bias), (14) provides an excellent
initial value for a general descent method.

Note that the pair (;s’ Rs) minimizes the equation-error energy

= eT § . without the constraint Rs = “gsd . We expect that the pair

A~

(55, RS = "is") approximately minimizes J subject to the constraint

1X_ 4 = Rs . Therefore, we define the range estimate by

S .

R &

S -‘55“'

instead of using (13). Similarly, the bearing estimata is defined 3s <he

vector of direction cosines from the origin at sensor ! tO the sourca:
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Note that the SI solution (14) is based on RNs measured relative to a
single reference sensor. When additional RDs are available, additional SI
source location estimates can be made, using different reference sensors, and
the source location estimate could be computed as the weighted average of the
SI estimates,

2.3 Vvariance of the SI Estimate

Here, we give expressions for the variance aof the unweighted SI estimates
of source location, range and bearing. Assuming the RN varijance is small
compared to the RD mean, the variance of the SI estimator of source location
is given by [10]

ax X

=S =5,T
) = 557) Ry(53) (16)

Q2

Var(

I

where the RD vector, d is assumed unbiased with covariance matrix Rd .

Accordingly, the variance of the source range and source direction coSines
vector are given by

B aRs - aRs T
ter(,) - () verliy ) (52
9 R
- - s 7
var(gg) ~ (37 Var(ﬁs)(sz;) (17}

=0
36 3R _d X
- —5= oc T (1
-@ 2 32 ZST___ 0 (18)
’ 2 2
R 3, = R < d;
ecall 34 R1 d11 , and
38
where l—-d —{
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s .
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The derivative 5g— My be evaluated using the chain rule:

Rd R ad ax
= _ S = _ T,%=s
57 " 357 *Rsgg = a0 ¢ Rl (20)

Y . . ;
where RS L and _JE_S/Rs 2 have been used to evaluate aRS/Qis . Using

(19) and (20) in (18) we find,

T X

AQ+RSI+(225+S)-3§—-0
and,

ax .

- (8 )T 4y < RD) ()
where

4 T,
A’(EQS S)

Bl(_,s=
Ry 25

and
X
-5 1 1 al T
—_—z = P =.R__{I-QQ)
34 Rs X5 s —5=5

where Pi represents a projection operator which removes components of a

-
vector along the direction of LIS Substituting equations (21) and the above
into (16) and (17), we have the desired result:

- T , .. .
var(xg) = (aTa )aT (A, *+ RGT )R (AR T ja i aTa )]

R R
!arkRS, 2 Jarr\iS

13
var(q. i - 1 P - Var[; }Pl 122)
s/ ;2—2- X -7 X .
S
Q
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3. Simulation Results
»
M : This section presents simulation results on the performance of the SI L’
g) oA
f: method on the problem of localizing a single source in the presence of .
2 noise. The simulations were implemented in the Ctrl-C* language on a Vax -
Y
N 11/780 computer. The performance of the SI localizer is evaluated according S
3 to the bias and variance of the source location estimate. The results show
-'b that the variance of the SI method is given accurately by (22), and that .Z
N performance of the SI method is nearly optimal, i.e,, the expectad square =
. error in the source location estimate approaches the (Cramer-Rao lower bound. .
3 g
'3 All simulations employed the 9-sensor array geometry shown in Figure 2, -
. 1] I.‘
3 with the two source locations shown and two levels of additive white noise in G
.t the RD's. The sample bias and variance were obtained by averaging the results
:l of 1000-trial Monte-Carlo runs.
:::"
7 ) . . .
- Tynically, RN estimates are zero mean with variance dependent only on the .’
~ signal-to-noise ratio (SNR) at each sensor [4,6]. When the source-to-sensor ﬂ!
{ range is comparable in all sensors, the SNR is normally comparable also. Our ~
- : ) , . . . 1
- simulated range difference estimates were generated by adding white Gaussian ,;'
j noise to true RD values, corresponding to the case of uniform SNR across
) sensors. 3
.- =
i :
-
o N
-. A
> .
’
’
. * Ctrl.C is a registered frademark of SCT. H
3 -

.". .l“ D

.o
$_ o

Y ¥




7
A
p. Table 1, Enviromental information for the four simulation cases. :
. (Mote: all distances are measured in meters.) ¥
2 1
Run 1 ---  Source location Xt (390,160,170) .
- Range R, 454.5
e Bearing cosines a,: (.858,.352,.374)
- RD noise standard deviation o4, = 0.1
_'ﬁ'. i
N Run 2 ---  Source location x : (390,160,170)
o Range R_: 454.5
* Bearing cosines a_: (.858,.352,.374)
. . o . R
{, RD noise standard deviation 941 1.0 _
Run 3 ---  Source location X (540,1360,110)
—\ -
- Range RS: 1457
Bearing cosines 7 : (.368,.927,.075)
i RD noise standard aeviation 94 = 0.1
il
:‘: Run 4 .-~ Source location L (540,13A0,110)
7 Range RS: 1467
Bearing cosines ag: (.368,.927,.075%)
.- RD noise standard deviation oy = 1.0 .
i1 .
> ]
o~ .
Table 1 describes the enviromental information (source location, range, '
{‘ pearing, and additive noise level) for each of four 1000-trial Monte-Carlo
N runs (two source locations and two TDNA noise levels), For all runs, the nine
PN sensors were located at (0,0,0), (0,0,100), (n,n,200), (109,0,n), (100,0,100),
)
“a (100,0,200), (n,1n0,0), (0,100,190), and (0,100,200) meters,
[N
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B Table 2. Sample bias measurements, SI Method 1000 trials o
e
- Run Source Location Range Source Bearing (x104) =
Py - A A ~ - :\‘
- Xs%s Ys¥s  Zgtig PsRs By =8 82, B0y -
& x
< 1 0.099 0.019 0.025 0.10 -.N19 -.50 -.46 Fﬁ
- |
2 3.73 10 0.81 3.84 2.2 -12 -22
. N.95 2.5 0.042 2.7 -.60 -.22 -1.4 -
$ 4 53. 143. 1.8 153. -35 2. -96 -
© e cceemccccecceeceecceeceeseeeeee——meeoeee 2
X b
A i
. -
N Table 2 shows the sample bias for each Monte-Carlo run, listing errors in ke
& , i X 3 Y]
2 the Euclidean 3D source coordinates and errors in range. Ue find that the SI
< method produces estimates with a bias which is small compared to the v

~

quantities being estimated. Note that the bias in the source location and
range is positive, indicating that the source estimate is generally closer to
the origin than the true source. Also, the bias appears to be strong function -

A

of additive noise level, perhaps increasing quadratically with an increase in
noise standard deviation,
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e Table 3. Sample standard deviation measurements, SI Method 1000 trials
S
1 F} Run Source Location Range Source Bearing (xlOA)

]
a5 ¢ g oR a3 a3 g
= s s B Sy
Sample 1 1.9 0.66 0.42 2.0 5.h 7.0 9.5
Standard 2 19. 6.5 4.1 20. 54 70 95
Deviation 3 9.5 26, 0.58 27. 7.8 6.4 13
P 4 82. 220, 5.2 235, 78 63. 126
. Standard 1 1.7 0.62 0.30 1.8 4.5 5.0 8.7
. ;;; Deviation 2 17. 6.2 3.0 18. 45, 50. 87.
from (22) 3 9.3 25. 0.44 26. F.2 3.0 12.
N 4 93. 248. 4.4 264, 62. 30. 123.
N
) i' Table 3 snows the sample standard deviations for each Monte-Cario run,
3 ) again for both Euclidean and plane-projected polar coordinates and range. DNue
X i: to the source-sensor geometry, the bearing is more accurately estimated than
l‘ ‘\
- the range in all examples; this is typical when the source is several aperture
sizes away from the sensor array. Note the estimate variance of the SI method
fj o appears to increase linearly with an increase in RD variance.
; "-
} :f Table 3 also shows the standard deviation predicted hy (22). Note the
¢
§ agreement with the Monte-Carlo simulations.
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Table 4. Sample RMS error measurements, 1000 trials,
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The performance of the SI estimator can be evaluated by comparison to the
Cramer-Rao (C-R) lower bound, a lower bound on the variance of any unbiased
estimator [10]. Since the SI method is biased, the root-mean-sguared (RMS)
error, defined by

s 4 /%ias2 + Variance

is compared to the C-R bound. Table 4 lists the Cramer-Rao lower bound ;
standard deviation [97] along with the RMS error for the SI estimator. As seen
in this table, the performance of the SI estimator is nearly optimal,

approaching the C-R bound. MNote that the SI estimator appears to be

relatively unbiased, as the RMS error is nearly equal to the standard -
deviation in all cases. Therefore, we expect (22) to accurately predict the -
KMS error, -,

The extent to which the SI method is not an optimal lieast squarss metnod

is a funstion of the extent to which 55 computed by (13) is not agual %2 ii
”;s“ computed by (14). It was therefore of intarest to compare thesa )
quantities. In the high-noise case (°d = 1) above, for both source g.
il o

positions, the quantity | . ”;'“/53‘ was typically less than 1.NN5 and
—_—
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almost never greater than 0.01. Thus, the SI method is very close to an
optimal least-squares equation-error method under the above conditions. It

-~ N
:; would be of 1nteres+ to find out when and if the disparity between .
Rs and nx y becomes large, and, if so, what effect this has on the source p
u " location est1mate.
b . 4. Geometric Interpretation
-
. This section gives a geometric interpretation of the SI solution and
:: discusses it in light of the Monte-Carlo results presented above, A
o 4.1 The Error Criterion
1.
. The goal is to localize the source x, and therefore to minimize K
o 1Xg - 25" for some norm, We wiil only consider LZ (sum-oT-squares) norms, :
. Since only the RD measurement vector d is known, a natural formulation would ;
i appear to be
iﬂ Minimize igy 2 1d - E(i iy (23) :
2 . 3
-~ ~ -S '
] where d(x. ) s the vector of all measurable RDs corresponding to the source
" location estimate X This error criterion is especially well-suited to the
v case of zero-mean errors in the RD's. Indeed, if the RN errors are Gaussian ;
N, perturbations, then (23) provides the maximum likelinood estimate for .
- Xs (which is now regarded as a parameter determining the mean Aé(fs) of the ;
o rnultivariate normal distribution for d). For this reason, the solution to "
(23) will be referred to as the maximum likelihood estimate of the source :
- location. y
5 As mentioned in the introduction, solving (23) reguires nonlinear
- ninimization techniques. For this reason, the SI method does nct solve ;
.. .23}, Instaad, it approximately minimizes the L, acrm of an "agquation arror” 4
{F which was cnosen purely to simplify the solution. As seen in fthe Monte-Garlo 'i
results, good estimates are obtained nonethelass. .
i olacing sensor 1 at the origin as before, and using only N-i1 20's, all .
!
-, 15
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referred to sensor 1, (?3) can be interpreted as finding the sphere, passing
through sensor 1, whose surface is as close as possible to being d1.1 away
from the ith sensor. This arrangement is shown in Figure 3 for the noiseless

case,

As seen in Figure 4, the sphere of radius ﬁs’ centered at 26 and
passing through sensor 1, is a surface of zero RD to sensor 1. The distance

-~

from the sphere to sensor i is then dil' The problem is then to positicn
Xg such that 311 ~ dil for every i. Accordingly, the error minimized in (23)

is equivalent to the sum of squared differances between the sphere-to-sensor

-~

distance d.., and the measured RD di

i1 for that sensor,

1

Since the sphere around the source must always pass axactly through
sensor 1, the solution is sensitive to the choice of sensor 1. Improved
results in the case of a systematic bias in measuring the RD's relative to
sensor 1 may be obtained By removing the constraint that the source sphere
must pass through sensor 1. This can be accomplished by adding a constant
y to the RD vector, and solving for «y as well as is and‘is.

4.2 Spherical Interpolation

We first show that the equation error (7) (approximately minimized by the

ST method) is closely related to the maximum likelihcod error minimized in

(23). Adding and subtracting RS in the definition of the equation error (7)

/
gives (upon introducing hats to denote estimated quantities)

2 T~ ~2 2 ~ ~2 .
e TRy - BxF R - {dyy + Rydyy + R, T = 200,000
N TP
51' = -|1.. - 1,51' - (QS d,‘l) (24)

-~

where ¢ and RS are the estimated sourca location and range, x. is the
—1

it sansor location {xnawn exactly), and di is the measurad range
difference. Let
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denote the RD predicted by the source location estimate ;s (cf. Figure 4),
Then (24) can be written as

. (D 2 g 2
€ = (RS + d11) - (RS + d‘il)
- -~ - 2 2
= R(dyy = dyy) +dyy - (25)

Assuming that the noise in the delay estimates is small compared to the delay
values, €5 can be written as

s 450044y - dyy)

This form of the error displays the equation error as the maximum likelihood
error di1 - ail times the term ﬁs + d... When the source range is large

il
compared to the intersensor separation, the SI equation error reduces to

The difference between the SI method and the maximum likelihood method is the
tendency of this error to pull the estimated source location toward the
origin, thereby making ﬁs and the equation error smaller, This contraction
of the source estimate toward sensor 1 was consistently observed in the
simulations. MNote that there is no difference between the maximum likelihood
solution and the SI method with respect to bearing estimation when

» ldy |+ 1dy,

Rs

The above discussion leads naturally to a weighting function and an
itarative technique for obtaining the solution to (23). The weighting
matrix, W , in (11) should be given by,

W = diagf Al — (26)

djp+d r 2R

N
sners  diag(v.) is a diagonal matrix with v, as the element in the ith row
and column, and dyy +dyy - ZRS is g3iven hy a prior solution of (7), or

A -

estimated from a »riori information, The solution of (23) is then found by
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iteratively solving (7) with successively updated values of W using (26).
Assuming this iteration converges, the weighting cancels the first term of
(25) and the maximum likelihood error remains. Conditions for the convergence
of this scheme to the solution of (23) need to be determined,

5. Summary

In this paper, a closed-form solution for localizing a single source in
n-dimensions from TDOA information gathered from an N > n+l-sensor array was
described and evaluated by Monte-farlo simulations, [t was found that the SI
method exhibited an RMS localization error close to the Cramer-Rao lower
bound. Finally, in support of our simulation results, we showed that the SI
method is closely related to the maximum 1ikelihood estimate for the case of
Gaussian TDOA measurement errors.
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Figure 1.

Fiqure 2.

Figure 3.

Figure 4.

Figure Captions

Niagrams illustrating notation and certain geometric relations for

the case of a single source Xse Labels imbedded within a line
denote the length of the corresponding vector. For example,
Di = {l_x_.' - _X_Sll.

Source-sensor geometry used in all simulations.

Sensor array, source and RN geometry. The sphere of radius

RS drawn around the source is the surface of zero RD relative to
sensor 1. The perpendicular distance from the sphere to any sensor
is the RD for that sensor relative to sensor 1.

Geometric representation of the relationship qiven in equation (7).
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_: ~ Appendix E - On the Efficiency of the Spherical Interpolation Estimator of
: :: Source Localization using Range Difference Measurements
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On the Efficiency of the Spherical Interpolation Estimator

of Source Location Using Range Difference Measurements

J. 8. Abel and J. O. Smith

Systems Control Technology
1801 Page Mill Road
Palo Alto, California 94303

Abstract. Cramer-Rao lower bounds are derived for the variance of unbiased estimators of source location,
sonrce range. and source direction given range-difference (RD) measurements. The Cramer-Rao bound (:rB)
for range estimate variance is found to be a quartic function of source range. The “re for hearing estimate
variance is found to be insensitive to the source location, an inverse quadratic function of the sensor-array
solid-angle as seen from the source, and an inverse linear function of the spatial density of the sensors within
the array (assuming independent RD measurements in each pair of sensors). The theoretical bounds are
compared to empirical mean-squared errors obtained using a fast, suboptimal, least squares estimator of
source location called the Spherical Interpolation (s1) method [1]. The s1 method estimates’ mean-squared
errors are found to be in the range of 1.0 to 1.5 times the respective Cramer-Rao lower bounds.

1. Introduction

The problem of locating an object by analyzing signals received from it is a basic one in the fields of
nnderwater aconstics, geophysics, aerospace and industry. It is therefore of interest to know how well a
sonrce localization algorithm can perform when the received signals are corrnpted by noise.

A source tells of its location through the relative time delays measured among the signals it radiaces to
the sensors of an array. In a constant-velocity medium, the time-difference-of-arrival (T a) between signals
received at two sensors is proportional to the difference in source-sensor range, termed range difference (rD),
and places the source on a hyperboloid of revolution about 2 line drawn between the sensors. In » dimensions.
2D measurements from p non-coplanar sensor pairs (p + 1 sensors) are sufficient to localize a source {2}.

Typically, the pD’'s are not known precisely and the source location has to be estimated. The sonrce
location estimate will have. under suitable assnmptions, an associated variance and bias. The Cramer-Rao
bound ('rB) gives a lower bound on the variance of an unbiased estimator, and is often nsed in evaluating
the performance of an estimator. An unbiased estimator which achieves the -‘np is called efficient: it is weil
known that all Maximum Likelihood (ML) estimators are efficient. [Infortunately, in the case of estimating
source location from noisy rD’s, the ML estimator is expensive to implement, requiring nonlinear cptimization
techniques. While much is known about the problem of estimating rD's from received signals {a recent special

issue on the topic is 13]), there has been relatively little work on the estimation of source location from rD
measurements {1,2.3,4,3.

This paper presents Cramer-Rao lower bounds on the variance of nnbiased estimates of source location,
direction, and range from RD measurements. These bounds are then compared to the measured variances
of =stimates obtained nsing the Spherical Interpolation {~1) method i1!. The <1 method provides a fast.
closed-form. least-:quares type solution for source location from PD measurements. and is zhown here to
have naes error approaching the Cramer-Rao lower bound.

The organization is as follows. In section 2 the Spherical-Interpolation Method of source locacion

estimation is derived. [n section 3 the Cramer-Rao lower bounds on the variance »f source location. hearing,
and range estimates are derived and discussed. Next, section 4 presents Monte-Carlo simularion resnlts
lemonstrating the near-efficiency of the <1 technique.

2. The Spherical-Interpolation Method for Closed-Form Localization

Let .V denote the nnmber of sensors. and let {,, denote the 3D berwean sensorsrand 5 {r.0 =1, ... VY.

The vecror of {z. 4. =} spatial coordinates for the :th sensor is denoted z,, and rhe position of rhe :ource is




denoted z,. The distance between the source and sensor : is denoted by D, = l{z, - z. il, and the distance
from the origin to the point z, is denoted R,. Similarly, R. = !|z, !||. These quantities appear in Figure la.
Note that

4, 2D, -D;, 1=1,...N j;=1...,N (1)

The localization problem is to determine z, given d,; for : and ; between 1 and N. Note that there are
N(Y = 1)/2 distinct rD’s d;; (excluding ¢ = 7, and counting each 4., = —d,, pair once); however, any .V - 1
RD measurements which form a “minimal spanning subtree® determine all the rest (in the noiseless case).
The redundancy of the complete set of RD measurements is used to increase noise immunity.

2.1. Equation-Error Formulation

To solve the localization problem, we first map the spatial origin to an arbitrary sensor. say the jth,
e, z, =0 The rD d,, then reduces to

and, from the definitions above,

diy = (R}+R?-2z7z.)} - R. (2)
Adding R, to both sides of (2) and squaring gives
(diy + R)? = R+ R} - 217z, {3)

Equation (3) is the Pythagorean theorem, illustrated in Figure lb. Moving all terms to the right side of (3),
the R? terms cancel, and we are left with

0=R;-d} - 2R, -~ 22z, (4)

The ;th equation is degenerate so we have ¥ — 1 equations in three nnknowns z_.

As the delays are not known precisely, we introduce a so-called *linear equation error” ‘8| into the
right-hand-side of (4}, and minimize it in a least squares sense to provide an estimate of the trne solution.
Withiout loss of generality, let ) = 1. Then (4) becomes

€,=R::—41',21—21?.d,1—‘3.rf1:,, 1=2.3....,V (3)

where <, iz the linear equation error to be minimized. The set of N ~ 1 equations (3) can be written in
matrix notation as

¢e=4§—-2R d-12Sz, (6)
where . A
Rz - 13 day I o 22
52 R3 - 43 , i3 4?1 | g2 I.x '1.3 :.3 -
' R?v - diu “/x IN YN 3:\/

[t 13 worth noting that =quation (8) is linear in r, given R., and it is linear in R, given z, Error vectors
which are linear in the nnknowns yield closed-iorm least squares solutions.
The least :qnares solution for £, given R, is
b, . :
z,= Shif=2R.1) {3)

)

where the weighted linear squacion «rror energy J{z.) = - W< iz minimized for

He

Siy

(STWS)"!STW (9)

2
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and W is symmetric positive definite (or simply diagonal and positive). If W = I, S;- becomes the pseudo-
inverse of S.

To obtain a true least-squares estimate, it is necessary to minimize J(z,) with respect to r, while
allowing R. to vary, maintaining the relation R. = {|z, {{. This, unfortunately, is a nonlinear minimization
problem, and serious difficulties can occur when J(z,) is not a convex functional of z,. However, the
nonlinearity can be eliminated as described in the next section.

) )
-

The Spherical Interpolation Method

The basic idea of the =1 solution is to substitute {8) into (6) and minimize the linear equation error
again, this time with respect to R.. This, surprisingly, yields a linear least squares problem for finding A..
and the solution is quick and inexpensive. The technique is made possible by the fact that the formal least
squares estimate of x, given R. in {6} is itself linear in R.. When the minimizing R. value is found in this

new linear equation. the corresponding value of z, (via (3)) is automatically a minimizer of the squared
equation-error norm with respect to z, given this R..

Rewriting the linear equation error defined in (G) to eliminate £, by subsituting the value from {8) yields
¢= 9 —2R.d =SS {0 - 2R.d) = (I - SSy ){d - 2R.d)

where I is the .V — 1 by .V ~ | identity matrix. Now, < is linear in the single unknown R.. Define the .V -1
by ¥ - | matrices

il

P. 2 SS;, = S(STWS)~!S™W

(10)
P:21-8S; =1-P.

The rank of P . is at most 3 regardless of its order .V — 1, and P# has rank at least (¥ — 1) ~3. Also, P+ and
P: are idempotent, i.e.. P2 = P. and (P%)° = P*. Idempotent matrices can be interpreted as projection
operators. For example. when W = I, the operator P . projects an (¥ — 1}-vector into the subspace spanned

by the columns of S. and the operator P4 projects into the orthogonal complement of the subspace spanned
by the columns of S. Thus, for example, P .z is orthogonal to P4y for every pair of vectors z

and ¥

[n the nondegenerate, four-sensor case, P. = [5, and the error ¢ is zero. [n the more general case of .V
sensors, '

£=Pi(e~-2Rd)

3o that
JNR)Z sl = We= (8 - 2R.d)TPEWP(§ - 2R.d) 2 (5 - 2R.d)"W.. (5 - 2R.d)

Minimizing J’ with respect to R. is a form of weighted least squares in which the weighting matrix W .. is
of rank ¥ - 4. The missing dimensions reflect the degrees of freedom removed by choosing sensor 1 as the

origin and substituting in the least-squaree solution (8) for the three spatial sonrce coordinates. Note that

when W =1 W_. = P+. The least-squares minimizer of J'(R.) is given by
z 14°W..g
R. = EQ’W,«i (11}
Substituting this solution into {8) yields the closed-form source location estimate
i 1dTW .. 1 .
Zep = =8 (I—‘—“——‘—'—)&:—'»"—l.' 2
ist = 39w w4/t :S“ (£ - 2R.d) {12)

Clearly, the compntational burden of {12) is very low compared to iterative nonlinear mninimization.

Note that. in general. R, as computed by {11) is not necessarily equal to "' 3., ' compnted from (12},

except as the 2D noise approaches zero. Therefore, we define the range estimate by

Rer =il {13}




Similarly, the bearing estimate is defined as the vector of direction cosines from the origin at sensor 1 to
the source:

. 2 (14)

3. The Cramer-Rao Lower Bound

The Cramer-Rao bound (’RB) iz a lower bound onr the variance of an unbiased estimator 19,10,11.12|;
estimators achieving this bound are said to be efficient. In this section <RB's are derived for unbiased
estimators of source location, source range, and source direction based on RD information.

We first review the 'rp, the reparameterization relation, and the information inequality. The variance
of estimating the ith element of 4 with an unbiased estimator 4, based on an observation vector z is bounded
below by the :th diagonal element of the inverse of the Fisher information matrix '9|:

Varld) 2E {52} - B2 {3} 2 [71]. (15)

where Var({-) denotes variance, E { -} denotes expectation, {M|,; denotes the ith diagonal element of the
matrix M, and 7, is the Fisher information matrix for ¢, defined by [9]

s 3 1o .
7a=E { [a—g lnp(§|d)} [a—glnp(;lﬂl} }

If # is parametrized by ¢ (i.e., 4 = k(¢)), the Fisher information matrix for ¢ can be written in terms of the
Fisher information matrix for 4 via the reparameterization relation {9]

where. the (¢, 7)th element of 34/3¢ is 39, /3t,. Finally. if ¥ is an nnbiased estimator of the scalar v(¢). the
variance of ¥ 1s bounded by the information inequality:

Ay N a”f T:—L(gl) -
Var{§) > <G-Q> T (17)

We now derive the :nB’s for source location, range and direction. Defining £ (7) as the 1th element of
2., the Cramer-Rao lower bound on the variance of an unbiased estimator of sonrce location z,, based on
RD estimates d, is given by (15) as

Var(z.() 2 [77'] (18)

where, 7, i the Fisher information matrix for z,. Using the information inequality (17), the variances in
estimating source range and source direction from RD measurements are bounded below by

(33.)*,_1<5R.\
Jz, s 3z, )

Var(@.(2)) 2 [(%?—)"(3%”

-
. 24

Var(R.)

v

(19)

A%

(&)
where {1,(2) is the tth element of 0.

Since the source location x, is a parameter in determining the distribution of the 2D measurement

vector I, by the reparameterizacion relation (16}, =, can be written as

S

i1 T.- 9 a
(;‘) _(;;‘> (20)
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and. as shown in Appendix A. assuming the BD estimates are Gaussian distributed with correlation matrix
R,, assumed independent of source location, 7y = R' nd

3 <34)TR_L<54>

T \ez, ) T\,
It should be noted that when the RD’'s are estimated from Gaussian signals, commonly used estimators are
unbiased and have 6,7}

(21)

Ry =7l {22)
where o7 is the variance of each individual 8D and is dependent only on signal and medium characteristics.

To find the Cramer-Rao lower bound on the variance of the source location estimate, it remainz only
to find the sensitivity {derivative) of range difference with respect to source location 3d,/3z,. Similarly, the

~'rB’s for range and bearing of the source are easily calculated after finding the sensitivities of range and
bearing with respect to source location.

3.1. Sensitivity of Range Difference to Source Location

The derivative 3d/3z, can be evaluated by differentiating equacion (6) in the noise-free case with respect
to z. and solving for 34/3z,. Setting < =0 in (6) and differentiating with respect to z, yields
9 JI(R.d) Iz

- 2S— =0 23
3z, 3z, SaiL (2

From (7), the tth element of § is R? - d?, so that 3% 3z, becomes

38 (ag (54) 24
ad ag) Sz, 2445, (24)

N E .

where, A is a diagonal matrix with 4, = d,; as the tth row,/column entry. The derivative, 3{R.d)/3z,, is
evaluated nsing the product rule:

A(R.d) 34 3R, 3d - "
Era R.’ . 492‘ = H;:— - 10 (25)
where. R. = il z.'| has been used to evaluate IR./ 3z, = Q, = z !} z..|. Substicuting (24) and {25) into
{23) with 3z, '3z, =1 yields 34,3z :
Al a0 2o va {26)
Iz, Iz,
where
vaart
A= A -RI (27)
A2 4Q7T-8S

Post-multipiying through (6) by Q7 ' R., solving for 1Q7. and substituting into {27) prodnces a formnla
for A in terms of 3 rather than J:

a=sp: - p (28)
LR )
he
R P, =z.(z7z,) 'zT=0.07
P: 2(I-P,)

The idemporent matrictes P. and P{ are projection aperators which remove the vector components per-
pendicular to z, and parallel to z . respectivelv. Thus, A multiplies the :p subspace orthogonal to Q. by
the matrix S. and it *bends” the :D component parailel to O, into the direction of 5. scaled by =~ |'2R..

vt
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3.2. Cramer-Rao Bounds for Location. Range, and Bearing

. - . -l

The Cramer-Rao lower bound on the variance of an estimator of source location. I,, from Gaussian |
distributed RD measurements i obtained by using (26) in (21): N
Var(z.(:) 2 [77Y] (29) %

- 1A} o,

LY

where

-1 30
A"VR,Z‘VA) (30)

=]
(

x

Fatvia)™ N

The Cramer-Rao lower bound on the variance in estimating source range. R., from RD measurements
s similarly

—

- o
vair) 2 (55)7(5) ~ea

dz. /) % \ 3z, < .
-1 2 ‘ot
=g (aTvR;'va) g (31) o

~ 73T (aTvia) g, .

For the bearing estimate 'nD, we need (using 2, = z., |z, |) >
- Td
N N N 1 . P: <
— =(zlz,)7|I- === ==1-00a])= = 3 -«
I ERRL mz.)} 1-p.an) = = (32) 4
The oo for the bearing escimace, @', 13 thus 35

. Q. _-1(3Q‘>T a
Var({2,(t)) 2 [(:{)1 EPN }” (33) ~
—.‘
where ;
’SQs -— (aﬂ 1 T =]

— | _— = —P+ " F7iP+ .

<,3,£‘ ) L. \ Bz‘ ) R?PL, I L. .

1 - - -1 "

= mPr (ATVE] '‘va) P; (34)

N e
U,:; 3 -1 -.t.
~ ==P; (A7Via) P;

3.3.  Far-Field Analysis ’

[n this section, we analyze the location. range, and bearing -'rg’s in the “far field” (A, » {1, 1)
and che *infinite-range case” {R. — 20). These assumptions on the scale of &. greatly simplifv the 'rB
=xpressions and give insight into the behavior of the bounds. We only consider the i.i.d. case R = 31 as "
is often done in practice 6.7]. )

The far field of the sensor-array aperture is defined bv

R.>dy. t=2...N (35)
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At this range, we have A = R.I = 4, = R.L and from (22}, (27), and (29)
s-1l ., .- p2 T -1
n. e ~o;RI(ATA) (36)
Using (28) for & and (31) for the - 'rB variance of R,, (36) gives the far-field range-variance bound as
-
: > 2 pd 1 clrd
V:Lr(R.) < 4o R: —_— ('“)
£ A TP‘ ol
" =Py
.‘
. where ‘ -
PU =1-U(uTu)~‘urT
o U =8a: (38)
) ar=igr Q3
where Q7 and 33 are any two mutually orthogonal vectors in 3-space which are also orthogonal to Q,. The
matrix P#, is the idempotent projection into the orthogonal complement of the snbspace spanned by the
columns of U = S3+.
~ Similarly, the far-field bearing-variance bound is approximated by
.
' A > 20+ T -t ...1‘1
Var(Q.()) 2 {030 (UTP,.U) QT
- - J te
T (39)
- 20
e P,,.‘. =1-=
- C 4 o
. and again U = SQ*.

We now discuss qualitative relationships revealed by the above formulas. Equations (37) and (39} show
that the far-field range estimate Cramer-Rao lower bound variance increases quartically with the range. and
the far-field bearing escimace deviation is constant with source range. Consequently. the minimum standard
deviation of a source location estimator increases with the :quare of the source range in the source direction,
and increases linearlv with the range in the other directions.

t Second from the far-field hounds, it is apparent that increasing the norm of A7 A reduces rhe Cramer-
A Rao bound variance in estimating source location, direction. and range. By the definition of A given in
{28), therefore, the far-field bounds are reduced when the size of S in the directions perpendicular to the
o sonrce direction increases, or when the norm of 4 increases. The sizes of S and » are increased by placing
‘e the sensors far from each other and far from sensor 1, as seen by the source, i.e. by increasing the size of the
- array. The norm of ¢ is also increased by aligning the array such that lines drawn between sensor 1 and the
) other sensors tend to be perpendicular to the sonrce. thereby decreasing £ and increasing §. Increasing S
- or * lowers the source estimate variance by increasing the effective aperture size of the sensor array, as seen
- from the sonrce.
Third, the variances in the :ource location. direction. and range estimates are all proportional ro the
N 70 noise variance.
< . .
To corrobhorate the above observations, the exact Cramer-Rao hounds were evalnated numerically and
compared to the far-field observations. Figure 2a shows the square root of the - 'RB range estimate standard
e deviation plotted against range for the case of a 100-meter-wide, 200-meter-long 9-sensor prism-shaped array
locating a :ource placed at various ranges along a line through the origin {see Monte-Carlo Rnn 1 in Table
1). The range estimate standard deviacion can be seen to increase veryv linearly with the square of rhe range.
‘e aven at small ranges. Figure b shows the '2g direction-cosines »stimate standard deviation plotted against
™ range for rhe case described above. The hearing sstimate standard deviation can be seen ro be constane with
. increasing range, 2xcept 1t <mall ranges where there appears to he 1 point of maximum anguiar resofurion,
or hest focus.
.
-
y




The [nfinite-Range Case

In the infinite-range case. . — oo, only the source direction, 2, is of interest. At infinite-range equation
(6) gives

-8Q,=d = Q,=-8¢ (40)

where 8° 2 (STS)~!ST. Note that by this defining relationsip, the infinite-range Q, is not constrained to
have unit norm.

The Fisher information matrix for the infinite-range Q, estimate is easily computed from 7; = RI‘ and
the reparameterization relation; accordingly the infinite-range Cramer-Rao bound for the hearing estimate

18

varile) 2 [ (41)-

where

- 3d\T [ 3d\]" O -
= [(E—_) Rﬁ(ﬁ%” = [STR% 15] =8 "R,;S" = 7y(S7S)7
Note that this bound is independent of source direction (since !| Q. 1| is nnconsrtained). It is also inversely
proportional to the square of the scale of the array, i.e., if the array were twice as large, the -'np variance in
estimating (1, would be reduced by a factor of four. The bound is also inversely proportional to sensor-array
density; e.g.. if the number of sensors is doubled by measuring two independent 7D estimates at each sensor
{thus doubling the length of S by repeating each row), the value of STS doubles and the variance of z,
halves. In practice, the bound is inversely proportional to array density up to the density limit for which
the nD’s can be assumed uncorrelated. As always, the 'RC variance is proportional to the nD variance.

it is shown in Appendix B that the infinite-range lower bound (41} is achieved by the =1 method.

4. Monte-Carlo Simulation Results

This section presents Monte-Carlo simulation results comparing the performance of the <1 method to
the Cramer-Rao lower bound. The simulations were implemented in the Ctrl-C* language on a Vax 11, 785
computer. Since the <t estimator exhibits a slight bias, the root-mean-squared rMs) error, defined by,

£ - 214
o, =1E(Z, —z.)I"
of the <t method was compared to the Cramer-Rao lower bound standard deviation. [t was found that the
-t method is nearly efficient in all cases tried.

The simulations employed the two nine-sensor arrays shown in Figure 3, with the two source locations
shown and two choices of sensor 1. The 2D measurements were :imulated by adding i.i.d. white Gaussian
pseudo-random noise to the true RD values {corresponding to the practical assumption R, = o3I 11.6.7").
Sample bias, variance, and nMs error of the unweighted st method were computed by averaging the results
of 100-trial Monte-Carlo runs. The Cramer-Rao bounds for each Monte-Carlo run were computed nsing the
formulas given in section 3.2 above.

Table 1 describes the environmental information (sonrce location, range. bearing, additive 2D noise
level. and sensor array) for each of the eight i00-trial Monte-Carlo rmns.

Tables 2, 3 and 4 show the sample pMxs error of the =1 source location, range and bearing estimates
and the corresponding Cramer-Rao bounds for each of the Monte-Carlo runs. It should be noted that the
sample biases of the =1 estimates. not shown here. were typically less than one tenth of the sample standard
deviation. and were never prominent in determining the D Ms error.

from Tables 2. 3. and 4. as well as other results not presented here, the <t »stimacors of range. bearing,
and source location are seen to have nMy error in the range 1.0 to 1.5 times the ~-amer-Rao lower bound
standard deviation. The -1 estimator is therefore performing almost efficiently. in other terms, the -1
astimator approximates the maximum likelihood estimator of sonrce location given pD> measurements.

* Ctrl-C is a MatLab-based. high-level, “matrix calculator” langnag= sold by SCT. Inc.
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i It is interesting to see that the choice of sensor 1 (the sensor to which the rD’s are measured) has a

* large effect on the Cramer-Rao lower bound (as much as a factor of two in standard deviation). It has

i been observed that the range, and therefore source locatinn estimates, have smaller 't for sensor 1 choices

which are either centrally located in the sensor array relative to the source or are closer to the source. Also

- : observed is the tendency for the "RB to be smaller for source direction estimates for which sensor 1 is chosen
-, .

': ~ to be centrally located in the sensor array as seen from the source.

‘ : = The above observations are consistent with the far-field analysis of section 3. For these sensor 1 choices,

1

R. is smaller and || ¢ || is larger, both resulting in smaller Cramer-Rao lower bounds.

A Also consistent with prior analysis is that the "r8’s obtained using the larger (prisn shaped) array, are
d lower than the corresponding bounds using the smaller (cube shaped) array. By the analysis of Section 3,
‘i when the array size increases, the matrix S is larger, and the cRB standard deviation is decreased.
~

Y

A

b

23

The <1 technique is seen to achieve the Cramer-Rao lower bound for some choices of sensor 1, while
performing at as much as 1.5 times the 'rB for other choices of sensor 1 for the same source location, RD
noise. and sensor array. [t has been observed, however, in all cases tried, that the choice of sensor 1 giving

.‘}‘

b the lowest “RB also gives the lowest RM= error estimates using the <t technique. This suggests a three step
N procedure for locating a source: first, use an arbitrary sensor 1 to locate the source using the <1 method;
:\ second, nsing this source location estimate, find the best choice for sensor 1 using the Cramer-Rao lower
7, bound formulas above: and third, use the =1 method to locate the source using RD measurements made
::’ .',. from the best sensor 1. A final refinement would be to perform Gauss-Newton descent on !l d — 22117 to
4 4 converge to the optimal solution.

& L. 5. Summary

2

In this paper we presented Cramer-Rao bounds on the minimum variance in estimating source location.
- S direction. and range from D measurements. It was found that the 'RB range estimate variance was a quartic
‘ function of the source range, and sensitive to the sensor array. and the choice of reference sensor. The source

direction-cosines estimate variance was seen to be sensitive to the zensor array uzed, hut insensitive to the
' source location.

> . ) N .
3 o The <1 estimator of source location, direction. and range was described. and was shown to be asymp-
NI ically effici infinity) in th f Gaussian distributed diff
NI totically efficient (as the range approaches infinity) in the case of Gaussian distributed range-difterence
y o%, .. . . .
o~ measurement. Additionalily. the <t method was shown by computer simulation to a be in the range of 1.0 to
1.5 times the Cramer-Rao lower bound for a several near-field source locations.
1 K

A
.

Appendix A — Source Location Fisher Information Matrix for Gaussian Distributed Range-

{: Difference Measurements
\ ‘.» . - . . .
:_ . In this appendix, we derive the relationship {21).
>~ Let p(fi, r.) denote the probability density function of d given z., where d is a random (N — 1)-vector,
and z, ig a vector of dimension 3 which parametrizes the distribution.
¢ .
W In the Gaussian case. we have [14]
s
o N 1 — =0 TR -
K i|lz)= ~——~=7——-¢ 7 % L =<
.o pls l ) (2x)m/= Ry
e .".‘ - - -
- b where 1 = E{:i} ig the mean {a function of z,) and R, = E{gg'} — 447 is the covariance matrix of the
" random vector £ (assumed independent of z,).
o The Fisher information matrix is defined by |9|
K i 1T
‘: .. K EE{ —Inpid|z.) [—-—lnn(dl;.)l !
SR g J Lz, I
- A ‘. , ) .
RS The log of the distribntion 13
Cd
< - mplilz)=-21 R - ~(d-i)TRT
v np(d|z.)==-shn2r-In Ry —5(d=-2)7R, (4~ 1)
.3 -’
.‘l l)
e . -
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i so that . , )
) Jlnp(d|z. . _l<ac_i> -
‘ R e e —3 — T —— s
5. =ld-dTR 5o "J
Thus,
7 a 3 ; 3 SN (34)’ -l(ad.) 7,
e ([ el [ mdle] }= (5) ar (3 3
The Cramer-Rao bound for an unbiased estimator of the parameter z, based on d observations is -
i
3d \* ad \1™' ¥
Var{z,) 2 7' = {(3;“) R;‘(a—;ﬂ
N
o

Appendix B — Efficiency of the Infinite-Range SI Bearing Estimator

For an estimator to be efficient, it must be unbiased and have variance eqnal to the Cramer-Rao lower o
bound. Here, we show that the unweighted <1 estimator of (3, is efficient when the source is infinitely far :
away from the sensor array, assuming it is based on unbiased rD estimates 4 with variance Ri' (Efficiency of .
the bearing estimator is defined relative to the rD distribution. Therefore. the underlying rD estimator itself \
need not be efficient. It is also poesible to allow the rD estimator to be biased as long as it is understood ™

that in this case an unbiased bearing estimate is one whose mean is the bearing corresponding to the mean
rD vector; in this case, the functional dependence of the biased RD mean on source bearing must be < :fined -
and differentiable. We prefer to azsume an unbiased RD estimator since the added complexity of allowing .-
RD bias does not appear to add significant practical value.)

Wa first show that the <t estimate ., of the infinite-range source direction-cosines vector. From (12), .
in the lintit as R, — oc. |
> -
22 =2-83 R=x (42)
R. .
‘.
where. §° = (STS)~!S™. Taking expected values "
E(Qc;) = E(-8") = -S"E(d) = -S"4 ~
by the linearity of expectation and the fact that the RD estimate is unbiased. -
The variance of the =1 estimator is given by -
n ~ T w N “w
Var(@es (1)) = [E(0,,8%,) ~ B(0. ) E1R)T]
- ’{‘l
Substituting for (.,, we obtain .:;,
Var(@. () = [8° [£(2d7) - E@E@7] 5] o
SwRsT, '..'
which is the Cramer-Rao lower bound given in (41). ¢
'
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Figure Captions.

Figure 1. Diagram illustrating notation and certain geometric relations for the case of a single source ..
Labels imbedded within a line derote the length of the corresponding vector. For example, D, = ilz, ~ z. |

Figure 2a. The :quare root of the Cramer-Rao bound standard deviation for estimating source range

plotted as a function of source range for the source direction, sensor array, and RD noise level given in Run
1, Table 1.

Figure 2b. The Cramer-Rao bound standard deviation for estimating source direction cosines plotted

as a function of source range for the source direction, sensor array, and RD noise level used in generating
Figure 2a.

Figure 3. Source-sensor geometry used in all simulations.
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Table 1
Monte-Carlo Runs
Run Source
Number Sensor 1 Location Array
(X,y,Z) (X9Y9Z)
# meters meters #
1 (0,0,0) (160,390,170) 1
2 (0,0,100) (160,390,170) 1
3 (0,0,0) (160,390,170) 2
4 (50,50,50) (160,390,170) 2
5 (0,0,0) (820,350,560) 1
6 (0,0,100) (820,350,560) 1
7 (0,0,0) (820,350,560) 2
S (50,50,50) (820,350,560) 2
Sensor Array 1: 0 0 0 Sensor Array 2: 0 0 0
0 0100 0 0100
0 0200 0100 O
0100 0 100 0 0O
0 100 100 0 100 100
0 100 200 100 100 0
100 0 0 100 0 100
100 0 100 100 100 100
100 0 200 30 30 350

o)
d

= 1.0 meters, 100 trials per MC run
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Table 4
SI Method Source Range RMS Error,
Cramer-Rao Lower Bound

Run RMS Error, Cramer-Rao Lower Bound (meters)
SI ST CRB g4 Oz
5 5
# O O~ 0] 0) 0]
R R R R R
s s S S S
1 19 20 17 1.06 1.14
2 14 17 9.8 1.45 1.75
3 35 37 25 1.42 1.49
4 18 19 19 0.99 1.01
5 131 135 110 1.19 1.23
6 114 120 76 1.50 1.58
7 185 188 145 1.28 1.30
3 118 118 119 0.99 0.99
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TRACK PARAMETER ESTIMATION FROM MULTIPATH DELAY INFORMATION

J. S. Abel and Khosrow Lashkari

Systams Control Technology, Inc.
1801 Page Mill Road
Palo Alto, California 94304

Abstract

It is desired to track the location of an underwater acoustic source with
ranye difference measurements from a stationary passive array. Many times,
the array has only one or two sensors, and the multipath and intersensor range
difference measurements are insufficient to localize and track a source moving
along an arbitrary path [i]. Here, we propose to track sources with l- or 2-
sensor stationary passive arrays by making the simplifying assumption that the
source's patn can be described by a small set of so-called track parameters
and usiny tne range difference information to estimate the track parameter set
rather than the source location as a function of time.

[n tnis paper, we choosa the track parameters to specify a straight-line,
constant-velocity, constant-depth path. Cramer-Rao hounds are presented for
estimating these track parameters from the time nhistory of multipath and
intersensor range differenca measurements, It is shown that this track
parameter set cannot be accurately estimated from the time nistary of 3 single
multipatn range diffarenca without side information (an independent velocity

estimate, for instance), although multipath and intarsensor range diffarence
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:. measurments from a two-sensor array are generally sufficient to estimate the :i
track paremeter set. Computationally efficient techniques are presented ~
; which estimate track parameters from range difference measurements taken from
« ¥
j: 1- ana 2-sensor arrays., D
.Q‘ X )
.U
)
pA . . . .
Monte-Carlo simulations are presented which show that these technigues =
¢, have sample mean square error approximately equal to the Crammer-Rao bound ol
~
N when a single multipath range difference and an independent velocity estimate v
0 _ K
< are available. The sample mean square error is shown to be in the range of S
kS
’ two to ten times the corresponding Crammer-Rao bounds when these techniques
-~ are applied to 2-sensor range difference data. ?i
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j ' 1. INTROOUCTION

: The tracking of a radiating source by a sensor array is a basic problem
-3 3; in underwater acoustics. [n this paper, we describe methods for tracking
b = sources using range difference measurements from passive stationary sensor
. arrays when the number of sensors is small and multipath surface reflections
3 . are present,

S ] o - .

L fhe signals recieved by the sensors of an array exhibit relative time

'_ delays corresponding to a sources' location. The relative time delay between
NN two sensors, termed time difference of arrival (TDOA) is proportional to the
N B source-sensor range difference (RD), and can be used to locate a source on a
iz ;;: hyperboloid of revolution about a line drawn through both sensors (a constant
O velocity medium is assumed). In a p-dimensional space, N > p 1indépendent
. RO's are required to localize a source without additional information [1].
;:. ?; Accordingly, a taryet moving along an arbitrary path can be tracked in p

. dimensions with N > p RD's by smoothing source location estimates obtained at
- various -imes.
1)
;: . Much work has been done on the problem of estimating TDOA's (a special
‘; lf: issue on the topic is [2] and recent studies on the performance of time delay
o . estimators include [3-10]). However, there is relatively little work on the
¢ :, problems of estimating source locations from TDOA measurements {11-15] and

i tracking moving sources using TDOA measurements from stationary passive arrays
"o [16-191.

s RD infarmation from l- or 2-sensor stationary passive arrays is
~$. ~: insufficient to localize and therefore track a source moving along an

- - arpitrary path, However, if it is assumed that the source travels along a

' ;j path described by a parameter set, the problem of estimating a source's

. location at many points in time (i.e., the probiem ¢f tracking a source} is

E }: reduced to the problem of estimating the parameter se* describing the source's
. £ path and may be possible with relativaly litzla RD information.
f o

' [. Many underwatar sources of interast %ravel ilong straight-line, constant-
'{ - depth, constant-velocity paths, specified by so-called track parametars -=-
o

N 3

1
= £
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velocity, depth, bearing angle, and the radius and time of closest approach to
the sensor array. [n this paper, computationally efficient techniques for
estimating a sources' track parameters from RD measurements taken from l- or
2-sensor stationary passive arrays in the presence of a surface multipath
reflection are presented and evaluated.

The structure of this paper is as follows. Section two describes the o
track parameter estimation problem and reviaws basic RD relationships. The

Cramer-Rao lower bound on the variance of estimating the track parameters :1

given RD and side information is derived in Section three. Track parameter -

estimation methods are developed in Section four. Section five reports >

computer simulation results. Section six contains concluding remarks. o
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2. The Track Parameter Estimation Problem

We consider the following scenario illustrated in figure 1. There is 2
stationary passive l- or 2-sensor array listening to a taryet in the presence
of a surface multipath reflection. The source moves by the array at constant
velocity and constant depth along a straight line. Range difference
measurements (between the direct paths and/or multipaths) are available at
various points durinyg some interval of time. The track parameter estimation
problem is to use the range difference measurements to estimate the parameters
describing the target's path. 3elow, track parameters are defined and RD
relationships are described for three arrays: single sensor, two-sensor
vertical, and two-sensor horizontal.

Denote le and LSZ as vectors containing the (x,y,z) coordinates of the
sensor locations for sensors 1 and 2. Denote p as the vector of track
parameters, and define
8

2

T
v vy X1 Y7 27 ! (2.1

Here, Vo and Vy are the x-axis and y-axis source velocities, zT is the
source depth and XT and Y determine the time and range of closest approacn
of the source to the sensor array. At any time ti , the source location may
De given as

-t,i U
Ly =10 -ty Ll o= [XT-vxti 25 ZT] (2.2)
) U

where I3 is the 3 x 3 identity matrix, The range difference between the
source aid the sensors at time t; is yiven by

a;,0) = aqt1) = g, (2.3)

where 1{ ) denotas the i-th component of tie vector X , the vector

4y, contains the range diffarances for times t., i=l,...%, and Qﬂj(i) is
given by
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d, (1) = aL (i) - L_.1 (2.4)

Singyle Sensor

In the case of a single sensor in the presence of a multipath reflection,

the track parameter vector, and the source and sensor locations can be given
as (see figure 2)

1T
2 = [vxp oy 7]
. T
Lrli) = [xpvty ypoz]
T
Le=[0 0 z] (2.5)

Here the x-y plane of the coordinate system is the ocean surface, positive
depth is measured into the ocean, and the coordinate system origin is at the
ocean surface above the sensor. Note, due to the radial symmetry of the
array, there are only four elements of p . The RD between the direct path
and multipath for the sensor location above is equivalent to the RD between
the direct paths to the sensor locations (see figure 2)

- T
Lgg=(0 O zs] (true sensor)
L. =10 0 =~z T {virtual sensor)
-=sm L 5]
The RD vector is given as
=g -

d - d, (2.6)

where the i-th elements of gd and gm , the direct and multipath ranges, are
Jiven by

(1)

g'm 'Lsm =T
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2, 2 2,1/2
= [0q = vy) oy (27r - 2]

Two-sensor Vertical Array

Here, the track parameter vector and the source and sensnr lacatinng zan
be given as (see figure 3)

:
= [V xryr gl

. T
Ll = [xg=vey yp 2]

T

L

L =9 0 2]

- T \
Lep = (0 0 2] 25> 24 (2.8)

Again, due to the radial symmetry of the array, there are only four nonzero
elements of o . The intersensor RD vector is yiven as

427 41 " 42 (2.9)

where the i-th elements and the direct path ranges, are given by

Y42 °

(X - ( 1 (2.10)

NMote that this intersensor 0 is the same as the multipath D measured From a

) . 1 .
single sensor at k0,0,g(zsz - zsl); for the same set of target track
parameters witn Q(d) given by 2. - %(zszfzsl) rather than z_ .
| i




ey

Two-sensor Horizontal Array

With a horizontal array there is no longer radial symmetry, and the track

parameter vector and the source and sensor locations can be given as (see ﬁ;
A
figure &) »3
n = (v \] ¥ tH s 1T )
= U'x "y T T Tl -
=4
~
L T -
Lrli) = [xp=vits yrovyty 27
Coy
T £
Lo =[x 0 2] :
. T S
£52 = [‘Xs 0 ZS] (2.11) ﬁ
The intersensor RD vector is given as o
d = - 2. 22
4=d5 -4, (2.12) "
where the ith elements of gdl and gdz , the direct path ranges, ares given by e
W
d (1) =L, =~ L (i)
dl =1l =T
n
. . 2 . N 2,1/ =
= .LxT-vxb1‘xS) + in'vy“w) * {zy=2.)7]
-
i
ddz(l) = 4532 - LT(I)H y
2. 2. 2.1/2 o)
= rf - - - - \ t
T{xp=vytytx,) Yoyt )T zpmzg) (2.13) 3
Note that the array is symmetric about the x-axis, also the intersensor RD is “
insensitive to the sign of :zT-zs] . -
Y
l\.
§
2
3
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3. BOUNDS ON THE PERFORMAHCE OF TRACK PARAMETER ESTIMATORS
In this section Cramer-Rao lower bounds on the variance of estimating

track parameters from RD measurements are presented. [t is shown here that

" the minimum variance in estimating the track parameters p = Cv Xr Y1 zT]T

N from the time history of a single multipath RD is typically large comnared to !

the RD variance unless side information is available. It is also shown that

;i side information may not be needed when a two sensor array is used and

intersensor RD information is available.

Lower bounds on the variance in estimating the track parameters
p=Lv A zT]T are presented for the case of known velocity and a single

;F“

= multipath RD available at N points in time., Lower bounds on the variance in
estimatiny the track parameters p= Cv Xr Y1 zT]T are presented for the case

:: of multipath and intersensor RD's available from a two-sensor vertical array

at N points in time, Finally, lower bounds on the variance in estimating the
ii track parameters p = [vX vy Xr Y1 zT]T are presented for the case of the

multipath and intersensor RD's availaple from a two-sensor horizontal array at
N points in time.

L
-~
x
The variance of an unbiased estimator of a parameter § is bounded below
|l by the Cramer-Rac lower bound [20-23]:
- - T BN | -1

o var(g) = E(8 3') - E(g)E(3) > I, (3.1)
2 B
- where Ia is the Fisher infcormation matrix for the parameter 8§ given by
= £20]
G ) 3. T-3_
1y 2 £{(55 toof(alx)] iS5 Toaf (alx) ]} (3.2)
“ where f(3)x) is the conditional probability density function of g given x
5 and the estimate 3 s based on data x . [f the distribution on 3 s
) parameterized by t ‘e.g. ) = g(t); , tnen tne Fisner information matrix for
l.. - - bl -
r? L can de aritten as [20]

368 33
== = (3.3)
l.:. It \v,t} I}\Bt/ \3.3’
N, * A% ALY
I” 9

T A A T AT et AT e
~ \',..‘.{.‘, .

R , .




Finally, if x and y are drawn from independent distributions, then (20]

A
"_\'9
1 =1 + 1 (3.4)
x> X L .-
o
3.1 Single Sensor Case T
&
From Saction 2 and {3,1), the Cramer-Radc iower bound for estimates of )
p = [v Xr Y1 zT]T based on N single sensor RD measurements is )
“»
-~ _1 :.:
var(p) » I (3.5)
22 .
b
,"',,
where ad . 3d é
= (— — 3.6 =
IE (3P_) 19.(32) ( )

a.

whera d s a vector composed of RD nhservations at times ti , 1=1,...,N.

The derivative, ad/ap is easily evaluated from (1), and is given dy

»

r B 2
- - lxm N Ve “Zooe :
g | FXeveleg (povepley  Ury Zroy * 2ga e
R : : : : (3.7) r
t t, Jon vt )on . "z o
NXpvEy ey (xp=vtydoy TPy Zroy T 250y | =
~
where )
- 1 P (3.8) X
Py Tad (i) Ta (i) PP T a i d (1 .
SN M) EIEDAE-ME) -
And, assuming the RD estimates are unbiased and Gaussian distributed with :f
correlation matrix Rd the information in @ is given by {20]
-1 . -
Ig,- = R1 (3.9) .
N
3.1.1 Ambiguity Issues -
-
As shown Selow, the Cramer-Rao lower bdound in (3.5) is typically very d

] . L2 . . .
large compared to the RD estimate variance; therafore low variance unbiased

., -
(i
E
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.; track parameter estimates cannot be obtained without additional information, .
;i For many sets of track parameters, during much of the observation time,
t-’i - 2 : . : . .

the term (xT Vti) will dominate gd(1) and gm(1) , and l/gd(1) and
- l/g_mh) can be approximated by, ,
n:: ) 4
) S S S e
i - - J

- 407 [xp=ve, | (% Y
R * .
»

. 1.1, Ko ,
2 0T T T T ) P 0 :
- where kd and km are constants depending on the track parametars and thead .
F; sensor location., Using (3.10) in (3.8), we see that the four columns of 35
are approximately dependent on the three vectors, N
S :
i lr 1 9! i .
}]XT-vtll le-vtl‘ IxT—vtll S
% 1 ty tf@ s
! (3.11)
‘e | | xp-vey | | xp=vty | Ixp=vtyl -J
% :
~ ad ) ;
Therefore, the matrix [ = [é:)T 1,/— will be nearly singular and the B
y p Yl 4 A
:iﬁ resulting bounds on the minimum variance of track parameter estimators will be i
) larye compared to the variance in estimating the RD's. b,
% 3
This result can be seen by examining the target/sensor geometry. As
»n illustrated in Figure 5, there are many sets of parameters which result in E
:ﬁ roughly the same msasurements d . Away from the sensor array, the S
nyoserboloids of constant RD can de :pproximated as cones. As 2 rasult, the 3
fh differaences in d between tne case of a target moving slowly close dy a ﬁ
‘ sensor and the case of 2 target moving more quickly, further from the sensor :
g: can be small compared to the deviation in estimating d . Consequently, %here -
- .
j il )
L <
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can be many sets of 'equivalent' track parameters for a given d and the
variance in estimating the track parameter set from measurements of d alone
is hignh.

3.1.2 a priori Estimate of v

Many times, an independent estimate of the target velocity is available,

through doppler measurements, for instance [24]. With an a_priori estimate of

the target velocity (an unbiased Gaussian-distributed astimate with standard
deviation a, is assumed) the Cramer-Rac lower bound on the variance of
estimating the track parameters is given by

A n st oL T -1
var(p = [v xp yp z¢] ) l.R (3.12)
where 3d . ad .
I = (__\ 1 (__.) + .'3_V\" r3¥
2 32) d 52 \eE-/ V\aE/
3d 3d
LN S L N ST ] \
\32) R_d_ (32) + ~2 LBE) LQ‘E) (3°13'
3v , d
where SE =1 0 0 U] and 5 is given above.

When 03 is small enouyh, the columns of I are no longer lineariy
dependent and estimates of the remaining track parameters will have variance
corparable to the RD and velocity estimate variances (depending on the amount
of R0 data available and the track parameters, see section 5, simulations).
As a result, the single-sensor track parameter estimation method described
herein assumes an independent estimate of the velocity.

3.2 Two-sensor Vertical Array

When both intar-sensor RD and multipath RD measurements are available
from 3 two-sensor vertical array, the Zramer-Rac lo.uer hHound Tor estimating
ha

tne set of “rack narametars o = [v xr 4= 2.1 is yiven vy
— - i

sarlp) I'ID (3.15)
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where, IE is given below using (3.3) and (3.4)

2]

I=I +I +I
- LB 2 2y (3.16)
i T By By B2y (2, 2
e 7 d e P’ drt g i gy,

’ 4 .‘ﬂ

‘o T LI LPEL LI 25 5 v YV I R e
5

where d., d, and d are the two multipath and inter-sensor RD vectors

:i . (a55ume;1;‘;§istic:ﬁy independent), the matrices Id . Id and Id are
1 -‘: =1 =2 =12
: Igl = R_;_i
. 'y " %,
. o=}
4, " ey,

and the derivatives 3ad,/ap and ag_z/ag are given by (3.7) and ad, /90 s

z z ]
( 1Py : - a T sl s
t{xp-veyjer  =(xpvtydep  ypety cErey t @ IV TLUTT
3912 . . . _dl ._dz
® : - : - : - - ZSI: %52
tn(xr=viylon -(xr=viyloy  -yren  -Zrep - TrE L,
L dy (N) 12
(3.17)
where

- 1
P17y (1) 7 dgp)

Note here that, by the arguments abaove, the derivatives ad—l/aR ,

ad_zlag_ and aglz/ag each have approximately linearly dependent columns.
However, unless the diffarence 20 " 2 is small compared to the size of
the array, the sum I21 + 122 + IP_12 will have linearly independent columns,
and the Cramer-Rao lower bound on the variance of the track parameters will be
comparable to the RO estimat2 variance (depending on the track parameters and

the amount of data available, see section 5, simulations).
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3.2 Two-sensor Horizontal Array

When both inter-sensor RD and multipath RD measurements are available
from a two-sensor horizontal array, the Cramer-Rao lower bound for estimating
T .
the set of track parameters p = [vx vy X1 Y7 zT] is given by

-1

var(p) » L (3.18)
where, I is given as
D g
I =1 +1 +1
R El 22 2.12
agJ dlt ag ag d2 ap_ ap_ J 12‘39- )

where dl’ 2 and “12 are the two muitipath and inter-sensor RD functions,

Id , Id and Id are

TR 42
-1
I, =R
9_1 'd‘l
-1
I, =R
L Y
-1
I =R
Q2 4y
d derivati 3 2 3y, .
and the derivatives E s —3__2— , and aE are given by
Blgmtixgdey flpvetidep (v Epsxg)ey  <pvytider L, -, Lt
a, : TP T %Py
B : :
f/ - - \ - - - - +
SOt dey vy Eidey (g EEx ey <lypvytyley tzrey T zgoy
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.55
R

I‘I
a

S

. Provided X is large enough, we expect the sum I+ 1 +1 will not

d d d
- 2 =12
. Ii contain linearly dependent terms and the Cramer-Rao lower bound on the track

parameter estimate variance will be comparable to the RD variancea. (depending

e
LAY
[ S )

on the track parameters and the amount of data available, see section 5,
simulations).
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: 4. Track Parameter Estimation hy
:
} In this section closad-form equation-error methods are developed for “
N . , . . - I
3 estimating track parmeters from a single multipath RD and a priori knowledge g
N of source velocity. These methods are extended to estimate track parameters ”
g using intersensor RD measurements from 2-sensor vertical and horizontal o
o
t arrays. Finally, methods are presented for estimating track parameters from
t intersensor and multipath RD measurements from 2-sensor vertical and -
; horizontal arrays without a priori knowledge the source velocity. -
4.1 Single-Sensor Track Parameter Estimation: The Equation-Error Approach ‘
In the case of a single sensor in the presence of a multipath reflection, .
3
the functional form of the multipath RD is known in terms of the track
parameters, Therefore, a fit of a model d Dbased on track parameters p can :b
be made to the measured d . The parameter estimates would then be chosen as i
g = min J(4, d4) (4.1) -
2
. Y
for some cost function J. "
[
The minimization (4.1) is over a cost function which is typically non- =
convex in p . Therefore, in general, computationaly expensive axhaustive 5
search methods must be used in finding a solution of (4.1). In this case the N
computational burden can he overcome by choosing the cost function J so that Zf
functions of the track parameters p appear as coefficeints in a linear
least-squares minimization, yielding a closed-form solution for ‘é based on :{
the measured RD d  the sensor focatfon L. and an a priori estimate of the
velocity v. a2
"
4.1.1 The Equation Error Method -
T
Recall, j
3
1 = 1“ - dqj (4.2) s
where, :
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, . 2 2 ., 2.1/2
d,(i) = ((xp=vey)™ + vy * (29%2)7 ] (4.3a)
. 2 2 2,1/2
g-d(1) = [(XT - Vt.‘) + 'YT + (ZT‘ZS) ] (4.3b)
What is desired is an expression relating functions of d(i) to dz(i) and

—m
gz(i) , S0 that functions of the unknown track parameters appear as linear

coefficients which can be estimated using least-squares techniques.
Manipulating (4.2) gives the following relationship

[3]
~N
N
N
N
no

[4°(1) - &S (1) = €5(i) )7 - ad(i)gg(i) = 0 (4.4)

In (4.4) gm(i) and d (i) are replaced with d (i) and d (i) , the values

~ n 4

-

predicted by the estimated track parameters p = [v X1 Y1 zT] , and as the

delays d are not known precisely, an equation error is introduced

¥y - &y - Z? - s@nda) = e (4.5)

We assume an a priori estimate of the velocity (denoted by v) is available,
and assign v = v . Using {4.3) in (4.5),

a*(i) - Pzl + B

2,02 2 2

+ 8d2 )t Vl"T} - 4d ){xT tyr ot ZT} + 162 { 12-} €5 (4.6)

where the remaining track parameters to be estimated are [xT 1 zT]T s
d(i) is the measured RD at time ti , and & is the corresponding equation

error [25]. Defining £ as the vector with i-th element £ (4.6) becomes

qS-r=¢ (4.7a)
where, -
XT ﬂ"
g=lxieyie 2t (4.7b)
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¢t (1) - aa?(1) (22 #B?)
ré : (4.7¢)
a*(n) - ad?() (22 + t48
- - $ N
-8d (1)tyv 4g2(1) -162§
s é : : : (4.74)
_asl Ny 2., 16,2
L8d \N)th 44" (N) 16:S
Defining the cost function J as
st e (4.8)

where W is a positive-definite weighting matrix, the set of track parameters
minimizing J is yiven by

B v ]
9
5 = 1 4.9)
27 (g - o - qg)t? (
1/2
43
where - -
T -1 T

g=(S WS) s Wr

Clearly, the track parameter estimates given in (4.9) are obtained with little
computational expense compared to global search methods.

The estimate p given in (4.9) will be referred to as the equation-error
estimate. The following sections discuss properties of the equation-error
estimate and present methods for extending the equation-error estimate to the

case of intarsensor R} data from 2-sensor vertical and horizontal arrays,

4.1.2 The Squation crror

Here we study =he cos%t function minimized in obtaining the eguation-errar

i8
.‘ o - > ¢ ..,F. f X .. - - - - o ‘\l L -.
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II estimate. Using equations (4.4) and (4.6) the i-th equation error can be
. written as,
MRS
': :" - P -~
I (i) = (@81 - d%(1) + 2d_(1)d ()12 - 4dd (1)l (i) (4.10)
3-

'“ -~
) .jj where d s the measured RD value, d is the RD estimated by the track
‘. parameter estimates, and 44 and ém are the direct and multipath ranges
{f j? given by the track parameter estimates, Rearrainging (4.10) gives
. . T 2,. 2. 2,. 2. 4
S £(i) = [2d (i)d (i) + (47(1) - a7(1))](d (i) - 4" (1)) (4.11)
E \; The factor é?(i) - 2?(1) is the difference between the square measured and
RS estimated RD's, and should be much smaller than gm(i)gd(i) , the product of

the estimated direct and multipath ranges. Therefore, the i-th equation
error can Dbe apporximated as

YN
ety

3 & (i) = 2d (Dd, () (80 - &80
»
< w = w(i)(d(i) - d(i)) (4.12)
:s ~ where
C w(i) £ 2d_(i)d(i)(d(i) + 4(i))
jﬁ "7 Note that the cost function J = Efi is made small by selecting track
- parameters which have gwg as small as possible such that _é approximates
- d . The factor w(i) is made smaller by selecting track parameters which
2 fi place the source closer to the point (0,0,0), recall Es =[00 ;S]T . Thus,
. it is expected that minimizing the unweighted equation-error (minimizing
E ;; J = ETE ) will produce track parameter estimates with a bias in the

direction ix; yr z;] = [0 0 0] .

) &

- Minimizing J = eTg is equivalent to minimizing a weighted L, norm of
- the diffarence of the measured RD values and the estimated R0 values.
’
t: Specificly, the minimization J = gTa is equivalant to the minimization
T
J=e As ‘
: -
Y
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where ¢ & d - d and A 1s a diagonal matrix with i-th row/column entry s
) -~ A
given as w (i) . a
L . L * *T N
[f it is desired to minimize J = ¢ ¢ , the above suggests a ,:
weighting matrix and an iterative procedure for doing so: solve (4.7) ’
iteratively with weighting matrix m
W... = di 1/w2/1) (4.13)
n+1l ag{l/w (1)} ' a
where diag{x(i)} denotes a diagonal matrix with x(i) as the i-th row/column
entry, and w(i) is computed using track parameter estimates from the n-th tﬁ
solution of (4.7) minimizing J = sT W, e« If the process converges, the i
errar minimized is Lj
h"
* *T *
J = £ £ (4.14) -5,
* ~
Note that minimizing J rather than J places more relative weight on the RD »
estimates taken when the source is c¢loser to the sensor. The benefit of 3
* 2
minimizing J over J may be evaluated by the studying the Fisher information
matrix (3.12) for the relative importance of RD measurements as a function of :f
source range. o
N
4.1.2 Variance of the Equation-Error Estimate o
"
In this section we present expressions for the variance of the unweignted o
equation-error track parameter estimates when RD and a priori velocity .
infcrmation is noisy. -
~
Velocity Known Precisely ..
\!
e first derive an expression for the equation-error estimate variance N
when the velocity is known precisely and the R0 vector is unbiased with
variance Rd . When the R0 standard deviation is small, the variance of the C%
track parameters can be given by {(25] ..
k|
TS SO oo (1 151
VATLR F LY X dr 2 T G0 Ry g e ‘s
20
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7. e where 3p/3ad car be evaluated by the chain rule:
;o % ag
LY.
. EE =(8—9_.)(3§) (4.16)
[ 3p
I From (4.7), — 1is given as
-: ‘-'. aﬂ g
Ao
,, -
t i 0 0 7
y L 1 0 v
T e
N ap. _ Py 1 1
S g |*»p 2p - 7. (4.17)
S 0 0 1
T
N L P3 |
',:: -::' where p, is the i-th element of P . Recall in the noiseless case,
<
X k‘. Sq=r (4.18)
o Differentiating (4.18) by d gives
S g ar
- 33 - . = a.19
[+ i agg_**Sag 3 (4.19)
. ag.
J .
N ana solving for E
'\..3 ::' - l S a,.
L9 o’ = reat - - L _: .1
3 ':% (s S)S{agq*ag_} (4.20)
\: x where
N "
w _ﬁ - 3 : 2 2
S —3§ diag{4d~(1i) + 8d(i)(v t1. + zs)}
- T B o giag{-160(i)t. va, + 8d(i)a,} (4.21)
S ad EVR T = 2.
S RD's Known Precisely
Pl .':
N When the RD's are known precisely and the velocity estimate v is unoiased
A e
“ ;jj #ith small variance 0'3 , the equation-error astimate variance can de derivedq
_ in 32 manner similar to (4,15)-(4.21):
-
‘: -
W
M) 'o;‘
‘ :\. 21
' "




- ap 3p
var(p = [V % 57 27]) T ()05

P

where v can be evaluated by the chain rule:

P 3P g 2 T
W E (W) + qv[l 0 0 0]
ap g
the derivative 39 is yiven in (4.17) ana the derivative 5
evaluated as follows., In the noiseless case, o
Sg=r (4.24) .
o
Differentiating (4.24) by v gives
Lo} ar O
35 - i3
—E —— 4
Wit St 3y (4.25)
aq
and solving for =7
3q - *
= (g -l T ar
=6 )-8 EL*;} (4.268) 4
wnere ~
w
2
-a—v- = 8y 1 : »
2
Lg (M)ty, .
e
§ 2(1)t 0 0 o8
T . - | g s 27 =
Wi o A e (4.27)
2. .-
Lg (\l)tN Q V] t‘..'
Estimated RD's and Velocity .
Finaily, if the estimates of d and v are independent, then the variance
a9f the aguatian error estimate p = Lv Xr Jo z..J can be given aporoximately as
zne sum of the variances calculated above o
. |
3w 3p T2 0 ;
\ / - e ___\ g [N f1onQ <
lar\E.) V\avlkavl \ag)Rd\ag—J “"LS'J '-_'.
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4.2 Two Sensor Track Parameter Estimation

In this section methods for adapting the equation-error estimate to
inter-sensor RD measurements from two sensor arrays are presented. In
addition, methods for estimating track parameters from two-sensor arrays
without a priori information are developed.

4.2.1 Track Parameter Estimation From Inter-sensor RD Estimates

The modification of the equation-error estimate (4.9) to make use of
inter-sensor delay information rather than multipath delay information is
straiyht forward. I[f the sensors are placed in a vertical array, the
intersensor RD is functionally equivalent to the single sensor muitipath RO,
and only the target and sensor depths need to be adjusted:

~] T 7]
v v
" q
Xy i 1
. R b RN
2= |y a2 93 4 (4.29)
E ‘q1/2+ 2o = 2a1)
= L3 2\°s2 S1/]
L
where
" 1.7
wfap = (shws)isTur
93
where S and r are as defined in (4.7) with d = d tne intersensor RD

12
estimate and W is a positive definite weighting matrix.

[n the case of a horizontal array, an equation-error sstimate can Se

derived in a manner similiar to {1,2) -- (4.3}, From [2,12)
2 2 2 2 2 2 . . .
fac (i) - as iy - 2 ) = agt (i) At {4,30)
Byt T dg T s LT T ey T dp
23
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where d].2 is the intersensor RU, -d-dl is the target range to sensor 1 and 'j
da ., is the target range sensor 2. g
d4p 18 t ge ge to so
Substituting (2.13) into equation (4.30),
a .. 2 . 2 .
9_12(1) - 4g12(1){(xT-vxt1. - x ) sz(xT-vxti) ;"
+ [ t + 2
WrYy 1‘) (ZS'ZT) }
Id - = a. .
+ 4XS\XT vxti) 0 (4,31) ‘
Denoting the track parameters to be estimated by p = [vx Vy Xr Y1 zT]T and
d,, as the measured inter-sensor RD, (4.31) becomes <
4 . 2, ....2 2 2
4p01) = 4, (ey v+ %] .
2 s 2 2,02 2
i \ - 4a.; . (i + {7_=
8 (tylvyxe + vyl - 4a, (1 {xg + yp {20720 .
. . 4
. / - - \ —
-Axstitvx} + 4xs{x.r} = 24 (4,32}
where an equation error g; has been introduced. The set of track parameters
minimizing J = ETH ¢ are given by -
—~ - 53
v ['q?) i
X »
\; | ‘,V2_02)l/2 _.
R = A-y = " A 3 ‘1
X 4 .
; (=20, )/ (P-a2) 2 3
- q - )
T 1753520710 3 (4.33) L
N . 1/2 <
(ZS'ZT) ; | Sy = 4y 417939, )/ Iy ‘Q3) W
— - b —
:_\
2 2.2 . o . -
wnera vy = v _ 4+ y O is tne 3 oriori velocity estim2-e and
L N ——————
.’\
]
3
=
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where
B 2 2 ]
-E.!g_lz(l)tl 4g12(1) 4x§t1 4xS
s& | : : :
-édz (M)t 4dé (N) 4x.t 4;
L 12 N 20 sl s_|
4 2 2.2 2
\ .912(1) - 4g12(1)(t1v + xs)
r= .

4 2 2.2 2
QIZ(N) - 4g12(N)(th * xs)

and W is a positive definite weighting matrix. Note that due to symmetries in

the array, the signs of y. and vy and (ZT-ZS) cannot be determined from
RD information alone; however, the sign of yTvT can be estimated, and here,

-~ A A

vy > 0 and I takes the sign of yTvy
4.2 Combining estimates from two sensors

As shown in section 3, when RD) information from more than one sensor is
available, side information may not be needed to obtian low variance track
parameter estimates. Below methods for estimating track parameters from
inter-sensor and multipath RD information from two-sensor vertical and
horizontal arrays are given., These methods are not optimal and do not produce
ML (minimum variance, unbiased) track parameter estimates, but provide a
computationally inexpensive alternative to the ncnlinear optimization involved
in computing the ML track parameter estimates. If the resources are availahle
to compute the ML estimate via an iterative nonlinear minimization, for
example, these methods provide excellent starting points.

WAith data available from two sensors placed in a vertical array, sets of
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v
estimates, parameterized by v can be constructed using (4.9) and (4.29). A ~

line search over v can then be performed for the set of track parameters -

minimizing some cost function. Emperically, it was found that minimizing the -

following cost function gave relatively unbiased low-variance estimates for a -
large range of noise levels for the track parameter sets used in the Monte- :?

Carlo simulations, see Section 5:
[
"-q
-~ -~ 2 ':-
= - 4,
Jy = (2r1p(v) = z2pp(v)) (4.34)
where ZTIZ(V) is the depth estimate based on v using the intersensor RD ”
information, and sz(v) is the depth estiamte based on v using multipath RD .
information from the deeper sensor. ?:
[f the data is from two sensors placed in a horizontal array, sets of jj
estimates, parameterized by v based on individual sensor data can be generated =
by (4.9). Estimates of v /v parameterized by v can be made based on inter- “
sensor data form (4.33). Track parameter estimates can then pe chosen by .
.ﬁ finding the set of estimates producing the most consistent yTl’ yTZ’ ’v . .
. i.e. the set, minimizing the cost function 4
. " —v

. J . I/VX(V) ) yTl(V) yTz\V)\Z (4 35) ke
: 4 Uy 2X ) : o
: s
2 where Qx(v) is the x-axis veloc1ty estimate obtained from the intersensor RD -
estimate usinyg (4.33) and yrp and yTZ are the y-axis range estimates from the -~

multipath RU measurements and (4.9). |
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5. Simulation Results

This section reports computer simulation results on the performance of
equation-error estimates applied to noisy RD and velocity estimates. Sample
bias, standard deviation and RMS error, defined by

N
... Al -
sample bias ¢ ﬁ.izl (8; - @)
R R NPV 2.
sample standard deviation 2 WL & - .L 8)]
i=1l i=1

Nﬂ

sample RMS error & [ﬁ- ) (ei - 9]2]1/2 (5.1)

(where 51 is the i-th sample estimate of the parameter g )were calculated by
averaginy results of 100-trial Monte-Carlo runs and were compared to
theoretically calculated values and Cramer-Rao lower bounds. Simulations

were implemented in the Ctrl1-C* language on a VAX 11/785 computer,

Results are given for sources moving along straight-line constant-
velocity paths by l- and 2-sensor arrays. Multipath and inter-sensor RD
astimates were calculated by adding white Gaussian noise to the true R
vectors; velocity estimates (used in the l-sensor simulations) were calculated
by adding white Gaussian noise to the true velocity.

Table 1 describes the enviromental data (sensor locations, track
parameters noise levels, etc.) for each of the Monte-Carlo runs (the source
trajectories and sensor locations are also shown in Figure 6). Note that in
the case of a single sensor or vertical array positioned at tne origin,

. T _ T . .
p = [vx vy X7 y¥ ZT] =[5 2 250 900 170; is equivalent to i
2= [vx yrzy] = ([5.38 556.3 747.8 170] ; and (-3 1 140 400 110]

translates to (3.162 8.849 423.7 110]T . Each run used 100 points of
aata: one RD sample every 10 seconds from time t; = -490 to t;5p = 500
seconds, and the total observation time is t = 100 = ti = 990 seconds. So

*Ctrl-C is a high-level matrix calculator language scid by SCT, Inc.
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that all biases and deviations are measured in meters, the track parameter

velocity is replaced here by the distance travelled during the observation
interval vt.

Single sensor

Table 2 shows sample bias, standard deviation, RMS error, and theoretical
deviation (4.28) of the unweighted equation-error estimate (4.9) applied to
multipath RD estimates and velocity estimates from a single sensor (Monte-
Carlo runs 1 thru 4). Monte-Carlo runs 1 and 2 show the case of perfectly
known RD estimates and noisy velocity estimates, and runs 3 and 4 show the
case of noisy RD estimates and perfectly known velocity.

[n these cases, the equation-error estimator is seen to be essentially
unbiased and to exhibit a standard deviation comparable to the RD and velocity
deviations, Note that the theoretical deviations given by equation (4.28) -
agree very well with the sample RMS errors. Accordingly, it was noted that
the track parameter estimate standard deviation appears to increase linearly -

* 4

v

with RD and velocity standard deviation. As expected (by the discussion of
the equation error, Section 4.1), the sample bias of the equation-error
estimate is negative in runs 3 and 4, indicating that the track parameter
estimate pulls the estimated source location closer to the origin than the
true source location,

ln’l’ ',

~

Table 3 shows sample RMS errors theoretical deviations (4.28), and

.
o
N

Cramer-Rao bounds (3.12) of the equation-error estimator appled to RD and
velocity estimates from a single sensor (Monte-Carlo runs 5 thru 12). The ™
sample bias, not shown here, was noted to be small compared to the sample ’Q
standard deviation., The RMS error appears to be slightly smaller tnan

theroetically predicted, consistent with a nossible small cross-correlation iﬂ
oetween the RD and velocity noises seen in these relatively small sample-size
Monte-Carlo runs. The sample RMS errors (and theoretical deviations' appear N
to be very close to the Cramer-Rao bounds indicating that <he equation-are3r -
estimate is using the RD and velocity information in an af<icient manrer 9r -~
b
these cases. il
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Two-snesor Vertical Array

Table 4 shows samplie bias, sample standard deviation, sample RMS error
and Cramer-Rao bounds (3.15) for equation-error estimates applied to RD
measurements from a two-sensor vertical array; a priori velocity estimates
were not given, The track parameter estimates were made from RD measurements
taken from the deepest sensor with velocity estimates determined by (4.34),
The equation-error estimate sample bias is seen to be a strong (perhaps
guadratic) function of the the RD noise deviation, and is comparable to the
sample standard deviation at the larger value of additive RD noise. The
sample standard deviation appears to be a linear function of the R0 noise
deviation, and small compared to the track parameter values., The eguation-

error estimate sample RMS error is seen to be about twice the Cramer-Rao
bound.,

Two-sensor Horizontal Array

Taole 5 shows sample bias, sample standard deviation, sample RMS error,
and Cramer-Rac bounds for the case of the source moving past a norizontal
array. The track parameters were astimated by averaging tne translated track
parameter estimates given by (4.9) and (4.3) with a velocity estimated by
minimizing the cost function yiven in (4.35). Here, the tracx parameter
estimates are essentially unbiased and have a samplie standard deviation which
is small compared to the track parameter value and appears to increase
linearly with RD standard deviation. The estimates have an RMS error of about
five to ten times the Cramer-Rao bound, dependiny on the track parameters.
Here, it appears that the track parameter estimation method is not using the
RD information efficiently, However, depending on the application this
estimator might nave acceptable performance,
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6. Summary

In this paper, we discussed the problem of tracking sources with
multipath and intersensor range difference measurements form 1- or 2-sensor
stationary passive arrays. RO data gathered from such arrays are insufficient
to track a source moving along an arbritrary path, and here, the problem of
describing the source's location as a function of time was reduced to the
problem of estimating a small set of parameters describing an assumed
straight-line, constant-velocity, constant-depth source patnh,

Cramer-Rao bounds were presented for estimating the track parameters from
the time history of multipath and intersensor range difference measurements,
[t is shown that th%s track parameter set could not be accurately estimated
from the time history of a single multipath range difference without side
information, However, multipath and intersensor range difference measurements

from a two-sensor array were seen to be sufficient to estimate the track

parameter set when the sensors are appropiately placed and enough RO data is
available.
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Linear least-squares equation-2rror techniques were presanted which
estimate track parameters from independent velocity estimates and multipath oy
ranye difference measurements taken from a l-sensor ar